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Why, sir, if you are to have but one book with you on a journey, let it be a book
of science. When you have read through a book of entertainment, you know it,
and it can do no more for you; but a book of science is inexhaustible. . . .

—James Boswell
Journal of a Tour to the Hebrides with Samuel Johnson
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You may think of the dialogue you are about to read, as I often did
while writing it, as being between a “master” and a “pupil”—the
master in his middle years, well-versed in mathematics and as devoted
and passionate about his craft as any artist is about his art; the pupil
on the threshold of adulthood, articulate in speech, adventuresome
of mind, and enthusiastically receptive to any knowledge the more
learned teacher may care to impart.

Their conversation—the exact circumstances of which are never
described—is initiated by the master, one of whose tasks is to per-
suade his disciple that the concept of number is more subtle than
might first be imagined. Their mathematical journey starts with the
teacher guiding the student, by way of questions and answers, through
a beautifully simple geometrical demonstration (believed to have
originated in ancient India), which establishes the existence of a
certain number, the understanding of whose nature is destined to
form a major part of the subsequent discussion between the enquir-
ing duo.

Strong as the master’s motivation is to have the younger person
glimpse a little of the wonder of mathematics, stronger still is his
desire to see that his protégé gradually becomes more and more adept
at mathematical reasoning so that he may experience the pure pleas-
ure to be had from simply “finding things out” for himself. This joy
of discovery is soon felt by the young learner, who having embarked
upon an exploration, is richly rewarded when, after some effort, he
chances upon a sequence of numbers that he surmises is inextricably
linked to the mysterious number lately revealed by the master.
Enthralled by this fortunate occurrence, he immediately finds himself
in the grip of a burning curiosity to know more about this number
and its connection with the sequence that has already captivated him.
Thus begins this tale told over five chapters.

I have made every effort to have the first four chapters as self-
contained as possible. The use of mathematical notation is avoided
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whenever words can achieve the same purpose, albeit in a more
lengthy manner. When mathematical notation is used, nothing
beyond high school algebra of the simplest kind is called on, but in
ways that show clearly the need for this branch of mathematics. While
the algebra used is simple, it is often clever, revealing that a few tools
handled with skill can achieve a great deal. If readers were to appre-
ciate nothing more than this aspect of algebra—its power to prove
things in general—then this work will not have been in vain.

Unfortunately, to have the fifth chapter completely self-contained
would have meant sacrificing exciting material, something I didn’t
wish to do, preferring to reward the reader for the effort taken to reach
this point, when it is hoped he will understand enough to appreciate
the substance of what is being related.

Throughout the dialogue, so as to distinguish between the two
speakers, the following typographical conventions are used:

The Master’s Voice—assured, but gently persuasive—is set in
this mildly bold typeface, and is firmly fixed at the left edge of
the column.

The Pupil’s Voice—deferential, but eager and inquiring—is set
in this lighter font, and is moved slightly inward from the
margin.

The best conversations between teachers and students are both serious
and playful, and my hope is that the readers of this book will sense
that something of that spirit, of real learning coupled with real pleas-
ure, coexist in this dialogue.

David Flannery
September, 2005
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I’d like you to draw a square made from four unit squares.

A unit square is one where each of the sides is one unit long?

Yes.

Well, that shouldn’t be too hard.

Will this do?

Perfect. Now let me add the following diagonals to your
drawing.

You see that by doing this a new square is formed.

I do. One that uses a diagonal of each of the unit squares for its
four sides.
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Let’s shade this square and call it the “internal” square.

Now, I want you to tell me the area of this internal square.

Let me think. The internal square contains exactly half of each
unit square and so must have half the area of the large square.
So it has an area of 2 square units.

Exactly. Now, what is the length of any one of those diagonals
that forms a side of the internal square?

Off-hand I don’t think I can say. I know that to get the area of
a rectangular region you multiply its length by its breadth.

“Length by breadth,” as you say, meaning multiply the length
of one side by the length of a side at right angles to it.

So, for a square, this means that you multiply the length of one
side by itself, since length and breadth are equal.

Yes.

But where does this get me? As I said, I don’t know the length
of the side.

As you say. But if we let s stand for the length of one of the
sides, then what could you say about s?

I suppose there is no way that we could have this little chat
without bringing letters into it?

There is, but at the cost of the discussion being more 
longwinded than it need be. Incidentally, why did I chose the
letter s?

Because it is the initial of the word side?

Precisely. It is very common to use the initial of the word
describing the quantity you’re looking for.

So s stands for the length of the side of the internal square. I
hope you are not going make me do algebra.

Just a very small amount—for the moment. So can you tell me
something about the number s?

When you multiply s by itself you get 2.
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Exactly, because the area of the internal square is 2 (squared
units). Do you recall that s ¥ s is often written as s2?

I do. My algebra isn’t that rusty.

So you are saying that the number s “satisfies” the equation:

s2 = 2

In words, “s squared equals two.”

Okay, so the number s when multiplied by itself gives 2. Doesn’t
this mean that s is called the square root of 2?

Well, it would be more accurate to say that s is a square root
of 2. A number is said to be a square root of another if, when
multiplied by itself, it gives the other number.

So 3 is a square root of 9 because 3 ¥ 3 = 9.

As is -3, because -3 ¥ -3 = 9 also.

But most people would say that the square root of 9 is 3.

True. It is customary to call the positive square root of a
number its square root. And since s is the length of the side of
a square, it is obviously a positive quantity, so we may say . . .

. . . that s is the square root of 2.

Sometimes, we simply say “root two,” it being understood that
it’s a square root that is involved.

And not some other root like a cube root?

Yes. Now the fact that 3 is the square root of 9 is often expressed
mathematically by writing = 3.

I’ve always liked this symbol for the square root.

It was first used by a certain Christoff Rudolff in 1525, in the
book Die Coss, but I won’t go into the reasons why he chose it.

Can we say goodbye to s and write in its place from now on?

If we want to, but we’ll still use s if it serves our purposes.

So we have shown that the diagonal of a unit square is in
length.

Indeed we have. This wonderful way of establishing the exis-
tence of the square root of 2 originated in India thousands of
years ago.

You’d have to say that it is quite simple.

Which makes it all the more impressive.

So what number is ?

As the equation s2 = 2 says, it is the number that, when multi-
plied by itself, gives 2 exactly. This means no more or no less
than what the equation

2
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says it means: is the number that when multiplied by itself
gives 2.

I know, but what number does actually stand for? I mean
= 4, and 4 is what I would call a tangible number.

I understand. You have given me a concrete value for ,
namely the number 4. You want me to do the same for , that
is, to show you some number of a type with which you are
familiar, and that when squared, gives 2.

Exactly. I’m simply asking what the concrete value of s is, that
makes s2 = 2.

I can convince you quite easily that is not a natural number.

The natural numbers are the ordinary counting numbers, 1,2,3,
and so on.

Precisely.

Even though 2 itself is a natural number? The natural numbers
9 and 16 have square roots that are also natural numbers.

That’s true, they do.

But you are saying that 2 doesn’t.

I am. One way of seeing this is to write the first few natural
numbers in order of increasing magnitude in a line,and beneath
them on a second line write their corresponding squares:

1 2 3 4 5 6 7 . . .

1 4 9 16 25 36 49 . . .

The three dots, or ellipsis, at the end of a line means that the
pattern continues without stopping.

Well, I can see straight away that the number 2 is missing from
the second row.

As are

3, 5, 6, 7, 8, 10, 11, 12, 13, 14, 15, 17, . . .

I would say that there are a lot more numbers missing than are
present.

Yes, in a sense “most” of the natural numbers are absent from
this second line. The numbers 1, 4, 9, 16, . . . that appear on it
are known as the perfect squares.

And those numbers that are missing from this line are not
perfect squares?

Correct: 49 is a perfect square but 48 is not.

I think I see now why there is no natural number squaring to
2. The first natural number squares to 1 while the second
natural number squared is 4, so 2 gets skipped over.

2

2
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2
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That’s about it.

All right. It is fairly obvious, now at any rate, that there is no
natural number that squares to 2, but surely there is some frac-
tion whose square is 2?

By fraction, you mean a common fraction where one whole
number is divided by another whole number?

That’s what I mean, 7–
5
, for example. Are there other types of

fractions?

There are, but when we say “fraction” we mean one whole
number divided by another one. The number being divided is
the numerator and the one doing the dividing is called the
denominator.

The number on the top is the numerator and the number on
the bottom is the denominator.

That’s it exactly. In your example, the whole number 7 is the
numerator while the whole number 5 is the denominator.

Now mustn’t there be some fraction close to this one that
squares to give 2 exactly?

Why did you say close to this one?

Because my calculator tells me that 7–
5

is 1.4 in decimal form; and
when I multiply this by itself I get 1.96, which is fairly close to
2.

Agreed. Let me show you how we can see this for ourselves
without a calculator but using a little ingenuity instead.

Since

we can say that the fraction 7–
5

when squared underestimates 2
by the amount 1—

25
.

And according to my calculator 1—
25
= 0.04, which is just 2 - 1.96.

By the way, why did you put the exclamation point over the
second equals sign?

To indicate that the step being taken is quite a clever one.

It certainly wouldn’t have occurred to me, which I know is not
saying much.

7

5

49

25

50 1

25
50

25

1

25

2
1

25

2

Ê
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ˆ
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=
-

= -

= -

!

ASKING THE RIGHT QUESTIONS 5



Well, I don’t lay any claim to originality for taking this step. I
have seen many similar such tricks used by others in the past
and, after all, I knew what it was I wanted to show.

At least I can see why it’s clever.

Good. Why?

By writing the numerator 49 as 50 - 1, you were able to divide
the 50 by 25 to get 2 exactly and the 1 by 25 to get 1—

25
as the

measure of the underestimate.

A useful trick if you’re stranded on a desert island without any
calculating devices other than your own poor head.

Pure do-it-yourself mathematics! I suppose using a calculator
to get the value of something you wouldn’t be able to calculate
for yourself is a form of cheating?

Do you mean like asking for the decimal expansion of , for
example?

Well, something like that. I wouldn’t have a clue how to get 
the decimal expansion of using my own very limited 
powers.

I’m sure you do your mental abilities an injustice. If we know
and understand how to get a decimal expansion of a number
“by hand,” then we don’t contravene the DIY philosophy if we
use a calculator to save labor.

Are you saying that because I know how to get the decimal
expansion of 7–

5
or 3—

11
by long division, even though I wouldn’t

like to be pressed on why the procedure works, I may use 
a calculator to avoid the “donkey work” involved with such 
a task?

I think we’ll let this be a policy. We’ll assume that if we were
put to it we could explain to ourselves and others the “ins and
outs” of the long-division algorithm.

Of course, completely!

Decimal expansions, or “decimals” as we often say for short,
have certain advantages, one being that they convey the mag-
nitude of a number more readily than their equivalent frac-
tions do. When a number is expressed in decimal form, it is
easy to say geometrically where it is located on the number
line. No matter how long the decimal expansion of a number
may be, we still know between which two whole numbers it lies
on this number line:

2

2
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So we can see quite easily from 1.4 that it is a number between 1
and 2, whereas it is not as easy to see this from the fraction 7–

5
.

The fraction 7–
5

is perhaps too simple. It is not too difficult to
mentally determine the two whole numbers between which it
is located on the number line, but who can say without resort-
ing to a calculation where the fraction is positioned on the
same line?

I see the point, or should I say I do not see the (decimal) point!

Hmm! Speaking of the fraction 7–
5
, you might like to get a box of

matches and construct a square with five matches on each side.

Does this mean that the five matches between them make up
the unit-length?

You can certainly think of it this way, if you like. Now you’ll
find that seven matches will fit along the diagonal:

These seven matches do not stretch the full length of the diag-
onal since 7–

5
underestimates .

That they don’t is barely visible.

True, but the gap is there.

This is a rather neat way of visualising 7–
5

as an approximation
to .

Yes it is, isn’t it? Looked at another way it says that the ratio 
7 : 5 is close to the ratio : 1. Now, where were we?

Looking for a fraction that squares to 2.

Indeed, so let’s continue the quest. Any further thoughts?

There must be some fraction a little bit bigger than 7–
5

that
squares to give 2 exactly.

Well, there are lots of fractions just a little bit bigger than 7–
5
.

2

2

2
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The symbol < means

“less than.”

I know. Isn’t there an infinity of fractions between 1.4 and 1.5
alone?

Yes, but that this is so we can leave for another time. Why do
you mention 1.5?

Simply because (1.4)2 = 1.96 is less than 2 while (1.5)2 = 2.25 is
greater than 2.

So?

Doesn’t this mean that the square root of 2 lies between these
two values?

It does. In fact since 1.5 = 3–
2

we may write that

Let me display this arithmetic “inequality” on the number line:

Notice that I have placed to the right of 1.4 and closer 
to 1.4 than to 1.5 because 3–

2
squared overestimates 2 by 1–

4
, which

is much more than the 1—
25

by which 7–
5

squared underestimates
.

But how do you locate on the number line if you don’t know
what fraction it is?

A good question. The answer is that you do so geometrically.

I’d like to see how.

It’s easy to construct a unit square geometrically on the inter-
val that stretches between 0 and 1:

2

2
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Now imagine the diagonal with one end at 0 and of length 
being rotated clockwise about the point 0 until its other end
lies on the number line.

At a point from 0. Very smart.

Of course, this is an ideal construction where everything can
be done to perfection.

I understand. It is the method that counts.

Yes.

An Exploration

But to return to the point I was making: surely among the infin-
ity of fractions lying between 1.4 and 1.5 there is one that
squares to give 2 exactly.

Well if there is, how do you propose finding it?

That’s what is bothering me.

I’m sure you’ll agree that it’s not wise to begin checking frac-
tion after fraction in this infinity of fractions without having
some kind of plan.

Absolutely, it could take forever. What would you suggest?

Thinking about the problem a little to see if we can find some
systematic way of attacking it.

Sounds as if we are about to go into battle.

A mental battle. Let us begin our campaign by examining the
implications of expressing the number as a fraction.

This could get interesting. What are you going to call this 
fraction?

Well, since we don’t know it, at least not yet, we must keep our
options open. One way of doing this is to use distinct letters, one
to stand for its numerator and the other for its denominator.

Here comes some more algebra.

Only a little, used as scaffolding as it were, just to get us started.

Well, I’ll stop you if I think I’m losing the drift of the discussion.

Let’s call the numerator of the fraction m and the denom-
inator n.

So if the fraction were 7–
5
, which I know it is not, then m would

be 7 and n would equal 5.

Or put slightly differently, if m = 7 and n = 5 then

I’m with you.

m

n
=

7

5

2

2

2
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Now if

then

Agreed?

I think so. You are simply squaring both sides of the original
equation.

I am, and I do so in this elaborate manner to highlight the pres-
ence of ¥ .

Which by definition is 2.

Yes, a simple but vital use of the defining property of , which
allows us to write that

We can turn this equation around and write

to put the emphasis on the fraction . What is the equation
saying about ?

That its square is 2.

Exactly. And since

we can say that

or that

m2 = 2n2

So this equation is a consequence of writing as ?

It is indeed. Now let us see what we can learn from it.

I’ll leave this to you.

m

n
2

m

n

2

2
2=

m

n

m

n
Ê
Ë

ˆ
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2 2

2

m

n

m

n

m

n
Ê
Ë

ˆ
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2

2

2
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ˆ
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I’m sure it won’t be long before you join in. For one thing,
m2 = 2n2 tells us is that if we are to find a fraction that is equal
to , then we must find two perfect squares, one of which is
twice the other.

What are perfect squares again? Oh, I remember, 1, 4, 9, 16, . . .

That’s right, a perfect number is one that is the square of a
natural number.

Well, this is a task that I can definitely undertake.

Be my guest.

Why don’t I make out a list of the first twenty squares along
with their doubles and see if I can find a match between some
square and the double of some other square.

An excellent plan. Nothing like a bit of “number crunching,” as
it’s called, to really get one thinking.

Of course, I’m going to use a calculator just to speed things up.

Naturally. Nobody doubts that you can multiply one number
by itself.

Here’s the table I get:

Natural Number Number Squared Twice Number Squared

1 1 2

2 4 8

3 9 18

4 16 32

5 25 50

6 36 72

7 49 98

8 64 128

9 81 162

10 100 200

11 121 242

12 144 288

13 169 338

14 196 392

15 225 450

16 256 512

17 289 578

18 324 648

19 361 722

20 400 800

2
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The three columns show, in turn, the first twenty natural
numbers, their squares, and twice these squares.

Great. We can think of the second column as corresponding to
m2 numbers and the third column as corresponding to
numbers of the form 2n2.

I’m not sure I understand what you are saying here.

I’ll explain by example. We may think of the number 196 in the
second column as being an m2 number, where m = 14, while we
may consider the number 450 in the third column as being a
2n2 number, where n = 15.

Let me test myself to see if I have got the idea. I can think of 16
in the second column as an m2 number with m = 4, while I can
think of the 648 in the third column as corresponding to 2n2,
with n = 18, because 2(18)2 = 648. Do I pass?

With honors. Now if you can find an entry in the second
column that matches an entry in the third column, you will
have found values for m and an n which make m2 = 2n2 and so
you’ll have a fraction equal to .

As easy as that? So fingers crossed as I look at each entry of the
second column of this table and then look upwards from its
location along the third column for a possible match.

Of course! A time-saving observation. As you say, you need
only look upwards because the corresponding entries in the
third column are bigger than those in the second.

Unfortunately, I can’t find a single entry in the second column
that is equal to any entry in the third column.

So the second and third columns have no element in common.

Not that I can see. I’m going to experiment a little more by 
calculating the next ten perfect squares along with their
doubles.

Good for you.

This time I get:

Natural Number Number Squared Twice Number Squared

21 441 882

22 484 968

23 529 1058

24 576 1152

25 625 1250

26 676 1352

27 729 1458

2m

n
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Natural Number Number Squared Twice Number Squared

28 784 1568

29 841 1682

30 900 1800

I realize that this is not much of an extension to the previous
table.

Maybe, but perhaps you’ll get a match this time.

I’m scanning the second column to see if any entry matches
anything in the previous third column or the new third column.

Any luck?

I’m afraid not. However, I notice that there are some near misses
in the first table.

What do you mean by “near misses”?

There are entries in the second column that are either just 1 less
or 1 more than an entry in the third column.

I’m more than curious; please elaborate.

Well, take the number 9 in the second column. It is 1 more than
the 8 in the third column.

True. Any others?

There’s a 49 in the second column that is 1 less than the 50
appearing in the third column.

Again, true. Any more?

Yes. There’s a 289 in the second column and a 288 in the third
column.

Again, as you observed, with a difference of 1 between them.
Did you find any more examples?

Not that I can see in these two tables, except, of course, at the
very beginning. There’s a 1 in the second column and a 2 in the
third column.

Indeed there is.

But I don’t know what to make of these near misses.

However, you seem to have hit upon something interesting,
exciting even, so let’s take a little time out to mull over your
observations.

Fine by me, but you’ll have to do the thinking.

Why don’t we look at the case of the 9 in the second column
and the 8 in the third column. What is the m number corre-
sponding to this 9 in the second column, and what is the n
number corresponding to the 8 in the third column?

Let me think. I would say that m = 3 and that n = 2.

ASKING THE RIGHT QUESTIONS 13
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And you’d be right. Your observation tells us that

m2 = 2n2 + 1

where m = 3 and n = 2.

Because 32 = 2(2)2 + 1?

Exactly. Now let us move on to the case of the number 49 in
the second column and the 50 in the third column.

Here the m = 7 and n = 5 since 2(5)2 = 2(25) = 50.

This time

m2 = 2n2 - 1

where m = 7 and n = 5.

Can I try the next case?

By all means.

The number 289 corresponds to m = 17 since in this case m2 =
289. On the other hand, the number 288 corresponds to n = 12
since 2(12)2 = 2(144) = 288.

No argument there.

This time

m2 = 2n2 + 1

where m = 17 and n = 12.

So we’re back to 1 over.

There seems to be an alternating pattern with these pairs of near
misses.

There does indeed. For the sake of completeness, you should
look at the first case.

You mean the case with 1 in the second column and 2 in the
third column?

None other; the smallest case, so to speak.

Okay. Here m = 1 and n = 1.

And what is the value of m2 - 2n2 on this occasion?

This time

m2 = 2n2 - 1

Does this fit the alternating pattern?

It does.

Which is great.

But returning to the original reason for constructing the tables,
I haven’t found a single square among the first thirty perfect
squares that is equal to twice another square.

14 CHAPTER 1



True, and that means that, as of yet, you haven’t found a frac-
tion that squares to 2. But, on the other hand, you have found
a number of very interesting fractions.

I have? I would have thought that I’ve only found pairs of
natural numbers that are within 1 of each other.

In a sense, you could say that. But you actually have discovered
fractions with the property that the square of their numerator
is within 1 of double the square of their denominator.

I’m afraid you’ll have to elaborate.

Of course. You remember we said, when you observed that 9
in the second column was 1 greater than the 8 in the third
column, that the 9 corresponded to m2 where m = 3, while the
8 corresponded to 2n2 where n = 2?

I do.

Furthermore, m2 - 2n2 = 1, in this case.

That’s correct.

Suppose now that we form the fraction

Then can’t we say that the equation m2 - 2n2 = 1 tells us that
this fraction is such that the square of its numerator is 1 more
than twice the square of its denominator?

It seems to. I’ll have to think a little more about this. Yes:
32 = 9 and 2(2)2 = 8.

Try another one. Ask yourself, “What fraction is associated
with the observation that the 49 in the second column is 1 less
than the 50 in the third column?”

Okay. Here m = 7 and n = 5, so the fraction is 7–
5
, right?

Absolutely. Now what can you say about the numerator and
denominator of this fraction?

That the square of the numerator is 1 less than twice the square
of its denominator.

Exactly.

I think I understand now. You are saying that every time we
observe the near miss phenomenon we actually find a special
fraction.

Yes. You looked for a fraction whose numerator squared would
match twice its denominator squared; you didn’t find one, but
instead you found fractions whose numerators squared are
within 1 of twice their denominators squared.

That’s a nice way of looking at it.

m

n
=

3

2

m

n
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Often when you look for something specific you chance upon
something else.

So I suppose you could say that I found the next best 
thing.

I think we can say this, and not a bad reward for your labors.

Actually, I’m really curious to know if there are any more than
just these four misses and to see if the plus or minus pattern
continues to hold.

Let’s hope so. Why don’t we do a little more exploring?

I’d be happy to but shouldn’t we stick to our original mission
of finding a difference of exactly 0?

Very nicely put. Finding an m and n such that m2 = 2n2 means
that the difference m2 - 2n2 would be 0.

Thanks.

However, I think we’ll indulge ourselves and investigate your
observation about near misses a little further, particularly as it
looks so promising.

Okay. I’ll extend my tables and then go searching.

You could do that, but it might be an idea to look more care-
fully at what you have already found.

Like good scientists would.

As you say. Begin by cataloguing the specimens found to date
and examine them carefully for any clues.

Will do.

Time to Reflect

Beginning with the smallest, and listing them in increasing
order, the fractions are

Not many as of yet, but tantalizing.

What secrets do they hold, if any?

Indeed. Can you spot some connection between them?

Just like one of those sequence puzzles, “What is the next
number in the sequence?” except here it looks harder because
these are fractions and not ordinary numbers.

A puzzle certainly, but one we have encountered quite naturally.

And not just made up for the sake of it.
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Yes, something like that.

I hope this is an easy puzzle.

It is always best to be optimistic so I advise that you say to your-
self, “This is sure to be easy,” and look for simple connections.

Optimism it is then, but where to start?

It is often a good idea to begin by examining a pair of terms
some way out along a sequence rather than at the very begin-
ning of it.

Right. On that advice I’ll see if I can spot a connection between

and if I think I have found one, I’ll check it on the earlier 
fractions.

Very sensible. Happy hunting!

I think I’ll begin by focusing on the denominator 12 of the 
fraction 17—

12
.

Following a very definite line of inquiry, as they say.

I think I have spotted something already.

Which is?

That 12 = 7 + 5, the next denominator looks as if it might be
the sum of the numerator and denominator of the previous
fraction.

If it’s true, it will be a big breakthrough. I must say that was
pretty quick.

I must check the earlier terms of the sequence

to see if this rule holds also for their denominators.

Fingers crossed, then.

I obviously cannot check the first fraction, 1–
1
.

Why not?

Because there is no fraction before it.

A good point.

But the second fraction, 3–
2
, has denominator 2, which is just 1 +

1, the sum of the numerator 1 and denominator 1 of the first
fraction 1–

1
. This is getting exciting.
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That’s great. How about the third fraction 7–
5
?

Right, Mr. 7–
5
, let’s see if you fit the theory.Your denominator is 5, is

it not? Indeed it is, and the sum of the numerator and denomina-
tor of the previous fraction, 3–

2
, is 3 + 2, which I’m happy to say is

none other than 5.This is fantastic! Who would have thought?

Great again! Now is there an equally simple rule for the 
numerators?

I hope so, because discovering that rule for the denominators
gave me a great thrill.

We couldn’t ask for more than that.

Right, back to the drawing board. So is there a connection
between the numerator 17 of the fraction 17—

12
and the numbers 7

and 5 from the previous fraction 7–
5
?

It would be marvelous if there were.

If I’m not mistaken, there is. It’s simply that 17 = 7 + (2 ¥ 5).

Well spotted, though not quite as simple as the rule for the 
denominators.

No, but still easy enough.

Once you see it. How do you interpret this rule?

Doesn’t it say that the next numerator is obtained by adding the
numerator of the previous fraction to twice the denominator of
the previous fraction?

Indisputable. You had better check this rule on the other 
fractions.

It works for the fraction 3–
2

since 3 = 1 + (2 ¥ 1), and it also works
for 7–

5
since 7 = 3 + (2 ¥ 2).

This is wonderful. So how would you summarize the overall
rule, which allows one to go from one fraction to the next?

Well, the general rule obtained by combining the denominator
rule and the numerator rule seems to be:

To get the denominator of the next fraction, add the
numerator and denominator of the previous fraction; to
get the numerator of the next fraction, add the numera-
tor of the previous fraction to twice its denominator.

Well done! And a fairly straightforward rule, at that.

Isn’t it amazing?

Indeed it is. After all, there was no reason to believe that there
had to be any rule whatever connecting the fractions, but to
find that there is one and that it’s simple is remarkable.

I must now apply this general rule to 17—
12

to see what fraction
comes out and to see if it has the property that its top squared
minus twice the bottom squared is either 1 or -1.
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Let’s hope that the property holds.

According to the rule, the next fraction has a denominator of
17 + 12 = 29 and a numerator of 17 + 2 ¥ 12 = 41, and so is 41—

29
.

Good. And now what are we hoping for?

Based on the pattern displayed by the previous four fractions,
that (41)2 - 2(29)2 will work out to be -1.

Perform the acid test.

Here goes:

412 - 2(29)2 = 1681 - 2(841) = 1681 - 1682 = -1

This is fantastic!

So now you have found another example of a perfect square
that is within 1 of twice another perfect square—the whole
point of this investigative detour—without having to go to the
bother of extending your original tables.

That’s true. Our more thorough examination of the four cases
we found seems to have paid off.

A little thought can save a lot of computing.

I know that I couldn’t have spotted this example with my tables
because they give only the first thirty perfect squares along with
their doubles; but can we be sure that there is not an m value
between 17 and 41 that gives a square that is within 1 of twice
another perfect square?

An excellent question. At the moment we can’t be sure without
checking. However, if there is such an m value, then it corre-
sponds to a fraction that doesn’t fit in with the above rule.
Of course,this doesn’t exclude the possibility of there being such
a value.However, if you check,you won’t find any such value.

I must calculate the next fraction generated by the rule to see if
it also satisfies the plus or minus 1 property, to give it a name.
Applying the rule to 41—

29
gives 41 + 29 = 77 as the next denomi-

nator and 47 + (2 ¥ 29) = 99 as the numerator.

So 99—
70

is the next fraction to be tested.

I predict that m2 - 2n2 = 1 in this case. The calculation

992 - 2(70)2 = 9801 - 2(4900) = 9801 - 9800 = 1

verifies this. Great!

Bravo! What now?

Obviously, we can apply the rule over and over again and so
generate an infinite sequence beginning with
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True, you can generate an infinite number of fractions using
the rule but . . .

How can we be sure that all the fractions of this sequence have
the property that m2 - 2n2 is either plus or minus 1 without
checking each, which is clearly out of the question.

Yes, this is a bit of a problem. It might be that answering such
a question may prove difficult or even impossible.

And can we say that these are the only fractions having this plus
or minus 1 property?

My, my, what truly mathematical questions! You need have no
fear that you and mathematics are strangers if you can think
up questions like this.

I don’t know about that. Normally, I know I wouldn’t even
dream of asking questions such as these, but at the moment 
my mind seems to be totally engrossed by these particular 
fractions.

Ah, well, I’ve read somewhere that you really only see a person’s
true intelligence when his or her affections are fully engaged.

Perhaps tomorrow I won’t care, but right now I really want to
know if all the fractions generated by the rule actually obey the
plus or minus 1 property; and I also want to know if these are
the only fractions that do so.

Good for you. In mathematics it often seems that asking ques-
tions is the easy part, whereas it is the answering of them that
is hard. But asking the right questions is a very important part
of any investigation, whether it be mathematical or otherwise.

The good detectives always ask the right questions.

Well, by the end at any rate.

But can you tell me if my questions have answers; and if they
do, what are their answers?

They do, but I am not going to tell you what they are. I don’t 
want to spoil the fun you’ll have in trying to answer them for
yourself later.

Later could be an eternity away if it is left up to me on 
my own.

That remains to be seen. Anyway, you have opened up a rich 
vein for further exploration with your observation that there 
are squares whose doubles are within plus or minus 1 of other
squares, and with your recent rule, both of which we’ll come
back to soon.

So, are we going to return to our original investigation?

Not just yet.
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Squeezing

Before leaving the fractions

let me show you how they connect with the number itself.

Although none of them is ?

Correct. But each of them can be thought of as an approxima-
tion to . In fact, each successive fraction provides a better
approximation to than its predecessor.

I hope you don’t mind my saying so, but I would be much more
interested in finding the exact fraction instead of approxima-
tions, however good they might be.

I appreciate that you are impatient to get on with your search-
ing, but follow me for just a little longer so that I can show you
how simply but cleverly we can use these fractions to close in
on the location of on the number line.

All right. Maybe I’ll learn something that will help with my
search.

Perhaps; we should look for clues anywhere we can. Now we
know that

12 = 2(1)2 -1

32 = 2(2)2 + 1

72 = 2(5)2 - 1

172 = 2(12)2 + 1

412 = 2(29)2 - 1

992 = 2(70)2 + 1

Yes.

These equations are either of the form

m2 = 2n2 - 1

or

m2 = 2n2 + 1

alternating between one and the other.

Agreed. And I would bet that this jumping between -1 and 1
continues forever, though I have no idea how to prove it.
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Now let us divide each of the equations

12 = 2(1)2 -1

32 = 2(2)2 + 1

72 = 2(5)2 - 1

172 = 2(12)2 + 1

412 = 2(29)2 - 1

992 = 2(70)2 + 1

by their corresponding n2 values to get

Are you with me?

Just about. I’m still mentally dividing across the second 
equation by 22, putting it beneath the 32 and placing the 
combination 3–

2
under one umbrella with the power of 2 outside.

Takes practice, but it’s all legal.

I’ll accept this, since you did it, but I’m a little rusty when it
comes to fractions and powers, so I can be slow. Anyway, I’m
happy with this last set of equations now.

This simple but clever idea gives us equations that are very
informative. They tell, in turn, how close the square of each
fraction is to the number 2. Can you see why?

I’ll have to take time on this. What is the equation

saying? That when we square 17—
12

we get 2 plus the fraction ?1
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Yes. And?

Since is small, the fraction 17—
12

isn’t a bad approximation of .

Not bad at all.

I think I see now why the approximations are getting better 
and better. As we move down through the set of equations,
the fractions on the very right-hand side get smaller and
smaller.

True. So?

So the corresponding fractions squared on the right-hand side
are getting closer and closer to 2, which I take it means that the
fractions themselves are better and better approximations of .

Excellent. We can say more.

We can?

We can say that the alternate fractions

are three underestimates of , each being a better approxi-
mation of than its predecessor.

Because the minus sign before the last fraction in each equation
tells us that these fractions squared are less than 2 by some
amount.

That’s it. The fraction 1–
1

is the smallest of these fractions, and
41—
29

is the largest:
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You’ll understand why I make this point in a moment.

But the fractions we skipped

on the other hand, are three overestimates of , which become
progressively closer to .

Right again. When these fractions are squared, they give 2 plus
something positive. Note that this time the first fraction is the
largest and the last one the smallest.
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This is the opposite of the previous case.

I think I see what you’re driving at. The underestimates are
creeping up on from the left while the overestimates are
creeping back toward from the right.

That’s right, as we can see when we show all six fractions
together on the number line:

2
2
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Here is one way of summarizing this information:

I know we haven’t proved anything yet about the fractions in
the sequence that follow the first six:

but it looks, then, as if the very first fraction is the smallest of
all the fractions in the sequence, while the second of the frac-
tions is the largest of them all.

Another interesting observation.

If this the case, all the fractions, except for 1–
1
, are greater than or

equal to 1.4 = 7–
5

and less than or equal to 1.5 = 3–
2
.

It would appear that way.

So the fractions alternate between being underestimates 
and overestimates of simply because of the plus and minus
property.
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Yes. Actually, it is very handy to have the fractions alternate
between being underestimates and overestimates of
because we can use them to place into narrower and nar-
rower intervals of the number line.

As if you were squeezing .

You could say that. For example, taking only the fraction 7–
5

on
the left of and the fraction 3–

2
to the right of we get the

inequality

which you may recognize.

Something I mentioned earlier?

Yes, you said that 1.4 squared is less than 2 but that 1.5 squared
is greater than 2.

A pure accident.

Maybe, or a sign of deep mathematical intuition.

Without doubt! So now we can improve on this and say that

Correct. We cannot say, at least not yet, exactly how close 99—
70

is
to in terms of fractions or in decimal terms because we
don’t know how to calculate

But we could, if we could only find the fraction that is the same
as .

Certainly, but this fraction is eluding us at the moment. Still
we can estimate how close the fraction 99—

70
is to .

How?

Let us look at the interval between 41—
29

and 99—
70

under the micro-
scope, as it were.
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It may not strike you as a remarkable observation, but we 
can now at least say that the distance between and 99—

70
is

less than the length of the interval from 41—
29

to 99—
70

, in which 
resides.

This seems obvious from the picture you have just drawn.

In fact, since we know that 99—
70

is greater than but closer to it
than the fraction 41—

29
, we may say that 99—

70
is within half the length

of the interval between 41—
29

and 99—
70

.

Of course; simple but clever.

The length of the interval between 99—
70

and 41—
29

is

Pretty narrow.

Since 2030 is bigger than 2000, we can say that the 
fraction is smaller than . So the length of the interval
is less than

Less than 5 ten-thousandths of a unit.

Yes. This means that

an estimate that shows with minimum computation that 99—
70

is
within 0.00025 of .

Very smart.

Why don’t you use your rule to show that the next two terms
in the sequence

are the fractions

respectively, and verify that 2392 - 2(169)2 = -1, with 
5772 - 2(408)2 = 1?

So the next two fractions also follow the plus or minus 1
pattern.
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Yes, but these two facts prove nothing about the remaining
fractions.

I realise this.

However, you might like to use these two new arrivals to show
that

A further homing in on where lives. It’s very impressive how
much can be said with just simple mathematics.

True, but it does help to have good observations to work on.

A lesson I’ve learned from all of this in relation to the search
for a fraction exactly matching is that it could be an awfully
long search.

Why?

Well, we have just shown that the leading six fractions of the
sequence

provide successively improving approximations of , and I
suspect that the fractions further out this sequence do even better.

For the sake of argument we’ll grant for the moment that they do.

Judging from the numerators and denominators of the first eight
terms, I’m guessing that the numerators and denominators grow
longer and longer as we move further out the sequence.

Another interesting observation that we might discuss in more
detail later. But for the moment, where is this line of reason-
ing taking you?

Well, it suggests that the actual fraction exactly matching 
may also have a very large numerator and denominator and, if
so, searching for it could take a very long time.

You have a point.

For example, even if were the fraction 99—
70

with its very modest
numerator and denominator, I would have to search as far as
the ninety-ninth perfect square before hearing a click.

And if were the fraction

351504323792998568782913107692171764446862638841

248551090970421189729469473372814871029093002629

. . . which it isn’t, by the way, although it is very very close, you
could be . . .

. . . searching for the rest of my life.
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What the Ancients Knew

So are you going to give up on the search idea?

Maybe, but I’d still like to test just a few more squares in the
hope of getting lucky, even though I now realize that it is a most
impractical method.

And one that would not produce a positive result no matter
how far you, or countless millions of others armed with all the
computing power in the world, were prepared to search.

What did you say?

That you would never succeed. Your search would be in vain.

Are you telling me that, of the infinity of fractions lying between
1.4 and 1.5 there is not one that squares to give 2 exactly?

That’s correct. There isn’t a fraction between these two
numbers that squares to give 2 exactly.

But if there isn’t such a fraction—and how on earth could you
be convinced that there isn’t—what kind of number is it that,
when squared, gives 2? Or are you going to say that there is no
such number?

Ah! A moment of truth has arrived. These crucial questions,
which our opening geometrical demonstration has forced
upon us, are ones we must attempt to answer.

Am I to understand that is definitely not a fraction?

Yes, there is no rational number that, when squared, gives 2.
Integers and fractions are known collectively as rational
numbers. Put another way, there is no rational number that
measures the length of the diagonal of a unit square.

