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Abstract

We show that the two-sphere with a Riemannian metric that is Liouville with finite isometry group
does not admit an unbounded adapted complexification in the sense of Lempert and Szőke and of
Guillemin and Stenzel; that is, its Grauert tube cannot have infinite radius. We prove this by first
extending a classical theorem valid for umbilical geodesics in a triaxial ellipsoid to general Liouville
metrics. Furthermore, we derive an isometric rigidity result for the Monge–Ampère foliation of a
two-dimensional Grauert tube with infinite radius.

1. Introduction

The geodesic flow of a Riemannian metric on the two-sphere (S2, g) is said to be integrable if there
is a smooth function F : T ∗S2 → R on the cotangent bundle, invariant by the co-geodesic flow, with
dF ∧ dH �= 0 in a dense subset of T ∗S2, with H the Hamiltonian induced by g. It is well known
that an F as above and which is homogeneous quadratic in the cotangent fibers exists if and only
if g can be put in Liouville form g = (f (x)+ g(y))(dx2 + dy2) for coordinates (x, y) defined in a
dense subset of S2 (see [4, 7, 11]). Such g is called a Liouville metric.

Consider a Liouville metric g with F given as above and such that F is not a constant linear
combination of H and the square of a function that is both invariant by geodesic flow and linearly
homogeneous in the cotangent fibers. Then (see [4, 11] and Section 2) there are exactly four ‘branch’
points where F is proportional to H along the cotangent fibers. These points are contained in the
fixed-point set, �0, of an isometric involution σ�0 .Another involution of S2, the ‘antipodal involution’
σ ′, which is an isometry if the metric g is real analytic, divides these branch points into two ‘antipodal’
pairs. With these facts we now describe the results in this paper.

We first prove in Theorem 5.1 that, given a branch point p, there is a constant C > 0 such that
for any geodesic γ passing through p and not supported by �0, and for one of the two possible
orientations of γ , the angle ωk formed by γ with the curve �0 the kth instance they meet follows
the rule

tan2
(ωk

2

)
= Ck tan2

(ω0

2

)
,

while for the other orientation of γ the constant C−1 applies.
This is an extension to Liouville metrics of a classical theorem of Hart for a triaxial ellipsoid (see

[2, 9, 17]), {∑3
i=1 x2

i /ai = 1} ⊂ R
3, with 0 < a1 < a2 < a3, whose geodesic flow was explained by

Jacobi in the nineteenth century. (In a triaxial ellipsoid such C exists and moreover C �= 1. But, in
general we may have C = 1 if the geodesics through p are closed.)

†Email: raguilar@maritime.edu

133
© 2008. Published by Oxford University Press. All rights reserved

For permissions, please email: journals.permissions@oxfordjournals.org



134 R. M. AGUILAR

Our interest in an extension of the Hart theorem to general Liouville metrics in S2 originates from
[2] where we use the classical result to show that in a triaxial ellipsoid the adapted complexification
in the sense of Lempert and Szőke [15] and Guillemin and Stenzel [8] cannot have infinite radius.
We recall what this means.

Let X be a Stein manifold of dimension n over C with a smooth strictly plurisubharmonic exhaus-
tion function u : X → R such that off M := u−1(0) the complex homogeneous Monge–Ampère
equation (∂∂̄

√
u)n = 0 holds. For r > 0, Xr := u−1([0, r)) ⊂ X is a Grauert tube of radius r , which

is regarded as a canonical complexification of the Riemannian manifold (M, g), called the center,
where g is the restriction of the Kähler metric induced from ∂∂̄u and the complex structure on X.
Here, the Riemannian metric g must be real analytic [14].

Conversely, given a compact real analytic Riemannian manifold (M, g) there are an r > 0 and
a unique complex structure J on Ur := E−1([0, r)) ⊂ TM, where E is the energy function on T M ,
such that 2E has the properties of the function u above. Such J is the adapted complex structure in
Ur associated to (M, g) (see [15, 18]).

DEFINITION 1.1 The adapted complex structure is said to have infinite radius if and only if it is defined
on the entire tangent bundle T M . In this case the Grauert tube with center (M, g) is said to be
unbounded or to have infinite radius.

The question of which Riemannian manifolds admit adapted complexifications with infinite radius
was raised in [15, 18], and is motivated by the problem of classifying Stein manifolds by exhaustion
functions as in the case of C

n (see [6]). First examples of Grauert tubes with infinite radius and of
dimension at least 2 are those whose centers are compact symmetric spaces [16] and certain metrics
of revolution in S2 (see [18]); further examples are constructed by isometric actions [3].

It is known that in dimension two only the two-torus, the Klein bottle, S2 or the projective space
RP

2 can support a metric with adapted complexification with infinite radius [15]. But while it was
established in [15] that in the two-torus and the Klein bottle only flat metrics have such unbounded
complexifications, in S2 or RP

2 the question is not yet settled.
It was shown by Szőke [18] that the set of all the metrics of revolution in S2 that have adapted

complexification with infinite radius is a certain family depending on two real parameters that includes
the Euclidean sphere.1 Thus, it remains to study the case of metrics in S2 with finite isometry group.

Concerning this problem, using Theorem 5.1 we extend the result for a triaxial ellipsoid shown
in [2]: we prove in Theorem 7.1 that a Liouville Riemannian metric with finite isometry group in S2

cannot have an adapted complexification with infinite radius (and as a consequence the only Liouville
metrics with such complexifications are the metrics of revolution by Szőke mentioned earlier) and
similarly for RP

2, by Corollary 7.2.
The proof of Theorem 7.1 is based on the following. On the one hand the Jacobi field induced by

XF along a geodesic γ through a branch point vanishes only at branch points if γ is generic (that is,
not supported by �0) and vanishes identically if γ is otherwise, as explained in Lemma 3.9. This has
implications, if the constant C �= 1, for the length of the covariant derivative of Jγ as described in
Theorem 6.1, and especially Corollary 6.2.

On the other hand, for any Riemannian manifold with adapted complexification with infinite
radius, if a Jacobi field along a geodesic vanishes periodically the covariant derivative satisfies a

1The proof in [18] refers to surfaces of revolution in R
3, but it can be easily adjusted to metrics in S2 with S1-symmetry that

are not assumed a priori to be isometrically embedded in R
3.
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certain growth condition described by Proposition 7.3 which, when C �= 1, is incompatible with the
growth in Corollary 6.2.

In addition, the symmetry property of any Jacobi field vanishing periodically in the presence of
an adapted complexification with infinite radius given in Proposition 7.4 is incompatible with the
finiteness of the isometry group of g, dealing with the case C = 1.

Finally, applying Theorem 7.1 we prove Theorem 8.1 which shows that the Kähler geometry of a
Grauert tube of infinite radius and of complex dimension two is determined by the leaves, as sets, of
the Monge–Ampère foliation. The proof uses the global version of a classical theorem of Dini [19]
relating the existence of geodesically equivalent metrics with the existence of an F as above.

Sections 2 and 3 contain background material with proofs included, since the set-up is needed for
the following sections; our main references for this part are [4, 11].

2. Background

2.1. Integrability and the induced Jacobi field

Let π : T ∗S2 → S2 be the cotangent bundle of S2, and dθ the canonical symplectic two-form on
T ∗S2, with θ =∑

pidqi in canonical local coordinates.
For any function G : T ∗S2 → R let XG be the vector field in T ∗S2 defined by

dθ(XG, ·) = −dG; (1)

this is the symplectic gradient or Hamiltonian vector field of G (see [1, 10]).
Give S2 the Riemannian metric g and consider the Hamiltonian H : T ∗S2 → R with H = E ◦ λ,

where E : T S2 → R is the energy function with 2E(z) = g(z, z) = ‖z‖2, and

λ : T S2 → T ∗S2 (2)

the Legendre transformation defined by λz = g(z, ·) for all z ∈ T S2.
The flow of XH is known as the co-geodesic flow. By (1) it leaves invariant the level sets of H ,

and the trajectories on the unit cotangent bundle {H = 1
2 } projected on S2 via π are the unit-speed

geodesics on S2 (see [10]).

PROPOSITION 2.1 Let F : T ∗S2 → R be any function which is homogeneous quadratic along the fibers
of π : T ∗S2 → S2. Then for all z∗ ∈ T ∗S2

g(λ−1z∗, π∗(XF |z∗)) = 2F(z∗). (3)

Proof . Let 
 be the vector field on T ∗S2 generated by fiber-wise scaling, 
 =∑
pi∂/pi in canonical

coordinates; dθ(
, ·) = θ . By (1) and (2)

g(λ−1z∗, π∗(XF |z∗)) = z∗(π∗XF )

= θ(XF |z∗)
= dθ(
|z∗ , XF |z∗)
= dF(
|z∗)
= 2F(z∗), (4)
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where we used in the last equality that F is a fiber-wise homogeneous quadratic.

Assume that the geodesic flow of the metric g in S2 is integrable. This means that there is a function
F : T ∗S2 → R, smooth and with dF ∧ dE �= 0 on a dense subset of T ∗S2, so that the Poisson bracket
vanishes, dθ(XF , XH) ≡ 0, and thus the Lie bracket vanishes, [XF , XH ] = 0, and the flows commute,
[�F , �H ] = 0.

Given z∗ ∈ {H = 1
2 } ⊂ T ∗S2 the map � : (−a, a)× R → S2, for some a > 0,

�(t, s) := π(�F
t �H

s z∗),

is a variation of the geodesic γ defined by s 
→ γ (s) = π(�H
s z∗) via the geodesics γt given by

s 
→ γt (s) := π(�F
t �H

s z∗); here γ ≡ γ0. Then we have the following.

DEFINITION 2.2 Let F : T ∗S2 → R be invariant by the co-geodesic flow. For a unit-speed geodesic
γ , γ (s) = π(�H

s z∗), let Jγ be the Jacobi field along γ

Jγ (s) := �∗
(

∂

∂t
|t=0

)
= π∗

(
XF |�H

s z∗
)
. (5)

PROPOSITION 2.3 Let F be as in Definition 2.2 and, in addition, homogeneous quadratic along the
cotangent fibers. For z∗ ∈ {H = 1

2 } let γ be the unit-speed geodesic γ (s) = π(�H
s z∗). Then for all

s ∈ R

g(γ̇ (s), Jγ (s)) = 2F(z∗). (6)

In particular, the left-hand side is a constant independent of s.

Proof . For all s ∈ R, λ�H
s z∗ = γ̇ (s). Use Proposition 2.1 and the �H -invariance of F .

REMARK 2.4 The vector field Jγ may be ≡0 along a geodesic γ , as the lift of γ may live where
dE ∧ dF = 0. For instance, Jγ ≡ 0 along γ supported by �0 in Lemma 3.9.

2.2. Liouville metrics on S2 after [4, 11]

We describe smooth and real analytic Liouville metrics in S2 with F �= aF 2
l + bH for a, b ∈ R and

Fl homogeneous linear in the cotangent fiber. We follow [4]; see also [11].
Fix 0 < L ∈ R and consider the lattice 
 on C = {(x, y) ≡ x +√−1y | x, y ∈ R}


 := {(k, lL) ∈ C | (k, l) ∈ Z× Z}.

The Weierstrass function

℘(z) = 1

z2
+

∑
ω∈
\{0}

(
1

(z− ω)2
− 1

ω2

)
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Figure 1. The shaded region covers S2 with branch points corresponding to 1
2 
.

is a meromorphic map with poles in 
. Identify C ∪∞ � S2 to get the commutative diagram

C

℘
��

π


��

C ∪∞ � S2

C/
 � T 2

2-to-1

�������������

(7)
with π
 induced by C � z 
→ −z; here, ‘2-to-1’ is a branched double cover.

DEFINITION 2.5 Q0,0 := {(x, y) ∈ C | 0 ≤ x ≤ 1/2, 0 ≤ y ≤ L/2}, Q := Q0,0 ∪ Q1,0,

Qk,l := Q0,0 + (k/2, lL/2), (k, l) ∈ Z× Z. (8)

The restriction of ℘ to Q = Q0,0 ∪Q1,0 is onto, and one-to-one when restricted to Q \ ∂Q, where
‘∂’ indicates boundary (see Fig. 1).

DEFINITION 2.6 Consider the set

�0 := ℘(∂Q0,0) = ℘(∂Q1,0). (9)

DEFINITION 2.7 The branch points of ℘ in S2 are {p1, . . . , p4} = ℘( 1
2
) ⊂ �0,

p1 : = ℘ ((0, 0)) , p2 := ℘ ((1/2, 0)) ,

p3 : = ℘ ((1/2, L/2)) , p4 := ℘ ((0, L/2)).
(10)

We describe a class of metrics g on S2 (Kolokol’tsov metrics in [4]; see also [11]).
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• Data for g smooth: On the complex plane C take the symmetric two-form

ĝ = (f (x)+ g(y))(dx2 + dy2), (11)

where f and g are smooth functions satisfying ∀x, y ∈ R

f (x) = f (x + 1) = f (−x) ≥ 0, (12)

g(y) = g(y + L) = g(−y) ≥ 0, (13)

f −1(0) =
{

k

2
| k ∈ Z

}
, g−1(0) =

{
k

2
L | k ∈ Z

}
. (14)

In addition, there is a smooth function h = h(u), u ∈ R, defined near u = 0 with h(0) = 0 and
dh/du|u=0 �= 0 such that for all k ∈ Z and small t

f

(
t + k

2

)
= h(t2), g

(
t + k

2
L

)
= −h(−t2). (15)

• Data for g real analytic: Take a symmetric two-form in C as in (11) with f and g now real
analytic, also satisfying (12) through (15). The real analyticity and (15) implies the additional
1
2
-periodicity (see [4, p. 462]) ∀x, y ∈ R

f (x) = f

(
x + 1

2

)
, g(y) = g

(
y + L

2

)
. (16)

DEFINITION 2.8 Via ℘ the symmetric two-form ĝ on C in (11) induces a Riemannian metric on S2

denoted by g and satisfying ℘∗g = ĝ.

By the definitions ℘ : (
C \ 1

2
, ĝ
)→ (

S2 \ {p1, . . . , p4}, g
)

is a local isometry and provides
Liouville coordinates (x, y) in a dense subset of S2:

g = (f (x)+ g(y))(dx2 + dy2). (17)

Then, by [4, Theorem 11.21; 11, § 3], the metric g so constructed has an integrable geodesic flow
with a quadratic F , where F �= aF 2

l + bH for a, b ∈ R and Fl homogeneous linear in the cotangent
fibers.

Conversely, a Liouville metric with a homogenous quadratic F (normalized so that F = 0 at the
branch points) and F �= aF 2

l + bH for a, b ∈ R and Fl homogeneous linear is isometric to g as above
for appropriate choices of f , g and L.

REMARK 2.9 Note that g described above has an F �= aF 2
l + bH for a, b ∈ R and Fl co-geodesic

flow invariant and homogeneous linear. However this does not imply that no such linear Fl exists.2

2In a triaxial ellipsoid the metric g, which has a finite isometry group, is written as above in terms of elliptic coordinates
and the resulting F �= aF 2

l + bH ; the branch points determined by F are inherently special for g since they are the four
umbilical points. In contrast the standard metric in S2 is written in Liouville form in the sphero-conical coordinates λ1, λ2 ([4,
p. 539]) which for (x1, x2, x3) ∈ S2 are the roots of x2

1/(a + λ)+ x2
2/(b + λ)+ x2

3/(c + λ) = 0, where a < b < c. The four
branch points are located at (s1

√
(b − a)/(c − a), 0, s2

√
(c − b)/(c − a)), s1, s2 ∈ {1,−1}, which lie in �0 = {x2 = 0} ∩ S2.

A rotation in R
3 will locate �0 in any great circle; so here the four branch points determined by F are special in relation to

the chosen coordinate system.
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ASSUMPTION 1 Henceforth S2 is endowed with the Riemannian metric g which is Liouville with a
fixed F with F �= aF 2

l + bH for a, b ∈ R and Fl a function homogeneous linear in the cotangent
fibers; g is assumed as given in (17) for some f , g and L as above. Moreover, throughout g will be
assumed smooth, or real analytic as indicated.

2.3. Involutions σ�0 and σ ′ (‘antipodal map’)

(See also [4] or [11])

PROPOSITION 2.10 There is an isometric involution σ�0 on (S2, g) with fixed-point set �0.

Proof . 
 is invariant by complex conjugation in C, so z = (x, y) 
→ z̄ = (x,−y) in C induces the
involution σ�0 on S with fixed-point set �0. It is an isometry by the 
-periodicity of ĝ in (11).

PROPOSITION 2.11 There is an involution σ ′ on S2 (‘antipodal map’) such that

σ ′(p1) = p3, σ ′(p2) = p4. (18)

Moreover, if g is real analytic σ ′ is an isometry.

Proof . The involution σ ′ is the one induced by (x, y) 
→ (1/2− x, L/2+ y) in C. If g is real analytic
the ‘ 1

2
-periodicity’ of ĝ indicated in (16) renders σ ′ an isometry.

REMARK 2.12 There are two more involutions σ1 and σ2. They both leave �0 invariant, and σ1(p1) =
p4, σ1(p2) = p3, while σ2(p1) = p2, σ2(p3) = p4. Here, σ1 is induced by (x, y) 
→ (x, L/2− y) and
σ2 by (x, y) 
→ ( 1

2 − x, y) in C.
Note that from (16) when g is real analytic σ1 and σ2 are isometries.

3. Exponential map at a branch point

In this section we recall some known facts and provide proofs since we need the set up for later
sections. The main result is Proposition 3.6 and Corollary 3.8; see, for example, [11, Theorem 2.1
and §3]

(*) the exponential map based at a branch point p-restricted to an appropriate disk is a
diffeomorphism onto S2 \ σ ′(p).

In addition to the statement (*) an important result for us in this section is Lemma 3.9 derived at
the end.

3.1. Geodesics in Liouville coordinates

Take the canonical coordinates (x, y, Px, Py) associated with the coordinates (17) and trivializing
T ∗(S2 \ {p1, . . . , p4}), z∗ = (x(πz∗), y(πz∗), z∗(∂/∂x), z∗(∂/∂y)).
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The Hamiltonian reads H = 1
2 (P 2

x + P 2
y )(f (x)+ g(y))−1, while the quadratic F is

F = 1

2
P 2

x − f H = 1

2

gP 2
x − f P 2

y

f + g
= gH − 1

2
P 2

y . (19)

Now dθ = dPx ∧ dx + dPy ∧ dy, hence

XH = 1

f + g

(
Px

∂

∂x
+ Py

∂

∂y

)
+ H

f + g

(
fx

∂

∂Px

+ gy

∂

∂Py

)
(20)

and

XF = 1

f + g

(
g Px

∂

∂x
− f Py

∂

∂y

)
+ H

f + g

(
gfx

∂

∂Px

− fgy

∂

∂Py

)
. (21)

From dθ(XF , XH) = 0, a unit-speed geodesic γ has a constant value of F .

PROPOSITION 3.1 For all z∗ ∈ T ∗S2, in the (x, y) Liouville coordinates with π(z∗) = (x, y),

‖π∗(XF |z∗)‖2 = 2f (x)g(y)H(z∗)+ 2(g(y)− f (x))F (z∗). (22)

Proof . By (19), on S2 \ {p1, . . . , p4},

P 2
x − 2f H = 2F, P 2

y − 2gH = −2F. (23)

Use this together with (17) and (21) to get (22) on S2 \ {p1, . . . , p4}. This equality holds by continuity
on {p1, . . . , p4}, both sides being equal to zero.

PROPOSITION 3.2 Let γ be a unit-speed geodesic in (S2, g) and Jγ the Jacobi field induced by XF as
in Definition 2.2. Then, for all s ∈ R, putting, in the (x, y) coordinates, γ (s) = (xs, ys),

‖Jγ (s)‖2 = f (xs) g(ys)+ 2 (g(ys)− f (xs)) F. (24)

Proof . Use Proposition 3.1, the expression Jγ (s) = π∗(XF |�H
s z∗) as in Definition 2.2 and the

Legendre transformation λ�H
s z∗ = γ̇ (s). Note that here H(z∗) = 1/2.

3.2. Exponential at a branch point

There follows a description in terms of F of the geodesics in (S2, g) through any of the branch points
defined in (10).

By Proposition 2.10 and the fact that any fixed-point set of an isometry is totally geodesic ([13,
Theorem 5.1]), the set �0 is the trajectory of a closed simple geodesic

γ �0 : R → S2. (25)

This geodesic (up to parametrization) is the singular branch geodesic.
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PROPOSITION 3.3 A unit-speed geodesic γ meets a branch point if and only if the corresponding F is
equal to 0.

Proof . For a geodesic γ : R → S2, consider a continuous ℘-lift γ̂ : R → C and put

x̂t := �(γ̂ (t)), ŷt := �(γ̂ (t)) (26)

for t the arc-length of γ .
(To show ⇒) Let γ (t0) = p, a branch point. Since p ∈ ℘( 1

2
), due to (14) f (x̂t0) = g(ŷt0) = 0.
So, since ℘∗g = ĝ, from (24) it follows that Jγ (t0) = 0, where Jγ is the Jacobi field in Proposition 2.3;
thus, by (6), F = 0.

(To show ⇐) Let γ be a geodesic with F = 0. We show that there is a t0 ∈ R for which γ̂ (t0) ∈
1
2
 = ℘−1({p1, . . . , p4}).

(*) Assume γ is not supported by �0 ⊂ S2, since we know that �0 contains branch points. Thus,
there are t∗ ∈ R and (k, l) ∈ Z× Z such that, with Qk,l as in (8),

γ̂ (t∗) ∈ Qk,l \ ∂Qk,l . (27)

CLAIM 3.4 The functions (26) are strictly monotone on I∗, where I∗ ⊂ R is any connected component
containing t∗ of the set {t ∈ R|γ̂ (t) ∈ Qk,l \ ∂Qk,l}.

Proof . By translation in C, if necessary identify Qk,l with Q0,0 or Q1,0, so that we may assume
γ̂ (t1) ∈ Q = Q0,0 ∪ Q1,0, and use the Liouville coordinates there. Then, for all t ∈ I∗ we put xt = x̂t

and yt = ŷt . Since F = 0 we have, with an overdot indicating derivative with respect to arc-length t ,

(f (xt )+ g(yt ))
2 ẋ2

t

(i)= P 2
x

(ii)= f (xt ), (28)

(f (xt )+ g(yt ))
2 ẏ2

t

(i)= P 2
y

(ii)= g(yt ), (29)

where we get (i) by (2), and (ii) by setting F = 0 in (23).
But f −1(0) ∪ g−1(0) = 1

2
 ⊂⊔
(k,l)∈Z×Z

∂Qk,l , by (8) and (14). Thus, by (28) and (29) we have
ẋt �= 0 and ẏt �= 0 for all t ∈ I∗. So the claim is proved.

Now Claim 3.4, (27) and the boundedness of Qk,l imply that there is a t0 ∈ R such that γ̂ (t0) ∈
∂Qk,l . Moreover, it follows that γ̂ (t0) ∈ 1

2
. Indeed, if γ̂ (t0) /∈ 1
2
 then: γ̂ (t0) ∈

(
∂Qk,l ∩ f −1(0)

) \(
∂Qk,l ∩ g−1(0)

)
, or γ̂ (t0) ∈

(
∂Qk,l ∩ g−1(0)

) \ (
∂Qk,l ∩ f −1(0)

)
. But, by (28) and (29), in either

case γ̇ (t0) is tangential to �0 at γ (t0), forcing γ to be the geodesic γ �0 supported by �0, contradicting
the assumption (*). The proposition is proved.

DEFINITION 3.5 Put T := Ix + Iy , where

Ix :=
∫ 1/2

0

√
f (x) dx, Iy :=

∫ L/2

0

√
g(y) dy. (30)

PROPOSITION 3.6 Let γ : R → S2 be a unit-speed geodesic not supported by �0 and such that γ (t0) =
p, a branch point.
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Figure 2. Inside Qk,l x(γ (t)) and y(γ (t)) are strictly monotone in t .

Then γ meets �0 precisely at p and σ ′(p), alternating between the two, over and over, at integer
multiples of T .

In other words, γ (R) ∩�0 = {p, σ ′(p)} with

γ−1(p) = {t0 + 2kT | k ∈ Z}, (31)

γ−1(σ ′(p)) = {t0 + (2k + 1)T | k ∈ Z}.
Proof . Assume that γ (t0) = p ∈ {p1, . . . , p4} for some t0 ∈ R and that the trajectory of γ is not �0.
Consider a lift γ̂ : R → C of γ . From the proof of Claim 3.4 in Proposition 3.3 we conclude that

• γ̂ only meets a ∂Qk,l at a vertex (∈ 1
2
= ℘-preimage of branch points);

• the x and y components of γ̂ are strictly monotone functions of arc length as γ̂ traverses the
interior of a Qk,l .

Thus (see Fig. 2) the sequence according to which γ meets a branch point must be of the form
{. . . , p, σ ′(p), p, σ ′(p), p, σ ′(p), . . .} with p = p− or p = p+.

Thus, this defines a sequence {tk ∈ R, k ∈ Z} for which

γ (t) is not a branch point for t �= tk , and γ (tk) =
{

p for k even,

σ ′(p) for k odd.

Now, it just remains to show that

tk+1 − tk = T ∀k ∈ Z. (32)

To prove this, for tk < s < tk+1 consider the functions s 
→ xs and s 
→ ys describing any ℘-lift of
γ , once again as in the proof of Claim 3.4. Since γ is unit-speed,

1 = ‖γ̇ (s)‖2 = (f (xs)+ g(ys))(ẋ
2
s + ẏ2

s ). (33)

But by (28) and (29)

‖γ̇ (s)‖2 = |ẋs |
√

f (xs)+ |ẏs |
√

g(ys). (34)

Thus, using (33) and (34),

tk+1 − tk =
∫ t−k+1

t+k
|ẋs |

√
f (xs) ds︸ ︷︷ ︸

S1

+
∫ t−k+1

t+k
|ẏs |

√
g(ys) ds︸ ︷︷ ︸

S2

,
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where the two integrals S1 and S2 are improper as indicated. Now, recall that after translation in C

if necessary, the portion of the ℘-lift of γ from tk to tk+1 exists in Q0,0 \ ∂Q0,0 or in Q1,0 \ ∂Q1,0,
depending on p. In either case we have

S2 =
∫ L/2

0

√
g(y) dy = Iy (35)

and, since f is even and 1-periodic and hence f (x) = f (−x) = f (1− x),

S1 =
∫ 1/2

0

√
f (x) dx =

∫ 1

1/2

√
f (x) dx = Ix. (36)

By Definition 3.5 this shows (32) and finishes the proof of the proposition.

COROLLARY 3.7 The distance between p and σ ′(p) is T in Definition 3.5.

Proof . This follows from the calculation above for geodesics not supported by �0, together with
that, by (35) and (36), T = S1 + S2 is also the length of the two segments from p to σ ′(p) along the
geodesic γ �0 supported by �0.

COROLLARY 3.8 The exponential map at a branch point p,

expp : B(p, T ) = {v ∈ TpS2 | ‖v‖ < T } → S2 \ {σ ′(p)}, (37)

is a diffeomorphism.

Proof . Step 1: We show first that the map (37) is one-to-one.
Assume there are geodesics γ1 and γ2 with γ1(0) = γ2(0) = p and γ1(t1) = γ2(t2), where 0 <

t1 ≤ t2 < T , and get a contradiction to Corollary 3.7 as we now sketch.
Let ε > 0 be small enough so that there is a unique geodesic segment γ3 connecting γ1(t1 − ε)

with γ2(t2 + ε). The segment of γ1 from p = γ1(0) to γ1(t1 − ε) has length t1 − ε; the segment γ3

from γ1(t1 − ε) to γ2(t2 + ε) has length a < 2ε by the triangle inequality; and the segment of γ2 from
γ2(t2 + ε) to σ ′(p) has length T − t2 − ε.

By smoothing the broken curve of total length (t1 − ε)+ a + (T − t2 − ε) = T − (t2 − t1)−
(2ε − a) < T determined by those three segments, get a smooth curve from p to σ ′(p) of length less
than T , violating Corollary 3.7. This shows step 1.

Step 2: Assume γ with γ (0) = p with (expp)∗|t γ̇ singular for some 0 < c < T and get a contradic-
tion to step 1. Now γ (c) is a conjugate point of γ (0) along γ , hence γ does not minimize the distance
from p beyond γ (c) ([12, Theorem 4.1]). So, for a c′ with c < c′ < T , there are a unit-speed geodesic
γ̃ and a c′′ with 0 < c′′ < c′ < T such that γ̃ (0) = p and γ̃ (c′′) = γ (c′), contradicting step 1.

We close this section with a result used repeatedly later.

LEMMA 3.9 Let γ be a unit-speed geodesic passing through a branch point p = γ (0). If γ is not
supported by �0 the Jacobi field in Definition 2.2 satisfies

(i) Jγ is normal, that is, g(Jγ (t), γ̇ (t)) = 0 for all t ∈ R;
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(ii) Jγ (t) = 0 ⇔ t = kT , k ∈ Z.

On the other hand if γ is the geodesic supported by �0, that is, γ = γ �0 , then Jγ �0 ≡ 0.

Proof . Since γ meets a branch point, Fγ = 0 by Proposition 3.3; so (i) follows from (6).
To show (ii) combine the formula for the length of Jγ in Proposition 3.2 with the fact that

f (x)g(y) = 0 if and only if (x, y) ∈ �0 ⊃ {p1, . . . , p4}) by (14); then use Proposition 3.6. This
argument also shows the vanishing of Jγ �0 .

4. The one-form � on S2 \ �0 (Theorem 4.5)

After the set-up from the previous sections we now take two systems of polar coordinates centered
at two chosen non-antipodal branch points, p− and p+, p+ �= σ ′(p−), and define a one-form � on
S2 \�0 that will be used in the proof of Theorem 5.1.

We will show that � can be integrated along geodesic segments connecting any pair p and σ ′(p)

of antipodal branch points, and that the result of the integration does not depend on the geodesic
segment. (In fact, the same holds for any path nowhere tangent to �0 and meeting it only at p and
σ ′(p), but we focus on geodesic segments.)

4.1. Definition of �

Consider a pair of (always distinct) branch points {p−, p+} ⊂ {p1, . . . , p4} with p+ �= σ ′(p−).
Henceforth such a pair will be called non-antipodal.

Let ds̃− and dψ̃− be, respectively, the radial and angular one-forms on the punctured disk
B(p−, T ) \ {0} ⊂ Tp−S2. Put

ds− := (exp−1
p− )∗ds̃−, dψ− := (exp−1

p− )∗dψ̃−, (38)

and denote the dual frame by ∂/∂s− and ∂/∂ψ−. Similarly, using expp+ on Tp+S2 \ {0}, define ds+,
dψ+, ∂/∂s+ and ∂/∂ψ+. We have the metric expressed as

g = ds2
− + ρ2

− dψ2
− and g = ds2

+ + ρ2
+ dψ2

+, (39)

respectively, on S2 \ {p−, σ ′(p−)} and S2 \ {p+, σ ′(p+)} for functions ρ− and ρ+.

DEFINITION 4.1 Denote the orthonormal frames on S2 \ {p−, σ ′(p−)} by

U− := ∂

∂s−
, V− := 1

ρ−
∂

∂ψ
, (40)

and analogously {U+, V+} on S2 \ {p+, σ ′(p+)}.
Then, on S2 \ {p1, . . . , p4}, put

cos ω = g (U−, U+) , sin ω = g (U−, V+). (41)
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Figure 3. ω measures the angle between geodesic rays issued from two fixed non-antipodal branch points p− and p+.

DEFINITION 4.2 Given a pair of non-antipodal branch points {p−, p+} define the one-form on S2 \�0

(see Fig. 3) by

� := dω

sin ω
. (42)

CLAIM 4.3 � is well defined and smooth on S2 \�0. (It depends on the choice of the pair {p−, p+}
up to sign, but we do not make that explicit in our notation.)

Proof . Simply observe that

sin ω(q) �= 0 for all q ∈ S2 \�0. (43)

Indeed, sin ω(q) = 0 implies by (41) that U+(q) = ±U−(q), which means that a geodesic pass-
ing through p− is, at q, tangent (hence equal) to a geodesic passing through p+ �= σ ′(p−); this is
impossible unless q ∈ �0, by Proposition 3.6.

The next property of � will be used in (71) during the proof of Theorem 4.5.

PROPOSITION 4.4 Let σ�0 be the isometric involution from Proposition 2.10. Then

(σ�0)∗� = �.

Proof . Once we show that

(a) (σ�0)∗ cos ω = cos ω,
(b) (σ�0)∗ sin ω = − sin ω,

the result follows by taking derivative in (a), and using (b) with (43).
Let {u1, u2} be an orthonormal oriented basis of Tp−S2 with u1 ∈ Tp−�0, where we recall �0

(⊃{p−, p+}) is the fixed-point set of σ�0 . Put s̃−(v) = ‖v‖ and for v ∈ B(p−, T ) \ {tu1, 0 ≤ t ≤ T },
let ψ̃− be the corresponding angle of v in (0, 2π) measured from u1. Then

exp−1
p− ◦ σ�0 ◦ expp−(s̃−, ψ̃−) = (s̃−, 2π − ψ̃−).
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Hence, putting q = expp−(s̃−, ψ̃−), we have first on B(p−, T ) \ {tu1, 0 ≤ t ≤ T } and then, by
continuity of σ�0 and of expp− , throughout B(p−, T ),

σ�0∗ (U−|q) = σ�0∗

(
(expp−)∗

∂

∂s̃−
|(s̃−,ψ̃−)

)
(44)

= (expp−)∗
∂

∂s̃−
|(s̃−,2π−ψ̃−)

= U−|σ�0 (q).

Also,

σ�0∗ (V−|q) = σ�0∗

(
(expp−)∗

∂

∂ψ̃−
|(s̃−,ψ̃−)

)
(45)

= −(expp−)∗
∂

∂ψ̃−
|(s̃−,2π−ψ̃−)

= −V−|σ�0 (q).

Similarly, working from p+, we get σ�0∗ U+ = U+ and σ�0∗ V+ = −V+.
We now show (a):

cos ω(q) = g
(
U−|q, U+|q

)
(46)

(i)= ((σ�0)∗g)
(
U−|q, U+|q

)
= g

(
σ�0∗ (U−|q), σ�0∗ (U+|q)

)
(ii)= g

(
U−|σ�0 (q), U+|σ�0 (q)

)
= cos ω(σ�0(q)),

where equality (i) uses that σ�0 is an isometry, and (ii) uses (44).
Similarly one shows (b) using (41) and (45).

4.2. Integral of � along segments connecting antipodal branch points

THEOREM 4.5 Let γ : [0, T ] → S2 be a unit-speed geodesic segment not supported by �0 with γ (0) =
p, a branch point, and thus γ (T ) = σ ′(p). Then∫ T −

0+
�(γ̇ (t))dt <∞, (47)

and the result is independent of γ . (Here the integral is improper because � is not defined along
�0 ⊃ {p, σ ′(p)}.)

We give the proof of Theorem 4.5 at the end of this section after deriving the results needed to
apply Stokes’s theorem. (Of course, adjusting the proof, it would follow that (47) holds along any
path that meets �0 only at the end points p and σ ′(p) and does so non-tangentially.)
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Figure 4. O(p, ψ1, ψ2) is open, disjoint from �0 and enclosed by two geodesics through p not supported by �0.

DEFINITION 4.6 (See Fig. 4) Let p ∈ {p1, . . . , p4} and ψ1 < ψ2 such that the interval

[ψ1, ψ2] ⊂ (0, π) ∪ (π, 2π) ⊂ R. (48)

For 0 �= v ∈ TpS2, let Arg(v) be the angle of v with respect to Tp�0 for a fixed orientation of �0. Put

O(p, ψ1, ψ2) := expp ({0 < ‖v‖ < T, ψ1 < Arg(v) < ψ2}) ⊂ S2. (49)

DEFINITION 4.7 Put H0 ∪H1 = S2 \�0, where Hi is a connected component of the complement of
�0, given with notation as in Definition 2.5, by

Hi := ℘
(
Qi,0 \ ∂Qi,0

)
.

PROPOSITION 4.8
O(p, ψ1, ψ2) ⊂ Hi for i = 1, 2. (50)

Proof . With the notation as in Definition 4.12,

H0 = expp ({0 < ‖v‖ < T, 0 < Arg(v) < π}) ,

H1 = expp ({0 < ‖v‖ < T, π < Arg(v) < 2π}).

Thus, inclusion (50) is a consequence of Proposition 3.6 and the fact that the connected set
O(p, ψ1, ψ2) is the union of all the geodesics that start at p with initial velocities restricted according
to (48) and hence does not include the singular geodesic supported by �0.

PROPOSITION 4.9 The closure of O, O, satisfies

(i) O(p, ψ1, ψ2) ⊂⋂
p∗∈{p1,...,p4}\{p,σ ′(p)} expp∗ (B(p∗, T ) \ {0}) ,

(ii) O(p, ψ1, ψ2) ∩�0 = {p, σ ′(p)}.

Proof . This follows from the definitions and Corollary 3.8.
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PROPOSITION 4.10
m(p, ψ1, ψ2) := inf

q∈O(p,ψ1,ψ2)
| sin ω(q)| > 0. (51)

Proof . The proof is by contradiction. Assume inequality (51) is not true. Then there is a sequence
{qi}i∈N with qi ∈ O(p, ψ1, ψ2) and

lim
i→∞ sin ω(qi) = 0. (52)

A subsequence of {qi}i∈N will have a limit q� ∈ O(p, ψ1, ψ2), so that, by (43),

q� ∈ O(p, ψ1, ψ2) ∩�0 = {p, σ ′(p)}. (53)

Now, choose a branch point p̃ �= p with p̃ �= σ ′(p) as well; that is, p̃ is one of the two branch points
not in O(p, ψ1, ψ2).

Since each qi belongs to O(p, ψ1, ψ2) ⊂⋂
p∗∈{p1,...,p4} expp∗ (B(p∗, T ) \ {0}), by Corollary 3.8

applied to p and p̃ there are two sequences of geodesics in S2, {γi}i∈N and {ηi}i∈N such that, for each
i ∈ N,

• γi(0) = p and ηi(0) = p̃;
• γi and ηi are minimizing for arc length from 0 to T .

Let si be the distance from p to qi , and ti the distance from p̃ to qi . Thus γi(si) = qi and ηi(ti) = qi .
Since si, ti ∈ [0, T ], the two sequences of distances converge,

{si}i∈N → s�, {ti}i∈N → t�,

and by (53) they do so according to these two possibilities:

q# = σ ′(p), hence s� = T and t� = (distance from p̃ to σ ′(p)) �= 0;
q# = p, hence s� = 0 and t� = (distance from p̃ to p) �= 0.

In either case, compactness of the set of unit vectors in Tp̃S2 implies that a subsequence of {η̇i (0)}i∈N

has as limit a unit vector ũ ∈ Tp̃S2, and the geodesic η : R → S2 defined by η(0) = p̃ and η̇(0) = ũ

satisfies
η(t�) ∈ {p, σ ′(p)}. (54)

So, since by definition η(0) = p̃ /∈ {p, σ ′(p)}, it follows from by Proposition 3.6 that η must be the
geodesic supported by �0, that is,

η(R) ≡ γ �0(R) = �0. (55)

But, from the definition of ω and by (52), we have the convergence of the sequence

{| cos ω(qi)| = |g (γ̇i(si), η̇i(ti)) |}i∈N → 1. (56)

From this and (55) it follows that in Tq# S2 we have the convergence

{|g(γ̇i(s#), γ̇
�0)|}i∈N → 1.
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This is incompatible with the definition (49) of O(p, ψ1, ψ2), which consists of geodesics issued
from q# ∈ {p, σ ′(p)}, since the two geodesics segments starting at p and ending at σ ′(p) that form
∂O(p, ψ1, ψ2) are not tangent to �0.

PROPOSITION 4.11 Let γ be a unit-speed geodesic not supported by �0 with γ (0) = p, a branch point,
and γ (T ) = σ ′(p). Then

lim
a→0+,b→T −

∫ b

a

�(γ̇ (t)) dt <∞. (57)

Proof . Note that the segment of γ for 0 ≤ t ≤ T is contained in ∂O(p, ψ1, ψ2) for some ψ1 and
ψ2 as in Definition 4.6. Now, to define � we fixed two branch points p− �= p+ ∈ {p1, . . . , p4} with
p+ �= σ ′(p−). We express dω in (42) in terms of

{�−
1 := ds−, �−

2 := ρ−dψ−}, {�+
1 := ds+, �+

2 := ρ+dψ+}, (58)

the co-frames dual of {U−, V−} and of {U+, V+}, respectively, on S2 \ {p−, σ ′(p−)} and on
S2 \ {p+, σ ′(p+)}.

To do this consider the connections K− and K+,

(
d�−

1
d�−

2

)
=

⎛
⎜⎝ 0

∂ ln ρ−
∂s−

�−
2

−∂ ln ρ−
∂s−

�−
2 0

⎞
⎟⎠

︸ ︷︷ ︸
:=K−

(
�−

1
�−

2

)
,

and (
d�+

1
d�+

2

)
=

⎛
⎜⎝ 0

∂ ln ρ+
∂s+

�+
2

−∂ ln ρ+
∂s+

�+
2 0

⎞
⎟⎠

︸ ︷︷ ︸
:=K+

(
�+

1
�+

2

)
.

Since, on S2 \ {p1, . . . , p4},
(

�−
1

�−
2

)
=

(
cos ω sin ω

− sin ω cos ω

)
︸ ︷︷ ︸

:=M

(
�+

1
�+

2

)
, from the change of connection

equation K− = dMM−1 +M K+M−1 it follows that

dω = ∂ ln ρ−
∂s−

�−
2 −

∂ ln ρ+
∂s+

�+
2 .

So, using again the matrix M, on S2 \ {p1, . . . , p4}, we get the following useful expressions (note
that the + and − labels turn up mixed):

dω = −∂ ln ρ+
∂s+

sin ω�−
1 +

(
∂ ln ρ−
∂s−

− ∂ ln ρ+
∂s+

cos ω

)
�−

2 , (59)

dω = −∂ ln ρ−
∂s−

sin ω �+
1 −

(
∂ ln ρ+
∂s+

− ∂ ln ρ−
∂s−

cos ω

)
�+

2 . (60)



150 R. M. AGUILAR

Now, according to our definition of the frames U±, there are two possibilities:

(I) p ∈ {p−, σ ′(p−)}, in which case, for 0 ≤ t ≤ T ,

U−|γ (t) =
{

γ̇ (t) if p = p−,

−γ̇ (T − t) if p = σ ′(p−); (61)

(II) p ∈ {p+, σ ′(p+)}, in which case

U+|γ (t) =
{

γ̇ (t) if p = p+,

−γ̇ (T − t) if p = σ ′(p+).
(62)

If (I) holds, for 0 < a < b < T , putting τ(t) = t if p = p−, or τ(t) = T − t if p = σ ′(p−), we
have using (61) in (59) that ∣∣∣∣

∫ b

a

�(γ̇ (t)) dt

∣∣∣∣ ≤
∫ b

a

∣∣∣∣∂ ln ρ+
∂s+

∣∣∣∣
γ (τ(t))

dt

≤ (b − a) M
(ψ1,ψ2)+ , (63)

where

M
(ψ1,ψ2)+ := max

{∣∣∣∣∂ ln ρ+
∂s+

∣∣∣∣
q

| q ∈ O(p, ψ1, ψ2)

}
<∞; (64)

M+ is finite since, as remarked in Proposition 4.9, whenever p ∈ {p−, σ ′(p−)} we have
O(p, ψ1, ψ2) ⊂ S2 \ {σ ′(p+)} = {Domain of ln ρ+}.

Taking a → 0+ and b → T − in (63) shows (57).
If (II) holds, use (62) in (60); the inequality analogous to (63) now involves

M
(ψ1,ψ2)− := max

{∣∣∣∣∂ ln ρ−
∂s−

∣∣∣∣
q

| q ∈ O(p, ψ1, ψ2)

}
<∞, (65)

finite since O(p, ψ1, ψ2) ⊂ S2 \ {σ ′(p−)} = {Domain of ln ρ−}.

DEFINITION 4.12 For 0 < r < T consider the set of points of O(p, ψ1, ψ2) at a distance r from p,
that is, with the notation as in Definition 4.6, the arc

α(p, ψ1, ψ2, r) := expp({‖v‖ = r, ψ1 ≤ Arg(v) ≤ ψ2}),

oriented in the direction from ψ1 to ψ2 (see Fig. 5).