Incredible! Of the infinity of fractions between 1.4 or 7–
5

and 1.5
or 3–

2
you are absolutely certain that there isn’t a single one of

them that squares to give 2 exactly?

Absolutely.

But how do you know for certain that such a fraction doesn’t
exist?

I know because the Ancient Greeks proved that it is impossi-
ble. I will show you one beautiful numerical proof.

It must be a very deep proof that shows that there isn’t a number
that squares to 2 exactly.

No, that would be going too far! I’m definitely not saying that
there isn’t a “number” whose square is exactly 2. All I am saying
is that there isn’t an integer or a fraction which when squared
gives 2 exactly. There is a difference.

2
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But what other numbers are there besides the rational numbers,
as you have just called them?

This is the mystifying point about the length of the diagonal
of a unit square. It presents us with a paradox—an apparent
contradiction—about the nature of numbers.

So all along you have known that my search was futile.

Futile in its ambition but not otherwise. I didn’t want to give
the game away. You are not the first to believe with complete
conviction that there must be a fraction, however hard it might
be to find, that squares to give 2 exactly. Besides, I wanted you
to enjoy exploring and discovering, to experience the pleasure
of finding things out for yourself.

I must gather my thoughts. I would not deny that the diagonal
of the unit square has a length. In fact, this length is obviously
greater than 1 unit, and as we know, less than 1.5 units. Yet you
tell me that the length of this diagonal cannot be expressed as
a unit plus a certain fraction of a unit.

That’s right. While the rational numbers are perfectly adequate
for the world of commerce, they are not up to the task of meas-
uring the exact length of a diagonal of a unit square. No matter
how close a rational number may come to measuring the
length, there will always be an error, microscopically small
perhaps, but nevertheless an error. Always. The ancient way of
putting this was to say that the diagonal and side of a square
are incommensurable.

So if we were to insist on thinking that all numbers are the ones 
with which we are familiar, namely the rationals, then we’d be
forced to say that there is no number of units that measure this
diagonal, or that there is no number whose square is 2.

Yes, but why restrict ourselves to such a viewpoint?

It seems natural.

Maybe, but perhaps it seems this way simply because most
people’s experience is limited to dealing with rational
numbers. However, as you have said, if we were to insist on
maintaining that rational numbers are the only type of
number, then we’d have to be prepared to live in a world where
there are lengths which are not measurable and where certain
numbers have no square roots.

So we must accept that there are other types of numbers.

For mathematicians, the proof that no unit plus a fraction of
a unit can hope to exactly measure the diagonal forces us to
broaden our notions of what constitutes a number. When we
do this, the paradox surrounding simply dissolves.

So what “number” measures the diagonal of a unit square?

2
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The one whose square is 2 and that we denote by . We admit
the existence of this number because it makes its presence 
necessary by being the length of a legitimate quantity—the
diagonal of a unit-square.

So the length of any side of the internal square we talked about at
the beginning is simply , with no need for further elaboration.

Yes. is a number between 1.4 and 1.5 that is not a rational
number but that, when squared, gives 2. As we have already
said, is defined by the equation ¥ = 2, which is the
mathematical way of saying that is the positive number that
squares to give 2.

So is a new type of number.

Yes, new or different, but we have not proved this yet. Because
it is not a rational number, it is called an irrational number.
Not that there is anything unreasonable about it. It is so named
because it cannot be expressed as the ratio of two integers in
the way that the fractions are.

So the word rational in “rational number” is used because of
the word ratio, while the term “irrational” in connection with

is used because it cannot be so expressed.

Quite so. The number is as real as any fraction. In fact,
is just one of an infinite number of irrational real numbers that
exist “outside” the realm of the rational numbers.

Can you show me some other irrational numbers?

Yes, the positive square roots of each of the other numbers
missing from the list of perfect squares we made out some time
ago can also be shown to be irrational numbers.

This means that

are all irrational numbers.

Yes.

This is why there is an infinity of these numbers.

Certainly, but the collection of irrational numbers contains not
just all these surds, as they are sometimes called, but a whole
galaxy of other weird and wonderful numbers, the most
famous being p.

Ah,p! The ratio of the length of the circumference of any circle to
the length of its diagonal. I thought that pwas the fraction 22—

7
.

This is only an approximation of its true value, just like 7–
5

is an
approximation of .

Reality is a lot more complicated than I naïvely thought.
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Perhaps we should say that the world of mathematics is a lot
more complicated than one might think at first. However,
speaking of reality, the collection of rational numbers and the
collection of irrational numbers between them constitute the
set of real numbers.

The idea that there are new specimens of numbers other 
than the “usual ones” used in arithmetic takes a little getting
used to.

You’re not the first person who was more than a little perplexed
by these new numbers. The minds of the Ancient Greeks were
bewildered when these irrational numbers thrust their exis-
tence upon the Greeks’ consciousness. Legend has it that they
were positively perturbed by the intrusion of these new quan-
tities into their reality. They experienced an intellectual and
philosophical crisis.

They did? Why?

Well, there was a brotherhood of Pythagoreans, followers of
the famous philosopher and mathematician Pythagoras, which
was devoted to the pursuit of higher learning, in particular
mathematics. They were very well respected and considered to
know all that there was to know. They believed that everything
could be quantified by the familiar rational numbers.

A reasonable enough belief, or should I say a rational belief?

Yes, a very justifiable one. After all, these numbers are the only
ones needed for commercial transactions, and they are equally
adequate at describing various other physical phenomena.
They also suffice for most measuring purposes that occur in
practice.

Even though they cannot be used to give the measure of the
diagonal of a unit square.

Yes, the issue about the new nature of and its cousins, ,
, . . . was a theoretical one rather than a concern with “prac-

tical” measurement. The Greeks were fully aware that even if
fractions could not measure the diagonal of a unit square
exactly, they could measure it to any desired degree of accu-
racy. For example, a length of

units measures the “true” length of the diagonal to well within
a hundred-thousandth of a unit.

Which is less than one-hundredth of a millimeter if the unit is
a meter.
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There is evidence that this approximation to was known to
the Babylonians around 1600 b.c. This is many centuries
before the Ancient Greeks whom I mentioned, because a 
Babylonian tablet from that time gives 1; 24, 51, 10 as an
approximation to .

What does 1; 24, 51, 10 stand for?

It’s shorthand for

The Babylonians used a sexagesimal system.

What is this when it is simplified?

The fraction

which, as you can see, is not exactly.

Why, then, is it thought that they knew of “our” ?

Because in base 60,

it is suspected that they just truncated (shortened) the sexa-
gesimal expansion of this fraction.

To three places, as we’d say.

Yes.

How did the Babylonians find such approximations?

It is not exactly known, but there is speculation that they knew
of a method of approximation.

Was it a different method from the one using the sequence of
fractions we have discovered?

It is related to this but faster.

Faster sounds interesting.

Accelerated, we might even say. This method also gave them 
1; 25 as an approximation of . Convert 1; 25 to base 10 to
see what it is.

I’ll try. Since they used a sexagesimal system

this fraction, just like , is in our sequence.577
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It is indeed, the fourth in the sequence. It is not as good an
approximation of as , which is the eighth entry in the
same sequence. As we said before, it doesn’t do a bad job of
approximating .

So these Mesopotamians must have known their mathematics.

And quite a bit more, by all accounts.

I should be able to verify for myself that approximates as
closely as you say.

You should and, what is significant, without knowing anything
about the decimal expansion of .

Hmm. I didn’t appreciate this point before.

I didn’t emphasize it prior to this.

Please remind me of how exactly I would begin to go about this
verification.

Recall that the fraction is the one before in our short
sequence and that it underestimates , whereas overesti-
mates it.

I think I remember now. Since is closer to than is, its
distance from is less than half the distance between these
two fractions.

Yes. This distance is , as you can check.

And what do we say now?

Since 50000 < 68592, we say that is less than .
Hence the length of the interval is less than one fifty-
thousandth of a unit, and so is within a hundred-
thousandth of a unit of .

So we’re done.

Yes. Maybe now is a good time to use what we know to get some
idea of the leading digits in the decimal expansion of .

How are you going to do this?

Convert the fractions in the inequality

to decimal form.

Using a calculator I hope.

Yes, because in theory this is something we can do ourselves by
hand.

And so we are free to use a calculator to save time.

We get
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working to twenty decimal places.

Some calculator! I see that both expansions agree to four
decimal places. Is it safe so to say that

which, I think, is pretty good?

It is. And because we did everything ourselves I think we can
take a bow. We’ll have fun improving on all of this at a later
stage.

But to get back to the Ancient Greeks. You were saying that it is
the nature of numbers that was of primary interest to these
learned men.

Indeed. Such was their conviction that the rational numbers
described all of nature exactly that their motto was, “All is
number.”

By which they meant the rational numbers.

Yes.

I’m glad to see I’m in good company.

You could certainly say that.

So they had their colors well and truly nailed to the mast.

This proclamation took on the status of an incontrovertible
truth. It became a creed.

Oh! The discovery of the existence of must have come as a
shock.

A most unwelcome one we are told, because it challenged their
cherished belief about the nature of numbers.

They took this whole business about numbers really seriously
then?

I don’t know how true much of the early lore surrounding the
discovery of is, but one story has it one of the brotherhood
leaked the news that all was not well with the accepted dogma.
For this breach of faith he was taken on a sea trip and cast 
overboard.

You’re kidding me!

Well, if it is true, it goes toward answering your question as to
how seriously they took their mathematics.

So his number was up!

As fate would have it, the number is referred to in some
quarters as Pythagoras’s constant.

I wonder what the Pythagorean brotherhood would have to say
about that. But how did they come to know for certain that 2

2

2

2
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is not a rational number? Surely they must have thought that
is actually a rational number but that they simply lacked the

means to find it?

Perhaps they came upon numerical evidence similar to what
you found in your search, but I don’t know. I do know that their
main mathematical focus was geometry.

Of course, the famous theorem of Pythagoras.

Actually, it may have been this very theorem that first brought
to the attention of the Ancient Greeks.

So they were the cause of the downfall of their own philosophy
that “all is number.”

You could say that. Coming back to what we were saying about
searching, these clever Greeks would have known that the
search method is one that, no matter how many perfect squares
may have been checked, still leaves an infinite number of pos-
sibilities to be tested.

I hope they figured that out faster than I did!

I’m sure they were fully aware that any finite quantity, no
matter what its size, is as nothing against the backdrop of
infinity.

Still, they must have suspected right from the very moment the
problem reared its head that their doctrine of number was

in trouble.

I’d be inclined to agree: they must have known that the doc-
trine wasn’t as all-embracing as they originally proclaimed. It
may be that some were really intrigued that does not dwell
in the infinite realm of rational numbers but is something that
is “outside of it,” as it were. Certainly minds over the centuries
have been charmed by this aspect of numbers.

Did the Ancient Greeks find the proof you mentioned fairly
soon after observing that there was more to than meets 
the eye?

As far as I know, quite a stretch of time elapsed, about 300 
years or so, before someone found an argument that turned
suspicion into fact and established the irrationality of
once and for all. However, I don’t know if the argument
described by Euclid, which I am about to show you, was the
first because there are many ingenious proofs of the irra-
tionality of .

But they must all be very difficult. It cannot be easy to be con-
vinced that of the infinity of rational numbers, not one squares
to give 2.
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Not at all. The proof we are about to discuss is a magnificent
reductio ad absurdum argument.

Which means?

In this case, you assume that there is a rational number that,
when squared, gives 2, and then you show that this assumption
leads to a contradiction or, put another way, reduces to 
something absurd. This form of logic—bequeathed to us by
these Greek scholars—has been used ever since throughout
mathematics.

If you arrive at a contradiction, you say that the assumption you
made at the start is the cause of the trouble.

Yes, and you conclude that it must be false and must be 
abandoned.

So if the assumption is false then its opposite is true?

Precisely.

After thinking that must be a fraction and having been frus-
trated in a vain search, I cannot wait to see this proof of irra-
tionality. It must be a wonderful mathematical work of art.

A work of art indeed. Bertrand Russell once said, “Mathemat-
ics, rightly viewed, possesses not only truth but supreme
beauty . . . sublimely pure, capable of a stern perfection as only
the greatest art can show.” Judge for yourself whether the proof
merits this accolade.

2
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To prove that is irrational, assume the opposite.

You mean assume that it is a rational number?

Yes.

If is rational, then, as we said before, there are two natural
numbers, say m and n, such that

Right?

Correct.

And when we square both sides of this equation, we get

How am I doing?

Very well.

I’m afraid that when I multiply this equation across by n2, my
contribution toward this immortal proof will be at an end.

Perhaps, but it is exactly the way to start the proof.

Thank you. It was fun while it lasted!

But before we multiply across by n2, I want to say a little about
m and n. If m and n have factors in common, then each of these
factors can be removed from both at the outset.

How?

Simply by canceling above and below the line as one would the
common factors 3 and 4 in 36—

48
, to get
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Do you agree?

I see; it seems like nothing more than common sense.

So from the outset we may assume, without any loss of gener-
ality, as they say, that the natural numbers m and n have no
factors in common other than the trivial factor 1.

No factors other than 1 in common. I suppose every pair of
natural numbers has the factor 1 in common.

Yes, because the number 1 is a factor of every number, it is
called a trivial factor.

You are saying, then, that we may assume at the beginning that
the numerator m and the denominator n have no nontrivial
factors in common.

Exactly.

This seems reasonable.

In this case, the fraction is said to be in lowest or reduced
form.

So the fraction 3–
7

on the right-hand side of the example is in
lowest form because its numerator and denominator have no
factors in common.

Precisely. By cancelling the common 3 and 4, the fraction 36—
48

reduces to the fraction 3–
7
. Since 3–

7
cannot be reduced any further,

it is in lowest form.

Well and truly, I would say.

Now that we have this detail out of the way, let us multiply

across by n2, as you were about to do, to get, after interchang-
ing the terms on each side,

m2 = 2n2

This is an equation with which you are already quite familiar.

How can I forget, back when I foolishly expected to find small
values for m and n, which would make it true.

There was nothing foolish in what you did. Look on the bright
side. You made a discovery that led us to better and better
approximations of .

And because of what you are about to prove, approximations
of are “as good as it gets” using fractions.2
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Too true. Besides, because of all your previous hard work,
you’ll have a much greater appreciation of this proof, which is
now entering its serious phase.

I must pay full attention then. I don’t want to miss a detail, par-
ticularly because I want to understand the thought process of
the ancient who first proved this remarkable result so long ago.

The equation m2 = 2n2 tells us that m2 is an even number.

Let me think why. Oh, I see why; because it is twice n2 and so
must be even, since twice any number is even.

Correct. Now that you know m2 is an even number, can you say
whether m is even or odd?

Could it be either?

No. Since the square of an odd number is always odd, it must
be that the natural number m is also an even number.

So only even numbers square to give even numbers. Simple
when you are told the reason.

You might like to convince yourself sometime, why the square
of an odd number is also an odd number. Anyway, if m is even,
it means that it is twice some other natural number, p, say.

An example, please.

For example, 14 = 2 ¥ 7. Here m is the 14 and p is the 7.

Got it.

So, m = 2p for some natural number p.

Right.

Now, substituting 2p for m in m2 = 2n2 gives (2p)2 = 2n2 or
4p2 = 2n2.

With you so far.

Canceling the 2 common to both sides of the very last equa-
tion gives, after interchanging the terms on each side,

n2 = 2p2

which you may notice is exactly like the original equation 
m2 = 2n2.

With n where m was and p where n was?

Exactly. Can you say what this latest equation tells us about n?

More thinking. Doesn’t it tell us that n2 is also an even number,
just like m2?

It does. What is an implication of this?

I suppose for the same reason as before it means that n is also
an even natural number.
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It does indeed. The proof is finished.

What, so soon? I must be missing something. Tell me why the
proof is finished.

Because we have arrived at a contradiction.

I need time to see where it is.

Take as much time as you need.

I see it, now. We now know that m and n must both be even
numbers.

Yes, and what is wrong with this?

Didn’t we say at the start that the numbers m and n have no
factor in common?

Other than 1, we did.

So this is the contradiction then?

It is. We began by assuming that

with the natural numbers m and n having no common factor
other than 1. But the argument we have just given shows con-
vincingly that this assumption forces m and n to be both even.

Which means that m and n have 2 as a common factor. But this
contradicts the original assumption that they have no factors in
common except 1, which is a pain to have to keep mentioning.

Now you have it; the assumption “reduces to an absurdity.”

So the original equation can never be true for any natural
numbers m and n.

Never! Hence we may declare with certainty that is an irra-
tional number.

Magnificent! And it is not hard when somebody shows you how
it is done.

That is part of its charm.

And so short. I was expecting a long argument.

It’s a real gem. A classic example of the reductio ad absurdum
argument.

That was fascinating! I almost feel like a mathematician myself
now.

That’s wonderful, I’m glad you appreciate it. Let’s summarize
the proof in a bare-bones fashion just to show how elegant 
it is.

Like you might see in a mathematics text.
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Yes. But you’ll be able to see the sense in it now. By the way, the
symbol fi just means “implies that.” So here is a streamlined
version of the proof: assume that there are natural numbers 
m and n with no nontrivial factor in common, such that 

= . Then

fi m2 = 2n2

fi m2 is an even natural number.

fi m itself is an even natural number.

fi m = 2p where p is another natural number.

fi (2p)2 = 2n2

fi n2 = 2p2

fi n2 is an even natural number.

fi n itself is an even natural number.

fi m and n are both even natural numbers.

fi 2 is a common factor of m and n.

fi a contradiction since m and n have no common 
factor other than 1.

Really concise; it makes ordinary language seem very long-
winded by comparison. I can see what Russell meant by “stern
perfection.”

A mere dozen lines. In terms of calculation, the mathematical
content of this proof is completely elementary; it is the rea-
soning used that is spectacular.

Some of those Greeks were really smart!

We might be justified in saying that the “dawning” on someone
that it is impossible to express as a rational number was a
thought of pure genius. Equally, the first one to prove this
impossibility was also a genius. This proof so enthralled the
mathematician G. H. Hardy as a boy that, from the moment he
read it, he decided to devote his life to mathematics.

And did he?

He certainly did. He became one of England’s great mathe-
maticians of the twentieth century. When he believed that his
mathematical creativity was at the end, he wrote a delightful
book called A Mathematician’s Apology.

Apology?

In the sense of an apologia. It was his view that the job of a
genuine mathematician is to do mathematics rather than talk
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about it. It saddened him at the time of writing that he could
no longer do the former to the high standard he demanded of
himself.

So he was very hard on himself ?

To judge from what he wrote. He also had a very pure view of
mathematics. An oft quoted statement of his is, “Beauty is the
first test. There is no permanent place in the world for ugly
mathematics.”

Sounds nice, but is this true?

Whether it is or not, he seemed proud of the fact that none of
the mathematics he created ever found an application.

This seems to me like a strange thing to say.

One that raised hackles. It provoked one eminent scientist, a
fellow Englishman, to exclaim, “From such cloistral clowning
the world sickens.”

Ouch!

Consequences of the Irrationality of 

Earlier, you said the ancients used to say that the side and diag-
onal of a square are incommensurable. Would you spell out what
they meant by this?

They meant that the side of a square and its diagonal cannot
both be measured exactly with the same ruler, no matter how
fine its markings.

Hard to imagine.

I know, but if you have a ruler that measures the side exactly
(meaning that the two endpoints of the side coincide with two
markings of the ruler), then that same ruler, when placed along
the diagonal so that one of its markings coincides with the

2

42 CHAPTER 2



initial point of the diagonal, will have the endpoint of the diag-
onal lying between some two adjacent markings.

I don’t really believe it. Always between and never coinciding?

Inescapable! And if the ruler measures the diagonal exactly, it
will fail to measure the side exactly. If you had at your disposal
a new ruler with ultra-close markings, or even an infinity of
such rulers with any conceivable separation between successive
markings, it would make no difference.

Is it difficult to explain why?

It is very easy to see using the tiniest amount of algebra.

Show me, please. I enjoyed the last argument even though it
used letters.

The way to show that it is impossible is to assume that it is pos-
sible and arrive at a contradiction.

Just like the proof of the irrationality of .

Just so; and as we’ll see, it is this fact that decides emphatically
that the side of a square and its diagonal cannot both be meas-
ured exactly with the same ruler. So we’ll assume that there is
some ruler that can exactly measure both the side and the 
diagonal.

It’s hard to believe that such a ruler doesn’t exist.

To begin, we can let the length of the side of the square be 1
unit. Then the length of the diagonal, as we know, is units.
Let u stand for the distance between any two successive marks
on the ruler. Since this ruler is supposed to be able to measure
both lengths exactly, the length of the side is made up of a
whole number of u’s. Call this natural number n. This means
that

1 = nu

Similarly, the length of the diagonal is also made up of a
whole number of u’s. Call this natural number m.

So

in this case.

Definitely.

I’m with you so far. But what do you do now?

Something simple but clever. We divide the second equation by
the first to get
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Can you see what to do now?

Cancel the u’s above and below the line?

Yes. That this can be done is very significant. It shows that the
size of u, separating successive markings, does not influence
what follows. What do you get?

That

So what?

Look carefully at what this simple equation is saying. What
would the ancient Greeks say?

This equation is saying that can be expressed as a fraction.
But this is false!

And so?

Since the assumption that both the side and the diagonal of a
square can be exactly measured with the ruler leads to a con-
tradiction, it is also false.

So we are forced to the conclusion, however strange it may
seem, that these two sides are incommensurable.

I can’t argue with that.

Variation on a Theme

Can you tell me some other concrete consequences of the irra-
tionality of ?

I can. Imagine a rectangular room having dimensions where
the ratio of the length of the longer side to the shorter side is
exactly : 1. If we take the length of the shorter side as our
unit, then the rectangle looks something like this:
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Then this rectangle cannot be tiled with square tiles, no matter
how small the tiles.

I presume there is no question of grouting between the 
tiles.

Joking aside, absolutely not!

And not even the hint of a leftover gap along either side?

There must be no cutting of the small tiles to fill any gap, no
matter how minuscule.

I suppose the explanation of why this tiling is unachievable is
no harder than the one just given?

The proof that any such tiling is impossible follows exactly 
the same lines as the argument just described. You might 
like to think about it. We can come back to it later if you 
like.

Will do. Where might you come across such a rectangle?

Rectangles with this exact shape have a unique and very special
property.

They do?

Yes. The ISO A4 sheet (a metric standard paper size) is a rec-
tangle of this type. Ideally, it’s supposed to have the length of
its longer to its shorter side in the exact ratio : 1.

I have an A4 pad of paper here.

Well, look at the cover and see what is said about dimensions.

It says that the pad measures 297 millimeters by 210 
millimeters.

At first sight, rather odd dimensions, wouldn’t you say?

Now that you mention it. What’s the reason?

Work out the ratio of the longer side to the shorter side.

I get

So?

Ah, how soon we forget!

Oops! Stupid me. This fraction is an old friend. It’s the sixth in
the sequence

of approximations to that we hit upon some time ago.2
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None other. You may recall we showed that the fraction 
= 99—

70
is well within 0.00025 of .

Therefore, is a good approximation of .

Less than one four-thousandth of a unit in terms of meters is
less than one-quarter of a millimeter.

So we are witnessing a connection between a term in this
sequence and the paper industry?

Yes.

You are saying that these dimensions are purposely chosen so
that the ratio of the longer side of an A4 sheet to its shorter side
is very nearly in the ratio : 1.

As I said, ideally, they should be in this exact ratio but, as we
now know, this cannot be achieved with each side being an
exact natural number of millimeters in length.

No doubt there are good reasons for insisting on trying to
achieve this ratio.

The reason is a practical one. In this case, and in this case only,
the sheet can be folded along its longer side to give two smaller
rectangles, for each of which the ratio of the longer to the
shorter side is again : 1.

It must be this way and no other way. Really intriguing!

And because this ratio cannot be achieved with both sides
being integer multiples of a basic unit, you wouldn’t know
whether to describe nature as subtle or just plain contrary.

But she’s certainly interesting. Who spotted this first, and is it
really useful?

Well, I’ve read that it makes paper stocking and document
reproduction cheaper and more efficient.

So even has a “commercial side” to it.

According to the same source, “the practical and aesthetic
advantages of aspect ratio for paper sizes were prob-
ably first noted by the physics professor Georg Christoph
Lichtenberg in a letter he wrote on October 25, 1786, to one
Johann Beckmann.” As a result of his observation, the ratio 

: 1 is called Lichtenberg’s ratio in some quarters. Now 
there’s a little bit of history for you.

And much more recent than I would have expected. Is it hard
to show why : 1 is the only ratio that works?

No. I’ll show you why in a few moments. But to continue: each
of the new sheets thus formed has the same property as the
parent.

And this is important?
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Yes, because it means that each of the smaller sheets can in turn
be folded in two to give more sheets of the same type but
smaller, and so on if required.

Very nice!

Two A4 sheets are the offspring of a single A3 sheet, and in
turn, two A3s come from one A2. The first in the line of the 
A-series is an A0 sheet whose dimensions in millimeters are
1189 ¥ 841. This is approximately a square meter in area.

Let me check this:

841 ¥ 1189 = 999,949

which is almost the 1,000,000 millimeters squared contained in
a square meter.

Yes. The area of an A0 sheet is 51 millimeters squared short of
the full square metre. This error might appear significant, but
as a percentage of 1,000,000, it is a mere 0.0051%.

A tiny percentage.

Why don’t you fold an A4 page in two and check that the ratio
of the longer to the shorter side is approximately : 1. Easier
still, place two A4 sheets side by side lengthways and check 
that the ratio of the longer to the shorter side is approximately

: 1.

I suppose I don’t even have to do it physically, because if I place
a long side of each A4 side by side like this:

I must end up with a rectangle with long side measuring 
2 ¥ 210 = 420 millimeters and short side measuring 297 
millimeters.

Just so. Why don’t you check how close the fraction squared
is to 2.

Ah, you’re testing to see if I can still remember how to do this.

420
297

2

2
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Never! You might as well reduce the fraction to its lowest form
of before you start.

Oh right. The calculation

shows that the square of is within of 2.

Well done! I see you haven’t forgotten the idea of that trick we
used so well earlier.

It took me a while to recall that I should write 19600 =
19602 - 2 so that I could divide 9801 into 19602 to get 2 
exactly.

You’ll be quite the old hand in no time!

You’ll give me a big head. Anyway, we can say that the ratio of
the long side of an A3 page to its shorter side is also approxi-
mately in the ratio : 1.

If the A4 pages had the ideal ratio of : 1, then combining two
of them as above gives a sheet like this:

Here the long side measures 2 ¥ 1 = 2 and the short side 
measures .

So the ratio of the long side of this big sheet to its short side is
2 : .

And is this the same as the ratio : 1?

Ah, you want me to show that it is! You will have to give me 
a hint.
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All right. Just remember that ¥ = 2.

Let me think a little while.

Take your time; inspiration will strike.

Let’s hope so. There cannot be all that much I can do with such
a meager expression as the ratio 2 : .

As you say.

I think I see one thing I could try. I’ll start simply by writing
the 2 as ¥ .

Very good, because this step is the reverse of anything we have
done before.

It is?

Up to now we have always replaced ¥ by the simpler 2,
but this time you are choosing to write the compact number 2
in expanded form, as ¥ .

I see what you mean. Doing this allows me to write

Canceling a above and below the line on the right I get this:

But what am I to do now?

A little bit of trickery. Since is the same as , and since this
is equivalent to the ratio : 1, you may say that this equation
shows that

So, we’re done.

Why?

Because, haven’t we just shown, for the sheet of paper formed
by gluing together two ideal A4 sheets, that the ratio of the long
side to its short side is the ideal : 1?

You have, and so we get an ideal A3 sheet.

Fascinating!

Well done.

So now I know that if the ratio of the longer side of a sheet of
paper to the shorter side is exactly : 1, then that piece of
paper can be folded in half along its long side to give two smaller
sheets of paper, to which the same thing can be done.
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Correct. Each of these sheets has the same property:
namely that the ratio of the longer to the shorter side is again

: 1.

And so they too can, as you said earlier, be folded along their
long sides to produce two smaller sheets that will also have the
same property.

That’s right.

You also said earlier that rectangles of these dimensions are the
only ones having this property.

I did. Only those rectangles, the length of whose long side to
the length of the short side are in the ratio : 1, have this
property.

I’d be interested to see why.

It will require some algebra.

I thought it might!

Let us begin with a labeled diagram of a rectangle:

Here l stands for the length of the longer side and b stands for
the length of the shorter side.

I suppose one side has to be longer than the other for there to
be any hope of success.

You are right to question my assumption that one side is longer
than the other. Fortunately, it is fairly obvious that a square
couldn’t possibly work. The ratio of its sides are 1 : 1 so that,
when folded, the resulting two smaller pieces have sides in the
ratio 2 : 1, as their longer sides are twice as long as their shorter
sides.

Agreed. So one side of this special rectangle must be longer than
the other.

It must, but that this is so emerges of its own accord from the
demonstration. So let us divide this rectangle by folding per-
pendicular to its long side.

2

2
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Now tell me the dimensions of the sides of each of the two
smaller rectangles.

The shorter side has length l–
2
, while the longer side has 

length b.

But how do you know the side of length l–
2

is shorter than the
other side of length b?

Well, it certainly looks shorter from the diagram. I suppose
you’ll want me to convince you that it must be.

I’m afraid so. If we had started out with a 12 ¥ 4 rectangle 
so that l = 12 and b = 4, then l–

2
= 6 is still bigger than 

b = 4.

I can see that. But surely this is not the type of rectangle we’re
after? In your example, the ratio of the length of the longer side
to the length of the shorter side is 12 : 4 or 3 : 1, while the cor-
responding ratio for either of the smaller rectangles is 6 : 4 or 
3 : 2. A ratio of 3 : 2 isn’t the same as a ratio of 3 : 1, so the ratios
don’t match.

You are right in what you say. No matter what l and b may be,
we cannot have the length l–

2
longer than b because otherwise

we’d be trying to match the ratio l : b to the ratio l–
2
: b, which is

not possible.

Could l–
2

be equal to b?
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A good question, but no, for similar reasons. If l–
2

were equal to
b, then l would be equal to 2b. This would mean that the rec-
tangle had a 2 : 1 ratio of its long side to its short side.

And the two small rectangles would actually be squares?

Yes, where the ratio of the long side to the short side is 1 : 1.

Which rules out l–
2
= b because the two ratios must match.

So b must be the length of the longer side in each of the smaller
rectangles.

Well, I’m glad that is out of the way.

Notice that we have just figured out that, to get matching
ratios, the length of the long side of the rectangle we start out
with must be less than twice the length of the shorter side.

Having thought about it, it seems almost obvious.

Perhaps. Now to the juicy bit of the argument. For things to
work we must have:

which means that we must have

l : b = b : l–
2

or

Would you like to simplify this?

I’ll try. In school we learned that to divide by a fraction, you
turn it upside down and multiply.

Yes, and what do you get in this case?

We get that

But what do we do now?

l

b

b

l
= 2

l

b

b

l
=

2
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Why don’t we bring all the letters to one side by multiplying
both sides of the equation by l–

b
. In that way you’ll end up with

the number 2 on its own on the right-hand side.

Doing this gives

if I remember my school algebra correctly.

Yes. This simple little equation says that

What do you make of this?

Hmm! Thinking time again. Is it saying that there is some frac-
tion that when squared gives 2?

Definitely not, though it might look like it. Remember that,
for us, the numerator and the denominator of a fraction are
whole numbers. We never said that l and b had to be whole
numbers.

Of course we didn’t. In fact, doesn’t this equation now tell us
that l and b cannot both be whole numbers?

Absolutely correct, because if they were, then we’d have a frac-
tion squaring to 2.

Which we know is impossible. Could they both be fractions?

No, because when you divide one fraction by another . . .

. . . you get another fraction. And a fraction squared can never
give 2. So what is the equation telling us?

That

or that

l : b = : 1

which is what we set out to prove.

I’ll have to gather my thoughts. Our mission was to discover a
rectangle with the property that when it is folded along its
longer side to give two smaller rectangles, the ratio of the longer
to the shorter side of each of these smaller rectangles would be
exactly the same as the ratio of the longer side of the original
rectangle to its shorter side. Am I right?
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Yes. And we succeeded in this. What have we discovered?

That such rectangles exist and that the ratio of the length of the
longer side of such a rectangle to the length of its shorter side
must be exactly : 1.

Yes. The above discussion doesn’t say that l, or b for that matter,
must be a specific number.

It is only the ratio that matters and not the actual dimensions.

Exactly. The scale doesn’t matter as long as the ratio is 
right.

So things work for any rectangle whose dimensions are in the
ratio : 1, and they don’t work otherwise.

That’s the story from top to bottom.

But What About the Tiling Problem?

Have you forgotten that we still must come up with an argu-
ment as to why it is impossible to tile the ¥ 1 rectangle with
square tiles no matter how small?

Of course, I didn’t actually prove that it is impossible. Why
don’t you try it?

Me, prove it?

Yes. You’ll have no problem, and it would round off this par-
ticular discussion rather nicely.

So I must figure out why this rectangle cannot be tiled. Acting
on previous experience, I’m going to assume that it can be tiled
exactly, in the hope that I arrive at a contradiction.

A good plan. So are you about to start laying tiles?

Mentally, but before I do, I had better decide on the dimensions
of an individual tile. Since I want to allow for all possible square
sizes, I’ll let the tile have sides of length s. I’ll draw one.

Here s stands for one length and every length at the same time.
Is this the right approach?

One for all. Very sophisticated.

Let me suppose that I lay exactly m tiles along the long side of
length , and exactly n tiles along the short side of length 1.
The plan would look something like this:

2

2

2

2
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with no gaps between the square tiles.

I see.

Since there are no gaps, and each tile side has length s, it must
be that

= ms

while

1 = ns

Is this not so?

Seems logical to me since m tiles, each of length s, measure
exactly ms units, with n such tiles measuring ns units.

Now let me think. What did we do previously at this stage? Ah,
yes. Divide the first equation by the second. Doing this gives

which is not possible since the Ancient Greeks proved that 
cannot be written as a fraction. Consequently, either the tiles in
the topmost row or rightmost column (or both) would have to
be cut in order to fill the rectangle exactly. If all the tiles are left
perfectly square, no matter what their size, they will not exactly
fit the rectangle.

Bravo!

On Parade

Does ’s irrationality have any other consequences? I’m fully
hooked at this stage.

I would like to expand a little in a visual manner on the fact
that twice the square of a natural number is never the square
of another natural number.

2

2

2 =
m

n

2

n tiles 1

m tiles
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“Twice a square is never a square”? Of course, this just means
that m2 = 2n2 is not possible. I, of all people, should know this,
given the time I spent trying to find a match between one of the
first thirty perfect squares

1, 4, 9, 16, 25, . . . , 729, 784, 841, 900

and one of their doubles. Twice the square of n is 2n2, and it can
never be equal to another square such as m2.

Where m and n are positive integers. Because if there were an
instance of this happening, then would be rational.

Understood.

If you were a drill sergeant in command of a perfect square
number of soldiers, then you could parade your squadron in a
square formation.

Okay, a bit of exercise would be welcome.

As I was saying, with each rank and file having exactly the 
same number of soldiers, who, being properly trained by you
to keep the same distance from all of their neighbours at all
times, would march together in the shape of a geometric
square.

In perfect formation. I’d expect nothing less.

That’s the idea. Five abreast and five deep

to form a five-by-five square. Now, drill sergeant, I’m going to
double your squadron to fifty. What do you make of that?

I’m much more important now?

Maybe, but really you’re very sad because you can no longer
parade this enlarged squadron in the square formation that
you find so pleasing.

I am? I think you’re trying to make it look like I have a screw
loose!

No, you’re an earnest sergeant who likes things just perfect; and
what’s more perfect from a drill sergeant’s point of view than
a square formation?

Okay, so I’m a crazy drill sergeant.

2
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Now what if I assign you a different perfect square number 
of soldiers initially and then come along and double your
squadron afterwards?

The perfect square numbers, again, are: 1,4,9,16, . . . , right?

Yes, the squares of the natural numbers.

Well, you’ll drive me even crazier. In the beginning I’ll be
content because no matter which of the perfect squares you
choose, I can have them parade in the shape of a square, which
I’m supposed to love so much. But when you double this
number of soldiers, I get cranky because I can no longer parade
them in a square formation.

Why?

Because the proof of the irrationality of shows that twice a
square is never a square. So, we might say, that here we have
another consequence of the irrationality of ?

Yes, or perhaps a consequence of the proof of the irrationality
of .

I notice that the number 50, which is the size of my original
enlarged squadron, is nearly a perfect square. If I make 1 of the
50 stand out in front with a flag or a bugle or something, then
I can arrange the remaining 49 into a 7 ¥ 7 formation behind
this leading soldier:

You can indeed. A configuration with a certain symmetry to it.

So maybe I can cheer myself up a little bit when you come
around doubling up the number of soldiers I must parade.

Maybe. With this particular setup for the 50 soldiers, I suppose
we could say that you achieve the next best thing to the un-
attainable ideal of a perfect square formation.

Okay.

But what if, instead of having an extra soldier, you are short a
soldier?

2

2

2
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This is pretty well the same, maybe even better because then I
could make up for the missing person by filling the vacant posi-
tion myself to complete the square.

And lead from the front.

Of course, since I’m in charge.

So, for the sake of impartiality, we could say that one soldier
above or below a perfect square number of soldiers is the next
best thing to the ideal because they can be paraded in a near-
perfect square formation, to coin a phrase.

Not a bad description. It has just struck me, since 50 = 2(5)2 =
72 + 1, that this talk about near-perfect square formations ties
in with our previous notion of near-misses.