PROPOSITION 4.13

lim
r→0+

∫
α(p,ψ1,ψ2,r)

� = 0, lim
r→T −

∫
α(p,ψ1,ψ2,r)

� = 0. (66)
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Figure 5. Set of points in O(p, ψ1, ψ2) at a distance r from p.

Proof . Let

R := max
q∈ S2

{
ρ− , ρ+ ,

∣∣∣∣∂ρ−∂s−

∣∣∣∣ ,

∣∣∣∣∂ρ+∂s+

∣∣∣∣
}

. (67)

By Proposition 3.6 and Corollary 3.8, R is well defined and finite since ρ− (respectively ρ+) along
any unit-speed geodesic from p− to σ ′(p−) (respectively from p+ to σ ′(p+)) is a smooth solution to
the Jacobi field equation ∂2ρ−/∂s2− + �ρ− = 0 (respectively ∂2ρ+/∂s2+ + �ρ+ = 0), where � is the
Gauss curvature of g, with ρ− and ρ+ vanishing with period T .

Now, consider the two possibilities as before:

(I) {p, σ ′(p)} = {p−, σ ′(p−)};
(II) {p, σ ′(p)} = {p+, σ ′(p+)}.

In case (I) by (59) and (42) we have along O(p, ψ1, ψ2)

∣∣∣∣�
(

∂

∂ψ−

)∣∣∣∣ =
∣∣∣∣ ρ−
sin ω

(
∂ ln ρ−
∂s−

− ∂ ln ρ+
∂s+

cos ω

)∣∣∣∣
≤ 1

| sin ω|
(∣∣∣∣∂ρ−∂s−

∣∣∣∣+ ρ−
∣∣∣∣∂ ln ρ+

∂s+

∣∣∣∣
)

≤ R

m(p, ψ1, ψ2)

(
1+ M

(ψ1,ψ2)+
)

, (68)

with m(p, ψ1, ψ2) as in Proposition 4.10, R as in (67) and M
(ψ1,ψ2)+ as in (64).

In case (II) use(60) and (42) to get on O(p, ψ1, ψ2)

∣∣∣∣�
(

∂

∂ψ+

)∣∣∣∣ ≤ R

m(p, ψ1, ψ2)

(
1+ M

(ψ1,ψ2)−
)

, (69)

with M
(ψ1,ψ2)− from (65).

So, there is a constant R∗ = R∗(ψ1, ψ2) such that for 0 < r < T ,

∣∣∣∣
∫

α(p,ψ1,ψ2,r)

�

∣∣∣∣ ≤ R∗ × ( length of α(p, ψ1, ψ2, r)).

But the length of α(p, ψ1, ψ2, r) goes to 0 as r goes to 0 and also as r goes to T , by Corollary 3.8.
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Figure 6. As r → 0 we recover the closure of O(p, ψ1, ψ2).

4.3. Proof of Theorem 4.5

Let γ1 and γ2 be two unit-speed geodesic segments not supported by �0, connecting the branch points
γi(0) = p and γi(T ) = σ ′(p). In light of Proposition 4.11, to prove Theorem 4.5 it only remains to
show that ∫ T

0
�(γ̇1) dt =

∫ T

0
�(γ̇2) dt. (70)

CLAIM 4.14 There is no loss in generality if both open segments γ1({0 < t < T }) and γ2({0 < t < T })
are assumed contained in the same connected component of S2 \�0, H0 or H1 as in Definition 7.7.

Proof . Assume γ1({0 < t < T }) ⊂ H1 and γ2({0 < t < T }) ⊂ H0. Then, by applying the isometric
involution σ�0 , since σ�0(H0) = H1,

γ3 := σ�0 ◦ γ1 : [0, T ] → S2

is a geodesic segment not supported by �0 with γ3(0) = p, γ3(T ) = σ ′(p) such that γ3({0 < t <

T }) ⊂ H0. Moreover, since by Proposition 4.4 � is σ�0 -invariant,

∫ T

0
�(γ̇3) dt =

∫ T

0
�(

(
σ�0

)
∗ γ̇1) dt =

∫ T

0
(σ�0)∗�(γ̇1) dt =

∫ T

0
�(γ̇1) dt, (71)

and the claim follows.

So, γi : [0, T ] → H0 ∪ {p, σ ′(p)}, i = 1, 2, boundO(p, ψ1, ψ2) ⊂ H0 where, after renaming 1 �
2 if necessary, ψi = Arg(γ̇i(0)). Now we show that

∮
∂O(p,ψ1,ψ2)

� = 0. (72)

To do this, consider for 0 ≤ r < T the truncation of O(p, ψ1, ψ2) (see Fig. 6),

O(p, ψ1, ψ2, r) := expp({r ≤ ‖v‖ ≤ T − r, ψ1 ≤ Arg(v) ≤ ψ2}).
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Since d� = 0 on S2 \�0 ⊃ O(p, ψ1, ψ2, r), by Stokes’s theorem, for all 0 < r < T ,∮
∂O(p,ψ1,ψ2,ε)

� = ∫
O(p,ψ1,ψ2,r)

d� = 0. Thus, we have

0 =
∫

γ1([r,T−r])
�+

∫
α(p,ψ1,ψ2,T−r)

�−
∫

γ2([r,T−r])
�−

∫
α(p,ψ1,ψ2,r)

�.

As r → 0, according to Proposition 4.13 the second and fourth integrals above go to zero, while
by Proposition 4.11 the first and the third integrals have a limit each; so, (72) holds. Consequently,∫
γ1([0,T ]) � = ∫

γ2([0,T ]) � showing (70).

COROLLARY 4.15 Let γ : R → S2 be a unit-speed geodesic not supported by �0 and such that γ (0) =
p, a branch point. Then, for all k ∈ Z,

∫ T

0
�(γ̇ ) dt = (−1)k

∫ (k+1)T

k

�(γ̇ ) dt. (73)

Proof . By Proposition 3.6, for k in Z the restrictions γ : [kT , (k + 1)T ] → S2 are geodesic segments
not supported by �0 going from p to σ ′(p) or vice-versa, depending on the parity of k, hence the
(−1)k factor, when we apply Theorem 4.5.

5. The angle formed by a geodesic through a branch point with �0

THEOREM 5.1 Let (S2, g) be a smooth Liouville metric on S2 with F homogeneous quadratic along
the fibers of T ∗S2, where F �= aF 2

l +H for a, b ∈ R for any Fl homogeneous linear, and let p be
a branch point. Orient the singular geodesic (25) supported by �0. Then, there is a constant 0 < C

with the following property.
Let γ be any unit-speed geodesic, not supported by �0, that meets p at t = t0, and hence σ ′(p) at

t0 + T . Then, for one of the two orientations of γ , if we let ωk be the angle that γ forms with �0 at
time t0 + kT , for k ∈ Z, then

tan2
(ωk

2

)
= Ck tan2

(ω0

2

)
. (74)

For the other orientation of γ the valid constant is C−1.

Theorem 5.1 is proved after establishing Propositions 5.5 and 5.7 below.

REMARK 5.2 The constant C is the same for all geodesics meeting the branch points p and σ ′(p). In
addition, if g is real analytic, C is the same for all geodesics meeting any of the four branch points.
This follows from Remark 2.12 since the involutions act transitively on the set of branch points.

REMARK 5.3 It might be the case that C = 1, if the geodesics through p are closed.

5.1. The angle ωγ along a geodesic γ

Let γ : R → S2 be a unit-speed geodesic not supported by �0, with γ (0) = p−, a branch point, and
thus γ (T ) = σ ′(p−).
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We will consider the angle that γ̇ (t) makes with the geodesic rays radiating from a non-antipodal
branch point p+, chosen in {p1, . . . , p4} \ {p−, σ ′(p−)} according to the following remarks leading
to (76).

• The two branch points p− and p+ �= σ ′(p) are used to define the two sets of frames {U−, V−}
and {U+, V+}, and also the one-form � as before. Now, by Proposition 3.6, since γ passes
through p− it misses the pair of branch points {p+, σ ′(p+)}, so

γ (R) ⊂ S2 \ {p+, σ ′(p+)} = {Domain of {U+, V+}}. (75)

• For all t ∈ R, |g(γ̇ (t), U+)γ (t)| �= 1; equality would mean that γ is tangent and hence equal to
a geodesic passing through p+, but since γ goes through p− by hypothesis, this is not possible
because γ is not supported by �0.

So, in light of these facts, we can take the one p+ for which, for all t ∈ R

g(γ̇ (t), V+)γ (t) > 0. (76)

Now we make the following definition.

DEFINITION 5.4 Let ωγ : R → (0, π) be given by

ωγ (t) := arccos g (γ̇ (t), U+)γ (t) . (77)

The relation between ωγ and ωk in Theorem 5.1 is as follows.

PROPOSITION 5.5 For all k ∈ Z,
|ωk| = |ωγ (kT )|. (78)

Proof . For p− and p+ as above the singular geodesic γ �0 : R → �0 is parametrized and oriented
according to increasing arc length so that

γ �0(0) = p−, γ �0(T ) = σ ′(p−), p+ ∈ γ �0({0 < t < T }).
By definition of the frame {U+, V+} in (40), for all k ∈ Z (see Fig. 7),

U+|p− = −γ̇ �0(kT ) ∈ Tp−�0 for k even, (79)

U+|σ ′(p−) = γ̇ �0(kT ) ∈ Tσ ′(p−)�0 for k odd.

Thus, for k ∈ Z, from the expression of ωγ in Definition 5.4,

ωk = (angle formed by γ̇ (kT ) and �0) = (−1)k+1ωγ (kT ).

PROPOSITION 5.6 For all k ∈ Z, assuming γ (0) = p−, for kT < t < (k + 1)T ,

�(γ̇ (t)) = (−1)k

sin ωγ (t)

dωγ

dt
. (80)
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Figure 7. U+|p− ∈ Tp−�0 and U+|σ ′(p−) ∈ Tσ ′(p−)�0.

Proof . By Proposition 3.6, for all k ∈ Z,

γ (2kT ) = p−, γ ((2k + 1)T ) = σ ′(p−). (81)

Hence, in light of Corollary 3.8, for all k ∈ Z,

∀t ∈ (kT , (k + 1)T )

{
γ (t) moves away from p− if k is even;
γ (t) moves towards p− if k is odd.

So, by (38) and (40) (see Fig. 8),
γ̇ (t) = (−1)kU−|γ (t). (82)

Thus, for all k ∈ Z, whenever t ∈ (kT , (k + 1)T ),

cos ω(γ (t))
by (41)= g(U−, U+)γ (t)

by (82)= (−1)k g(γ̇ (t), U+)γ (t)

by (77)= (−1)k cos ωγ (t). (83)

Similarly,

sin ω(γ (t)) = g (U−, V+)γ (t)

= (−1)k g (γ̇ (t), V+)γ (t)

= (−1)k sin ωγ (t). (84)

Use the t-derivative in (83) and the last equality in (84) to get (80).

5.2. Proof of Theorem 5.1

Let γ : R → S2 be a unit-speed geodesic not supported by �0 with γ (kT ) = p−, a branch point, for
k ∈ Z even, and γ (kT ) = σ ′(p−) for k ∈ Z odd.
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Figure 8. Illustrating (82), segments of γ towards and away from p−.

Let ωγ : R → (0, π) as before, and recall d ln tan(x/2)
∗= dx/sin x. Then, ∀ k ∈ Z,

ln

∣∣∣∣ tan(ωk+1/2)

tan(ωk/2)

∣∣∣∣ by Prop. 5.5= ln

∣∣∣∣ tan(ωγ ((k + 1)T )/2)

tan(ωγ (kT )/2)

∣∣∣∣ (85)

by (∗)=
∫ (k+1)T

kT

1

sin ωγ (t)

dωγ

dt
dt

by Prop. 5.6= (−1)k
∫ (k+1)T

kT

�(γ̇ (t)) dt

by (73)=
∫ T

0
�(γ̇ (t)) dt

by Prop. 5.6=
∫ T

0

1

sin ωγ (t)

dωγ

dt
dt

=: A0.

Now, take C = e2A0 . Reversing the orientation of γ gives C−1.

6. The derivative at branch points of the Jacobi field induced by F

THEOREM 6.1 Let (S2, g) with F , p, γ and C be as in Theorem 5.1. Put

Aγ := tan2
(ω0

2

)
, (86)

where ω0 (�= 0 for γ �= γ �0 ) is the angle formed by γ̇ (0) and �0; also, for k ∈ Z, let

αk := (1+ Aγ )2 Ck

(1+ Aγ Ck)2
.

Let Jγ be the Jacobi field induced by XF , J ′γ its covariant derivative along γ . Then
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• when g is smooth

‖J ′γ (kT )‖2 =
{

αk‖J ′γ (0)‖2 for k ∈ Z even,

αk‖J ′γ (T )‖2 for k ∈ Z odd; (87)

• when g is real analytic

‖J ′γ (kT )‖2 = αk‖J ′γ (0)‖2 for all k ∈ Z. (88)

COROLLARY 6.2 For γ �= γ �0 and if C �= 1

∞∑
k=−∞

‖J ′γ (kT )‖−2

1+ k2T 2
= ∞. (89)

Corollary 6.2 is used in Theorem 7.3.

Proof . (Assuming Theorem 6.1 and for g real analytic.)
Using (88)

∞∑
k=−∞

‖J ′γ (kT )‖−2

1+ k2T 2
= ‖J ′γ (0)‖−2

(1+ Aγ )2

∞∑
k=−∞

(
C−k/2 + Aγ Ck/2

)2

1+ k2T 2
,

which diverges, since 0 < C �= 1, and Aγ > 0 for γ is not supported by �0.

The proof of Theorem 6.1 is given at the end of this section after we relate the Jacobi field Jγ

along γ with the angle ωγ .
Fix the branch point p− := p = γ (0), and a second branch point p+ �= σ ′(p−). Consider the

co-frames {�−
1 , �−

2 } and {�+
1 , �+

2 } as in (58).

PROPOSITION 6.3 The images of �−
1 and �+

1 live in {F = 0} ∩ {H = 1/2} ⊂ T ∗S2.

Proof . The unit vector field U− is, by definition of expp− , tangential to the geodesics through p−
which all have a value of F equal to zero by Proposition 3.3. Similarly for U+ using expp+ .

PROPOSITION 6.4 There is a smooth function ϒ : S2 \ {p+, σ ′(p+)} → R such that the diagram below
commutes.

S2 \ {p+, σ ′(p+)}
�+

1 ��

ϒ V+
��

T ∗S2

XF

��

T S2 T
(
T ∗S2

)π∗��

Proof . We can always write π∗ ◦XF ◦�+
1 = α U+ + ϒ V+ for appropriate smooth functions

α and ϒ on S2 \ {p+, σ ′(p+)}. To show α ≡ 0, first use that, by Proposition 2.1, for every
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z∗ ∈ {F = 0} ∩ {H = 1/2} ⊂ T ∗S2

g(λ−1z∗, π∗XF |z∗) = 0. (90)

Then, putting z∗ = �+
1 |q = λU+|q , q ∈ S2 \ {p+, σ ′(p+)}, with λ the Legendre transformation (2),

in light of Proposition 6.3, we get

α = g(U+|q , π∗(XF |�+
1 |q )) = 0. (91)

PROPOSITION 6.5 Let γ : R → S2 \ {p+, σ ′(p+)} be any unit-speed geodesic that passes through a
branch point p and Jγ the Jacobi field induced by XF as in Definition 2.2. Then, for all t ∈ R,3

|ϒ(γ (t))| = ‖Jγ (t)‖. (92)

Proof . By Proposition 3.1, for all z∗ ∈ {F = 0} ∩ {H = 1
2 } ⊂ T ∗S2,

‖π∗(XF |z∗)‖2 = f (x)g(y),

where z∗ = (x, y) in Liouville coordinates. Using this, first with z∗ = �+
1 |q and then with z∗ = �−

1 |q
for q ∈ S2 \ {p1, . . . , p4}, we get due to Proposition 6.3,

(ϒ(q))2 (i)= ‖π∗(XF |�+
1 |q )‖2 (93)

(ii)= f (x)g(y)

(iii)= ‖π∗(XF |�−
1 |q )‖2.

where q = (x, y). From these equalities we derive the following.

(1) By (ii), ϒ is extended continuously to S2 (as zero at the branch points), and

�0 = {q ∈ S2|ϒ(q) = 0}, (94)

since from (8) and (14), �0 = ℘(∂Q0,0) and f (x) or g(y) vanishes on ∂Q0,0.
(2) Let γ through p be a unit-speed geodesic not supported by �0.

• If p ∈ {p+, σ ′(p+)} use (i) and put for t ∈ R, with λ as in (2), q = γ (t) and λγ̇ (t)�+
1 |γ (t).

• If p ∈ {p−, σ ′(p−)} use (iii) and put instead q = γ (t) and λγ̇ (t)�−
1 |γ (t).

In either case, in light of Definition 2.2 we get for all t ∈ R (ϒ(γ (t)))2 = ‖Jγ (t)‖2.
(3) If γ = γ �0 , the one supported by �0, by Lemma 3.9, Jγ ≡ 0. Now use (94). Thus (92) is

proved.

3To illustrate, a calculation similar to that in [2] for the triaxial ellipsoid shows that in the case of the round metric in S2 written
in Liouville form in the sphero-conical coordinates (see footnote for Remark 2.9) we have, up to a multiplicative constant,
‖XF |z∗ ‖2 = x2

2 for z∗ in the unit cotangent bundle of S2. Let γ be a geodesic issued from a branch point γ (0) = p, α the
angle formed by γ and �0 at p, s the distance of S2 from p and Jγ (s) the Jacobi field along γ induced by XF evaluated at
γ (s). Then ‖Jγ (s)‖2 = sin2 α sin2 s, and |ϒ(γ (t))| = | sin α sin s|.
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6.1. Proof of Theorem 6.1

Let γ be a unit-speed geodesic passing through the branch point p at t = 0 not supported by �0 and
oriented so that the constant C in Theorem 5.1 applies. The Jacobi field Jγ is normal along γ and
Jγ (t) = 0 if and only if t = kT for k ∈ Z by Lemma 3.9. Thus we write

Jγ (t) = hγ (t)Pγ (t),

where hγ : R → R is a smooth function and Pγ : R → T S2 is a parallel vector field so that
{γ̇ (t), Pγ (t)} is an orthonormal oriented frame of Tγ (t)S2 for all t ∈ R.

Moreover, since, by Proposition 6.5, for all t ∈ R ‖Jγ (t)‖ = |ϒ(γ (t))|, there is a sequence {εk}k∈Z,
with εk ∈ {1,−1} such that for kT < t < (k + 1)T ,

hγ (t) = εk ϒ(γ (t)).

Thus,

‖J ′γ (kT )‖ = | lim
s→0

hγ (kT + s)− hγ (kT )

s
|

= | lim
s→0+

hγ (kT + s)

s
|

= | lim
s→0+

εkϒ(γ (kT + s))

s
|

= |dϒ(γ̇ (kT ))|
(∗)= ∣∣ cos ωγ (kT ) dϒ (U+)γ (kT ) + sin ωγ (kT ) dϒ (V+)γ (kT )

∣∣
r

(∗∗)= ∣∣ sin ωγ (kT ) dϒ+ (V+)γ (kT )

∣∣ .
Here we used Definition 5.4 in (*), and in (**) that for all k ∈ Z

dϒ(U+)γ (kT ) = 0, (95)

which holds since (see Fig. 9)

• γ (kT ) ∈ {p−, σ ′(p−)},
• U+|p− ∈ Tp−�0 and U+|σ ′(p−) ∈ Tσ ′(p−)�0, and
• ϒ+ vanishes along �0, by Corollary 6.9.

Consequently

‖J ′γ (kT )‖ =
{

a
∣∣sin ωγ (kT )

∣∣ for k even,

b
∣∣sin ωγ (kT )

∣∣ for k odd,
(96)

where

a := |dϒ(V+)p−|,
(97)

b := |dϒ(V+)σ ′(p−)|.
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Figure 9. U+|γ (2rK) ∈ Tp−�0, U+|γ ((2r+1)K) ∈ Tσ ′(p−)�0. Illustrates (95).

Both a > 0 and b > 0, since Jγ (kT ) = 0 and the Jacobi field Jγ is not identically zero, by Lemma 3.9,
since γ is not supported by �0.

But, from Theorem 5.1,

tan2

(
ωγ (kT )

2

)
= Ck tan2

(
ωγ (0)

2

)
(∗)= CkAγ , (98)

where the equality (∗) uses both (86) and that, by the definitions and parametrizations,

| cos ω0| = |g
(
γ̇ (0), γ̇ �0(0)

) | = |g (
γ̇ (0), U+(p−))| = | cos ωγ (0)

) |.
Now, use (96), (98) and the identity cos x = (1− tan2(x/2))(1+ tan2(x/2))−1 to get, for all

r ∈ Z,

‖J ′γ (2rT )‖2 = 4 Aγ C2r

(1+ Aγ C2r )2
a2,

‖J ′γ ((2r + 1)T )‖2 = 4 Aγ C2r+1

(1+ Aγ C2r+1)2
b2. (99)

Use these formulae to calculate ‖J ′γ (0)‖−2 and ‖J ′γ (T )‖−2 first, and use them again to eliminate a2

and b2 to obtain (87).
To show (88), note that the constants a and b in (99) are defined by (97). Now, if g is real analytic

σ ′ is an isometry (by Proposition 2.11) that leaves �0 invariant; so

σ ′∗
(
V+|p

) = ±V+|σ ′(p),

for V+|p and V+|σ ′(p) are unit vectors orthogonal to �0 at p and σ ′(p), respectively. Thus, since ϒ is
invariant by the isometry σ ′,

a = |dϒ(V+|p−)| = |dϒ(σ ′∗(V+|p−))| = |dϒ(V+|σ ′(p−))| = b,

and (88) follows.
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7. Non-existence of adapted complexifications with infinite radius

Recall that the adapted complex structure J on the open set U ⊂ T M with M ⊂ U is the unique
complex structure such that for every unit-speed geodesic γ : R → M

γ∗ : (T R � C) ∩ γ−1
∗ (U)→ (T M, J), x +√−1y → yγ̇ (x) (100)

is holomorphic [15]. J we call unbounded if the maximal U equals T M , in which case U is said to
have infinite radius.

In this section we prove the following.

THEOREM 7.1 A real analytic Liouville Riemannian metric on the two-sphere S2 with finite isometry
group cannot have an adapted complexification with infinite radius.

COROLLARY 7.2 Similarly for the real projective space RP
2.

Theorem 7.1 and Corollary 7.2 are proved after the next two propositions.

PROPOSITION 7.3 Let g be a real analytic Riemannian metric on S2 whose adapted complexification
has infinite radius. Let γ be a unit-speed geodesic in S2 and J a Jacobi field normal along γ (that
is, point-wise orthogonal to γ̇ ). Assume that there is a constant 0 < T ∈ R such that

J (t) = 0 ⇐⇒ t ∈ {kT | k ∈ Z}. (101)

Then, denoting by J ′ the covariant derivative of J in the direction of γ̇ ,

∞∑
k=−∞

‖J ′(kT )‖−2

1+ k2T 2
<∞. (102)

Proof . Let G be the Jacobi field normal along γ and linearly independent from J such that the
Wronskian between J and G,

g
(
J (t), G′(t)

)− g
(
G(t), J ′(t)

) ≡ 1.

Since J is normal to γ then off the zeros of J , that is, for all t ∈ R \ {kT | k ∈ Z},

G(t) = m(t)J (t), (103)

where m : R \ {kT | k ∈ Z} → R is real analytic with

m′(t) ‖J (t)‖2 = 1. (104)

As a particular case of the results in [15] it follows that if the adapted complex structure exists on
the whole T S2 then

(a) any Jacobi field canonically extends as a holomorphic section of the pull-back bundle
γ−1∗ T 1,0(T S2) over C (cf. 100), and
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(b) any such extension does not vanish on C \ R.4

Hence the canonical holomorphic extension of G divided by that of J gives a meromorphic extension
mC in the complex plane C of the real-valued function m in (103),

mC : C → C ∪∞, m ≡ mC|R\{kT | k∈Z},

whose poles, in light of (104) and (b) in the previous paragraph, correspond to the zeros of J , namely
{z = kT + 0

√−1 | k ∈ Z} ⊂ R ⊂ C.
More is shown in [15] about mC ( see also [18]): (up to switching to −G and adjusting the

Wronskian condition and the right-hand side of (104)) we have

�mC(z) > 0

for y = �z > 0. Consequently the classical Fatou representation gives

�mC(z) = yDγ,J + y

π

∫ ∞

−∞
dμγ,J

(x − t)2 + y2
, (105)

where
0 ≤ Dγ,J ∈ R (106)

is a constant and dμγ,J ≥ 0 a Borel measure on R, both depending on γ and J , with

∫ ∞

−∞
dμγ,J (t)

1+ t2
<∞. (107)

Now, since m ≡ mC|R\{kT | k∈Z} and m is real-valued,

�mC|R\{kT | k∈Z} ≡ 0,

so the support of dμγ,J , being defined by means of the weak limit of �mC as �z → 0+, lies in
{t = kT | k ∈ Z}; thus there is a sequence {(rγ,J )k}k∈Z with (rγ,J )k ≥ 0 so that (107) becomes

∞∑
k=−∞

(rγ,J )k

1+ k2T 2
<∞. (108)

To identify each (rγ,J )k calculate, always with z = x +√−1y,

m′
C
= dmC

dz
= ∂mC

∂x

4For any Riemannian manifold M , a Jacobi field along a geodesic γ extends canonically as a section of γ−1∗ T (T M) invariant
by geodesic flow and rescaling along the fibers of T M; when the adapted structure J is defined on the whole T M , and as a
consequence of (100), the corresponding holomorphic extension is obtained by taking the (1, 0) component with respect to J
in γ−1∗ T (T M)⊗ C; see [15].
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on C \ {x = kT | k ∈ Z} using the Cauchy–Riemann equations and (105) to obtain

m′
C
(z) = Dγ,J + 1

π

∫ ∞

−∞
dμ(t)

(z− t)2
, (109)

to get

m′
C
(z) = Dγ,J + 1

π

∞∑
k=−∞

(rγ,J )k

(z− kT )2
, (110)

and thus, from (104), applying l’Hôpital’s rule twice,

1

π
(rγ,J )k = lim

t→kT

(t − kT )2

g (J (t), J (t))
(111)

= lim
t→kT

(t − kT )

g (J ′(t), J (t))

= lim
t→kT

1

g (J ′(t), J ′(t))+ g (J ′′(t), J (t))

= ‖J ′(kT )‖−2,

the last equality by (101). This used in (108) implies (102).

PROPOSITION 7.4 Let g be a real analytic Riemannian metric on S2 whose adapted complexification
has infinite radius. Let the geodesic γ , the Jacobi field J , and T be as in Proposition 7.3; in particular
(101) holds. If, in addition, for all k ∈ Z

‖J ′(0)‖ = ‖J ′(kT )‖, (112)

then there is a constant E depending only on γ (0) such that for all t ∈ R,

‖J (t)‖2

‖J ′(0)‖2
= T 2

π2

sin2(πt/T )

1+ E sin2(πt/T )
(113)

where, denoting by � : M → R the Gauss curvature,

3E = T 2

π2
� (γ (0))− 1. (114)
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Proof . By (111) and hypothesis (112), for all k ∈ Z,

(rγ,J )k = π ‖J ′(kT )‖−2 = π ‖J ′(0)‖−2 = (rγ,J )0. (115)

Thus, with m as in the proof of Proposition 7.3, for all z ∈ C

m′
C
(z)

by (110)= Dγ,J + 1

π

∞∑
k=−∞

(rγ,J )k

(z− kT )2

by (115)= Dγ,J + (rγ,J )0

π T 2

∞∑
k=−∞

1

(z/T − k)2

(∗)= Dγ,J + (rγ,J )0 π

T 2

1

sin2(π z/T )

(∗∗)= (rγ,J )0 π

T 2

(
Eγ,J + 1

sin2(π z/T )

)
, (116)

where in (∗) we used the classical identity
∑

k∈Z
(x − k)−2 = π2/sin2(π x), and in (∗∗) we are

defining the quantity

Eγ,J := Dγ,J T 2

π (rγ,J )0
. (117)

(Of course, (rγ,J )0 �= 0 since J is not the identically zero Jacobi field.)
But, for t ∈ R \ {kT | k ∈ Z}

m′
C
(t) = m′(t) by (104)= ‖J (t)‖−2,

and thus by (115) and (116) we get (113).
We now show that Eγ,J in (117) is the constant E in (114); in particular independent of γ and of J .
Since by (103) m is the quotient of two solutions of y ′′(t)+ � (γ (t)) y(t) = 0, where � is the

Gaussian curvature, the Schwarzian derivative of m equals 2�.
Explicitly, (m′′(t)/m′(t))′ − 1/2(m′′(t)/m′(t))2 = 2 � (γ (t)). A calculation shows

� (γ (t)) = π2

T 2

(
1+ Eγ,J + 2Eγ,J cos2

(
πt

T

)) (
1+ Eγ,J sin2

(
πt

T

))−2

;

setting t = 0 and solving for Eγ,J yields (114) if we put E := Eγ,J .

7.1. Proof of Theorem 7.1

Let (S2, g) be real analytic Liouville with finite isometry group. In particular, since the isometry
group does not contain any S1 subgroup, it follows that F �= aF 2

l + bH for a, b ∈ R and Fl linear
homogenous along the fibers of T ∗S2. Then, for any unit-speed geodesic γ not supported by �0,
with γ (0) = p one of the four branch points associated to F , the Jacobi field Jγ induced by F as
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in Definition 2.2 has the following properties (with T ∈ R the distance between antipodal branch
points).

• By Theorem 5.1 and (88) in Theorem 6.1, there is a real constant 0 < Aγ that depends only on
γ̇ (0), and a real constant C > 0 independent of p and of γ , such that for all k ∈ Z

‖J ′γ (kT )‖2 = (1+ Aγ )2 Ck

(1+ Aγ Ck)2
‖J ′γ (0)‖2. (118)

• By Lemma 3.9, Jγ satisfies all the hypotheses on the Jacobi field needed in Proposition 7.3;
hence, if (S2, g) has adapted complexification with infinite radius,

∞∑
k=−∞

‖J ′γ (kT )‖−2

1+ k2T 2
<∞. (119)

Armed with these facts we treat the two possible cases (a) C �= 1 and (b) C = 1.
(a) Case (S2, g) with C �= 1: Pick any unit-speed geodesic γ not supported by �0, and γ (0) = p,

a branch point. By (118), since C �= 1 (this is Corollary 6.2),

∞∑
k=−∞

‖J ′γ (kT )‖−2

1+ k2T 2
= ∞,

violating (119) if the adapted complexification of (S2, g) has infinite radius.
(b) Case (S2, g) with C = 1: Pick a branch point p. Consider an oriented orthonormal frame of

TpS2 given by {γ̇ �0 , γ̇
�0
⊥ }, where γ̇ �0 is tangent to �0 at p. Express the metric on S2 \ {σ ′(p)} in

polar coordinates centered at p as done in (39),

g = ds2 + ρ2 dψ2. (120)

We will show that, under the hypotheses, ρ does not depend on ψ , which implies an S1-symmetry
contrary to the finiteness of the isometry group.

Take two families of Jacobi fields normal along the geodesic rays {γ ψ }ψ∈ [0,2π) emitted from p,
parametrized as follows: for ψ ∈ [0, 2π), put vψ := cos ψ γ̇ �0 + sin ψ γ̇

�0
⊥ ∈ TpS2, and let γ ψ be

the unit-speed geodesic
t 
→ γ ψ(t) := expp

(
t vψ

)
. (121)

The two families of normal Jacobi fields along the geodesic segments γ ψ restricted to t ∈ [0, T ] are
{Jγ ψ }ψ∈ [0,2π) and {Gγ ψ := ∂/∂ψ |γ ψ }ψ∈ [0,2π) defined as follows.

• For each ψ let Jγ ψ be the field induced by XF along γ ψ as in Definition 2.2,

Jγ ψ (t) := π∗
(
XF (�H

t λ vψ

)
.

By (6), Jγ ψ is point-wise orthogonal to γ̇ ψ since the geodesic γ ψ passes through the branch
point p and hence has F -value equal to zero by Proposition 3.3.
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• For each ψ take the vector field along γ ψ given by Gγ ψ (t) := expp |∗
(
tvψ+π/2

)
. Each Gγ ψ is

a Jacobi field normal along γ ψ , by Gauss lemma. In terms of the polar coordinates and the
function ρ in (120), for 0 ≤ t ≤ T ,

Gγ ψ (t) = ∂

∂ψ
|γ ψ (t) = ρ Pγ ψ (t), (122)

where Pγ ψ : R → Tγ ψ(t)S2 is parallel and orthogonal to γ̇ ψ .

Now, for all ψ ∈ (0, π) ∪ (π, 2π), from (122) and Lemma3.9,

Gγ ψ (0) = Jγ ψ (0) = 0, Gγ ψ (T ) = Jγ ψ (T ) = 0, (123)

while for 0 < t < T we have both that Gγ ψ (t) �= 0 and Jγ ψ (t) �= 0. So, given that expp is non-
singular on {v ∈ TpS2 ‖v‖ < T }, from the initial conditions on these Jacobi fields it follows that for
0 ≤ t ≤ T ,

‖Jγ ψ (t)‖2 = ‖J ′γ ψ (0)‖2 ‖G′
γ ψ (0)‖−2 ‖Gγ ψ (t)‖2

= ‖J ′γ ψ (0)‖2 ρ2, (124)

where we used (122) and that ‖G′
γ ψ (0)‖ = ‖vψ+π/2‖ = 1.

Since C = 1, by (118), for all ψ ∈ (0, π) ∪ (π, 2π) and all k ∈ Z

‖J ′γ ψ (kT )‖ = ‖J ′γ ψ (0)‖.

Consequently, for each ψ ∈ (0, π) ∪ (π, 2π) all the hypotheses on the Jacobi field in Proposition 7.3
as well as those in Proposition 7.4 are met when we put J = Jγ ψ and γ = γ ψ . Thus, for all t ∈ [0, T ]
and all ψ ∈ (0, π) ∪ (π, 2π),

ρ2|γ ψ (t) = ‖Jγ ψ (t)‖2

‖J ′
γ ψ (0)‖2

= T 2

π2

sin2(πt/T )

1+ E sin2(πt/T )
, (125)

where E is the constant in (114) that depends only on the Gauss curvature at γ ψ(0) = p. So, in
principle on S2 \�0 and then, by smoothness, on S2 \ {σ ′(p)}, we have dρ (∂/∂ψ) ≡ 0.

Thus, the vector field given by Xψ = ∂/∂ψ on S2 \ {σ ′(p)} and Xψ = 0 at σ ′(p) is a complete
Killing vector field on (S2, g), contrary to the hypothesis on g.

7.2. Proof of Corollary 7.2

Let (RP
2, g0) be real analytic, Liouville, with finite isometry group. Lift g0 to g in S2 to get the

2-to-1 Riemannian cover π0 : (S2, g)→ (
RP

2, g0
)
. The lift g will be Liouville real analytic with

finite isometry group. Now, from (100) it follows that if
(
RP

2, g0
)

has adapted complexification with
infinite radius so will (S2, g), contrary to Theorem 7.1.
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8. Isometric rigidity of the foliation

As an application of Theorem 7.1 we prove the following.

THEOREM 8.1 Let ϕ : X1 → X2 be a real analytic bijection between unbounded Grauert tubes with
centers Mi := u−1

i (0) � S2. Assume that ϕ sends, as sets, the leaves of the Monge–Ampère foliation
defined by the exhaustion u1 in X1 to those defined by u2 in X2. Endow Xi with the Kähler metric
from ∂∂̄ui . Then X1 is, up to rescaling of u1, biholomorphically isometric to X2.

Proof . The Monge–Ampère foliation of Xi consists of leaves that are Riemann surfaces; this foliation
is singular precisely along Mi : each leaf intersects Mi along a geodesic of the metric gi induced by
restriction of the Kähler metric defined by ∂∂̄ui (see [15]).

It follows that ϕ maps M1 onto M2, and that ϕ∗g2 is a real analytic Riemannian metric on M1

geodesically equivalent to g1.
Now, the global version of a theorem of Dini ([4; 19, Theorem 15.13]; also [7, pp. 62–65], for

the local version) states that if a two-dimensional manifold has two, non-homothetic, geodesically
equivalent Riemannian metrics (that is, one metric is not a constant multiple of the other, and they
have the same geodesics as sets) then both metrics are Liouville.

In light of this we have

(1) g1 = cϕ∗g2 for a constant c > 0, and hence, by uniqueness of the adapted complex structure
[8, 15], up to rescaling of the function u1 the tubes X1 and X2 are biholomorphically isometric
with respect to their Kähler metrics, or

(2) g1 is a Liouville metric.

But possibility (2) is ruled out by Theorem 7.1 in case (M1, g1) has finite isometry group for X1 is
assumed a Grauert tube with infinite radius.

On the other hand, if (M1, g1) has S1-symmetry, so does ϕ∗g2 (see for instance [19]); thus both
g1 and ϕ∗g2 are in the two-parameter family of Szöke’s metrics of revolution from [18], and their
geodesic equivalence implies that they are homothetic; that is, they must conform to option (1).
Indeed, after a rescaling of the metrics by constants if necessary, g1 = gε and ϕ∗g2 = gε′ , where, for
0 ≤ s ≤ π , 0 ≤ ψ < 2π

gε = ds2 + ρε
2dψ2, (126)

ρε
2 := sin2 s/(1+ ε2 sin2 s), which are geodesically inequivalent for ε �= ε′.
To show this last fact5 let ∇ε denote the Levi-Civita connection for gε ; then if gε is geodesically

equivalent to gε′ there is a one-form L such that (see [5] for instance)

A(U, V ) := ∇ε′
U V − ∇ε

UV = L(U)V + L(V )U.

Here A is symmetric and tensorial in U and V which are vector fields.
Since the meridians are geodesics with s the arc-length for any value of ε, ∇ε

∂/∂s∂/∂s = 0, and
thus

0 = A

(
∂

∂s
,

∂

∂s

)
= 2L

(
∂

∂s

)
∂

∂s
,

hence L(∂/∂s) ≡ 0.

5We thank the referee for suggesting the infinitesimal argument given here which replaces our previous longer proof in an
earlier version, in which we explicitly described geodesics of gε that were not geodesics of gε′ when ε′ �= ε.
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Similarly the vector field (1/ρε)(∂/∂ψ) is parallel with regard to the metric gε along meridians,
hence ∇ε

∂/∂s∂/∂ψ = (∂ ln ρε/∂s)(∂/∂ψ) and thus, using L(∂/∂s) ≡ 0,

∂ ln(ρε′/ρε)

∂s

∂

∂ψ
= A

(
∂

∂s
,

∂

∂ψ

)
= L(

∂

∂ψ
)

∂

∂s
,

implying L(∂/∂ψ) ≡ 0, L ≡ 0, and that the metrics must be identical, that is, ε = ε′.
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Abstract

Carlitz [Solvability of certain equations in a finite field, Quart. J. Math. (Oxford) 7 (1956),
3–4] determined conditions under which infinite families of polynomials have solutions in a finite
field. In this paper we extend some of Carlitz’s results by computing the exact p-divisibility of
certain exponential sums. As a by-product we obtain an upper bound for the Waring number for
polynomials over extensions of finite fields.

1. Introduction

Exponential sums over finite fields have many applications to different areas of mathematics [7]. One
of the problems of interest is the estimation of its p-divisibility. By computing the exact p-divisibility
of the exponential sum associated to a polynomial, one can determine if families of equations have
solutions over a finite field.

A common tool for the estimation of this divisibility is the well-known theorem of Stickelberger [8].
If the exponential sum is expressed as the sum of Gauss sums, then Stickelberger’s theorem gives
the exact divisibility of each of the Gauss sums. Of the many known results on the divisibility of
exponential sums, we use results presented in [9] that give conditions to obtain exact divisibility.

In [2], Carlitz determined conditions under which infinite families of polynomials have solutions
in a finite field. In this paper we compute the exact p-divisibility of certain exponential sums under
some natural conditions and extend some of Carlitz’s results.

We also apply our results to generalizations of Waring’s problem over finite fields, where we con-
sider sums of polynomials. These generalizations lead to examples where the degree of the polynomial
can be arbitrarily large but its Waring number is small.
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2. Preliminaries

Let q = pf , p a prime, Fq be the finite field with q elements and Fq
∗ = Fq\0. Given 0 ≤ j , ji integers

such that 0 ≤ ji < p and j = ∑r−1
i=0 jip

i , we define the p-weight of j by σp(j) = ∑r−1
i=0 ji . The

p-weight degree of a monomial X
e1
1 · · · Xen

n is defined by wp(X
e1
1 · · · Xen

n ) = σp(e1) + · · · + σp(en).
Sometimes we use X to denote the variables X1, . . . , Xn. The p-weight degree of a polynomial
F(X1, . . . , Xn) = ∑

i aiX
e1i

1 · · · Xeni
n , ai �= 0 over Fpf is defined by wp(F ) = maxi wp(X

e1i

1 · · · Xeni
n ).

The p-weight degree with respect to the variable Xi of the monomial X
e1
1 · · · Xen

n is denoted by
wp,Xi

(X
e1
1 · · · Xen

n ) = σp(ei). We denote the p-weight degree with respect to the variable Xi of a
polynomial F over Fq by wp,Xi

(F ) = maxi wp,Xi
(X

e1i

1 · · · Xeni
n ). From now on, we assume that a

polynomial F(X1, . . . , Xn) contains all the variables X1, . . . , Xn.
Qp is the p-adic field with ring of integers Zp. Let K be the extension over Qp obtained by

adjoining a primitive (pf − 1)th root of unity in Qp, the algebraic closure of Qp. The residue class
field is isomorphic to Fq , and let T denote the Teichmüller representatives of Fq in K . Let ξ be a
primitive pth root of unity in Qp. Define θ = 1 − ξ and denote by vθ the valuation over θ . Note that
vθ (p) = p − 1 and vp(x) = vθ (x)/(p − 1).

Let φ : Fq → Q(ξ) be a non-trivial additive character. The exponential sum associated to F is
defined as follows:

S(F ) =
∑

x1,...,xn∈Fq

φ(F (x1, . . . , xn)).

Note that, since φ is an additive character, if F = ∑
i aiX

e1i

1 · · · Xeni
n = G(X1, . . . , Xn) + β, where

G(0, · · · , 0) = 0, then

∑
x1,...,xn∈Fq

φ(F ) =
∑

x1,...,xn∈Fq

φ(G + β) = φ(β)
∑

x1,...,xn∈Fq

φ(G).

Since φ(β) is a unit, the constant term does not affect the p-divisibility of the sum.
The following theorem [9] gives a bound for the valuation of an exponential sum with respect to θ .

THEOREM 2.1 Let F(X) = ∑N
i=1 aiX

e1i

1 · · · Xeni
n , ai �= 0. If S(F ) is the exponential sum

S(F ) =
∑

x1,...,xn∈Fq

φ(F (x1, . . . , xn)), (1)

then vθ (S(F )) ≥ L, where L = min(j1,...,jN )

{∑N
i=1 σp(ji) | 0 ≤ ji < q

}
, and (j1, . . . , jN) is a

solution to the system

e11j1 + e12j2 + . . . + e1NjN ≡ 0 mod q − 1
...

...

en1j1 + en2j2 + . . . + enNjN ≡ 0 mod q − 1,

(2)

where
∑N

i=1 eliji �= 0, for l = 1, . . . , n.
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To obtain this bound, the authors in [9] use the Teichmüller representatives a′
i ∈ T of the

coefficients ai of F to lift and expand the exponential sum S(F ):

S(F ) =
q−1∑
j1=0

· · ·
q−1∑
jN =0

[
N∏

i=1

c(ji)

] [∑
t∈T n

tj1e1+···+jN eN

] [
N∏

i=1

a′ji

i

]
. (3)

For each term T = ∏N
i=1 c(ji)

∑
t tj1e1+···+jN eN

∏N
i=1 a′ji

i in the sum (3),

vθ

([
N∏

i=1

c(ji)

] [∑
t

tj1e1+···+jN eN

] [
N∏

i=1

a′ji

i

])
(4)

=
N∑

i=1

σp(ji) + f (p − 1)s,

where s is the number of expressions in (2) that are equal to zero for the vector (j1, . . . , jN) asso-
ciated to the term. Since the polynomial F contains all the variables, we can always find a solution
(j1, . . . , jN) such that

∑N
i=1 σp(ji) is minimum and all the expressions in (2) are positive multiples

of q − 1, giving f (p − 1)s = 0. The triangle inequality is then used to obtain the bound.
Note that one does not have equality on the valuation of S(F ) because it could happen that there

are more than one solutions (j1, . . . , jN) that give the minimum value and when the associated terms
are added they could produce higher powers of θ dividing the exponential sum. In section 4 we prove
that, for many infinite families of polynomials, there is a unique solution (j1, . . . , jN) that gives the
minimum. This implies that vθ (S(F )) = L. To prove that there is a unique minimum solution one
has to consider all the possible solutions to the modular system, including those that make some of
the equations in (2) equal to zero.

In our computations we will be using the following lemma, which was proved in [9].

LEMMA 2.1 For any natural number k, σp((pf − 1)k) ≥ σp(pf − 1) = f (p − 1).

The relation between an exponential sum S(F ) = ∑
x∈Fq

n φ(F (x)) and the number of zeros of a
system of polynomials P1(X), . . . , Pt (X) is given by the following lemma that can be found in [1].

LEMMA 2.2 Let q = pf , P1(X), . . . , Pt (X) ∈ Fq[X] and let N be the number of common zeros of
P1, . . . , Pt . Then

N = p−tf
∑

x∈Fq
n,y∈Fq

t

φ(y1P1(x) + · · · + ytPt (x)).

In this paper we use p-divisibility of exponential sums to prove solvability of polynomial equations.
Another common method to prove solvability of equations is to estimate the absolute value of the
corresponding exponential sum. Usually, for the absolute value method, the solvability only depends
on having q > dε , where d is the degree of the polynomial and q is the size of the field (see [6, 7, 10]).
The results presented here cover cases that are not covered by the absolute value method.
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3. Carlitz’s results

There are many results on divisibility properties of the number of solutions of systems of polynomial
equations over finite fields. Our work generalizes the following results of Carlitz [2].

THEOREM 3.1 If F(X1, . . . , Xn) is homogeneous of degree n while G(X1, . . . , Xn) is of degree less
than n, and ∑

x1,...,xn∈Fq

F q−1(x1, . . . , xn) �= 0,

then the equation F(X1, . . . , Xn) = G(X1, . . . , Xn) has at least one solution over Fq .

This is a very general theorem but the condition
∑

x∈Fq
n F q−1(x) �= 0 could be hard to verify. The

following results do not assume this condition.

THEOREM 3.2 Let d be a divisor of p − 1, and ai ∈ Fq
∗ for i = 1, . . . , d. If G(X1, . . . , Xd) is a

polynomial over Fq with deg(G) < d, then the equation a1X
d
1 + · · · + adX

d
d + G(X1, . . . , Xd) = 0

has at least one solution over Fq .

COROLLARY 3.1 Let d be a divisor of p − 1 and F1(X1), . . . , Fd(Xd) be polynomials over Fq of degree
d. Then the equation F1(X1) + · · · + Fd(Xd) = 0 has at least one solution over Fq .

4. Exact divisibility of exponential sums and solvability of equations

In this section we compute the exact divisibility of certain exponential sums and of the number of
solutions of the related equations. With this we guarantee that these equations are solvable and obtain
generalizations of Carlitz’s results.

THEOREM 4.1 Let di be a divisor of p − 1 and ai ∈ Fq
∗ for i = 1, . . . , t . Consider the monomials

(Xi1 · · · Xin1
)d1 , (Xin1+1 · · · Xin2

)d2 , . . . , (Xint−1+1 · · · Xin)
dt (5)

all with the same degree d > 1, disjoint support and 1 ≤ ij ≤ n = nt . If G(X1, . . . , Xn) is a
polynomial over Fq with wp(G) < d , and

F(X1, . . . , Xn) = a1(Xi1 · · · Xin1
)d1 + a2(Xin1+1 · · · Xin2

)d2 + · · ·
+ at (Xint−1+1 · · · Xin)

dt + G(X1, . . . , Xn),

then

vθ (S(F )) = f (p − 1)

t∑
i=1

1

di

.
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Proof . Without loss of generality, we can assume that the monomials in (5) are of the form

(X1 · · · Xn1)
d1 , (Xn1+1 · · · Xn2)

d2 , . . . , (Xnt−1+1 · · · Xn)
dt ,

and F(0, . . . , 0) = 0. Let G(X1, . . . , Xn) = ∑N
r=1 brX

e1r

1 · · · Xenr
n . As in Theorem 2.1, we associate

a modular system to the polynomial F . The following is the modular system associated to F :

1)

⎧⎪⎨
⎪⎩

d1h1 + e1,1s1 + e1,2s2 + · · · + e1,N sN ≡ 0 mod q − 1
...

...

d1h1 + en1,1s1 + · · · + en1,N sN ≡ 0 mod q − 1

(6)

2)

⎧⎪⎨
⎪⎩

d2h2 + en1+1,1s1 + · · · + en1+1,N sN ≡ 0 mod q − 1
...

...

d2h2 + en2,1s1 + · · · + en2,N sN ≡ 0 mod q − 1

...

t)

⎧⎪⎨
⎪⎩

dtht + ent−1+1,1s1 + · · · + ent−1+1,N sN ≡ 0 mod q − 1
...

...

dtht + en,1s1 + · · · + en,NsN ≡ 0 mod q − 1

Let (h1, . . . , ht , s1, . . . , sN) be any solution to system (6), and T be the term in (3) associated to
this solution. Then

vθ (T ) =
t∑

i=1

σp(hi) +
N∑

i=1

σp(si) + f (p − 1)s,

where s is the number of equations in (6) that are equal to zero. Let n0 = 0 and, for i = 1, . . . , t , let ri

be the number of equations that are equal to zero in each block i of ni − ni−1 equations in (6). Since
di ≤ p − 1, σp(di) = di . Applying σp to (6), using Lemma 2.1, adding the first n1 − r1 non-zero
inequalities, and dividing by d1n1, we obtain

σp(h1) + σp(e1,1) + · · · + σp(en1,1)

d1n1
σp(s1) + · · · + σp(e1,N ) + · · · + σp(en1,N )

d1n1
σp(sN)

≥ f (p − 1)(n1 − r1)

n1d1
.

We repeat the same to each block i of modular equations in (6) to obtain:

σp(hi) + σp(eni−1+1,1) + · · · + σp(eni ,1)

di(ni − ni−1)
σp(s1) + · · · + σp(eni−1+1,N ) + · · · + σp(eni ,N )

di(ni − ni−1)
σp(sN)

≥ f (p − 1)(ni − ni−1 − ri)

(ni − ni−1)di

for1 ≤ i ≤ t.
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Recall that di(ni − ni−1) = d , and add the above inequalities to get

t∑
i=1

σp(hi) + σp(e1,1) + · · · + σp(en,1)

d
σp(s1) + · · · + σp(e1,N ) + · · · + σp(en,N )

d
σp(sN)

≥ f (p − 1)

t∑
i=1

ni − ni−1 − ri

(ni − ni−1)di

.

Since σp(e1,k) + · · · + σp(en,k) is the p-weight degree of the kth monomial of G, and wp(G) < d,
we have that (σp(e1,k) + · · · + σp(en,k))/d < 1. Therefore,

t∑
i=1

σp(hi) +
N∑

i=1

σp(si) ≥
t∑

i=1

σp(hi) + σp(e1,1) + · · · + σp(en,1)

d
σp(s1)

+ · · · + σp(e1,N ) + · · · + σp(en,N )

d
σp(sN) ≥ f (p − 1)

t∑
i=1

ni − ni−1 − ri

(ni − ni−1)di

,

and

vθ (T ) ≥ f (p − 1)

[
t∑

i=1

ni − ni−1 − ri

(ni − ni−1)di

+
t∑

i=1

ri

]

= f (p − 1)

[
t∑

i=1

1

di

+
t∑

i=1

ri

[
(ni − ni−1)di − 1

]
(ni − ni−1)di

]
.

(7)

Note that if si �= 0 for some i, we have strict inequality in (7). Also note that since
ri

[
(ni − ni−1)di − 1

] ≥ 0, any solution with vθ (T ) = f (p − 1)
∑t

i=1 1/di is minimal and has si = 0
for all i = 1, . . . , N .

Consider (
λ1(q − 1)

d1
, . . . ,

λt (q − 1)

dt

, 0, . . . , 0

)
, (8)

where 0 ≤ λi ≤ di for all i = 1, . . . , t . This is a solution to (6) with

t∑
i=1

σp(hi) +
N∑

i=1

σp(si) =
t∑

i=1

σp

(
λi(q − 1)

di

)

=
t∑

i=1

σp

(
λi(p − 1)

di

f∑
k=1

pf −k

)
= f (p − 1)

t∑
i=1

λi

di

,

and,

vθ (T ) = f (p − 1)

[
t∑

i=1

λi

di

+ s

]
,

where s is the number of equations in (6) that are equal to zero for this solution.
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If λi = 1 for i = 1, . . . , t , then none of the equations in (6) are equal to zero and vθ (T ) = f (p −
1)

∑t
i=1 1/di . Therefore, ((q − 1)/d1, . . . , (q − 1)/dt , 0, . . . , 0) is a minimal solution. Any other

minimal solution must have the form (8) and
∑t

i=1(ri[(ni − ni−1)di − 1])/(ni − ni−1)di = 0. Since
ri[(ni − ni−1)di − 1] ≥ 0, this sum is zero if and only if ni − ni−1 = di = 1 or ri = 0 for each
i = 1, . . . , t . If ri �= 0 for some i, then ni − ni−1 = di = 1, and this implies that the polynomial F

has degree 1, which is a contradiction. If ri = 0 for all i = 1, . . . , t , then λi ≥ 1 for all i, vθ (T ) =
f (p − 1)

∑t
i=1 λi/di , and this is a minimal solution if and only if λi = 1 for all i.

Therefore ((q − 1)/d1, . . . , (q − 1)/dt , 0, . . . , 0) is the unique minimal solution and vθ (F ) =
f (p − 1)

∑t
i=1 1/di .

REMARK 4.1 This result is false if we allow d = 1. For example, consider G(X1, . . . , Xn) = c, a con-
stant, and F(X1, · · · , Xn) = a1X1 + · · · + anXn + c. Then S(F ) = 0, and the formula for vθ (S(F ))

is not correct.

Even though the above theorem includes the case p = 2, because of the importance of Boolean
functions, we include this case as a corollary.

COROLLARY 4.1 Let p = 2 and consider the monomials

(Xi1 · · · Xin1
), (Xin1+1 · · · Xin2

), . . . , (Xint−1+1 · · · Xin)

all with the same degree d > 1, disjoint support, and 1 ≤ ij ≤ n = nt . If G(X1, . . . , Xn) is a
polynomial over Fq with wp(G) < d, and

F(X1, . . . , Xn) = Xi1 · · · Xin1
+ Xin1+1 · · · Xin2

+ · · · + Xint−1+1 · · · Xin + G(X1, . . . , Xn),

then
v2(S(F )) = tf.

The next corollaries give information about S(F ) when t = 1.

COROLLARY 4.2 Let d be a divisor of p − 1, nd > 1 and a ∈ Fq
∗. If G(X1, . . . , Xn) is a polynomial

over Fq with wp(G) < dn, and

F(X1, . . . , Xn) = aXd
1 · · · Xd

n + G(X1, . . . , Xn),

then vθ (S(F )) = f (p − 1)/d .

COROLLARY 4.3 Let d �= 1 be a divisor of p − 1 and a ∈ Fq
∗ If F(X) = aXd + b1X

d1 + · · · + brX
dr

is a polynomial over Fq , where σp(di) < d for every i; then vθ (S(F )) = f (p − 1)/d. Furthermore
S(F ) �= 0.

As a consequence of Theorem 4.1 we can compute the exact divisibility of the number of solutions
of families of polynomial equations.
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THEOREM 4.2 Let di be a divisor of p − 1 and ai ∈ Fq
∗ for i = 1, . . . , t . Suppose that

∑t
i=1 1/di is

an integer, and consider the monomials

(Xi1 · · · Xin1
)d1 , (Xin1+1 · · · Xin2

)d2 , . . . , (Xint−1+1 · · · Xin)
dt (9)

all with the same degree d > 1, disjoint support and 1 ≤ ij ≤ n = nt . If G(X1, . . . , Xn) is a
polynomial over Fq with wp(G) < d , and

F(X1, . . . , Xn) = a1(Xi1 · · · Xin1
)d1 + a2(Xin1+1 · · · Xin2

)d2 + · · ·
+ at (Xint−1+1 · · · Xin)

dt + G(X1, . . . , Xn),

then pf (
∑t

i= 1/di−1) is the exact divisibility of the number of solutions of F = 0. In particular, F has
at least one solution over Fq .

Proof . Consider

F ′ = y
(
a1(Xi1 · · · Xin1

)d1 + · · · + at (Xint−1+1 · · · Xin)
dt + G(X1, . . . , Xn)

)
.

By Lemma 2.2, the number of solutions of F = 0 is p−f S(F ′). To compute S(F ′) we follow the
proof of Theorem 4.1 with F ′ instead of F . The modular system associated to F ′ is the same as that
associated to F but with the additional equation

h1 + · · · + ht + s1 + · · · + sN ≡ 0 mod q − 1.

If G(0, . . . , 0) = 0, then the proof is almost the same as that for Theorem 4.1. If G has a constant
term bNX

e1N

1 · · · XenN
n �= 0, then the term sN appears in the last new equation of system (6), but ei,N sN

do not appear in the other equations. In any case, we follow the proof of Theorem 4.1 and note that
expression (7) becomes

vθ (T ) ≥ f (p − 1)

[
t∑

i=1

1

di

+
t∑

i=1

ri

[
(ni − ni−1)di − 1

]
(ni − ni−1)di

+ α

]
,

where α = 1 if h1 + · · · + ht + s1 + · · · + sN = 0 and α = 0 otherwise. Again, note that if si �= 0
for some i, then we have a strict inequality. Also note that

t∑
i=1

ri[(ni − ni−1)di − 1]
(ni − ni−1)di

+ α ≥ 0,

and any solution with vθ (T ) = f (p − 1)
∑t

i=1 1/di is minimal and has si = 0 for all i = 1, . . . , N .
The vector (

λ1(q − 1)

d1
, . . . ,

λt (q − 1)

dt

, 0, . . . , 0

)
, (10)

is a solution to the new modular system if and only if
∑t

i=1 λi/di is an integer. By hypothesis,∑t
i=1 1/di is an integer, and therefore ((q − 1)/d1, . . . , (q − 1)/dt , 0, . . . , 0) is a minimal solution.
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Any other minimal solution must have the form (10) and

t∑
i=1

ri[(ni − ni−1)di − 1]
(ni − ni−1)di

+ α = 0.

This implies that

vθ (T ) = f (p − 1)

[
t∑

i=1

λi

di

]
,

and this is minimal if and only if λi = 1 for all i. Therefore,(
q − 1

d1
, . . . ,

q − 1

dt

, 0, . . . , 0

)

is the only minimal solution and the result follows.

Using the above theorem one can generalize Theorem 3.2 by substituting the degree by the
p-weight degree.

COROLLARY 4.4 Let d > 1 be a divisor of p − 1 and ai ∈ Fq
∗ for i = 1, . . . , d. If G(X1, . . . , Xd) is

polynomial over Fq with wp(G) < d , then the equation a1X
d
1 + · · · + adX

d
d + G(X1, . . . , Xd) = 0

has at least one solution over Fq .

EXAMPLE 4.1 Let

F(X1, . . . , X7) = X7
1 + X7

2 + · · · + X7
7 +

∑
i<j

ai,jXiXj + X29i+1
1 + · · · + X29i+1

7

over F29f . The equation F = β has at least one solution for any β ∈ F29f .

In the following theorem we impose conditions on the partial weight of the monomials to compute
the exact divisibility of exponential sums. With the exact divisibility we prove that the related equation
is solvable.

THEOREM 4.3 Let di > 1 be a divisor of p − 1 and ai ∈ Fq
∗ for i = 1, . . . , n. Let G1, . . . , GN be

monomials. If G(X1, . . . , Xn) = G1 + · · · + GN is polynomial over Fq with
∑n

i=1 wp,Xi
(Gj )/di < 1

for j = 1, . . . , N , and F = a1X
d1
1 + · · · + anX

dn
n + G(X1, . . . , Xn), then

vθ (S(F )) = f (p − 1)

n∑
i=1

1

di

.

Proof . We can assume that

G(X1, . . . , Xn) = b1X
d11
1 · · · Xdn1

n + · · · + bNX
d1N

1 · · · XdnN

n

and G(0, . . . , 0) = 0.
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The following is the system of modular equations associated to F :

d1h1 + d11s1 + · · · + d1NsN ≡ 0 mod q − 1

...
...

dnhn + dn1s1 + · · · + dnNsN ≡ 0 mod q − 1.

(11)

Let (h1, . . . , hn, s1, . . . , sN) be any solution to system (11). As in Theorem 4.1, applying σp, we
obtain:

σp(di)σ (hi) + σp(di1)σp(s1) + · · · + σp(diN)σp(sN) ≥ αiσp(q − 1) = αif (p − 1),

where αi = 0 or αi = 1.
Since di ≤ p − 1, σp(di) = di . Dividing by di we obtain

σp(hi) + σp(di1)

di

σp(s1) + · · · + σp(diN)

di

σp(sN) ≥ αif (p − 1)

di

, (12)

for i = 1, . . . , n.
Note that

∑n
i=1 σp(dij ) = ∑n

i=1 wp,Xi
(Gj ). Adding all the inequalities and using the fact that∑n

i=1 wp,Xi
(Gj )/di < 1, we get

n∑
i=1

σp(hi) +
N∑

i=1

σp(si) ≥

n∑
i=1

σp(hi) +
n∑

i=1

σp(di1)

di

σp(s1) + · · · +
n∑

i=1

σp(diN)

di

σp(sN) ≥ f (p − 1)

n∑
i=1

αi

di

.

If T is the term in (3) associated to this solution then

vθ (T ) ≥ f (p − 1)

[
n∑

i=1

αi

di

+
n∑

i=1

(1 − αi)

]

= f (p − 1)

[
n∑

i=1

1

di

+
n∑

i=1

(1 − αi)(di − 1)

di

]
,

where
∑n

i=1(1 − αi) is the number of equations in (11) that are equal to zero. Note that if si �= 0
for some i we have strict inequality and, since (1 − αi)(di − 1) ≥ 0, any solution with vθ (T ) =
f (p − 1)

∑n
i=1 1/di is minimal and has si = 0 for all i.

As in Theorem 4.1, taking hi = (q − 1)/di and s1 = · · · = sN = 0, we obtain a solution to the
system with

∑n
i=1 σp(hi) + ∑N

i=1 σp(si) = f (p − 1)
∑n

i=1 1/di and therefore is minimal. Any other
solution with s1 = · · · = sN = 0 has hi = λi(q − 1)/di for 0 ≤ λi ≤ di and

vθ (T ) =
n∑

i=1

σp(hi) +
N∑

i=1

σp(si) + f (p − 1)s = f (p − 1)

[
n∑

i=1

λi

di

+ s

]
,

where s is the number of equations in (11) that are equal to zero for this solution. For this solution
to be minimal we must have

∑n
i=1(1 − αi)(di − 1)/di = 0. If 1 − αi �= 0 for some i, then di = 1,
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which is a contradiction. If 1 − αi = 0 for all i, then λi ≥ 1, vθ (T ) = f (p − 1)
∑n

i=1 λi/di , and this
is minimal if and only if λi = 1 for all i.

Therefore, ((q − 1)/d1, . . . , (q − 1)/dn, 0, . . . , 0) is the unique minimal solution and vθ (T ) =
f (p − 1)

∑n
i=1 1/di .

Note that in Theorem 3.2 the polynomial has the same degree on each variable and the degree
is equal to the number of variables. Applying Theorem 4.3 we can get another improvement to
Theorem 3.2 that has less restrictions on the degrees. In section 5 this improvement will be applied
to generalizations of Waring’s problem.

THEOREM 4.4 Let di > 1 be a divisor of p − 1 and ai ∈ Fq
∗ for i = 1, . . . , n. Suppose that

∑n
i=1 1/di

is an integer, and let G1, . . . , GN be monomials. If G(X1, . . . , Xn) = G1 + · · · + GN is a poly-
nomial over Fq with

∑n
i=1 wp,Xi

(Gj )/di < 1 for j = 1, . . . , N , and F(X1, . . . , Xn) = a1X
d1
1 +

· · · + anX
dn
n + G(X1, . . . , Xn), then the exact divisibility of the number of solutions of F = 0 is

pf (
∑n

i=1 1/di−1). In particular, the equation has at least one solution over Fq .

Proof . The proof is similar to the proof of Theorem 4.2.

EXAMPLE 4.2 Let F(X1, . . . , X7) = X10
1 + · · · + X10

4 + X5
5 + X5

6 + X5
7 + X1X2X3 + X4X5X6X7

over F31. Then F = β has solution for every β ∈ F31f .

The following corollary improves Corollary 3.1.

COROLLARY 4.5 Let d > 1 be a divisor of p − 1, and suppose that n/d is an integer. If Fi(Xi) =
aiX

d
i + Gi(Xi) is a polynomial over Fq with wp(Gi) < d for every i, then the exact divisibility of

the number of solutions F1(X1) + · · · + Fn(Xn) = 0 is pf (n/d−1). In particular, the equation has at
least one solution over Fq .

EXAMPLE 4.3 Let p > 5, d = (p − 1)/2, and consider the polynomial

F(X1, . . . , Xd) = Xd
1 + · · · + Xd

d + X
pi+1
1 + · · · + X

pi+1
d

over Fq . Then F = β has at least one solution over Fq for each β ∈ Fq .

If q = p2i , then the equation X
pi+1
1 + · · · + X

pi+1
d = β does not have solution for all β ∈ Fp2i \Fpi .

The above corollary implies that the extra terms force Xd
1 + · · · + Xd

d + X
pi+1
1 + · · · + X

pi+1
d = β

to have solutions for all β ∈ Fp2i .

5. Applications to generalizations of Waring’s Problem

The original Waring’s problem is to find the minimum number of variables such that the equation
Xd

1 + · · · + Xd
n = β has solutions for any natural number β. This minimum number is called the

Waring number associated to d . Waring’s problem has also been considered for equations over finite
fields and there are many bounds for their Waring numbers ([6, 7, 11]). Many of these bounds are
consequences of good estimates of the absolute value of Gauss sums [5, 7].
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In this section we consider a generalization of Waring’s problem: Given a polynomial F(X) over
Fq , find the minimum number of variables such that

F(X1) + · · · + F(Xn) = β (13)

has solution over Fq for any β ∈ Fq . We denote this number by γ (F, q). The above problem can be
related to the following problem: Given polynomials F1(X1), . . . , Fn(Xn) over Fq , find conditions
such that every β ∈ Fq can be written as

β = F1(x1) + · · · + Fn(xn), (14)

where x1, . . . , xn ∈ Fq . This problem was considered by Carlitz et al. [3] and Cochrane et al. [4] for
the prime field. Carlitz et al. proved that given F1(X1), . . . , Fn(Xn) polynomials over Fp of degree
d1, . . . , dn, every element β ∈ Fp can be written as β = F1(x1) + · · · + Fn(xn), provided that

n∑
i=1

[
p − 1

di

]
+ t > p,

where t is the number of Fis which are neither of degree p − 1 nor of the form α(Xi − β)1/2(p−1) + λ.
If F = F1 = · · · = Fd , the above result implies that γ (F, p) ≤ d, where d is the degree of F and
d �= p − 1, (p − 1)/2 (see [4]). In [4], Cochrane et al. use estimates for exponential sums to prove
that (13) has at least one solution for every β ∈ Fp, whenever r1 + · · · + rγ (F,p) ≥ log p, where the
absolute value of the exponential sum corresponding to each ri is less than or equal to p(1 − ri).
Note that these results are for polynomials over Fp.

We now apply Theorem 4.4 and obtain some natural conditions so that the elements β ∈ Fq can
be written as β = F1(x1) + . . . + Fn(xn). This gives an upper bound on γ (F, q) for polynomials F

that satisfy certain natural conditions.
Our results apply to extension fields, while the above results only apply for polynomials over Fp.

THEOREM 5.1 Let di > 1 be a divisor of p − 1, ai ∈ Fq
∗ and Fi(X) = aiX

di

i + Gi(Xi) be polynomials
over Fq for i = 1, . . . , n. Suppose that

∑n
i=1 1/di is an integer. If wp(Gi) < di , then every β ∈ Fq

can be written as
β = F1(x1) + · · · + Fn(xn),

for some x1, . . . , xn ∈ Fq .

EXAMPLE 5.1 Let F1(X1) = X6
1 + X18

1 , F2(X2) = X3
2 + X14

2 , F3(X3) = X2
3 + X3 over F13f . Then

every β ∈ F13f can be written as β = x6
1 + x18

1 + x3
2 + x14

2 + x2
3 + x3.

COROLLARY 5.1 Let F(X) = aXd + G(X) be a polynomial over Fq , where d �= 1 divides p − 1. If
wp(G) < d , then γ (F, q) ≤ d .

EXAMPLE 5.2 Let F(X) = X3 + aXpi+1 over Fq , where 3 divides p − 1. Then γ (F, q) ≤ 3. Using
Maple, we obtain that γ (x3 + x8, 49) = 2 and γ (x3 + x14, 169) = 2. Note that γ (x8, 49) and
γ (x14, 169) do not exist.

EXAMPLE 5.3 Let F(X) = X4 + a1X
pi1 +pj1 +1 + a2X

pi2 +pj2 +1 + · · · + anX
pin +pjn +1 over F29f , then

γ (F, 29f ) ≤ 4.
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Abstract

Using the L2-norm of the Higgs field as a Morse function, we study the moduli space of parabolic
U(p, q)-Higgs bundles over a Riemann surface with a finite number of marked points, under certain
genericity conditions on the parabolic structure. When the parabolic degree is zero this space is
homeomorphic to the moduli space of representations of the fundamental group of the punctured
surface in U(p, q), with fixed compact holonomy classes around the marked points. By means
of this homeomorphism we count the number of connected components of this moduli space of
representations. Finally, we apply our results to the study of representations of the fundamental
group of elliptic surfaces of general type.

1. Introduction

A parabolic vector bundle over a compact Riemann surface with marked points consists of a vector
bundle, equipped with a weighted flag structure on the fibre over each marked point. These objects
were introduced by Seshadri [29] in relation to certain desingularizations of the moduli space of
semistable vector bundles. It turns out that, similarly to the Narasimhan and Seshadri correspondence
[14, 25] between stable vector bundles and representations of the fundamental group of the surface
in the unitary group U(n), there is an analogous correspondence, proved by Metha and Seshadri [23]
(see also [3]), relating stable parabolic bundles to unitary representations of the fundamental group
of the punctured surface with a fixed holonomy class around each marked point.
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In order to study representations of the fundamental group of the punctured surface in GL(n, C)

one has to consider parabolic Higgs bundles. These are pairs consisting of a parabolic vector bundle
and a meromorphic endomorphism valued 1-form with a simple pole along each marked point,
whose residue is nilpotent with respect to the flag. Moduli spaces of parabolic Higgs bundles provide
interesting examples of hyperkähler manifolds. This theory, studied by Simpson in [31] and others
[7, 20, 24, 26], generalizes the non-parabolic Higgs bundle theory studied by Hitchin [19], Donaldson
[15], Simpson [30] and Corlette [12].

In this paper we study parabolic U(p, q)-Higgs bundles. These are the objects that correspond to
representations of the fundamental group of the punctured surface in U(p, q), with fixed compact
holonomy classes around the marked points. Our approach combines the techniques used in [10] in
the study of U(p, q)-Higgs bundles in the non-parabolic case as well as those used in [18] to study
the topology of moduli spaces of GL(n, C)-parabolic Higgs bundles.

For a parabolic U(p, q)-Higgs bundle there is an invariant, similar to the Toledo invariant in
the non-parabolic case. We show that this parabolic Toledo invariant has a bound provided by a
generalization of the Milnor–Wood inequality. Our main result in the paper is to show that if the
genus of the surface and the number of marked points are both at least one, then the moduli space
of parabolic U(p, q)-Higgs bundles with fixed topological type, generic parabolic weights and full
flags is non-empty and connected if and only if the parabolic Toledo invariant satisfies a generalized
Milnor–Wood inequality (see Theorem 6.13).

As in [10, 18], the main strategy is to use the Bott–Morse-theoretic techniques introduced by
Hitchin [19]. The connectedness properties of our moduli space reduce to the connectedness of a
certain moduli space of parabolic triples introduced in [4] in connection with the study of the parabolic
vortex equations and instantons of infinite energy. Much of the paper is devoted to a thorough study
of these moduli spaces of triples and their connectedness properties.

After spelling out the correspondence between parabolic U(p, q)-Higgs bundles and represen-
tations of the fundamental group of the punctured surface in U(p, q), we transfer our results on
connectedness of the moduli space of parabolic U(p, q)-Higgs bundles to the moduli space of rep-
resentations (see Theorems 13.2 and 13.3). We then apply this to the study of representations of the
fundamental group of certain complex elliptic surfaces of general type (see Theorem 14.4). These
are complex surfaces whose fundamental group is isomorphic to the orbifold fundamental group of
an orbifold Riemann surface.

We should point out that our main results do not apply when the genus of the Riemann surface is
zero. This is not surprising if we have in mind that on P

1 the parabolic weights must satisfy certain
inequalites in order for parabolic bundles to exist [2, 5]. Presumably, something similar must be true
also in the case of parabolic U(p, q)-Higgs bundles. We plan to come back to this problem in a future
paper.

In the process of finishing our paper we have come across several papers [9, 21, 22] that seem
to be related to our work in the case of U(p, 1). It would be interesting to investigate further the
relationship between these different approaches.

2. Parabolic Higgs bundles

Let X be a closed, connected, smooth Riemann surface of genus g ≥ 0 together with a finite set
of marked points x1, . . . , xs . Denote by D the effective divisor D = x1 + · · · + xs defined by the
marked points. A parabolic vector bundle E over X consists of a holomorphic vector bundle together
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with a parabolic structure at each x ∈ D, that is, a weighted flag on the fibre Ex ,

Ex = Ex,1 ⊃ Ex,2 ⊃ · · · ⊃ Ex,r(x)+1 = {0},
0 ≤ α1(x) < · · · < αr(x)(x) < 1.

We denote by ki(x) = dim(Ex,i/Ex,i+1) the multiplicity of the weight αi(x). It will sometimes
be convenient to repeat each weight according to its multiplicity, that is, we set α̃1(x) = · · · =
α̃k1(x)(x) = α1(x), etc. We then have weights 0 ≤ α̃1(x) ≤ · · · ≤ α̃n(x) < 1, where n = rk E. Denote
also by α(x) = (α̃1(x), . . . , α̃n(x)) the system of weights at x of E and by α = (α(x))x∈D the
weight type of E. We say that the flags are full if ki(x) = 1 for all i and x ∈ D. Note that in this
case α(x) = (α̃1(x), . . . , α̃n(x)) = (α1(x), . . . , αn(x)). A holomorphic map f : E → E′ between
parabolic bundles is called parabolic if αi(x) > α′

j (x) implies f (Ex,i) ⊂ E′
x,j+1 for all x ∈ D, and

f is strongly parabolic if αi(x) ≥ α′
j (x) implies f (Ex,i) ⊂ E′

x,j+1 for all x ∈ D, where we denote
by α′

j (x) the weights on E′. We denote by ParHom (E, E′) and SParHom (E, E′) the sheaves of
parabolic and strongly parabolic morphisms from E to E′, respectively. If E′ = E we denote these
sheaves by ParEnd (E) and SParEnd (E), respectively.

We define the parabolic degree and parabolic slope of E by

pardeg (E) = deg(E)+
∑
x∈D

r(x)∑
i=1

ki(x)αi(x), (1)

par μ(E) = pardeg (E)

rk(E)
. (2)

A parabolic bundle E is said to be (semi)-stable if for every non-trivial proper parabolic subbundle
E′ of E we have par μ(E′) < par μ(E) (resp. par μ(E′) ≤ par μ(E)).

In the following we will use the following construction for parabolic bundles, called the parabolic
direct sum. Let V and W be two parabolic bundles with weight types α and α′; we say that E is the
parabolic direct sum of V and W if and only if E = V ⊕W as holomorphic bundles, the system of
weights, α̃, on E consists of the ordered collection of the weights in α and α′, and the corresponding
filtration is such that

Ex,k = Vx,i ⊕Wx,j ,

where i (resp. j ) is the smallest integer such that α̃k(x) ≤ αi(x) (resp. α̃k(x) ≤ α′
j (x)).

A parabolic Higgs bundle is a pair (E, �) consisting of a parabolic bundle E and � ∈
H 0 (SParEnd (E)⊗K(D)), that is, � is a meromorphic endomorphism valued 1-form with simple
poles along D whose residue at x ∈ D is nilpotent with respect to the flag. A parabolic Higgs bun-
dle is called (semi-) stable if for every �-invariant subbundle E′ of E, its parabolic slope satisfies
par μ(E′) < par μ(E) (resp. par μ(E) ≤ par μ(E)), and it is said to be polystable if it is the direct
sum of stable parabolic Higgs bundles of the same parabolic slope.

Fixing the topological invariants n = rk E and d = deg E and the weight type α, the moduli space
M = M(n, d;α) is defined as the set of isomorphism classes of polystable parabolic Higgs bundles
of type (n, d;α). Using geometric invariant theory,Yokogawa [34, 35] has shown that M is a complex
quasi-projective variety, which is smooth at the stable points.
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A parabolic U(p, q)-Higgs bundle on X is a parabolic Higgs bundle (E, �) such that E = V ⊕W ,
where V and W are parabolic vector bundles of ranks p and q, respectively, and

� =
(

0 β

γ 0

)
: (V ⊕W) → (V ⊕W)⊗K(D),

where β : W → V ⊗K(D) and γ : V → W ⊗K(D) are strongly parabolic morphisms.A parabolic
U(p, q)-Higgs bundle (E = V ⊕W, �) is (semi-) stable if the slope stability condition par μ(E′) <

par μ(E) (resp. par μ(E′) ≤ par μ(E)) is satisfied for all �-invariant parabolic subbundles of the
form E′ = V ′ ⊕W ′, that is, for all parabolic subbundles V ′ ⊂ V and W ′ ⊂ W such that β(W ′) ⊆
V ′ ⊗K(D) and γ (V ′) ⊆ W ′ ⊗K(D). Note that, a priori, this definition of stability seems to be
weaker than the stability definition for parabolic Higgs bundles (we ask for V ′ ⊂ V and W ′ ⊂ W ).
But this is not the case, since for any �-invariant E′ ⊂ E, we apply the U(p, q)-stability condition to
V ′ ⊕W ′ and to V ′′ ⊕W ′′, where V ′ = V ∩ E′, W ′ = W ∩ E′, V ′′ = πV (E′), W ′′ = πW(E′) (where
πV , πW are the projections of V ⊕W onto V , W , respectively). Then using the exact sequences
V ′ → E′ → W ′′ and W ′ → E′ → V ′′, one gets easily that par μ(E′) ≤ par μ(E)).

Fix the topological invariants a = deg V and b = deg W and the weight types α and α′ for V and
W , respectively. This determines a system of weights α̃ and a flag structure, given by the parabolic
direct sum construction, on E = V ⊕W . Let

U = U(p, q, a, b;α, α′)

be the moduli space of polystable parabolic U(p, q)-Higgs bundles of degrees (a, b) and weights
(α, α′).

We say that the weights are generic when every semistable parabolic Higgs bundle is automatically
stable, that is, there are no properly semistable parabolic Higgs bundles. We will keep the following
assumption on the weights all throughout the paper (although some of the results hold in more general
situations).

ASSUMPTION 2.1 The weights of (E, �) are generic and (E, �) has full flags at each parabolic point.
This means that all the weights of V and W are different and of multiplicity one.

Note that the set of weights such that, for fixed degree and rank of E, make (E, �) strictly
semistable has positive codimension. This justifies the term generic for the weights which do not
allow strict semistability.

The construction of U follows the same arguments given in the non-parabolic case (see [10]).

PROPOSITION 2.2 Let n = p + q, d = a + b, and let α̃ be the system of weights defined by α and α′
as above. Then U(p, q, a, b;α, α′) embeds as a closed subvariety in M(n, d; α̃).

Proof . The proof is similar to that in the non-parabolic case (see [10, Proposition 3.11]). One only
notices that in the case p = q, the parabolic bundles V and W cannot be parabolically isomorphic
since they have different weights.

REMARK 2.3 Sometimes we refer to elements (E, �) ∈ M as parabolic GL(n, C)-Higgs bundles,
since the structure group of the frame bundle of E is GL(n, C).
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3. Deformation theory

The results of Yokogawa [10, 34] can be readily adapted to describe the deformation theory of
parabolic U(p, q)-Higgs bundles.

Let (E = V ⊕W, �) be a parabolic U(p, q)-Higgs bundle. We introduce the following notation:

U = ParEnd (E), Û = SParEnd (E),

U+ = ParEnd (V )⊕ ParEnd (W), Û+ = SParEnd (V )⊕ SParEnd (W),

U− = ParHom (W, V )⊕ ParHom (V , W), Û− = SParHom (W, V )⊕ SParHom (V , W).

With this notation, U = U+ ⊕ U−, Û = Û+ ⊕ Û−, � ∈ H 0(Û− ⊗K(D)), and ad(�) sends U+
to Û− and U− to Û+. We consider the complex of sheaves

C• : U+ ad(�)−−−→ Û− ⊗K(D). (3)

LEMMA 3.1 Let (E, �) be a stable parabolic U(p, q)-Higgs bundle. Then

ker
(
ad(�) : H 0(U+) → H 0(Û− ⊗K(D))

) = C, (4)

ker
(
ad(�) : H 0(U−) → H 0(Û+ ⊗K(D))

) = 0. (5)

Proof . Since (E, �) is stable as a parabolic GL(n, C)-Higgs bundle, it is simple, that is, its only
endomorphisms are the non-zero scalars. Thus

ker
(
ad(�) : H 0(U) → H 0(Û ⊗K(D))

) = C.

Since U = U+ ⊕ U− and ad(�) sends U+ to Û− and U− to Û+, the statements of the lemma
follow.

PROPOSITION 3.2 (i) The space of endomorphisms of (E, �) is isomorphic to the zeroth hypercoho-
mology group H

0(C•).
(ii) The space of infinitesimal deformations of (E, �) is isomorphic to the first hypercohomology

group H
1(C•).

(iii) There is a long exact sequence

0 −→ H
0(C•) −→ H 0(U+) −→ H 0(Û− ⊗K(D)) −→ H

1(C•)

−→ H 1(U+) −→ H 1(Û− ⊗K(D)) −→ H
2(C•) −→ 0, (6)

where the maps Hi(U+) −→ Hi(Û− ⊗K(D)) are induced by ad(�).

PROPOSITION 3.3 Let (E, �) be a stable parabolic U(p, q)-Higgs bundle, then

(a) H
0(C•) = C (in other words (E, �) is simple), and

(b) H
2(C•) = 0.
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Proof . (a) This follows immediately from Lemma 3.1 and (iii) of Proposition 3.2.
(b) For parabolic bundles E and F the sheaves ParHom (E, F ) and SParHom (F, E)⊗O(D) are

naturally dual to each other (see for example [7]) and we thus have that

ad(�) : H 1(U+) → H 1(Û− ⊗K(D))

is Serre dual to ad(�) : H 0(U−) → H 0(Û+ ⊗K(D)). Hence Lemma 3.1 and (iii) of Proposition 3.2
show that H

2(C•) = 0.

PROPOSITION 3.4 Assuming Assumption 2.1, the moduli space U of stable parabolic U(p, q)-Higgs
bundles is a smooth complex variety of dimension

1 + (g − 1)(p + q)2 + s

2

(
(p + q)2 − (p + q)

)
, (7)

where g is the genus of X, and s is the number of marked points.

REMARK 3.5 The formula (7) is also valid in the case s = 0 and genus g ≥ 2. In such cases we
recover the formula for the dimension of the moduli space of non-parabolic U(p, q)-Higgs bundles
given in [10]. As expected, this dimension is half the dimension of the moduli space M of parabolic
GL(n, C)-Higgs bundles of rank n = p + q. Observe also that, in order to have a non-empty moduli
space we need s ≥ 3 when g = 0.

Proof . Our assumption on the genericity of the weights implies that there are no properly semistable
parabolic U(p, q)-Higgs bundles and hence every point in U is stable. Smoothness follows from
Propositions 3.2 and 3.3. Now, our assumptions on having full flags and different weights on V and
W imply that

SParHom (V , W) = ParHom (V , W)

and

dim ParHom (V , W)x + dim ParHom (W, V )x = pq,

dim ParEnd (V )x = p(p + 1)

2
,

dim ParEnd (W)x = q(q + 1)

2
.

Also, the short exact sequence

0 → ParHom (V , W) → Hom (V , W) →
⊕
x∈D

Hom (Vx, Wx)

ParHom (Vx, Wx)
→ 0

implies that

deg(ParHom (V , W)) = p deg(W)− q deg(V )+
∑
x∈D

(dim ParHom (Vx, Wx)− pq).
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Using the above information and Proposition 3.2 we have that the dimension of the tangent space of
U at a point (E, �) is

dim H
1(C•) = dim H

0(C•)+ dim H
2(C•)− χ(C•)

= 1 − χ(ParEnd (V )⊕ ParEnd (W))

+ χ((SParHom (V , W)⊕ SParHom (W, V ))⊗K(D))

= 1 − (p2 + q2)(1 − g)− deg(ParEnd (V ))− deg(ParEnd (W))+ 2pq((1 − g)

+ deg(ParHom (V , W))+ deg(ParHom (W, V ))+ 2pq(2g − 2)+ 2pqs

= 1 + (g − 1)(p + q)2 + 2pqs + (p2 + q2 − 2pq)s +
∑
x∈D

(
dim ParHom (V , W)x

+ dim ParHom (W, V )x − dim ParEnd (V )x − dim ParEnd (W)x

)
= 1 + (g − 1)(p + q)2 + s

2
((p + q)2 − (p + q)).

4. Parabolic Toledo invariant

In analogy with the non-parabolic case [10], one can associate a Toledo invariant to a parabolic
U(p, q)-Higgs bundle.

DEFINITION 4.1 The parabolic Toledo invariant corresponding to the parabolic Higgs bundle (E =
V ⊕W, �) is

τ = 2
pq

p + q
(par μ(V )− par μ(W)). (8)

The Toledo invariant will give us a way to classify components of the moduli space of parabolic
U(p, q)-Higgs bundles. So we first determine the possible values that it can take.

PROPOSITION 4.2 Let

(
E = V ⊕W, � =

(
0 β

γ 0

))
be a semistable parabolic U(p, q)-Higgs

bundle. Then
p(par μ(V )− par μ(E)) ≤ rk(γ )

(
g − 1 + s

2

)
,

q(par μ(W)− par μ(E)) ≤ rk(β)
(
g − 1 + s

2

)
.

Proof . Consider the parabolic bundles N = ker(γ ) and I = im (γ )⊗K(D)−1. We have an exact
sequence of parabolic bundles

0 −→ N −→ V −→ I ⊗K(D) −→ 0

and

pardeg (V ) = pardeg (N)+ pardeg (I ⊗K(D))

= pardeg (N)+ pardeg (I )+ rk(I )(2g − 2 + s). (9)
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Note that I is a subsheaf of W and the map I ↪→ W is a parabolic map. Let Ĩ ⊂ W be its saturation,
which is a subbundle of W , and endow it with the induced parabolic structure. So N , V ⊕ Ĩ ⊂ E are
�-invariant parabolic subbundles of E. The semistability of (E, �) implies that

par μ(N) ≤ par μ(E),

par μ(V ⊕ I ) ≤ par μ(V ⊕ Ĩ ) ≤ par μ(E).
(10)

This yields

pardeg (N) ≤ rk(N) par μ(E),

pardeg (V )+ pardeg (I ) ≤ (p + rk(I )) par μ(E).

Adding both and using (9) we have the inequality

2 pardeg (V ) ≤ 2p par μ(E)+ rk(I )(2g − 2 + s),

and hence
p(par μ(V )− par μ(E)) ≤ rk(γ )

(
g − 1 + s

2

)
.

The other case is analogous.