Those perfect square numbers that are either one more or one
less than twice another perfect square number?

Yes. The parading of a doubled squadron that is one soldier 
in excess or short of a perfect square in a near-perfect 
square formation is just a way of visualizing the numerical 
relationship.

You are absolutely correct. Each is the other in a different guise.

This means that I already know quite a few squadrons that can
parade in the shape of a square and that, if doubled, can march
in a near-perfect square formation.

Remind us how to find their sizes.

Just consult the terms of the sequence

and the sizes we seek are all there before our eyes.

Where, for example?

Well, the third fraction, 7–
5
, is directly related to the two squads

we have been discussing. Its denominator 5 is the number of
soldiers in each rank or file of the smaller squadron with its 
25 = 52 - a perfect square of soldiers, while its numerator 7 gives
the number in each rank or file of the larger squadron, where
either I am filling out the final row or where there’s one soldier
out in front.

And the fact that 72 - 2(5)2 = -1, which is the same as 2(5)2 =
72 + 1, shows why this is possible?

Yes. Had we not known it already, the second equation tells us
that if we choose the original squadron to have 52 soldiers, then
double this squadron has 72 soldiers plus 1 and so can be
paraded in a near-perfect square formation.

1
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It would.

Since the square of the numerator of each fraction in the
sequence is twice its denominator squared plus or minus 1, we
know a whole host of squadrons with a perfect square number
of soldiers, which when doubled in number, can be paraded in
near-perfect square formations.

Remember that we haven’t proved that this is true for every
term in the sequence.

I know, but we do know it’s true for the fractions displayed.

Granted, because we verified it in every single case.

And we can calculate from these fractions whether double the
number of the squad is 1 short or 1 in excess. The calculation
12 - 2(1)2 = -1 associated with the fraction 1–

1
, for example, says

that 2(1)2 = 12 + 1, and so points to an excess soldier.

Thus, if you start with one lone soldier making up both the
single rank and the single file of the trivial square:

then double this number of soldiers can be arranged into a
near-perfect square formation, where one soldier is out in front
of the square behind him.

Yes, like so:

This arrangement that, though it may not look like it, is a near-
perfect square formation as it is just one over a perfect square.

Yes.

With such small numbers it can be hard to discern patterns.

For the fraction 3–
2
, we have that 32 - 2(2)2 = 1 or, equivalently,

that 2(2)2 = 32 - 1. This tells us that if we double an original
squadron of 22 = 4 soldiers, which can be arranged in a square
with two rows and two columns:

then the enlarged squadron will need one soldier to complete a
square formation.
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We can see that this is the case when the eight soldiers are
arranged thus:

And as already mentioned, if the drill sergeant falls in at the
middle of the front row, we obtain a square, so this formation
is a near-perfect square.

The next fraction in the sequence is 7–
5
, and we have seen how

this works.

Since there is no fraction in the sequence with a denominator
of 3, it might be a nice exercise to take an initial squadron of
size 32 = 9, which can be arranged in this square:

and examine whether double this number of soldiers can be
arranged to form a near-perfect square formation.

A good idea. Now 18 = 16 + 2 tells us straight away that it is not
possible.

You are right, of course. We could settle for a formation 
such as:

which has its own charms but does not satisfy our 
requirements.

Is it going to turn out that the smaller squadron sizes must be
the squares of the following numbers

1, 2, 5, 12, 29, 70, 169, 408, . . .

and no other numbers?
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It could well be.

These numbers are just the denominators of the fractions in our
previous sequence.

Yes, I can see that. You might like to know that this sequence is
known as the Pell sequence.

It must be an important sequence if it has got a name.

Well, if what you think about these numbers is true, then it is
an important sequence. You might like to puzzle out how to
generate successive terms in it.

I know how to get more and more terms in it because I know
how the terms in our fraction sequence are generated.

You do indeed. But can you find a rule that just relates to the
terms in this sequence alone?

You mean some rule that refers only to the sequence itself and
doesn’t use outside help, as it were?

Exactly.

You must give me lots of time.

Take all the time you need. You understand that what you spec-
ulate in relation to the Pell sequence is a big generalization
from what we have established as fact.

I realize this. I would like you to tell me if I am right, but I would
also like you to teach me how to prove for myself the observa-
tions we have made.

Ambitious, and very laudable. Maybe none of what you believe
to be true is so in general.

I’ll be most surprised if what we have observed to date is false
in general, as you say.

Before we set about this mission, I would like to discuss one
further consequence of the irrationality of as it relates to
the nature of its decimal expansion.

Should be interesting.

The Nature of the Decimal 
Expansion of 

The irrationality of places certain restrictions on its possi-
ble decimal expansion.

It does?

Yes. For starters, its decimal expansion cannot be like

1.40000000000000000000 . . .

2

2

2
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where the 4 after the decimal point is followed by an endless
string of zeros.

Isn’t an expansion such as this one normally written without all
those zeros at the end?

Yes. It is simply written as 1.4.

That’s what I thought.

A decimal expansion that terminates in all zeros is called a 
terminating decimal expansion, or a terminating decimal for
short.

And does not have a terminating decimal expansion,
you say?

That’s correct. Do you think you could explain why it can’t
have such an expansion?

I think so. Because the decimal 1.4 has just a single digit 
appearing after the decimal point, I multiply it by the fraction
10—
10

to get that

So 1.4 corresponds to the fraction 7–
5
, thus it is not equal to .

Good. Since 10—
10

is the same as 1, multiplying by it is just a clever
device to write 1.4 as a fraction.

Of course, I wouldn’t normally be as long-winded as this cal-
culation makes me out to be.

Meaning?

I’d just write

straight off and then cancel the factor 2 common to the numer-
ator and denominator. Anyway, to answer your question, I can
do pretty much the same for any terminating decimal: show
that it is just another way of writing a fraction, and so 
couldn’t have a terminating decimal expansion.

Show us what you would do for the terminating decimal 0.152.

Because it has three digits after the decimal point, I multiply it
by .

The fraction with 10 to the power of 3 for both its numerator
and denominator. So you multiply it “above and below” as is
often said, by a power of 10 which matches the number of
digits behind the decimal point.

I suppose so.

1000
1000

2

1 4
14

10
. =

2

1 4
10

10

14

10

7

5
. ¥ = =

2
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Since 0.152 ¥ 103 = 0.152 ¥ 1000 = 152, you simply write that

Then you see if you can reduce the fraction to its lowest 
form by canceling factors common to its numerator and
denominator.

Yes. Now that you mention it, I suppose I should try. I see that
I can divide above and below by 8 to get

Since the numerator of this fraction is the prime number 19, I
know that I cannot reduce it any further.

Nicely spotted. So you have written the decimal 0.152 as a frac-
tion in lowest form. I suppose you can verify that has the
decimal expansion 0.152 using long division.

I think I could but, as I said before, I wouldn’t like to have to
explain the procedure, though I’m sure it’s not that hard to
explain.

Nor will you have to. Anyway, by imitating what you have done
with the two terminating decimals 1.4 and 0.152, we can show
that every terminating decimal expansion represents a frac-
tion. And since is irrational, its decimal expansion cannot
be a terminating one.

So that settles that.

But there is more to this story than merely saying that 
cannot have a terminating decimal expansion.

There is?

It cannot have a decimal expansion such as

0.62428571428571428571 . . .

either. Here the initial two digits after the decimal point, 62,
are followed by the six-digit block 428571, which in turn is fol-
lowed by another block with the six digits 428571, in the exact
same order, and so on, with this six-digit block repeating itself
indefinitely.

Let me examine this closely. You are saying that after the digits
6 and 2, there is a pattern consisting of blocks of 428571 repeat-
ing itself over and over again.

Ad infinitum, or all the way to infinity.

Okay, I believe this.

2

2

19
125

0 152
19

125
. =

0 152
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Now cannot have a decimal expansion such as this one
either, where after a certain number of initial digits, a block of
digits repeats itself over and over again. A decimal expansion
of this type is said to be mixed.

So what kind of number has this type of decimal expansion? Is
it very complicated?

Now you have posed yourself a little puzzle.

I have? I asked you the question fully expecting you to enlighten
me, but now I sense a task coming on.

Of course, maybe you could experiment a little. Perhaps the
trick you used to find the fraction corresponding to a termi-
nating decimal could help in some way.

But those two decimal expansions are finite. This expansion is
much more intimidating because it’s infinite even if after a while
it is only the same block of six digits repeated over and over.

Something we’ll exploit nicely, as you’ll soon see.

You’ll have to show me.

I will, but before I do I want you to tell me how I might get
those two digits, 62, immediately following the decimal point
in

0.62428571428571428571 . . .

out in front of the decimal point so that what then follows the
decimal point is nothing more than the six-digit block 428571
repeated indefinitely.

Just use the previous trick of multiplying by 102 = 100. You’ll
get a number where the first two digits, 62, appear in front of
the decimal point, with the block 428571 repeated over and over
behind the decimal point.

So

(0.62428571428571428571 . . .) ¥ 100 = 62.428571428571428571 . . .

Yes, that looks right.

Now, if we subtract 62 from this number, we get

0.428571428571428571 . . .

which is a purer specimen. I say this because in a sense it’s as
if the impurities have been removed from the original expan-
sion to give one that consists of an infinite number of copies
of the first block of six digits appearing immediately after the
decimal point.

So the decimal expansion 0.428571428571428571 . . . is not a
mixed one?

2
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That’s right. The expansion we have now is said to be 
purely periodic. Pure because there are no digits following the
decimal point that are not part of the repeating pattern, and
periodic precisely because of the infinite repeating of the 
six-digit block 428571. This periodic decimal expansion is said
to have “period 6” because it’s a six-digit block that repeats
itself.

Sensible.

Because of this periodicity, the infinite decimal expansion is
sometimes written more succinctly as

—it being understood that the overlined block is to be repeated
indefinitely.

So 0.3̄ stands for 0.3333333333333333 . . . ?

Yes.

I remember this from school. This is the decimal expansion of
the fraction 1–

3
if I am not mistaken.

You are not. A very nice way of showing that this is so is to set

x = 0.3333333333333333 . . .

Then multiply by 10 to get

10x = 3.3333333333333333 . . .

Then subtract the original expansion from this one:

10x = 3.3333333333333333 . . .

x = 0.3333333333333333 . . .

9x = 3.00000000000000000 . . .

to get

Then we have your fraction.

That’s ingenious. The way the 3’s behind the decimal points in
both expansions are made to “kill each other off,” so that we end
up with a terminating decimal.

Simple but clever.

Who spots these tricks?

I have often asked myself the same question about these
inspired flashes of insight. But coming back to the decimal
expansion 0.62428571428571428571 . . . , which in our new

9 3
3

9

1

3
x x= fi = =

0 428571.
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notation we could write as , why don’t you try
finding out the value of using this technique?

I’ll give it a go. So I begin by writing

x = 0.428571428571428571 . . .

using the symbol x again.

A new job for x, which is always called on whenever there’s
something to be found out.

A very busy fellow! This problem is a little more challenging
than the one you just did, but I think I see what to do.

Great.

Since the period of this expansion is 6, I’ll multiply by 106

to get

1000000x = 428571.428571428571428571 . . .

and then subtract x from it.

That’s all there is to it.

So we get

1000000x = 428571.428571428571428571 . . .

x = 0.428571428571428571 . . .

999999x = 428571.00000000000000000 . . .

Then

and so

We have ended up with a fraction.

You have indeed.

Is it in lowest possible form?

Probably not. It would be nice to see it in lowest terms, but it
is not necessary and does involve a lot of labor.

But I’m most curious so see if it boils down to being a simple
fraction.

You may like to show that

0 428571428571428571
428571

999999

3

7
. . . . = =

0 428571428571428571
428571

999999
. . . . =

999999 428571
428571

999999
x x= fi =

0 428571.
0 62428571.
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It shouldn’t take all that long.

Who would have thought this decimal expansion is that of the
innocent-looking fraction 3–

7
?

The problem of reducing fractions involves factorization,
which can be far from easy, particularly if the numbers are
really large.

Still, it’s clever how the infinite is turned into the finite.

A mathematical poet. You might like to test your mettle on
taming the expansion

which has, with the exception of 8, all the digits appearing in
their usual order.

Intriguing. I have to see which fraction has this wonderful
purely periodic expansion.

And you are convinced that you’ll end up with a fraction?

I fully expect to, because when I perform exactly the same tricks
as above I’ll end up with

showing that x = is a fraction.

Excellent. Now enjoy yourself reducing this faction to it lowest
form. You’ll get a surprise.

I’d love to do it now, but I suppose we had better finish what
we were doing.

Yes, we had better remind ourselves what it is we have just
achieved and what we are about.

We have shown that

or if you prefer the “big screen” version, that

Our original task was to find the number represented by

0.6242857142857142 . . .

0 42857142857142
3

7
. . . . =

0 428571
3

7
. =

0 012345679.

999999999 12345679
12345679

999999999
x x= fi =

0 012345679.
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with the “impurity 0.62 at the front of it.” Well, everything is
ready, so I think you should now complete this in fairly short
order.

Let me check back then. We showed that

(0.6242857142857142 . . .) ¥ 100 = 62.42857142857142 . . .

and then we showed that is 3–
7
. So we may write that

100(0.6242857142857142 . . .) = 62.42857142857142857142 . . .

= 62 + 0.42857142857142857142 . . .

At last!

Very nicely done. This result can be verified by long division
or a calculator.

So the mixed decimal

also turns out to be that of a fraction.

I think that it is clear from what we have just done that any
decimal expansion consisting of a finite number of digits after
its decimal point, followed by a finite block of digits that
repeats itself endlessly, represents a rational number.

I can see that this is true because there is nothing to stop us
from imitating exactly the steps taken in the above argument to
produce a rational number every time.

That’s right. So what implications has all this for the decimal
expansion of our irrational friend ?

Ah yes! It implies that its decimal expansion is not periodic
from some digit onwards.

Because?

Because if it were, then would be a rational number.2

2

0 62428571
437

700
. =

= +

=
¥( )+

fi ( ) =

fi =

62
3

7
62 7 3

7

100 0 6242857142857142
437

7

0 6242857142857142
437

700

. . . .

. . . .

0 428571.
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Something we know it definitely is not.

It is interesting that, without actually knowing the nature of
the decimal expansion of , we still can say that it is neither
terminating nor periodic from some stage on.

Negative things to say, in a way, but facts nonetheless.

I can believe from the particular examples we have discussed
that every terminating decimal, mixed decimal, and purely peri-
odic decimal expansion represents a fraction, but does every
rational number have an expansion which is one or other of
these three types?

A good question, to which the answer is “Yes.” If we were to
take the time to examine carefully the long-division procedure
for obtaining the decimal expansion of a fraction, we would
understand that such expansions must either terminate, be
mixed, or purely periodic.

So if I examine a decimal expansion and find it has no repeti-
tive pattern, then I know it is the decimal expansion of an irra-
tional number.

I’m going to say yes, although no human being or computer
could ever hope to examine a complete decimal expansion so
as to be able to pronounce that a block of digits doesn’t start
repeating from some point onwards.

Okay, if I examine the first million digits of a decimal 
expansion very thoroughly and do not spot a repetitive 
structure, I still cannot say anything about the rationality or
irrationality of the number represented by the complete 
expansion?

I’m afraid not. Even though a million digits is a sizeable
number of digits, you might be looking at only a small part of
the leading nonperiodic portion of a mixed decimal.

With such a length?

Yes, any length you like. Or you could be looking at a mixture,
where you see all of the nonperiodic portion of the expansion
and some of its periodic part.

But not enough to know that the expansion had entered a repet-
itive cycle?

Something like that.

And could I be looking at a purely periodic expansion and not
know it?

Easily, if the period of the decimal is more than a million. The
fraction

2
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has a period of 16,493,730.

Simply staggering! And is it hard to generate the successive
digits of this decimal expansion?

Not at all for this or any rational number. It takes no more 
than a line of computer code to simulate the long-division
algorithm. The decimal expansion of this fraction begins after
the decimal point with the digits

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 8

which are then followed by a sequence of digits that have all
the appearance of being completely random. Then, after
16,493,730 digits, the same thirteen digits

0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 2, 8

reappear, followed by exactly the same sequence of digits that
came after these thirteen digits on the first cycle.

Absolutely fascinating!

Yes, the study of periodic decimal expansions is captivating
and holds many gems. The decimal expansion of 1—

61
is

0.016393442622950819672131147540983606557377049180327868852459

Here each digit appears six times after the decimal point. The
relative frequency of each digit is exactly the same for each
digit! Check it out.

Amazing!

You could use this expansion to assign six tasks each to ten
people in an apparently random way.

I’ll be sure to use this knowledge when the need arises! Are there
many fractions of this type where each digit occurs exactly the
same number of times in the decimal expansion?

I don’t know, although I know how to fish for them and have
landed a couple of beauties. Let this question be an investiga-
tion for yourself.

For a future time. I think I understand the real problem with
the question I asked.

Which is?

In this case, that one cannot say what the nature of a number
represented by an infinite decimal expansion is from an exam-
ination of only a finite amount of that expansion. To draw con-

1

98982277
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clusions we’d have to make assumptions about the vast unseen
portion . . .

. . . which lies hidden in “the fog of infinity,” to borrow a
metaphor from a medieval mathematician. However, you can
use what we know about the decimal expansions of rational
numbers to construct irrational numbers.

How?

Let me give you an example. Take all the natural numbers

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21 . . .

and use them to construct the decimal expansion

0.123456789101112131415161718192021 . . .

In this expansion, each natural number appears in its usual
order after the decimal point.

This is done deliberately?

To ensure that the decimal expansion cannot possibly have 
a repetitive structure beginning anywhere along the entire
expansion.

Which means that the expansion cannot be that of a rational
number. Very clever.

Isn’t it? If we accept that the decimal expansion formed in this
manner could never settle down to being periodic, then it must
be the expansion of an irrational number.

It seems almost obvious that it couldn’t have a repeating pattern
from some point on.

You might like to turn “almost obvious” into “completely
obvious” in an idle moment.

If I ever get any! Do you have any other examples?

I have, but we shouldn’t let ourselves stray too much.

Just one more, then.

The infinite decimal expansion

0.1010010000001000000000000000000000000100 . . .

is that of another irrational number.

Built from just zeros and ones?

But do you see how?

Something else to think about during those idle moments.
Which irrational numbers do these two cleverly constructed
expansions represent?
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By which you mean, are they the decimal expansions of irra-
tional numbers such as ?

I suppose that’s what I mean.

I have no idea if the first one represents any irrational quantity
of this type, or of any other type for that matter, that can be
connected to rational numbers. I’m told on good authority that
the second one is not of the “ type,” if I may say this loosely.

An even stranger number, then?

You could say that. It is best to think of these numbers as be-
ing solely defined by their expansions. We could be diverted
forever if we were to begin probing the nature of this breed of
irrational number.

Well, this discussion of decimal expansions has given me a
better understanding of how they relate to rational and irra-
tional numbers. I’m really interested in seeing more of the digits
of the expansion of , now that I know that its irrational
nature prevents its decimal expansion from having a periodic
structure from some point onward.

That is good to hear. I think it is time we concluded this excur-
sion describing some of the consequences of the irrationality
of .

Before you do, I have a question that I meant to ask some time
back, when we were talking about squeezing into smaller
and smaller intervals.

Which is?

Can’t we get as many places of the decimal expansion of as
we want simply by narrowing in on it by tenths?

Will you elaborate, please?

Well, when we show that

(1.4)2 = 1.96 and (1.5)2 = 2.25

we know that

1.4 < < 1.5

Yes, we know the location of on the number line to within
one-tenth of a unit because we know it lies in the interval [1.4,
1.5].

So now can’t we find in which tenth of this interval it is?

Yes, this interval itself can be subdivided into the ten 
subintervals

[1.40, 1.41], [1.41, 1.42], . . . , [1.48, 1.49], [1.49, 1.50]

and we can determine which of these subintervals lies in.2

2

2

2

2

2

2

2

2
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My point exactly. In fact, since (1.4)2 = 1.96, and (1.5)2 = 2.25,
we know that is much closer to 1.4 than it is to 1.5.

So?

Well, it means I’d check the subintervals starting with [1.40,
1.41] first.

Agreed.

I already know that (1.40)2 = 1.96, and I can work out by hand
that (1.41)2 = 1.9881. Since this is still less than 2, I now work
out (1.42)2 to get 2.0164. At this stage, I know that

1.41 < < 1.42

Agreed. So you now know the decimal expansion of to one
decimal place.

By the way, can you tell me why will never land on the end-
point of a subinterval?

Because if it did it would have a terminating decimal expansion,
which we know it hasn’t.

Excellent. What are you going to do now?

Subdivide the interval [1.41, 1.42] into the ten subintervals:

[1.410, 1.411], [1.411, 1.412], . . . [1.418, 1.419],
[1.419, 1.420]

and determine which of these subintervals lies in.

Where are you going to start?

I’d have to think about this. Probably by squaring 1.411.

Well, if you go about it this way, you’ll work out that

(1.411)2 = 1.990921

(1.412)2 = 1.993744

(1.413)2 = 1.996569

(1.414)2 = 1.999396

(1.415)2 = 2.002225

to find that

1.414 < < 1.415

I might have skipped some of these squarings and gone straight
to (1.414)2.

Even if you did, you can see that there is a lot of work involved
in testing the squares. You now know to two decimal places.

I’m beginning to see the light. There will be a lot more work
involved to get the third decimal place, and even more to get
the fourth and so on.

2

2

2

2

2

2

2
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This process, repeated over and over again, defines what is
meant by a decimal expansion. In theory, it allows us to deter-
mine as many of the leading digits of a number’s decimal
expansion as we may want.

In theory maybe, but very slow in practice?

Yes, when you compare this tedious method with what we
already know through your rule. With no more than a small
number of simple additions and a few elementary multiplica-
tions and divisions, we found that

Now the long-division algorithm applied to the two fractions,
which does not take too long in these two cases, gives

. . . the first four decimal digits of the decimal expansion—
impressive. Generating more and more fractions would seem
like a better way to go.

Perhaps, but provided we can settle a number of questions that
we left unanswered.

1 414201183431952 2 1 4142156862745099. . . . . . . .< <

239

169
2

577

408
< <
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So we are going to study the sequence

in earnest?

Definitely. The waiting is over.

The first thing I want you to prove is the plus or minus 1 
property.

Oh yes, your conjecture that every term in this sequence has
the property that its “numerator squared minus twice its
denominator squared” alternates between -1 and 1.

Or maybe you would show me how to prove it for myself.

But this property might not be true in general.

I’ll eat my hat if it isn’t!

I know you have verified that it holds for the first eight frac-
tions, but couldn’t all of this be just a fluke, circumstantial 
evidence, as the lawyers might say?

Would it not have to be one massive fluke?

Perhaps, but maybe it just is. It might be that none of the frac-
tions, as yet ungenerated, has this property, or it could be that
some will have it but others won’t.

Logically, I know that what you say is correct until we can show
otherwise, but I’m sticking to my hunch that every fraction in
the sequence has this property.

Such conviction! Right, then, let our first job be to learn if this
alternating property propagates itself along the entire infinite
sequence.

Alternating property? Nice—a shorter way of describing the
plus or minus 1 property.
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You realize that such a proof, if there is one, must involve some
algebra.

By this stage I think I appreciate that if an infinite number of
cases have to be considered, then algebra must be used.

Yes, whereas arithmetic can be used to check a finite number
of cases, it is unable to cope when the number of possibilities
is infinite.

Simply because they cannot all be examined individually; which
is the problem with checking this alternating property.

Yes. It is algebra that enables us to prove general truths. One
of its strong selling points, you could say.

Which it badly needs for people like me, who are inclined to
tremble at the thought of being expected to use any.

It’s no secret that many people simply turn off at its mere
mention; but you’ve been doing very well so far.

Well, I think so. It is easier to be more positive about its use
when you understand why it is so necessary, and easier still
when you see what it can achieve.

Let’s begin on that upbeat note.

But where should we start?

Why don’t we remind ourselves how the sequence

is generated by the wonderful rule that you discovered earlier.

This rule says:

To get the denominator of the next fraction in the
sequence, add the numerator and denominator of the
previous fraction. To get the numerator of the next frac-
tion in the sequence, add the numerator of the previous
fraction to twice its denominator.

As we said before, all fairly straightforward.

Almost surprisingly so. Now can we translate this somewhat
lengthy verbal description into a shorter but easily understood
mathematical rule.

No doubt this is where letters will come in handy.

Yes. If we find a good way of doing this, we’ll almost surely reap
rich rewards.

Sounds promising.

To make what I am going to do next a little easier, I hope, I’m
going to make a small change in the wording of the rule—it
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won’t change the result. I’ll use the word current instead of the
word previous so that the rule now reads:

To get the denominator of the next fraction in the
sequence, add the numerator and denominator of the
current fraction. To get the numerator of the next frac-
tion in the sequence, add the numerator of the current
fraction to twice its denominator.

So in terms of generating successive terms of the sequence using
this rule, the current fraction is the one we have before us at
present?

Or the one just generated a moment ago and on which we are
about to apply the rule so as to generate the next fraction in
the sequence. How might we describe this current term using
letters?

By

as we have done before?

Why not? With m standing for the numerator and n for the
denominator. With this notation we are not committed to any
specific fraction, thus we have the freedom to talk about any of
the fractions in the sequence without naming any one numer-
ically. Should we want to talk about a particular fraction, we
give the general numerator m and the general denominator n
specific numerical values, which then identify the fraction in
question.

So if we want to talk about the third term in the sequence, 7–
5
, we

say m has the value 7 and n the value 5 in this specific case.

Exactly.

And if is the sixth fraction 99—
70

, then m = 99 and n = 70.

Why don’t you begin translating your descriptive rule into one
involving m’s and n’s.

I’ll try. With regard to denominators, the recipe says that to get
the denominator of the next term, add the numerator and
denominator of the current fraction.

Correct.

So “add the numerator and the denominator of the current
fraction” translates to m + n.

Exactly. Nothing more than a simple m + n. You might say that
algebra is nothing more than arithmetic applied to letters.

That wasn’t so hard.

m

n

m

n
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Nothing mysterious whatsoever, once you get the hang of it.
Now do the same for the numerator of the next fraction.

Okay. The rule says that to get the next numerator, “add the
numerator of the current fraction to twice its denominator.”
This translates to m + 2n.

Again, very straightforward.

Yes, once you have been guided.

So what is the next fraction after in the sequence?

According to what we have just said, I suppose it’s

which is not all that terrifying.

Good. You have done a great job in writing the descriptive rule
in a more compact way. Sometimes we write

and read the Æ as “becomes.”

So in words, the rule says that “m over n becomes m + 2n over
m + n,” is that it?

That’s one way of saying it. We often use phrases such as 
“transforms into” or “maps into” or “generates” in place of
“becomes.” In any event the rule describes how the typical 
fraction is transformed or carried into the next fraction 

. Even though it contains terse symbols rather than famil-
iar words, this expression of the rule does have the virtue of
being much shorter and so much easier to write down.

I’d have to agree, but it may take some getting used to.

Why don’t you check out the “algebraic” form of the rule on a
specific case?

All right, it will give me practice. Which fraction do you rec-
ommend I apply it to?

First off, why not test it on the starting fraction, 1–
1
?

In this case, m = 1 and n = 1, so the above expression reads

Correct.

Now try it on the result of this calculation.

You mean on 3–
2
?

1
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Yes.

With m = 3 and n = 2, the algebraic rule gives

Correct again. You could now give this rule to a computer
program, along with the starting fraction 1–

1
, and the computer

would generate hundreds of successive terms of the sequence 
in the twinkling of an eye, simply by doing what you have 
done.

No doubt at lightning speed. So we are making progress.

Most definitely.

Seed, Breed, and Generation

But what now?

Let us remind ourselves of what our mission is.

To show for every fraction in the sequence

that the quantity “numerator squared minus twice its denomi-
nator squared” is either -1 or 1.

Exactly, to establish the alternating property. If successful, it
will mean that we have an infinite source of perfect squares that
are within 1 of being double another perfect square.

In the squares of all the numerators, the “near misses,” as I called
them.

None other, an infinity of near misses. To resume our discus-
sion, we now know that this sequence is generated by applying
the rule

first to the fraction 1–
1

to obtain the next term. Then the rule
applied to this “newborn” fraction produces the next member
of the sequence and so on, with the rule acting at each succes-
sive stage on the latest arrival.

Looked at in this way, it is only the seed and the rule that matter;
everything else is predetermined.
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I’m delighted you have made this observation. The fraction 1–
1

can be thought of as the “seed” that breeds the successive 
generations of the sequence by constant application of the
same rule.

And the sequence is a family tree with only one line of
descent.

You could say that, and, viewed this way, what we hope to prove
is that a certain characteristic of the original seed is passed
from one generation to another.

And would applying the same rule to a different seed generate
a different sequence, with some original characteristic of its seed
being preserved?

We can certainly say that the same rule applied originally to a
different seed will produce different fractions at each genera-
tion stage. That the original characteristic would be propa-
gated as well would have to be proven, but we are getting ahead
of ourselves. For now, we want to show that

The square of the numerator of any term minus twice the
square of its denominator is either -1 or 1.

is true for every term of the sequence generated by the rule.

The alternating property.

Shorter still might be, “Top squared minus twice bottom
squared is either -1 or 1,” using plain but less mathematical
language.

Is this acceptable?

Anything that helps us to think more clearly is to be welcomed.

So “top squared minus twice bottom squared” it is.

See if you can translate this into a statement concerning m’s
and n’s.

Well, I suppose, since stands for any term in the sequence, the
top squared is m2.

True.

And twice the square of the bottom is 2n2.

Right again.

So m2 - 2n2 is just another way of saying “top squared minus
twice bottom squared” in terms of m and n for the typical 
fraction .

You are doing very well. Now then, what does the alternating
property assert?

That the quantity m2 - 2n2 alternates between -1 and 1 as 
goes from one term anywhere in the sequence to the next term.
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That’s it precisely. By the way, what is m2 - 2n2 when is the
first term in the sequence?

Since m = 1 and n = 1 in this instance, m2 - 2n2 = 1- 2(1)2

= 1 - 2 = -1, which we knew already.

So the next time it should be 1, which it is, since 32 - 2(2)2 =
9 - 8 = 1, which we also knew already.

But how do I prove that this alternating pattern persists?

This is the crux of the matter. Express what you hope to achieve
in terms of m and n.

Well, if m2 - 2n2 = -1 for the fraction , then for the 
next fraction this quantity must be 1. And, vice versa, if m2 -
2n2 = 1 for the fraction , then it must be -1 for the fraction
after it.

What do you mean to say when you use the phrase “this quan-
tity”? You don’t mean m2 - 2n2 again, do you?

No. I realize that I’m being imprecise by expressing myself in
this manner. What do I mean? I must pause to think.

Take your time.

I have it. I mean that the top of the next fraction squared minus
twice the square of its bottom will be just the opposite of what
it is for .

Tremendous. Now you are getting things clear. In this problem
we are not talking about the fraction alone, but also about
the fraction following it.

This is the fraction

according to the generation rule.

What you need to do now is translate “the top squared 
minus twice the bottom squared” into algebra for this 
fraction.

Oh, right. So now I must do for what I did for .

Correct.

In this case, the top squared is (m + 2n)2 and the bottom squared
is (m + n)2. Will you work these out for me, as I wouldn’t trust
my school algebra?

Of course. First

(m + 2n)2 = m2 + 4mn + 4n2
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while

(m + n)2 = m2 + 2mn + n2

Thanks. I’ll see how far I can push on now with this help. I get

(top squared)2 - (twice bottom squared)2 = (m + 2n)2 - 2(m + n)2

Now

(m + 2n)2 - 2(m + n)2 = (m2 + 4mn + 4n2) - 2(m2 + 2mn + n2)

= m2 + 4mn + 4n2 - 2m2 - 4mn - 2n2

= -m2 + 2n2

if I have done my calculations properly.

Flawlessly!

Considering that the fraction looks more complicated than
, I would not have been surprised by a more complicated

answer.

Nor would I have been, but the answer is surprisingly 
simple.

In fact, almost familiar. Doesn’t the answer -m2 + 2n2

look very like the answer m2 - 2n2, obtained for the fraction 
?

A crucial observation! Can you spot the exact connection
between -m2 + 2n2 and m2 - 2n2?

Is one just the opposite of the other?

Yes, because -m2 + 2n2 = -(m2 - 2n2). Now this relation is all
you need in order to explain what we want to prove.

Let me see if I can explain why. We have shown that the top
squared minus twice the bottom squared of the typical fraction

is m2 - 2n2, while for the next fraction this quantity is 
-(m2 - 2n2).

Signifying . . . ?

. . . whatever value the top squared minus twice the bottom
squared has for , it has exactly minus this value for the next
fraction .

I cannot disagree. Please continue.

Since the top squared minus twice the bottom squared is actu-
ally -1 for 1–

1
, the first fraction in the sequence, it must be 1 for

the next fraction, 3–
2
, then -1 again for the third term, 7–

5
, and so

on indefinitely.

Marvelous! You have explained algebraically why the numera-
tor squared minus twice the denominator squared is always
either -1 or 1 for every fraction in the sequence
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You have established the alternating property. Again, well
done.

And is what we have done a proof?

It is, if we accept the following mathematical principle: imagine
a ladder with equally spaced rungs stretching all the way to
infinity. Mathematics accepts as a principle that if we can get
on the first rung of this ladder and step from it to the next rung,
then we can ascend the entire ladder.

But where’s the ladder with its rungs here?

Here the ladder is the sequence of fractions, with the individ-
ual fractions being the equally spaced rungs.

So the seed is the first rung of the ladder.

Yes, and the step is showing that the property passes from this
fraction to the next.

And so it steps along the whole sequence.

That’s it.

It is fantastic to see the simple reason why the property 
that holds for the seed must propagate all along the 
sequence.

The power of a little algebra.

I could get to like the idea of being able to prove things 
using algebra. Understanding the reason why something is 
as it is makes one feel wiser. I want more challenges of this 
type.

Well, mathematics is just one never-ending sequence of chal-
lenges, some easy and some apparently insurmountable.
Speaking of which, we have one challenge of our own still 
outstanding.

All-Inclusive or Not?

What is this challenge we are about to accept?

To answer a second question in connection with the sequence

which you asked some time ago.

Which was?
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How can we be sure that the fractions of this sequence are the
only ones having the property that m2 - 2n2 is either plus or
minus 1? As usual, stands for the typical fraction.

I had forgotten, but I remember now that I was very interested
in knowing the answer to this question when it first occurred
to me.

Which is something I can well understand. If the alternating
property is true only of this sequence, then this fact will be
another measure of its uniqueness.

But how are you going to go about answering this question?

The only way I know how: by turning the question over in my
mind in the hope that some plan for tackling the problem will
dawn on me.

So just kicking it around until you see some way of getting
started?

Yes, and even if this turns out to be fruitless, other ideas 
often strike you along the way. Now, to get started on this 
challenge, let me put the problem slightly differently: if
someone shows me two integers, p and q, say, which are such
that p2 - 2q2 = 1 or p2 - 2q2 = -1, may I then say that the frac-
tion belongs to the above sequence, or could it be that 
it doesn’t?

Okay. By the way, you have used up to now to stand 
for a typical fraction. Is there a reason why you are changing 
to ?

We could still use or any other pair of letters, such as with
n standing for numerator and d for denominator. Normally,
using when you had been using would be viewed as 
no more than a change of clothing.

It’s not that I have any objection to , but I wondered if there
might be some significance in your choice of letters for this par-
ticular problem.

Only that in this case, it is preferable to use something other
than precisely because up to now has stood for a typical
member of the above sequence. Now we want to keep an open
mind as to whether or not the fraction is a member of this
sequence. By calling it something other than , we avoid any
such suggestion.

I get the idea.

Have you any instincts as to the answer to this question of
yours?

Well, I must have thought that the fraction would have to
belong to this sequence because I hadn’t come across any excep-
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tions during my searches among the first thirty squares and
their doubles. However, I cannot think of any reason why this
should always be the case.

So you have an open mind on the question.

Yes, I suppose. There could be maverick ’s.

Meaning fractions not in “our” sequence

but having the property that their numerator squared minus
twice their denominator squared is either plus or minus 1.

Yes.

Well then, I think the word “maverick” captures what you have
in mind quite well. Let me give you the fraction

and show you that

473212 - 2(33461)2 = 2239277041 - 2(1119638521) = -1

Is this fraction a maverick? What do you think?

That we haven’t computed enough terms of our sequence for
me to check if this specimen belongs to our sequence.

I understand that if you compute some more terms of the
sequence and you come across this fraction, then you’ll know
for certain that it is not a maverick. In fact, it is the thirteenth
term in the sequence. But how would you show that a partic-
ular maverick, if it exists, is not in the sequence?

Could we not use the fact that the number of digits in both the
numerator and denominator of the fractions in the sequence
gets bigger as we move out along the sequence?

Unfortunately this is only an observation; we’ve never actually
proved it to be a general fact.

You are right, I know, but supposing it is true . . .

. . . for argument’s sake?

Yes; then would we not simply need to generate enough frac-
tions of the sequence until we get to one whose denominator is
either that of the fraction we are testing . . .

. . . such as the denominator 33461 of a moment ago?

Yes, or until the denominator of the fraction being tested is
passed by without having appeared as the denominator of the
fractions being generated.
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In which case you’d know that the fraction is a maverick.

That’s the idea: to generate enough terms of the sequence to
show eventually that the fraction being tested is or is not in the
sequence.

And if it were not in the sequence, then we’d have a maverick
that would put an end to the whole matter.

Certainly.

But even if we allow that this procedure is a valid one, which,
by the way, could take an awful lot of time to implement on 
a fraction with a huge numerator and denominator, what
happens if you don’t find any maverick fraction?