REMARK 4.3 The inequalities in Proposition 4.2 are not sharp. This is due to the fact that (10) can be
improved by assigning to I the weights induced by the inclusion I ⊂ W .

One has the following bound for the Toledo invariant.

PROPOSITION 4.4 Let (E, �) be a semistable parabolic U(p, q)-Higgs subbundle. Then

|τ | ≤ τM = min{p, q}(2g − 2 + s).

Proof . Noting that

par μ(E) = p

p + q
par μ(V )+ q

p + q
par μ(W), (11)

Proposition 4.2 may be rewritten as

q(par μ(E)− par μ(W)) ≤ rk(γ )
(
g − 1 + s

2

)
,

p(par μ(E)− par μ(V )) ≤ rk(β)
(
g − 1 + s

2

)
.

By (11) we also have τ = 2p(par μ(V )− par μ(E)) = 2q(par μ(E)− par μ(W)). The result
follows.
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5. Hitchin equations and parabolic Higgs bundles

In order to study the topology of U we need a gauge-theoretic interpretation of this moduli space in
terms of solutions to the Hitchin equations. One can adapt the arguments given by Simpson [31] for
the case of parabolic GL(n, C)-Higgs bundles to the U(p, q) situation, along the lines of what is done
in [10] in the non-parabolic case. Similarly, to construct the moduli space from this point of view,
one can adapt the construction given by Konno [20] (see also [26]) in the parabolic GL(n, C) case.

A parabolic structure on a smooth vector bundle is defined in a similar way to what is done in the
holomorphic category. Let E be a smooth parabolic vector bundle of rank n and fix a hermitian metric
h on E which is smooth in X \D and whose (degenerate) behaviour around the marked points is
given as follows. We say that a local frame {e1, . . . , en} for E around x respects the flag at x if Ex,i is
spanned by the vectors {eMi+1(x), . . . , en(x)}, where Mi = ∑

j≤i kj (x). Let z be a local coordinate
around x such that z(x) = 0. We require that h be of the form

h =
⎛
⎜⎝
|z|2α̃1 0

. . .

0 |z|2α̃n

⎞
⎟⎠

with respect to some local frame around x which respects the flag at x, where α̃i = α̃i(x).
A unitary connection dA associated to a smooth ∂̄ operator ∂̄E on E via the hermitian metric h is

singular at the marked points: if we write z = ρ exp(
√−1θ) and {ei} is the local frame used in the

definition of h, then with respect to the local frame {εi = ei/|z|α̃i }, the connection is of the form

dA = d +√−1

⎛
⎜⎝

α̃1 0
. . .

0 α̃r

⎞
⎟⎠ dθ + A′,

where A′ is regular. We denote the space of smooth ∂̄-operators on E by CE , the space of associated
h-unitary connections by AE , the group of complex parabolic gauge transformations by G C

E and the
subgroup of h-unitary parabolic gauge transformations by GE .

Let V and W be smooth parabolic vector bundles equipped with hermitian metrics hV and
hW adapted to the parabolic structures in the sense explained above. We denote C := CV × CW ,
G C := G C

V × G C

W , G := GV × GW . The space of Higgs fields is � = �+ ⊕�−, where �+ =
�1,0(SParHom (W, V )⊗O(D)) and �− = �1,0(SParHom (V , W)⊗O(D)). Here we regard
SParHom (W, V ) and SParHom (V , W) as smooth vector bundles defined as in the holomorphic
category.

Following Biquard [3] and Konno [20], we introduce certain weighted Sobolev norms and denote
the corresponding Sobolev completions of the spaces defined above by C k

1 , �k
1, (G C)

k

2 and G k
2 . Let

H = {(∂̄E, �) ∈ C ×� | ∂̄E� = 0}

and let H k
1 be the corresponding subspace of C k

1 ×�k
1.

Let ∂̄E = (∂̄V , ∂̄W ), where ∂̄V ∈ CV and ∂̄W ∈ CW , and � =
(

0 β

γ 0

)
with β ∈ �+ and γ ∈ �−.

Let F(AV ) and F(AW) be the curvatures of the hV - and hW -unitary connections corresponding to ∂̄V
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and ∂̄W , respectively. Let β∗ and γ ∗ be the adjoints with respect to hV and hW . Fix a Kähler form ω

on X with volume of X normalized to 2π . We consider the moduli space S defined by the subspace
of elements in H k

1 satisfying Hitchin equations

F(AV )+ ββ∗ + γ ∗γ = −√−1μ Id V ω,

F (AW)+ γ γ ∗ + β∗β = −√−1μ Id W ω,

modulo gauge transformations in G k
2 , where the equations are only defined on X \D. Taking the

traces of the equations, adding them, integrating over X \D, and using the Chern–Weil formula for
parabolic bundles, we find that μ = par μ(V ⊕W).

The subspace of smooth points in H k
1 carries a Kähler metric induced by the complex structure

of X and the hermitian metrics hV and hW . The Hitchin equations are moment map equations for the
action of G k

2 on this subspace. In particular, the smooth part of S, which corresponds to irreducible
solutions, is obtained as a Kähler quotient. Under the genericity assumptions on the parabolic weights
in Assumption 2.1, all the solutions are irreducible and the moduli space S is a smooth Kähler
manifold.

Fix the topological invariants p = rk V , q = rk W , a = deg V , b = deg W and the weight types
α and α′ of V and W , respectively. Then

U(p, q, a, b;α, α′) ∼= (H s)
k
1/(G

C)
k

2,

where H s are the stable elements in H . Moreover, if S(p, q, a, b;α, α′) is the moduli space of
solutions for these fixed invariants, we have the following.

THEOREM 5.1 There is a homeomorphism

U(p, q, a, b;α, α′) ∼= S(p, q, a, b;α, α′).

6. Morse theory on the moduli space of parabolic U(p, q)-Higgs bundles

In this section we recall the Bott–Morse theory used already in the study of parabolic Higgs bundles
in [7, 18]. There is an action of C

∗ on U given by

ψ : C
∗ × U → U

(λ, (E, �)) �→ (E, λ�).

This restricts to a Hamiltonian action of the circle on the moduli space S of solutions to the Hitchin
equations, which is isomorphic to U (Theorem 5.1), with associated moment map

[(E, �)] �→ −1

2
‖�‖2 = −√−1

∫
X

Tr (��∗).

We choose to use the positive function, f : U → R

f ([E, �]) = ‖�‖2. (12)
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Clearly f is bounded below since it is non-negative. It is also proper; this follows from the properness
of the moment map associated to the circle action on M [5] (see also [18]) and the fact that U ⊂ M
is a closed subset.

To study the connectedness properties of U , we use the following basic result: if Z is a Hausdorff
space and f : Z → R is proper and bounded below then f attains a minimum on each connected
component of Z. Therefore, if the subspace of local minima of f is connected then so is Z. We thus
have the following.

LEMMA 6.1 The function f : U → R defined in (12) has a minimum on each connected component
of U . Moreover, if the subspace of local minima of f is connected then so is U .

Now we will describe the minima of f . For this we introduce the subset of U defined by

N = N (p, q, a, b;α, α′) = {(E, �) ∈ U(p, q, a, b;α, α′) such that β = 0 or γ = 0}. (13)

PROPOSITION 6.2 For every (E, �) ∈ U

f (E, �) ≥ |τ |
2

,

with equality if and only if (E, �) ∈ N .

Proof . The proof is similar to the one for [10, Proposition 4.5] apart from the fact that we are using
adapted metrics on the bundle.

We will prove that N is the subvariety of local minima of f . For this we have to describe the critical
points of f and characterize the local minima. By a theorem of Frankel [16], the critical points of f

are exactly the fixed points of the circle action.
For a fixed point (E, �) of the circle action, we have an isomorphism (E, �) ∼= (E, e

√−1θ�)

which yields the following commutative diagram.

E
�−−−−→ E ⊗K(D)

ψθ

⏐⏐� ⏐⏐�ψθ⊗1K(D)

E
e
√−1θ �−−−−→ E ⊗K(D)

PROPOSITION 6.3 [31, Theorem 8] The equivalence class of a stable parabolic Higgs bundle (E, �)

is fixed under the action of S1 if and only if it is a parabolic Hodge bundle. This means that E

decomposes as a direct sum
E = E0 ⊕ E1 ⊕ · · · ⊕ Em

of parabolic bundles, such that �l = �|El
belongs to H 0(SParHom (El, El+1)⊗K(D)). If �l �= 0,

then the weight of the isomorphism ψθ : E −→ E on El+1 is one plus the weight of ψθ on El .

The decomposition of E is given by the eigenbundles corresponding to the eigenvalues of the
circle action on (E, �).
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COROLLARY 6.4 In the situation of Proposition 6.3, if (E, �) is stable, then each �l is non-zero and
the El are alternately contained in V and W .

Proof . The proof goes similarly to the non-parabolic case (see [10, Proposition 4.10]).

Now we want to compute the index of a critical point (E, �). For this we need to write the complex
in (3) in terms of the eigenbundle decomposition provided by Proposition 6.3. Hence

ParEnd (V )⊕ ParEnd (W) =
⊕

−m≤2k≤m

U2k

SParHom (V , W)⊕ SParHom (W, V ) =
⊕

−m≤2k+1≤m

Û2k+1.

where
Ul =

⊕
i−j=l

ParHom (Ej , Ei),

Ûl =
⊕
i−j=l

SParHom (Ej , Ei).
(14)

Therefore the deformation complex (3) for a parabolic U(p, q)-Higgs bundle (E, �) can be written as

C• :
⊕

−m≤2k≤m

U2k

ad(�)−→
⊕

−m≤2k+1≤m

Û2k+1 ⊗K(D).

Each piece of this complex gives a subcomplex whose hypercohomology gives an eigenspace of the
tangent space T(E,�)U for the circle action.

PROPOSITION 6.5 Let (E, �) be a stable parabolic U(p, q)-Higgs bundle which represents a fixed
point of the circle action on U . Then the eigenspace of the Hessian of f corresponding to the eigen-
value −2k is H

1 of the following complex:

C•
2k : U2k

ad(�)−→ Û2k+1 ⊗K(D) .

Proof . This is similar to the non-parabolic case (see [10, Proposition 4.11]).

COROLLARY 6.6 (E, �) is a local minimum of f if and only if H
1(C•

2k) = 0 for all k ≥ 1.

PROPOSITION 6.7 Let (E, �) be a stable parabolic U(p, q)-Higgs bundle which is a fixed point of the
S1-action on U . Then χ(C•

2k) ≤ 0 for all k ≥ 1, and equality holds if and only if

ad(�)|U2k
: U2k → Û2k+1 ⊗K(D)

is an isomorphism of bundles.
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Proof . We want to get a bound for

χ(C•
2k) = χ(U2k)− χ(Û2k+1 ⊗K(D)). (15)

The dual of each Ul is

U∨
l =

⊕
i−j=l

(ParHom (Ej , Ei))
∨ =

⊕
i−j=l

SParHom (Ei, Ej (D)) = Û−l(D).

The dual of ad(�)|U2k
is

(ad(�)|U2k
)t = ad(�)|U−2k−1 ⊗ 1K−1 : U−2k−1 ⊗K−1 → Û−2k(D).

The vector bundle ParEnd (E) has a natural parabolic structure induced by the parabolic structure
of E. In fact ParEnd (E) as a parabolic bundle is the parabolic tensor product of the parabolic bundle
E and the parabolic dual of E (see [34]), and hence its parabolic degree is 0. With respect to this
parabolic structure (ParEnd (E), ad(�)), where ad(�) : ParEnd (E) → SParEnd (E)⊗K(D), is a
parabolic Higgs bundle. Now, the stability of (E, �) implies the polystability of (ParEnd (E), ad(�)).
This can be seen by producing a solution to the Hitchin equations on (ParEnd (E), ad(�)) out of the
solution on (E, �), which exists by Theorem 5.1. Since the solution on (ParEnd (E), ad(�)) may
not be irreducible, we only have polystability (in particular, semistability) of (ParEnd (E), ad(�)).
The subbundles ker(ad(�)|U2k

) and ker(ad(�)|U−2k−1) of ParEnd (E) are ad(�)-invariant and hence
we can apply the stability condition on the parabolic slopes. Since the ordinary degree is smaller than
the parabolic degree, we have deg(ker(ad(�)|U2k

)) ≤ 0 and deg(ker(ad(�)|U−2k−1)) ≤ 0. Therefore
we have the following chain of inequalities:

deg(U2k) = deg(ker(ad(�)|U2k
))+ deg(im (ad(�)|U2k

))

≤ deg(im (ad(�)|U2k
)) ≤ − deg(im ((ad(�)|U2k

)t ))

= − deg(im (ad(�)|U−2k−1 ⊗ 1K−1))

= − deg(im (ad(�)|U−2k−1))+ rk(im (ad(�)|U−2k−1))(2g − 2)

= deg(ker(ad(�)|U−2k−1))− deg(U−2k−1)+ rk(im (ad(�)|U−2k−1))(2g − 2)

≤ − deg(U−2k−1)+ rk(im (ad(�)|U−2k−1))(2g − 2)

= deg(Û2k+1(D))+ rk(im (ad(�)|U−2k−1))(2g − 2), (16)

where we have used that rk(im (h)) = rk(im (ht )) and that deg(im (h)) ≤ − deg(im (ht )) for any
morphism of sheaves h.

Using this we have that

χ(C•
2k) = deg(U2k)+ rk(U2k)(1 − g)− deg(U2k+1 ⊗K(D)) − rk(U2k+1)(1 − g)

= deg(U2k)+ rk(U2k)(1 − g)− deg(U2k+1)− rk(U2k+1)(g − 1 + s)

≤ deg(Û2k+1(D))+ rk(im (ad(�)|U2k
))(2g − 2)+ rk(U2k)(1 − g)− deg(U2k+1)

− rk(U2k+1)(g − 1 + s)

= (g − 1)(2 rk(im (ad(�)|U2k
))− rk(U2k)− rk(U2k+1)),
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where we have used that Û2k+1 = U2k+1 since all the weights are different and of multiplicity 1,
and hence for i �= j it is SParHom (Ei, Ej ) = ParHom (Ei, Ej ), since Ei and Ej are different
pieces in the decomposition of Proposition 6.3. We thus have χ(C•

2k) ≤ 0. If equality holds then
rk(im (ad(�)|U2k

)) = rk(U2k) = rk(U2k+1), and also equality holds in (16), showing that ad(�)|U2k

is an isomorphism as claimed.

COROLLARY 6.8 Let (E, �) be a stable parabolic U(p, q)-Higgs bundle which represents a critical
point of the Morse function f . This critical point is a minimum if and only if

ad(�)|U2k
: U2k → Û2k+1 ⊗K(D)

is an isomorphism for all k ≥ 1.

Proof . By Corollary 6.6, (E, �) is a local minimum if and only if

H
1(C•

2k) = 0 ∀k ≥ 1. (17)

Note that by Proposition 3.3, H
0(C•

2k) = 0 and H
2(C•

2k) = 0, for k ≥ 1. Hence (E, �) is a local
minimum if and only if

χ(C•
2k) =

∑
(−1)i dim H

i (C•
2k) = 0 ∀k ≥ 1.

By Proposition 6.7, this is equivalent to requiring that

ad(�) : U2k → Û2k+1 ⊗K(D)

be an isomorphism of sheaves.

Finally, we show that all these minima are in N .

PROPOSITION 6.9 Let (E, �) = (E0 ⊕ · · · ⊕ Em, �) be stable and a fixed point of the circle action,
with m ≥ 2. Then (E, �) is not a local minimum.

Proof . First note that Ul = Ûl = 0 for l > m, and note also that for l = m, Um = ParHom (E0, Em).
Now we divide the proof conforming the different possibilities for Ul and Ûl as the number m of
terms in the bundle decomposition of E is even or odd.

If m is even then 2k = m and

ad(�)|Um
: ParHom (E0, Em) → 0

does not satisfy Corollary 6.8, hence (E, �) is not a local minimum.
If m ≥ 2 is odd, then 2k = m− 1 and

ad(�)|Um−1 : ParHom (E0, Em−1)⊕ ParHom (E1, Em) → SParHom (E0, Em)⊗K(D).

We will show that this is not an injective map of sheaves, and therefore (E0 ⊕ · · · ⊕ Em, �) is not
a minimum. We prove this in a small open set where all the bundles trivialize. We need to find
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ζ = (ζ1, ζ2) ∈ Um−1, ζ �= 0 such that ad(�)|Um−1(ζ ) = 0, that is, we need to find ζ1 and ζ2 making
the following diagram commutative.

E0
�−−−−→ E1 ⊗K(D)⏐⏐�ζ1

⏐⏐�ζ2⊗1K(D)

Em−1
�−−−−→ Em ⊗K(D)

For this, take ζ2 �= 0 such that ζ2 ⊗ 1K(D)(E1 ⊗K(D)) ⊂ �(Em−1); this is possible by taking ζ2 as
the composition of �l in Proposition 6.3 tensor the appropriate power of K(D) (note that they are
non-zero by Corollary 6.4). Now take ζ1 such that

� ◦ ζ1 = (ζ2 ⊗ 1K(D)) ◦�;

therefore �m−1(ζ ) = (ζ2 ⊗ 1K(D)) ◦�−� ◦ ζ1 = 0 with ζ �= 0. So �m−1 is not injective.

COROLLARY 6.10 The subvariety of local minima of f : U(p, q, a, b;α, α′) → R coincides with the
set N (p, q, a, b;α, α′) defined in (13).

Proof . By Proposition 6.9, for (E, �) to be a minimum it must have a decomposition of the form
E = E0 ⊕ E1 with � mapping E0 into E1. But by definition the only possible decompositions are

E = V ⊕W with � =
(

0 0
γ 0

)
and E = W ⊕ V with � =

(
0 β

0 0

)
. So (E, �) ∈ N .

Conversely, if (E, �) ∈ N then m = 1 and U2k = Û2k+1 = 0 for k ≥ 1. So Corollary 6.8 applies
and (E, �) is a minimum.

Which of the two components of the Higgs field vanishes is given by the following.

LEMMA 6.11 Let (E, �) ∈ N . Then the Toledo invariant τ �= 0 and

(i) γ = 0 if and only if τ < 0,
(ii) β = 0 if and only if τ > 0.

Proof . Observe that τ cannot be equal to zero because this implies γ = β = 0 and then (E, �)

cannot be stable. The rest follows directly from the definition of the Toledo invariant.

Our main goal in the rest of the paper is to show the following.

THEOREM 6.12 Suppose g > 0. Then there is a value

τL = min{p, q}(2g − 2 + s)− |p − q|
p + q

ε,

with ε > 0 explicitly computable (see Remark 11.9), such that the subvariety N (p, q, a, b;α, α′) is
non-empty and connected if and only if the parabolic Toledo invariant τ satisfies the bound |τ | ≤ τL.
The moduli space of parabolic U(p, q)-Higgs bundles U(p, q, a, b;α, α′) is empty for |τ | > τL.
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Proof . In the case p �= q, the result will follow from Proposition 7.4 and Theorem 11.8. In the case
p = q, the result will follow from Propositions 7.4 and 7.7, Corollary 12.12 and Remark 12.13. Note
that τL = τM for p = q.

Combining Theorem 6.12, Corollary 6.10 and Lemma 6.1, we have the main result of our paper.

THEOREM 6.13 Suppose g > 0 and s > 0. The moduli space of parabolic U(p, q)-Higgs bundles
U(p, q, a, b;α, α′) is non-empty and connected if and only if |τ | ≤ τL.The moduli space is empty
whenever |τ | > τL.

REMARK 6.14 It is likely that Theorem 6.13 holds more generally than under Assumption 2.1. It
should be enough to assume that V ⊕W have full flags, but arbitrary (non-generic) weights. The
reason is that the assumption of full flags is strong enough to avoid the type of problem that comes
up in [10, Theorem 3.32], since all the weights are distinct. One way to prove this would be to show
that the moduli spaces for different choices of weights are related by flips as with the moduli spaces
of triples (as in [32]).

REMARK 6.15 Actually, in both Theorems 6.12 and 6.13, the case |τ | = τL does not occur under
Assumption 2.1. This is true since σ = 2g − 2 is not a critical value for the appropriate moduli space
of triples appearing in Proposition 7.4 (see Remark 7.5). For p = q, it cannot happen that |τ | = τM ,
as pointed out in Remark 12.13.

7. Parabolic triples

In the previous section, we have concluded that it is necessary to study the connectedness of the
subspace N of U . This subset consists of parabolic U(p, q)-Higgs bundles with γ = 0 or β = 0, and
hence gives rise in a natural way to objects called parabolic triples.

We recall the basics of parabolic triples from [4, 18]. A parabolic triple is a holomorphic triple
T = (E1, E2, φ), where E1 and E2 are parabolic bundles and φ : E2 → E1(D) is a strongly parabolic
homomorphism, that is, φ ∈ H 0(SParHom (E2, E1(D))). We denote by α = (α1, α2) the parabolic
system of weights for the triple (E1, E2, φ), where αi is the system of weights of Ei with i = 1, 2.

For σ ∈ R the parabolic σ -degree and σ -slope of T are defined as

pardeg σ (T ) = pardeg (E1)+ pardeg (E2)+ σ rk(E2),

par μσ (T ) = pardeg E1 + pardeg E2

rk(E1)+ rk(E2)
+ σ

rk(E2)

rk(E1)+ rk(E2)
.

(18)

A parabolic triple T ′ = (E′
1, E

′
2, φ

′) is a parabolic subtriple of T = (E1, E2, φ) if E′
i ⊂ Ei are

parabolic subbundles for i = 1, 2 and φ′ = φ|E′
2

being φ(E′
2) ⊂ E′

1(D). As usual, T is called σ -
stable (resp. σ -semistable) if for any non-zero proper subtriple T ′ we have par μσ (T ′) < par μσ (T )

(resp. par μσ (T ′) ≤ par μσ (T )). The triple T is called σ -polystable if it is the direct sum of parabolic
triples with the same parabolic σ -slope.

Let
Nσ = Nσ (r1, r2, d1, d2;α1, α2)
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be the moduli space of isomorphism classes of σ -polystable triples with fixed system of weights
(α1, α2) and r1 = rk(E1), r2 = rk(E2), d1 = deg(E1), d2 = deg(E2). Let

N s
σ ⊂ Nσ

be the open subset consisting of σ -stable triples.

PROPOSITION 7.1 A necessary condition for Nσ (r1, r2, d1, d2, α
1, α2) to be non-empty is

σm < σ < σM if r1 �= r2,

σm < σ if r1 = r2,

where

σm = par μ(E1)− par μ(E2),

σM =
(

1 + r1 + r2

|r1 − r2|
)

(par μ(E1)− par μ(E2))+ s
r1 + r2

|r1 − r2| , if r1 �= r2.

Proof . See [18, Proposition 4.3].

REMARK 7.2 We will see later on that there is an effective upper bound σL given by equation (38)
which in general is strictly smaller than σM .

The correspondence between parabolic triples and parabolic U(p, q)-Higgs bundles goes as
follows. Let (E, �) be a parabolic U(p, q)-Higgs bundle with � = β : W → V ⊗K(D). This
defines a triple T = (E1, E2, φ), where E1 = V ⊗K , E2 = W , φ = β. Conversely, given a parabolic

triple T = (E1, E2, φ) we get a parabolic U(p, q)-Higgs bundle with � =
(

0 β

0 0

)
by defining

(E = V ⊕W, �) where V = E1 ⊗K−1, W = E2 and β = φ. When (E, �) is a parabolic U(p, q)-

Higgs bundle with � =
(

0 0
γ 0

)
: V → W ⊗K(D) we have an analogous correspondence. That is,

the corresponding triple to (E, �) is T = (W ⊗K, V, γ ).

LEMMA 7.3 A parabolic U(p, q)-Higgs bundle (E, �) with β = 0 or γ = 0 is parabolically
(semi-)stable if and only if the corresponding parabolic triple is σ -(semi-)stable for σ = 2g − 2.

Proof . Let T = (E1, E2, φ) be the triple defined by (E, �) (without loss of generality we assume
that γ = 0). Therefore if we set σ = 2g − 2 we have

par μσ (T ) = pardeg (E1)+ pardeg (E2)

rk(E1)+ rk(E2)
+ σ

rk(E2)

rk(E1)+ rk(E2)

= pardeg (V )+ pardeg (W)+ p(2g − 2)

p + q
+ σ

q

p + q

= par μ(E)+ 2g − 2. (19)

Note that the correspondence between parabolic triples and U(p, q) parabolic bundles with β = 0 or
γ = 0 gives also a correspondence between parabolic subtriples and parabolic subbundles. That is,
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given a subtriple T ′ of T the corresponding parabolic U(p, q)-Higgs bundle is a �-invariant subbundle
of (E, �), and conversely given (E′, �′) the corresponding triple gives a parabolic subtriple of T .
Hence equation (19) gives that par μ2g−2(T

′) < par μ2g−2(T ) if and only if par μ(E′) < par μ(E)

(and analogously for the semistability condition).

Combining the arguments above and Lemma 6.11, we have the following correspondence.

PROPOSITION 7.4 Let N (p, q, a, b;α, α′) be the submanifold of local minima of U(p, q, a, b;α, α′)
and let τ be the Toledo invariant.

(i) If τ < 0 then N (p, q, a, b;α, α′) = N2g−2(p, q, a + p(2g − 2), b;α, α′).
(ii) If τ > 0 then N (p, q, a, b;α, α′) = N2g−2(q, p, b + q(2g − 2), a;α′, α).

Proof . This follows immediately from Lemma 6.11.

REMARK 7.5 Note that the genericity condition on the weights implies that there are no properly
σ -semistable triples for σ = 2g − 2, that is, N s

2g−2 = N2g−2.

So we state the following assumption that we shall use during the rest of the paper, and which is
a translation of Assumption 2.1 via Proposition 7.4.

ASSUMPTION 7.6 We consider moduli spaces of σ -stable triples Nσ (r1, r2, d1, d2;α1, α2) satisfying
that there are no properly (2g − 2)-semistable triples and such that all the weights are of multiplicity
one, and the weights of E1 and E2 are all different.

It is clear that in order for N (p, q, a, b, α, α′) to be non-empty, 2g − 2 must be in the range
for σ given by Proposition 7.1, where σm and σM are determined by the correspondence given in
Proposition 7.4. In fact, one has the following comparison of such a necessary condition with the
Milnor–Wood inequality for the parabolic Toledo invariant τ given in Proposition 4.4

PROPOSITION 7.7 Let σm and σM be the bounds for σ defined in Proposition 7.1 for the moduli space
of parabolic triples identified in Proposition 7.4 with the subvariety N (p, q, a, b, α, α′). Recall that
τM = min{p, q}(2g − 2 + s). Then

0 ≤ |τ | ≤ τM ⇔
{

σm ≤ 2g − 2 ≤ σM if p �= q,

σm ≤ 2g − 2 if p = q.

Proof . Write σm and σM in terms of τ , that is,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σm = (p + q)

2pq
τ + 2g − 2 if τ < 0,

σm = − (p + q)

2pq
τ + 2g − 2 if τ > 0,

σM =
(

1 + p + q

|p − q|
) (

(p + q)

2pq
τ + 2g − 2

)
+ s

p + q

|p − q| if τ < 0,

σM =
(

1 + p + q

|p − q|
) (

− (p + q)

2pq
τ + 2g − 2

)
+ s

p + q

|p − q| if τ > 0.

From these equalities, the result is clear.
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REMARK 7.8 Proposition 7.7 gives conditions for the number of marked points in order for N to be
non-empty. Namely

(i) if g = 0 then s ≥ 3,
(ii) if g = 1 then s ≥ 1,

and no extra condition when g ≥ 2.

8. Extensions and deformations of parabolic triples

In order to study the differences between the moduli spaces Nσ as σ changes, we need to study
extensions and deformations of parabolic triples. This study is done in [18]. We summarize the main
results.

Let T ′ = (E′
1, E

′
2, φ

′) and T ′′ = (E′′
1 , E′′

2 , φ′′) be two parabolic triples. Let Hom (T ′′, T ′) denote
the vector space of homomorphisms from T ′′ to T ′, and Ext1(T ′′, T ′) be the vector space of extensions
of the form

0 → T ′ → T → T ′′ → 0,

that is, commutative diagrams.

0 −−−−→ E′
2 −−−−→ E2 −−−−→ E′′

2 −−−−→ 0⏐⏐�φ′
⏐⏐�φ

⏐⏐�φ′′

0 −−−−→ E′
1(D) −−−−→ E1(D) −−−−→ E′′

1 (D) −−−−→ 0

In order to study extensions of parabolic triples, we consider the following complex of sheaves:

C•(T ′′, T ′) : ParHom (E′′
1 , E′

1)⊕ ParHom (E′′
2 , E′

2) → SParHom (E′′
2 , E′

1(D))
(20)

(ψ1, ψ2) �→ φ′ψ2 − ψ1φ
′′.

PROPOSITION 8.1 [18, Proposition 4.7] There are natural isomorphisms

Hom (T ′′, T ′) ∼= H
0(C•(T ′′, T ′)),

Ext1(T ′′, T ′) ∼= H
1(C•(T ′′, T ′)),

and a long exact sequence

0 → H
0 → H 0(ParHom (E′′

1 , E′
1)⊕ ParHom (E′′

2 , E′
2)) → H 0(SParHom (E′′

2 , E′
1(D)))

→ H
1 → H 1(ParHom (E′′

1 , E′
1)⊕ ParHom (E′′

2 , E′
2)) → H 1(SParHom (E′′

2 , E′
1(D)))

→ H
2 → 0. (21)

We denote

hi(T ′′, T ′) = dim H
i (C•(T ′′, T ′)),

χ(T ′′, T ′) = h0(T ′′, T ′)− h1(T ′′, T ′)+ h2(T ′′, T ′).
(22)
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PROPOSITION 8.2 [18, Proposition 4.8] For parabolic triples T ′ and T ′′

χ(T ′′, T ′) = χ(ParHom (E′′
1 , E′

1))+ χ(ParHom (E′′
2 , E′

2))− χ(SParHom (E′′
2 , E′

1(D))).

COROLLARY 8.3 [18, Corollary 4.9] For any extension 0 → T ′ → T → T ′′ → 0 of parabolic triples
we have that

χ(T , T ) = χ(T ′, T ′)+ χ(T ′′, T ′′)+ χ(T ′′, T ′)+ χ(T ′, T ′′).

Using the same arguments as in [11, Proposition 3.5] one can prove the following.

PROPOSITION 8.4 Suppose that T ′ and T ′′ are σ -semistable.

(i) If par μσ (T ′) < par μσ (T ′′), then H
0(C•(T ′′, T ′)) ∼= 0.

(ii) If par μσ (T ′) = par μσ (T ′′) and T ′, T ′′ are σ -stable, then

H
0(C•(T ′′, T ′)) ∼=

{
C if T ′ ∼= T ′′ ,
0 if T ′

� T ′′.
(23)

THEOREM 8.5 Let T = (E1, E2, φ) be a σ -stable parabolic triple.

(i) The Zariski tangent space at the point defined by T in the moduli space N s
σ of σ -stable triples

is isomorphic to H
1(C•(T , T )).

(ii) If H
2(C•(T , T )) = 0, then the moduli space N s

σ of σ -stable parabolic triples is smooth in a
neighbourhood of the point defined by T .

(iii) H
2(C•(T , T )) = 0 if and only if the homomorphism

H 1(ParEnd (E1))⊕H 1(ParEnd (E2)) → H 1(SParHom (E2, E1(D)))

is surjective.
(iv) At the smooth point in N s

σ represented by T , the dimension of the moduli space of σ -stable
parabolic triples is

dim N s
σ = h1(T , T ) = 1 − χ(T , T )

= 1 − χ(ParEnd (E1))− χ(ParEnd (E2))+ χ(SParHom (E2, E1(D))).

(v) If φ is injective or surjective then T defines a smooth point in the moduli space.

Proof . The proof is analogous to the non-parabolic situation (see [11, Proof of Theorem 3.8]).
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9. Critical values

A parabolic triple T = (E1, E2, φ) is strictly σ -semistable if and only if there is a proper subtriple
T ′ = (E′

1, E
′
2, φ

′) such that par μσ (T ) = par μσ (T ′), that is,

par μ(T ′)+ σ
r ′2

r ′1 + r ′2
= par μ(T )+ σ

r2

r1 + r2
, (24)

where r ′1 = rk(E′
1), r ′2 = rk(E′

2). There are two ways in which this can happen. One is that there
exists a parabolic subtriple such that

r ′2
r ′1 + r ′2

= r2

r1 + r2
,

therefore this implies
par μ(T ′) = par μ(T ).

In this case T is strictly σ -semistable for all σ (or at least for an interval of values of σ ) and it is called
σ -independent semistable. The other way in which strict σ -semistability can happen is if equality
holds for (24) but with

r ′2
r ′1 + r ′2

�= r2

r1 + r2
.

DEFINITION 9.1 The values of σ such that there exists a strictly σ -semistable triple T with a subtriple
T ′ such that par μσ (T ′) = par μσ (T ) and

r ′2
r ′1 + r ′2

�= r2

r1 + r2

are called critical values.

PROPOSITION 9.2 [18, Proposition 5.2] (i) The critical values of σ form a discrete subset of [σm, σM ]
if r1 �= r2, and of [σm,∞) if r1 = r2.

(ii) The stability criteria for two values of σ between two consecutive critical values are equivalent;
thus the corresponding moduli spaces are isomorphic.

(iii) For generic weights, σ = 2g − 2 is not a critical value.

Let σc be a critical value such that σm < σc < σM . Here we adopt the convention that σM = ∞
when r1 = r2. Set

σ+
c = σc + ε, σ−

c = σc − ε,

where ε > 0 is small enough so that σc is the only critical value in the interval (σ−
c , σ+

c ).

LEMMA 9.3 Let σc ∈ (σm, σM) be a critical value. We define the flip loci Sσ±
c

as the set of triples in
N s

σ±
c

which are σ±
c -stable but not σ∓

c -stable. Then

N s

σ+
c
− Sσ+

c
= N s

σc
= N s

σ−
c
− Sσ−

c
.
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The following result is analogous to [11, Proposition 5.4].

PROPOSITION 9.4 Let σc ∈ (σm, σM) be a critical value. Let T = (E1, E2, φ) be a triple which is
σc-semistable.

(1) Suppose that T represents a point in Sσ+
c

, that is, suppose that T is σ+
c -stable but not σ−

c -stable.
Then T has a description as the middle term in an extension

0 → T ′ → T → T ′′ → 0 (25)

in which
(a) T ′ and T ′′ are both σ+

c -stable, with par μσ+
c
(T ′) < par μσ+

c
(T ),

(b) T ′ and T ′′ are both σc-semistable with par μσc
(T ′) = par μσc

(T ).
(2) Similarly, if T represents a point in Sσ−

c
, that is, if T is σ−

c -stable but not σ+
c -stable, then T

has a description as the middle term in an extension (25) in which
(a) T ′ and T ′′ are both σ−

c -stable with par μσ−
c
(T ′) < par μσ−

c
(T ),

(b) T ′ and T ′′ are both σc-semistable with par μσc
(T ′) = par μσc

(T ).

The following lemma is proved with arguments analogous to those in [11, Proposition 3.6].

LEMMA 9.5 Let T ′ and T ′′ be triples which are σ -stable and of the same σ -slope, for some σ ≥ 2g − 2.
Then

H
2(C•(T ′′, T ′)) = 0.

COROLLARY 9.6 Nσ is smooth of the expected dimension, for any σ ≥ 2g − 2.

PROPOSITION 9.7 If σc > 2g − 2 then the loci Sσ±
c
⊂ N s

σ±
c

have codimension bigger than or equal to
−χ(T ′, T ′′).

Proof . Let us do the case of σ+
c . For simplicity we denote

N ′
σ±

c
= N s

σ±
c
(r ′1, r

′
2, d

′
1, d

′
2;α1′ , α2′),

N ′′
σ±

c
= N s

σ±
c
(r ′′1 , r ′′2 , d ′′

1 , d ′′
2 ;α1′′ , α2′′).

It is known from [35] that N ′
σ±

c
and N ′′

σ±
c

are fine moduli spaces. That is, there are universal parabolic
triples T ′ = (E ′

1, E ′
2, �

′) and T ′′ = (E ′′
1 , E ′′

2 , �) over N ′
σ+

c
×X and N ′′

σ+
c
×X, respectively. Thus we

consider the complex C•(T ′′, T ′) as defined in (20) and take relative hypercohomology with respect
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to the projection
π : X ×N ′

σ+
c
×N ′′

σ+
c
→ N ′

σ+
c
×N ′′

σ+
c
.

We define W+ := H
1
π (C•(T ′′, T ′)). By Proposition 9.4, Sσ+

c
is a subset of the projective fibration

PW+ over N ′
σ+

c
×N ′′

σ+
c

. The fibres of this fibration are projective spaces of dimension

dim P(Ext1(T ′′, T ′)) = dim Ext1(T ′′, T ′)− 1

= h0(T ′′, T ′)+ h2(T ′′, T ′)− χ(T ′′, T ′)− 1

= −χ(T ′′, T ′)− 1,

using Lemma 9.5 and Proposition 8.4 to substitute h0(T ′′, T ′) = h2(T ′′, T ′) = 0. Therefore

dim Sσ+
c
≤− χ(T ′′, T ′)+ dim(N ′

σ+
c
×N ′′

σ+
c
)

=− χ(T ′′, T ′)− 1 + 1 − χ(T ′, T ′)+ 1 − χ(T ′′, T ′′)

= dim Nσ+
c
+ χ(T ′, T ′′),

since the moduli spaces N ′
σ+

c
and N ′′

σ+
c

are smooth of the expected dimension. Therefore
dim N s

σ+
c
− dim Sσ+

c
≥ −χ(T ′, T ′′).

Hence, if we prove that this codimension is positive then the moduli spaces N s
σ for different values

of σ ≥ 2g − 2 are birational, and in particular have the same number of irreducible components.

10. Codimension of the flip loci

Let σc be a critical value in the interval (σm, σM) such that σc ≥ 2g − 2. Let T ′ and T ′′
be two σ±

c -stable (and σc-semistable) parabolic triples with par μσc
(T ′) = par μσc

(T ′′). Chang-
ing the roles of T ′ and T ′′, we may compute the bound χ(T ′′, T ′) for the codimension of
the flip locus (Proposition 9.7) using the complex (20). Under our Assumption 7.6, we have
SParHom (E′′

2 , E′
1(D)) = ParHom (E′′

2 , E′
1(D)), and hence the complex (20) is

C•(T ′′, T ′) : C1 = ParHom (E′′
1 , E′

1)⊕ ParHom (E′′
2 , E′

2)
a1−→ C0(D) = ParHom (E′′

2 , E′
1(D))

(ξ1, ξ2) �−→ φ′ξ2 − ξ1φ
′′.

Our task is to bound the Euler characteristic of the complex C•(T ′′, T ′), that is,

χ(C•(T ′′, T ′)) = (1 − g)(rk(C1)− rk(C0))+ deg(C1)− deg(C0(D)).

In order to obtain bounds for deg(C1) and deg(C0), we follow a similar strategy to that used in
[10] in the non-parabolic case, exploiting the existence theorem for parabolic vortex equations.

THEOREM 10.1 [4, Theorem 3.4] Let T = (E1, E2, φ) be a parabolic triple. Let τ1 and τ2 satisfy
τ1 rk(E1)+ τ2 rk(E2) = pardeg (E1)+ pardeg (E2), and let σ = τ1 − τ2. Then E1 and E2 admit
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hermitian metrics, adapted to the parabolic structures, satisfying
√−1�F(E1)+ φφ∗ = τ1 Id E1 ,√−1�F(E2)− φ∗φ = τ2 Id E2 ,

if and only if T is σ -polystable. Here F(Ei) is the curvature of the hermitian metric of Ei and � is
the contraction with a Kähler form on X with volume normalized to 2π .

One can easily show that

τ1 = par μσ (T ),

τ2 = par μσ (T )− σ.

Moreover, adding up the equations in Theorem 10.1, integrating, and using the Chern–Weil formula
for parabolic bundles, we have that

r1τ1 + r2τ2 = pardeg (E1)+ pardeg (E2).

In our situation, the triples T ′ and T ′′ are σ -stable for σ = σ±
c , and hence, by Theorem 10.1, there

exist adapted hermitian metrics such that
√−1�F(E′

1)+ φ′(φ′)∗ = τ ′1 Id E′
1
,

√−1�F(E′
2)− (φ′)∗φ′ = τ ′2 Id E′

2
,

√−1�F(E′′
1 )+ φ′′(φ′′)∗ = τ ′′1 Id E′′

1
,

√−1�F(E′′
2 )− (φ′′)∗φ′′ = τ ′′2 Id E′′

2
,

where σ = τ ′1 − τ ′2 = τ ′′1 − τ ′′2 . In particular, τ ′1 − τ ′′1 = τ ′2 − τ ′′2 .
Let us consider the induced adapted hermitian metrics on C0 and C1. The corresponding curvatures

are given by

F(C0) = −F(E′′
2 )t ⊗ Id E′

1
+ Id ⊗F(E′

1),

F (C1) =
(−F(E′′

1 )t ⊗ Id E′
1
+ Id E′′

1
⊗F(E′

1),−F(E′′
2 )t ⊗ Id E′

2
+ Id E′′

2
⊗F(E′

2)
)
.

Actually, we have defined C0 and C1 as holomorphic bundles, but they admit parabolic structures
in a natural way: given parabolic bundles E and F , there are parabolic duals E∗p and parabolic
tensor products E ⊗p F (see [18, 34]). Then the parabolic structure on ParHom (E, F ) is given by
E∗p ⊗p F . In the formulae for F(C0) and F(C1) we have to consider the adapted metrics for the
parabolic structures on each (E′′

j )∗p ⊗p E′
i , induced by the adapted metrics on the bundles E′

k and
E′′

k , for k = 1, 2.
Consider the homomorphism a2 defined by

ParHom (E′′
1 , E′

2)(−D)
a2−→ ParHom (E′′

1 , E′
1)⊕ ParHom (E′′

2 , E′
2)

ξ −→ (φ′ξ, ξφ′′).

The connections on C0 and C1 satisfy
√−1�F(C0)+ a1a

∗
1 = (τ ′1 − τ ′′2 ) Id C0 ,

(26)√−1�F(C1)− a∗1a1 + a2a
∗
2 = (τ ′1 − τ ′′1 ) Id C1 .
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LEMMA 10.2 Let K and Q(D) denote the kernel and the torsion-free part of the cokernel, respectively,
of the homomorphism a1. Then

par μ(K) ≤ par μσ (T ′)− par μσ (T ′′),

par μ(Q) ≥ par μσ (T ′′)− par μσ (T ′)+ σ.

Proof . The kernel K is a subbundle of the hermitian bundle C1, so that we may take the C∞ orthog-
onal splitting C1 = K ⊕ S. Since K is a holomorphic subbundle, the induced connection DK on K

satisfies DC1 |K = DK + A, where DC1 is the connection on C1 and A ∈ �1,0(Hom (K, S)) is the
second fundamental form of K ⊂ C1. Therefore the curvature F(K) of the connection on K satisfies
F(C1)|K = F(K)+ Āt ∧ A.

We now use the second equation in (26) restricted to K , take the trace and integrate on X \D, to
get

∫
X\D

Tr (
√−1�(F(K) + Āt ∧ A)− a∗1a1|K + a2a

∗
2 |K) =

∫
X\D

Tr ((τ ′1 − τ ′′1 ) Id C1 |K).

That is,

pardeg (K)+ ‖A‖2
L2 +

∫
X\D

Tr (a2a
∗
2 |K) = (τ ′1 − τ ′′1 ) rk(K),

obtaining
pardeg (K) ≤ (τ ′1 − τ ′′1 ) rk(K)

as desired, since τ ′1 = par μσ (T ′) and τ ′′1 = par μσ (T ′′).
To get the second inequality, let S ′(D) be the saturation of the image of a1, which is a holomorphic

subbundle of C0(D). Then there is a C∞ orthogonal splitting C0 = S ′ ⊕Q. The curvature of the
induced connection on Q satisfies F(C0)|Q = F(Q)+ B ∧ B̄t with B ∈ �0,1(Hom (Q, S ′)). If we
consider the first equation in (26) restricted to Q, take the trace and integrate, we get

∫
X\D

Tr (
√−1�(F(Q) + B ∧ B̄t )+ a1a

∗
1)|Q =

∫
X\D

Tr ((τ ′1 − τ ′′2 ) Id C0 |Q).

That is,
pardeg (Q)− ‖B‖2

L2 = (τ ′1 − τ ′′2 )(rk(C0)− rk(im (a1)).

Hence
pardeg (Q) ≥ (τ ′1 − τ ′′2 )(rk(C0)− rk(im (a1)) (27)

as stated.

THEOREM 10.3 Let T ′ and T ′′ be σ±
c -stable parabolic triples over a punctured Riemann surface of

genus g > 0 such that par μσc
(T ′) = par μσc

(T ′′) for σc ≥ 2g − 2. Suppose that the morphism a1 is
not an isomorphism of bundles. Then

χ(C•(T ′′, T ′)) < 0.
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Proof . We have

χ(C•(T ′′, T ′)) = (1 − g)(rk(C1)− rk(C0))+ deg(C1)− deg(C0(D))

= (1 − g)(rk(C1)− rk(C0))+ deg(K)+ deg(im (a1))− deg(C0(D))

≤ (1 − g)(rk(C1)− rk(C0))+ deg(K)− deg(Q)

= (1 − g)(rk(C1)− rk(C0))+ deg(K)− deg(Q(−D)(D)). (28)

Observe that for any (non-zero) parabolic bundle E, deg(E(D)) > pardeg (E) ≥ deg(E), where the
strict inequality is given by the fact that the weights on E always satisfy 0 ≤ αi(x) < 1 for all i and
all x ∈ D. Using this, the hypothesis σ ≥ 2g − 2, and Lemma 10.2, we have

χ(C•(T ′′, T ′)) ≤ (1 − g)(rk(C1)− rk(C0))+ pardeg (K)− pardeg (Q(−D))

= (1 − g)(rk(C1)− rk(C0))− σ(rk(C0(D))− rk(im (a1))

≤ (1 − g)(rk(C1)− rk(C0))+ 2(1 − g)(rk(C0)− rk(im (a1))

= (1 − g)(rk(C1)+ rk(C0)− 2 rk(im (a1))

≤ 0, (29)

using that g ≥ 1. If either K or Q is a non-zero bundle, then the first line of (29) is a strict inequality.
If both are zero and a1 is not an isomorphism, then the third line of (28) is a strict inequality since
im (a1) �= C0(D). In both cases,

χ(C•(T ′′, T ′)) < 0.

REMARK 10.4 Note that this theorem does not cover the case g = 0. This is not so surprising if
we recall that, in order for parabolic bundles to exist on P

1, the parabolic weights must satisfy
certain inequalites [2, 5]. Presumably something similar must be true also in the case of parabolic
U(p, q)-Higgs bundles.

The following result will be useful in the next sections.

LEMMA 10.5 If a1 is generically an isomorphism of bundles, then either

(a) E′′
1 = 0 and φ′ : E′

2 → E′
1 is generically an isomorphism, in which case r2 > r1, or

(b) E′
2 = 0 and φ′′ : E′′

2 → E′′
1 is generically an isomorphism, in which case r2 < r1.

Proof . One may look at a generic point x ∈ X \D, that is, a point where the maps φ′ and φ′′ are
generic. We have

(a1)x : ParHom (Cr ′′1 , C
r ′1)⊕ ParHom (Cr ′′2 , C

r ′2) −→ ParHom (Cr ′′2 , C
r ′1)

(α, β) �−→ φ′
x β − α φ′′

x .

If φ′′
x is not surjective, take β = 0 and α �= 0 with α|im (φ′′

x ) = 0. Then (a1)x(α, β) = 0. If φ′
x is

not injective, take α = 0 and β �= 0 with im (β) ⊂ ker φ′
x , to get (a1)x(α, β) = 0. Both possibilities

contradict the injectivity of (a1)x . Therefore φ′′
x is surjective and φ′

x is injective.
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If neither of φ′
x and φ′′

x is an isomorphism, then take a map C
r ′′2 → C

r ′1 which induces a non-zero
map ker(φ′′

x ) → coker (φ′
x). This cannot be in the image of (a1)x , contradicting our assumption. So

either φ′
x or φ′′

x is an isomorphism. In the first case r ′1r ′′1 + r ′2r ′′2 = r ′′2 r ′1 gives r ′′1 = 0 and we are in
case (a). In the second, we are in case (b).

11. Irreducibility of the moduli space of triples for r1 �= r2

This section is devoted to study the irreducibility and non-emptiness of the moduli space of σ -stable
parabolic triples for ranks r1 �= r2.

Given a triple T = (E1, E2, φ) one has the dual triple T ∗ = (E
∗p
2 , E

∗p
1 , φt ), where E

∗p
i is the

parabolic dual of Ei and φt is the dual of φ.

PROPOSITION 11.1 The σ -stability of T is equivalent to the σ -stability of T ∗. The map T �→ T ∗ defines
an isomorphism of the corresponding moduli spaces of σ -stable triples.

This allows us to restrict to the case r1 > r2 and appeal to duality for the case r1 < r2. So throughout
this section we assume that r1 > r2.

LEMMA 11.2 Let X be a Riemann surface with a finite number of marked points and let E, F be
parabolic bundles on X. Let p ∈ X be a parabolic point. Then there is a natural exact sequence

0 −→ Hom (Ep, Fp)

ParHom (Ep, Fp)
⊗O(−p) −→ ParHom (E, F )p −→ ParHom (Ep, Fp) −→ 0.

The second map is induced by restriction to p. The first map is multiplication by a holomorphic
function vanishing once at p.

Proof . We have a defining exact sequence for the bundle of parabolic homomorphisms from E to F

given by

0 −→ ParHom (E, F ) −→ Hom (E, F ) −→
⊕
x∈D

Hom (Ex, Fx)

ParHom (Ex, Fx)
−→ 0.

Now we tensor with the skyscraper sheaf C(p), to get

0 −→ Tor

(
Hom (Ep, Fp)

ParHom (Ep, Fp)
, C(p)

)
−→ ParHom (E, F )p

−→ Hom (E, F )p −→ Hom (Ep, Fp)

ParHom (Ep, Fp)
−→ 0.

This is because Tor

(
Hom (Ex, Fx)

ParHom (Ex, Fx)
, C(p)

)
= 0 for p �= x, and the fact that if � is a torsion sheaf

supported scheme-theoretically at p (that is, supported at p and with no infinitesimal information), we
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have that Tor (�, C(p)) ∼= �⊗O(−p) naturally (to see this, tensor the exact sequence O(−p) →
O → C(p) with �). Hence

0 −→ Hom (Ep, Fp)

ParHom (Ep, Fp)
⊗O(−p) −→ ParHom (E, F )p

−→ Hom (Ep, Fp) −→ Hom (Ep, Fp)

ParHom (Ep, Fp)
−→ 0,

which yields

0 −→ Hom (Ep, Fp)

ParHom (Ep, Fp)
⊗O(−p) −→ ParHom (E, F )p −→ ParHom (Ep, Fp) −→ 0.

Locally, with a local coordinate z vanishing at p, the second map is given by (f0 + f1z + · · · )p �→ f0.
The first map is f1 �→ (f1z)p.

To clarify the Lemma, let us see an example, where E has rank 3 and weights βi , F has rank 4
and weights αj and β1 < α1 < α2 < α3 < β2 < β3 < α4. Then a typical parabolic homomorphism
from E to F has matrix of the form

around p. The parabolicity of φ means that for z = 0, the only non-zero entries are those below
the broken line. The line in the matrix is easy to construct: starting by the upper-left corner, draw a
horizontal line for each βj , and a vertical line for each αi , considering the αs and βs in increasing
order. The sheaf ParHom (E, F ) is actually a bundle (since it is torsion-free) of rank rk(E) rk(F ).
Its stalk at p, ParHom (E, F )p, is formed by the matrices with entries which are complex numbers
below the broken line, and which are complex numbers times z above the line.

PROPOSITION 11.3 Assume that g > 0, σc ≥ 2g − 2 and r1 > r2. Let T ′, T ′′ be σ±
c -stable triples with

μσc
(T ′) = μσc

(T ′′). Then χ(C•(T ′′, T ′)) = 0 if and only if the following conditions hold:

(1) E′
2 = 0;

(2) φ′′ : E′′
2 → E′′

1 (D) is a fibre bundle isomorphism at X \D. In particular, r ′′2 = r ′′1 ;
(3) at any point p ∈ D, write φ′′ = z−1(φ0 + φ1z + φ2z

2 + · · · ), where z is a local holomorphic
coordinate around p in X. Then ParHom (E′′

1,p, E′
1,p) → ParHom (E′′

2,p, E′
1,p), f �→ −f ◦

φ0, is surjective;
(4) at any p ∈ D, consider the induced homomorphism φ1 : ker φ0 → coker φ0. Then

ParHom (coker φ0, E
′
1,p) → Hom (ker φ0, E

′
1,p), f �→ −f ◦ φ1, is surjective.

Proof . By Theorem 10.3, χ(C•(T ′′, T ′)) = 0 if and only if a1 is an isomorphism. By Lemma 10.5, if
a1 is generically an isomorphism and r1 > r2 then E′

2 = 0. This proves (1). Also φ′′ : E′′
2 → E′′

1 (D)
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is generically an isomorphism. Moreover the two bundles involved in the complex C•(T ′′, T ′) must
be of the same rank and of the same degree. The complex C•(T ′′, T ′) reduces to

ParHom (E′′
1 , E′

1)
a1−→ ParHom (E′′

2 , E′
1(D)),

where a1(f ) = −f ◦ φ′′ is an isomorphism of bundles. Restricting a1 to the open subset U = X \D,
we have that Hom (E′′

1 , E′
1)|U → Hom (E′′

2 , E′
1(D))|U is an isomorphism. Hence E′′

2 |U → E′′
1 (D)|U

is an isomorphism of bundles, and (2) follows.
Now let p ∈ D, take a neighbourhood U of p, and a coordinate z vanishing at p. Hence we may

write φ′′ = φ0z
−1 + φ1 + φ2z + · · · , where φi ∈ Hom (E′′

2,p, E′′
1,p) and φ0 ∈ ParHom (E′′

2,p, E′′
1,p),

on U . We want to characterize when

ParHom (E′′
1 , E′

1)p → ParHom (E2, E
′
1(D))p = ParHom (E′′

2 , E′
1(p))p

is an isomorphism of vector spaces. It is enough to analyse when this map is surjective. Using
Lemma 11.2, we have a commutative diagram whose rows are short exact sequences.

Hom (E′′
1,p, E′

1,p)

ParHom (E′′
1,p, E′

1,p)
⊗O(−p)

·z−−−−→ ParHom (E′′
1 , E′

1)p −−−−→ ParHom (E′′
1,p, E′

1,p)⏐⏐�b0

⏐⏐�b1

⏐⏐�b2

Hom (E′′
2,p, E′

1,p)

ParHom (E′′
2,p, E′

1,p)

·z−−−−→ ParHom (E′′
2 , E′

1(p))p −−−−→ ParHom (E′′
2,p, E′

1,p)

⊗O(p)

The middle vertical arrow is induced by f �→ −f ◦ φ′′. Thus the right vertical arrow is induced by
f0 �→ −(f0 ◦ φ0)z

−1. The left vertical arrow is thus given by f1 �→ −(f1 ◦ φ0)z
−1.

We want to characterize the cases where the middle vertical arrow is surjective. Using the long
exact sequence produced by the snake lemma, we see that b1 being surjective is equivalent to b2 being
surjective and the connecting homomorphism ker b2 → coker b0 also being surjective. The condition
that b2 is surjective is exactly (3).

For the remaining condition, we need to spell out the connecting homomorphism. Take f0 ∈
ParHom (E′′

1,p, E′
1,p) lying in

ker b2 = ParHom (E′′
1,p/φ0(E

′′
2,p), E′

1,p).

Lift f0 to a local section of ParHom (E′′
1 , E′

1) on U , for example, taking f (z) ≡ f0. Compose with
φ′′ to get −(f ◦ φ0 + f ◦ φ1z + · · · )z−1. Recalling that f ◦ φ0 = 0, the leading term is

−f0 ◦ φ1 ∈ coker b0 =
Hom (E′′

2,p, E′
1,p)

ParHom (E′′
2,p, E′

1,p)+ b0(Hom (E′′
1,p, E′

1,p))
.

Assuming that (3) holds already, we have that ParHom (E′′
2,p, E′

1,p) ⊂ b0(ParHom (E′′
1,p, E′

1,p)) ⊂
b0(Hom (E′′

1,p, E′
1,p)), since the maps b0 and b2 are both composition with φ0. Hence the image of
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f0 under the connecting homomorphism is

−f0 ◦ φ1 ∈ coker b0 =
Hom (E′′

2,p, E′
1,p)

b0(Hom (E′′
1,p, E′

1,p))
= Hom (ker φ0, E

′
1,p) .

Therefore the surjectivity of the connecting homomorphism is equivalent to (4).

LEMMA 11.4 Condition (4) of Proposition 11.3 holds if and only if all the weights of E′
1,p are bigger

than those of coker φ0, and φ1 : ker φ0 → coker φ0 is an isomorphism.

Proof . The condition (4) says that

ParHom

(
E′′

1,p

φ0(E
′′
2,p)

, E′
1,p

)
→ Hom (ker φ0, E

′
1,p), f �→ −f ◦ φ1,

is surjective. Since E′′
1,p/φ0(E

′′
2,p) and ker φ0 are vector spaces of the same dimension, this is

equivalent to the following two conditions:

• φ1 : E′′
2,p → E′′

1,p ⊂ E1,p satisfies that φ1 : ker φ0 → coker φ0 is an isomorphism;
• ParHom (E′′

1,p/φ0(E
′′
2,p), E′

1,p) = Hom (E′′
1,p/φ0(E

′′
2,p), E′

1,p). Hence all the weights of
E′′

1,p/φ0(E
′′
2,p) are smaller than those of E′

1,p.

Let σc ∈ (σm, σM) be a critical value with σc ≥ 2g − 2. We aim to characterize when N s

σ−
c

and
N s

σ+
c

are birational by using Proposition 9.7. Let us deal with either of Sσ±
c

. Suppose that T ′ and T ′′

are σc-semistable, σ±
c -stable triples with μσc

(T ′) = μσc
(T ′′). We consider extensions

0 −→ T ′′ −→ T −→ T ′ −→ 0 (30)

(note that we have changed the role of T ′ and T ′′ in the computation of the codimension of the flip loci
in Section 10, so that now T ′′ is the subtriple), where μσ±

c
(T ′′) < μσ±

c
(T ), by Proposition 9.4. The

first conclusion to infer from Proposition 11.3 is that, if χ(C•(T ′′, T ′)) = 0 then r ′2 = 0 and r ′′2 = r ′′1 .
So μσ+

c
(T ′′) > μσ+

c
(T ). Therefore Sσ+

c
cannot be of zero codimension. So our study is limited to

Sσ−
c

: the only situation we may encounter when χ(C•(T ′′, T ′)) = 0 is that N s

σ−
c

has more irreducible
components than N s

σ+
c

.
To analyse when χ(C•(T ′′, T ′)) = 0 we have to check when conditions (3) and (4) of Proposition

11.3 are satisfied. Let p ∈ D be a parabolic point. We need to understand the parabolic vector
spaces E2,p and E1,p. These have parabolic weights of multiplicity one and all weights are different,
by Assumption 7.6. We shall keep the following notation for the rest of the section: αi denote the
weights of E1,p and βj denote the weights of E2,p (we drop p from the notation in the weights when
this causes no confusion).
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Since T is a triple which is an extension (30) with r ′2 = 0 and r ′′2 = r ′′1 , then φ : E2 → E1(D)

comes from a map φ′′ : E2 → E′′
1 (D) as follows.

E2 E2 −−−−→ 0

φ′′
⏐⏐� φ

⏐⏐� ⏐⏐�
E′′

1 (D) −−−−→ E1(D) −−−−→ E′
1(D)

Take a neighbourhood U of p where E1|U = E′
1|U ⊕ E′′

1 |U . Then φ = (φ0 + φ1z + · · · )z−1 and
φ0 : E2,p → E′′

1,p is a parabolic map. This gives decompositions of the parabolic vector spaces

E1,p = E′
1,p ⊕ E′′

1,p,

(31)
E′′

1,p = im φ0 ⊕ coker φ0,

as direct sums of parabolic vector subspaces (the splitting is non-canonical, but the weights of the
different subspaces are well determined).

Let us see that there is a ‘canonical’ distribution of weights in (31) such that conditions (3) and (4)
hold. Note that ParHom (E2,p, E1,p) is a vector space, in particular an irreducible affine variety. We
may consider the action of ParAut (E2,p)× ParAut (E1,p) on this space (this corresponds to lower
triangular changes of bases). Then there is a unique open dense orbit, which is the only orbit of
maximal dimension. We shall call an element of such orbit a generic parabolic homomorphism of
E2,p to E1,p. For instance, if E2,p is 7-dimensional with weights βj and E1,p is 9-dimensional with
weights αi , and

α1 < β1 < β2 < α2 < β3 < β4 < α3 < α4 < α5 < α6 < β5 < α7 < α8 < β6 < β7 < α9,

then the generic elements are the orbit of the element

(32)

LEMMA 11.5 Suppose that φ0 : E2,p → E1,p is a generic parabolic homomorphism, and let E1,p =
E′

1,p ⊕ E′′
1,p be any parabolic splitting with im φ0 ⊂ E′′

1,p. Then condition (3) in Proposition 11.3
is satisfied.

Proof . Suppose that φ0 is a generic element in ParHom (E2,p, E1,p), and let us see
that the map ParHom (E′′

1,p, E′
1,p) → ParHom (E2,p, E′

1,p), f �→ −f ◦ φ0, is surjective. Take
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g ∈ ParHom (E2,p, E′
1,p). Consider the map φε = φ0 ⊕ εg : E2,p → E′′

1,p ⊕ E′
1,p. For ε small we

have that φε also lives in the generic open set, so it is equivalent to φ0 by the action of
ParAut (E2,p)× ParAut (E1,p). This means that

(
aε bε

cε dε

) (
φ0

0

)
Mε =

(
φ0

εg

)
.

Both matrices,

(
aε bε

cε dε

)
and Mε , are the identity for ε = 0, so aε is invertible for small ε. Therefore

φ0Mε = a−1
ε φ0 and cεφ0Mε = εg. This yields

g = ε−1cεa
−1
ε φ0,

as required.

Recall that we have fixed topological data (fixed ranks, degrees and parabolic weights) for the
triples T we are studying. When we write such a triple T as an extension T ′′ → T → T ′, there are
different possible topological types for T ′ and T ′′. By the above discussion, our best chance to obtain
χ(C•(T ′, T ′′)) = 0 is to arrange the topological types as follows.

• Fix the ranks r ′2 = 0, r ′′2 = r2, r ′′1 = r2, r ′1 = r1 − r2. This is necessary for conditions (1) and
(2) to hold. So φ : E2 → E1(D) should be induced by φ′′ : E′′

2 → E′′
1 (D) by means of the

inclusion E′′
1 (D) → E1(D).

• At each p ∈ D, consider a generic element φp ∈ ParHom (E2,p, E1,p). This determines the
weights of im φp ⊂ E′′

1,p. By Lemma 11.5 condition (3) is satisfied.
• Choose the weights of coker φ′′

p in the unique way such that Lemma 11.4 is satisfied. This
gives the weights of E′′

1,p = im φp ⊕ coker φ′′
p at each p ∈ D, and hence the weights of E′

1,p.
• d ′′

2 = d2. Now condition (2) determines the degree of E′′
1 , since the map φ′′ : E2 → E′′

1 (D) is
an isomorphism on X \D and it is of a specified form at each p ∈ D. Namely, introduce the
number

rp = min{dim coker ψ0 | ψ0 ∈ ParHom (E2,p, E1,p)} − (r1 − r2). (33)

Obviously this minimum is obtained for a generic parabolic morphism. Moreover rp =
dim coker φ0, where φp : E2,p → E1,p is generic, and φ0 = φp : E2,p → E′′

1,p, using that
E′′

1,p ⊂ E1,p. With this notation, E2 → E′′
1 (D) → ⊕

p∈D C(p)rp is an exact sequence of
sheaves, so d ′′

1 = d2 − r2s +∑
p∈D rp.

This does not guarantee the existence or uniqueness of the topological types of T ′ and T ′′ to have
χ(C•(T ′, T ′′)) = 0, but tells us in which direction to look for such distributions of topological types.

Let us see this discussion in the particular example (32). For a generic φp : E2,p → E1,p, the
weights of im φ0 are α2, α3, α4, α5, α7, α9, and the weight of coker φ0 is α1. Thus the weights of
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E′
1,p are α6, α8. The map φ takes the form

around p ∈ D. Note that such φ : E2 → E1(D) is injective for z �= 0, as required by condition (2).

REMARK 11.6 The definitions of generic parabolic map and of rp given in (33) are also valid in the
case r1 = r2.

PROPOSITION 11.7 Assume g > 0, r1 > r2 and σc ≥ 2g − 2. Let T ′, T ′′ be σ−
c -stable triples with

μσc
(T ′) = μσc

(T ′′). If χ(C•(T ′′, T ′)) = 0 then the following hold:

(i) r ′2 = 0, r ′′2 = r2 = r ′′1 , d ′′
2 = d2;

(ii) for each p ∈ D, the parabolic map φ′′
p : E2,p → E′′

1,p has rank r2 − rp, with rp defined in (33);
(iii) d ′′

1 = d2 − r2s +∑
p∈D rp;

(iv) for each 1 ≤ k ≤ r2 − rp, define

ik = min{j | 1 ≤ j ≤ r1, βk < αj , j > ik−1} (34)

and let I = {i1, . . . , ir2−rp
}. Let J ⊂ {1, . . . , r1} − I be the set of the lowest rp elements of

{1, . . . , r1} − I . Then the weights of E′′
1,p are exactly {αi | i ∈ I ∪ J }.

In particular, the ranks, degrees and weights of T ′ and T ′′ are univocally determined. Thus there is
at most one possible value of σc for which χ(C•(T ′′, T ′)) = 0.

Proof . Item (i) follows from Proposition 11.3 (1).
Item (iii) follows once we know item (ii), and using Proposition 11.3 (2), since in this case we

have an exact sequence of sheaves

E2 = E′′
2

φ′′−→ E′′
1 (D) →

⊕
p∈D

C(p)rp .

Next, note that the increasing sequence of numbers i1, i2, . . . ∈ {1, . . . , r1} is well defined for
1 ≤ k ≤ r2 − rp. Actually, looking at a generic parabolic map ψ0 : E2,p → E1,p, the weights of
im ψ0 are αi1 , . . . , αir2−rp

, with r2 − rp = dim im ψ0 (see (32) for a specific example).
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Now we shall prove (2) and (4) using Proposition 11.3 (3), that is, that

ParHom (E′′
1,p, E′

1,p) −→ ParHom (E2,p, E′
1,p)

(35)
f �−→ f ◦ φ0

is surjective, denoting as before, φ0 = φ′′
p. Let {e1, . . . , er1} be a basis for E1,p adapted to its parabolic

structure (and adapted to the splitting E′
1,p ⊕ E′′

1,p, that is, each ei belongs either to E′
1,p or E′′

1,p),
and let {v1, . . . , vr2} be a basis for E2,p adapted to its parabolic structure.

Now let t0 ∈ {1, . . . , r1} such that αt0 is the lowest weight of E′
1,p. Let 0 ≤ a ≤ r2 − rp such that

ia < t0 ≤ ia+1 (introducing the notation i0 = 0, ir2−rp+1 = r1 + 1). Let us see that αia+1 , . . . , αr2−rp

are weights of im φ0 (if a = r2 − rp then there is nothing to prove). Actually, they cannot be weights
of coker φ0, since by Lemma 11.4 all the weights of coker φ0 are smaller than αt0 . So they are
weights of im φ0 or of E′

1,p by (31). Suppose that αia+1 , . . . , αib−1 are weights of im φ0 but αib is the
first weight of E′

1,p in the list. Then take V = 〈v1, . . . , vb〉 ⊂ E2,p. The surjectivity of (35) gives that

ParHom (E′′
1,p, 〈eib〉) � ParHom (E2,p, 〈eib〉) � ParHom (V , 〈eib〉) = Hom (V , 〈eib〉)

is surjective (the last equality follows from αib > βb). Therefore φ0|V : V → E′′
1,p must be injective,

and all the weights of φ0(V ) ⊂ E′′
1,p should be smaller than αib . So there are weights αx1 < · · · <

αxb
< αib with βj < αxj

. This implies that ij ≤ xj , j = 1, . . . , b, which contradicts that xb < ib.
The next step is to see that there are y1 < · · · < ya < t0 such that ij ≤ yj , j = 1, . . . , a and αyj

are weights of im φ0. As before, take V = 〈v1, . . . , va〉 ⊂ E2,p. The surjectivity of (35) gives that

ParHom (E′′
1,p, 〈et0〉) � ParHom (E2,p, 〈et0〉) � ParHom (V , 〈et0〉) = Hom (V , 〈et0〉)

is surjective. So φ0|V : V → E′′
1,p must be injective, and all the weights or φ0(V ) ⊂ E′′

1,p should be
smaller than αt0 . So there are weights αy1 < · · · < αya

< αt0 with βj < αyj
. This implies that ij ≤ yj ,

j = 1, . . . , a.
The elements

{y1, . . . , ya, ia+1, . . . , ir2−rp
} (36)

are weights of im φ0. So dim im φ0 ≥ r2 − rp. As obviously dim im φ0 ≤ r2 − rp, it must be
dim im φ0 = r2 − rp, implying item (2). Thus the weights of im φ0 are exactly those in (36). The
elements

{1, . . . , t0 − 1} − {y1, . . . , ya} (37)

are the subindices of the weights of coker φ0, by Lemma 11.4. So t0 − 1 − a = rp, that is,
t0 = rp + a + 1. Finally (the subindices of) the weights of E′′

1,p are

({1, . . . , t0 − 1} − {y1, . . . , ya}) ∪ {y1, . . . , ya, ia+1, . . . , ir2−rp
}

= {1, . . . , t0 − 1} ∪ {ia+1, . . . , ir2−rp
} = I ∪ J,

as required.

Our final result in this section completes the proof of Theorem 6.12. We have to use Theorem 12.10,
which will be proved in the next section. First, consider the distribution of weights and degrees given
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by Proposition 11.7, and consider the critical value associated to it, which is

σL =
(

1 + r1 + r2

r1 − r2

)
(par μ(E1)− par μ(E2))+ s

r1 + r2

r1 − r2
− pardeg (E′′

1 (D))− pardeg (E2)

r2

= σM − 1

r2
ε , (38)

where
ε = pardeg (E′′

1 (D))− pardeg (E2) > 0, (39)

and the weights and degree of E′′
1 are given by Proposition 11.7. For instance, in the example worked

out in (32), ε = ∑
i �=6,8 αi −∑

βj + 1.
The value of σL is very close to σM but strictly smaller, as expected.

THEOREM 11.8 Assume r1 > r2 and g > 0. If σL > 2g − 2 then N s
σ is irreducible and non-empty for

all 2g − 2 ≤ σ < σL. If σL < 2g − 2 then N s
σ is empty for all σ ≥ 2g − 2.

Proof . First, note that for σ > σM , Nσ is empty by Proposition 7.1.Assume for a while that N s
σ is non-

empty for some value of σ ≥ 2g − 2, then there must exist the minimum value σ̃L ∈ (2g − 2, σM)

of σ such that N s

σ̃+
L

= ∅ and N s

σ̃−
L

�= ∅. Clearly this σ̃L is a critical value and must correspond to a set

of extensions T ′′ → T → T ′ with χ(C•(T ′′, T ′)) = 0.
By Proposition 11.7 there is at most one (topological) possibility for T ′ and T ′′ to have

χ(C•(T ′′, T ′)) = 0. This implies that σ̃L = σL. For any other critical value σc, the moduli spaces
N s

σ+
c

and N s

σ−
c

are birational, by Proposition 9.7. So all moduli spaces N s
σ are birational for

2g − 2 ≤ σ < σL.
Moreover there may be different distributions of weights, ranks and degrees giving rise to the

critical value σL, but only the one given by Proposition 11.7 gives critical subsets Sσ−
L

of codimension
zero. So the number of irreducible components is given by the number of irreducible components of
a subset of the space of extensions T ′′ → T → T ′ with the distribution of weights, ranks and degrees
given by Proposition 11.7. Let us see that this space of extensions is non-empty and irreducible:
the triples T ′ have r ′2 = 0, r ′1 = r1 − r2, so they are parametrized by a moduli space of parabolic
bundles E′

1, which is non-empty, irreducible and of the expected dimension by [8]. The triples T ′′
have r ′′1 = r ′′2 = r2, and d ′′

1 + r ′′1 s − d ′′
2 −

∑
rp = 0, so they are parametrized by a moduli space of

σ−
L -stable triples which is non-empty, irreducible and of the expected dimension by Theorem 12.10.

Now the dimension of the projective fibres of the space of extensions T ′′ → T → T ′ is

−χ(C•(T ′, T ′′))− 1 ≥ 0,

since χ(C•(T ′, T ′′)) < 0, by Theorem 10.3. Therefore there is a non-empty space of extensions.
Moreover, a generic triple T ′ is σL-stable. In that case, any non-trivial extension T ′′ → T → T ′ is
σ−

L -stable (see Proposition 9.4). So the space Sσ−
L

is non-empty, and irreducible.
Finally, if σL > 2g − 2, the argument above proves that N s

σ−
L

is non-empty, so there is some non-

empty Nσ with σ > 2g − 2 and the statement of the theorem follows. Conversely, if some Nσ with
σ > 2g − 2 is non-empty, then it must be σL > 2g − 2 completing the argument.
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Now Proposition 7.7 transfers the inequalities σm ≤ 2g − 2 < σL into a Milnor–Wood type
inequality 0 ≤ |τ | < τL, where

τL = min{p, q}(2g − 2 + s)− |p − q|
p + q

ε , (40)

where ε is given in (39).

REMARK 11.9 One can spell out the process for computing ε, by using the procedure of Propo-
sition 11.7 and the identification of Proposition 7.4. Let p = rk(V ), q = rk(W), α the system of
weights of V and β the system of weights of W . Suppose that q ≤ p (the other case is similar,
interchanging the roles of V and W ). Define, at each x ∈ D, αi+pl(x) = αi(x)+ l, for any l ≥ 1. Put
i0 = 0 and define, for 1 ≤ k ≤ q,

ik = min{j | j > ik−1, αj > βk}.

Then

ε =
∑
x∈D

p∑
k=1

(αik (x)− βk(x)).

12. The moduli space of triples for r1 = r2 and large σ

In this section, we study the moduli space of triples with equal ranks r1 = r2. We prove that some
of them are irreducible and non-empty for σ ≥ 2g − 2. The results here are enough for the proof
of Theorem 11.8 to work, but we also analyse some other cases. It is likely that the result holds in
general.

PROPOSITION 12.1 Suppose that r1 = r2 and g > 0. Then all the moduli spaces Nσ for σ ≥ 2g − 2
are birational to each other.

Proof . This is a consequence of Theorem 10.3 and Proposition 9.7. For χ(C•(T ′, T ′′)) to vanish, a1

must be an isomorphism. But this is impossible if r1 = r2 by Lemma 10.5.

Now let us see that the moduli spaces Nσ stabilize for σ large.

PROPOSITION 12.2 Suppose that r1 = r2. Then there is a value σ1 such that any σ -stable parabolic
triple T = (E1, E2, φ) with σ > σ1 satisfies that φ is injective. Hence

0 −→ E2 −→ E1(D) −→ S −→ 0, (41)

where S is a torsion sheaf.
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Proof . Denote N = ker φ and consider the parabolic subtriple (0, N, φ). Suppose that
k = rk(N) > 0. The σ -stability of T implies that

pardeg N + kσ < k

(
pardeg (E1 ⊕ E2)

2r1
+ 1

2
σ

)
.

Now consider the subtriple (I, E2, φ) where I (D) is the parabolic image sheaf of φ, with rank
rk(I ) = r1 − k. The σ -stability of T gives us

pardeg (I ⊕ E2)+ r1σ < (2r1 − k)

(
pardeg (E1 ⊕ E2)

2r1
+ 1

2
σ

)
.

Adding up both equations, and noting that pardeg N + pardeg I (D) = pardeg E2, we get

2 pardeg E2 − (r1 − k)s + (r1 + k)σ < pardeg (E1 ⊕ E2)+ r1σ,

which is rewritten as

σ ≤ pardeg E1 − pardeg E2 + (r1 − k)s

k
.

So for σ1 = pardeg E1 − pardeg E2 + (r1 − 1)s the result follows.

LEMMA 12.3 Suppose that r1 = r2 and σ > σ1. Let T be a σ -stable triple and T ′ a subtriple of T

with r ′1 = r ′2. Write E2 → E1(D) → S, E′
2 → E′

1(D) → S ′, t = length S, t ′ = length S ′. Then

par μ(E′
1) < par μ(E1)+ 1

2

(
t ′

r ′1
− t

r1

)
+ s,

par μ(E′
2) < par μ(E2)− 1

2

(
t ′

r ′1
− t

r1

)
+ s.

Proof . From Proposition 12.2, as σ > σ1, φ is an injective morphism. So φ′ is injective for any
subtriple T ′ of T . Hence for a subtriple T ′ with r ′1 = r ′2 we have the following commutative diagram

0 −−−−→ E′
2 −−−−→ E′

1(D) −−−−→ S ′ −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ E2 −−−−→ E1(D) −−−−→ S −−−−→ 0

where S and S ′ are torsion sheaves. Let t and t ′ denote the lengths of S and S ′ respectively, as in the
statement. By stability,

0 > par μσ (T ′)− par μσ (T )

= 1

2

(
par μ(E′

1)+ par μ(E′
2)− par μ(E1)− par μ(E2)

)
= par μ(E′

1)− par μ(E1)− 1

2
(par μ(E′

1)− par μ(E′
2))+

1

2
(par μ(E1)− par μ(E2))

= par μ(E′
2)− par μ(E2)+ 1

2
(par μ(E′

1)− par μ(E′
2))−

1

2
(par μ(E1)− par μ(E2)).
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Now at each point p ∈ D, |∑ βj (p)−∑
αi(p)| ≤ r1, so t − r1s ≤ pardeg E1(D)− pardeg E2 ≤

t + r1s, equivalently t − 2r1s ≤ pardeg E1 − pardeg E2 ≤ t or

t

r1
− 2s ≤ par μ(E1)− par μ(E2) ≤ t

r1
.

Analogously, for T ′ we have

t

r ′1
− 2s ≤ par μ(E′

1)− par μ(E′
2) ≤

t

r ′1
.

Substituting into the formulae above, we get the result in the statement.

PROPOSITION 12.4 Suppose that r1 = r2. Then there is a value σ2 ≥ σ1 such that N s
σ = N s

σ ′ for any
σ, σ ′ ≥ σ2, that is, there are no critical values above σ2.

Proof . Consider a σ -stable triple T = (E1, E2, φ) with σ > σ1. Suppose that T is properly σc-
semistable for some σc, and let T ′ ⊂ T be a σc-destabilizing subtriple. Clearly r ′2 ≤ r ′1, since φ being
injective implies that φ′ is also injective. On the other hand, if r ′1 = r ′2 then T is σ -semistable for
generic values of σ and could not be σ -stable for some σ . Therefore r ′2 < r ′1. In the formula

σc = 2 par μ(E′
1)

r ′1
r ′1 − r ′2

+ 2 par μ(E′
2)

r ′2
r ′1 − r ′2

− (par μ(E1)+ par μ(E2))
r ′1 + r ′2
r ′1 − r ′2

, (42)

we want to bound the values of par μ(E′
1) and par μ(E′

2) in order to get a bound for the critical value
σc which is independent of T .

Apply Lemma 12.3 to the subtriples (φ′(E′
2)(−D), E′

2, φ
′) and (E′

1, (φ
′)−1(E′

1(D)), φ′), both of
which satisfy the equal rank condition. The first one has no torsion, the second has torsion with
0 ≤ t ′ ≤ t . We get

par μ(E′
2) < par μ(E2)+ t

2r1
+ s,

par μ(E′
1) < par μ(E1)+ 1

2

(
t ′

r ′1
− t

r1

)
+ s ≤ par μ(E1)+ t (r1 − r ′1)

2r1r
′
1

+ s.

Using that (t/r1) ≤ par μ(E1)− par μ(E2)+ 2s, by the exact sequence (41) and 1 ≤ r ′1 ≤ r1 − 1, we
get bounds on par μ(E′

1) and par μ(E′
2). Substituting these bounds into (42) and using that r ′1 − r ′2 ≥ 1

and r ′1, r ′2 ≤ r1 = r2, we get a bound on σc, as required.

With this result, we may introduce the notation N s
L for the moduli space of σ -stable triples for any

value σ > σ2. We shall refer to this as the moduli space for large values of σ . There is an obvious
condition for N s

L to be non-empty. Let φ : E2 → E1(D) be a parabolic morphism which is moreover
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injective. For any p ∈ D, it induces a parabolic map φp ∈ ParHom (E2,p, E1,p). This satisfies

dim im φp ≤ r1 − rp,

with rp defined in (33) (cf. Remark 11.6). Therefore for any parabolic map φ ∈ ParHom (E2, E1(D)),
we have that

d1 + r1s − d2 ≥
∑
p∈D

rp. (43)

Let us now see that this is a sufficient condition for non-emptiness and irreducibility of N s
L. First we

need some preliminary results.

LEMMA 12.5 If both E2 and E1 are parabolic stable bundles, and φ : E2 → E1(D) is an injective
parabolic map, then T = (E1, E2, φ) is a σ -stable triple for large values of σ .

Proof . Any subtriple T ′ ⊂ T should have r ′2 ≤ r ′1. The stability of the bundles implies that
par μ(E′

1) < par μ(E1) and par μ(E′
2) < par μ(E2), from where it follows that par μσ (T ′) <

par μσ (T ), for any σ , and in particular for large values of σ .

LEMMA 12.6 Let L be a fixed parabolic line bundle. Consider the moduli space Nσ (r1, r2, d1, d2;α, β)

of σ -stable parabolic triples T = (E1, E2, φ) of degrees (d1, d2) and weight types (α, β). Let
(d̃1, d̃2) and (α̃, β̃) be the degrees and weight types of the triples of the form (E1 ⊗p L, E2 ⊗p

L, φ). Then (E1, E2, φ) �→ (E1 ⊗p L, E2 ⊗p L, φ) gives an isomorphism Nσ (r1, r2, d1, d2;α, β) ∼=
Nσ (r1, r2, d̃1, d̃2; α̃, β̃).

Let us see that tensoring with a suitable parabolic line bundle allows us to reduce to the case
rp = 0 for all p ∈ D. For this we need an alternative characterization of rp. Fix p ∈ D, and denote
byα1 < · · · < αr1 the weights ofE1,p and byβ1 < · · · < βr1 the weights ofE2,p, since r2 = r1. Extend
the weights to an infinite sequence of real numbers by declaring αk+r1m = αk +m, 1 ≤ k ≤ r1, m ∈ Z.
This means that we have a sequence

· · · < αr1 − 1 < α1 < · · · < αr1 < α1 + 1 < α2 + 1 < · · · .

In this strictly increasing sequence Z → R, 1 is sent to α1 characterized as the smallest non-negative
number in the sequence. Similarly consider the infinite sequence βk from the weights of E2,p. Define
the functions

f : [0,∞) −→ R,

x �−→ #{αk | 0 < αk < x},
(44)

g : [0,∞) −→ R,

x �−→ #{βk | 0 < βk ≤ x}.

Note that f (x + 1) = f (x)+ r1 and g(x + 1) = g(x)+ r1. Now we have the following.

LEMMA 12.7 rp = max(f − g) = max[0,1)(f − g).
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Proof . From the way f and g are defined, f − g is a right-continuous step function, with jumps by
+1 at the points αk and −1 at the points βk . As f − g is 1-periodic, the existence of a maximum
and the equality max(f − g) = max[0,1)(f − g) are clear. Let M = max(f − g) and x0 ∈ [0, 1) be
a point that is not a weight and that satisfies (f − g)(x0) = M . Then, writing k = f (x0), we have
αk < x0 < αk+1 and k −M = g(x0), that is, βk−M < x0 < βk−M+1. The maximality of f − g at x0

implies that we have βk−M < αk < x0 < βk−M+1 < αk+1. So any parabolic map φ0 : E2,p → E1,p

satisfies that φ0(E2,p,k−M+1) ⊂ E1,p,k+1 and hence

dim ker φ0 ≥ dim E2,p,k−M+1 − dim E1,p,k+1 = (r1 − k +M)− (r1 − k) = M.

Conversely, let φ0 : E2,p → E1,p be a map such that φ0(E2,p,k−M+1) ⊂ E1,p,k+1 for each k. Then
φ0 is a parabolic map: for if βi > αj , take βi > x > αj . So g(x) ≤ i − 1 and f (x) ≥ j . So j − i +
1 ≤ f (x)− g(x) ≤ M and hence i ≥ j −M + 1. Thus φ0(E2,p,i) ⊂ φ0(E2,p,j−M+1) ⊂ E1,p,j+1.
On the other hand, it is clear that there are maps satisfying φ0(E2,p,k−M+1) ⊂ E1,p,k+1 for each k

with dim ker φ0 = M . Hence there are parabolic maps φ0 with dim ker φ0 = M , completing the proof
that M = rp.

PROPOSITION 12.8 There exists a suitable parabolic line bundle L such that the moduli space of
σ -stable triples of the form (E1 ⊗p L, E2 ⊗p L, φ) has associated r̃p = 0, for all p ∈ D.

Proof . We shall assume that there is only one point p ∈ D and we shall tensor with a parabolic
line bundle of the form L = O[x], that is, the trivial line bundle with weight x ∈ [0, 1) at p. Take
x0 ∈ (0, 1) which does not coincide with any weight and gives the maximum value of the function
f − g. Let L = O[1−x0]. Denoting by k0 = f (x0), the weights of E2 ⊗p L are

0 ≤ αk0+1 − x0 < · · · < αr1 − x0 < α1 − x0 + 1 < · · · < αk0 − x0 + 1 < 1

(see [18]). Put otherwise, if α̃k is the infinite sequence associated with the weights of Ẽ2 = E2 ⊗p L,
then α̃k = αk+k0 − x0. The function f̃ associated to Ẽ2 as in (44) is

f̃ (x) = #{α̃k | 0 < α̃k < x}
= #{αk | 0 < αk − x0 < x}
= #{αk | x0 < αk < x + x0}
= f (x + x0)− f (x0),

the last equality follows because x0 is not a weight of E2,p. Analogously for Ẽ1 = E1 ⊗p L, the
function g̃ associated to it is

g̃(x) = g(x + x0)− g(x0).

Then the number rp associated to the moduli spaces of triples (Ẽ1, Ẽ2, φ) is

r̃p = max(f̃ (x)− g̃(x)) = max(f (x + x0)− g(x + x0))−M = 0.

PROPOSITION 12.9 Assume that r1 = r2 and rp = 0 for all p ∈ D. Then the moduli space of σ -stable
triples for σ large and d2 + r2s = d1 is irreducible.

Proof . Any triple T = (E1, E2, φ) in N s
L satisfies that φ : E2 → E1(D) is generically an isomor-

phism by Proposition 12.2. So the condition on the degrees implies that it is an isomorphism of
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bundles. Moreover, by Lemma 12.3, the family H of bundles E1 appearing as part of triples of N s
L is

a bounded family which is irreducible and the generic element is a stable bundle (see [11]).
Let us study the fibres of N s

L → H. Fix E1 ∈ H and consider the fibre over E1. Identifying E2

with E1(D) (as bundles) via the isomorphism φ, an element (E1, E2, φ) = (E1, E1(D), Id ) in the
fibre consists of giving for each p ∈ D a flag for V = E1,p and a flag for V = E2,p such that the
identity map Id : V → V is a parabolic map with respect to these flags. For simplicity, assume there
is only one point p ∈ D. Let

F1 = {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vr1 = E1,p | dim Vi = i}

be the space parametrizing (complete) flags at E1,p, with fixed weights α1 < · · · < αr1 . This is an
irreducible variety. Analogously define the space

F2 = {0 ⊂ W1 ⊂ W2 ⊂ · · · ⊂ Wr1 = E2,p | dim Wi = i}

of (complete) flags for E2,p, with fixed weights β1 < · · · < βr1 . The condition rp = 0 means that
g(x) ≤ f (x), for all x, with the notation of (44). The identity map is parabolic if Wi ⊂ Vi+k(i),
1 ≤ i ≤ r1, for some set of integers k(i) ≥ 0 such that 0 < 1 + k(1) ≤ 2 + k(2) ≤ · · · ≤
r1 + k(r1) = r1. The set of compatible flags is given by

F = {(F1, F2) | Wi ⊂ Vi+k(i), 1 ≤ i ≤ r1} ⊂ F1 × F2 . (45)

This is also an irreducible variety, as F → F1 is a fibration with irreducible base and irreducible
fibres. Note that the other projection F → F2 is also surjective.