I realize that this is the real issue. If even after millions of tests
we did not find a maverick, this wouldn’t prove that they didn’t
exist in general, although it might make me believe very
strongly that they didn’t.

So have you any other ideas?

To show that maverick fractions cannot exist by proving that if
p2 - 2q2 is plus or minus 1 for some , then this fraction lives
somewhere in the sequence.

If we could prove this, then it would settle the matter also.

But I haven’t a clue how to go about proving this, if in fact it is
true.

Well, is there anything else you could have done to check
whether or not the fraction is in the sequence besides cal-
culating more terms of the sequence explicitly to the point
where this fraction made its appearance?

Let me think. Maybe I see another way. If the fraction is in the
sequence, then by working “backwards” I would hit upon a term
that I recognise to be in the sequence.

And would this be enough?

Surely, because by going forward from this known fraction I
would come upon the fraction being tested.

I agree. So could you not adopt this strategy with every frac-
tion to be tested?

Hold on a minute! What I suggested is a mere theory. I don’t
know if I could actually carry out the required backwards steps
even in the specific case of .

I’m sure you could. But what you have just said is what’s really
important because it tells us what we should now work on
before discussing anything else.

Which is?
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We should concentrate on the actual details of the backwards
mechanism of working from the fraction back to its imme-
diate predecessor.

A definite task. I know how to go forward via

but I would have to think hard about how to go backwards.

Well, knowledge of the forward process will show us how to go
back if we set about it properly.

But how do we set about it properly?

Give the fraction preceding a temporary name, such as ; r
for its numerator and s for its denominator. Then figure out
how r, s, p, and q are related by using your understanding of
how becomes .

When you say what to do, it sounds as if there is nothing to it
at all. Right; let me see if I can pull this off. Since the denomi-
nator of the new fraction is the sum of the old numerator and
old denominator, it must be that

q = r + s

Very good.

And since the numerator of the new fraction is the sum of
the old numerator and twice the old denominator, it must be
that

p = r + 2s

So

p = r + 2s

q = r + s

which looks very like what my teacher used to call “simultane-
ous equations.”

Exactly, but quite simple ones from which you’ll figure out 
r and s in terms of p and q without too much trouble.

I don’t know about that. I’m sure I have forgotten the tricks, so
you’ll have to help me.

Okay, so as to move matters along. If we subtract the second
equation from the first, we get that

p - q = s

But this is the denominator s figured out already. That was 
painless.
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Subtracting one equation from the other eliminated the r, as
they say. Now it is an easy matter to get r in terms of p and q,
since the first of your simultaneous equations says that

r = p - 2s

But there’s a 2s in this equation.

Yes, which we’ll now replace by 2(p - q) to get

r = p - 2(p - q) = p - 2p + 2q

or

r = 2q - p

and we’re done.

Good. So

is the fraction just before .

True. Strictly speaking we have to say that p - q cannot be zero.

Because division by 0 is forbidden.

Yes. As it happens p - q = 0 would mean p = q and so =
= 1–

1
.

And we are not interested in looking for the fraction before this
one.

Let’s just check that becomes under the usual rule. Adding
the numerator and denominator of the p and q version of the
fraction gives

(2q - p) + (p - q) = q

as it should, since this is the denominator of .

Let me add the numerator to twice the denominator of this
same fraction to get

(2q - p) + 2(p - q) = 2q - p + 2p - 2q = p

which is the numerator of as it should be. This is great.

Removing the temporary scaffolding that was , we may write
the backwards mechanism as

Here we can think of the ¨ as saying “goes back to,” since this
rule brings us backwards along the sequence.

Makes sense. I want to try out this “backwards rule” on .47321
33461
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Well, then, off you go!

I should write this line left to right, shouldn’t I? I get

which is not a fraction I recognize.

You’ll just have to take more backwards steps. Soldier on until
you hit one you recognize.

Okay, here we go again

At last we hit , which I know is in the sequence.

Just as well this happened. If we keep applying the backwards
rule we get

which brings us back to the seed fraction 1–
1
, as we’d 

expect.

What happens if we keep applying the backwards rule?

Try it and see.

I get

So it looks as if the sequence reemerges after the 1–
0

fraction, but
this time with minus signs before its terms. But didn’t we say
earlier that it’s forbidden for a fraction to have a zero below the
line because you are never allowed to divide by 0?

You are right, but let’s just say that we needn’t get distracted
by what the backwards rule does with our sequence once it
passes beyond the seed 1–

1
.

All right, if you say so. I think by now I know how to backtrack
along the sequence as well as go forward along it.

Which means that you are ready to return to the big ques-
tion: Is every for which p2 - 2q2 = ±1 a member of the
sequence?

Maybe, but first what do you mean when you write both a plus
and a minus in front of the 1?
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Well, it is pronounced “plus or minus one” and is shorthand
for something that maybe either 1 or -1.

But not both at the same time?

Correct; it is either one or the other but never the two values
at the same time.

Which I suppose is no more than you’d expect.

Exactly. The ±1 is just a very handy way of dealing with both
possibilities in the same discussion. So now, maybe, we can 
use what we have learned to prove that the sequence is all-
inclusive and that there are no maverick ’s.

I hope so, but you’ll have to show me how.

We could do it by convincing ourselves that every fraction 
for which p2 - 2q2 = ±1 backtracks under the application of the
backwards rule to the seed 1–

1
.

But if we are not assuming is actually in the sequence, how
can we be sure that the fraction obtained by the backwards rule
has the ±1 property also?

A key point which we’ll deal with right now. Why don’t we cal-
culate the quantity top squared minus twice bottom squared
for this fraction and see what turns up?

For the fraction ?

Yes. We get

(2q - p)2 - 2(p - q)2 = 4q2 - 4pq + p2 - 2(p2 - 2pq + q2)

= 4q2 - 4pq + p2 - 2p2 + 4pq - 2q2

= 2q2 - p2

fi (2q - p)2 - 2(p - q)2 = -(p2 - 2q2)

So p2 - 2q2 has popped out, but with a minus sign in front 
of it.

It has. This answer is most obliging because it tells us that if
the quantity top squared minus twice bottom squared is 1 for

, then it is -1 for the preceding fraction obtained using the
backwards rule.

And if the quantity top squared minus twice bottom squared is
-1 for , then it is the other way round for that same preced-
ing fraction.

Yes, all because (2q - p)2 - 2(p - q)2 = -(p2 - 2q2).

Simple, really. So whether or not is in the sequence, the frac-
tions obtained from it by applying the backwards rule will all
have the property that their numerator squared minus twice
their denominator squared is ±1.
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If has this property, yes, from what we have just shown. By
the way, are you convinced that the backwards rule always pro-
duces a fraction at each stage and, if so, is it always a smaller
fraction?

Oops! I took all this for granted, partly, I suppose, because of
the concrete examples. But surely both of these things are true.
If p and q are integers, then so are 2q - p and p - q, and so one
divided by the other is a fraction.

I think we’ll allow this without any cross-examination.

That’s a relief ! In the examples, 2q - p is always smaller than p,
and p - q is always smaller than q. Is it easy to show that this is
always true for positive p and q?

It is, and perhaps you’ll convince yourself of this privately.

I promise. Now all we have to do is convince ourselves that the
fraction leads back to the seed 1–

1
and not to something else.

How do you know that you can get back in a finite number of
steps?

How do you come up with these inconvenient little questions
all the time? It’s almost perverse.

I know. Some might say that it’s an annoying habit acquired
from hanging around too many super-careful mathematicians
who examine every assumption.

Worse than lawyers! But I’ll see if I can answer it. The denom-
inator q, no matter how large it is, is still a finite number. Now
the backwards-process reduces this at every step, so it could, at
the very worst, take q steps to go right back down to the bottom.

Argued like a mathematician. In fact, as we see from the exam-
ples, the descent is likely to be much more rapid than that.

Well, I’m glad that’s out of the way also. What I am wondering
about is what else could eventually lead back to. I’m begin-

ning to be certain of the result already. If the backwards-process
ever taps into the sequence, then it must lead back to 1–

1
.

Certainly, but how could you know this; or more importantly,
what if it doesn’t?

If it doesn’t, how could there be a parallel trail that leads back
to a seed as small as 1–

1
? If so, what could it be? I didn’t see any

other options when I was searching for near misses many
moons ago.

Now I’m not sure I’m following your train of thought.

The fraction has to track back to something that is an absolute 

minimum, like 1–
1
, where a further application of the backwards

rule breaks down.
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In what sense breaks down?

Well, where either the numerator or the denominator is no
longer positive or maybe both are no longer positive. As we saw
above, applying the backwards rule to 1–

1
gives the absurd 1–

0
, where

the denominator is no longer positive.

Please go on.

We know that the backwards-process will lead from back
down to a seed in a finite number of steps. What we have to
do is prove that must be 1–

1
.

If we can show this, then I’ll be convinced.

But how do we put what I have said into algebra to see if we
can settle the question once and for all?

As we have discussed, the backwards-process will lead from 
back down to a seed in a finite number of steps, so let’s
examine what can we say about 

That a2 - 2b2 = ±1.

That certainly, but also that a and b are both positive integers;
but that either 2b - a £ 0 and/or a - b £ 0, since is the frac-
tion preceding according to the backwards rule.

Because of what I said about being at the absolute 
bottom?

Yes, absolute bottom in terms of positive integers. If 2b - a and
a - b were also both positive integers, then since is less
than , we’d have a contradiction.

Because we’d have a positive fraction less than , which is sup-
posed to be the smallest such fraction.

Precisely. Now we just follow carefully where each of these sep-
arate inequalities leads.

The inequalities 2b - a £ 0 and a - b £ 0?

Yes. Let’s take 2b - a £ 0 first. This implies that 2b £ a, and so,
since a and b are both positive, we may say that 4b2 £ a2.

But can we not say this without having to say that a and b are
both positive?

No. Great care must be taken when dealing with inequalities.
For example, when the true inequality 2(-7) £ -13 is squared
on both sides, the inequality sign must be reversed to give 
[2(-7)]2 ≥ (-13)2. If you fail to do this, you end up with the
absurd 196 £ 169.

So that’s why you had to stress that a and b are both 
positive?
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Yes. But when both quantities are positive, the inequality sign
is preserved, as they say. Now

a2 ≥ 4b2 fi a2 - 2b2 ≥ 4b2 - 2b2

fi a2 - 2b2 ≥ 2b2

fi ±1 ≥ 2b2

since we know that a2 - 2b2 = ±1.

I’ll have to go slowly through this argument again for myself
later so as to take in all the steps. But I’m happy to accept what
it says so that we can get on with things.

Once you get the first line, the rest follow easily. Now 2b2 is
at least 2, since b is a positive integer, so it’s not possible for 
2b - a £ 0.

So you are arguing by contradiction, like the Ancient Greeks.

Exactly! The numerator 2b - a does not go nonpositive in the
backwards step from to .

So it’s the other possibility a - b £ 0 that must occur.

And that we now investigate.

a - b £ 0 fi a £ b

fi a2 £ b2 (because a and b are both positive)

fi a2 - 2b2 £ b2 - 2b2

fi a2 - 2b2 £ -b2

fi ±1 £ -b2

using a2 - 2b2 = ±1 again.

I can see that 1 £ -b2 is impossible, because 1 is positive and 
-b2 is strictly negative since b is a positive integer.

So what does that leave?

That a2 - 2b2 = -1 with -1 £ -b2. If I am not mistaken, -1 £
-b2 happens only if b = 1.

You are not mistaken. The only other possibility, b = -1, is
ruled out because b is a positive integer.

But this is absolutely fantastic, because it says that b must be 1.
I’m sure this means that a must be 1 also, and if so, = 1–

1
, which

is what we want to prove.

And is a = 1?

Well, b = 1 and a2 - 2b2 = -1 give a2 - 2 = -1 or a2 = 1. This
implies that a = 1, as a is a positive integer. We have it!

We have indeed. Marvelous!

It was no joke to prove that if is such that p2 - 2q2 = ±1, then
it is a term of the sequence
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It certainly wasn’t, but we got there.

I’ll have to ask easier questions from now on.

Segregation

We need to pause to catch our breath after the strenuous
mental exertions of our latest enquiry.

Definitely. I for one wouldn’t mind seeing the level drop down
a bit.

Let’s just savour for a little while what we now know about the
sequence

first encountered on your searches for what you were later to
call near misses.

Firstly, we know how to generate as many terms of the sequence
as we might want by applying the rule

first to the seed 1–
1
, then to the fraction it generates, and so on in

turn to each new fraction.

For as long as we are prepared to continue.

Secondly, because of this simple rule, we understand why

m2 - 2n2 = ±1

for each fraction in the sequence.

Yes. We can explain how a certain characteristic of the 
seed fraction is passed on via the rule to each fraction in 
the sequence. Well, we should add, in a plus or minus 
fashion.

I really liked the argument that shows this to be the case.

And, as a result of our most recent, rather tortuous, escapade,
we also know that the fractions in the sequence are the only
ones satisfying m2 - 2n2 = ±1.

I thought that was a much tougher argument. I’ll need to go
over it again a number of times I’d say, before I’ll be certain that
I understand it fully.
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We can put a slightly different slant on this result. As we have
said before, the equation m2 - 2n2 = ±1 is equivalent to

m2 = 2n2 ± 1

and says that the perfect square m2 is within 1 of 2n2. This
means that the numerators of the fractions in the sequence,
and these alone, give the collection of perfect squares that are
within 1 of twice another perfect square.

And so give all the near misses, which is amazing.

It is indeed amazing how much your one observation about
these near misses opened up.

Maybe now we should figure out which of the fractions 
in the sequence make m2 - 2n2 = -1 and which make 
m2 - 2n2 = 1?

This is easily done. Every second fraction in the above
sequence, beginning with the seed 1–

1
, satisfies m2 - 2n2 = -1

because the seed fraction does and because this quantity alter-
nates in sign as it moves from one fraction to the next in the
sequence.

Of course. This means the terms

of the main sequence make m2 - 2n2 = -1.

Yes. Because these terms obtained from the original, or main,
sequence as you have just called it, form a sequence in their
own right, this new sequence is often said to be a subsequence
of the main sequence.

Understood. On the other hand all the remaining terms make
up another subsequence

in which m2 - 2n2 = 1.

So, we could say that -1 is the signature of each of the fractions
in the first subsequence while 1 is the signature of all the terms
in the second subsequence.

Is there any point in making this distinction?

Yes. Consider a fraction from the primary sequence; if
m2 - 2n2 works out to be -1, then we know it belongs to the
first subsequence. Otherwise its signature works out to be 1,
and it belongs to the second subsequence. It is a useful concept
because, for example, it allows a computer program to test a

m

n

3

2

17

12

99

70

577

408
, , , , . . .

1

1

7

5

41

29

239

169
, , , , . . .

THE POWER OF A LITTLE ALGEBRA 95



fraction from the sequence to find out to which subsequence
it belongs.

Very smart. I understand now. Would you give me a fraction so
that I may test it?

One such fraction, not that far out in the main sequence,
is .

Okay, fraction, let me see what your signature is. The 
calculation

(8119)2 - 2(5741)2 = 65,918,161 - 2(32959081)

= 65,918,161 - 65,918,162

fi (8119)2 - 2(5741)2 = -1

tells me you live somewhere out along the first subsequence
because your signature is -1.

Correct. Can we say something significant about each of these
subsequences?

If I remember correctly, we actually showed that the first three
terms of the first subsequence provide better and better approx-
imations to , but always underestimate it, and I was to show
that the fourth fraction in this subsequence is an even better
underestimate of , which it is. So we may say that

What might we conjecture the case in general to be?

That successive terms of the sequence

provide better and better underestimates of .

This seems plausible. Do you think you could prove it?

I’ll take a stab at it. I’ll begin by saying that each fraction in
this sequence satisfies

m2 = 2n2 - 1

and I’ll imitate the clever trick that you used before.

Which is?

To divide this last equation through by n2 to get that
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You learn your lessons well, I see. This device shows the 
square of on the left-hand side. But don’t let me interrupt
you.

Straight away, we can say that each fraction in the sequence
underestimates .

Yes, because when squared, each amounts to 2 minus the recip-
rocal of the positive quantity n2.

Reciprocal? 

The reciprocal of a quantity is just 1 divided by that quantity.
I have interrupted you again, so let me say that I agree with all
you have said so far.

Now the denominators of the fractions in this sequence
increase, quite rapidly as you can judge from the first four 
fractions.

I must ask why you can be sure of this in general.

Because the denominator of a typical fraction in the primary
sequence is the sum of the positive denominator and positive
numerator of the previous fraction. The denominators get
bigger and bigger as we move out along this sequence.

In such a way that they grow beyond all bounds. The phrase
“tend to infinity” is often used to suggest this type of growth.

Has a ring to it!

Unfortunately, I must cut across your flow of thought for a
moment to explain a subtlety that I refrained from mention-
ing earlier. Perhaps I should have.

Oh!

Looking at the rule

it is quite natural to assume that both numerators and denom-
inators of the fractions in the primary sequence grow; but,
unfortunately, there is a hidden assumption here.

“Hidden assumption” sounds serious.

How do we know that the fraction doesn’t reduce to a 
fraction whose denominator is smaller than the previous
denominator? For example, suppose we changed this step,
which follows the rule
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to this step, which does not follow the rule

Then, since 15—
12
= 5–

4
, we’d end up with the next fraction having a

smaller denominator than that of the fraction before it.

I see the difficulty. In fact, I remember being surprised when 
the fraction , with its long numerator and long denom-
inator reduced to 3–

7
with just one digit both in its numerator and

denominator. But what if we were to agree not to reduce the frac-
tions at each stage; wouldn’t we then be guaranteed that the
denominators grow?

Yes, but then other things might go wrong. For example,

but the fraction 7–
5

is such that top squared minus twice bottom
squared is 49 - 50 = -1, whereas the fraction 14—

10
is such that top

squared minus twice bottom squared is 196 - 200 = -4.

Another twist. Annoying and at the same time interesting. But
am I right in saying that any time we generate a new fraction
using the rule it is always in lowest form anyway?

You are right. And later we might show why the rule guaran-
tees that this will always happen.

So we now have another property that the rule passes from frac-
tion to fraction?

Yes, when a fraction such as 1–
1

is the seed. So if we accept that
this is so, your argument is a sound one and I’ll let you get on
with it.

It seems that you can never be too careful in putting forward a
mathematical argument. Anyway, to get back to what I was
saying: as the denominators increase, the value of decreases,
showing that the amount by which the squares of successive
fractions of the subsequence underestimate 2 gets smaller.

Proving that these fractions provide better and better under-
estimates of . Excellent!

Thank you. It seems to me that eventually the fractions of this
sequence must come extremely close to .

Especially when the reciprocal of n2 becomes very small. A
phrase much used in mathematics is “arbitrarily close.” It and
words like “eventually” are quite difficult to make precise.

But we get the general idea.
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So we may write that

What about the other subsequence

of the primary sequence?

In this case, each fraction makes

m2 = 2n2 + 1

So we can use your previous argument to show that successive
fractions of this subsequence overestimate by smaller and
smaller amounts.

Yes, simply because of the +1 on the right-hand side of the equa-
tion instead of the previous -1.

Thus

If we combine this with the inequalities associated with the
other subsequence, we may say that

which is fairly impressive.

So we have shown that the subsequence

of the main sequence

provides a sequence of successive approximations to , which
get closer and closer to while always remaining less than it.

Yes. Why don’t we term it the under-subsequence because it is
a sequence of rational approximations to , each of whose
terms underestimates .

So the subsequence
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is the over-subsequence because its provides a sequence of
successive approximations to , which always overestimate it.

Yes, by getting closer and closer to from above .

From above? Approaching from the right-hand side on the
number line?

That’s what I mean. Now, since successive terms of the under-
subsequence are getting closer and closer to without ever
exceeding it, it must be that this under-subsequence is always
increasing, meaning that a term is always bigger than its 
predecessor.

All right, we have just proved this.

Although the under-subsequence is an increasing subsequence,
the same is not true of the main sequence, or parent sequence,
as we might also call it because we know that its terms contin-
ually see-saw from one side of to the other.

Of course, because of the alternating property.

Now, if we imagine the numbers in the under-subsequence
depicted by ultra-fine red dots on the number line, then
reading from left to right, the first red dot is at 1, the next at
1.4, the next at 1.4137 . . . , and so on.

So you are imagining that the terms of the under-subsequence
appear as red dots along the number line as we move out along
the sequence.

Providing an infinite procession of red dots, which remain
below the point.

It’s hard to imagine how they can all squeeze in between 1 and
if there is always a little gap between each of them.

A very good observation. The reason they do is because the gap
between two successive red dots diminishes the further one
goes out along the sequence.

A kind of proportional decreasing of gap size, as it were.

Not exactly, but this is something we could investigate another
time. Let us just say that the gaps diminish very rapidly but
without any ever becoming zero.

They’d simply have to, wouldn’t they? Otherwise, how could all
these fractions be different and be less than ?

Quite so.

There must be quite a crowding of these red dots “just 
below” .

There is, and the closer to , the greater is the crowding, as
you put it.
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And, I suppose, if the numbers in the over-subsequence are rep-
resented by equally fine blue dots on the number line, begin-
ning at the first point 3–

2
= 1.5, then we observe a movement of

blue dots from right to left as successive fractions of this
decreasing sequence make their appearance.

Yes. With the blue dots growing closer and closer together as
the terms of the sequence approach from the right.

And no blue dot would ever pass to the left, beyond .

Never. They crowd closer and closer to the right of without
ever passing or landing on it.

Intriguing behavior.

If you think about it, any finite interval of the line, no matter
how large and how close to but not containing , contains
only a finite number of the terms from the sequence, while any
interval containing as an internal point, no matter how
miniscule, must contain an infinity of terms from both of the
subsequences.

I’m sure I would have to think about this statement for quite
some time to take it all in, if I could at all. I’ll settle for under-
standing that it’s reds on the left and blues on the right.

And never the twain shall meet, prevented from ever mingling
by the irrational barrier at . The number line harbors many
mysteries.

It would seem so.

You might note that the increasing under-subsequence

is very different from the increasing sequence of denom-
inators:

1, 5, 29, 169, . . .

In what way?

Both sequences increase, but the terms of the under-
subsequence never exceed or even reach , while in the
sequence of denominators one can find terms that exceed any
specified finite limit.

Different types of increasing?

Yes, it serves as a warning that the phrase “getting larger and
larger” does not necessarily mean increasing beyond all limits.

Which is what you’d be inclined to think in ordinary 
speech.
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True. Our discussion of the under-subsequence shows that
getting larger and larger may not mean this at all. However, a
sequence whose terms tend to infinity must contain an infinite
number of terms that exceed any finite number, no matter 
how big.

Another statement I’d need time to think about. I thought you
promised this session wouldn’t be hard going.

Did I? By the way, we still have one small job to do.

Which is?

We must explain why a fraction generated by the rule never has
to be reduced when the seed is 1–

1
.

I had forgotten.

No Reductions

When the rule

is applied to the seed fraction 1–
1
, and in turn to each new frac-

tion generated, the sequence

is obtained.

As we well know by now.

When generated in this way, each fraction is always in reduced
form.

It never happens then that the numerator and denominator
have a factor in common that can be canceled?

No reductions are ever needed. The fraction is always born in
lowest form.

How can you be sure of this?

Well, that’s precisely what I must convince you of. However, I
should say that this is true of each fraction depends vitally on
the same property being possessed by the seed 1–

1
.

You mean that it itself is in lowest form?

Yes, the numerator and denominator sharing no factor other
than the trivial factor 1.

So with a different seed, it could happen that the fractions gen-
erated by the rule have numerators and denominators that have
factors in common?
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Factors other than 1, yes—nontrivial factors as they are called.

Do you have an example?

Let us try the rule on the seed 4–
2
, which you’ll notice is not in

reduced form.

I do. The numerator and denominator share the non-trivial
factor 2.

That’s right. I am deliberately choosing not to reduce the frac-
tion to its lowest form. Applying the rule gives

as the next fraction.

I notice that the numerator and denominator of this fraction
have exactly the same nontrivial common factor, 2, as the seed
fraction 4–

2
.

Yes—the one and only. Reapply the rule on this nonreduced
fraction to generate the next fraction in the sequence.

We get

What is the highest common factor of the numerator and
denominator in this case?

The same as before, 2.

The first few terms of the sequence generated are

You might like to verify that, for each fraction, the number 
2 is the highest common factor of the numerator and 
denominator.

I can see already that this is the case.

If we reduce the seed 4–
2

to its lowest terms, 2–
1
, before applying

the rule successively to each fraction generated, then we get

as the first few terms generated without ever having to reduce
them.

Each is born in lowest form, as you said a moment ago.
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Precisely. If we start the generation process with the seed 30—
18

,
we get

What do you say about this sequence?

The highest common factor of the numerator and denomina-
tor in the seed 30—

18
is 6, so I’d be inclined to think that the same

is true for each of the other fractions.

Which means that we should find that each of the numerators
is divisible by 6, with the same being true of the denominators.

It is. Canceling the 6 common to each numerator and denom-
inator gives the sequence

It looks to me as if all these fractions are in lowest form.

They are. So have you gleaned enough from these examples to
make a conjecture regarding seeds and the sequences they gen-
erate via constant application of the propagation rule?

I think so. It seems to me that the highest common factor of the
numerator and denominator of each fraction generated must
be exactly the same as highest common factor of the seed’s
numerator and denominator.

Which, if true, explains why the fractions in our original
sequence with seed 1–

1
are always born in lowest form.

It would, because the numerator 1 and denominator 1 of the
seed 1–

1
have only the factor 1 in common. But how are you going

to prove that this theory is true?

By returning to the rule

and showing that the highest common factor, or greatest
common divisor as it is also called, of m and n in the fraction

is exactly the same as the greatest common divisor of
m + 2n and m + n in the fraction .

I can see that if you could do this, it would explain everything.
But how you are going to do it?

It takes a little thinking and some experience with the divisi-
bility properties of whole numbers.

Divisibility properties? Sounds highbrow to me.
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The idea is simple. Show that the numbers m and n have the
same common factors as the numbers m + 2n and m + n.

Maybe I could do it with numbers, but definitely not with
letters.

All right, let us try it with numbers to get the general idea. We
saw a minute ago that

The fact that 2 divides m = 30 and n = 18 makes it a certainty
that 2 divides m + n = 30 + 18.

You mean there is no need to add them and check that 2 divides
the answer exactly?

Precisely. Because 2 divides the individual parts 30 and 18, it
divides their sum. Agreed?

Seems right.

The fact that 2 divides m = 30 and n = 18 also makes it a cer-
tainty that 2 divides m + 2n = 30 + 2(18).

Because 2 divides the individual parts 30 and 2(18), it has to
divide their sum 30 + 2(18).

Yes. So here 2 being a common factor of m = 30 and n = 18
ensures that it is also a common factor of m + 2n and m + n.

I think I’m happy with this.

Now the same is also true for the other common factor, 3, of
m = 30 and n = 18 for exactly the same reasons, would you not
agree?

I’m sure I will, when I take in all of what you are saying.

In this case then, we have shown that any common factor of m
and n is automatically a common factor of m + 2n and m + n.

I’ll accept this. But what now?

The next bit is somewhat harder to see. We are going to show
that any common factor of m + 2n = 66 and m + n = 48 is also
a common factor of m = 30 and n = 18.

But you are not going to show this directly, simply by 
checking.

No. What I’m going to do may strike you as a little odd, but
here goes. First

m = 2(m + n) - (m + 2n)

as you can easily check.

You mean in general or just for m + n = 48 and m + 2n = 66?
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In general. It is certainly true for these numbers—look:

30 = 2(48) - 66 = 96 - 66

I see. So?

So we can say that the common factor 2 of 48 and 66 divides
30 because it divides both 2(48) and 66 and so must divide the
difference 2(48) - 66, which is 30.

A very odd way to show that 2 divides 30.

Certainly in the case of a specific number such as 30, but not
when we come to the general argument involving m + 2n and
m + n.

Because you don’t have specific numbers to work on.

Yes. For exactly the same reasons, the common factor 3 of
m + 2n = 66 and m + n = 48 is a factor of m = 30. So what we
have shown at this stage is that the common factors 2 and 3 of
m + 2n = 66 and m + n = 48 are also factors of m = 30.

All right.

Now we show that the common factors 2 and 3 of m + 2n = 66
and m + n = 48 are also factors of n = 18.

And, as already said, you don’t do this simply by verifying that
each divides into n = 18 exactly.

No, we must show this using the fact that the numbers m + 2n
= 66 and m + n = 48 are divisible by these numbers. Can you
see how to do it?

I don’t think so. I’ll leave it to you.

Well, it is easy to check that

n = (m + 2n) - (m + n)

in general. In particular, 18 = n = (m + 2n) - (m + n) =
66 - 48.

I can see that both are true.

Now, since 2 and 3 divide each of 66 and 48, they divide their
difference 18. Thus, in this case, any common factor of m + 2n
and m + n is also a factor of n.

A difference is just like a sum.

For divisibility purposes, yes. We have shown that the common
factors of m + 2n = 66 and m + n = 48 are also common factors
of m = 30 and n = 18.

And?

We already showed the other way round, that the common
factors of m and n are also common factors of m + 2n and
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m + n. This means, for these specific numbers at any rate,
that m and n have exactly the same set of common factors as
m + 2n and m + n.

All of which means?

That they must have the same highest common factor.

The crunch point. Is the general argument more complicated?

No. It is virtually the same as the one given. In one direction
you show that any common factor of m and n must also 
be a common factor of m + n and m + 2n. This is almost
obvious.

Because m and n are in both sums?

Yes. Now, in the other direction, you use the equations

m = 2(m + n) - (m + n)

n = (m + 2n) - (m + n)

to argue that any common factor of m + 2n and m + n must be
a factor of both m and n.

And so is a common factor of m and n.

This means that the pair of numbers m and n share exactly the
same common factors as the pair m + 2n and m + n.

Therefore, their greatest common divisor must be the 
same.

So we have another case of the rule

passing a property of the seed to successive generations.

The Two-Steps Rule

May I ask a question concerning the under- and over-
subsequences?

By all means. What is it?

What are the rules relating to each of these sequences?

You mean rules that tell us how to go from the typical fraction
to its successor?

Yes.

Actually, the same rule applies to both.

The same rule for the increasing sequence and the decreasing
sequence?
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The very same.

Even though the terms of the under-subsequence, the red frac-
tions, all live to the left of , whereas all the terms of over-
subsequence, the blue fractions, live to the right of .

Yes again.

I’m intrigued!

It is not so surprising when you recall that both sequences are
subsequences of the main one

consisting as they do of its alternate terms.

But what then gives the two subsequences such different 
characteristics?

Their different starting values, or seeds.

So the two sequences spring from different seeds but obey the
same rule of generation. Is that it?

In a nutshell. To begin, I suggest that we focus on finding the
rule for the under-subsequence.

But you said the same rule holds for the over-subsequence.

I did and do, but that this must be so is not clear to you at this
stage. So let us start without any preconceived notions.

All right.

How are the terms from the under-subsequence obtained from
the parent sequence?

By selecting from it the first term, the third, the fifth, and 
so on.

So if we could discover a rule that brings us from a typical term
in the parent sequence to the term two beyond it, then 
we’d know the rule for selecting the terms of the under-
subsequence, provided we started at the first term.

I think I may see now why the same rule will select the over-
subsequence from the parent sequence.

Why?

By starting at the second fraction instead of the first, the same
selection procedure will pick out all the even terms. The new
rule is like learning how to take two steps of a ladder at a time
and doesn’t depend on where you start out on the ladder.

You could say that and call it “the two-steps rule.”

I suppose we’ll need to use our original rule, which tells us how
to take one step on the ladder of the original sequence.
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Certainly, the “one-step” rule

which, you will remember, tells how the fraction following 
is obtained from it in terms of m and n. Now ask yourself, what
is the fraction after this one?

This is a new departure—to have to consider another term—a
third term.

It is, but three terms are involved in this case because we are
skipping over an in-between term to get to the next one.

I can see the logic in that.

With the main sequence of fractions we need to focus only on
two terms because knowledge of the current term is enough to
find the next fraction.

Right, so must I now calculate the term after in terms of
m and n also?

If you would.

So the fraction is my starting fraction for forming the next
one?

Exactly. And what do you get?

Well, the new denominator is the sum of the current numera-
tor and denominator, and so is

(m + 2n) + (m + n) = 2m + 3n

New bottom is old bottom plus old top, isn’t that it?

Indeed.

The new numerator is the current numerator plus twice the
current denominator, and so is

(m + 2n) + 2(m + n) = 3m + 4n

New top is old top plus twice old bottom.

Right again. So you now have the top and the bottom of the
new fraction.

Which means that the next fraction is

if all the above calculations are correct.

They’re right on.

But what now?
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What now? You have obtained the rule for turning one fraction
of the subsequences into the next one.

I have?

Undoubtedly. Ask yourself what it is that you have just shown.

I must collect my thoughts. That if is a typical fraction in the
main sequence, then

are the next two fractions following it in that order.

Absolutely correct. So what’s the rule of formation for either
or both of the subsequences?

Is it

because to get the next term in either of the subsequences we
must skip over a term in the main sequence?

You have it. This is the rule that does the trick for both 
subsequences. Why don’t you check it out on the 
under-subsequence

by testing it on the seed 1–
1
?

I can’t wait. Setting m = 1 and n = 1 in the general rule 
gives

which is the second term of this sequence. It works!

Now see if the fraction 7–
5

acting as in the newly discovered
rule gives the third term of the sequence.

Setting m = 7 and n = 5 gives

which is the third term of the under-subsequence. Pretty
impressive.

You should now check that
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gives the second term of the over-subsequence

when it is applied to its seed 3–
2
.

Of course I should. Setting m = 3 and n = 2 gives

as I was fairly sure would happen, but it’s nice to see it pop out
all the same.

Repeat the procedure to see if you get the next term.

I don’t doubt it. Setting m = 17 and n = 12 gives

which is term number three of the over-subsequence.

Now that we have the general rule for generating both the
under- and over-subsequences, I want to pose a puzzle whose
answer you must give me without doing any calculations.

I’m not sure I like the sound of this, but let it not be said that
I ducked a challenge.

If we calculate the quantity

(top)2 - 2(bottom)2

for the fraction

what will the answer be?

So you want me to tell you what

(3m + 4n)2 - 2(2m + 3n)2

simplifies to without doing a single calculation?

Yes.

So there must be a quick trick or observation that answers this.
If I do give the right answer, I’ll want you to work out the above
expression by hand afterward.

Fair enough; that will be your reward, but you must give me
the right answer.
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I know. So (top)2 - 2(bottom)2 is the square of the numerator
minus twice the square of the denominator. Ah yes! For the
main sequence we proved that this quantity is always either -1
or 1. Why are you humming to yourself ?

Am I? I thought I was listening in silence to a great mind think-
ing aloud.

Muddled mind is more like it. So let me see, where am I? This
quantity is -1 for every term in the under-subsequence and 1
for every term in the over-subsequence.

What nice weather we are having!

Let’s hope my thoughts are as clear as the day is. In algebraic
terms, (top)2 - 2(bottom)2 is m2 - 2n2 for the typical fraction

in the main sequence. Now m2 - 2n2 = -1 for all the odd terms
in the main sequence, and m2 - 2n2 = 1 for all the even terms.
So what is all this telling me I’d get if I were to work out (3m +
4n)2 - 2(2m + 3n)2?

Perhaps I should take a little stroll to leave you to your
thoughts.

No need to go. I think I know the answer.

I’m dying to hear it.

Does it work out at m2 - 2n2?

It does, but why?

Well, you have heard my thoughts up to now.

Yes, with great satisfaction.

Thank you. If I work out (3m + 4n)2 - 2(2m + 3n)2 in either
subsequence, I must get the same as I would for the previous
fraction because (top)2 - 2(bottom)2 never changes for either
of these subsequences.

And?

But (top)2 - 2(bottom)2 is m2 - 2n2 for the previous frac-
tion .

Top class!

Now you must verify it by doing all the algebra.

Gladly. Well, (3m + 4n)2 = 9m2 + 24mn + 16n2. Agreed?

I must think about the middle term for a second. It’s just twice 
3m ¥ 4n = 12mn?

Correct. While (2m + 3n)2 = 4m2 + 12mn + 9n2 implies that
2(2m + 3n)2 = 8m2 + 24mn + 18n2.

I’m still with you.
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Therefore

(3m + 4n)2 - 2(2m + 3n)2 = (9n2 + 24mn + 16n2)
- (8m2 + 24mn + 18n2)

= m2 - 2n2

showing that a little thinking can often save a lot of hard
working out.

It is still nice to check, just in case the argument is flawed.

Quite right. It is all too easy to overlook something.

So even though the tops and bottoms of the fractions change
from term to term in the under-subsequence and the over-
subsequence, the quantity

(top)2 - 2(bottom)2

remains constant all the time.

Amid a sea of changing numbers, as it were. This quantity is
an example of an invariant.

Something that never varies?

Yes, perpetuates itself without change along the sequence.

So, for the under-subsequence, the value of this invariant is -1,
and for the over-subsequence, it is 1.

As we said a little while back, the invariant -1 is the signature
of the under-subsequence and the invariant 1 the signature of
the over-subsequence.

The main sequence doesn’t possess m2 - 2n2 as an invariant
since this quantity does not remain constant but alternates
between -1 and 1 as we move along the terms.

Yes, strictly speaking.

The Pell Sequence

Our recent discussion concerning the two-steps rule governing
the under- and over-subsequences of the sequence

helped me solve a puzzle you gave me some time ago.

It did? That’s great. Please give me all the details.

You remember the drill sergeant parading squadrons?