A generic stable bundle E1 satisfies that a generic flag F1 ∈ F1 gives a parabolic stable bundle.
Let U1 ⊂ F1 be a (dense) open subset with this property. Analogously consider a dense open subset
U2 ⊂ F2 such that E2 = E1(D) with a flag F2 ∈ F2 is parabolically stable. If F ∩ (U1 × U2) = ∅
then F ⊂ ((F1 − U1)× F2) ∪ (F1 × (F2 − U2)). Being irreducible, F should be contained in either
((F1 − U1)× F2) or (F1 × (F2 − U2)). This contradicts the surjectivity of both F → F1 and F →
F2. This proves that F ∩ (U1 × U2) �= ∅, so the generic element of F gives parabolic stable bundles
E1 and E2. By Lemma 12.5, such element is σ -stable for σ large. Therefore the generic stable bundle
E1 satisfies that the fibre of N s

L → H is an open subset of the space of compatible flags F . This
shows that N s

L is irreducible and non-empty.

THEOREM 12.10 Suppose that r1 = r2 and that d1 + r1s − d2 = ∑
p∈D rp. Then the moduli space N s

L

is irreducible, of the expected dimension and non-empty.

Proof . By Proposition 12.8 there exists a parabolic line bundle L such that (E1, E2, φ) �→
(Ẽ1 = E1 ⊗p L, Ẽ2 = E2 ⊗p L, φ) gives an isomorphism of moduli spaces of σ -stable triples
Nσ (r1, r1, d1, d2;α, β) ∼= Nσ (r1, r1, d̃1, d̃2; α̃, β̃) such that r̃p = 0 for each p ∈ D. Then

d̃1 + r1s − d̃2 = d1 + r1s − d2 −
∑
p∈D

rp.



224 O. GARCÍA-PRADA et al.

This is easily seen by computing the degrees d̃1 and d̃2. For instance, suppose that there is only one
point p ∈ D. Then, with the notation of the proof of Proposition 12.8,

d̃1 = deg Ẽ1 = pardeg (E1 ⊗p L)−
∑

α̃k

= pardeg (E1)+ r1 pardeg (L)−
(∑

(αk − x0)+ k0

)
= d1 +

∑
αk + r1(1 − x0)−

∑
αk + r1x0 − k0

= d1 + r1 − k0 = d1 + r1 − f (x0) .

Analogously, d̃2 = d2 + r1 − g(x0), so that d̃1 − d̃2 = d1 − d2 − rp.
Now the moduli space N s

L(r1, r1, d̃1, d̃2; α̃, β̃) is non-empty and irreducible by Proposition 12.9.
So the same is true of our initial moduli space by using Lemma 12.6. The dimension statement follows
from Corollary 9.6.

THEOREM 12.11 Suppose that r1 = r2 and d1 + r1s − d2 ≥ ∑
p∈D rp. Then the moduli space N s

L is
non-empty, of the expected dimension and irreducible.

Proof . The dimension statement follows from Corollary 9.6. Arguing as in the proof of Theorem
12.10, we may suppose that rp = 0, for p ∈ D. Now, there exist triples φ : E2 → E1(D), with φ

injective, E1 and E2 stable bundles and satisfying that the torsion sheaf quotient of the map φ is
generic (in particular, supported on X \D). This follows from [11], where non-parabolic σ -stable
triples for σ large are found by constructing σ -stable triples with these properties.

Now the argument of the proof of Proposition 12.9 works here to find parabolic structures on E1

and E2 such that (E1, E2, φ) is a σ -stable parabolic triple for σ large, since the only necessary fact
is that φp : E2,p → E1,p is an isomorphism for all p ∈ D. This gives the non-emptiness of N s

L.
For proving the irreducibility of N s

L, the main obstacle are the triples with quotient supported
at points of D. We work as follows. Let H be the family of bundles E1 appearing in triples
T = (E1, E2, φ) ∈ N s

L. This is a bounded and irreducible family whose generic element E1 ∈ H is a
generic stable bundle. Let Q = Quot t (H) be the Quot scheme parametrizing quotients E1(D) → S,
with E1 ∈ H and t = length S = d1 + r1s − d2 −∑

p∈D rp. The kernel of a generic element in Q is
a stable bundle E2. If the support of S is contained in X \D, then the fibre of the map N s

L → Q over
a quotient E1(D) → S in Q is a subset of the set of compatible flags F defined in (45). For a generic
element in Q, this is actually an open subset of F , as proved in the proof of Proposition 12.9. This
produces an open subset U ⊂ N s

L, which is of dimension

dim Q+ dim F .

Let us see the irreducibility of N s
L by checking that dim(N s

L \ U) < dim U . Certainly, the only
effect that we must take care of is the jumping in the dimension of the fibre of N s

L → Q when the
torsion sheaf is supported at some points of D. Let p ∈ D, and suppose that p is in the support of
S, say Sp = C

l . The set of quotients E1,p → Sp is parametrized by the grassmannian Gr(l, r1). The
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codimension of the space Ql ⊂ Q parametrizing such quotients is

r1 length S − (r1(length S − l)+ l(r1 − l)) = r1l − lr1 + l2 = l2.

Now let us compute the dimension of the fibre of N s
L → Q over a point in Ql . With the definition of

k(i) given in Proposition 12.9, such fibre is the space

F∗ = {(Wi, Vi) ∈ F1 × F2 | φ(Wi) ⊂ Vi+k(i)} .
Equivalently, (Wi, Vi) ∈ F∗ ⇔ Wi ⊂ φ−1(Vi+k(i)). It remains to see that

dim F∗ − dim F < l2 .

The fibration F → F1 is surjective and the dimension of the fibre is

r1∑
i=1

k(i).

Let us compute the dimension of a fibre of F∗ → F1. Such dimension depends on the flag {Vi} ∈ F1,
so we need to stratify F1 as follows. The flag {Vi} is determined by a collection of numbers 0 ≤ a1 ≤
· · · ≤ ar1 = r1 − l such that

0 ⊂ V1 ∩ im (φ) ⊂ · · · ⊂ Vr1 ∩ im (φ) = im (φ)

‖ ‖ ‖
0 ⊂ C

a1 ⊂ · · · ⊂ C
ar1 = C

r1−l .

Clearly, ai+1 = ai + δi+1 (a0 = 0), where there are uniquely defined 1 ≤ i1 < · · · < ir1−l ≤ r1 such
that δik = 1 and δj = 0 for j �= ik , k = 1, . . . , r1 − l. The codimension of the stratum Sa1,...,ar1

⊂ F1

defined by such {Vi} is
r1−l∑
k=1

(l − ik + k).

The fibre of F∗ → F1 over {Vi} ∈ Sa1,...,ar1
is given by flags {Wi} ∈ F2 such that Wi ⊂ Ṽi+k(i),

with Ṽi = φ−1(Vi) ∼= C
l+ai . The dimension of such a fibre is thus

r1∑
i=1

(l + ai+k(i) − i) ≤
r1∑

i=1

(l + ai − i)+
∑

k(i)

=
r1∑

i=1

(l − i)+
r1−l∑
k=1

(r1 − ik + 1)+
∑

k(i).

So the dimension of the preimage of Sa1,...,ar1
by the map F∗ → F1 is less than or equal to

dim F1 −
r1−l∑
k=1

(l − ik + k)+
r1∑

i=1

(l − i)+
r1−l∑
k=1

(r1 − ik + 1)+
∑

k(i)

= dim F1 +
∑

k(i)+ l2 − l

2
= dim F + l2 − l

2
.
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Since this is true for any stratum, we have

dim F∗ ≤ dim F + l2 − l

2
< dim F + l2

as required.

Combining Theorem 12.11 with Proposition 12.1 we have the following.

COROLLARY 12.12 Let g > 0, r1 = r2 and d1 + r1s − d2 ≥ ∑
p∈D rp. Then the moduli spaces Nσ are

non-empty, irreducible and of the expected dimension for any σ ≥ 2g − 2.

REMARK 12.13 Corollary 12.12 and the correspondence in Proposition 7.4 gives that the moduli space
U(p, p, a, b;α, β) is non-empty and connected if and only if the following is satisfied.

(i) In the case τ < 0. It must be that |τ | ≤ τM by Proposition 7.7. Also, defining rx =
min{dim coker φ | φ ∈ ParHom (Vx, Wx)}, for x ∈ D, we must have b + (2g − 2 + s)p −
a ≥ ∑

x∈D rx , by Corollary 12.12. But this last condition is redundant: τ < 0 is equivalent to
par μ(V ) < par μ(W), hence

a = deg(V ) ≤ pardeg (V ) < pardeg (W) < deg(W)+ ps = b + ps + (2g − 2)s,

since g > 0. Also, we may tensor with a suitable parabolic line bundle L to arrange rx = 0,
for all x ∈ D, by Proposition 12.8 (this does not change τ or the inequality that we need to
check). So b + (2g − 2 + s)p − a ≥ 0, as required.

(ii) The case τ > 0 is worked out similarly, and the only condition we obtain is |τ | ≤ τM .

Note that the genericity of the weights (Assumption 2.1) prevents the case |τ | = τM from happening.

13. Representations of fundamental groups in U(p, q)

Let X be a compact Riemann surface of genus g ≥ 0 and let S = {x1, . . . , xs} be a set of distinct points
of X. Let � = π1(X \ S) be the fundamental group of X \ S. The group � is generated by the usual
generators ai, bi , 1 ≤ i ≤ g, of π1(X), together with additional generators γ1, . . . , γs corresponding
to loops enclosing each xi simply, not enclosing any xj , j �= i, and which are homotopic to zero
relatively to the base point on X. There is also the relation [a1, b1] · · · [ag, bg]γ1 · · · γs = 1, where
[ai, bi] is the commutator of ai and bi .

Parabolic Higgs bundles are related to representations of �. To be precise, let us fix integers
n = rk E, d = deg E and the weight type α = {α(x)}x∈S , where α(x) = (α1(x), . . . , αr(x)(x)) are
weights with multiplicities ki(x) for every x ∈ S. It is convenient to repeat each weight according to
its multiplicity, by setting α̃1(x) = · · · = α̃k1(x)(x) = α1(x), etc., thus having weights 0 ≤ α̃1(x) ≤
· · · ≤ α̃n(x) < 1 (see Section 1).
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For every xi ∈ S there is Ci ∈ U(n) defined by

Ci =
⎛
⎜⎝

exp(2π
√−1α̃1(xi)) 0

. . .

0 exp(2π
√−1α̃n(xi))

⎞
⎟⎠ . (46)

Consider the set of representations Hom +
α (�, GL(n, C)) defined by semisimple homomorphisms

ρ : � → GL(n, C) such that ρ(γi) is conjugated to Ci by an element in GL(n, C) for 1 ≤ i ≤ s.
Here by semisimple we mean that ρ is a direct sum of irreducible representations. The moduli space
of representations of � in GL(n, C) with fixed holonomy in the conjugacy class of Ci is defined by
the quotient

R(n;α) := Hom +
α (�, GL(n, C))

GL(n, C)
,

where GL(n, C) acts by conjugation. The set R(n;α) has a natural structure of a complex algebraic
variety. The following is proved by Simpson in [31].

THEOREM 13.1 Let (n, d;α) be such that

d +
∑
x∈S

(α̃1(x)+ · · · + α̃n(x)) = 0,

that is, the parabolic degree vanishes. Then there is a homeomorphism

R(n;α) ∼= M(n, d;α).

This generalizes the theorem of Metha and Seshadri [23] which identifies the moduli space
of parabolic bundles of type (n, d, α) with vanishing parabolic degree with the moduli space of
representations of � in U(n) with fixed holonomy conjugated to Ci around the marked points.

There is a similar correspondence between representations of � in U(p, q) and parabolic U(p, q)-
Higgs bundles. To explain this, let us come back to the notation in Section 2 and fix the types of the
parabolic bundles V and W to be (p, a, α) and (q, b, α′), respectively. For every xi ∈ S there are
matrices Ci ∈ U(p) and C ′

i ∈ U(q) defined as in (46) by the weight systems α and α′, respectively.
Consider now the set of representations Hom +

α,α′(�, U(p, q)) defined by semisimple homo-
morphisms ρ : � → U(p, q) such that ρ(γi) is conjugated to Ci × C ′

i ∈ U(p)× U(q) (recall that
U(p)× U(q) is the maximal compact subgroup of U(p, q)) by an element in U(p, q) for 1 ≤ i ≤ s.
Define the moduli space of representations of � in U(p, q) with fixed holonomy U(p, q)-conjugated
to Ci × C ′

i by the quotient

R(p, q;α, α′) := Hom +
α,α′(�, U(p, q))

U(p, q)
.

The set R(p, q;α, α′) is a real analytic variety. We can adapt the arguments of Simpson [31] to
prove the following.
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THEOREM 13.2 Let (p, a, α) and (q, b, α′) be such that

pardeg (V )+ pardeg (W) = a + b +
∑
x∈S

(α̃1(x)+ · · · + α̃p(x)+ α̃′
1(x)+ · · · + α̃′

q(x)) = 0.

Then there is a homeomorphism

R(p, q;α, α′) ∼=
⊔
a,b

U(p, q, a, b;α, α′).

Note that (p, q, a, b;α, α′) must also satisfy the Milnor–Wood inequality, which in these cases
reduces to

| pardeg (V )| ≤ min{p, q}
(
g − 1 + s

2

)
,

since pardeg (W) = − pardeg (V ).
Combining Theorem 13.2 and Theorem 6.12 we have the following.

THEOREM 13.3 Under the genericity conditions given by Assumption 2.1, and for g > 0, the number
of non-empty connected components of R(p, q;α, α′) equals the number of integers a such that∣∣∣∣∣a +∑

x∈S

(α̃1(x)+ · · · + α̃p(x))

∣∣∣∣∣ ≤ τL

2
,

where τL is given by (40).

REMARK 13.4 The condition on the genus g comes from Theorem 13.2.

As in [31, proof of Theorem 13.1], the main ingredients in the proof of Theorem 13.2 are, on the
one hand, the correspondence given by Theorem 5.1 between polystable parabolic U(p, q)-Higgs
bundles and solutions to Hitchin equations, and, on the other, the existence of a harmonic adapted
metric on a U(p, q)-bundle with a semisimple meromorphic flat connection with simple poles. To
see this, let us come back to the framework of Section 5, and consider smooth parabolic vector
bundles V and W of types (p, a;α) and (q, b;α′), respectively. On the bundle V ⊕W we consider
flat U(p, q)-connections D on X \ S, meromorphic at xi ∈ S and whose residue at xi is conjugated
to Ci × C ′

i . We say that D is semisimple if the corresponding representation is semisimple. These
connections are in correspondence with elements in Hom +

α,α′(�, U(p, q)).
Let h = (hV , hW ), where hV and hW are adapted hermitian metrics on V and W , respectively.

We decompose D as D = dA +�, where dA is a U(p)× U(q) connection and � takes values in m,
where u(p, q) = u(p)⊕ u(q)+m is the Cartan decomposition of the Lie algebra of U(p, q). We
say that h is harmonic if d∗

A� = 0. Then the following can be proved easily adapting the results in
[12, 31].

THEOREM 13.5 A connection D as above is semisimple if and only if there exists a harmonic hermitian
metric h = (hV , hW ).

The relation with parabolic U(p, q)-Higgs bundle is given as follows. If D is a semisimple flat
connection as above and h is a harmonic solution, then the pair (dA, �), where � is determined
by the equation � = �+�∗, solves the U(p, q)-Hitchin equations and hence, by Theorem 5.1,
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corresponds to a polystable parabolic U(p, q)-Higgs bundle. Conversely, if we have a polystable
parabolic U(p, q)-Higgs bundle we can find a solution (dA, �) to the Hitchin equations, and then
out of it a solution to the harmonic equation on the flat connection D = dA +�+�∗, which is then
semisimple by Theorem 13.5.

14. Elliptic surfaces, orbifolds and parabolic Higgs bundles

Parabolic bundles have been related by several authors to unitary representations of the fundamental
group of elliptic surfaces of general type [1, 28]. The key fact is that the fundamental group of such
a surface is isomorphic to the orbifold fundamental group of an orbifold Riemann surface, whose
unitary representations are, in turn, related to parabolic bundles by the Metha–Seshadri theorem
[3, 6, 23, 27].

Let X be a compact Riemann surface of genus g ≥ 0 and let S = {x1, . . . , xs} be a set of distinct
points of X. Suppose that for each i we are given integers mi ≥ 1, such that 2g +∑

1≤i≤s(1 −
1/mi) > 2. We call the data of X, S and mi , 1 ≤ i ≤ g, a 2-orbifold. As in Section 13, let � =
π1(X \ S) be the fundamental group of X \ S. As we have seen in Section 13, � has 2g + s generators
ai, bi , 1 ≤ i ≤ g, and γj , 1 ≤ j ≤ s, satisfying the relation∏

1≤i≤g

[ai, bi] ·
∏

1≤j≤s

γj = 1.

We define the orbifold fundamental group πorb
1 (X) as the quotient of � by the smallest normal

subgroup containing γ
mi

i . Thus πorb
1 (X) is freely generated by the elements ai, bi , 1 ≤ i ≤ g, and γj ,

1 ≤ j ≤ s, subject to the relations∏
1≤i≤g

[ai, bi] ·
∏

1≤j≤s

γj = 1, and γ
mj

j = 1, 1 ≤ j ≤ s.

The 2-orbifold Riemann surface ought to be thought of as a Riemann surface with singularities at the
points xi , which locally are of the form �/Zmi

, where � is the unit disc in C. The group πorb
1 (X)

is clearly the fundamental group of this orbifold surface (see [6, 26] and references therein for basic
facts on orbifold surfaces).

The following is proved in [13, 33] (see also [17, 28]).

THEOREM 14.1 Given an orbifold fundamental group πorb
1 (X) and an integer χ > 0, there is an

elliptic surface Y , unique up to diffeomorphism, with

π1(Y ) = πorb
1 (X), and χ(OY ) = χ.

Conversely, given an elliptic surface Y with b1(Y ) even, χ(OY ) > 0 and kod(Y ) = 1 we have

π1(Y ) = πorb
1 (X),

for some 2-orbifold Riemann surface X.

To understand this result and the relation of Y to the 2-orbifold X, recall that an elliptic surface
is a smooth compact complex surface Y with a fibration f : Y → X onto a Riemann surface X such
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that the generic fibre is an elliptic curve (the complex structure of the fibre may vary from point to
point). In some special points the fibre may degenerate into nodal fibres. This is always the case for
the elliptic surfaces we are dealing with. Technically this is the condition χ > 0. The effect of these
singularities is that they kill the extra generators of the fundamental group determined by the fibre.
In addition to these nodal fibres there are multiple fibres, located over the marked points of X. They
are defined analogously to orbifold singularities: a neighbourhood Ym of such a multiple fibre in X

is the quotient by a finite cyclic group,

f : Ym
∼= (�× Eτ(z))

Zm

−→ �

Zm
∼= �

defined by [(t, c)] �→ tm = z, where � is the unit disc in C, Eτ is the torus C/Z ⊕ Zτ and the
generator of Zm acts as (t, c) �→ (t · exp(2π

√−1/m), c + 1/m). The crutial difference of a multiple
fibre of Y and the orbifold point is, however, that this action is free and hence the quotient is smooth.
Roughly speaking, the orbifold singularity is now hidden in the map f between two smooth manifolds
Y and X.

To relate representations ρ : πorb
1 (X) → GL(n, C) to parabolic Higgs bundles, we observe that

ρ(γi) must be conjugated to a matrix of the form

Ci =
⎛
⎜⎝

exp(2π
√−1 l1(xi )

mi
) 0

. . .

0 exp(2π
√−1 ln(xi )

mi
)

⎞
⎟⎠ (47)

for integers lj (xi) such that
0 ≤ l1(xi) ≤ · · · ≤ ln(xi) < mi. (48)

This follows from the fact that ρ(γi)
mi = I . Such a representation of πorb

1 (X) lifts to a representation
ρ̃ : � → GL(n, C). Conversely, if ρ̃ : � → GL(n, C) is such that ρ(γi) is conjugated to a matrix
Ci as above then ρ̃ descends to a representation ρ : π1(X

orb) → GL(n, C). We thus have proved the
following.

PROPOSITION 14.2 There is a one-to-one correspondence between representations ρ : π1(X
orb) →

GL(n, C) and representations ρ̃ : � → GL(n, C) such that ρ̃(γi) is conjugated to a matrix of the
form (47) for integers lj (xi) satisfying (48).

Similarly, we have the following.

PROPOSITION 14.3 There is a one-to-one correspondence between representations ρ : πorb
1 (X) →

U(p, q) and representations ρ̃ : � → U(p, q) such that ρ̃(γi) is U(p, q)-conjugated to an element
of the form Ci × C ′

i ⊂ U(p)× U(q) with Ci and C ′
i as in (47), defined for integers lj (xi) and l′k(xi)

satisfying

0 ≤ l1(xi) ≤ · · · ≤ lp(xi) < mi and 0 ≤ l′1(xi) ≤ · · · ≤ l′q(xi) < mi. (49)

Let

λ = {λ(xi) = (l1(xi), . . . , ln(xi))}xi∈S, (50)
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where lj (xi) are integers satisfying (48). Let Rorb
X (n; λ) and RY (n; λ) be the moduli spaces of semi-

simple representations of πorb
1 (X) and π1(Y ) in GL(n, C) such that ρ(γi) is conjugated to the matrix

(47). Similarly, let

λ = {λ(xi) = (l1(xi), . . . , lp(xi))}xi∈S and λ′ = {λ′(xi) = (l′1(xi), . . . , l
′
q(xi))}xi∈S (51)

satisfying (49). Let Rorb
X (p, q; λ, λ′) and RY (p, q; λ, λ′) be the moduli spaces of semisimple repre-

sentations of πorb
1 (X) and π1(Y ) in U(p, q) such that ρ(γi) is conjugated to a matrix Ci × C ′

i as in
Proposition 14.3. Of course, since πorb

1 (X) ∼= π1(Y ), Rorb
X (n; λ) ∼= RY (n; λ) and Rorb

X (p, q; λ, λ′) ∼=
RY (p, q; λ, λ′).

Combining Propositions 14.2 and 14.3 and Theorems 13.1 and 13.2 we have the following.

THEOREM 14.4 Let λ given by (50) satisfying (48) and let α̃(xi) = λ(xi)/mi . Let (n, d) be such that

d +
∑
x∈S

(α̃1(x)+ · · · + α̃n(x)) = 0.

Then
Rorb

X (n; λ) ∼= RY (n; λ) ∼= R(n, d;α) ∼= M(n, d;α).

Similarly, let λ and λ′ given by (51) satisfying (49) and let α̃(xi) = λ(xi)/mi and α̃′(xi) = λ′(xi)/mi .
Let (p, q, a, b) be such that

a + b +
∑
x∈S

(α̃1(x)+ · · · + α̃p(x)+ α̃′
1(x)+ · · · + α̃′

q(x)) = 0.

Then
Rorb

X (p, q; λ, λ′) ∼= RY (p, q; λ, λ′) ∼= R(p, q;α, α′) ∼=
⊔
a,b

U(p, q, a, b;α, α′).

As established by Simpson and Corlette, higher-dimensional non-abelian Hodge theory [12, 30]
gives a correspondence between semisimple flat bundles or representations of the fundamental group
of a compact Kähler manifold (Y, ω), and polystable Higgs bundles on (Y, ω) with vanishing first and
second Chern classes (see [30] for the definition of stability). Now, a GL(n, C)-Higgs bundle on Y is
defined as a pair (E, �) consisting of a holomorphic vector bundle E over Y and a homomorphism
� : E → E ⊗�1

Y such that [�, �] = 0, where �1
Y is the bundle of holomorphic 1-forms on Y . If

E = V ⊕W , where V and W are holomorphic bundles of ranks p and q respectively, and

� =
(

0 β

γ 0

)
: (V ⊕W) → (V ⊕W)⊗�1

Y ,

then (E, �) is said to be a U(p, q)-Higgs bundle. Of course, when Y is a Riemann surface we recover
the original definition of Higgs bundle since �1

Y is the canonical bundle and the condition [�, �] = 0
is trivially satisfied.

If Y is a complex elliptic surface as above, equipped with a Kähler metric ω, non-abelian Hodge
theory on (Y, ω) combined with Theorem 14.4 gives the following.
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THEOREM 14.5 There is a one-to-one correspondence between the moduli space of polystable
GL(n, C)-Higgs bundles on (Y, ω) with vanishing Chern classes and the moduli space of parabolic
GL(n, C)-Higgs bundles on X with parabolic structure on the orbifold points.

Similarly, there is a one-to-one correspondence between the moduli space of polystable U(p, q)-
Higgs bundles on (Y, ω) with vanishing Chern classes and the moduli space of parabolic U(p, q)-
Higgs bundles on X with parabolic structure on the orbifold points.

REMARK 14.6 It would be very interesting to work out this correspondence directly in a similar
fashion to that done by Bauer [1] for the case of moduli spaces of vector bundles. We plan to come
back to this problem in a future paper.
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Abstract

Let X be a smooth projective curve of genus g ≥ 2 over the complex numbers.A holomorphic triple
(E1, E2, φ) on X consists of two holomorphic vector bundles E1 and E2 over X and a holomorphic
map φ : E2 → E1. There is a concept of stability for triples which depends on a real parameter σ .
In this paper, we determine the Hodge polynomials of the moduli spaces of σ -stable triples with
rk(E1) = rk(E2) = 2, using the theory of mixed Hodge structures (in the cases that these moduli
spaces are smooth and compact). This gives in particular the Poincaré polynomials of these moduli
spaces. As a byproduct, we also give the Hodge polynomial of the moduli space of even degree
rank 2 stable vector bundles.

1. Introduction

Let X be a smooth projective curve of genus g ≥ 2 over the field of complex numbers. A holomorphic
triple T = (E1, E2, φ) on X of rank (n1, n2) consists of two holomorphic vector bundles E1 and E2

over X (of ranks n1 and n2, and degrees d1 and d2, respectively) and a holomorphic map φ : E2 → E1.
There is a concept of stability for a triple which depends on the choice of a parameter σ ∈ R. Let Nσ

and N s
σ denote the moduli spaces of σ -semistable and σ -stable triples, respectively. These have been

widely studied in [4, 5, 14, 21].
The range of the parameter σ is an interval I ⊂ R split by a finite number of critical values σc

in such a way that when σ moves without crossing a critical value, then Nσ remains unchanged, but
when σ crosses a critical value, Nσ undergoes a transformation which we call flip. The study of this
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process allows us to obtain information on the topology of all moduli spaces Nσ , for any σ , once
we know such information for one particular Nσ (usually the one corresponding to the minimum or
maximum possible values of the parameter).

One of the main motivations to study the topology of the moduli spaces of triples is that they appear
when looking at the topology of the moduli spaces of Higgs bundles [14, 15, 18] via Morse theory
techniques. Higgs bundles are pairs (E, �), formed by a holomorphic vector bundle E of rank r and
a holomorphic map � : E → E ⊗ K , where K is the canonical bundle of the curve, and they are
intimately related to the representation varieties of the fundamental group of the surface underlying
the complex curve into the general Lie group GL(r, C). The moduli spaces of triples and the more
general moduli spaces of chains [1, 2, 16] appear as critical sets of a natural Morse–Bott function on
the moduli space of Higgs bundles [15, 18].

When the rank of E2 is one, we have the so-called pairs [3, 13, 21]. The moduli spaces of
pairs are smooth for any rank n1, and in the case of rank n1 = 2 and fixed determinant, they are
very well-understood thanks to the work of Thaddeus [24]. In this case, the flips have a very nice
geometrical interpretation, consisting of blowing up an embedded subvariety and then blowing down
the exceptional divisor in a different way. Moreover, there are also very explicit descriptions of the
moduli spaces of pairs for the minimum and maximum possible values of σ .

The flips do not have such a nice behavior for moduli spaces of triples of rank (n1, n2) with
n1 + n2 > 3. The flip locus may have singularities, it may consist of several irreducible components
intersecting in a non-transverse way, the moduli spaces themselves may have singularities for n1, n2 ≥
2, and the moduli spaces for σ large are difficult to handle in the situation when n1 = n2, since then
they are described in terms of Quot schemes.

These difficulties can be overcome in two different ways. The first way is to introduce parabolic
structures with generic weights. The moduli spaces of parabolic triples have been studied in [14],
where the Poincaré polynomials have been given for the moduli of parabolic triples of ranks (2, 1).
The parabolic weights tend to prevent the singularities of the moduli spaces and flip loci. However, for
obtaining information on the moduli space of non-parabolic triples, one should relate the parabolic
and the non-parabolic situations.

The second route to compute the Poincaré polynomials of the moduli spaces of triples was intro-
duced in [21]. It consists in using the theory of mixed Hodge structures of Deligne [8] to compute
the Hodge polynomials of the moduli space. The Hodge polynomials recover the usual Poincaré
polynomial when we deal with a smooth compact algebraic variety, but they can be defined for
non-smooth and non-compact algebraic varieties as well. This allows to compute the Poincaré poly-
nomials of the moduli spaces of triples which are smooth and compact, no matter if the flip loci have
singularities.

In this paper, we use the mixed Hodge theory to compute the Hodge polynomials of some of
the moduli spaces of triples of rank (2, 2). By the results of [5], if d1 − d2 > 4g − 4 then N s

σ is
smooth. Moreover, when d1 + d2 is odd, the moduli spaces Nσ only consist of σ -stable triples for
non-critical values of σ , therefore N s

σ are projective varieties. Because of this, we shall compute the
Hodge polynomials of the moduli spaces of triples of rank (2, 2) in the case d1 − d2 > 4g − 4 and
d1 + d2 odd. This gives in particular the Poincaré polynomials of these moduli spaces.

We start by reviewing the rudiments of mixed Hodge theory and the standard results on triples that
we shall use throughout the paper, in Sections 2 and 3. Then Section 4 recalls the computations of the
Hodge polynomials of the moduli spaces of triples of ranks (2, 1) and (1, 2), from [21]. In Section 5
we use the Hodge polynomial of the moduli spaces of triples to deduce the Hodge polynomials of
the moduli spaces of rank 2 stable vector bundles. The case of odd degree rank 2 bundles is already
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known [7, 11, 21], but we do the case of even degree rank 2 stable bundles, proving the following
result (see Theorem 5.2).

THEOREM 1.1 Let Ms(2, d) denote the moduli space of rank 2, degree d stable vector bundles on X.
If d is even then the Hodge polynomial of Ms(2, d) is

e(Ms(2, d)) = 1

2(1 − uv)(1 − (uv)2)

(
2(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g

− (1 + u)2g(1 + v)2g(1 + 2ug+1vg+1 − u2v2) − (1 − u2)g(1 − v2)g(1 − uv)2
)
.

Note that the moduli space Ms(2, d) is smooth but non-compact. The formula for the Hodge
polynomial of the moduli space of rank 2, even degree and fixed determinant stable vector bundles
appears in [19, Section 6.2].

Next we move to the study of the moduli spaces of triples of rank (2, 2), which are the main focus
of the paper. The critical values are computed in Section 6.

In Section 7 we compute the Hodge polynomial of the moduli space of stable triples of rank (2, 2)

for the smallest allowable values of the parameter σ , proving the following result (see Theorem 7.2
and Corollary 7.3).

THEOREM 1.2 Let Nσ = Nσ (2, 2, d1, d2) be the moduli space of σ -stable triples of rank (2, 2). Assume
that d1 − d2 > 4g − 4 and that d1 + d2 is odd. Let σm = (d1/2) − (d2/2) be the minimum value of the
parameter σ and σ+

m = σm + ε for ε > 0 small. Then Nσ+
m

is smooth and projective, it only consists
of stable triples, and its Hodge polynomial is

e(Nσ+
m
) = (1 + u)2g(1 + v)2g(1 − (uv)N)(ugvg(1 + u)g(1 + v)g − (1 + u2v)g(1 + uv2)g)

(1 − uv)3(1 − (uv)2)2
·(

(1 + u)g(1 + v)g(ug+1vg+1 + uN+g−1vN+g−1) − (1 + u2v)g(1 + uv2)g(1 + uNvN)

)
,

where N = d1 − d2 − 2g + 2.

Under the condition d1 − d2 > 4g − 4, the Hodge polynomial of Nσ+
m
(2, 2, d1, d2) when both

d1, d2 are odd is easily given (see Theorem 7.1). When both d1, d2 are even, it may be computed with
similar techniques to those of Theorem 7.2. However, to remove the condition d1 − d2 > 4g − 4 is
not possible with the current techniques.

The contribution of the flips to the Hodge polynomials of the moduli spaces of σ -stables triples of
rank (2, 2) is computed in Section 8. This is added up to the information of the Hodge polynomial of
the small parameter moduli space to get the Hodge polynomial of the moduli space of σ -stable triples
of rank (2, 2) for the largest values of σ in Section 9. We get the following result (see Theorem 9.2
and Corollary 9.3).

THEOREM 1.3 Let Nσ = Nσ (2, 2, d1, d2) be the moduli space of σ -stable triples of rank (2, 2). Assume
that d1 − d2 > 4g − 4 and that d1 + d2 is odd. Let σM = d1 − d2. Then all the moduli spaces Nσ are
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isomorphic for σ > σM . Let σ+
M = σM + ε for ε > 0. Then Nσ+

M
is smooth and projective, it consists

only of stable triples, and

e(Nσ+
M
) = (1 + u)2g(1 + v)2g

(1 − uv)3(1 − (uv)2)2

[
(1 + u2v)2g(1 + uv2)2g(1 − (uv)2N)

− N (1 + u2v)g(1 + uv2)g(1 + u)g(1 + v)g(uv)N+g−1(1 − (uv)2)

+ (1 + u)2g(1 + v)2g(1 + uv)2(uv)2g−2+(N+1)/2
((

1 − (uv)N+1
)

− N + 1

2
(1 − uv)

(
1 + (uv)N

))
− g(1 + u)2g−1(1 + v)2g−1(1 − (uv)2)2(uv)2g−2+(N+1)/2

(
1 − (uv)N

)]
,

where N = d1 − d2 − 2g + 2.

The computation of the contribution of the flips to the Hodge polynomials of the moduli spaces
of σ -stables triples of rank (2, 2) is done under the assumptions d1 + d2 odd and d1 − d2 > 2g − 2.
This can be extended to the case d1 + d2 even, keeping in mind that in this case we will find the
Hodge polynomials of the moduli spaces N s

σ which are non-compact and of the moduli spaces Nσ

which have singularities at non-stable points. However the assumption d1 − d2 > 2g − 2 cannot be
removed with the current techniques.

The Poincaré polynomials of the moduli spaces Nσ+
m

and Nσ+
M

are obtained from the Hodge
polynomials, for d1 − d2 > 4g − 4 and d1 + d2 odd (see Corollaries 7.4 and 9.4), since they are
smooth projective varieties.

2. Hodge polynomials

2.1. Hodge–Deligne theory

Let us start by recalling the Hodge–Deligne theory of algebraic varieties over C. Let H be a finite-
dimensional complex vector space equipped with a conjugation (that is, H is the complexification of
a real vector space). A pure Hodge structure of weight k on H is a decomposition

H =
⊕

p+q=k

Hp,q

such that Hq,p = H
p,q

, the bar denoting complex conjugation in H . We denote

hp,q(H) = dim Hp,q,

which is called the Hogde number of type (p, q). A Hodge structure of weight k on H gives rise to
the so-called Hodge filtration F on H , where

Fp =
⊕
s≥p

Hs,k−s ,

which is a descending filtration. Note that Grp

F H = Fp/Fp+1 = Hp,q .
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Let H be a finite-dimensional complex vector space equipped with a conjugation.A (mixed) Hodge
structure over H consists of an ascending weight filtration W on H invariant by the conjugation, and
a descending Hodge filtration F on H , such that F induces a pure Hodge filtration of weight k on
each GrW

k H = Wk/Wk−1. Again we define

hp,q(H) = dim Hp,q, where Hp,q = Grp

F GrW
p+q H.

A morphism of Hodge structures L : H → H ′, between two Hodge structures H and H ′, is a complex
linear map which commutes with the conjugation and respects both the weight and Hodge filtrations.

Deligne has shown [8] that, for each complex algebraic variety Z, the cohomology Hk(Z) and
the cohomology with compact support Hk

c (Z) both carry natural Hodge structures. If Z is a compact
smooth projective variety (hence compact Kähler) then the Hodge structure Hk(Z) is pure of weight
k and coincides with the classical Hodge structure given by the Hodge decomposition of harmonic
forms into (p, q) types.

DEFINITION 2.1 For any complex algebraic variety Z (not necessarily smooth, compact or irreducible),
we define the Hodge numbers as

hk,p,q
c (Z) = hp,q(Hk

c (Z)) = dim Grp

F GrW
p+q Hk

c (Z).

Introduce the Euler characteristic

χp,q
c (Z) =

∑
k

(−1)khk,p,q
c (Z).

The Hodge polynomial of Z is defined [6] as

e(Z) = e(Z)(u, v) =
∑
p,q

(−1)p+qχp,q
c (Z)upvq.

If Z is smooth and projective then the mixed Hodge structure on Hk
c (Z) is pure of weight k, so

GrW
k Hk

c (Z) = Hk
c (Z) = Hk(Z) and the other pieces GrW

m Hk
c (Z) = 0, m �= k. So

χp,q
c (Z) = (−1)p+qhp,q(Z),

where hp,q(Z) is the usual Hodge number of Z. In this case,

e(Z)(u, v) =
∑
p,q

hp,q(Z)upvq

is the (usual) Hodge polynomial of Z. Note that in this case, the Poincaré polynomial of Z is

PZ(t) =
∑

k

bk(Z)tk =
∑

k

⎛
⎝ ∑

p+q=k

hp,q(Z)

⎞
⎠ tk = e(Z)(t, t), (1)

where bk(Z) is the kth Betti number of Z.
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THEOREM 2.2 [10, Theorem 2] Let Z be a complex algebraic variety. Suppose that Z is a finite disjoint
union Z = Z1 ∪ · · · ∪ Zn, where the Zi are algebraic subvarieties. Then

e(Z) =
∑

i

e(Zi).

Note that we can assign to any complex algebraic variety Z (not necessarily smooth, compact or
irreducible) a polynomial

PZ(t) = e(Z)(t, t) =
∑
m

(−1)mχm
c (Z)tm =

∑
k,m

(−1)k+m dim GrW
m Hk

c (Z)tm,

where
χm

c (Z) =
∑

p+q=m

χp,q
c (Z).

This is called the virtual Poincaré polynomial of Z, see [10, 12]. It satisfies an additive property
analogous to that of Theorem 2.2, and it recovers the usual Poincaré polynomial when Z is a smooth
projective variety.

The following Hodge polynomials will be needed later:

• Let Z = P
n, then e(Z) = 1 + uv + (uv)2 + · · · + (uv)n = (1 − (uv)n+1)/(1 − uv). For

future reference, we shall denote

en := e(Pn−1) = e(P(Cn)) = 1 − (uv)n

1 − uv
. (2)

• Let Jacd X be the Jacobian of (any) degree d of a (smooth, projective) complex curve X of
genus g. Then

e(Jacd X) = (1 + u)g(1 + v)g. (3)

LEMMA 2.3 [6, Corollary 1.9] Suppose that π : Z → Y is an algebraic fiber bundle with fiber F

which is locally trivial in the Zariski topology, then e(Z) = e(F ) e(Y ). (In particular this is true for
Z = F × Y .)

LEMMA 2.4 Suppose that π : Z → Y is a map between quasi-projective varieties which is a locally
trivial fiber bundle in the usual topology, with fibers projective spaces F = P

N for some N > 0. Then
e(Z) = e(F ) e(Y ).

Proof . This follows from [9, 17]. For completeness we provide a proof. Let H be a hyperplane section
of Z (here we use that Z is quasi-projective). Then H has degree k > 0 on the fiber F = P

N ⊂ Z.
Therefore H · F = k h, where h is the hyperplane class of the projective space. We have a morphism
of (mixed) Hodge structures:

L : H ∗(PN) ⊗ H ∗
c (Y ) −→ H ∗

c (Z)

ki hi ⊗ α �−→ Hi ∩ π∗(α).
(4)

Note that π is a proper map, so that π∗ : H ∗
c (Y ) → H ∗

c (Z) is a morphism of Hodge structures
(see [8]). This easily yields that L is a morphism of Hodge structures.
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Note that L is not multiplicative. Let us see that L is injective. If x = ∑
Hi ∩ π∗(αi) = 0, let i0

be the maximum i for which αi �= 0. Then

0 = π∗(HN−i0 ∩ x) = αi0 .

So L must be injective. On the other hand, the Leray spectral sequence of the fibration π has E2-term
isomorphic to H ∗(PN) ⊗ H ∗

c (Y ) and converges to H ∗
c (Z). So dim H ∗(PN) ⊗ H ∗

c (Y ) ≥ dim H ∗
c (Z)

and L must be bijective. Therefore L is an isomorphism of Hodge structures, and the result follows.

LEMMA 2.5 The Hodge polynomial of the Grassmannian Gr(k, N) is

e(Gr(k, N)) = (1 − (uv)N−k+1) · · · (1 − (uv)N−1)(1 − (uv)N)

(1 − uv) · · · (1 − (uv)k−1)(1 − (uv)k)
.

Proof . This is well known, but we provide a proof for completeness.
Let us review first the case of the projective space P

N−1 = (CN − {0})/(C − {0}). Then
C

N − {0} → P
N−1 is a locally trivial fibration, since it is the restriction of the universal line bundle

U → P
N−1 to the complement of the zero section. Using either Lemma 2.3 or Lemma 2.4, we

have e(CN − {0}) = e(C − {0}) e(PN−1), that is (uv)N − 1 = (uv − 1)e(PN−1), from where (2) is
recovered. Now in the case of k > 1, denote

F(k, n) = {(v1, . . . , vk)|vi are linearly independent vectors of C
n}.

Then Gr(k, N) = F(k, N)/GL(k, C) and there is a locally trivial fibration F(k, N) → Gr(k, N)

with fiber GL(k, C) ∼= F(k, k) (again it is the principal bundle associated with the universal bundle
U → Gr(k, N)). So by Lemma 2.3, e(Gr(k, N)) = e(F (k, N))/e(F (k, k)). Now we use that the
map

F(k, n) −→ F(k − 1, n),

given by forgetting the last vector, is a locally trivial fibration, with fiber C
n − C

k−1. Using Lemma 2.3
and Theorem 2.2, we have e(F (k, n)) = e(F (k − 1, n)) e(Cn − C

k−1) = e(F (k − 1, n)) ((uv)n −
(uv)k−1). By recursion this gives

e(F (k, n)) = ((uv)n − (uv)k−1) · · · ((uv)n − uv
)(

(uv)n − 1
)
.

So

e(Gr(k, N)) = ((uv)N − (uv)k−1) · · · ((uv)N − uv
)(

(uv)N − 1
)

((uv)k − (uv)k−1) · · · ((uv)k − uv)((uv)k − 1)

= (1 − (uv)N−k+1) · · · (1 − (uv)N−1)(1 − (uv)N)

(1 − uv) · · · (1 − (uv)k−1)(1 − (uv)k)
.

LEMMA 2.6 Let M be a smooth projective variety. Consider the algebraic variety Z = (M × M)/Z2,
where Z2 acts as (x, y) �→ (y, x). The Hodge polynomial of Z is

e(Z) = 1

2

(
e(M)(u, v)2 + e(M)(−u2, −v2)

)
.
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Proof . The cohomology of Z is

H ∗(Z) = H ∗(M × M)Z2 = (H ∗(M) ⊗ H ∗(M))Z2 .

We claim that this is an equality of Hodge structures: certainly, σ(x, y) = (y, x) acts algebraically
on M × M , so σ ∗ : H ∗(M × M) → H ∗(M × M) is a morphism of Hodge structures, and hence
H ∗(M × M)Z2 is a Hodge substructure of H ∗(M × M). Also, the map M × M → Z is algebraic,
so H ∗(Z) → H ∗(M × M) is a morphism of Hodge structures, which is moreover injective and with
image H ∗(M × M)Z2 . The claim follows.