Of course. We pretended that you were this eccentric person
with a desire for perfect square formations.
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The one and only, with a squadron consisting of an ideal
number of soldiers, a perfect square number.

Who, as soon as the worthy band had been trained to march
faultlessly in a perfect square formation, was informed by 
the top brass that the squadron was to be doubled. Thereby
denying the sergeant, unwittingly no doubt, the possibility of
parading the larger squadron in the same fashion.

Yes. The most that could be hoped for was near-perfection. That
twice the original number of soldiers would either be one more
or less than a perfect square.

If I remember rightly, you discovered that if the original
squadron size is the square of any of the numbers in the
sequence of denominators

1, 2, 5, 12, 29, 70, 169, 408 . . .

formed from the main sequence of fractions just listed, then
the enlarged squadron is just 1 off a perfect square.

In fact, the squares of the corresponding numbers in the
sequence of numerators

1, 3, 7, 17, 41, 99, 239, 577 . . .

of the main sequence of fractions give the size of the squadron
doubled to within plus or minus 1.

And of course we now know that these are the only numbers
that work. All in all, a wonderful discovery!

The puzzle you set me was in relation to the sequence of
denominators

1, 2, 5, 12, 29, 70, 169, 408 . . .

which you said is known as the Pell sequence.

I remember. Your task was to find a rule, presuming there is
one, that allows us to calculate successive terms of this
sequence from previous ones without having to refer to any
other sequence, such as the main sequence of fractions. A very
nice exploration, if I may say so, this time with whole numbers
as opposed to fractions.

Yes. Initially I felt things would be simpler than up to now, since
I thought whole numbers would have to be simpler to deal with
than fractions.

With both their tops and their bottoms to be considered.
So how did you do?

Well, I was wrong in thinking that the task would be simpler
just because it involved whole numbers.
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So that was a lesson in itself.

Eventually, I got the rule for the Pell sequence and the numer-
ator sequence

1, 3, 7, 17, 41, 99, 239, 577, . . .

and I want you to check if my explanations hold up.

I’m all ears!

Starting with the Pell sequence

1, 2, 5, 12, 29, 70, 169, 408, . . .

I noticed, after many false starts, that

70 = 2 ¥ 29 + 12

29 = 2 ¥ 12 + 5

12 = 2 ¥ 5 + 2

5 = 2 ¥ 2 + 1

This suggests that the next term is twice the previous one plus
the term before that.

Very well observed: not an observation that everybody would
see without a lot of searching.

You’ve got that right! It also took me a long time to see because
originally I was looking for a connection between just two
terms, a term and the one before it.

And?

After many unsuccessful and frustrating attempts I sensed that
I was on the wrong track. I couldn’t find anything until I started
to look at a term and the two terms before it.

So you abandoned a lost cause and took a bold new leap.

I don’t know about that. Let’s just say that I was primed in 
some sort of way to do what I did because of our recent inves-
tigation, which involved dealing with three terms rather than
two.

You had an idea that was in the air, as it were. So tell me 
more.

But this rule I have just mentioned doesn’t apply to the first two
terms.

Well, how could it?

I know, but for a while I was worried about that. Then it dawned
on me that I was being unreasonable because there aren’t two
previous terms in these two cases.
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It’s as simple as that.

Talking about ideas being in the air, it occurred to me, again I
suppose because of our previous experience with the under-
and over-subsequences, to check if the same rule held for the
sequence of numerators as well.

Very enterprising. Because if you don’t mind my saying so, the
two cases might not strike some as being that similar.

I know. It was only afterward that I asked myself whether I was
justified in doing what I did.

After all, the numerator and denominator sequences are con-
structed from every term in the main sequence, whereas the
under- and over-subsequences are constructed from alternate
terms. So the fact that one rule held for the under- and over-
subsequences doesn’t necessarily imply that the numerator
and denominator sequences will also be governed by a single
rule.

Anyway, at the time, I just tried my “Pell rule,” as I call it, on the
other sequence without really thinking anything too much
about what I was doing.

And does the Pell rule apply to the numerator sequence

1, 3, 7, 17, 41, 99, 239, 577, . . .

also?

Like a dream! Of course, I know I should allow myself to say 
no more than, “I think so” until you check my reasoning. Here’s
the evidence provided by the four terms after the first and
second of this sequence

239 = 2 ¥ 99 + 41

99 = 2 ¥ 41 + 17

41 = 2 ¥ 17 + 7

7 = 2 ¥ 13 + 1

This much was enough to make me believe that the Pell rule
holds in general for this sequence as well.

It looks at this stage as if you’ve struck gold.

Because you have been showing me how to argue algebraically,
I wanted to explain why this rule holds in general for generat-
ing the terms of both sequences beyond the first two.

Very ambitious, but admirable.

I think part of my problem with trying to show things in general
by means of algebra is that I don’t know where to start.
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You are not unique in that regard. It can be hard even for sea-
soned campaigners, because the explanations for some obser-
vations can be very far from the surface.

I think I have discovered that, luckily, this is not the case here.

I have every confidence in you.

I thought to myself, “The observation was easy to make, so
surely the explanation will be easy to find.”

Would that this were always the case! Mathematics is laced with
observations that children can make but whose proofs are still
awaited.

Are you serious?

Totally. One of the greatest mathematicians of all time tells us
that he often discovered results empirically that took him
months to prove. He also said that, if he so wished, he could
write down countless conjectures that people could neither
prove nor disprove.

That’s intriguing, but I won’t ask you for examples right now
because I don’t want to get distracted from what we are doing.

Which is to examine your explanation of the Pell rule.

Right. I said to myself that we must work with what we know.
Perhaps, because the numerator and Pell sequences both spring
from the main sequence

I gathered what I know in general about this sequence to see if
I could pick up any leads.

A much relied-on strategy.

To begin, the one-step rule for generating successive terms of
the primary sequence beginning with the seed 1–

1
is

where, as we said many times before, stands for a typical term
in the sequence.

Correct. Fire away.

The fraction

is the typical one that follows . I then asked myself if anything
else that we know about this sequence might be useful.
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And?

The fact that m2 - 2n2 being always either -1 or 1 came to mind,
but I couldn’t see how I could use it on what I was doing.

Then?

I thought of our most recent result, the two-steps rule

This gives the fraction immediately after the fraction in the
primary sequence.

Being two fractions further forward in this sequence than .
How was this important in your quest?

The minute I thought of it, I knew I was on the right track
because it puts the three terms

into the picture.

And this is significant?

It is exactly what I needed. My supposed rule relates a term to
the two before it. I knew I had reached a critical point, and it
only remained to be seen if I could think straight enough to find
the explanation I sought.

So how did you pilot your ship into the harbor?

I focused on the denominators. I wanted to show that any
denominator is obtained by adding twice the previous denom-
inator to the one just before that.

Provided you exclude the first two terms, isn’t that it?

Yes. So let me extract the denominators from the three succes-
sive fractions

and take it from there.

Let me assist you. They are

n, m + n, 2m + 3n

taken in increasing order.

Now what my Pell rule says about the third or final term,
2m + 3n, is that it is equal to twice the previous term m + n
added to its previous term, which is n.
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And is it?

The simple calculation

2(m + n) + n = 2m + 2n + n = 2m + 3n

shows that it is.

Magnificent! I can find no fault in this argument. Your 
explanation of why the Pell rule holds in general looks sound
to me.

I thought so, but I wanted to be sure, to have you check through
it with me just in case.

How about the numerator sequence?

The same rule holds, since

2(m + 2n) + m = 2m + 4n + m = 3m + 4n

shows that the third numerator is twice the second numerator
plus the first numerator.

It is interesting that the two sequences have exactly the same
structure. We might say that the numerator sequence is a
cousin of the Pell sequence.

The Pell sequence and its cousin require a pair of seeds each to
get them growing.

They are generated from a different pair by exactly the same
growth mechanism. Their apparent difference is only super-
ficial and is due to their different “initial values,” as these seeds
can be called.

Different seed, but same breed.

Well, I think we can safely say that you established the truth of
your Pell rule in fairly short order once you spotted it from an
examination of the numerical evidence available to you. After
that, it was only a matter of translating what you suspected to
be the case into symbols to provide a convincing argument as
to why the rule holds in general.

As soon as I sensed that I was on the right track, I felt sure I
would be able to explain everything.

Congratulations. A great achievement for one whose algebra
was a little rusty.

You’re being kind; nonexistent might be a better description.

Whatever; you’re getting the hang of it. It takes time and
thought to arrive at that level where you’re able to go from start
to finish, and this you’ve done in fine style.
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I have to admit that it is a real thrill to be able to show why
something is true in general using algebra, particularly when
you simply guess that this is the case after examining a small
amount of numerical evidence.

The power of algebra—great for converting insight into 
hindsight.
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I want to show you something that might strike you as witch-
craft. To begin, let’s go right back to the equation

which tells us . . .

. . . in a simple way exactly what is meant by .

Watch how I use this relationship to multiply - 1 by 
+ 1:

Can you tell me where it was used in this multiplication?

At the very first step, when you write down 2 beneath the first
line as the result of multiplying by .

Exactly. Alternatively, we might perform the above calculation
this way:

Either way we get the same result.

Which is just as well.

Both of these calculations tell us that

2 1 2 1 1-( ) +( ) =

2 1 2 1 2 2 1 1 2 1

2 2 2 1 1 2 1 1

2 2 2 1

1

-( ) +( ) = ¥ +( )[ ]- ¥ +( )[ ]
= ¥( )+ ¥( )[ ]- ¥( )+ ¥( )[ ]
= +[ ]- +[ ]
=

22

2 1

2 1

2 2

2 1

2 0 1

-
+
-
+ -
+ -

2
2

2

2 2 2¥ =
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Now watch out for the magic I’m about to demonstrate using
this relationship.

I can’t wait.

Dividing across by + 1 gives

which, in turn, gives

This is the point of departure for the sorcery to come.

A strange-looking equation, if you don’t mind my 
saying so.

Actually, it is called an identity, since both sides are 
identical as numbers. It is a little out of the ordinary,
certainly, because it says something about in terms of
itself.

Since is on both sides of the equation?

Yes. I’m now about to infuse a little imagination into the pro-
ceedings by applying some mathematical sleight of hand to this
identity—the wizardry I promised.

Great.

I’m going to replace the on the right-hand side of the 
identity by 1.

Just on the right-hand side, not on the left?

On the right-hand side only, which means that the expression
will no longer be an identity or an equation.

So what does it become?

An expression where the right-hand side provides what I hope
is a reasonable approximation to .

I’ll have to pay attention to see how this works.

Indeed, since 1 is a fairly poor approximation to by any
standards, we may not end up with anything spectacular, but
let’s see.

Let me do the calculation. When I replace the on the 
right-hand side of
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with a 1, this side gives the fraction

which looks familiar.

It should. It is the second fraction in our sequence

Of course!

Now we know already that this fraction is a better approxima-
tion to than the 1 with which we began.

So you used the identity to improve on the approximation 1 of
? Impressive.

You could express it this way. We can say that we began with
the approximation

and improved it to

Does this give you any ideas?

How about using this new estimate for the on the right-hand
side of the identity

as we did with 1 a moment ago to see what comes out?

Just what I was hoping you would say.

Let me do it. The right-hand side becomes

The next fraction in the sequence!

And an improved approximation of . All of which is very
interesting, would you not agree?

So much so that I must play the same trick again. We get

which is the fourth term in the sequence.
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And so a new improved approximation to .

It looks as if we are generating our original sequence in a 
different way.

It does. The very first crude approximation of 1 can be thought
of as the fraction 1–

1
, the first fraction in the sequence. Do you

want to convince me that this process generates our sequence?

Do I have a choice? Give me a hint as to how to start.

Imagine that the fraction is the one most recently generated
by the procedure, and take it from there.

Okay. So instead of continuing with the 17—
12

just obtained, I
imagine that we have generated as far as the fraction , a typical
term in the sequence being generated using the “strange”
identity?

Yes. Again, we don’t use so as to avoid making any 
assumptions.

Doing exactly as above with instead of a specific approxi-
mating fraction to , the next term is given by

which is exactly the same rule as before.

No difference other than p where we previously had m, and q
instead of n.

Since the seed is also 1 = 1–
1
, the sequence generated by this new

procedure is the same as our original sequence.

We have discovered the same sequence of approximations to
in another way.

What If?

But what happens if we choose a different starting approxima-
tion to on the right-hand side of
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And say we used even a completely off-the-wall 
approximation.

You can see from what you have just done that the generating
rule is still the same, so in essence we’d just be choosing a dif-
ferent seed. The real question then is: will the successive terms
of the sequence generated from this seed by applying the rule
over and over still approach ?

Okay.

Let’s experiment a little and see.

Right. I’ll go crazy and take a seed of 10.

A much-admired and often-used approximation of !

No doubt! Let me get to work. Beginning with p = 10 and 
q = 1 gives

so the next term is 12—
11

.

Do you notice anything about the size of this new term?

It is very close to 1 which, I suppose, probably means that the
next term will be close to our previous 3–

2
.

Why do you say this?

Because putting 1–
1

into the rule gives 3–
2
, so, since 12—

11
is close to 1,

I assume that when it is put into the rule something close to 3–
2

should come out.

I see your point. Let’s have a look then.

Updating p to 12 and q to 11 gives

as the third term of the new sequence.

It may not look it, but this fraction is close to 3–
2
, as you suspected.

I’m going to calculate some more terms in this new sequence.
The next term has denominator 34 + 23 = 57, while its numer-
ator is 34 + 2(23) = 80.

Which means that the term after this has denominator 
80 + 57 = 137, while its numerator is 80 + 2(57) = 194.

Adding these terms has this new sequence starting out with
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Well, it certainly looks as if this sequence, with the exception
of the first “absurd” entry, is very close on a term-by-term basis
to the sequence

Because of this I’d be surprised if this new sequence does not
also provide successive approximations that get closer and
closer to .

I’m inclined to agree with you.

I’m going to sin and get the decimal equivalents to five places.
Here they are.

10.00000, 1.09090, 1.47826, 1.40350, 1.41605 . . .

Definitely heading for .

How can you be sure?

I’ll bet my life on it, and that you can prove I’m right.

Such confidence! Why don’t we do as we did before, which was
to square some of the fractional approximations and see how
close they are to 2.

To avoid using decimals. For discovering possible proofs, you
like to stick with whole numbers wherever possible?

Yes. Easier to pick up a scent, as it were.

Which number should I square first?

Well 102 = 100 is so far from 2 as to be laughable, so why not
begin with the next term.

Which is 12—
11

. Now

I see you have used that old trick again in your calculation,
which reveals that the square of the second term in the new
sequence is 2 minus the fraction .

But surely this couldn’t be considered a small error, so the
second term isn’t worth much as an approximation of .

No, but you wouldn’t expect it to be.

Let me tackle the third term, 34—
23

. I get
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That 98 has popped up again. Why do I suspect that this is not
a coincidence?

You tell me; but first, do we have an improved approximation
in 34—

23
?

Yes, because the error is smaller than the previous error 
of .

Agreed. This time the fractional error measures an excess, as
opposed to a shortfall specified by the previous one. This
approximation to hardly sets the world on fire either.

I know, it’s still way off. I’ll test the next term 80—
57

and keep an eye
out for the appearance of the mysterious 98.

Do.

Right; here goes:

There’s that 98 again, this time with a minus sign.

So 80—
57

is an improvement on all previous approximations
because is the smallest fractional error obtained so far.

It is, but it’s no great shakes, either.

No indeed.

But as we continue out along the sequence, the terms should
improve in the same way they do in our original sequence.

Which is something we are in the process of proving, if I’m not
mistaken.

Of course. I had better start by making some general observa-
tions based on what we have just been doing.

Or more accurately conjectures, which may point the way
forward.
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For starters, it seems to me that as approximations, the 
terms bounce around as they do for the sequence that begins
with 1–

1
.

Can you be more precise?

Successive approximations jump between being overestimates
of to being underestimates, all the while improving.

As you say, the same alternating pattern as before.

But not quite the same. This time the first term is an absurd
overestimate of , whereas the more moderate 1 seeding the
other sequence underestimates .

Point taken. And what about this mysterious 98, as you 
termed it?

I think I can explain why it keeps turning up.

Show me.

If I’m right, it has to do with the quantity p2 - 2q2, the value of
(top)2 - 2(bottom)2 for the general term .

I’d say you’re on the right track.

We showed already that if the next term in the sequence is

then the quantity (top)2 - 2(bottom)2 has the value 2q2 - p2 =
-(p2 - 2q2) for this term.

We did, and so?

Well, we know that if is a typical term in the new sequence,

then the fraction is the next term.

Yes.

And isn’t it precisely this rule which guarantees that the value
of the quantity (top)2 - 2(bottom)2 simply changes sign as one
goes from term to term?

The very one. But where does the 98 come from?

From that crazy first term 10, or 10—
1
. When = 10—

1
, the quantity 

p2 - 2q2 = 100 - 2(1) = 98.

Very good. And because p2 - 2q2 is always either this value or
minus it, the number 98 propagates all along the sequence,
appearing now as 98 and next as -98 and so on. So what 
now?

Because of what we have just been saying, I think I can prove
that any sequence formed using the above rule must have its
successive terms get closer and closer to .2
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You can, for any sequence no matter how absurd the initial
value?

I think so. Let me tell you my thoughts.

You are making great strides.

To begin, no matter how badly chosen the first fraction is, it
fixes the value of p2 - 2q2 forever for that sequence.

Well, to within a plus or a minus sign. “Up to sign” is how it is
expressed, meaning that it is always either some particular
number or its opposite.

If a is the value of p2 - 2q2 when this quantity is positive,
then if p2 - 2q2 = a for the initial choice of , this quantity will
alternate between a and -a as moves along the sequence in
question.

And the other way round if p2 - 2q2 = -a for the initial choice
of .

Now can’t we write that

p2 - 2q2 = ±a

as we did for the case a = 1?

We can.

Now divide this equation through by q2, as you did before, to
get that

This relationship shows that the square of the fraction is equal
to 2, give or take .

And what are you going to make of this?

Doesn’t it mean that as q gets larger and larger, the quantity 
gets smaller and smaller?

It does, no matter what the value of a, as long as you are sure
that q tends to infinity.

But doesn’t it for the very same reason as before, which is that
the next denominator is the sum of the previous numerator and
denominator?

And since these numerators and denominators are positive
integers, the denominators increase beyond all bounds.

So as q grows larger and larger, the quantity becomes smaller
and smaller.

a

q2

a

q2

a

q2

p

q

p

q

a

q
Ê
Ë

ˆ
¯ = ±

2

2
2

p

q

p

q

p

q

WITCHCRAFT 129



No matter what value a has?

Yes. Even if a were as large as 10 million, say, the q values will
eventually grow beyond this value. Then q2 is much larger still
and so makes into a tiny fraction.

Thus, no matter how large a is, the quantity eventually 

becomes so small that it can be considered negligible?

If what I’m saying is correct. When the denominators q are very
large, the corresponding fractions of the sequence have squares
that are very close to 2.

Showing that successive terms of the sequence of fractions
approach .

By my reasoning.

And no matter what the intial ?

Yes, provided it’s a positive fraction, I suppose.

So any sequence generated by the rule

consists of terms that successively approach , irrespective of
the starting term?

I think so.

Something you have argued must be so, and most skillfully it
must be said.

Thank you. I really enjoyed that, but I’d like to investigate a little
further to examine a hunch I have.

So, another exploration?

Always Between 1 and 2

How about starting with an even more absurd initial approxi-
mation, just to see how the first few terms come out.

So what ridiculous value are you going to choose?

Why not 1000?

Another well-known approximation of !

A joke approximation I know, but my theory is that we’ll still
get quite good approximations to after no more than a few
fractions, using the usual rule.

Nothing to do but see immediately if what you think will
happen does happen.
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With p = 1000 and q = 1, the rule gives

as the second term in the sequence whose seed is 1000.

What do you make of this?

It fits in with my hunch. This new value is close to 1, just like
the value 12—

11
we got with the less crazy starting value of 10.

In fact, it looks very close to 1.

So from now on things shouldn’t be that much different from
the two previous sequences. Because this second term is down
around 1, the successive terms of this sequence should make
their way toward at about the same rate as the correspond-
ing terms in the previous two sequences.

Whether they do or not, and I believe that they will as you say,
you have already shown that successive terms of the sequence
must approach eventually.

I’m going to go the opposite way now and choose an absurdly
small approximation of , say the fraction . With p = 1 and
q = 1000, the rule gives

as the second term in the sequence that begins with .

This time you get a fraction which is just a little bit below 2.

This is just fine also, because another application of the rule will
get us into the “settling down” stage, if I may call it that.

The next fraction is

which is about 4–
3
.

Between the 7–
5

and 17—
12

of the original sequence. So this sequence,
with its very poor seed of , is up and running.

So do these numerical experiments bear out your hunch?

I think so. My hunch is this:

The second term of any sequence formed using the rule
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is always a number between 1 and 2, no matter how its
seed is chosen.

I think we’ll promote this to the status of a conjecture. If this
educated guess is true, then it goes some way to understand-
ing why the successive terms of all the sequences so formed
approach .

As usual, I’m not sure where to start the algebra to try to prove
it. You’ll have to help me out, once again.

Just enough to get you started. You have used the phrase “no
matter how its seed is chosen.”

I did.

By which you mean any conceivable rational number seed?

When I say any seed I suppose I mean any one of all the pos-
sible fractions.

So give this general rational seed a name.

Ah, right. May I call it ?

Anything except , really. You cannot use because that alge-
braic expression already has the job of denoting the typical
fraction of the sequence.

Could be confusing. So it is. But didn’t we already use to
stand for a seed?

We did. Appropriate, considering that a and b are the initial
letters of the alphabet.

In this case, then

plays the role of the general second term.

Precisely. Now you’re set up.

Maybe, but what do I do now?

Express what it is you would like to prove in terms of .

Oh, I see; a good idea. I’m saying that no matter how is chosen,
the next term

is always a term between 1 and 2.

That’s it. Now you are getting a handle on it.

But I still don’t know what to do.
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Undoubtedly we are at the hardest stage, where we need to
make some connection between what we are asserting and
what we know.

This connection had better jump up and hit me.

It will if we can see the right way of looking at your conjecture:
“Is always a number between 1 and 2,” you say.

Yes, but what of it?

Can’t we say then that it is a number of the form 1 plus 
some number that is less than 1. One plus a proper fraction. A
proper fraction is one where the numerator is smaller than the
denominator.

I remember. However, I’m still not being hit by any flash of
insight.

Think back. Quite recently we came upon an expression that
is of the form 1 plus something.

That’s right. It was

—a relationship we came across when using the identity.

Exactly.

And we showed then, using a little algebra, that

Yes, and which for the purposes of this discussion is none other
than the term immediately after the seed, if we replace p by a
and q by b.

How convenient. There’s surely something here if only I could
see it.

I’m sure you will. Try to use the fact that the term after the seed
can also be written as

Since this is 1 plus something, all I have to do is convince the
world that this something, namely,
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is less than 1.

You had better prove that this quantity is greater than 0 also,
otherwise it might end up subtracting from 1 instead of adding
to it.

Oops! I automatically assumed that is positive.

Quite natural. It doesn’t have to be, but the truth of your 
conjecture probably depends on its being so.

All possible positive seeds is what I had in mind. When this is
the case, then 1 + is greater than 1.

Agreed, because something positive is being added to 1.

So

is also a positive number.

Granted—the reciprocal of a positive number is also a positive
number.

In this number, the numerator is less than the denominator, so
it is a positive fraction that is less than 1.

Provided is positive.

Yes. I realize the importance of this assumption now. So

is 1 plus a positive fraction less than 1. This proves my hunch.

Spell out exactly why.

Because 1 plus a positive fraction less than 1 is a fraction
between 1 and 2.

I can’t argue with that.

And this fraction is the term that comes immediately after
the general seed . So the second approximation that the rule
generates is always a number between 1 and 2, no matter where
the positive seed comes from.

You have surpassed yourself.

Not at all; you led me along by the nose.
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Perhaps I put you on the right trail because I felt its starting
point isn’t at all obvious.

Well, I’d never have found it, but I am delighted with where it
has taken us. For me this discussion has been another example
of how well algebra can explain things in general.

That’s very pleasing to hear. What you have so ably demon-
strated is that whether we begin with a very big estimate, a very
small estimate, or even a moderate estimate of , our pro-
cedure reaches, after at most two steps, an estimate between 
1 and 2. When this stage is reached, the rule begins to produce
approximations of that get better and better quite quickly.

I still find it hard to believe that we can start with any estimate
whatsoever of , no matter how far off the mark it is, to kick-
start the approximation procedure, and that it will zoom in on
a very good rational approximation to after six or seven
steps.

The old adage, “A good start is half the battle” doesn’t really
apply here, because no matter how wildly we start the proce-
dure, it simply rights itself on the next step.

And then it’s business as usual.

I must mention that we could have used a slightly more direct
argument to show that the fraction , which comes after the
positive seed , must always be a number between 1 and 2. I
deliberately had you use the observation

because it had arisen earlier and so allowed you to get on with
your argument without having to perform any fresh algebraic
manipulations.

But?

Well, many would regard the above starting point as slightly
eccentric—although it does the job. It might be considered
more normal to write

But I wouldn’t have known how to do these manipulations.
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Which is why I used something we had encountered before.

I see you have put an exclamation mark over the first equal sign
to indicate that it is a clever step.

It is the vital starting point for the next two steps, which get us
to an equation that can also be used to prove your assertion.
Can you see how?

Time to put on my thinking cap again. If a and b are 
both positive, which I know they are, then the numerator 
b in the fraction is less than its denominator a + b.
This means that the fraction itself is a positive fraction less 
than 1.

Exactly. And so 1 plus this fraction must give a fraction
between 1 and 2.

I understand. I suppose this argument is a little shorter than the
one we gave.

Before we finish this particular discussion which began with
your taking outlandish initial approximations for , I want
you to try another bold experiment.

Which is?

Your initial approximations were fractions, which was only
right and proper, because our purpose is to find rational
approximations to —particularly good ones. But what
would happen if we applied the rule to the seed itself ?

But how could the fraction be equal to ?

It can’t in the normal meaning of the word “fraction” as we
have been using it since, as we well know, is not a rational
number. But what happens if we apply the rule with a = and
b = 1.

Which is just saying that

Yes, a device we have used before.

I’ll try it to see. We get

So under the rule
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Yes. Do you think you could manipulate the expression on the
right-hand side to see if it might reduce to something simpler?

Where do I start? There doesn’t seem much to go on.

Use the definition of .

Okay. Using the fact that ¥ = 2, we can replace the 2 in
the numerator by ¥ to get

So under the rule

or more simply

Amazing, under the rule the number becomes itself again!

Yes. Can you give a reason why this happens?

When the rule is applied to a fraction that approximates , it
produces a new approximation to , which is closer to and
so is a better approximation. But if we start out with the exact
value of , then the rule cannot improve on this, so it just
sends the number into itself.

Sounds plausible. So the sequence generated by the rule when
the seed is is as follows:

It’s a “constant” sequence because every term is the same.

So you could say that there is no movement in this case?

Or say that the rule leaves the number fixed.

Does it leave any other numbers fixed?

Yes. One other. You might like to practice your algebra by
trying to find it.

Some other time, maybe. If I were to apply the rule in the 
same way to another irrational number, such as , as we did
to , what would happen?

Or even to a number like p. Let me just say that if you were
prepared to apply the rule about six or seven times, you’d end
up getting expressions involving or p that would be fairly
good approximations to .

An exploration for another time, perhaps.
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A Bold Leap of Imagination

I want to return to the identity

which we have already mined to produce the sequence

in a different way from how you originally discovered it.

Where we replaced the on the right-hand side by 1 and 
so on.

Now I’m going to use the identity as a starting point again, to
walk a different path, as it were.

Let’s bring it on, then.

Our first step is a bold imaginative one. Watch! This time I’m
going to replace the on the right-hand side of the identity
not by an approximation, as we did previously, but by some-
thing exact.

And this something exact is?

The entire right-hand side of the identity, which its left-hand
side tells us is also .

I’m not sure I follow what you’re saying.

I am going to replace the that lives on the right-hand side
of the identity by

which is also equal to , is it not?

Let me think. It is, because of the on the left-hand side of
the identity.

So I may replace on the right-hand side of the identity by
the term just displayed.

Ah! I now see what you are about. Bold and imaginative indeed.

We get

which might strike you as a little eccentric.

To say the least!
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When the expression on the right-hand side is simplified 
we get

which is a little tidier.

But really strange.

Maybe, but now we get more daring. We replace the nestled
at the bottom right of this three-tier expression in the same
way as we did a moment ago. After all, there is nothing to
prevent us doing so.

Insane!

An even more perverse thought is to replace this humble 
by the entire expression appearing on the right-hand side of
the new identity just displayed, but that would be to follow a
different path.

A madman’s outing for another day?

Perhaps. Sticking with our first plan, we get the expression

which simplifies to

This is an even more curious specimen than the previous one.

With four tiers you could say. I’ve never seen an expression such
as this before. The right-hand side looks like a slanted ladder of
fractions inclined at about 45 degrees.

But if you examine it for a while, you’ll see that it has a simple
structure. If we repeat the step just taken, what will we get?

Pretty much the same thing, but with an extra tier or rung of
the form
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coming before the final

at the bottom.

Yes, the overall expression is

Here we have a longer ladder, as you refer to it, with three 
2s down its left-hand side, whereas the previous ladder had
two.

I suppose there is nothing to stop us continuing this substitu-
tion business ad infinitum?

Theoretically, nothing at all. In fact, if we imagine that this 
has been done, we get what is called the infinite continued frac-
tion expansion of :

This entire expression has rather an attractive elegance to it.

Apart from the first 1 immediately after the equal sign, it is all
2s down along one side and 1s down the other to infinity.

Yes. Bringing that first 1 to the other side of the equation 
gives

a form that is, perhaps, more pleasing in appearance.

Maybe, but as I said before, both expressions are unlike any-
thing I have ever seen.
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Aside from its infinite extent, this continued fraction expan-
sion of , and that of - 1, has a very simple structure. The
same pattern appears over and over again through each layer
of the descending expansion. So besides its almost bewilder-
ingly simple definition, has another form of simplicity,
which it reveals in its continued fraction expansion.

Some might not think the continued fraction expansion quite
that simple, but it is very interesting, certainly.

Almost exotic. I think this infinite continued fraction expan-
sion is credited to the Italian mathematician Raphael Bombelli,
who wrote it down around 1572.

And it wasn’t known before?

I cannot say. Certainly the mathematical symbol for square
roots was not long in use at the time.

Once you are shown how the continued fraction is obtained, it
becomes hard to believe that it was not always around.

All of which should encourage us to explore for ourselves
whenever the mood takes us.

You mean we might still find a nugget?

Maybe, you never know; but more for the pure thrill of dis-
covering for oneself.

A nugget in itself.

Another Manifestation

Now I’d like to show you something else that might offer you
a challenge.

Oh dear!

It will be quite straightforward. We saw that if we replace the
on the right-hand side of

with 1, then this side changes to

which is the fraction 3–
2
.

I remember.

But this expression is also the infinite continued fraction
expansion of :2
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truncated before the second plus sign or, if you prefer, after the
first 2. With everything else thrown away, as it were.

Let me examine this. Okay, I see it.

Now if we replace the on the right of the three-tier 
expression

with 1, what do we get?

Why don’t I compute to find out? Substituting 1 for on the
right-hand side gives

which—surprise, surprise—is the next fraction in the 
sequence

after 3–
2
.

The infinite continued fraction expansion of truncated
before the third plus sign is the third fraction in the sequence.

So

shows these fractions in a different light. Is the challenge then
to prove that the pattern continues?

1
1

2

3

2
1

1

2
1

2

7

5
+ = +

+
=and

2

1

1

3

2

7

5

17

12

41

29

99

70

239

169

577

408
, , , , , , , , . . .

1
1

2
1

1 1

1
1

2
1

2

1
1

5

2

1
2

5

7

5

+
+

+

= +
+

= + = +

=

2

2 1
1

2
1

1 2

= +
+

+

2

1
1

2
1

2
1

2
1

2

+
+

+
+

+O

142 CHAPTER 4



Exactly, whichever way we choose to look at it. The fourth frac-
tion in the sequence is obtained by replacing the on the
right-hand side of the four-tier expression

with 1, or simply by truncating the infinite continued fraction
expansion of before the fourth plus sign to get

since both expressions are equivalent. Check that you get the
fraction 17—

12
.

I see how to do this in an efficient manner. Write the first 2 in
the expression as 1 + 1 to get

I have placed big brackets around what I know from our 
previous work represents the fraction 7–

5
.

Clever!

Substituting the 7–
5

gives

as the value of the four-tier expression or the infinite continued
fraction truncated before the fourth plus sign.

Very accomplished!

This last equation also shows that the four-tier ladder number
representing the fractional approximation 17—

12
is the same as the

one obtained by substituting the third approximation 7–
5

for
on the right-hand side of two-tier starting identity

which surprises neither of us.
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If you follow the argument you have just given step by step,
what we want to prove should become clear. In fact, we can say
that, to date, we have shown that

because the first entry is obtained from the infinite continued
fraction expansion of on truncating it before the first plus
sign. Doing so gives the first term of the sequence and so lends
consistency to the whole conjecture.

I suppose we must now prove algebraically that successive 
truncations of the infinite continued fraction are just different
ways of expressing the successive fractions of our original
sequence.

Perhaps we can leave this endeavour for a moment. I want to
show you a simple notation that is often used in connection
with these ladder numbers, as you termed them. The notation
makes it is less cumbersome to deal with the tiers that arise
with continued fractions. It tames those unwieldy monsters.

Let’s see it.

The two-tier fraction

is written as [1;2] while the three-tier fraction

is written as [1;2,2]. This notation is a compact way of repre-
senting those awkward-to-write ladder numbers.

Let me see if I have grasped the notation. So [1;2,2,2] is short-
hand for
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—the four-tier ladder with its three 2s?

Exactly!

Why the semicolon after the first number?

The number 1 in front of the semicolon is the 1 standing out
on its own before the first plus sign. It is the integer part of the
number being represented. The numbers that come after the
semicolon represent the tiered fraction part that comes after
the first plus sign.

All those 2s down the side. How is the number 1 on its own
written?

As [1], without a semicolon, it being understood that it is an
integer.

Simplicity itself.

With this notation we can write the previous array of
results as

—which I think you’ll agree has its own appeal.

Yes.

And, were we to compute them, we’d find that

So in terms of the new notation, we want to show that the
sequence
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may be written as

[1], [1;2], [1;2,2], [1;2,2,2], [1;2,2,2,2], [1;2,2,2,2,2], . . .

which I bet is unlike any other sequence you have ever seen.

Have no doubts. I’d better set about proving that the terms 
of this unusual form of the sequence actually equal the 
corresponding terms of its more familiar form.

I don’t expect you to have any trouble whatsoever.

With this new notation, the observation that

can be expressed as

which looks simple enough.

It does, but this new expression hides its sophistication. We are
now at the stage where we must make that leap from the 
particular to the general, where arithmetic must give way to
algebra. Just a little should do.

Let’s hope I can find the right line of reasoning.

Don’t worry about it; you already have.

I’m going to suppose is the fraction that results from com-
puting one of these particular ladder numbers.

I see you have chosen two new letters to denote this fraction.

To avoid making any suggestions whatsoever.

New symbols for a new argument.

We are now expressing these ladder numbers in the form
[1;2,2,2, . . . , 2,2]. I put the ellipsis in the middle just to leave
the number of 2s open.

Very sensible. You are getting the hang of this notation.

I’m going to assume that

— that the typical ladder number works out as .r
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I’m with you.

Now I hope to show that the fraction resulting from the finite
continued fraction consisting of just one more tier, or, in the
new notation, the number [1;2,2,2, . . . , 2,2,2] with exactly one
more 2 in it, is the fraction

This then would be the one-step rule that generates the main
sequence, expressed in terms of r and s rather than the cus-
tomary m and n.

Yes.

And if you could do this, would you have your proof ?

I believe so, because I know the first few ladder numbers reduce
to the starting fractions of the sequence.

Point taken. So a ladder number having one more layer than
one that reduces to a term in the sequence must reduce to the
next term in the sequence.

That’s the way I see it.

I’ll let you get to the core of your proof.

Which is nothing more than that

based on how we know two successive ladder numbers are 
connected.

Magnificent!

The [1;2,2,2, . . . , 2,2] on the right-hand side is , so the 
fraction representing the next ladder number after the one 
represented by is given by

Would you not agree?

Without hesitation.

Great. We have seen this expression before, with p where there
is now an r, and q where there is now an s. Using the result of
how this fraction simplified, we get

in this instance.
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Another great achievement done from start to finish. So now
we can say with certainty that the sequence of ladder numbers

is just the sequence of fractions

in a different guise. These ladder numbers are called finite con-
tinued fractions for obvious reasons.

They are a rather peculiar way to represent “normal” fractions.

True. But when expressed in the more compact notation as

[1], [1;2], [1;2,2], [1;2,2,2], [1;2,2,2,2], [1;2,2,2,2,2,2] . . .

they have an intriguingly simple pattern to them.

I assume it is safe to say that, in this notation,

with 2s all the way along.

Ad infinitum. The infinite continued fraction is often abbrevi-
ated to [1; ] with indicating that the 2s continue forever and
ever.

Something like what is done for periodic decimal expansions.

Yes. We can write that

The almost alarmingly brief right-hand side encapsulating the
fact that every rung of the infinite ladder is the same.

Apart from the first.

As you say. This extreme simplicity makes one of the most
stately within the realm of infinite continued fractions and is
the reason it possesses a certain property, which will be the
basis of our final excursion.

Much later, I hope.

Well, we still have a few things to discuss.

All Fractions

Each fraction in the main sequence has a finite continued frac-
tion expansion.
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That’s right.

Does every single fraction have a finite continued fraction
expansion and, if so, how is it found?

Every fraction has a finite continued fraction expansion, but
some expansions are easier to obtain than others.

For example?

The finite continued fraction expansion of 20—
13

is obtained as
follows:

This is a tedious enough calculation, but not overly long.

You can say that again, but I think I see how it works.

Which is?

You write the fractional portion that is less than 1 as 1 over its
reciprocal, as you do when you write 6–

7
as 1 over 7–

6
.

Yes.

Next the fraction in the reciprocal that is bigger than 1 is written
as an integer plus a new fraction less than 1. Then you do the
same again until you can go no further.

That’s it. Using the compact notation, we write that

Witness what we need to do when we simply change the
numerator here from 20 to 21.

I’m betting it’s torture.
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You might like to do the calculation and count the number of
steps it takes.

I’ll give it a go. I get

Whew! That took forever.

How many steps?

I count nine equal signs, so I’ll say nine steps.

Even though it was hard going, it is impressive. In compact
notation

it is all 1s except for the 2 at the end. We could have all 1s if we
are happy to write
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but it calls for a modification to the compact notation to 
record it.

I see. I presume the presence of all 1s is no accident.

They arise because the fraction I chose hails from a rather
special family.

A story for another day, no doubt.

Yes. Here is a problem for you: How can we be sure that the
continued fraction expansion of a normal fraction is finite?

Thinking about this should keep me quiet for a while.

Hero’s Way

It must seem to you at this stage that we have been talking
about nothing other than the sequence

and matters directly related to it.

I’ve been surprised by the number of things there are to say
about this sequence. I’m not sure I could recall them all. But I
suppose one of the most important is that successive terms of
this sequence provide better and better approximations of .

Without doubt, in the context of finding more and more of the
digits in the decimal expansion of .

Something we haven’t done for quite some time now.

I know. I have been conscious of this, wondering when you
would take me to task about it.

It had slipped my mind until you mentioned decimal digits 
just now.

All of which I’ll interpret as a sign that you have been enjoy-
ing our excursions, even if they haven’t been exclusively
focused on extending our knowledge of the decimal expansion
of .

Besides enjoying myself, I have been thriving mentally.
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Questions relating to this sequence made us consider two of its
subsequences, as well as other related sequences. Furthermore,
the identity

allowed us see the sequence in a different light and introduced
us to continued fractions, or ladder numbers, as you dubbed
them. At every turn a new question or exploration always
seemed to suggest itself.

Didn’t they just?

It’s the nature of any type of inquiry. If you are attracted to
investigations of this kind, it is quite easy to understand how
you could spend a good portion of your time answering and
posing mathematical questions.

Which is what I’m told many mathematicians do.

Almost certainly.

Are we about to increase our knowledge of the decimal expan-
sion of ?

Well, we can always calculate as many terms of the sequence as
we please, as we could have done at any time up to now, and
just convert the last fraction to its decimal equivalent to obtain
an approximation to . We don’t have to do that much to
obtain an approximation that is far in excess of the accuracy
ever likely to be needed for any practical purpose.

But if we did that, what more would we have to talk about?

Some might say that we should have done this long ago and be
done with it.

Never! I’m not one of them. Besides, I’m learning skills that I’m
sure to be able to use elsewhere; and even if I don’t, they’re no
burden.

I’m glad to hear it. With regard to your question about finding
more digits of the decimal expansion of , I’d like to hold off
on doing so for a while longer, and I hope you can bear with
me on this point.

Of course. Are you building up to some sort of grand finale?

In a sense, yes. I want us to develop more powerful methods
than that offered simply by using our main sequence. To begin,
let me show you one way of finding another approximation
method that might strike you as spectacular in comparison to
what we already know.

Spectacular? This has to be interesting.
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The method has been known since at least the first century, and
many suspect that it was used well before that by the ancient
Babylonians, whom we mentioned earlier in connection with
their sexagesimal approximations of .

Fascinating! Does this method use a completely different idea?

The derivation I’m about to show you is certainly different
from anything we have done up to now. The method may have
a surprise in store for you.

A pleasant one, I hope.

We’ll need to use a little algebra once again. I think it fair to
say that the pieces of algebra used up to now, while being clever
and often far from obvious, aren’t overwhelmingly difficult to
follow, particularly when you see them unfold in context.

Will the algebra you are about to use be any more difficult than
before?

I don’t believe it will be.

Let’s get going then. I’m ready for action!

We begin by supposing that we have an approximation a to 
and that we want to find a better one.

You are using the letter a because it is the initial of the word
“approximation”?

Yes; and it has no connection with any a we might have used
before. As you know, it is better to use a letter, such as a, rather
than an actual number when we want to discover a method that
can be used in general.

And could you not make such discoveries working with con-
crete numbers rather than symbols?

Maybe, but it is less likely. As I may have said before, some-
times you cannot see the forest for the trees when working with
specific numbers.

I have a better appreciation of this point now than I used to
have. I’ll let you get on with what you want to say.

Well, since a is only an approximation of , it is in error by
some amount epsilon, e, say. Mathematicians often use this
character from the Greek alphabet to suggest a “small”quantity.

It is also similar to e, the initial of error.

An added bonus. So let us write a + e = .

Are you assuming that a is an underestimate of , which
would make e positive?

A good question, to which the answer is no, even though the
expression a + e = might seem to suggest this. If a is an over-2
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2

2

2

2
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estimate, which it may be, then the quantity epsilon will actu-
ally be negative.

So the algebra you are about to do can handle both possibilities?

Yes. If

then squaring both sides of this equation gives

or

because of course ¥ = 2.

The fundamental relationship defining used once again.

This equation can be viewed as a “quadratic” equation in e, but
we make no use of this perspective.

I remember quadratic equations from school, and that there is
a formula that solves them all. You are not going to assume I
know this formula and can use it, are you?

No, I am not. Besides it wouldn’t lead us anywhere as it con-
tains square roots.

That’s good to hear. Are we trying to avoid square roots?

In a sense, yes, particularly ones we can’t work out in terms of
fractions. We are looking for approximations to one particular
square root, namely , while not talking that much about the
actual number itself. I’m going to explain the clever idea that
is brought to bear on the above equation.

Which is?

To drop the e2 term. If e is small, as we hope it is, then e2 is
considerably smaller; so much so that we intend ignoring it.
Dropping this “higher-order term” from the above equation
gives

which is a much simpler expression than the previous equa-
tion and spares us the use of the quadratic formula with its
undesirable square root.

But can you do this, simply drop a term?

Yes, we discard it without a thought! Very cheeky I know, and
not what one expects of mathematicians who are supposed to
be very precise and take everything into consideration.

My thoughts approximately!

a a2 2 2+ ªe

2

2

22

a a2 22 2+ + =e e

a a+( ) ¥ +( ) = ¥e e 2 2

a + =e 2
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Hmm. Sometimes bending the rules is just like taking a detour
around an obstacle too hard to remove. This new expression is
very convenient because it can be solved easily to give

Here e is expressed in terms of the known approximation a.

What now?

Well, presumably—and we may not say more at this stage—
adding this estimate of e to a will provide us with an improved
approximation of .

So if a is an underestimate to begin with, then e will turn out
to be positive and improve this underestimate; whereas if a is
an overestimate, e will turn out to be negative, and adding it 
to a will bring the overestimate down, improving it also. Is 
that it?

Yes. Now we can say that

Bringing the 2 in the denominator out in front as 1–
2
, and divid-

ing each term in the numerator by the a remaining in the
denominator, we get

as the concise expression for our new approximation of .

With all trace of e removed.

It was mere scaffolding. So

is our new approximation rule.

Looks simple enough.

Expressed in terms of one letter, which is the absolute
minimum any formula can have.

Will you elaborate a little on how this rule is used?
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Of course. It says that if a is an approximation to , then
another approximation is obtained by calculating the expres-
sion to the right of the Æ.

I understand.

Why don’t we become familiar with the rule by trying it on
some numbers.

Okay. I’m going to start with a = 1.

Why a = 1?

Because it’s the same as the seed 1–
1

in our main sequence.

And you are curious to compare the new recipe with the old
one?

More than curious.

An excellent idea; full speed ahead!

Putting a = 1 into the right-hand side gives

This is the second fraction in our original sequence.

Are you disappointed?

Not really. At least it is an improvement on the initial approxi-
mation of 1. I’m now going to update a to have the value 3–

2
to

see what pops out next time round.

A good idea.

With a = 3–
2
, we get

which is a most welcome new wrinkle.

A welcome new wrinkle—what do you mean?

New, because the method produces 17—
12

rather than the 7–
5
, which

is the next term after 3–
2

in the sequence.

And welcome because 17—
12

is a better approximation of than 3–
2

or 7–
5
; and a wrinkle because 17—

12
is itself another fraction from the

sequence, which is a nice surprise.
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Yes, this was the surprise I promised earlier.

You mean that the new method appears to be generating frac-
tions that are in the sequence.

Yes.

I’m not saying that I understand why, but the fact that I chose
a = 1 as the starting approximation must have something to do
with it.

Certainly. Had you not chosen it, we may not have got terms
that are part of the sequence.

I’m glad I obliged. I suppose I could show pretty quickly that a
starting value of a different from any fraction appearing in this
sequence generates an entirely different sequence of fractions.

Later, when you get a moment to yourself, try the seed 2–
1
, which

is not in the fundamental sequence, to see what you get.

Will do. This new method just skips over 7–
5

to land on 17—
12

.

It does.

I’m going to see if it does more skipping by updating a to 17—
12

.

Exactly what I would do myself.

All right then. With a = 17—
12

, we get

—the last of the eight terms that we worked out in our
sequence!

This time the method skipped three fractions before landing
on the eighth term.

This new method is spectacular, as you said. It’s more powerful.

More powerful in what sense?

In producing successive approximations that get closer and
closer to much more quickly.

It certainly seems so.

Starting with a = 1 = 1–
1
, it generates a subsequence whose leading

terms are

Since these fractions occupy positions 1, 2, 4, and 8 in the fun-
damental sequence, it seems to be generating a very special sub-
sequence of the main sequence.
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A Little History

Before we do anything else I must tell you that these frac-
tional approximations to are believed to be the precise ones
the Babylonians used over three thousand years ago.

You did mention before that some of these fractions were
known to the Babylonians. So did they know this method then?

Well, a more general version of the rule we have just developed,
which finds approximations to any square root, is credited to
Hero of Alexandria in the first century a.d.

The first century a.d. is an awfully long time after 1600 b.c.
which is roughly the time you said that the Babylonians first
knew of these approximations.

Yes, it is intriguing. Did they know Hero’s method all those
years before him? If so, as some believe, then it must be in the
running for the title of, as someone once put it, “The world’s
oldest algorithm.”

How did they, or Hero, come up with the method—the same
way we did?

One theory is that they knew that if a is a positive approxi-
mation on one side of on the number line, then is on the
opposite side of . Since the average of two numbers lies
between the two numbers, this average must be closer to 
than either a or , and so is an improvement on either of them
as an approximation of .

Which settles the improvement question straight off. And this
average is none other than

Brilliant, and so simple.

A gem!

Is it difficult to prove that if a is a positive approximation on
one side of , then is on the opposite side of ?

Simple; as I’ll show you. Afterward you might like to work up
a numerical example.

It’s a bargain.

If a < , then multiplying both sides by gives a < 2.
Dividing this inequality through by a preserves the inequality
sign since a is positive. We get
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Exactly the same argument works with the inequality signs
reversed to give

So whichever side of the approximation a is on, the quan-
tity is on the other side.

Easy when you know how! For my numerical example I’ve taken
a to be the fraction 7–

5
from the main sequence. As we know, it is

less than . Then

Let me check this.

As asserted.

In this case

Another fraction from the main sequence. Do you want me 
to do a numerical example with a > ?

Not at all. Let us return to where we were before taking this
historical detour.

The Heron Sequence

I have a few questions about Hero’s rule and the sequence

generated by this rule.

Some historical sources refer to Hero as Heron, so we might
refer to this sequence as the Heron sequence.

Saves having to write down the sequence every time we want to
talk about it.

Or, if we want, we could say the Heron sequence with seed 1.

Because beginning Hero’s method on a different seed will gen-
erate a different Heron sequence?
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Different in its first term, at the very least. But let’s just call this
sequence the Heron sequence, and if we need to talk about
another sequence generated by the same rule, we’ll take care to
mention its seed.

So when we say the Heron sequence we mean this one with 
seed 1–

1
?

I think we’ll allow ourselves this little luxury for the sake of
brevity. So, what questions do you have?

Firstly, I want to know if the next term after in the Heron
sequence is the sixteenth from the fundamental sequence with
the next one after that being the thirty-second, and so on?

With the position of each successive term being double that of
its predecessor’s in the fundamental sequence. A very fine ques-
tion. I notice that you are now referring to our original, or
main, sequence as the fundamental sequence.

I did, didn’t I? You used this term earlier, if I’m not mistaken.

I did indeed; which is fine because it is fundamental in its 
connection with .

Anyway, I’m also curious to know if all the fractions after the
first in the Heron sequence are overestimates of .

What makes you think this?

Because, except for the seed, which is an underestimate of ,
the other three fractions that we have worked out are all in even
positions in the fundamental sequence.

And so belong to its over-subsequence, as we termed it. Nicely
observed—the terms of the subsequence consisting of every
second term from the fundamental sequence are precisely
those that overestimate .

If I could nail my first conjecture, I’d have the second one for
free.

It would seem that way, since 2, 4, 8, 16, 32 . . . are all even
numbers. But are you sure that the Heron sequence is a sub-
sequence of the main sequence?

This is a twist. I didn’t think about it. Surely it is?

Based on what evidence—a few terms agreeing? What would a
barrister say to you?

Oh, what a pain! Why can’t life be simple?

I’m sure you’ll think of something.

Not this time. To me, Hero’s rule looks completely different
from our original rule. I’m definitely going to need help.

What’s one sure way of knowing whether a fraction is in the
main sequence or not?
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Hard-thinking time again. I remember now. We proved that if
a fraction has the property that its numerator squared minus
twice its denominator squared is either 1 or -1, then it is a term
in the fundamental sequence.

Yes, we did, in what was one of our more strenuous excursions.
So?

I’m glad we have this result under our belts because I can see
now that it is vital.

Why?

If I can show that the fractions of the Heron sequence have this
property, then I could convince that barrister fellow that they
are from the fundamental sequence.

And you’d win your case.

This particular one at any rate. So how do I show that the Heron
fractions are fundamental fractions?

Fundamental fraction—another nice term. By discussing the
typical fraction in the Heron sequence.

Since this is another new investigation, I know I should use a
new pair of letters for the numerator and denominator of this
typical fraction.

It is not sacrosanct that you use fresh symbols in every new 
situation. You can use any letters you like, as long as you are
clear about what they represent.

In that case, I’ll go back to .

Just keep in mind that it is Hero’s rule that is being applied to
it and that it is a typical member of the Heron sequence.

Will do. So to begin I must replace a by in

Is that right?

A good place to start.

Now let me see if my algebraic manipulation can manage this
and tidy everything up afterward. I get
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Very ably handled.

This is very different in appearance from our previous rule.

Noticeably. A different rule for a different type of sequence.

So the rule for generating successive terms of the Heron
sequence is

It isn’t as simple-looking as the rule

which generates the fundamental sequence from the seed 1–
1
.

Agreed. It says that the numerator of the fraction after is m2

+ 2n2, while its denominator is 2mn. It involves the squares of
m and n, and even a multiplication of m by n, whereas the pre-
vious rule involved only additions and one simple multi-
plication by 2.

When you put it like this, it sounds as if it’s a complicated rule.

Anyway, your hope is to show that it generates a subsequence
of the original sequence when applied to the seed 1–

1
.

Yes, that’s my task at the moment.

This subsequence provides successive approximations of
that approach it more rapidly than do the terms of the full
sequence generated by the simpler rule. We could say that the
price for extra power is a more involved rule, although this
Heron rule is not difficult to apply. Why don’t you run a quick
check on the rule in the case = 1–

1
to see if it gives the 

fraction 3–
2
?

Right. Setting m = 1 and n = 1 tells me that m2 = 1 with 
2n2 = 2(1) = 2. Thus m2 + 2n2 = 1 + 2 = 3.

As it should.

The new denominator is 2mn = 2(1)(1) = 2, which is correct
also. So

The rule generates 3–
2
.

Now convince me that the Heron sequence is a subsequence of
the fundamental sequence.

If this new sequence is a subsequence of the original sequence,
then its (top)2 - 2(bottom)2 must be either -1 or 1 also.
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This is the key. Show this and you are done, because in this
case, and in this case only, is the fraction a member of the fun-
damental sequence.

So, fingers crossed. I’ll work out the square of the numerator
first. Now

(m2 + 2n2)2 = m4 + 4m2n2 + 4n4

if I’ve done this correctly.

Faultlessly.

I must now work out twice the square of the denominator. It is
given by

2(2mn)2 = 2(4m2n2) = 8m2n2

Now subtract this quantity from the previous quantity to
obtain the difference between the square of the numerator and
twice the square of its denominator.

Of course—this is the next step.

We get

(m4 + 4m2n2 + 4n4) - 8m2n2 = m4 - 4m2n2 + 4n4

This result is by no means as simple as I was hoping it 
would be.

It is a little intimidating, and not very revealing as it stands.

I’m glad you said that.

But can you spot another way to write m4 - 4m2n2 + 4n4?

Do you mean can I factorize it? It took all my limited skill to
multiply out all the expressions with m’s and n’s everywhere.
I wouldn’t trust myself to factorize.

Well,

m4 - 4m2n2 + 4n4 = (m2 - 2n2)2

which you should find very helpful.

What’s so helpful, I wonder, about this (m2 - 2n2)2, which is the
square of the quantity m2 - 2n2?

Doesn’t this say that the new difference, m4 - 4m2n2 + 4n4, if I
may call it that, is just the old difference, m2 - 2n2, squared?
Now finish off the argument.

But the old one is either -1 or 1 all the time. This means that
the new difference must be 1. I have it!

You have. In fact, there can only ever be at most one -1, which
there is in this case because of the seed 1–

1
.

Because (-1)2 = 1, all the others must be 1.
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Correct.

So we have actually shown two things, although we began by
trying to show only one.

Care to elaborate?

Well, besides showing that the Heron sequence is a subsequence
of the main sequence, we now understand why all its terms
beyond the first are overestimates.

Why?

Because they all have a signature of 1, which we said earlier is
the fast way of knowing that a fraction is an overestimate.

Well done again.

It is really satisfying to prove something in a simple way once
you see how to go about it.

A real thrill indeed. The reward of understanding something
that previously appeared mysterious is wonderful.

Speed and Acceleration

I still have to tackle the question about the rate at which the
Heron rule “travels” along the fundamental sequence starting
from 1–

1
.

Hopping, as if it were, from the first term to the second, then
onto the fourth, then to the eighth and so on, doubling its 
previous hop with each successive stride.

Exactly.

In marked contrast to the one-step rule

which strolls along from term to term, never altering its pace.
The Heron rule accelerates while the one-step rule ambles long
at a constant speed.

That’s a nice way of looking at it.

Imagery that we will use from time to time. In which category
would you place the rule
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—proceeding at an accelerated pace or traveling along at a
fixed speed?

It has been a while since we talked about this rule. If it starts at
the seed 1–

1
, it takes us through the fundamental sequence two

steps at a time.

Yes, picking out all the odd-numbered underestimating frac-
tions and skipping over all the even-numbered overestimating
fractions.

Start it at 3–
2

and it does the exact opposite.

True. But another plodder, it has to be said. Still, I suppose it
has twice the speed of the one-step rule.

As you say.

And as we said before, it is very handy if for some reason we
want to generate the full under- or over-subsequences.

I suppose there are rules that allow us to pick out every third
term, or every fourth term and so on, of the fundamental
sequence?

There are. We’ll talk a little about them at a later stage. Of
course, they must all be constant-speed rules.

You’ll have to forgive me, but I just have to use the Heron rule
to get the next fraction in the Heron sequence after .

If you must, you must.

With m = 577 and n = 408, the approximation formula gives

and

(665857)2 - 2(470832)2 = 443365544449 - 443365544448 = 1

Which I knew had to be the case.

But you just had to check, didn’t you?

Yes, I admit, but how did you know?

It’s a fairly common behavior: no matter how much people
believe the theory, they still like to see it in action on concrete
numbers.

By the way, is this latest arrival the sixteenth member of the 
fundamental sequence?

It is. We really must get round to displaying more than just the
first eight terms of the fundamental sequence. Speaking of
which, let me add this most recent acquisition to our existing
list of known Heron fractions to get

m n

mn

2 2 2 22

2

577 2 408

2 577 408

665857

470832

+
=

+ ( )
( )( )

=

577
408
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as the latest update on this wonderful sequence.

The numerator and denominator of the last fraction have six
digits each.

A solid citizen.

It’s intriguing that these fractions would appear to have nothing
in common because they look so different from each other, yet
we know that they are actually almost right beside each other
on the number line.

That’s true, particularly of the later ones.

Time Out for a Sneak Preview

I know you intend to punch out a lot of digits of the decimal
expansion of sometime in the future, but could we take time
out to estimate how many digits of the decimal expansion of
the fraction

coincide with the leading digits of the decimal expansion 
of ?

By all means. How do you want to go about it?

I thought that I’d get the fraction just after this one in the 
fundamental sequence with the one-step rule and then get the
decimal expansions of both fractions. Whichever leading digits
are common to both will be the leading digits in the expansion
of .

Simple and effective. Though we’ll get these decimal expan-
sions using a computer; it is not cheating because, if we had to,
we could work them out by hand.

So we won’t be breaking our desert-island must-be-able-to-do-
it-yourself code of conduct?

We won’t. What is the fraction after ?

It is given by

Very well. What now?

Well, since the Heron fraction is an overestimate, this one is an
underestimate, and so

665857 2 470832

665857 470832

1607521

1136689

+ ( )
+

=
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470832

2

2
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2
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Now I’ll just get the decimal expansions of the fractions to a
goodly number of decimal places, twenty say.

That should be plenty.

We get

which shows that

to eleven decimal places.

Yes, and all this with just the fifth term in the Heron sequence
and its successor in the fundamental sequence.

Always Over

Is it true that if we choose any fraction as an initial approxi-
mation to then the second fraction produced by Hero’s rule
is always an overestimate?

Why do you ask this question?

Well, I was doing a bit of experimenting of my own on the
“hopping conjecture”—you know my 1, 2, 4, 8, 16, . . . idea
about the Heron sequence.

What exactly did you do?

I tried the Heron rule on the seed 3–
2
, which I thought afterward

was a little stupid because it’s bound to generate just the Heron
sequence without its seed of 1–

1
. So then I tried the seed 7–

5
and got

the sequence

which I generated using a calculator.

Good for you.

These fractions are in positions 3, 6, 12, and 24 in the funda-
mental sequence. As you can see, they fit the doubling pattern.
It was then I thought that if this doubling pattern is a feature
of the Heron rule, it doesn’t matter whether we start at an odd
or even position, because once you double you’re on even
numbers from then on. All the fractions living in the even-
numbered positions are overestimates.
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Agreed, and very nice when you take a seed anywhere from the
fundamental sequence. But what if you use a different seed?

I’m afraid I overlooked that detail. I’ll have to think about the
matter some more.

What you believe to be true is in fact the case.

Is it easy to show?

It is easy to follow the steps once they are shown to you, but
the argument is very “slick,” a word of praise when used about
a proof.

I must see it, then.

A proof such as this one is found in practice by assuming that
what you want to show is true, examining the implications of
this assumption until you reach—if you are lucky—something
that is self-evident. Then you try to work back from this
obvious fact, and if your luck still holds, you succeed in revers-
ing all the implications and arrive at the result you suspected
to be true in the first place.

I’m not sure I follow all of this, but I get the gist. Do you have
time to elaborate?

Always. Our suspicion is that if a is a positive approxima-
tion to , then

no matter what the value of a. Are you with me?

I think so.

Because a is positive, the terms on both sides of this inequal-
ity are positive. So when I square both sides to “get rid of ,”
as is said, the inequality sign will still have the same direction.

A point you made to me earlier.

Doing this and tidying up a little gives

Check this at your leisure.

I think I can already see that it’s true.

Good. When we subtract the 8 from the 4 and multiply 
the equation through by a2, which is positive, the inequality
sign is still preserved, so we get that a4 - 4a2 + 4 > 0. Now we
write

a4 - 4a2 + 4 > 0 as (a2 - 2)2 > 0

a
a
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This is the clever part.

I’ll check all these technical steps later. Have we arrived at some-
thing that is obviously true?

Yes. Since a is only an approximation of , it is not equal to
. Thus, a2 π 2 and so a2 - 2 π 0.

I think I follow this.

Now what happens when a nonzero quantity is squared?

It’s always positive.

Exactly, whether it be positive or negative, its square is always
positive. So (a2 - 2)2 > 0. It is with this fact that we start our
proof.

You are going to reverse all the steps?

If they are reversible. I’ll streamline the whole argument. Are
you ready?

As I ever will be.

If a > 0 is an approximation of , then

shows that the quantity

is always greater than .

It must take years of practice to become this slick.

It does take time.

Isn’t it rather amazing that the second approximation and all
later ones are always greater than ?

Rather like the second approximation obtained with our first
rule always being between 1 and 2.
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To Go Under

If the Heron method always provides overestimates of after,
at most, the first approximation, does it mean that the rule
cannot be used to produce an accelerated sequence of under-
estimates? That would be disappointing.

It would.

It strikes me as a problem that we should be able to solve easily,
but I can’t quite see how to go about it.

Well, you used an idea a while back that holds the solution to
this problem.

I did?

You did. Let us view this problem then as no more than a 
technical one, challenging us to put our theory into practice.
Just think like an engineer seeking to chain different 
mechanisms.

Which ones? I don’t quite follow.

Well, we know how to generate overestimates with the Heron
rule, and we also know how to move back or forward one term
to obtain an underestimate.

Of course we do. I used this idea when getting a decimal approx-
imation to using the fifth fraction in the Heron sequence.
So if all else fails, we can get the computer to print the over-
estimates by Heron’s method and we’ll calculate the under-
estimates by hand. I’m joking!

A solution for those who are gluttons for punishment. We need
to find a mechanism that generates an overestimating fraction
and follows this by calculating its successor.

More algebraic manipulation.

Without question, but nothing to be frightened of. Think this
idea through abstractly on the algebraic fraction , and we’ll
solve the problem.

First, the Heron rule says that

Yes, and we know this latter fraction is an overestimate. So what
do you need to do now?

Step it down to an underestimate.

How?

By either stepping backward or going forward.
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Forward may be easier. Step forward to go under.

But how?

How do we get the next fraction in the fundamental sequence?
Just think of the verbal rule you came up with and apply its
instructions to this fraction.

In words, the new denominator is the old numerator added to
the old denominator.

Translate this into symbols in the present context.

The new denominator is (m2 + 2n2) + 2mn.

Exactly, or m2 + 2mn + 2n2, as such expressions are often
written to adhere to lexicographic ordering. New numerator?

The new numerator is the old numerator added to twice the old
denominator. This translates to (m2 + 2n2) + 2(2mn).

And simplifies to m2 + 4mn + 2n2.

So is the mechanism we want just the rule that turns the frac-
tion into this new fraction?

None other. Write it down and then test it to see it work like a
charm.

I can’t wait. The “under-rule” is

if we have gone about our business correctly.

Try it on the seed 1–
1

to get a succession of rapidly improving
underestimates.

We get

which are terms 1, 3, 7, 15, and I suppose term 31, in the fun-
damental sequence.

And are these term-numbers what we’d expect?

I think so. Without the step forward we’d get term 2, but stepped
forward this goes to 2 + 1 = 3. Then the doubling brings us to
position 6, which when advanced by 1, gives the term from posi-
tion 7 in the main sequence.

Then 2 ¥ 7 + 1 = 15, with 2 ¥ 15 + 1 = 31, and so on.

And since these are odd-numbered positions, they all represent
underestimates.
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Very pleasing. In fact, magnificently successful, I would say.

It’s great how knowing the theory helped us solve the problem
in hand.

Understand the theory and you can drive the practice.

Different Seed, Same Breed

I forgot to tell you what happened when I tried

on the seed 2–
1
.

You joined the Heron sequence at position 2, in the person of
the right-honorable 3–

2
.

I did, and of course you knew I would. But I got quite a sur-
prise. I never expected a different seed to breed the same future
generations. Does this happen in other ways?

You mean can you tap into the Heron sequence at different
points starting with other seeds, say at the third position or
fourth or any other position for that matter?

Something like that.

Yes. If you apply the Heron rule to the fraction , you also get
. . . why don’t you work it out to see, and then you’ll have inves-
tigated everything thoroughly.

But I still haven’t gotten anywhere with my investigation con-
cerning the doubling phenomenon of the Heron rule.

Perhaps our final piece of witchcraft will shed some light on
this burning question.

All in the Family

Are you about to develop rules that provide better approxima-
tions of at an even faster rate than Hero’s rule?

Yes. We’re going to speed up the pace by steadily increasing the
pressure on the accelerator, as it were.

Can you not put the pedal to the metal?

You’ll be able to answer this question for yourself in a little
while.

We’re in for some fast action then? I’m expecting great things,
considering how impressive the Heron sequence is.
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Perhaps you shouldn’t set your expectations too high. You
might find the whole business a bit of a letdown.

I’m sure I won’t.

If and are any two fractions in the fundamental 
sequence

then we know that

m2 - 2n2 = ±1 and p2 - 2q2 = ±1

where, as usual, ±1 means either 1 or -1.

And and each have stood for typical fractions in this
sequence on a number of occasions.

Indeed they have. Now we are about to see them trip the light
fantastic together.

Some more of the witchcraft you mentioned a while back.

I hope you’ll think so. The first piece of conjuring is to multi-
ply the expression m2 - 2n2 = ±1 by p2 - 2q2 = ±1 to get

(m2 - 2n2)(p2 - 2q2) = ±1

Can you explain why we get ±1 on the right-hand side of this
equation?

Let me see. Each ±1 stands for either 1 or -1, so when multi-
plied by each other, the answer must come out to be either 1 
or -1.

That’s it exactly. We are going to mine this equation deeply by
way of some pyrotechnics.

Entertainment!

We aim to please. Now what I’m about to do is change this
product

(m2 - 2n2)(p2 - 2q2)

into a single term using the defining relation for , namely that
2 = ¥ .

This is normally written the other way around, isn’t it?

I write it in reverse for a reason. With 2 = ¥ = ( )2,

The right-hand side is a factorization of the m2 - 2n2 on the left-
hand side. This is the first time we have used this maneuver.

I was never that comfortable with factorization at school.
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2 2 2 2- = -( ) = -( ) +( )

222

22
2

p

q

m

n

1

1

3

2

7

5

17

12

41

29

99

70

239

169

577

408
, , , , , , , , . . .

p

q

m

n

WITCHCRAFT 173

Difference of two

squares



Don’t worry, the job is done. You might, when you have time,
multiply the two terms on the right-hand side to verify that the
left-hand side is obtained.

Multiplying I think I can manage, it’s undoing the multiplica-
tion I don’t warm to.

Be sure to note where the relationship defining is used.

Will do.

Similarly, p 2 + 2q2 = (p - q)(p + q). Now all is in readi-
ness for more fireworks.

Are we in for some tough going?

Yes, but we’ll take it slowly—and the result will be worth the
effort. To begin

In the second line, the two expressions with the minus sign in
their middles are paired between a set of square brackets, as
are the two with the plus sign in their middles.

I assume you have your reasons for doing this.

Which will become clear soon, I hope. Now, a little multi-
plication shows that the first pair simplifies to (mp + 2nq) -

(mq + np), while the second pair simplifies to (mp + 2nq) +
(mq + np).

I’ll take your word for it.

Yes, these multi-lettered products are the same except for the
opposite signs in the middle. You can also take my word for it
that

This calculation is of the form (a - b)(a + b) = a2 - 2b2.

Where a = mp + 2nq and b = mq + np?

Yes.

Whew! This is pretty hairy stuff from where I’m standing.

I know, because of those off-putting letters. But it’s all just 
scaffolding, which we now discard to reveal the identity

(m2 - 2n2)(p2 - 2q2) = (mp + 2nq)2 - 2(mq + np)2

which is true for all values of m, n, p and q, no matter where
they hail from.

I’m afraid at the moment I feel more overwhelmed than
impressed.
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I understand; you are probably reeling. Anyway, how can you
be impressed about this relationship, which I have dignified by
calling an identity, when you don’t yet know the destination of
this mystery tour. For now I’ll be quite happy if you accept that
it is true and watch how it is put to work.

Well, if it’s any consolation, I can see that the two terms multi-
plying each other on the left become a single term on the right,
which was your objective.

Indeed. And can you see that the term on the right has exactly
the same form as each of the terms on the left?

In the sense that, like them, it is something squared minus twice
something else squared?

Exactly. Now, let us return to our sequence. As we have already
said, if and are any fractions from the sequence

then

(m2 - 2n2)(p2 - 2q2) = ±1

Because of our newly acquired identity, this means that

(mp + 2nq)2 - 2(mq + np)2 = ±1

What does this tell us?

That the fraction

is also a member of the sequence.

It does indeed; well spotted. But explain why anyway.

Because we proved that if a fraction has the property that its
numerator squared minus twice its denominator squared is
either 1 or -1, then it is a term in the fundamental sequence.
We used this result at least once before.

True. It is very important. A fraction with this property is a
fundamental fraction. Let’s make clear what it is we have
achieved up to this point in time.

Does this mean that the merry dance between and has
ended?

Nearly. When you think about what we have just done, you see
that the two fundamental fractions and can be combined
to produce another fraction, namely
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which is also in the fundamental sequence.

This is very interesting; another kind of rule.

Try some examples to get better acquainted with what’s afoot.

I’ll start out with the first and second terms

Taking m = 1, n = 1, p = 3 and q = 2 makes

— the next and third term in the sequence. So the first and
second combine to give the third. Just 1 + 2 = 3.

Why don’t you try the new combination rule again, this time
with

so that you can take m = 3, n = 2, p = 7 and q = 5.

The second term combined with the third. We get

We have skipped over 17—
12

and arrived at 41—
29

, which is the fifth term
in the sequence. Hmm, 2 + 3 = 5.

Now try it with the two biggest fractions generated to date,
namely

Take it that m = 7, n = 5, p = 41, and q = 29.

This should be interesting. We get

Look at this! We have skipped over the next two fractions after
41—
29

, that is, 99—
70

and , to arrive at , which is the eighth term
in the sequence. Not only are we picking up speed, but in terms
of positions it’s just 3 + 5 = 8.
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Meaning?

It seems that when we combine the fraction in position a, say,
with the one in position b, say, the process generates the frac-
tion in position a + b.

You might be on to something here. Do you realize that you
have just used symbols rather than numbers to explain what
we’ll term your positions conjecture.

I have become infected! If I could prove this positions conjec-
ture, then I’m sure it’ll answer my “doubling conjecture.”

The one regarding the positions of the Heron fractions in the
fundamental sequence.

The very one; it has been annoying me.

We’ve hardly started and you are already making new conjec-
tures and looking for proofs of old ones.

Are we getting ahead of ourselves?

Goes with the territory. It can be hard to hold a steady pace
when investigating. New lines of inquiry seem to spring up all
over the place and take one far away from the starting point.
Returning to which, you could say that our newly discovered
combination rule keeps everything in the family.

You mean in the infinite family of fundamental fractions?

Yes. I think that this mysterious mathematical dance between
and must be awarded top marks for producing such an 

interesting new rule.

Ten out of ten, then.

Using the Stars

I know that each fraction in the fundamental sequence appears
only once, but what would happen if we used the same fraction
in the combination rule as both and ?

Now you are being thorough! Why don’t you experiment with
two fractions that are equal?

Okay. I’ll test the smallest fraction, 1–
1
. With m = p = 1 and n =

q = 1 we get

— the second term in the sequence.

If you try with m = p = 3 and n = q = 2, you get
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— the fourth fraction in the sequence.

Now that I think about it, there is nothing in the argument you
gave that stops us from having and equal.

There is not; everything still holds true. You’ve answered your
own question. We may combine a fraction from the funda-
mental sequence with itself and still get another fraction from
the same sequence.

Well, that wasn’t so bad.

Let us explicitly emphasize the fact that combines with to
produce the fraction (mp + 2nq)(mq + np) by writing the com-
bination rule as

Here the star symbol * stands for the operation that produces
a third fraction in the manner indicated.

Not a simple recipe when you’re first shown it.

But not much harder than the plus operation for two fractions.

Now that you mention it, I suppose not.

Anyway, from what we have just done, we may write that

and

with this notation.

Looks very unusual.

Takes getting used to. If we replace the 3–
2

in the second equa-
tion with its “star” equivalent from the first equation, we may
rewrite the second equation as

So that there are four 1–
1
’s present?

Yes. Now remove the brackets to get
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—the fourth fraction as a starred combination of four copies
of the seed fraction 1–

1
.

This is fantastic! Because I think I see how to prove the posi-
tions conjecture, as you called it.

Go on.

In terms of this new star operation, it looks as if the funda-
mental sequence can be written as

We already got the third entry when we showed that

which is very convenient.

I’m going to drive you crazy and say that all we showed was
that

How do you know we can take the brackets off and still get the
same result?

But we did a while back, and you didn’t object. Surely this can
be done?

It can, but hidden little assumptions all need to be thought
about and ironed out.

I’m not sure I’m be cut out for all this caution.

A good word, and an essential trait for any investigator even if
it does seem, at times, to be excessive fussiness.

May I get on with my argument, however shoddy it may be.