The Hodge structure of M is of pure type, therefore the Hodge structure of Z is also of pure type.
Moreover,

Hp,q(Z) =

⎛
⎜⎜⎝ ⊕

p1+p2=p

q1+q2=q

Hp1,q1(M) ⊗ Hp2,q2(M)

⎞
⎟⎟⎠

Z2

.

Therefore we have

hp,q(Z) = 1

2

∑
p1+p2=p
q1+q2=q

(p1,q1)�=(p2,q2)

hp1,q1(M)hp2,q2(M) + εp,q,

where

εp,q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, p or q odd,

dim
(
Sym2Hp1,q1(M)

)
, p = 2p1, q = 2q1, p1 + q1 even,

dim
(∧2

Hp1,q1(M)
)

, p = 2p1, q = 2q1, p1 + q1 odd.

If V is a vector space of dimension n, then dim
(
Sym2V

) = (1/2)(n2 + n) and dim
(∧2

V
)

=
(1/2)(n2 − n), so

εp,q =

⎧⎪⎪⎨
⎪⎪⎩

0, p or q odd ,

1

2
(hp1,q1(M)2 + (−1)p1+q1hp1,q1(M)), p = 2p1, q = 2q1.

This yields

e(Z) =
∑

hp,q(Z)upvq

= 1

2

∑
hp1,q1(M)hp2,q2(M)up1+p2vq1+q2 + 1

2

∑
(−1)p1+q1hp1,q1(M)u2p1v2q1

= 1

2
e(M) · e(M) + 1

2
e(M)(−u2, −v2).
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3. Moduli spaces of triples

3.1. Holomorphic triples

Let X be a smooth projective curve of genus g ≥ 2 over C. A holomorphic triple T = (E1, E2, φ)

on X consists of two holomorphic vector bundles E1 and E2 over X, of ranks n1 and n2 and degrees
d1 and d2, respectively, and a holomorphic map φ : E2 → E1. We refer to (n1, n2, d1, d2) as the type
of T to (n1, n2) as the rank of T , and to (d1, d2) as the degree of T .

A homomorphism from T ′ = (E′
1, E

′
2, φ

′) to T = (E1, E2, φ) is a commutative diagram

E′
2

φ′−−−−→ E′
1⏐⏐� ⏐⏐�

E2
φ−−−−→ E1,

where the vertical arrows are holomorphic maps. A triple T ′ = (E′
1, E

′
2, φ

′) is a subtriple of
T = (E1, E2, φ) if E′

1 ⊂ E1 and E′
2 ⊂ E2 are subbundles, φ(E′

2) ⊂ E′
1 and φ′ = φ|E′

2
. A sub-

triple T ′ ⊂ T is called proper if T ′ �= 0 and T ′ �= T . The quotient triple T ′′ = T/T ′ is given by
E′′

1 = E1/E
′
1, E′′

2 = E2/E
′
2 and φ′′ : E′′

2 → E′′
1 being the map induced by φ. We usually denote by

(n′
1, n

′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d ′′

2 ) the types of the subtriple T ′ and the quotient triple T ′′.

DEFINITION 3.1 For any σ ∈ R the σ -slope of T is defined by

μσ (T ) = d1 + d2

n1 + n2
+ σ

n2

n1 + n2
.

To shorten the notation, we define the μ-slope and λ-slope of the triple T as μ = μ(E1 ⊕ E2) =
(d1 + d2)/(n1 + n2) and λ = n2/(n1 + n2), so that μσ (T ) = μ + σλ.

DEFINITION 3.2 We say that a triple T = (E1, E2, φ) is σ -stable if

μσ (T ′) < μσ (T )

for any proper subtriple T ′ = (E′
1, E

′
2, φ

′). We define σ -semistability by replacing the above strict
inequality with a weak inequality. A triple is called σ -polystable if it is the direct sum of σ -stable
triples of the same σ -slope. It is σ -unstable if it is not σ -semistable, and strictly σ -semistable if it
is σ -semistable but not σ -stable. A σ -destabilizing subtriple T ′ ⊂ T is a proper subtriple satisfying
μσ (T ′) ≥ μσ (T ).

We denote by
Nσ = Nσ (n1, n2, d1, d2)

the moduli space of (S-equivalence classes of) σ -semistable triples T = (E1, E2, φ) of type
(n1, n2, d1, d2) and drop the type from the notation when it is clear from the context. This is identified
as a set with the space formed by the σ -polystable triples of the given type. The open subset of
σ -stable triples is denoted by N s

σ = N s
σ (n1, n2, d1, d2). This moduli space is constructed in [4] by

using dimensional reduction. A direct construction is given by Schmitt [23] using geometric invariant
theory.
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There are certain necessary conditions in order for σ -semistable triples to exist. Let μi = μ(Ei) =
di/ni stand for the slope of Ei , for i = 1, 2. We write

σm = μ1 − μ2,

σM =
(

1 + n1 + n2

|n1 − n2|
)

(μ1 − μ2), if n1 �= n2.

PROPOSITION 3.3 [5] The moduli space Nσ (n1, n2, d1, d2) is a complex projective variety. For
n1, n2 > 0, let I denote the interval I = [σm, σM ] if n1 �= n2, or I = [σm, ∞) if n1 = n2. A necessary
condition for Nσ (n1, n2, d1, d2) to be non-empty is that σ ∈ I .

REMARK 3.4 It is not clear if the condition σ ∈ I is also sufficient. This is a delicate issue studied
in [5], where it is proved the following result: if σm ≥ 2g − 2, then the condition σ ∈ I is necessary
and sufficient for Nσ (n1, n2, d1, d2) to be non-empty [5, Theorem A]. This is the best known result.

3.2. Critical values

To study the dependence of the moduli spaces Nσ on the parameter, we need to introduce the concept
of critical value [4, 21].

DEFINITION 3.5 The values of σc ∈ I for which there exist 0 ≤ n′
1 ≤ n1, 0 ≤ n′

2 ≤ n2, d
′
1 and d ′

2, with
n′

1n2 �= n1n
′
2, such that

σc = (n1 + n2)(d
′
1 + d ′

2) − (n′
1 + n′

2)(d1 + d2)

n′
1n2 − n1n

′
2

, (5)

are called the critical values.

Given a triple T = (E1, E2, φ), the condition of σ -(semi)stability for T can only change when σ

crosses a critical value. If σ = σc as in (5) and if T has a subtriple T ′ ⊂ T of type (n′
1, n

′
2, d

′
1, d

′
2),

then μσc(T
′) = μσc(T ) and

(1) if λ′ > λ (where λ′ is the λ-slope of T ′), then T is not σ -stable for σ > σc,
(2) if λ′ < λ, then T is not σ -stable for σ < σc.

Note that n′
1n2 �= n1n

′
2 is equivalent to λ′ �= λ.

Of course, it may happen that there is no triple T as above and hence that the moduli spaces Nσ

and N s
σ do not change when crossing σc (see Remark 6.6).

PROPOSITION 3.6 [5, Proposition 2.6] Fix (n1, n2, d1, d2). Then

(1) The critical values are a finite number of values σc ∈ I .
(2) The stability and semistability criteria for two values of σ lying between two consecutive

critical values are equivalent; thus the corresponding moduli spaces are isomorphic.
(3) If σ is not a critical value and gcd(n1, n2, d1 + d2) = 1, then σ -semistability is equivalent to

σ -stability, that is, Nσ = N s
σ .

Note that if gcd(n1, n2, d1 + d2) �= 1 then it may happen that there exists triples T which are
strictly σ -semistable for non-critical values of σ .
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3.3. Extensions and deformations of triples

The homological algebra of triples is controlled by the hypercohomology of a certain complex of
sheaves which appears when studying infinitesimal deformations [5, Section 3]. Let T ′ = (E′

1, E
′
2, φ

′)
and T ′′ = (E′′

1 , E′′
2 , φ′′) be two triples of types (n′

1, n
′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d ′′

2 ), respectively. Let
Hom(T ′′, T ′) denote the linear space of homomorphisms from T ′′ to T ′, and let Ext1(T ′′, T ′) denote
the linear space of equivalence classes of extensions of the form

0 −→ T ′ −→ T −→ T ′′ −→ 0,

where by this we mean a commutative diagram

0 −−−−→ E′
1 −−−−→ E1 −−−−→ E′′

1 −−−−→ 0

φ′
�⏐⏐ φ

�⏐⏐ φ′′
�⏐⏐

0 −−−−→ E′
2 −−−−→ E2 −−−−→ E′′

2 −−−−→ 0.

To analyze Ext1(T ′′, T ′) one considers the complex of sheaves

C•(T ′′, T ′) : (E′′
1

∗ ⊗ E′
1) ⊕ (E′′

2
∗ ⊗ E′

2)
c−→ E′′

2
∗ ⊗ E′

1, (6)

where the map c is defined by
c(ψ1, ψ2) = φ′ψ2 − ψ1φ

′′.

PROPOSITION 3.7 [5, Proposition 3.1] There are natural isomorphisms

Hom(T ′′, T ′) ∼= H
0(C•(T ′′, T ′)),

Ext1(T ′′, T ′) ∼= H
1(C•(T ′′, T ′)),

and a long exact sequence associated with the complex C•(T ′′, T ′):

0 −→ H
0(C•(T ′′, T ′)) −→ H 0((E′′

1
∗ ⊗ E′

1) ⊕ (E′′
2

∗ ⊗ E′
2)) −→ H 0(E′′

2
∗ ⊗ E′

1)

−→ H
1(C•(T ′′, T ′)) −→ H 1((E′′

1
∗ ⊗ E′

1) ⊕ (E′′
2

∗ ⊗ E′
2)) −→ H 1(E′′

2
∗ ⊗ E′

1)

−→ H
2(C•(T ′′, T ′)) −→ 0.

We introduce the following notation:

hi(T ′′, T ′) = dim H
i (C•(T ′′, T ′)),

χ(T ′′, T ′) = h0(T ′′, T ′) − h1(T ′′, T ′) + h2(T ′′, T ′).

PROPOSITION 3.8 [5, Proposition 3.2] For any holomorphic triples T ′ and T ′′, we have

χ(T ′′, T ′) = χ(E′′
1

∗ ⊗ E′
1) + χ(E′′

2
∗ ⊗ E′

2) − χ(E′′
2

∗ ⊗ E′
1)

= (1 − g)(n′′
1n

′
1 + n′′

2n
′
2 − n′′

2n
′
1) + n′′

1d
′
1 − n′

1d
′′
1 + n′′

2d
′
2 − n′

2d
′′
2 − n′′

2d
′
1 + n′

1d
′′
2 ,

where χ(E) = dim H 0(E) − dim H 1(E) is the Euler characteristic of E.
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Since the space of infinitesimal deformations of T is isomorphic to H
1(C•(T , T )), the previous

results also apply to studying deformations of a holomorphic triple T .

THEOREM 3.9 Let T = (E1, E2, φ) be a σ -stable triple of type (n1, n2, d1, d2). Then

(1) The triple T is simple. In particular, H
0(C•(T , T )) = C.

(2) The Zariski tangent space at the point defined by T in the moduli space of stable triples is
isomorphic to H

1(C•(T , T )).
(3) If H

2(C•(T , T )) = 0, then the moduli space of σ -stable triples is smooth in a neighbourhood
of the point defined by T .

(4) At a smooth point T ∈ N s
σ (n1, n2, d1, d2) the dimension of the moduli space of σ -stable triples

is

dim N s
σ (n1, n2, d1, d2) = h1(T , T ) = 1 − χ(T , T )

= (g − 1)(n2
1 + n2

2 − n1n2) − n1d2 + n2d1 + 1.

(5) Let T = (E1, E2, φ) be a σ -stable triple. If T is injective or surjective (meaning that φ : E2 →
E1 is injective or surjective) then the moduli space is smooth at T .

Proof . (1) follows from [4, Corollary 3.2]. (2)–(5) are the content of [5, Theorem 3.8].

3.4. Crossing critical values

Fix the type (n1, n2, d1, d2) for the moduli spaces of holomorphic triples. We want to describe the
differences between the two spaces N s

σ1
and N s

σ2
when σ1 and σ2 are separated by a critical value.

Let σc ∈ I be a critical value and set

σ+
c = σc + ε, σ−

c = σc − ε,

where ε > 0 is small enough so that σc is the only critical value in the interval (σ−
c , σ+

c ).

DEFINITION 3.10 We define the flip loci as

Sσ+
c

= {T ∈ Nσ+
c
‖ T is σ−

c -unstable} ⊂ Nσ+
c
,

Sσ−
c

= {T ∈ Nσ−
c

| T is σ+
c -unstable} ⊂ Nσ−

c
,

and Ss

σ±
c

= Sσ±
c

∩ N s

σ±
c

for the stable part of the flip loci.

Note that for σc = σm, Nσ−
m

is empty, hence Nσ+
m

= Sσ+
m

. Analogously, when n1 �= n2, Nσ+
M

is
empty and Nσ−

M
= Sσ−

M
.

LEMMA 3.11 Let σc be a critical value. Then

(1) Nσ+
c

− Sσ+
c

= Nσ−
c

− Sσ−
c

.
(2) N s

σ+
c

− Ss

σ+
c

= N s

σ−
c

− Ss

σ−
c

= N s
σc

.
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Proof . Item (1) is an easy consequence of the definition of flip loci. Item (2) is the content of [5,
Lemma 5.3].

Let us describe the flip loci Sσ±
c

. Let σc be a critical value, and let (n′
1, n

′
2, d

′
1, d

′
2) be such

that λ′ �= λ and (5) holds. Put (n′′
1, n

′′
2, d

′′
1 , d ′′

2 ) = (n1 − n′
1, n2 − n′

2, d1 − d ′
1, d2 − d ′

2). Denote N ′
σ =

Nσ (n′
1, n

′
2, d

′
1, d

′
2) and N ′′

σ = Nσ (n′′
1, n

′′
2, d

′′
1 , d ′′

2 ).

LEMMA 3.12 [21, Lemma 4.7] Let T ∈ Sσ+
c

(resp. T ∈ Sσ−
c

). Then T sits in a non-split exact sequence

0 → T ′ → T → T ′′ → 0, (7)

where μσc(T
′) = μσc(T ) = μσc(T

′′), λ′ < λ (resp. λ′ > λ) and T ′ and T ′′ are both σc-semistable.
Conversely, if T ′ ∈ N ′

σc
and T ′′ ∈ N ′′

σc
are both σc-stable, and λ′ < λ (resp. λ′ > λ). Then for any

non-trivial extension (7), T lies in Ss

σ+
c

(resp. in Ss

σ−
c

). Moreover, such T can be written uniquely as
an extension (7) with μσc(T

′) = μσc(T ).
In particular, suppose σc is not a critical value for the moduli spaces of triples of types

(n′
1, n

′
2, d

′
1, d

′
2) and (n′′

1, n
′′
2, d

′′
1 , d ′′

2 ), gcd(n′
1, n

′
2, d

′
1 + d ′

2) = 1 and gcd(n′′
1, n

′′
2, d

′′
1 + d ′′

2 ) = 1. Then
if λ′ < λ (resp. λ′ > λ), there is a bijective correspondence between non-trivial extensions (7), with
T ′ ∈ N ′

σc
and T ′′ ∈ N ′′

σc
and triples T ∈ Sσ+

c
(resp. Sσ−

c
).

THEOREM 3.13 [21, Theorem 4.8] Let σc be a critical value with λ′ < λ (resp. λ′ > λ). Assume

(1) σc is not a critical value for the moduli spaces of triples of types (n′
1, n

′
2, d

′
1, d

′
2) and

(n′′
1, n

′′
2, d

′′
1 , d ′′

2 ), gcd(n′
1, n

′
2, d

′
1 + d ′

2) = 1 and gcd(n′′
1, n

′′
2, d

′′
1 + d ′′

2 ) = 1.
(2) H

0(C•(T ′′, T ′)) = H
2(C•(T ′′, T ′)) = 0, for every (T ′, T ′′) ∈ N ′

σc
× N ′′

σc
.

Then Sσ+
c

(resp. Sσ−
c

) is the projectivization of a bundle of rank −χ(T ′′, T ′) over N ′
σc

× N ′′
σc

.

The construction of the flip loci can be used for the critical value σc = σm, which allows to describe
the moduli space Nσ+

m
. We refer to the value of σ given by σ = σ+

m = σm + ε as small.
Let M(n, d) denote the moduli space of (S-equivalence classes of) semistable vector bundles of

rank n and degree d over X. This moduli space is projective. We also denote by Ms(n, d) the open
subset of stable bundles, which is smooth and is of dimension n2(g − 1) + 1. If gcd(n, d) = 1, then
M(n, d) = Ms(n, d).

PROPOSITION 3.14 [21, Proposition 4.10] There is a map

π : Nσ+
m

= Nσ+
m
(n1, n2, d1, d2) → M(n1, d1) × M(n2, d2)

which sends T = (E1, E2, φ) to (E1, E2).

(1) If gcd(n1, d1) = 1, gcd(n2, d2) = 1 and μ1 − μ2 > 2g − 2, then N s

σ+
m

= Nσ+
m

is a projective
bundle over M(n1, d1) × M(n2, d2), whose fibers are projective spaces of dimension n2d1 −
n1d2 − n1n2(g − 1) − 1.

(2) In general, if μ1 − μ2 > 2g − 2, then the open subset

π−1(Ms(n1, d1) × Ms(n2, d2)) ⊂ Nσ+
m

is a projective bundle over Ms(n1, d1) × Ms(n2, d2), whose fibers are projective spaces of
dimension n2d1 − n1d2 − n1n2(g − 1) − 1.
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4. Hodge polynomials of the moduli spaces of triples of ranks (2,1) and (1,2)

4.1. Moduli space of triples of rank (2, 1)

In this section we recall the main results of [21]. Let Nσ = Nσ (2, 1, d1, d2) denote the moduli space
of σ -semistable triples T = (E1, E2, φ) where E1 is a vector bundle of degree d1 and rank 2 and E2

is a line bundle of degree d2. By Proposition , σ is in the interval

I = [σm, σM ] = [μ1 − μ2, 4(μ1 − μ2)] = [d1/2 − d2, 2d1 − 4d2], where μ1 − μ2 ≥ 0.

Otherwise Nσ is empty.

THEOREM 4.1 [21, Theorem 5.1] For σ ∈ I , Nσ is a projective variety. It is smooth and of (complex)
dimension 3g − 2 + d1 − 2d2 at the stable points N s

σ . Moreover, for non-critical values of σ , Nσ =
N s

σ (hence it is smooth and projective).

The critical values corresponding to n1 = 2 and n2 = 1 are given by Definition 3.5:

(1) n′
1 = 1, n′

2 = 0. The corresponding σc-destabilizing subtriple is of the form 0 → E′
1, where

E′
1 = Lc is a line bundle of degree deg(Lc) = dLc . The critical value is

σc = 3dLc − d1 − d2.

(2) n′
1 = 1, n′

2 = 1. The corresponding σc-destabilizing subtriple T ′ is of the form E2 → E′
1,

where E′
1 is a line bundle. Let T ′′ = T/T ′ be the quotient bundle, which is of the form

0 → E′′
1 , where E′′

1 = Lc is a line bundle, and let dLc = deg(Lc) be its degree. Then d ′
2 = d2,

d ′
1 = d1 − dLc and

σc = −(
3(d1 − dLc + d2) − 2(d1 + d2)

) = 3dLc − d1 − d2.

(3) n′
1 = 2, n′

2 = 0. In this case, the only possible subtriple is 0 → E1. This produces the critical
value

σc = d1 − 2d2

2
= μ1 − μ2 = σm,

that is, the minimum of the interval I for σ .
(4) n′

1 = 0, n′
2 = 1. The subtriple T ′ must be of the form E2 → 0. This forces φ = 0 in

T = (E1, E2, φ). So T is decomposable, of the form T ′ ⊕ T ′′ = (0, E2, 0) ⊕ (E1, 0, 0), and
T is σ -unstable for any σ �= σc, where

σc = 2d2 − d1

−2
= μ1 − μ2 = σm.

LEMMA 4.2 [21, Lemma 5.3] Let σc = 3dLc − d1 − d2 be a critical value. Then

μ1 ≤ dLc ≤ d1 − d2, (8)

and σc = σm ⇔ dLc = μ1.
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The Hodge polynomials of the moduli spaces Nσ for non-critical values of σ are given in [21]. As
this moduli space is projective and smooth, we may recover the Poincaré polynomial from the Hodge
polynomial via the formula (1).

THEOREM 4.3 [21, Theorem 6.2] Suppose that σ > σm is not a critical value. Set d0 = [(1/3)(σ +
d1 + d2)] + 1. Then the Hodge polynomial of Nσ = Nσ (2, 1, d1, d2) is

e(Nσ ) = coeff
x0

[
(1 + u)2g(1 + v)2g(1 + ux)g(1 + vx)g

(1 − uv)(1 − x)(1 − uvx)xd1−d2−d0

(
(uv)d1−d2−d0

1 − (uv)−1x
− (uv)−d1+g−1+2d0

1 − (uv)2x

)]
.

4.2. Moduli space of triples of rank (1, 2)

Triples of rank (1, 2) are of the form φ : E2 → E1, where E2 is a rank 2 bundle and E1 is a line
bundle. By Proposition 3.3, σ is in the interval

I = [σm, σM ] = [μ1 − μ2, 4(μ1 − μ2)] = [d1 − d2/2, 4d1 − 2d2], where μ1 − μ2 ≥ 0.

THEOREM 4.4 For σ ∈ I , Nσ is a projective variety. It is smooth and of (complex) dimension 3g −
2 + 2d1 − d2 at the stable points N s

σ . Moreover, for non-critical σ , Nσ = N s
σ (hence it is smooth and

projective).

Proof . Given a triple T = (E1, E2, φ) one has the dual triple T ∗ = (E∗
2 , E∗

1 , φ∗), where E∗
i is the

dual of Ei and φ∗ is the transpose of φ. The map T �→ T ∗ defines an isomorphism

Nσ (1, 2, d1, d2) ∼= Nσ (2, 1, −d2, −d1).

The result now follows from Theorem 4.1.

Also from Lemma 4.2, we get

LEMMA 4.5 [21, Lemma 7.2] The critical values for Nσ (1, 2, d1, d2) are the numbers σc = 3dLc +
d1 + d2, where −μ2 ≤ dLc ≤ d1 − d2. Also σc = σm ⇔ dLc = −μ2.

THEOREM 4.6 [21, Theorem 7.3] Consider Nσ = Nσ (1, 2, d1, d2). Let σ > σm be a non-critical

value. Set d0 =
[
(1/3)(σ − d1 − d2)

]
+ 1. Then the Hodge polynomial of Nσ is

e(Nσ ) = coeff
x0

[
(1 + u)2g(1 + v)2g(1 + ux)g(1 + vx)g

(1 − uv)(1 − x)(1 − uvx)xd1−d2−d0

(
(uv)d1−d2−d0

1 − (uv)−1x
− (uv)d2+g−1+2d0

1 − (uv)2x

)]
.

5. Hodge polynomial of the moduli space of rank 2 even degree stable bundles

Let M(2, d) denote the moduli space of semistable vector bundles of rank 2 and degree d over X.
As M(2, d) ∼= M(2, d + 2k), for any integer k, there are two moduli spaces, depending on whether
the degree is even or odd. We are going to apply the results of Section 4 to compute the Hodge
polynomials of these moduli spaces.
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We first recall the Hodge polynomial of the moduli space of rank 2 odd degree stable bundles from
[7, 11, 21].

THEOREM 5.1 [21, Proposition 8.1] The Hodge polynomial of M(2, d) with odd degree d is

e(M(2, d)) = (1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g − (uv)g(1 + u)2g(1 + v)2g

(1 − uv)(1 − (uv)2)
.

Now we compute the Hodge polynomial of the moduli space of rank 2 even degree stable bundles.
Note that this moduli space is smooth but non-compact. It is irreducible and of dimension 4g − 3.

THEOREM 5.2 The Hodge polynomial of Ms(2, d) with even degree d is

e(Ms(2, d)) = 1

2(1 − uv)(1 − (uv)2)

(
2(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g

− (1 + u)2g(1 + v)2g(1 + 2ug+1vg+1 − u2v2) − (1 − u2)g(1 − v2)g(1 − uv)2

)
.

Proof . We compute this by relating Ms(2, d) with the moduli space Nσ+
m

= Nσ+
m
(2, 1, d, d2) of triples

of rank (2, 1) for small σ . Choose (n1, d1) = (2, d) and (n2, d2) = (1, d2). If d2 is very negative so
that μ1 − μ2 = d/2 − d2 > 2g − 2 then Proposition 3.14 (2) applies. We shall choose the maximum
possible value of d2 for this condition to hold, that is, d − 2d2 = 4g − 2.

There is a decomposition Nσ+
m

= X0 � X1 � X2 � X3 � X4 into locally closed algebraic subsets,
defined by the following strata:

(1) The open subset X0 ⊂ Nσ+
m

consists of those triples of the form φ : L → E, where E is a
stable rank 2 bundle of degree d , L is a line bundle of degree d2 and φ is a non-zero map
(defined up to multiplication by non-zero scalars). Actually, by Proposition 3.14 there is a map

π : Nσ+
m

→ M(2, d) × Jacd2 X,

and X0 = π−1(Ms(2, d) × Jacd2 X). Proposition 3.14 (2) says that X0 is a projective bundle
over Ms(2, d) × Jacd2 X with fibers isomorphic to P

d−2d2−2g+2−1 = P
2g−1. By Lemma 2.4,

e(X0) = e(Ms(2, d))e(Jac X)e2g,

where e2g = e(P2g−1), following the notation in (2).
(2) The subset X1 parameterizes triples φ : L → E where E is a strictly semistable bundle of

degree d which sits as a non-trivial extension

0 → L1 → E → L2 → 0, (9)

with L1 �∼= L2, L1, L2 ∈ Jacd/2 X and L ∈ Jacd2 X.
Let Y1 be the family which parameterizes such bundles E. For fixed L1, L2 with L1 �∼=

L2, the extensions (9) are determined by P Ext1(L2, L1). As L1, L2 are non-isomorphic,
dim Ext1(L2, L1) = dim H 1(L1 ⊗ L∗

2) = g − 1, so P Ext1(L2, L1) ∼= P
g−2. Therefore Y1 is a
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fiber bundle over Jacd/2 X × Jacd/2 X − �, where � is the diagonal, with fibers isomorphic
to P

g−2. Thus using Theorem 2.2 and Lemma 2.4,

e(Y1) = (
e(Jac X)2 − e(Jac X)

)
eg−1. (10)

Now we want to describe X1. For each fixed E ∈ Y1 as in (9), and L ∈ Jacd2 X, there is an
exact sequence

0 −→ Hom(L, L1) −→ Hom(L, E) −→ Hom(L, L2) −→ 0.

Here Ext1(L, L1) = 0 since deg(L1) − deg(L) = d/2 − d2 > 2g − 2. So we may write
Hom(L, E) ∼= Hom(L, L1) ⊕ Hom(L, L2), non-canonically. Let us see when φ ∈
Hom(L, E) gives rise to a σ+

m -stable triple T = (E, L, φ). First note that T is σm-semistable,
since by Section 4.1, the only possibility for not being σm-semistable is to have a subtriple
of rank (0, 1), that is, a line subbundle Lc ⊂ E, which by Lemma 4.2 should have degree
dLc > μ1, contradicting the semistability of E. If T is not σ+

m -stable then it must have a σm-
destabilizing subtriple T ′ of rank (1, 1) by Section 4.1. Such subtriple is of the form φ : L →
L′, with L′ ⊂ E. As μσm

(T ′) = μσm
(T ) =⇒ μ(L′) = μ(E), L′ is a destabilizing subbundle

of E. But the only destabilizing subbundle of E is L1, so φ satisfies φ(L) ⊂ L1. Equivalently,
φ = (φ1, 0) ∈ Hom(L, E) = Hom(L, L1) ⊕ Hom(L, L2) gives rise to σ+

m -unstable triples.
This discussion implies that given (E, L) ∈ Y1 × Jacd2 X, the morphisms φ giving rise to

σ+
m -stable triples (E, L, φ) are those in

Hom(L, E) − Hom(L, L1). (11)

By Riemann–Roch, dim Hom(L, E) = d − 2d2 − 2g + 2 = 2g and dim Hom(L, L1) =
d/2 − d2 − g + 1 = g. So the space (11) is isomorphic to C

2g − C
g .

The isomorphism class of the triple T = (E, L, φ) is determined up to multiplication by
non-zero scalar (E, L, φ) �→ (E, L, λφ), since Aut(T ) = C

∗. This follows from the fact that
Aut(E) = C

∗ [since E is a non-trivial extension (9)] and Aut(L) = C
∗. Taking into account

the C
∗-action by automorphisms, the fibers of the map π : X1 → Y1 × Jacd2 X are isomorphic

to the projectivization of (11), that is, P
2g−1 − P

g−1. Hence

e(X1) = e(Jac X)e(Y1)(e2g − eg) = e(Jac X)2(e(Jac X) − 1)eg−1(e2g − eg).

(For this, write X1 = X′
1 − X′′

1 , where X′
1 is a P

2g−1-bundle over Y1 × Jac X and X′′
1 is a P

g−1-
bundle over Y1 × Jac X. By Theorem 2.2, e(X1) = e(X′

1) − e(X′′
1). Now use Lemma 2.4 to

compute e(X′
1) and e(X′′

1).)
(3) The subset X2 parameterizes triples φ : L → E where E is a strictly semistable bundle of

degree d which sits as a non-trivial extension

0 −→ L1 −→ E −→ L1 −→ 0

with L1 ∈ Jacd/2 X and L ∈ Jacd2 X.
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The family Y2 parameterizing such bundles E is a fiber bundle over Jacd/2 X with fibers
P Ext1(L1, L1) = PH 1(O) = P

g−1 (actually, this fiber bundle is trivial, so Y2 = Jacd/2 X ×
P

g−1). Thus by Lemma 2.3,
e(Y2) = e(Jac X)eg. (12)

For each L1 ∈ Jacd/2 X, there is an exact sequence

0 −→ Hom(L, L1) −→ Hom(L, E) −→ Hom(L, L1) −→ 0.

So we may write Hom(L, E) ∼= Hom(L, L1) ⊕ Hom(L, L1), non-canonically. In order to
describe X2, let us see when a triple T = (E, L, φ), with E ∈ Y2, is σ+

m -stable. As before, the
morphisms φ giving rise to σ+

m -stable triples (E, L, φ) are those in

Hom(L, E) − Hom(L, L1) = Hom(L, L1) × (Hom(L, L1) − {0}). (13)

For a bundle E in Y2, the automorphism group of E is C × C
∗, where C × C

∗ acts on
Hom(L, E) by

(a, λ) · (φ1, φ2) = (λφ1 + aφ2, λφ2).

Thus for any (E, L) ∈ Y2 × Jacd2 X, the morphisms φ giving rise to σ+
m -stable triples (E, L, φ)

are parameterized by

(Hom(L, L1) × (Hom(L, L1) − {0}))/C × C
∗. (14)

This is a fiber bundle over P Hom(L, L1) = (Hom(L, L1) − {0})/C
∗ with fibers isomorphic

to Hom(L, L1)/Cφ2 for every [φ2] ∈ P Hom(L, L1). As dim Hom(L, E) = d − 2d2 − 2g +
2 = 2g and dim Hom(L, L1) = d/2 − d2 − g + 1 = g, the space (14) is a C

g−1-bundle over
P

g−1.
Therefore X2 → Y2 × Jacd2X is C

g−1-bundle over a P
g−1-bundle over Y2 × Jacd2X. So

e(X2) = e(Jac X)e(Y2)eg(eg − eg−1) = e(Jac X)2e2
g(eg − eg−1).

(To apply Lemma 2.4, we write X2 → P , where P is the P
g−1-bundle over Y2 × Jacd2 X. Then

X2 = X′
2 − X′′

2 , where X′
2 is a P

g−1-bundle over P and X′′
2 is a P

g−2-bundle over P .)
(4) The subset X3 parameterizes triples φ : L → E where E is a decomposable bundle of the

form E = L1 ⊕ L2, L1 �∼= L2, L1, L2 ∈ Jacd/2 X and L ∈ Jacd2 X. The space parameterizing
such bundles E is

Y3 = Ỹ3/Z2, where Ỹ3 = Jacd/2 X × Jacd/2 X − �, (15)

with Z2 acting by permuting the two factors.
As before, the condition for φ ∈ Hom(L, E) to give rise to a σ+

m -unstable triple is that there
is a subtriple φ : L → L′ where μ(L′) = μ(E). There are only two possible such choices for
L′, namely L1 and L2. So given (E, L) ∈ Y3 × Jacd2 X, the morphisms φ ∈ Hom(L, E) =
Hom(L, L1) ⊕ Hom(L, L2) giving rise to σ+

m -stable triples (E, L, φ) are those with both
components non-zero, that is, lying in

(Hom(L, L1) − {0}) × (Hom(L, L2) − {0}).
The automorphisms of E are Aut(E) = C

∗ × C
∗, therefore the map φ ∈ Hom(L, E) =

Hom(L, L1) ⊕ Hom(L, L2) is determined up to the action of C
∗ × C

∗ on both factors. So φ
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are parameterized by
P Hom(L, L1) × P Hom(L, L2).

Let X̃3 → Ỹ3 × Jacd2 X be the fiber bundle with fiber over (L1, L2, L) equal to
P Hom(L, L1) × P Hom(L, L2). Then X3 = X̃3/Z2, where Z2 acts by permuting (φ1, φ2) �→
(φ2, φ1). This covers the action of Z2 on Ỹ3. Now X̃3 = X′

3 − X′′
3 , where π : X′

3 → Jacd/2 X ×
Jacd/2 X × Jacd2 X is a P

g−1 × P
g−1-bundle and X′′

3 = π−1(� × Jacd2 X). If A → Jacd/2 X ×
Jacd2 X is the P

g−1-bundle with fiber over L1 equal to P Hom(L, L1), then X′
3 = A ×Jacd2 X A.

We apply Lemma 2.6 fiberwise: A → Jacd2 X is a fibration whose fiber is AL, which in turn
is a fibration over Jacd/2 X with fibers P Hom(L, L1). Then X′

3 fibers over Jacd2 X with fibers
(AL × AL)/Z2. Now

H ∗((A ×Jacd2 X A)/Z2) = H ∗(A ×Jacd2 X A)Z2

= (H ∗(AL × AL) ⊗ H ∗(Jacd2 X))Z2

= (H ∗(AL × AL))Z2 ⊗ H ∗(Jacd2 X).

So

e

(
X′

3

Z2

)
= e((AL × AL)/Z2)e(Jac X)

= 1

2

(
e(Jac X)2e2

g + (1 − u2)g(1 − v2)g
1 − (uv)2g

1 − u2v2

)
e(Jac X).

On the other hand, X′′
3 is a P

g−1 × P
g−1-bundle over � × Jacd2 X, the action of Z2 is trivial on

the base and acts by permutation on the fibers. So X′′
3/Z2 is a bundle over � × Jacd2 X with

fibers
(P Hom(L, L1) × P Hom(L, L1))/Z2 = (Pg−1 × P

g−1)/Z2.

This fibration is locally trivial in the Zariski topology, since it is associated with a locally
trivial (in the Zariski topology) vector bundle over � × Jacd2 X. Hence by Lemma 2.3 and
Lemma 2.4,

e(X′′
3/Z2) = e(Jac X)2e(Pg−1 × P

g−1/Z2) = 1

2
e(Jac X)2

(
e2
g + 1 − (uv)2g

1 − u2v2

)
.

Finally using Theorem 2.2,

e(X3) = e(X̃3/Z2) = e(X′
3/Z2) − e(X′′

3/Z2)

= 1

2

(
e(Jac X)2e2

g + (1 − u2)g(1 − v2)g
1 − (uv)2g

1 − u2v2

)
e(Jac X)

− 1

2
e(Jac X)2

(
e2
g + 1 − (uv)2g

1 − u2v2

)
.



254 V. MUÑOZ et al.

(5) The subset X4 parameterizes triples φ : L → E, where E is a decomposable bundle of the
form E = L1 ⊕ L1, L1 ∈ Jacd/2 X and L ∈ Jacd2 X. Such bundles E are parameterized by
Y4 = Jacd/2 X. The morphism φ lives in

Hom(L, E) = Hom(L, L1) ⊕ Hom(L, L1) = Hom(L, L1) ⊗ C
2. (16)

The condition for a triple T = (E, L, φ) to be σ+
m -unstable is that there is a destabi-

lizing subbundle L′ ⊂ E. A destabilizing subbundle of E is necessarily isomorphic to L1

and there exists (a, b) �= (0, 0) such that L′ ∼= L1 ↪→ E is given by x �→ (ax, bx). This
means that φ = (aψ, bψ) ∈ Hom(L, L1) ⊗ C

2, for some ψ ∈ Hom(L, L1). All this dis-
cussion implies that the set of φ giving rise to σ+

m -stable triples are those of the form
φ = (φ1, φ2) ∈ Hom(L, L1) ⊗ C

2, with φ1, φ2 linearly independent.
The automorphisms of T = (E, L, φ) are Aut(T ) ∼= Aut(E) = GL(2, C). This acts on

(16) via the standard representation of GL(2, C) on C
2. So the morphisms φ are para-

meterized by the grassmannian Gr(2, Hom(L, L1)). As dim Hom(L, L1) = g, we have that
Gr(2, Hom(L, L1)) ∼= Gr(2, g).

Moreover, X4 → Y4 × Jacd2 X is a locally trivial fibration in the Zariski topology since it
is associated with the (locally trivial in the Zariski topology) vector bundle over Y4 × Jacd2 X

with fibers Hom(L, L1). Using Lemma 2.5,

e(X4) = e(Jac X)2e(Gr(2, g)) = e(Jac X)2 (1 − (uv)g−1)(1 − (uv)g)

(1 − (uv)2)(1 − uv)
.

Putting all together,

e(Nσ+
m
) = e(X0) + e(X1) + e(X2) + e(X3) + e(X4)

= e(Ms(2, d))e(Jac X)e2g + e(Jac X)2(e(Jac X) − 1)eg−1(e2g − eg)

+ e(Jac X)2e2
g(eg − eg−1)

+ 1

2

(
e(Jac X)2e2

g + (1 − u2)g(1 − v2)g
1 − (uv)2g

1 − u2v2

)
e(Jac X)

− 1

2
e(Jac X)2

(
e2
g + 1 − (uv)2g

1 − u2v2

)
+ e(Jac X)2e(Gr(2, g)). (17)

To compute the left hand side, we use Theorem 4.3 for σ = σ+
m = μ1 − μ2 + ε, ε > 0 small. It

gives

d0 = [
1
3 (μ1 − μ2 + ε + 2μ1 + μ2)

] + 1 = [μ1] + 1 = d

2
+ 1.

Substituting into the formula for e(Nσ ) with d1 = d/2 and d − 2d2 = 4g − 2, the Hodge polynomial
of Nσ+

m
equals

e(Nσ+
m
) = coeff

x0

[
(1 + u)2g(1 + v)2g(1 + ux)g(1 + vx)g

(1 − uv)(1 − x)(1 − uvx)x2g−2

(
(uv)2g−2

1 − (uv)−1x
− (uv)g+1

1 − (uv)2x

)]
.



HODGE POLYNOMIALS OF MODULI SPACES OF TRIPLES 255

Using the following equality (see the proof of [21, Proposition 8.1])

coeff
x0

(1 + ux)g(1 + vx)g

(1 − ax)(1 − bx)(1 − cx)x2g−2
= (a + u)g(a + v)g

(a − b)(a − c)
+ (b + u)g(b + v)g

(b − a)(b − c)

+ (c + u)g(c + v)g

(c − a)(c − b)
,

one gets the following expression

e(Nσ+
m
) = (1 + u)2g(1 + v)2g

(1 − uv)2(1 − (uv)2)

[
(1 + u2v)g(1 + v2u)g(1 − (uv)2g)+

+ (1 + u)g(1 + v)g
(
(uv)3g−1 + (uv)2g+1 − (uv)2g−1 − (uv)g+1

)]
.

Finally we substitute this into (17) to get the Hodge polynomial e(Ms(2, d)) as in the statement.

COROLLARY 5.3 The Hodge polynomial of the moduli space of semistable rank 2 even degree d vector
bundles is

e(M(2, d)) = 1

2(1 − uv)(1 − (uv)2)

(
2(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g

− (1 + u)2g(1 + v)2g(1 + 2ug+1vg+1 − u2v2) − (1 − u2)g(1 − v2)g(1 − uv)2
)

+ 1

2

(
(1 + u)2g(1 + v)2g + (1 − u2)g(1 − v2)g

)
.

Proof . We only need to compute e(Mss(2, d)), where Mss(2, d) = M(2, d) − Ms(2, d) is the locus
of non-stable and polystable rank 2 bundles of degree d. Such bundles are of the form L1 ⊕ L2, where
L1, L2 ∈ Jacd/2 X. Therefore Mss(2, d) ∼= (Jac X × Jac X)/Z2. By Lemma 2.6 and (3),

e((Jac X × Jac X)/Z2) = 1

2

(
(1 + u)2g(1 + v)2g + (1 − u2)g(1 − v2)g

)
.

Adding this to e(Ms(2, d)) in Theorem 5.2 we get the result.

For instance, the formula of Corollary 5.3 for g = 2 gives

e(M(2, 0)) = (1 + u)2(1 + v)2(1 + uv + u2v2 + u3v3).

This formula agrees with [20, Remark 4.11]. Note that the moduli space M(2, 0) is smooth for g = 2
(see [22]).

6. Critical values for triples of rank (2,2)

Now we move to the analysis of the moduli spaces of σ -semistable triples of rank (2, 2). Let Nσ =
Nσ (2, 2, d1, d2). By Proposition 3.3, σ takes values in the interval

I = [σm, ∞) = [μ1 − μ2, ∞), where d1 − d2 ≥ 0.

Otherwise Nσ is empty.
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THEOREM 6.1 For σ ∈ I , Nσ is a projective variety. It is smooth of dimension 4g + 2d1 − 2d2 − 3
at any σ -stable point for σ ≥ 2g − 2, or at any σ -stable injective triple. Moreover, if d1 + d2 is odd
then Nσ = N s

σ for non-critical σ .

Proof . Projectiveness follows from Proposition 3.3. The smoothness at injective triples follows from
Theorem 3.9(4); the dimension follows from Theorem 3.9(3); the smoothness result for σ ≥ 2g − 2
comes from [5, Theorem 3.8 (6)]. If d1 + d2 is odd then gcd(2, 2, d1 + d2) = 1 and so, for non-critical
σ , Nσ = N s

σ , by Proposition 3.6(3). On the other hand, if d1 + d2 is even, then it may happen that
there are strictly σ -semistable triples for non-critical values of σ .

Let us now compute the critical values for Nσ (2, 2, d1, d2). According to (5) we have the following
possibilities for n1 = 2, n2 = 2:

(1) n′
1 = 1, n′

2 = 0. The corresponding σc-destabilizing subtriple is of the form 0 → E′
1 where

E′
1 = L is a line bundle of degree dL. The critical value is

σc = 4dL − (d1 + d2)

2
= 2dL − μ1 − μ2.

(2) n′
1 = 1, n′

2 = 2. The σc-destabilizing subtriple T ′ is of the form E2 → E′
1 where E′

1, is a line
bundle. The quotient triple T ′′ = T/T ′ is of the form 0 → E′′

1 , where E′′
1 = L is a line bundle

of degree dL, and d ′
1 = d1 − dL. Note that φ : E2 → E1 is not injective. The critical value is

σc = 4(d1 − dL + d2) − 3(d1 + d2)

−2
= 2dL − μ1 − μ2.

(3) n′
1 = 2, n′

2 = 1. The σc-destabilizing subtriple T ′ is of the form E′
2 → E1, where E′

2 is a line
bundle. Then the quotient triple T ′′ = T/T ′ is of the form E′′

2 → 0, where E′′
2 = F is a line

bundle of degree dF , and d ′
2 = d2 − dF .

σc = 4(d1 + d2 − dF ) − 3(d1 + d2)

2
= μ1 + μ2 − 2dF .

(4) n′
1 = 0, n′

2 = 1. The σc-destabilizing subtriple is of the form E′
2 → 0, where E′

2 = F is a line
bundle of degree dF . Again in this case φ is not injective. The corresponding critical value is

σc = 4dF − (d1 + d2)

−2
= μ1 + μ2 − 2dF .