Of course, we’ll take it for granted that this is all legitimate.

So I believe that the fifth fundamental fraction has five 1–
1
’s with

four stars and so on for the next terms, if you get my meaning.

I do, and you already know what you say is true about the first
four fractions. How would you prove it for the fifth term?

I’d wrap two brackets around the first four 1–
1
’s and their three

stars and then replace the lot with 17—
12

. Then I’d calculate that

and have the result I fully expected to get.
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Now do it for the general fraction to see if you get the next
one.

I’ll try, but you’ll have to help me with notation, I’m sure.

Okay.

First, I don’t know how many 1–
1
’s are in the representation of the

general fraction .

You don’t have to. Just show the next fraction has one more 
* 1–

1
.

Right. By the combination rule,

This is the expression for the fraction immediately after in
the fundamental sequence.

It is. You are nearly there. When is written out in all its 
glory in front of the star and the 1–

1
on the left-hand side of this

equation, the new fraction is seen to have one more * 1–
1
. So I

think we can safely say that each fraction of the fundamental
sequence may be written in the form

with the number of 1–
1
’s being given by the position of the frac-

tion in the fundamental sequence.

This is a great help. We can now say that if is in position 

a, and in position b of the fundamental sequence, then 

is in position a + b.

Yes, because is in position a, then

Here the number of stars is one fewer than the number of 1–
1
’s

in the representation.

This is the kind of thing I wouldn’t have known how to
handle—the notational part.

It takes a while to get the hang of it. Similarly
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because it is in position b. Then

because (a - 1) + 1 + (b - 1) = a + b - 1. The +1 in the middle
is counting the star between the two sets of brackets.

I’m star-struck, but I do see how the notation works.

Since the final number of stars is a + b - 1, we know that the
fraction that results from the combination lives in position 
a + b of the fundamental sequence.

So that settles the positions conjecture.

It does. Let’s savor this result a little more and have some 
fun.

Count me in. What do you have in mind?

Stepping It Out

The result that

tells us that when the typical fraction of the fundamental
sequence is combined with the seed fraction 1–

1
, the fraction 

is produced. From what we have just proven, the position
number of this fraction is just one more than the position
number of the fraction .

But we know this already.

Agreed, but suppose we didn’t. This result would tell us that
the fraction is the algebraic form of the fraction coming
immediately after .

So it would lead us to the one-step rule

— is that what you are saying?
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Exactly. And because

tells us that is the form of the fraction two steps on from
, the two-steps rule is

— something that we also know independently to be true.

I see what you are driving at. Because 17—
12

is the fourth fraction
in the sequence, and because the combination rule tells us 
that

we can say that

is the four-step rule. Am I right?

Absolutely. The fraction four steps on from in the funda-
mental sequence is of the form . In fact, you can see
immediately, by setting m = 1 and n = 1, that this rule carries
1–
1

into = 41—
29

.

And 41—
29

is the fifth term in the sequence. If the formula is right,
it should give me the ninth fraction when I substitute 41 for m
and 29 for n. Doing this I get

which is indeed the ninth fraction.

And the next one will be the thirteenth and so on.

This means we now know the general method to construct a
rule that will take us any fixed number of steps each time.

We do. If we think of as representing the typical fraction in
the fundamental sequence, and of as some fixed fraction, say
the one in position r of the fundamental sequence, then the
fraction
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is exactly r steps onward in the sequence from the fraction .

In this case

is the corresponding r-step rule.

That’s it exactly.

If I want a rule that generates every hundredth term of the fun-
damental sequence, I work out the hundredth fraction in the
fundamental sequence to find the correct p and q to put into
the above rule.

Working out the hundredth term with our present knowl-
edge is a bit tiresome, but once you have the correct p and q
you are all set and you can start from wherever you like in the
sequence.

And I can do this for any whole number of steps, no matter 
how large, provided I am willing to find the corresponding 
p and q?

Yes.

With this method I can use any speed I desire.

Yes, but it will be constant.

I realize this. This settles a point we raised a while back. It really
does pay dividends to think about things in a fundamental yet
simple way, as we have done here. Look at what we know how
to do now.

Theoretically, at any rate, we can provide a rule for any number
of steps because each fraction in the fundamental sequence
induces a rule whose speed is given by its location number in
the sequence.

Acceleration

So I know how to travel along the sequence at any speed I like
without altering the pressure on the accelerator pedal.

And you now want to be able to vary the speed and accelerate.

Why not? After all, we are only talking about numbers, so it
should be all excitement without any danger.

Since you put it this way, how can I refuse? Well, we already
have some experience of accelerating through the fundamen-
tal sequence acquired when we were testing our new combina-
tion rule. When the first and second terms of the sequence, 1–

1

and 3–
2
, are starred, they produce the third term, 7–

5
. Then the
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second term combined with this third term gives the fifth term,
41—
29

. When this new term is combined with the previous 7–
5
, it gives

the eighth term, .

This was when I made the conjecture about the addition of
position numbers.

The positions conjecture, which we now know is true.

So if we continue as we are, the next term will be the thirteenth.

Undoubtedly. Combining the two largest fractions, 41—
29

and ,
obtained to date gives

We could continue in this manner to generate a subsequence
of the fundamental sequence, which begins

and whose terms approach at an accelerated rate.

Because the differences between position numbers are increas-
ing. Can we improve on what we are doing?

In various ways. One such is to introduce a slight modification
to what we are doing right now. As things stand, choosing the
two most recently generated fractions to generate a fresh one
sees the first fraction acting very much as the junior partner
because of its magnitude.

Can we avoid this?

Yes. Just let and both stand for one and the same fraction,
the most recently generated one.

Of course.

We already discussed and implemented the idea of using the
same fraction twice in the combination rule. It has the advan-
tage that we work with only one value, the most-up-to-date
one, instead of two. Furthermore, the generating rule becomes
simpler with only two letters instead of four to confuse us. The
fraction propels itself forward.

Very imaginative.

Let’s get to it. Since was our original choice for a typical frac-
tion, let us stick with it and set p = m and q = n in
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to get

as a new rule for generating successive approximations of .

I don’t believe it; this is Hero’s rule!

None other.

Obtained, it seems to me, in an entirely different way.

Quite so. Let us remind ourselves of the subsequence of the
fundamental sequence that Hero’s rule generates when the seed
is 1–

1
.

It is the Heron sequence:

which is an improvement on the accelerated subsequence given
earlier.

Because of the fine-tuning we performed. These fractions
occupy positions 1, 2, 4, 8, 16, . . . in the fundamental sequence
and so are greater than or equal to the corresponding fractions
in our previous subsequence, which occupy the Fibonacci posi-
tions 1, 2, 3, 5, 8, 13, . . .

Fibonacci positions?

Prepend a 1 to the sequence 1, 2, 3, 5, 8, 13, . . . and you obtain
the famous Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, . . . about
which so much has been written.

But about which we will say no more so as not to get distracted?

Sadly, yes. However, in light of our new perspective on the
Heron rule as

I think the time has come for you to deal with your “doubling
conjecture” which you said has been annoying you.

On and off.

I feel confident that you’re about to rid yourself of that 
annoyance.

If the fraction has position a in the fundamental sequence,
then its Heron successor
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has position a + a = 2a in this same sequence because we simply
add position numbers. This, if I’m not mistaken, proves the
doubling conjecture.

Well and truly.

I’m surprised by how easy it turned out to be. However, I realize
that we have gained a lot of insight since I first made the 
conjecture.

I think it fair to say that it wasn’t clear back then why the posi-
tion numbers are as they are.

Somehow I don’t feel that thrilled about understanding why 
this doubling is part of the Heron rule. Even though it was
killing me that I couldn’t find a simple explanation, it was like
a puzzle that is both annoying and entertaining at the same
time.

They say that nothing kills a problem like a solution.

More Power

I think I can see how to generate more and more powerful rules
at will.

And can you put the pedal to the metal, to use your metaphor
from the beginning of this discussion?

Not if what I think is true.

Right. Let’s hear your idea.

As you said, the Heron rule can be thought of as a fraction oper-
ating on itself through the combination rule to propel itself on
to the next fraction.

Its next incarnation. Correct.

It’s just as if it’s squaring itself except that the operation is not
ordinary multiplication but this new star operation.

A wonderful operation.

So why not try “cubing”? I reckon we’ll step along the funda-
mental sequence, trebling the previous position number with
each new stride.

Well, that would be outstripping Hero’s rule in no uncertain
terms. You had better elaborate.

My suggested new rule is

no more, no less.
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Looks attractively simple, but how do you work out the “starry
expression” appearing to the right of the long right arrow, Æ?

I write

I use the Heron rule to go from the first line to the second, and
the general combination rule to go from the second to the third
line.

You’ve been practicing your algebra. We could also say that
your suggested new rule is to combine at each stage the typical
fraction with its Heron successor to produce a new 
fraction.

I didn’t think of it like this, but yes. And since we know that 
and its Heron successor are part of the fundamental

sequence, we can be sure that the new fraction is also a funda-
mental fraction.

. . . Which we could also be sure of for other reasons that we
need not elaborate.

What’s more, it allows us to see very easily why the stride trebles
the position number with each new step taken. If the fraction
is in position a, its Heron successor is in position 2a . . .

. . . and so their starry off-spring is in position 3a, treble the
position number of a. Very convincing. In the above calcula-
tion you chose to put the brackets around the last two terms.

I assume and hope that it doesn’t matter where I put them.

This is one of those fussy things that we should get the all-clear
on before assuming it’s true. But we’ll take it to be valid so as
to get on to the interesting stuff. Your new “cubic rule,” as I will
dub it, is

and is an even more powerful rule than Hero’s for generating
successive approximations of .

Because it trebles the position number.
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When applied to the seed 1–
1
, this cubic rule yields the 

subsequence

of the fundamental sequence.

It is obvious from just these fractions alone that this cubic rule
generates terms that approach more rapidly than the corre-
sponding terms given by the Heron rule. I wonder how good
that fourth fraction is as an approximation of .

Before you decide, tell me if it is an underestimate or an 
overestimate.

The fractions shown are the fundamental fractions 1, 3, 9, and
27 and so are all under-estimates of because they are in odd-
numbered positions.

So the fourth fraction underestimates “slightly.” We have

to thirty places of decimals.

Now I’ll calculate the fraction after this one using

This fraction overestimates . It is

1.414213562373095048802726507359 . . .

to thirty decimal places.

Since is smaller than this number but bigger than the pre-
vious one we can say that

with its eighteen leading digits after the decimal point known
forever more.

Just from a knowledge of the fourth fraction in this cubic sub-
sequence of underestimates.

Powerful! If we seed the cubic rule at the second term, 3–
2
, in the

fundamental sequence, we’ll get an equally good—slightly
better in fact—subsequence of overestimates of .

So where to now?
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If we “star” the fraction

which appears in the Heron rule with itself, we get the follow-
ing rule

which generates

The third term is a monster.

Because of the presence of the fourth powers in this very pow-
erful new rule, we might call it the “quartic” rule and also
because the new fraction is

— a “starry” multiplication of four like terms.

A good name then.

The decimal expansion of the third fraction just displayed is

1.4142135623730950488016887242096980785696718753772

Off the record, this agrees with the decimal expansion of to
forty-seven decimal places.

And this is just the third term! We certainly have got things
moving now.

You can say that again. When the typical fraction is starred
with the fraction in the quartic rule, we are led to

Applied to the seed 1–
1

this “quintic” rule generates

a subsequence of underestimates to because their position
numbers in the fundamental sequence are 1, 5, 25, 125, and 
so on.

That fourth fraction is some whopper.
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Isn’t it, though? When the typical fraction is starred with the
quintic fraction we obtain the “sextic” rule

which is a fairly intimidating recipe but conceptually no more
so than the previous ones. The extra power is coming at the
price of more and higher-order terms in the rule. Applied to
the seed 1–

1
it gives

followed by

as the first four terms of a sequence of approximations that
must approach at an incredible pace.

I can well believe it, judging by the enormous fourth fraction.
And we can never put the accelerator right to the floor because
there is no floor.

Bottomless, because any rule can be improved on by “starring”
it with a predecessor. By the way, from a calculation using the
last displayed fraction and its successor

1.41421356237309504880168872420969807856967187537694807317
66797379907324784621070388503875343276415727350138462309
1229702492483605585073721264412149709993583141322266 . . .

gives the first 165 digits of the decimal expansion of !2
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I’m almost disappointed to see the decimal expansion of
given to so many decimal places because I have a feeling that
our discussion about is nearly over. Before you finish, is
there any more you can say about and the sequence

without becoming too technical?

There are a few odds and ends which tie in with some of the
results we have established, and we might take a light-hearted
look at them without proving every detail.

I’d like that.

Best Approximations

Now that we have obtained a decimal expansion of that is
accurate to more than 160 decimal places, I think we can safely
use decimals in calculations concerning .

Something we have been careful not to do too much of until
now?

Yes. The following table shows the decimal approximations of
the first twenty multiples of rounded to five decimal places
of accuracy. I don’t think there are any difficulties hidden in
the details connected with doing this.
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As you can see, each multiple is also written in terms of the
integer closest to it, plus or minus its approximate distance
from this integer.

Is there always a closest integer? Might there be some multiple
of that is exactly half-way between two integers?

No. Because this would make the multiple of equal to a
rational number.

And so make a rational number also. I should have seen this
for myself. So each multiple has a nearest integer.

Yes; and what I would like to focus on is how near, in decimal
terms, each multiple is to an integer.

So to begin, is at a distance 0.41421 to the right of the 
integer 1.

This distance is not exact, but a rounded approximation.

I understand.

What about the second multiple?

The number 2 is at a distance 0.17157 to the left of the
number 3 on the number line.

An improvement, because 0.17157 is less than 0.41421.

The number 3 is 0.24264 units from the number 4, and to
the right of it. It is not as close to 4 as 2 is to the number 3.2
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19 2 26 87006 27 0 12994

20 2 28 28427 28 0 28427

= -
= = +
= = -
= = +
= = +
= = -
= = +
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So 3 is not as close to its nearest integer as 2 is to its
nearest integer.

The next one is even worse. The multiple 4 is at a distance
of 0.34315 to the left of the number 6.

Thus, 2 is the current record holder for being closest to an
integer.

But that is about to change. The next entry in the table says that
5 is at a distance of 0.07107 from the integer 7.

You are right. A separation of 0.07107 units from the nearest
integer is by far the smallest separation so far.

It seems we have a new champion multiple—the number 5.

The multiple of closest to an integer so far. Now, if you look
down the rightmost column, you won’t find any multiple
relieving 5 of its title until 12 is reached.

Let me look; absolutely right.

As you can see, 12 is at a distance of 0.02944 from 17, which
is less than the 0.07107 units that separate 5 from its nearest
integer 7. So 12 wrests the crown of “multiple of closest to
an integer” from 5.

How long will 12 stay champion?

Until a better multiple is found.

I think at this stage I’m beginning to see what you intend for
me to see.

Which is?

That the “record multiples” to date are

1, 2, 5, 12

and the corresponding “record nearest integers” are

1, 3, 7, 17

This is exactly what I want you to see. The first set of numbers—
the successive champions—are none other than the leading
terms of the Pell sequence, while the second set—the corre-
sponding nearest integers—are the first four numbers in what
we termed the “first cousin” sequence of the Pell sequence.

This is astonishing!

Alternatively, we can say that the successive fractions in the
fundamental sequence

1

1

3

2

7

5

17

12

41
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99

70
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408
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2

2

2

2
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have the record multiples for their denominators and the
record nearest integers for their numerators.

The number of ways this sequence keeps appearing is almost
unbelievable.

Quite so. Now, if we have hit on the true state of affairs, this
means that . . .

. . . the next best multiple is 29, with corresponding nearest
integer 41.

Yes. Scanning down the right-hand column you’ll not see any-
thing smaller than the current minimum separation of
0.02944.

Agreed.

So we have to extend the table to check our prediction. Why
don’t you do this?

Gladly. The next ten multiples of give

which should be enough.

It is. At the very end of the second to last row we find what we
are looking for.

I see it. For the first time since the twelfth row, we have a 
multiple of that is closer than 0.02944 to its nearest 
integer.

Most welcome, a new minimum separation as predicted. The
multiple 29 of is within 0.01219 of its nearest integer 41.

I’d check that the next record pair is 77 and 90, but there’s a
little too much work involved.

Of course, don’t dream of doing it.

So it would seem that the successive terms of the Pell sequence

1, 2, 5, 12, 29, 70, 169, 408, . . .

2

2

21 2 29 69848 30 0 30152

22 2 31 11270 31 0 11270

23 2 32 52691 33 0 47309

24 2 33 94112 34 0 05888

25 2 35 35534 35 0 35534

26 2 36 76955 37 0 23045

27 2 38 18377 38 0 18377

28 2 39 59798 40 0 40202

29 2 41 01219 41 0 01219

30 2

= = -
= = +
= = -
= = -
= = +
= = -
= = +
= = -
= = +
=

. .

. .

. .

. .

. .

. .

. .

. .

. .

4242 42641 42 0 42641. .= +

2

194 CHAPTER 5



provide the successive record multiples of that come closest
to an integer and that the corresponding record nearest integers
are the numbers in the sequence

1, 3, 7, 17, 41, 99, 239, 577, . . .

which if true, shows these two sequences in another light.

It is true, but we will not prove it. Instead, let’s discuss briefly
what further insight it gives us into the fractions in the funda-
mental sequence

— fractions which have been our almost constant companions.

Popping up all over the place.

I want to focus a little more on the fact that of the first twenty-
nine multiples of , the number 29 is the one that comes
closest to an integer.

Because, as we have checked, the 0.01219 in

is smaller than the corresponding term for each of the twenty-
eight multiples of before 29.

The quantity 0.01219 is called the “fractional part” of 29 and
represents its separation from its “integer part,” which is 41. It
doesn’t matter, for the purposes of the present discussion,
whether it has a plus sign or a minus sign in front of it.

So it’s only the size of this fractional part that is important?

Yes. It is the smallest separation observed to date. When we
divide the last equation through by 29, we get

I have added an ellipsis at the end to show that 0.01219 is only
an approximation.

All right.

Now I am now going to do the same thing for each of the pre-
vious twenty-eight equations appearing in our two tables. That
is, I’m going to divide each across by its corresponding multi-
ple of .

A lot of work.

2

2
41

29

1

29
0 01219= + ( ). . . .

2

2

29 2 41 0 01219= + .

22
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Perhaps the simplest way to go about this is to first merge our
two previous tables but with their second columns of figures
deleted. We get a table that shows each of the first thirty mul-
tiples of in terms of their nearest integer and their frac-
tional parts, as we are now calling them:

1 2 1 0 41421

2 2 3 0 17157

3 2 4 0 24264

4 2 6 0 34315

5 2 7 0 07107

6 2 8 0 48528

7 2 10 0 10051

8 2 11 0 31371

9 2 13 0 27208

10 2 14 0 14213

11 2 16 0 44366

12 2 17 0 02944

13 2 18 0 38477

14 2 20 0 20102

15

= +
= -
= +
= -
= +
= +
= -
= +
= -
= +
= -
= -
= +
= -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

22 21 0 21320

16 2 23 0 37259

17 2 24 0 04163

18 2 25 0 45584

19 2 27 0 12994

20 2 28 0 28427

21 2 30 0 30152

22 2 31 0 11270

23 2 33 0 47309

24 2 34 0 05888

25 2 35 0 35534

26 2 37 0 23045

27 2 38 0 18377

28 2 40 0 40202

= +
= -
= +
= +
= -
= +
= -
= +
= -
= -
= +
= -
= +
= -

.

.

.

.

.

.

.

.

.

.

.

.

.

.

2929 2 41 0 01219

30 2 42 0 42641

= +
= +

.

.

2
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We are now ready to divide each row across by the correspon-
ding multiple to get:

2
1

1

0 41421

1

2
3

2

0 17157

2

2
4

3

0 24264

3

2
6

4

0 34315

4

2
7

5

0 07107

5

2
8

6

0 48528

6

2
10

7

0 10051

7

2
11

8

0 31371

8

2
13

9

0 27208

9

2
14

10

0 14213

10

2
16

11

0 44366

11

2
17

12

0 02944

12

2
18

13

0

= +

= -

= +

= -

= +

= +

= -

= +

= -

= +

= -

= -

= +
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38477

13

2
20

14

0 20102

14

2
21

15

0 21320

15

2
23

16

0 37259

16

2
24

17

0 04163

17

2
25

18

0 45584

18

2
27

19

0 12994

19

= -

= +

= -

= +

= +

= -
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In the last column we get a fraction and what I’m going to call
the decimal part. These decimal parts are just the fractional
parts divided by their corresponding multiples.

But you didn’t bother to work out these decimal parts 
fully.

Deliberately. You are about to understand why. What I want
you to do now is convince me that the decimal part coming
after the fraction 41—

29
is smaller in magnitude than any of the

other decimal parts appearing in the table.

This can’t be that hard to explain. We already know that 0.01219
is the smallest of all the fractional parts.

That is correct.

Well, in the table, it is being divided by 29, which is bigger than
each of the other divisors 1 to 28.

Correct again, but why is this important?

It seems obvious to me that the smallest fractional part divided
by the biggest multiple is bound to be smaller than all the bigger
fractional parts divided by smaller multiples.

2
28

20

0 28427

20

2
30

21

0 30152

21

2
31

22

0 11270

22

2
33

23

0 47309

23

2
34
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0 05888

24

2
35

25

0 35534

25

2
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0 23045

26

2
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0 18377

27

2
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28

0 40202
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2
41

29

0 01219
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2
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0 42641
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= +
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= +
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= +

= +

.

.

.

.

.

.

.

.

.

.

.

198 CHAPTER 5



And it is. All of which means that 41—
29

is a better approximation
of than all the fractions shown in the first twenty-eight rows
of the table.

It has to be.

Reducing all these fractions to their lowest terms—there are
some in need of this, such as 8–

6
—and eliminating repetitions

such as 6–
4
= 3–

2
gives

I’ve displayed the fundamental fractions in bold.

I see that.

Each of these fractions is an approximation of .

Is each successive fraction in this sequence better than its 
predecessor?

No, not by any means. The fraction 18—
13

is not a patch on 17—
12

as an
approximation to , nor is 23—

16
, although this latter fraction is

an improvement on 18—
13

.

And is 17—
12

better than all the fractions between it and 41—
29

?

No. The fraction 24—
17

is closer to than 17—
12

, which is something
you might like to show without using decimal approximations.

I’ll try it later. But 41—
29

is better than all its predecessors in this list,
as you have just said.

It is, but it is no harm to go back over the reason. What you
said a moment ago amounts to saying that

whenever q is one of the first twenty-eight natural numbers.
This means that 41—

29
is closer to than all these other fractions,

and so 41—
29

is the best of these in terms of approximating .

Clearly.

However, 41—
29

is a better approximation to than any fraction
of the form , where the denominator q is less than 29 and
where the numerator p is any integer.

Not just the numerators shown in the fractions just listed?

Any numerator. The reason is simple: it’s because the p corre-
sponding to a given q in the above list is the best numerator
for that particular denominator. This is not hard to see if you
think about it.

Maybe not for you but I’m going blind from all these fractions.
Would you show me for the case of 16—

11
, say?

p

q

2

2
2

1

29
0 01219

1
. . . . . . .( ) < ( )

q
fractional part

2

2

2

1

1

3

2

7

5

17

12

41

29
, , , , , , , , , , , , , , , , , ,

4

3

10

7

11

8

13

9

16

11

18

13

23

16

24

17

25

18

27

19

31

22

33

23

37

26

38

27
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All right. We know from our original table that 11 is within
half a unit of 16.

Because 16 is the nearest integer to 11 ?

Certainly. Hence the fraction 16—
11

is within half of one-eleventh
of .

The one-eleventh coming from dividing across by eleven to get
the fractional approximation?

As you say. Now, any other fraction of the form is at least
one-eleventh from 16—

11
.

The nearest fractions with denominator 11 to 16—
11

are 15—
11

and 17—
11

.

Yes. And since is within half of an eleventh from , it must
be more than half an eleventh from these fractions and any
other fraction of the form .

And so further from than 16—
11

. I see it now.

So no other fraction with a denominator less than 29 is closer
to than 41—

29
. For this reason, 41—

29
is said to be a “best” approx-

imation to .

And 17—
12

is a best approximation also because no fraction with a
denominator less than 12 is closer to than it.

Correct.

And only the fractions in the fundamental sequence have this
property?

Yes. The fractions

are the best approximations to in the sense that all fractions
with a denominator less than theirs are further from than
they are.

So a fraction that is closer to than 99—
70

, say, must have its
denominator greater than 70?

Yes. The first one to achieve this is , which is . . . I 
won’t say.

Ramanujan and Gauss

I’m now going to pose you four problems based on what we
have done, and then I will tell you of a puzzle that will intro-
duce us to two of mathematics’ finest number theorists.

Number theorists—mathematicians who study numbers?

140
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The properties of numbers. “Number theory is the queen of
mathematics,” is how one of the gentlemen you will soon meet
once put it.

Is what we have been doing called “number theory”?

In a sense, yes, and in as elementary a fashion as possible, using
no more than simple algebra and without using functions or
matrices, to name but two pieces of mathematical machinery
that can be tremendously helpful.

It seems to me that we have achieved a lot with nothing more
than algebra.

Certainly, but not perhaps as quickly as we could have. I tried
to sail close to the mathematical shore, even if it made our
journey longer.

Well, I am very glad that you did. What are the four problems?

First let me tell you that they can all be solved very simply, so
you needn’t think, from the sound of them, that they are
awfully hard.

Good to hear. I’ll keep that in mind.

The problems concern , the reciprocal of . The first is to
explain why this number is irrational; the second is to write
down a sequence of fractions, similar to the fundamental
sequence, whose successive terms approach it; the third is to
write down its infinite continued fraction expansion; and the
fourth is to find the first 160 or so digits in its decimal expansion
using the most recently obtained decimal expansion of .

These don’t sound that simple. Thinking about them should
keep me occupied for some time.

The puzzle I want to walk you through is connected with the
sequence

and will, I’m almost certain, give you some idea of how inti-
mately some human beings know and understand numbers.

Such as the mathematicians you mentioned. I’m hooked
already.

G.H. Hardy, whom I have already mentioned, had a great
mathematical colleague in the famous Indian mathematician
Srinivasa Ramanujan. At some time in his tragically short life,
Ramanujan was given the following puzzle:

The houses on one side of a street are numbered consec-
utively beginning with the number 1. Find the number

1
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2
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of the house which is such that the sum of the numbers
on all of the houses to one side of it is the same as the
sum of the numbers on all of the houses to the other side
of it.

Ramanujan answered by dictating to his friend Mahalonobis a
continued fraction and gave the explanation: “Immediately I
heard the problem, it was clear that the solution should obvi-
ously be a continued fraction; I then thought, ‘Which contin-
ued fraction?’ and the answer came to my mind.” Now what do
you think of that?

I cannot say I’m flabbergasted because I don’t really understand
what it is this man achieved. But it does seem to be a lightning-
fast response to a problem that I’m still trying to get my head
around.

As would most others be, had they just been given this
problem.

So there are all these houses in a row numbered 1, 2, 3, and so
on, as far as the last house whose number, I note, we aren’t told.

Indeed we are not.

This means then that we have two numbers to find in this
puzzle: the number of houses on this one-sided street and the
number of the particular house with this special property.

Yes. We can think of ourselves as looking directly at the row of
houses

with the lower numbers to our left and the higher ones to our
right.

Surely this puzzle works only for certain numbers.

I would think so. Not every street with a given number of
houses will possess such a house. However, it’s nice to know
that there are certain streets with a particular house having this
special property.

Yes. I didn’t think of this because, I suppose, it could be that
such a puzzle might not have any solution.

And I presume when it does have a solution, there is only one
possible house number.

I might have known you’d ask a strange question like that. How
could there be two different houses? If the sum of all the
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numbers below the lower-numbered house matched the sum of
all the numbers above it, then the sum of all the numbers below
the higher-numbered one would be in excess of the sum of all
the numbers above it.

I agree. I was just asking as mathematicians are trained to ask,
“If a solution exists, is it unique?”

I see.

Would you say the puzzle works for a street with exactly one
house?

Strange isn’t the word! You mean a street with one house works
because there are no houses either to the left or the right of it?

Yes, because you could say that their nonexistent sums are
equal. It’s just a thought.

I’m assuming the house number itself is not used in the 
reckoning.

By my reading of the puzzle, it is not. It is the sum of all the
numbers to the left of it that must match the sum of all the
numbers to the right of it.

It obviously can’t work for just two houses.

Because there cannot be houses on both sides of the house in
question.

Yes. And it doesn’t work for three houses:

because the 1 to the left is not equal to the 3 to the right. I hope
there is a solution to this problem small enough to be found by
brute-force trial and error.
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Let’s do a search of streets with a total of, at most, ten houses.
If nothing else it will get us thinking about the problem.

Okay. Well, for a street with four houses numbered 1,2,3,4,
which house is possible?

It can’t be either of the end houses, 1 or 4, and it is not 2. House
number 3 just misses out since 1 + 2 is one short of 4.

Try five houses.

Well, 1 and 5 are out immediately, being end houses. The
number 2 has only 1 to the left of it, and so cannot match 3 +
4 + 5. House number 3 is out because 1 + 2 is less than 3 + 4,
and house number 4 is out because 1 + 2 + 3 is greater than 5.

Another blank. How about six houses?

The end numbers 1 and 6 are out, and there is no point trying
2 or 3 because they’re obviously too small. I get the feeling that
the house number is going to be near the right end of the street.

The house number is definitely beyond the “middle number or
numbers” because it takes a lot of the smaller numbers to
balance the larger ones.

House number 4 is ruled out since 1 + 2 + 3 = 6 is not equal to
5 + 6.

While 1 + 2 + 3 + 4 = 10 > 6 rules 5 out as a house number.
How about seven houses?
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Since 1 + 2 + 3 + 4 = 10 < 6 + 7, we can rule out all the house
numbers up as far as 5; and since 1 + 2 + 3 + 4 + 5 = 15 > 7, we
can rule out house numbers 6 and 7 also.

So, no luck with seven houses. Try eight houses.

This is going to work!

Why?

Because in the case of a street total of seven houses, we saw that
1 + 2 + 3 + 4 + 5 = 15. This sum matches 7 + 8.

So?

House number 6 on a street with a total of eight houses:

has

1 + 2 + 3 + 4 + 5 = 7 + 8

— the sum of the numbers to the left of it matching the sum
of the numbers to the right of it.

At last, a solution.

This was hard enough going, though I’m delighted we found
one solution.

Before we tackle the puzzle in a professional manner, let me
give you a glimpse of some of the other solutions. The next
solution is house number 35 in a row of 49 houses. Would you
like to check it?

I would, but to do so I have to add up the numbers 1 to 34 and,
separately, add the numbers 36 to 49, which should take me
some time even with a calculator.

Indeed. You have now encountered another problem or puzzle,
this time of a purely mathematical nature which brings us to
a much-told story about how another great mathematician
solved this newly encountered problem.

It seems to me, from the trial-and-error work we have just done
to find the second solution, that if we are to succeed in solving
the Ramanujan puzzle completely, then we need to know how
this person found such sums in general.

You are absolutely right. But before I relate this mathematical
tale, let me tell you now that

1 + 2 + 3 + · · · + 32 + 33 + 34 = 595
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and that

36 + 37 + 38 + · · · + 47 + 48 + 49 = 595

confirming the third solution.

These calculations don’t tell me anything about how these sums
are found.

That’s because I don’t want to spoil the story I’m about to
recount. When this tale is told, we’ll return fully equipped
mathematically to solve our house problem.

I’d better let you to it, then.

Carl Gauss

One of the greatest mathematicians of all time was Carl
Friedrich Gauss. It is said that when Gauss was a young boy of
no more than eight years of age his teacher asked each member
of his class to find the value of the sum

1 + 2 + 3 + 4 + · · · + 97 + 98 + 99 + 100

You’ll recognize this as similar to, but a little longer than, the
first sum we had to do above.

Much longer. This was a hard problem to give to boys of
that age.

Which was what the teacher had in mind. He fully expected
that this calculation would take each of his pupils most of the
class time. As soon as each boy was finished, he was to write
his result on his small slate and place it face down in a desig-
nated spot in front of the teacher’s desk.

They would have needed a lot of time to get all that adding done.

Within seconds, the eight-year-old Gauss placed his slate face
down in front of the teacher’s desk and went back to his seat,
where he remained quietly.

Within seconds? He must have just written down any old
number.

The teacher may have thought the very same thing, but if he
did, he said nothing. He continued with his reading and left the
boy to his thoughts.

And what happened?

As the end of the class period neared, the teacher told the other
boys, who were still busy calculating the given sum, to finish
up and place their slates in a pile as instructed.

All on top of young Gauss’s board?
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Yes. When the teacher examined the slates, he found that only
one of them had the correct total of 5050.

The one written on young Carl’s board?

None other.

Incredible! How did he get this answer so quickly?

Beneath the teacher’s long addition he imagined the sum of the
numbers from 1 to 100 written in reverse:

1 + 2 + 3 + 4 + · · · + 97 + 98 + 99 + 100

100 + 99 + 98 + 97 + · · · + 4 + 3 + 2 + 1

Now what did he do mentally?

I had better get this right. Did he intend adding each number
in the second row to the one above in the top row?

He did.

1 + 2 + 3 + 4 + · · · + 97 + 98 + 99 + 100

100 + 99 + 98 + 97 + · · · + 4 + 3 + 2 + 1

101 + 101 + 101 + 101 + · · · + 101 + 101 + 101 + 101

Can you see what is so wonderful about this?

He gets a sum of 101 for each pair.

Exactly. And can you see how the boy finished off the 
calculation?

This is terrible pressure. To be put in competition with an eight-
year-old! The addition on the final line has one hundred 101s.

It has. Since the overall addition uses each of the numbers 1 to
100 exactly twice, it follows that there are one hundred 101s to
be added.

And so

2(1 + 2 + 3 + 4 + · · · + 97 + 98 + 99 + 100) = 100 ¥ 101

giving

— the answer Gauss wrote on his chalkboard !

That’s how he did it.

It was really very clever how he thought of reversing the
numbers and then adding to get the same total each time. It is
no wonder he became the great mathematician you said he did,
if this is how he was thinking at eight years of age.

1+2+3+4 +   +97 +98+99+100 =
100

◊ ◊ ◊
¥

=
101

2
5050
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They say he could count before he could talk.

I can well believe it.

This method avoids all the tedium of continually having to add
the next number to the sum of all the previous numbers.
Because the hundred simple sums (100 + 1, 99 + 2, . . . ,
1 + 100) are really only one sum, Gauss’s trick allows him to
sidestep all the labour involved in the original task by con-
verting it into a much simpler problem requiring one addition,
one multiplication, and one division.

It is brilliant, and so simple when you see it.

Breathtakingly so, and such economy of effort. The depressing
thing is that mere mortals such as we don’t see such steps. But,
that said, I’m not going to give up singing just because others
can do it so much better. By the way, it was Gauss who wrote
that, “Mathematics is the queen of the sciences, and number
theory is the queen of mathematics.”

I suppose he was entitled to say things like this. May I try out
his method on the sums we had above?

Before you do, it might be better for us to obtain a general
result that we can use at will.

Elaborate please.

We use this ingenious trick to sum all the natural numbers up
to and including any natural number. For example, if I ask you
the sum of

1 + 2 + 3 + 4 + · · · + 997 + 998 + 999 + 1000

you will no longer gasp with incredulity that you could be
expected to work out such a long addition. Instead, imitating
the simple pattern of the previous calculations, you will calmly
tell me that the answer is

Am I not right?

I’m sure this is exactly what I would do.

If I ask you to explain how you obtained this answer so quickly
you might tell me the sum is calculated by the simple rule: Mul-
tiply the largest number by the one after it and halve the result.

Of course I’d say this!

In this specific example, the largest number in the addition is
1000, and since the one after it is 1001, we multiply 1000 by
1001 to get 1001000. Then halving this result gives 50500 as the
answer.

As simple as that.

1000 ¥
= ¥ =

1001

2
500 1001 50500
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Since “the largest number in the addition” can change from
problem to problem, it is useful to use a letter to denote it.
Because this largest number is always a natural number,
and since n is the initial letter of the word natural, the letter 
n is often chosen to stand for the largest number in the 
addition.

So are we going to write down a rule for the sum of the first n
natural numbers?

Yes, an all-purpose formula that will give us the flexibility to
handle any case. If n is the largest number in the addition, then
what is the number just before it?

I suppose it is n - 1 with the number before that being n - 2.

You are becoming quite comfortable with algebraic notation.

I wouldn’t say that, and I have no objection whatsoever when
things stay simple with concrete numbers.

We often write the general addition of the first n natural
numbers as

1 + 2 + 3 + · · · + (n - 2) + (n - 1) + n

with n standing for the largest number in the addition.

So (n + 1) is the number after n, and when this number multi-
plies n, the result is n(n + 1). Thus, the above rule, when trans-
lated, says that the addition sums to

Yes, pleasingly compact. Thus

is the wonderfully simple but powerful general formula giving
the sum of the first n natural numbers.

I’m going to recheck the house-street solution of 35, 49.

Very nicely expressed—and brief. Please proceed.

The sum of the first thirty-four house numbers is

How am I going to find the sum of the numbers from 36 to 49
inclusive?

A mere technical difficulty, which I have no doubt you’ll 
overcome.

1 2 3 32 33 34
34 35

2
17 35 595+ + +◊ ◊ ◊+ + + =

( )
= ¥ =

1 2 3 2 1
1

2
+ + +◊ ◊ ◊+ -( )+ -( )+ =

+( )
n n n

n n

n n+( )1
2
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I see how. Find the sum of the first 49 numbers and subtract
from it the sum of the first 35 numbers. So

as before.