(5) n′
1 = 2, n′

2 = 0. The subtriple is of the form 0 → E1. The corresponding critical value is
σc = μ1 − μ2 = σm.

(6) n′
1 = 0, n′

2 = 2. The subtriple is of the form E2 → 0. This only happens if φ = 0, and so T =
(0, E2, 0) ⊕ (E1, 0, 0). The critical value is σc = μ1 − μ2 = σm, and the triple is σ -unstable
for any σ �= σm.

Note that the case n′
1 = 1, n′

2 = 1 does not appear, since λ′ = λ and therefore this does not give a
critical value. In the Cases (1), (3) and (5), we have λ′ < λ, so the corresponding triples are σ -unstable
for σ < σc. In the Cases (2), (4) and (6), we have λ′ > λ, so the corresponding triples are σ -unstable
for σ > σc.
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PROPOSITION 6.2 (1) Let σc = 2dL − μ1 − μ2 be a critical value corresponding to the Case (1)
or (3). Then μ1 ≤ dL ≤ (3μ1 − μ2)/2. Also dL = μ1 ⇐⇒ σc = σm. (2) Let σc = μ1 + μ2 − 2dF

be a critical value corresponding to the Cases (2) or (4). Then (3μ2 − μ1)/2 ≤ dF ≤ μ2. Also
dF = μ2 ⇐⇒ σc = σm.

Proof . We shall do the first item, since the second is analogous. Fix the critical valueσc = 2dL − μ1 −
μ2 and suppose that there is a strictly σc-semistable triple T in either Case (1) or (3) above. Then the
subtriple T ′ and quotient triple T ′′ are both σc-semistable by Lemma 3.12. In either case, there exists
a σc-semistable triple of type (1, 2, d1 − dL, d2). By Proposition 3.3 applied to this situation, we get

d1 − dL − d2

2
≤ σc = 2dL − d1

2
− d2

2
≤ 4

(
d1 − dL − d2

2

)
.

We can write this inequality in the equivalent form

d1

2
≤ dL ≤ 3d1 − d2

4
.

THEOREM 6.3 Let σM = 2(μ1 − μ2). For σ > σM the moduli spaces of σ -(semi)stable triples do
not change, and all σ -semistable triples T = (E1, E2, φ) are injective, that is, T defines an exact
sequence of the form

0 −→ E2
φ−→ E1 −→ S −→ 0,

where S is a torsion sheaf of degree d1 − d2.

Proof . If we are in the first situation in Proposition 6.2, then σc = 2dL − μ1 − μ2 ≤ 3μ1 − μ2 −
μ1 − μ2 = 2(μ1 − μ2). In the second situation, σc = μ1 + μ2 − 2dF ≤ μ1 + μ2 − (3μ2 − μ1) =
2(μ1 − μ2).

Now let T be a σ -semistable triple for σ > 2(μ1 − μ2). If φ : E2 → E1 were not injective, then
T has a subtriple T ′ = (0, ker φ, 0), which clearly has λ′ > λ. This forces μσ (T ′) > μσ (T ) for σ

large, and hence for σ bigger than the last critical value.

REMARK 6.4 Note that for any critical value σc, all the triples in Sσ−
c

are not injective.

REMARK 6.5 By [5, Proposition 6.5] there is a value σ0 such that all σ -semistable triples for σ > σ0

are injective. By [5, Theorem 8.6] there is a value σL such that the moduli spaces Nσ are isomorphic
for all σ > σL. In our case, n1 = n2 = 2, both numbers are 2(μ1 − μ2).

REMARK 6.6 In Proposition 6.2 we see that, for the triples of rank (2,2), there are critical values
for which the moduli spaces do not change (those corresponding to dL > (3μ1 − μ2)/2 and those
corresponding to dF < (3μ2 − μ1)/2).

REMARK 6.7 If we have simultaneously σc = 2dL − μ1 − μ2 and σc = μ1 + μ2 − 2dF , then 2dL −
μ1 − μ2 = μ1 + μ2 − 2dF =⇒ d1 + d2 = 2dL + 2dF is an even number.

Therefore, if d1 + d2 /∈ 2Z, then Cases (1) and (3) (resp. Cases (2) and (4)) do not happen simul-
taneously (for the same critical value). So the flip locus Sσ+

c
(resp. Sσ−

c
) will consist only of triples

of one type for any σc > σm. In this situation the critical values σc ∈ (μ1 + μ2 + Z) ∩ [μ1 − μ2,

2(μ1 − μ2)].
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If d1 + d2 ∈ 2Z, then Cases (1) and (3) (resp. Cases (2) and (4)) do happen simultaneously.
The flip locus Sσ+

c
(resp. Sσ−

c
) consists of two types of triples, which yields two components that

must be considered independently. In this situation the critical values σc ∈ (μ1 + μ2 + 2Z) ∩ [μ1 −
μ2, 2(μ1 − μ2)]. Moreover, it may happen that, for the same triple T , both Cases (1) and (3) (or
Cases (2) and (4)) occur. So the two components intersects. This causes extra difficulties, and that is
one of the reasons for us to restrict to the case d1 + d2 odd in Sections 8 and 9.

In the next section, it will be useful to have a vanishing result for the hypercohomology H
2 to find

the flip loci Sσ±
c

for the moduli spaces of triples of type (2, 2, d1, d2).

PROPOSITION 6.8 Let T = (E1, E2, φ) be a strictly σc-semistable triple of type (2, 2, d1, d2) with σc >

σm, T ′ = (E′
1, E

′
2, φ

′) a destabilizing subtriple and T ′′ = T/T ′ = (E′′
1 , E′′

2 , φ′′) the corresponding
quotient triple.

(1) If T ∈ Sσ−
c

then H
2(C•(T ′′, T ′)) = 0.

(2) If T ∈ Sσ+
c

then H
2(C•(T ′′, T ′)) = 0, if d1 − d2 > 2g − 2.

Proof . By Proposition 3.7 and Serre duality, the vanishing H
2(C•(T ′′, T ′)) = 0 is equivalent to the

injectivity of the map

H 0(E′
1
∗ ⊗ E′′

2 ⊗ K)
P−→ H 0(E′

1
∗ ⊗ E′′

1 ⊗ K) ⊕ H 0(E′
2
∗ ⊗ E′′

2 ⊗ K)

ψ �−→ ((φ′′ ⊗ Id) ◦ ψ, ψ ◦ φ′).

(1) If T ∈ Sσ−
c

, then H 0(E′
1
∗ ⊗ E′′

2 ⊗ K) is trivial because either we are in Case (4) and so E′
1 = 0

or we are in Case (2) and so E′′
2 = 0.

(2) If T ∈ Sσ+
c

, we may have two cases:
(a) If we are in Case (3), then E′

1 = E1 and E′′
1 = 0. The map P is

H 0(E∗
1 ⊗ E′′

2 ⊗ K)
P−→ H 0(E′

2
∗ ⊗ E′′

2 ⊗ K)

ψ �−→ ψ ◦ φ′.

If P is not injective, let ψ : E1 → E′′
2 ⊗ K be a non-trivial homomorphism in ker P . Then,

as φ′ : E′
2 → E1, ψ must factor through the quotient E1/E

′
2. Both E1/E

′
2 and E′′

2 ⊗ K are
line bundles, hence deg(E1/E

′
2) = d1 − d ′

2 ≤ deg(E′′
2 ⊗ K) = d ′′

2 + 2g − 2. This yields
d1 − d2 ≤ 2g − 2.

(b) If we are in Case (1), then E′
2 = 0 and E′′

2 = E2. Then the map P is

H 0(E′
1
∗ ⊗ E2 ⊗ K)

P−→ H 0(E′
1
∗ ⊗ E′′

1 ⊗ K)

ψ �−→ (φ′′ ⊗ Id) ◦ ψ.

If P is not injective, let ψ : E′
1 → E2 ⊗ K be a non-trivial homomorphism in ker P . Denote

by Q the kernel of φ′′ : E2 → E′′
1 , so ψ must factor through Q ⊗ K . As E′

1 and Q ⊗
K are line bundles, we have deg(E′

1) = d ′
1 ≤ deg(Q ⊗ K) = d2 − d ′′

1 + 2g − 2, which is
rewritten as d1 − d2 ≤ 2g − 2.

In both cases, if P is not injective then d1 − d2 ≤ 2g − 2. Therefore, if d1 − d2 > 2g − 2,
then P must be injective.
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REMARK 6.9 This result is a sort of improvement of [5, Proposition 3.6] for the case of triples of rank
(2, 2). Here we prove the vanishing of H

2 for any critical value σc under the condition σm = μ1 −
μ2 > g − 1, whereas in [5, Proposition 3.6] it is proved the vanishing of H

2 only for critical values
σc > 2g − 2 (but without condition on σm).

7. Hodge polynomial of the moduli of triples of rank (2,2) and small σ

In this section we want to compute the Hodge polynomial of the moduli space

Nσ+
m

= Nσ+
m
(2, 2, d1, d2)

of σ -stable triples of types (2, 2, d1, d2) for σ small, under the assumption μ1 − μ2 > 2g − 2. The
study of Nσ+

m
is simpler when both d1 and d2 are odd, since in this case the bundles are automatically

stable. However in this case d1 + d2 is even and hence gcd(2, 2, d1 + d2) �= 1. So there may be strictly
σ -semistable triples in Nσ for non-critical values of σ , making the moduli space N s

σ non-compact
and the moduli space Nσ singular (this does not happen for σ = σ+

m ; see Theorem 7.1).

THEOREM 7.1 Suppose that d1 and d2 are odd and that μ1 − μ2 > 2g − 2. Then Nσ+
m

= N s

σ+
m

, it is
smooth, compact and

e(Nσ+
m
) =

(
(1 + u)g(1 + v)g(1 + u2v)g(1 + uv2)g − (uv)g(1 + u)2g(1 + v)2g

(1 − uv)(1 − (uv)2)

)2

× 1 − (uv)2d1−2d2−4g+4

1 − uv
.

Proof . The equality Nσ+
m

= N s

σ+
m

is a consequence of Proposition 3.14(i). Next, since σm =
μ1 − μ2 > 2g − 2, Theorem 6.1 implies that the moduli Nσ+

m
is smooth and compact. By Propo-

sition 3.14(i), it is the projectivization of a fiber bundle over M(2, d1) × M(2, d2) of rank
2d1 − 2d2 − 4g + 4. Therefore

e(Nσ+
m
) = e(M(2, d1))e(M(2, d2))e2d1−2d2−4g+4.

The result follows now applying Theorem 5.1.

The case where d1 is odd and d2 is even is more involved, since we have to deal with the presence
of strictly semistable bundles in M(2, d2).

THEOREM 7.2 Suppose that d1 is odd and d2 is even and that μ1 − μ2 > 2g − 2. Then Nσ+
m

= N s

σ+
m

,
it is smooth and compact and

e(Nσ+
m
) = (1 + u)2g(1 + v)2g(1 − (uv)N)

(
ugvg(1 + u)g(1 + v)g − (1 + u2v)g(1 + uv2)g

)
(1 − uv)3(1 − (uv)2)2

·

×
(

(1 + u)g(1 + v)g(ug+1vg+1 + uN+g−1vN+g−1) − (1 + u2v)g(1 + uv2)g(1 + uNvN)

)
,

where N = d1 − d2 − 2g + 2.
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Proof . As d1 + d2 is odd, Theorem 6.1 implies that Nσ+
m

= N s

σ+
m

and it is smooth and compact,
since σm = μ1 − μ2 > 2g − 2. To compute e(Nσ+

m
) we decompose Nσ+

m
= X0 � X1 � X2 � X3 � X4,

where:

(1) The open subset X0 ⊂ Nσ+
m

consists of those triples of the form φ : E2 → E1, where E1 and
E2 are both stable bundles, and φ is a non-zero map defined up to multiplication by scalars.
By Proposition 13.4(2), X0 → M(2, d1) × Ms(2, d2) is a projective fibration whose fibers are
projective spaces of dimension 2d1 − 2d2 − 4g + 4 − 1 = 2N − 1. Therefore, and using the
notation (2),

e(X0) = e(M(2, d1))e(M
s(2, d2))e2N.

(2) The subset X1 parameterizes σ+
m -stable triples of the form φ : E2 → E1 where E2 is a strictly

semistable bundle of degree d2 which is a non-split extension

0 −→ L1 −→ E2 −→ L2 −→ 0,

where L1, L2 ∈ Jacd2/2 X are non-isomorphic and E1 is a stable bundle. The space Y1 para-
meterizing such bundles E2 was described in (2) of the proof of Theorem 5.2 and its Hodge
polynomial is given in (10).

Now in order to describe X1, we must characterize when a triple T = (E1, E2, φ), with
E2 ∈ Y1, is σ+

m -stable.As T is σm-semistable, then the only possibility for T being σ+
m -unstable

is that it has a subtriple T ′ of rank (1, 2) or (0, 1), corresponding to Cases (2) or (4) of Section 6,
respectively. If T ′ is of rank (1, 2), then it is of the form E2 → L, where L is a line bundle
of degree dL = μ1, by Proposition 6.2. But this is impossible, since d1 is odd. If T ′ is of
rank (0, 1), then it is of the form F → 0, where F is a line bundle of degree dF = μ2, by
Proposition 6.2. Therefore F is a destabilizing subbundle for E2. Since the only destabilizing
subbundle of E2 is L1, we have F = L1. So it must be φ(L1) = 0. Any such φ lies in the
image of the inclusion Hom(L2, E1) ↪→ Hom(E2, E1), under the natural projection E2 → L2.
This discussion implies that given (E1, E2) ∈ M(2, d1) × Y1, the morphisms φ giving rise to
σ+

m -stable triples (E1, E2, φ) are those in

Hom(E2, E1) − Hom(L2, E1).

Note that since the group of automorphisms of E1 and E2 are both equal to C
∗, φ is defined

up to multiplication by non-zero scalars. So the map π : X1 → M(2, d1) × Y1 is a fibration
with fiber over (E1, E2) equal to

P Hom(E2, E1) − P Hom(L2, E1) . (18)

By Riemman–Roch, dim Hom(E2, E1) = 2d1 − 2d2 − 4g + 4 = 2N , sinceμ1 − μ2 > 2g − 2
implies that H 1(E∗

2 ⊗ E1) = H 0(E1 ⊗ E∗
2 ⊗ K) = 0, E1 and E2 being both semistable

bundles. Also dim Hom(L2, E1) = d1 − 2(d2/2) − 2g + 2 = d1 − d2 − 2g + 2 = N , since
μ1 − deg L2 = μ1 − d2/2 > 2g − 2. Hence (18) is isomorphic to P

2N−1 − P
N−1. Therefore

as in (2) of the proof of Theorem 5.2,

e(X1) = e(M(2, d1))e(Y1)(e2N − eN)

= e(M(2, d1))e(Jac X)(e(Jac X) − 1)eg−1(e2N − eN).
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(3) The subset X2 parameterizes σ+
m -stable triples of the form φ : E2 → E1, where E2 is a strictly

semistable bundle of degree d2 which is non-split extension

0 −→ L1 −→ E2 −→ L1 −→ 0,

where L1 ∈ Jacd2/2 X and E1 is a stable bundle. The space Y2 parameterizing such bundles E2

was described in (3) of the proof of Theorem 5.2 and its Hodge polynomial is given in (12).
To describe X2, we must characterize when a triple T = (E1, E2, φ), with E2 ∈ Y2, is σ+

m -
stable. As before, given (E1, E2) ∈ M(2, d1) × Y2, the morphisms φ giving rise to σ+

m -stable
triples (E1, E2, φ) are those in

Hom(E2, E1) − Hom(L1, E1).

For a triple T = (E1, E2, φ) ∈ X2, Aut(E1) = C
∗, so Aut(T ) ∼= Aut(E2) = C × C

∗.
There is an exact sequence

0 −→ Hom(L1, E1) −→ Hom(E2, E1) −→ Hom(L1, E1) −→ 0.

Under the (non-canonical) decomposition Hom(E2, E1) ∼= Hom(L1, E1) ⊕ Hom(L1, E1),
Aut(E2) acts as (a, λ)(x, y) �→ (λx + ay, λy). So the fiber of π : X2 → M(2, d1) × Y2 is

(Hom(E2, E1) − Hom(L1, E1))/C × C
∗ ∼= (C2N − C

N)/C × C
∗,

which is a C
N−1-bundle over P

N−1. Therefore as in (3) of the proof of Theorem 5.2,

e(X2) = e(M(2, d1))e(Y2)(eN − eN−1)eN

= e(M(2, d1))e(Jac X)eg(eN − eN−1)eN .

(4) The subset X3 parameterizes σ+
m -stable triples of the form φ : E2 → E1 where E1 is a sta-

ble bundle and E2 = L1 ⊕ L2, L1 �∼= L2 are two line bundles of degree d2/2. The space Y3

parameterizing such bundles is described in (15).
As above, the condition for φ ∈ Hom(E2, E1) to give rise to a σ+

m -unstable triple is that
there is a subtriple T ′ of the form F → 0, with F a line bundle of degree dF = μ2. Then
it must be either F = L1 or F = L2. This means that φ ∈ (Hom(L1, E1) ⊕ {0}) ∪ ({0} ⊕
Hom(L2, E1)) ⊂ Hom(E2, E1). Therefore, given (E1, E2) ∈ M(2, d1) × Y3, the morphisms
φ giving rise to σ+

m -stable triples (E1, E2, φ) are those in

(Hom(L1, E1) − {0}) × (Hom(L2, E1) − {0}).
The group of automorphisms of E2 is C

∗ × C
∗ acting on L1 ⊕ L2 by diagonal matrices.

Therefore φ ∈ (Hom(L1, E1) − {0}) × (Hom(L2, E1) − {0}) is defined up to the action of
C

∗ × C
∗, where each C

∗ acts by multiplication on each of the two summands. So the map
π : X3 → M(2, d1) × Y3 has fiber

P Hom(L1, E1) × P Hom(L2, E1). (19)

By Riemann–Roch, dim Hom(L1, E1) = dim Hom(L2, E1) = d1 − d2 − 2g + 2 = N .There-
fore (19) is isomorphic P

N−1 × P
N−1. To compute e(X3) we work as in (4) of the proof of
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Theorem 5.2. Write X3 = X̃3/Z2 = X′
3/Z2 − X′′

3/Z2, where X′
3 is a fibration over M(2, d1)

with fiber (AE1 × AE1)/Z2, where AE1 is a projective bundle over Jacd2/2 X with fibers
P Hom(L, E1) ∼= P

N−1, and Z2 acts by permutation. X′′
3 is a fibration over M(2, d1) ×

Jacd2/2 X with fibers (PN−1 × P
N−1)/Z2. So using Theorem 2.2,

e(X3) = e(X̃3/Z2) = e(X′
3/Z2) − e(X′′

3/Z2)

= 1

2
e(M(2, d1))

((
e(Jac X)2e2

N + (1 − u2)g(1 − v2)g
1 − (uv)2N

1 − u2v2

)

− e(Jac X)

(
e2
N + 1 − (uv)2N

1 − u2v2

))
.

(5) The subset X4 parameterizes triples φ : E2 → E1, where E1 is a stable bundle and
E2 = L1 ⊕ L1, L1 ∈ Jacd2/2 X. Such bundles E2 are parameterized by Y4 = Jacd2/2 X. The
map φ lies in

Hom(E2, E1) = Hom(L1, E1) ⊕ Hom(L1, E1) ∼= Hom(L1, E1) ⊗ C
2. (20)

The condition for a triple T = (E1, E2, φ) to be σ+
m -unstable is that there is a line subbundle

F ⊂ E2 of degree dF = μ2 such that φ(F ) = 0.A destabilizing subbundle of E2 is necessarily
isomorphic to L1 and there exists (a, b) �= (0, 0) such that F ∼= L1 ↪→ E2 is given by x �→
(ax, bx). So φ = (aψ, bψ) ∈ Hom(L1, E1) ⊗ C

2, for some ψ ∈ Hom(L1, E1). Therefore
T = (E1, E2, φ) is σ+

m -stable if φ = (φ1, φ2) ∈ Hom(L1, E1) ⊗ C
2 satisfies that φ1 and φ2

are linearly independent.
On the other hand, a triple (E1, E2, φ) ∈ X4 is determined up to the action of Aut(E2) =

GL(2, C). This acts on (20) via the standard representation on C
2. Thus for (E1, E2) ∈

M(2, d1) × Y4, the morphisms φ giving rise to σ+
m -stable triples (E1, E2, φ) are parameter-

ized by Gr(2, Hom(L1, E1)). But dim Hom(L1, E1) = d1 − d2 − 2g + 2 = N , so this fiber
is isomorphic to Gr(2, N). So

e(X4) = e(M(2, d1))e(Y4)e(Gr(2, N)) = e(M(2, d1))e(Jac X)e(Gr(2, N)).

Adding up all contributions together we get

e(Nσ+
m
) = e(X0) + e(X1) + e(X2) + e(X3) + e(X4)

= e(M(2, d1))

(
e(Ms(2, d2))e2N + e(Jac X)(e(Jac X) − 1)eg−1(e2N − eN)

+ e(Jac X)eg(eN − eN−1)eN

+ 1

2

(
e(Jac X)2e2

N + (1 − u2)g(1 − v2)g
1 − (uv)2N

1 − u2v2

)

− 1

2
e(Jac X)

(
e2
N + 1 − (uv)2N

1 − u2v2

)
+ e(Jac X)e(Gr(2, N))

)
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= (1 + u)2g(1 + v)2g(1 − (uv)N)(ugvg(1 + u)g(1 + v)g − (1 + u2v)g(1 + uv2)g)

(1 − uv)3(1 − (uv)2)2
·

× (
(1 + u)g(1 + v)g(ug+1vg+1 + uN+g−1vN+g−1)

− (1 + u2v)g(1 + uv2)g(1 + uNvN)
)
.

COROLLARY 7.3 Suppose that d1 is even and d2 is odd and that μ1 − μ2 > 2g − 2. Then Nσ+
m

= N s

σ+
m

,
it is smooth and compact and its Hodge polynomial has the same formula as that of Theorem 7.2,
where N = d1 − d2 − 2g + 2.

Proof . We use the isomorphism Nσ (2, 2, d1, d2) ∼= Nσ (2, 2, −d2, −d1). Note that

d1 − d2 = (−d2) − (−d1),

so that the small value σ+
m = μ1 − μ2 and the condition on the slopes μ1 − μ2 > 2g − 2 is the same

for both moduli spaces Nσ (2, 2, d1, d2) and Nσ (2, 2, −d2, −d1). Now we apply Theorem 7.2 to get
the stated formula where N = −d2 − (−d1) − 2g + 2.

COROLLARY 7.4 Suppose that d1 + d2 is odd and μ1 − μ2 > 2g − 2. Then the Poincaré polynomial
of Nσ+

m
is

Pt(Nσ+
m
) =

(1 + t)4g(1 − t2N)(t2g(1 + t)2g − (1 + t3)2g)((1 + t)2g

(t2g+2 + t2N+2g−2) − (1 + t3)2g(1 + t2N))

(1 − t2)3(1 − t4)2
,

where N = d1 − d2 − 2g + 2.

Proof . Nσ+
m

is smooth and projective, so Pt(Nσ+
m
) = e(Nσ+

m
)(t, t). The result follows from

Theorem 7.2 and Corollary 7.3.

We could also deal with the case when d1 and d2 are both even and d1 − d2 > 4g − 4. This is
similar to the case just treated in Theorem 7.2, with further complication that there are semistable
loci for both E1 and E2.

However, dealing with the case d1 − d2 ≤ 4g − 4 is more complicated, since Proposition 3.14 does
not apply as there is a Brill–Noether problem consisting on determining the loci of those (E1, E2)

where dim Hom(E2, E1 ⊗ K) is constant.

8. Contribution of the flips to the Hodge polynomials

In this section, we shall compute the change in the Hodge polynomial of Nσ (2, 2, d1, d2) when we
cross a critical value σc. We restrict to the case d1 + d2 is odd, since in the case d1 + d2 even there
may be strictly σ -semistable triples for non-critical values of σ (and in this case N s

σ is non-compact
and Nσ is non-smooth). For d1 + d2 odd, Theorem 6.1 guarantees that Nσ is compact and smooth
for any non-critical σ ≥ 2g − 2. The critical values are given in Proposition 6.2. These are of two
types. The following two propositions treat them separately.
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PROPOSITION 8.1 Let σc = 2dL − μ1 − μ2 be a critical value for triples of type (2, 2, d1, d2) with
d1 + d2 odd, such that σc > σm. Suppose that μ1 − μ2 > g − 1. Then

e(Nσ+
c
) − e(Nσ−

c
)

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g−1−d1+2dL − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)x[3μ1−μ2]−2dL

×
(

(uv)(3d1−d2−1)/2−2dL

1 − (uv)−1x
− (uv)2dL−d1+g

1 − (uv)2x

)]
.

Proof . Theorem 6.1 implies that Nσ±
c

= N s

σ±
c

. Then Lemma 3.11 and the properties of the Hodge
polynomials give

e(Nσ+
c
) − e(Nσ−

c
) = e(Sσ+

c
) − e(Sσ−

c
).

Let us start by studying Sσ+
c

. By Lemma 3.12, any T ∈ Sσ+
c

sits in a non-split extension

0 → T ′ → T → T ′′ → 0 (21)

in which T ′ and T ′′ are σc-semistable, λ′ < λ and μσc(T
′) = μσc(T ) = μσc(T

′′). Since T corresponds
to Case (1) in Section 6, we have T ′ ∈ N ′

σc
and T ′′ ∈ N ′′

σc
, where

N ′
σc

= Nσc(1, 0, dL, 0) ∼= JacdL X,

N ′′
σc

= Nσc(1, 2, d1 − dL, d2).

The moduli space of triples of rank (1, 0) has no critical values; and for the moduli space of triples
of rank (1, 2), the critical values are of the form 3dLc + d ′′

1 + d ′′
2 , by Lemma 4.5, and are in particular

integers. But σc = 2dL − (d1 + d2)/2 /∈ Z, so σc is not a critical value for N ′′
σc

.
By [5, Proposition 3.5], H

0(T ′′, T ′) = 0 and by Proposition 6.8 (2), H
2(T ′′, T ′) = 0 . So

Theorem 3.13 implies that Sσ+
c

is the projectivization of a bundle over N ′
σc

× N ′′
σc

of rank

−χ(T ′′, T ′) = 1 − g + d1 − d2.

Therefore
e(Sσ+

c
) = e(JacdL X) e(Nσc(1, 2, d1 − dL, d2))e1−g+d1−d2 .

The case of Sσ−
c

is similar. Any T ∈ Sσ−
c

sits in an exact sequence (21) with T ′ ∈ N ′
σc

and T ′′ ∈ N ′′
σc

,
where

N ′
σc

= Nσc(1, 2, d1 − dL, d2),

N ′′
σc

= Nσc(1, 0, dL, 0) ∼= JacdL X,

corresponding to the Case (2) in Section 6. The hypothesis of Theorem 3.13 are satisfied and so Sσ−
c

is the projectivization of a bundle over N ′
σc

× N ′′
σc

of rank

−χ(T ′′, T ′) = g − 1 − d1 + 2dL.
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Therefore
e(Sσ−

c
) = e(JacdL X) e(Nσc(1, 2, d1 − dL, d2))eg−1−d1+2dL

.

Subtracting, we get

e(Sσ+
c
) − e(Sσ−

c
) = (e1−g+d1−d2 − eg−1−d1+2dL

)(1 + u)g(1 + v)ge(Nσc(1, 2, d1 − dL, d2)) =

= (uv)g−1−d1+2dL − (uv)1−g+d1−d2

1 − uv
(1 + u)g(1 + v)ge(Nσc(1, 2, d1 − dL, d2)).

Being σc a non-critical value for the moduli of triples of rank (1, 2), we can apply Theorem 4.6 to
compute the Hodge polynomial of Nσ (1, 2, d1 − dL, d2). First,

d0 =
[

1

3
(2dL − μ1 − μ2 − (d1 − dL) − d2)

]
+ 1

= dL + [−μ1 − μ2] + 1.

So e(Nσ (1, 2, d1 − dL, d2)) equals

coeff
x0

[
(1 + u)2g(1 + v)2g(1 + ux)g(1 + vx)g

(1 − uv)(1 − x)(1 − uvx)xd1−d2−dL−d0

(
(uv)d1−d2−dL−d0

1 − (uv)−1x
− (uv)d2+g−1+2d0

1 − (uv)2x

)]
,

where d1 − d2 − dL − d0 = [3μ1 − μ2] − 2dL = (3d1 − d2 − 1)/2 − 2dL and d2 + 2d0 = 2dL −
d1 + 1. The result follows from this.

PROPOSITION 8.2 Let σc = μ1 + μ2 − 2dF be a critical value for triples of type (2, 2, d1, d2) with
d1 + d2 odd, such that σc > σm. Suppose that μ1 − μ2 > g − 1. Then

e(Nσ+
c
) − e(Nσ−

c
)

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g−1+d2−2dF − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)x2dF −[3μ2−μ1]−1

×
(

(uv)2dF +(d1−3d2−1)/2

1 − (uv)−1x
− (uv)d2−2dF +g

1 − (uv)2x

)]
.

Proof . This is very similar to the proof of Proposition 8.1. Again

e(Nσ+
c
) − e(Nσ−

c
) = e(Sσ+

c
) − e(Sσ−

c
).

We start with Sσ+
c

. Any T ∈ Sσ+
c

sits in a non-split extension like (21), with μσc(T
′) = μσc(T ) =

μσc(T
′′), T ′ ∈ N ′

σc
and T ′′ ∈ N ′′

σc
, where

N ′
σc

= Nσc(2, 1, d1, d2 − dF ),

N ′′
σc

= Nσc(0, 1, 0, dF ) ∼= JacdF X,

corresponding to the Case (3) in Section 6. The moduli space of triples of rank (0, 1) has no crit-
ical values; and for the moduli space of triples of rank (2, 1), the critical values are of the form
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3dLc − d ′
1 − d ′

2 ∈ Z, while σc = ((d1 + d2)/2) − 2dF /∈ Z, so σc is not a critical value for N ′
σc

. The
other conditions of Theorem 3.13 are checked as before. So Sσ+

c
is the projectivization of a bundle

over N ′
σc

× N ′′
σc

of rank
−χ(T ′′, T ′) = 1 − g + d1 − d2.

Therefore
e(Sσ+

c
) = e(JacdF X) e(Nσc(2, 1, d1, d2 − dF )) e1−g+d1−d2 .

Moving to Sσ−
c

, any T ∈ Sσ−
c

sits in an exact sequence (21) with T ′ ∈ N ′
σc

and T ′′ ∈ N ′′
σc

, where

N ′
σc

= Nσc(0, 1, 0, dF ) ∼= JacdF X,

N ′′
σc

= Nσc(2, 1, d1, d2 − dF ),

corresponding to the Case (4) in Section 6. Arguing as before, we have that Sσ−
c

is the projectivization
of a bundle over N ′

σc
× N ′′

σc
of rank

−χ(T ′′, T ′) = g − 1 + d2 − 2dF .

Therefore
e(Sσ−

c
) = e(JacdF X) e(Nσc(2, 1, d1, d2 − dF ))eg−1+d2−2dF

.

Subtracting, we get

e(Sσ+
c
) − e(Sσ−

c
) = (e1−g+d1−d2 − eg−1+d2−2dF

)(1 + u)g(1 + v)ge(Nσc(2, 1, d1, d2 − dF )) =

= (uv)g−1+d2−2dF − (uv)1−g+d1−d2

1 − uv
(1 + u)g(1 + v)ge(Nσc(2, 1, d1, d2 − dF )).

Being σc a non-critical value for the moduli of triples of rank (2, 1), we can apply Theorem 4.3 to
compute the Hodge polynomial of Nσ (2, 1, d1, d2 − dF ). First,

d0 =
[

1

3
(μ1 + μ2 − 2dF + d1 + d2 − dF

]
+ 1

= [μ1 + μ2] − dF + 1.

So e(Nσ (2, 1, d1, d2 − dF )) equals

coeff
x0

[
(1 + u)2g(1 + v)2g(1 + ux)g(1 + vx)g

(1 − uv)(1 − x)(1 − uvx)xd1−d2+dF −d0

(
(uv)d1−d2+dF −d0

1 − (uv)−1x
− (uv)−d1+g−1+2d0

1 − (uv)2x

)]
,

where d1 − d2 + dF − d0 = 2dF − [3μ2 − μ1] − 1 = 2dF + (d1 − 3d2 − 1)/2 and −d1 + 2d0 =
d2 − 2dF + 1. The result follows from this.

We gather together Propositions 8.1 and 8.2 in a single result.
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COROLLARY 8.3 The critical values σc > σm for triples of type (2, 2, d1, d2) with d1 + d2 odd are of
the form σc = μ1 − μ2 + n, 1 ≤ n ≤ [μ1 − μ2], n ∈ Z. Suppose that μ1 − μ2 > g − 1. Then

e(Nσ+
c
) − e(Nσ−

c
) = coeff

x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g−1+n − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2]−n

×
(

(uv)(d1−d2−1)/2−n

1 − (uv)−1x
− (uv)g+n

1 − (uv)2x

)]
.

Proof . For simplicity let us assume that d1 is odd and d2 is even (the other case is analogous). We
have the following possibilities:

(a) If σc = 2dL − μ1 − μ2, write dL = μ1 + 1/2 + m with m integer. Then σc = μ1 − μ2 +
2m + 1. As μ1 < dL ≤ (3μ1 − μ2)/2 by Proposition 6.2 (1), we have 0 ≤ m ≤ (μ1 −
μ2 − 1)/2. Substituting the values 3d1 − d2 − 1 − 4dL = d1 − d2 − 1 − 4m − 2, 2dL − d1 +
g = g + 2m + 1, [3μ1 − μ2] − 2dL = [μ1 − μ2] − 2m − 1 and g − 1 − d1 + 2dL = g +
2m into the formula of Proposition 8.1, one gets

e(Nσ+
c
) − e(Nσ−

c
)

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g+2m − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)(1 − (uv)−1x)x[μ1−μ2]−2m−1

×
(

(uv)(d1−d2−1)/2−2m−1

1 − (uv)−1x
− (uv)g+2m+1

1 − (uv)2x

)]
.

(b) If σc = μ1 + μ2 − 2dF , write dF = μ2 − m − 1 with m an integer. Then σc = μ1 − μ2 +
2m + 2. As (3μ2 − μ1)/2 ≤ dF < μ2 by Proposition 6.2 (1), we have 0 ≤ m ≤ (μ1 −
μ2)/2 − 1. Substituting the values 4dF + d1 − 3d2 − 1 = d1 − d2 − 1 − 4m − 4,d2 − 2dF +
g = g + 2m + 2, 2dF − [3μ2 − μ1] − 1 = [μ1 − μ2] − 2m − 2 and g − 1 + d2 − 2dF =
g + 2m + 1 into the formula of Proposition 8.2, we have

e(Nσ+
c
) − e(Nσ−

c
)

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g+2m+1 − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)(1 − (uv)−1x)x[μ1−μ2]−2m−2

×
(

(uv)(d1−d2−1)/2−2m−2

1 − (uv)−1x
− (uv)g+2m+2

1 − (uv)2x

)]
.

Case (a) corresponds to n = 2m + 1 odd, and Case (b) to n = 2m + 2 even in the formula in the
statement. The range for n is 1 ≤ n ≤ μ1 − μ2. But, since μ1 − μ2 is not an integer, this range is
actually 1 ≤ n ≤ [μ1 − μ2].

9. Hodge polynomial of the moduli of triples of rank (2,2) and large σ

Now we use all the information in Sections 6–8 to compute the Hodge polynomial of the
Nσ (2, 2, d1, d2), for any non-critical σ > σm. Recall that by Theorem 6.3, there is a value
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σM = 2(μ1 − μ2) such that for σ > σM all the moduli spaces Nσ are isomorphic. We refer to

Nσ+
M

= Nσ+
M
(2, 2, d1, d2)

as the large σ moduli space.

PROPOSITION 9.1 Suppose that d1 is even and d2 is odd and that μ1 − μ2 > g − 1. Let σ > σm be a
non-critical value. Set n0 = min{[σ − μ1 + μ2], [μ1 − μ2]}. Then

e(Nσ ) − e(Nσ+
m
) = coeff

x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2]

×
(

(uv)g−1+(d1−d2−1)/2x(1 − xn0)

(1 − (uv)−1x)(1 − x)
− (uv)(3d1−3d2−1)/2−gx(1 − (uv)−n0xn0)

(1 − (uv)−1x)2

− (uv)2g+1x(1 − (uv)2n0xn0)

(1 − (uv)2x)2
+ (uv)d1−d2+2x(1 − (uv)n0xn0)

(1 − (uv)2x)(1 − uvx)

)]
.

Proof . By Corollary 8.3, the critical values are of the form σc = μ1 − μ2 + n with 1 ≤ n ≤ [μ1 −
μ2]. Now σm < σc < σ is equivalent to n ≤ [σ − μ1 + μ2] (note that σ − μ1 + μ2 �∈ Z since σ is
not critical). Therefore,

e(Nσ ) − e(Nσ+
m
) =

∑
σm<σc<σ

e(Nσ+
c
) − e(Nσ−

c
)

=
n0∑

n=1

coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(
(uv)g−1+n − (uv)1−g+d1−d2

)
(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2]−n

×
(

(uv)(d1−d2−1)/2−n

1 − (uv)−1x
− (uv)g+n

1 − (uv)2x

)]

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2]

×
(

1

1 − (uv)−1x

n0∑
n=1

(uv)g−1+(d1−d2−1)/2xn

− 1

1 − (uv)−1x

n0∑
n=1

(uv)1−g+(3d1−3d2−1)/2−nxn

− 1

1 − (uv)2x

n0∑
n=1

(uv)2g−1+2nxn + 1

1 − (uv)2x

n0∑
n=1

(uv)1+d1−d2+nxn

)]

= coeff
x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2]

×
(
(uv)g−1+(d1−d2−1)/2x(1 − xn0)

(1 − (uv)−1x)(1 − x)
− (uv)1−g+(3d1−3d2−1)/2−1x(1 − (uv)−n0xn0)

(1 − (uv)−1x)2

− (uv)2g−1+2x(1 − (uv)2n0xn0)

(1 − (uv)2x)2
+ (uv)1+d1−d2+1x(1 − (uv)n0xn0)

(1 − (uv)2x)(1 − uvx)

)]
.
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THEOREM 9.2 Suppose that d1 is odd and d2 is even. Then the large σ moduli space Nσ+
M

= N s

σ+
M

is

smooth and compact. If μ1 − μ2 > 2g − 2, its Hodge polynomial is

e(Nσ+
M
) = (1 + u)2g(1 + v)2g

(1 − uv)3(1 − (uv)2)2

[
(1 + u2v)2g(1 + uv2)2g(1 − (uv)2N)

− N(1 + u2v)g(1 + uv2)g(1 + u)g(1 + v)g(uv)N+g−1(1 − (uv)2)

+ (1 + u)2g(1 + v)2g(1 + uv)2(uv)2g−2+(N+1)/2

×
(

(1 − (uv)N+1) − N + 1

2
(1 − uv)(1 + (uv)N)

)

− g(1 + u)2g−1(1 + v)2g−1(1 − (uv)2)2(uv)2g−2+(N+1)/2(1 − (uv)N)

]
,

where N = d1 − d2 − 2g + 2.

Proof . The first statement follows from Theorem 9.1. To compute e(Nσ+
M
) − e(Nσ+

m
) we use Propo-

sition 9.1 for σ = σ+
M . Note that in this case n0 = [μ1 − μ2]. All the terms in the formula of

Proposition 9.1 involving xn0 yield positive powers of x, so they can be disregarded for computing
coeffx0 . Hence

e(Nσ+
M
) = e(Nσ+

m
) + coeff

x0

[
(1 + u)3g(1 + v)3g(1 + ux)g(1 + vx)g

(1 − uv)2(1 − x)(1 − uvx)x[μ1−μ2] ·

×
(

(uv)g−1+(d1−d2−1)/2x

(1 − (uv)−1x)(1 − x)
− (uv)(3d1−3d2−1)/2−gx

(1 − (uv)−1x)2

− (uv)2g+1x

(1 − (uv)2x)2
+ (uv)d1−d2+2x

(1 − (uv)2x)(1 − uvx)

)]
.

As μ1 − μ2 > 2g − 2, let m ≥ 0 such that [μ1 − μ2] = 2g − 2 + m. Introduce the following
function

F(a, b, c) = coeff
x0

(
(1 + ux)g(1 + vx)gx3−2g−m

(1 − ax)2(1 − bx)(1 − cx)

)
= Resx=0

(
(1 + ux)g(1 + vx)gx2−2g−m

(1 − ax)2(1 − bx)(1 − cx)

)
,

where a, b, c �= 0. So

e(Nσ+
M
) = e(Nσ+

m
) + (1 + u)3g(1 + v)3g

(1 − uv)2

(
(uv)3g−3+mF(1, uv, (uv)−1) − (uv)5g−5+3m

× F((uv)−1, 1, uv) − (uv)2g+1F((uv)2, 1, uv) + (uv)4g−1+2mF(uv, 1, (uv)2)

)
(22)

using d1 − d2 = 4g − 3 + 2m.
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The function

G(x) = (1 + ux)g(1 + vx)gx2−2g−m

(1 − ax)2(1 − bx)(1 − cx)

is a meromorphic function on C ∪ {∞} with poles at x = 0, x = 1/a, x = 1/b and x = 1/c. Note
that there is no pole at ∞. So

F(a, b, c) = −Resx=1/aG(x) − Resx=1/bG(x) − Resx=1/cG(x).

An easy calculation, using that

Resx=1/aG(x) = d

dx

∣∣∣∣
x=1/a

(
G(x)(x − 1/a)2

)
.

Resx=1/bG(x) = G(x)(x − 1/b)|x=1/b,

Resx=1/cG(x) = G(x)(x − 1/c)|x=1/c,

yields

F(a, b, c) = am−1b(a + u)g(a + v)g

(a − b)2(c − a)
+ am−1c(a + u)g(a + v)g

(b − a)(c − a)2

+ bm(b + u)g(b + v)g

(a − b)2(b − c)
+ cm(c + u)g(c + v)g

(c − a)2(c − b)

+ am−1(a + u)g−1(a + v)g−1

(a − b)(a − c)
(ga(2a + u + v) + (m − 2)(a + u)(a + v)).

Using this in (22) and Theorem 7.2, we have

(
Nσ+

M

) = (1 + u)2g(1 + v)2g

(1 − uv)3(1 − (uv)2)2

[
(1 + u2v)2g(1 + uv2)2g(1 − (uv)4g+4m−2)

+ (1 − 2m − 2g)(1 + u2v)g(1 + uv2)g(1 + u)g(1 + v)g(uv)3g+2m−2(1 − (uv)2)

+ (1 + u)2g(1 + v)2g(1 + uv)2(uv)3g+m−2
(
(1 − (uv)2g+2m)

− (m + g)(1 − uv)(1 + (uv)2g+2m−1)
)

− g(1 + u)2g−1(1 + v)2g−1(1 − (uv)2)2(uv)3g+m−2(1 − (uv)2g+2m−1)
]
.

As N = d1 − d2 − 2g + 2 = 2m + 2g − 1, we get the formula in the statement.

COROLLARY 9.3 Suppose that d1 is even and d2 is odd. Then the large σ moduli space Nσ+
M

= N s

σ+
M

is smooth and compact. If μ1 − μ2 > 2g − 2, its Hodge polynomial has the same formula as that of
Theorem 9.2.

Proof . Use the isomorphism Nσ (2, 2, d1, d2) ∼= Nσ (2, 2, −d2, −d1) together with Theorem 9.2.
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COROLLARY 9.4 Suppose that d1 + d2 is odd and μ1 − μ2 > 2g − 2. Then the Poincaré polynomial
of Nσ+

M
is

Pt

(
Nσ+

M

) = (1 + t)4g

(1 − t2)3(1 − t4)2

[
(1 + t3)4g(1 − t4N) − N(1 + t3)2g(1 + t)2gt2N+2g−2(1 − t4)

+ (1 + t)4g(1 + t2)2tN+4g−3

(
(1 − t2N+2) − N + 1

2
(1 − t2)(1 + t2N)

)

− g(1 + t)4g−2(1 − t4)2tN+4g−3(1 − t2N)
]
,

where N = d1 − d2 − 2g + 2.
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