I’m impressed with the simple but clever way you wrote 
36 + 37 + · · · + 48 + 49 as the difference of two sums, on each
of which you could use the general formula.

Thank you.

As a reward you might like to check the next house-street
answer is house number 204 on a street with 288 houses.

I’m already on it.

Taking the Bull by the Horns

We are now ready to return to our puzzle and solve it with the
help of our newly acquired formula and a little more algebra.

So time to brace myself.

Let us suppose the total number of houses on a street for which
this puzzle has a solution is T.

A capital T for the street total, no doubt?

Yes; and let h stand for the elusive corresponding house
number, which has house number totals to its left equalling
those to its right.

Try describing the nature of the puzzle in terms of the house
number h and the street total T.

I’ll give it a go. The sum of the numbers up to and including 
h - 1 must be the same as the sum of the numbers from h + 1
up to and including T.

Exactly. What is the first sum—the total of all the smaller num-
bered houses to the left of h?

That would be

36 37 48 49 1 2 49 1 2 35

49 50

2

35 36

2
49 25 18 35

36 37 48 49 595

+ +◊ ◊ ◊+ + = + +◊ ◊ ◊( ) - + +◊ ◊ ◊+( )

=
( )

-
( )

= ¥( ) - ¥( )
fi + +◊ ◊ ◊+ + =
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using the general formula with h - 1 in place of n.

Excellent. What about the second sum—the total of all the
house numbers to the right of h?

The second sum is

using exactly the same idea I used a while back.

First class. Equate these sums, as they say, to see what you end
up with.

Setting these sums equal to each other gives

or

on multiplying through by 2 and bringing all the h terms 
to the same side.

Correct. Now the -h and +h terms cancel to give

2h2 = T 2 + T

which is about as simple as we can make it.

Doesn’t look too frightening.

We have arrived at a connection between the house number h
and the street total T. If we can find an h and a T that fit this
equation, then the sums in question will match, and we’ll have
a solution to the puzzle. Why don’t you check the answers we
found ourselves?

Are you counting a street with only one house as a solution?
Whoever heard of a one-house street?

Well, whether we do or not, see if it fits the equation.

Putting h = 1 and T = 1 gives 2(1)2 = 12 + 1, or 2 = 2, so it fits
the condition.

And our next solution?

Here h = 6 and T = 8. Is 2(6)2 = 82 + 8? It is.

h h h h T T2 2 2- + + = +

h h T T h h-( )
=

+( )
-

+( )1

2

1

2

1

2

h h T T T T

h h

T T h h

+( )+ +( )+◊ ◊ ◊+ -( )+ = + +◊ ◊ ◊+ -( )+[ ]
- + +◊ ◊ ◊+ -( )+[ ]

=
+( )

-
+( )

1 2 1 1 2 1

1 2 1

1

2

1

2

1 2 2 1
1

2
+ +◊ ◊ ◊+ -( )+ -( ) =

-( )
h h

h h
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Try the other two solutions I told you about just for the fun 
of it.

Right.

2h2 = 2(35)2 = 2450 while T2 + T = 492 + 49 = 2450

2h2 = 2(204)2 = 83,232 while T2 + T = 2882 + 288 = 83,232

Both cases check out.

In order to advance, I must perform one or two maneuvers that
will seem a little mysterious, but I shall explain the method
behind my madness when I’m done.

Full attention time again.

First, I’m going to multiply both sides of the equation by 4 
to get

4T 2 + 4T = 8h2

I have interchanged the two sides also.

I’m with you so far, although I don’t know why you did this.

Of course, all will be revealed. Now we add 1 to both sides to
get

4T 2 + 4T + 1 = 8h2 + 1

Ask yourself if the left-hand side of this expression can be
written more compactly.

If there is factorization of some kind involved, I’m not likely to
see it, as it is not a strong point of mine.

Well, the left-hand side can be now written as something
squared. We get

(2T + 1)2 = 8h2 + 1

Essentially, 4T 2 + 4T + 1 has been rewritten as (2T + 1)2—an
expression that is the square of the single quantity 2T + 1. The
technique used to arrive here is known as “completing the
square.”

You used it already in one of your slick proofs, as you called
them.

I did, and it is a very useful idea that shows that our first con-
dition is equivalent to the one just obtained.

I’m willing to accept this since you treated both sides of the
equation equally.

Now viewing 8h2 as 2(2h)2, we write the last equation in the
form

(2T + 1)2 - 2(2h)2 = 1
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which brings us very close to previous work.

It does look familiar. It is something squared minus twice some-
thing else squared equal to 1.

Exactly. When we replace 2T + 1 by m, and 2h by n, we get

m2 - 2n2 = 1

— an expression you have seen many times.

Now I recognize where you have led us. Every second frac-
tion, beginning with 3–

2
, in the fundamental sequence satisfies

this relationship, where m is its numerator and n its
denominator.

I’m glad you spotted this. Every single fraction in the over-
subsequence

satisfies m2 - 2n2 = 1.

I need to remind myself why we have arrived here.

I can appreciate this, and what you suggest is always the sensi-
ble thing to do.

We began by looking for house numbers h and street totals T,
which would solve the puzzle, and we have found that any 
pair of h and T can be obtained from a fraction in the over-
subsequence, is that it?

Yes. Specifically, we have shown that a suitable house number
is given by half of the denominator of such a fraction.

Because n = 2h?

Yes.

I’m getting the idea now. And since m = 2T + 1, we can get the
corresponding street total by subtracting 1 from the numerator
and dividing by 2.

Now you are fully up to speed.

So doing both of these conversions to the numerators and
denominators of the over-sequence

gives us the sequence of fractions

1

1

8

6

49

35

288

204

1681

1189
, , , , , . . .

3

2

17
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577

408

3363
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3

2

17

12

99

70

577

408

3363

2378
, , , , , . . .
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which contains all the information about the house numbers
and street totals we seek.

Yes, which is very nice. Notice that the fractions in this
sequence are not in reduced form.

Indeed they are not.

And for the sake of providing a solution to this puzzle, they
shouldn’t be brought to lowest form.

Point taken. It is marvelous how this puzzle connects with our
discussion.

Isn’t it? Now we can say, because of all we have established in
relation to the fundamental sequence, that the puzzle has an
infinite number of solutions.

Powerful.

Mathematics is full of surprises like this. That’s part of its great
appeal.

So are we to believe that the mathematician Ramanujan 
saw all of what we have just understood on hearing the 
puzzle?

You can be sure of it.

Now I really am flabbergasted!

If this is not evidence enough of his genius for numbers,
Hardy tells that he once visited Ramanujan in hospital and
remarked that the number of the taxi he had taken was 
1729, a number that he opined did not strike him as very 
interesting.

I take it then that Hardy was another number theorist.

Reputed to be of the first rank. Ramanujan astounded Hardy
by informing him that 1729 is the smallest natural number that
can be expressed as the sum of two cubes in two different ways,
namely as

13 + 123 and 93 + 103

— as you can easily verify.

I’m speechless!

Different Problem, Same Solution

In solving the last puzzle we made use of the result that

1 2 3 2 1
1

2
+ + +◊ ◊ ◊+ -( )+ -( )+ =

+( )
n n n

n n

2
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for each natural number n. If we substitute the values 1, 2,
3, . . . in turn for n in the equation then we get that

The numbers

1, 3, 6, 10, 15, . . .

which appear as totals on the right-hand sides of the above
equations, are termed the triangular numbers for reasons that
I hope this diagram makes clear:

These look cute.

Alternatively, and more elaborately:

1 1

1 2 3

1 2 3 6

1 2 3 4 10

1 2 3 4 5 15

=
+ =

+ + =
+ + + =

+ + + + =
. . . . . . . . . . . . . . . . . . . . . . . .
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— to illustrate just the first five.

I can see from the diagrams why these first five numbers are
called triangular numbers.

Also, I think they make clear why we’d keep getting triangular
arrays by adding extra lines where each has one more black dot
than its predecessor.

They do.

Can you see that the first triangle of dots is also a square
number, but that none of the other four triangles of dots can
be rearranged to form a square?

I can; and this is obvious numerically by observing that none
of 3, 6, 10, 15 is a perfect square.

Of course. Now we are going to find all the triangular numbers
that are also squares.

So there are others?

Plenty. Let us take a systematic approach and see where it 
takes us.

Here comes more algebra.

Yes, but we’ll be met by a pleasant surprise, which will save us
a lot of work.

A surprise? I must watch out for it.

We want to know for what values of n,

1 + 2 + 3 + · · · + (n - 2) + (n - 1) + n = m2

where m2 stands for a perfect square. Agreed?

Yes. Can’t you replace the left-hand side of this equation by the
Gauss formula?

We can and will, to get

or

n2 + n = 2m2

Does this equation jog your memory?

Isn’t it the same as the equation

T2 + T = 2h2

that we came across in our street problem?

It is, with n instead of the street total T and m instead of the
house number h.

Does this mean the two problems are the same?

n n
m

+( )
=

1

2
2
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Well, whether or not the two problems are the same, their
answers certainly are.

With the T numbers now being the n numbers and the h
answers being the m answers. This is what you meant by a pleas-
ant surprise.

Yes. We know the answers to our current problem because
they’re the same as those to our previous puzzle.

So the sequence

contains all the information we need.

The first fraction tells us that the triangular number 1 matches
the square number 1 as we already know. Graphically:

with the dot on the left representing the first triangular
number and the dot on the right representing the first square
number. Not earth-shattering from the visual point of view,
I know.

The second fraction, 8–
6
, tells us that the eighth triangular number

is the square 62 = 36.

It does. It says that

1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 = 36 = 6 ¥ 6

— a relationship you might like to illustrate geometrically.

That would be fun.

It may take you some time to see how do it.

I think I can show how the triangle can be turned into the
square. In this diagram:

1

1

8

6

49

35

288

204

1681

1189
, , , , , . . .
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I have shown the last two rows of the big triangle differently
from its first six rows. These last two rows can be rearranged to
form a triangle, as you can see:

When I place this triangle next to the triangle formed by the
first six rows, we can see how the original triangle of eight rows

turns into a six-by-six square.

Very nicely done. Your diagram also shows how the six-by-six
square can be decomposed to give the large triangle. It is 
interesting how the last two rows of the overall triangle on 
the right form a triangle to complement the top triangle 
with its base of six-by-six dots to give the perfect six-by-six 
square.

The number of lighter shaded dots in the bottom two rows of
the triangle is fifteen, which is the fifth triangular number. This
means that the sum of the fifth and the sixth triangular
numbers form a six-by-six square.

It does. You might like to check experimentally first, either
arithmetically or geometrically, that the sum of some other two
consecutive triangular numbers forms a square. Then give a
simple algebraic proof of why this is so in general.

I’ll try the algebraic proof later, but it seems to me that a geo-
metric proof would be just like the square shown.

You are correct. In this particular case, however, we also have
an example of two consecutive triangular numbers forming
another triangular number. It is not always true that every pair
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of consecutive triangular numbers can be combined to give
another triangular number.

I understand. In this case, the fifth and sixth triangular numbers
add to the eighth triangular number.

The next solution to our present problem should give us
another example.

It should. Let’s have all the details.

Right. The third fraction in the sequence

is 49—
35

. This result tells us that the forty-ninth triangular number
1225 — the sum

1 + 2 + 3 + . . . + 47 + 48 + 49

represented by

is also the thirty-fifth square, 352 = 1225, represented by

1

1

8

6

49
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288
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It does. Now this square with its thirty-five rows of thirty-five
dots each can be split into two trangles: one of thirty-five rows
having dots numbering from 1 to 35 and the other of thirty-
four rows having dots numbering from 1 to 34 as you can see
from this diagram:
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Yes, by slicing the square along one of its diagonals and letting
the diagonal dots be part of one triangle. All of which shows
that the thirty-fourth and thirty-fifth triangular numbers
combine to give the forty-ninth triangular number.

They do. Since the first thirty-five rows of the forty-ninth tri-
angular number can be left as they are to form the thirty-fifth
triangular number, it means that rows 36 to 49 inclusively can
form the thirty-fourth triangular number.

Couldn’t you also leave the first thirty-four rows of the forty-
ninth triangular number as they are to form the thirty-fourth
triangular number, which would mean that rows 35 to 49 inclu-
sive can form the thirty-fifth triangular number?

This is true also. In terms of the house-street problem, we have

1 + 2 + 3 + · · · + 32 + 33 + 34 = 36 + 37 + 38 + · · · + 47 + 48 + 49

— an equation that tells us that house number 35 on a street
with a total of forty-nine houses has the sum of the numbers
on the houses below it equal to the sum of the numbers of the
houses above it.

As we knew already.

This result shows us that rows 36 to 49 of the forty-ninth tri-
angular number can form the thirty-fourth triangular number.

Because this equation says they have the same sum as 1 to 34.

Now add 35 to both sides of this same equation to get

1 + 2 + 3 + · · · + 32 + 33 + 34 + 35 = 35 + 36 + 37 + 38 + · · ·
+ 47 + 48 + 49

Ah, I see! This new result shows us that rows 35 to 49 of the
forty-ninth triangular number can form the thirty-fifth trian-
gular number.

Here is a challenge for you: explain why the numerators in the
sequence

alternate between being perfect squares and twice perfect
squares.

I’m glad you told me that they do! Strikes me as a tough nut to
have to crack. Maybe I’ll think about it after I’ve finished
working on those four problems you already gave me.

Well, only if the mood strikes you.
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The Balance of Powers

You mentioned that there were many proofs of the irrational-
ity of .

I did. Here is a proof by poem:

Double a square is never a square, and here is the reason
why:

If m-squared were equal to two n-squared, then to their
prime factors we’d fly.

But the decomposition that lies on the left has all its
exponents even,

But the power of two on the right must be odd: so one
of the twos is bereaven.

The phrase “double a square is never a square,” I recall from my
drill sergeant days, and I know the reason why.

You do, from our original proof that is not expressible as
the ratio of two whole numbers.

But the three lines that follow the first in this verse are going to
show us why this cannot be the case for different reasons, right?

Yes, a proof that has to do with the fundamental fact that every
natural number can be expressed uniquely, apart from order,
as the product of prime numbers.

I see that primes are mentioned in the second line. So this proof
depends on another result, one from arithmetic?

It uses the result that I just stated and that goes by the name
of the fundamental theorem of arithmetic.

Sounds very important, judging from this title.

It is, but it is something we almost take for granted without
thinking too much about it. For example, when we write that

6664 = 2 ¥ 2 ¥ 2 ¥ 7 ¥ 7 ¥ 17

or more briefly as

6664 = 23 ¥ 72 ¥ 17

we never entertain the thought that the number 6664 might
have a different “prime decomposition” than the one shown on
the right-hand side of this equation—apart, that is, from jum-
bling the order of the factors.

It’s hard to imagine how 6664 could be obtained by multiply-
ing different prime numbers by each other.

Perhaps. The fundamental theorem establishes very carefully
that the decomposition is unique.

Why is it so fundamental?

2

2

222 CHAPTER 5

Written by Maurice

Machover. [See

chapter note 2.]



We use it all the time even without realising it. For example, if

35 = a ¥ b

where a and b are natural numbers greater than 1, what can
you say about a and b?

Straight off I’d say that a = 5 and b = 7, or the other way 
round.

Completely natural, but you are assuming unique factorization
when you draw these conclusions.

If you say so, I suppose I am.

To return to the verse. The start of the second line 
translates to

m2 = 2n2

while the end of that same line tells us that we should now 
look at the prime decompositions of the natural numbers m2

and 2n2.

And what are we to make of the third line, “But the 
decomposition that lies on the left has all its exponents 
even”?

Well, there is no decomposition displayed in the verse, so to
what is he alluding?

Because of what you have just said, I presume he is referring to
the prime decomposition of m2, since it is on the left-hand side
of the equation.

This is my reading of it also. Do you understand what is meant
by the term exponent?

I do. The exponent of the prime 2 in the decomposition of 6664
is 3, while the prime 7 has exponent 2.

Correct, and what is the exponent of the prime 17 in the same
decomposition?

I assume it is 1.

It is, even though it is not shown explicitly. We progress.

So what has he in mind when he says, “has all its exponents
even”?

Are all the exponents in the prime decomposition of 6664
even?

No. In fact only one of them is even, the exponent of the 
prime 7.

He is saying that all the exponents in m2 must be even. Can you
see why?
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Ah, I think I can see why now. For example, squaring 6664 
gives

66642 = 26 ¥ 74 ¥ 172

because to square a number in exponent form you simply
double the exponent.

Right on. And?

No matter what the exponents are in the prime decomposition
of m, and they can be either odd or even, all of the exponents
in the prime decomposition of m2 will be even since twice any
natural number is always even.

That’s the key point. Now we understand the import of the
third line.

So if we can correctly decipher, “But the power of two on the
right must be odd: so one of the twos is bereaven,” we’ll have
the proof.

I should think so.

What does he mean by “the power of two on the right must be
odd”?

Power is just another word for exponent. He is saying that the
exponent of the 2 in the 2n2 appearing on the right must be
odd. If you can see why this is so, we’ll be finished.

Maybe I see what he is driving at now. If the number n has 2 as
one of its prime factors, to whatever power, its square, n2, has 2
to twice that power and so to an even power. For example, if 23

is part of the prime decomposition of n, then n2 has 26 in its
prime decomposition, right?

Precisely.

Well, then the prime decomposition of 2n2 has the prime 2 to
an odd power. In my example, 27 would be in the prime decom-
position of 2n2.

Correct. And why would this upset matters?

All the powers in the prime decomposition of m2 on the left
hand-side of the equation

m2 = 2n2

are even, but on right-hand-side the power of 2 in 2n2 is odd.
So the powers of 2 can’t balance.

Excellent. But what if n does not have 2 as a prime factor?

Just as easy. In this case, the prime decomposition of 2n2 has
21 (which is 2 to the power of the odd number 1) and m2 has
nothing in its prime decomposition to match this odd power.
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One way or the other, the exponent of 2 on the right is odd.

As the poet says.

By way of summary: If the prime 2 does not occur in the
decomposition of m, then m2 doesn’t have any power of 2 in
its prime decomposition. When we replace the m and n in

m2 = 2n2

by their respective decompositions, we end up with no 2s
appearing on the left-hand side and at least one 2 on the right-
hand side.

Agreed.

But this cannot happen, because m2 = 2n2 means that m2 and
2n2 are one and the same number. A number cannot have two
different prime decompositions according to the fundamental
theorem of arithmetic.

And this one has.

It does, because we have just obtained one with no 2 in it and
another with at least one 2. “So at least one bereaven two,” as
the last part of the final line says.

A contradiction is reached if m has no 2 in its decomposition.
But if m has 2 to some power in its decomposition, then m2 has
2 to an even exponent, which cannot be matched by the odd
power of 2 on the right.

So, again, some 2 on the right is deprived of a corresponding
2 on the left.

And we arrive at a contradiction again.

Now we understand the poem’s proof of the irrationality of
— a failure to balance the powers of 2—charming.

Infinite Descent

I rather like the proof of the irrationality of that I am about
to show you now for a reason I hope you’ll recognize when it
makes its appearance.

Time to be on the watch again.

Suppose that there are natural numbers m and n, say, for which

exactly, as we assumed in our first proof.

But we are going to take a different direction this time?

2 =
m

n

2

2
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Yes. We begin with an observation we made earlier, which is
that 1 < < 2. Replacing by the fraction , to which it is
supposed to be equal, gives

An easy step.

Now multiplying this inequality through by the positive
integer n gives

n < m < 2n

Still nice and easy. What’s next?

Subtract n from each of the three terms in the inequality 
to get

0 < m - n < n

Let me see, n - n = 0. Okay, m - n is just itself and 2n - n = n.
I know it’s simple but I want to be sure that I get it.

So, in summary, if = , then

There are two points here to keep in mind: that m must be a
number between n and 2n, and that m - n is a natural number
less than n.

I’ll try, but I don’t see why we are doing all of this.

Of course, not yet. Now it is also the case that

n < m fi 2n < 2m fi 2n - m < m

with 2n - m a natural number.

I follow the algebra, even the last step, but let me think why 
2n - m is a natural number. Might it not be negative?

No, since we have just shown that m is strictly less than 2n, and
so 2n - m is positive.

So you have used part of your first argument.

Crucially. Now I want to gather from this what I’m going to
need. We have shown that

2 2 0= fi - < < - <
m

n
n m m m n nand

1 2 2 1 2

2 0

0

< < fi < <

fi < < >( )
fi < - <

m

n
n m n n

m n n

because

m

n
2

1 2< <
m

n

m

n
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with m - n and 2n - m both positive whole numbers.

It takes a while to get used to these inequalities, but I’ll stick
with it, as I’m curious to see where all of this is heading.

We’ll call on this result after we have established one more.
Then we’ll be at the end of a preliminary stage.

Just the preliminary stage?

Yes. Now watch very carefully. I’ll get you to talk all the steps
through afterward.

Do you follow any of this?

The first step I’ve seen before. The second is true because the
same quantity, mn, is being subtracted from both sides.

Great so far.

The third step factorizes the previous two sides. In the last step
you divide across by quantities that are both positive.

Both positive is vital.

But, again, I don’t know why you have taken all of these par-
ticular steps.

I know, I have given no motivation for what I’m doing. If you
can be patient just a little longer, all will be revealed.

Certainly.

Another summary. Now we may say that

What do you make of this?

Nothing, I’m afraid, without having to think a long time about
it. Even then I couldn’t be sure that I would see what you’re
hoping I’d see.

Very valid, but you’ve seen the fraction on the right-hand side
before, maybe with different letters.

I’m almost ashamed that I had forgotten. The expression
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is the mechanism we used to go backward along the funda-
mental sequence from the typical fraction to the one 
before it.

Given by , as you say. I was hoping you’d recognize this.
Now I’d like you to express the implication

in words.

Does it say that if we assume is equal to the fraction , then
is also equal to the fraction ?

It does, where m and n are natural numbers. What can you say
about the numerator and denominator of the “new” fraction?

That they are also natural numbers?

Yes, and this is very important, but what else can we say? Look
back at the result of our preliminary work.

There you showed that

whose significance I think I now see.

Please elaborate.

If I have it correctly, it tells us that the new fraction

has a smaller numerator than that of , since 2n - m < m, and
a smaller denominator than that of , since m - n < n.

Well spotted, just as it does when is a fraction in the funda-
mental sequence.

Do we have to worry about the fractions reducing even further?

A good question, to which the answer is no. If the fraction 
is reduced, which we automatically assume to be the case, then
so is the new fraction. You might like to imitate our previous
proof, which dealt with reduction.

At the moment I’m quite happy to accept that it’s true.

So in
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the numerator of the second fraction is less than the numera-
tor of the first fraction representing . Furthermore, the
denominator of the second fraction is less than the denomi-
nator of the first fraction. And I must add that all these numer-
ators and denominators are natural numbers. What do you
make of all this?

From our experience with moving backward along the funda-
mental sequence, I suspect that this has to be wrong. Didn’t we
show that no matter which fraction you start with, the back-
wards mechanism eventually drops us down to a fraction whose
numerator or denominator is no longer positive?

And what would be wrong with that?

Well, didn’t you show very carefully that the fraction obtained
using the backward mechanism

keeps both the numerator and denominator as natural
numbers?

I did. Using “infinite descent,” as it is called, we cannot hope to
have a positive numerator and denominator at each stage.

I like the expression “infinite descent.”

Because the original m and n are positive integers, this process
of continual reduction must fail to produce both a positive
numerator and denominator after a finite number of steps.

Very powerful.

So if you can bear a final summary: when we assume that

for some positive integers m and n, we can show that this leads
easily to

with 2n - m a positive integer strictly less than m, and m - n
a positive integer strictly less than n.

I wouldn’t say “leads easily,” but I’m interrupting you.

Then the infinite descent argument scuttles the whole hypoth-
esis by eventually causing some numerator or denominator to
become nonpositive, thereby forcing a contradiction.
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This is a very nice proof. I probably appreciate it better thanks
to having studied how to move backward along the fundamen-
tal sequence.

It is a wonderful idea. The more modern version of the proof
sidesteps the infinite descent aspect of this argument by assum-
ing at the outset that if can be represented by a fraction 

, then this fraction can be chosen to be in lowest terms.

And is this okay? It does sound reasonable.

Well, it relies on a property of the positive integers known as
the “well-ordering principle,” which says that every non-empty
set of positive integers has a least element.

Which also seems obvious.

Then the accelerated version of the proof uses the implication

to arrive at an immediate contradiction, since the second frac-
tion is in lower terms than the assumed lowest form of .

Quick and slick, as you might say yourself.

By way of wrapping up this exploration of different proofs of
the irrationality of , I should mention that there are other
proofs of the irrationality of similar to the ones we have
discussed, which can be modified to prove the irrationality of

for any natural number that is not a perfect square.

So it is easy to prove that

are all irrational numbers as you said earlier?

Yes. If our drill sergeant’s original square squadron of soldiers
is trebled instead of doubled, the enlarged squadron still
cannot be marched in a square formation. Nor can this happen
if the squad is increased fivefold or sixfold.

Or by any other multiple that is not a perfect square.

Simply impossible. However, if the original squadron is
quadrupled or increased ninefold, or increased n2-fold for any
natural number n, then the enlarged squadron can be paraded
in a square formation.

If the squadron is quadrupled, the number of soldiers in each
rank and file is doubled.

That’s right. If the sergeant wants to increase the length of each
rank and file by a natural number n, then the squadron must
be increased n2-fold.
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So to treble the rank and file lengths requires that the squad-
ron be increased ninefold. Some consolation for the poor drill
sergeant!

Let’s hope so, but time for us to march on.

The Four Problems

How did you get on with your four tasks?

It took me some time to get going because I felt I should tackle
them in order. But I didn’t know how to do the first one at all —
to explain in a simple manner why is an irrational number.
I thought I might try to copy the proof of the irrationality of

, but I knew you expected something much easier than this.

Had you some immediate idea how to do some of the others?

Well, I thought I knew an answer to the second one almost
immediately. The problem is to write down a sequence of suc-
cessively improving rational approximations to .

And your solution is?

Because is the reciprocal of , I simply turned the fractions
in the fundamental sequence

upside down to get

as one such sequence. It also has seed 1–
1
. I must admit that I then

took out a calculator and checked, even though I was sure it was
right.

So you simply inverted the fractions. Full marks for this 
solution.

Don’t you want a proper proof?

No, the problems are only meant to be fun. Anyway, you were
asked to write down a correct sequence, that’s all, and I’m more
than happy you did this. How did you get on with the contin-
ued fraction expansion of ?

This scared me at first because continued fraction expansions
are new to me—so much so that I was convinced I’d never get
it. But then I reminded myself that you had promised the solu-
tions were easy to find. Still, it took a long time before it sud-
denly dawned on me how simple it is.
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How simple is it?

Just form a fraction with the 1 of in the numerator and 
write the continued fraction expansion of as the denomi-
nator to get

as a solution.

Well done, and full marks again.

I also took a long time to figure out how to get the decimal
expansion of to those 160 or so decimal places that you asked
for. My main difficulty was that I didn’t quite know how to
handle

although we have done many calculations with .

And what got you moving?

The manipulations you made when discussing the A-series of
paper. I remembered that you wrote

I dropped the term in the middle, turned the other two upside
down and made them switch sides to get

Suddenly life appeared a lot simpler.

You had gotten over your main stumbling block?

Yes. I now knew that is just one half of , which I found a
little surprising at first.

On the number line, it is midway between 0 and .

Once I was able to believe that is one half of , I saw 
how easy it is to get the decimal expansion to all those places of
accuracy. Just divide the 165-digit expansion we got for by
2 to get
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0.70710678118654752440084436210484903928483593768847

40365883398689953662392310535194251937671638207863

67506923115456148512462418027925368606322060748549

9679157066 . . .

In all its splendor. You did division by hand, no doubt?

It took hours!

Three down in great style. Only one to go.

The “talky one.”

One where you give reasons rather than work with numbers.

I have to show that is irrational. I know that is irrational,
and I know also that it is twice .

True.

I argue by contradiction. If is not irrational, then it is rational.

Yes, since numbers are either rational or irrational.

And twice a rational number is also a rational number.

Correct.

Which would make rational, which we know it isn’t. So 
cannot be rational, therefore it is irrational.

Excellent. Top marks.

I enjoyed these. However, I wouldn’t say they are that easy, even
if their solutions are straightforward when you find them.

I agree. You have to think about them the right way, which can
take time.

And maybe get a flash of inspiration.

The number can be thought of as the ratio of the length of
a side of a square to the length of its diagonal. In trigonome-
try, it gives the measure of both the sine and cosine of a 45-
degree angle.

So another irrational number that also makes its presence 
felt.

Rational versus Irrational

For our final offering we are going to draw a number of pic-
tures using a definite mathematical scheme.

Good, something visual.

Only when we’ve learned how the method works will I say what
it is all about. Then I’ll ask you if one particular picture bears
any resemblance to anything to be seen in the world around us.
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Another test.

To begin, we designate a specific point to be the center of our
picture and take the horizontal line pointing eastward from it
as a line of reference. Here’s a diagram of what I have in mind:

The small circular dot represents the center, and the line a base-
line of reference.

A line of reference for what?

For specifying rotations, as you are about to hear. What I want
to do now is place a dot at a distance of one unit from the origin
and at a clockwise angle of 45 degrees to this line. The diagram:

shows this dot and a line from the center through it inclined
at an angle of 45 degrees to the horizontal line.

Okay.

When I remove this line passing through the dot and the hor-
izontal reference line, what we should see at this stage is simply

or on a smaller scale
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Not very spectacular — yet, at any rate. Now we’ll add another
dot inclined at a clockwise angle of 45 degrees to the dot
already in place.

At the same distance from the center?

No. This time we’re going to increase the distance to units.
Here is a diagram with all the scaffolding still in place:

Do you see what I have in mind?

Yes. So removing the lines and the labels gives, on a smaller 
scale

which is the picture we are meant to see.

Yes — at this stage. Now we add a third dot inclined at a clock-
wise angle of 45 degrees to the last dot drawn.

2
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At what distance from the center?

At a distance of units from the center point. Here is a full
diagram showing all the details so far:

3
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Stripped of everything but what we want to show, it produces

which is still not very revealing.

Do I take it that we continue to add dots in the same way as the
ones already?

Yes, with each at a clockwise angle of 45 degrees to its prede-
cessor and at a distance from the center point given by the
square root of the dot’s number of appearance.

So the distances from the center are getting larger and larger?

Yes. The next dot, which is the fourth, is placed at a distance of
= 2 units from the center and rotated 45-degrees from

number-three dot.

And the fifth one is a further 45-degrees from this one at a dis-
tance from the center.

And so on. Here are the first eight dots placed according to this
scheme around the center point:

5
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Can you see the spiral pattern beginning to form?

I can. It’s quite easy to see.

Note that the eighth dot is on the baseline since 8 ¥ 45° = 360°.

One full revolution. Doesn’t this mean that the ninth dot will
be in line with the first dot but at a further distance from the
center point?

It does. It will be inclined at a clockwise angle of 45 degrees to
the baseline and at a distance of = 3 units from the center.
And the tenth dot will be on the same line as the second dot
but at units from the center.

And the eleventh in line with the third but further from the
center, and so on.

Here is a diagram showing how the first sixteen dots are located
according to our scheme:

The spiral pattern isn’t as pronounced in the outer ring, but if
you look at the diagram from a different perspective, you can
see arms beginning to form.

Eight arms with two dots on each, is that what you mean?

Yes. Here is the next diagram showing the locations of the first
ninety-six dots:

10

9
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Now the eight arms are clearly visible, while the spiral manner
in which the dots take up their positions is only discernible
near the center of the picture.

I can see this. You’d get more arms if you were to use a smaller
angle of rotation.

True. If we were to halve our current angle of 45 degrees, we’d
end up with sixteen arms like this:
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— another pretty picture with its dots spiralling out from the
center.

But the spiral is really only prominent for the first revolution.

And is there some way to get a more visible spiral?

Our current angle of rotation equals one-sixteenth, or 0.0625,
of a full revolution, and the sixteenth dot positions itself on the
baseline. From then on, the subsequent dots start filling out the
arms, and it’s the arms of the picture that predominate from
then on. With an angle of 54 degrees, which is equal to 0.15,
or three-twentieths of a full rotation, it takes as far as the 
twentieth dot to land on the baseline. This happens after three
full rotations.

So we get twenty arms, which start filling out from the twenty-
first seed onwards.

In the next diagram the first twenty dots are shown shaded in
grey.
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to highlight the three revolutions required to reach the baseline.

Let me just check this. Yes, I see what you are saying.

It’s interesting that, by rotating each dot clockwise through 54
degrees from its predecessor, we end up with radial arms sep-
arated by 18 degrees. On the other hand, using just twenty
rotations through 18 degrees has the twentieth dot landing on
the baseline after just one revolution.

Is this better?

Let me answer this question by displaying the first twenty grey
dots of the previous diagram alongside the first twenty dots
generated by rotating each clockwise through an angle of 18
degrees with respect to its predecessor. Here is the relevant
diagram, with the small black dot marking the center point:
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What do you notice?

I notice that only eighteen grey dots are shown, but I guess two
are covered by circular black dots.

Yes. The tenth and the twentieth. But how would you compare
the distribution of black dots to those of the grey dots?

I was going to say that a lot more of the black dots are closer to
the center than the circles, but this is not true, as I know that,
distance-wise, the black dots and the grey dots can be paired,
one for one.

Yes, although you might not think so, looking at the diagram.
So what might we say, then?

That the black dots look as if they are arranged better around
the center point than the grey dots.

Yes, they use the space better. If the black dots were, say, one
arrangement of twenty houses, and the grey dots another on
the same overall patch, then I think a group of twenty families
would opt for the black-dot distribution.

I would think so.

Certainly from the point of view of having more individual
room and separation from each other. Most would regard the
grey dots arrangement a bizarre use of the alloted land.

I suppose they would.

So by this criterion, a scheme that rotates through 54 degrees
is better than one which rotates through 18 degrees.

This is intriguing. Is there some angle for this scheme that
achieves a best possible distribution, whatever that might mean?

I’m told there is, but I won’t tell you what it is believed to be
until we discuss a little further what we are doing.

All right.

From what we have done already, we know that some angles
are better than others at distributing the same number of dots
throughout the available space.

As is the case with 54 degrees being better than 18 degrees.

Yes. Here the fraction 3—
20

is better than the fraction  1—
20

of a full
revolution, but no matter which fraction of a full revolution
we choose for our angle of rotation, there will come a stage
when some dot lands on the baseline, and from then on the
process starts forming arms.

Is this easy to see?

Yes. If , in lowest terms, is the angle of rotation expressed as
a fraction of a full revolution, then

p

q
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tells us that seed q will fall on the baseline after p full revolu-
tions. Why don’t you check out this reasoning on the angle 55
degrees, say?

Right. The angle 55 degrees is the fraction of a full revolution.
In lowest terms it is 11—

72
, so you are saying that dot 72 will land on

the baseline and this will be at the end of 11 full revolutions?

Yes. Check that 11 ¥ 360 = 3960 is the same 55 ¥ 72.

In this, the pattern of dots would have seventy-two arms all
radiating from the center with an angle separation of = 5
degrees, which is pretty good.

Yes. However, the wedgelike spaces between the radial arms
contain no dots. This results in a lot of blank space, particu-
larly further out from the center.

I see what you mean.

A rational multiple of the full angle is not the man for the job
of distributing these dots because he leaves vast tracts un-
inhabited, if I may speak metaphorically.

So from the point of view of good distribution, the rational
numbers have this limitation.

That’s so.

And can we find a way of populating these blank uniform
regions?

Theoretically, at any rate.

How?

By using irrational multiples of the full angle!

Why did you say “theoretically at any rate”?

Because, for practical computation, we can never know an irra-
tional number exactly, so we always end up having to use
rational approximations.

Very good ones, I presume.

Yes.

So please explain why theoretically irrational multiples of the
full angle are better than rational ones.

For the fundamental but simple reason that two or more dots
never get placed on one and the same line emanating from the
origin.

I’m going to ask why not, even though I know I should be trying
to reason it out for myself.

360
72
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360

q
p

q
p¥ =

242 CHAPTER 5



I’ll let you off this time. Suppose the irrational multiple of the
full 360-degree angle is r. This means that the angle of rotation
between two successive dots is 360r degrees. For example, when
r is the rational number  3—

20
, this angle of rotation is 360( 3—

20
) =

54 degrees.

I understand, but now we need r to be an irrational number,
not a fraction.

I know. What would have to happen for two dots to end up
being placed on the same line emanating from the origin?

After the first dot is laid down, the process would have to return
to this same line after a finite number of rotations through the
given angle of rotation.

Exactly. What does this imply if the number of rotations
involved is given by the integer m?

That m ¥ (360r) is equal to a certain number of full revolutions.

And if the number of full revolutions is the integer n, what can
we say?

Because a full revolution is 360 degrees, it would mean that

m ¥ (360r) = n(360)

But this gives

which is impossible.

Why?

Because it would say r is a rational number, which it is not.

Precisely.

This is fantastic! It’s as if the second hand of a clock moved
around its face without ever pointing in the same direction
more than once.

Exactly. Almost incredible, but it’s true. Since this is the case,
such rotating is bound to better place the dots in the available
space than one that is compelled to cycle through a fixed bunch
of rays no matter how numerous they may be.

I’d have to agree.

I think it is time now that we call on our irrational friend 
to act as a multiplier of the full angle to see what we get.

The -Flower

But is greater than 1, so surely it is not suitable as a multi-
plier of the full angle?
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Yes and no. Rotating by an angle in excess of 360 degrees is
equivalent to rotating in the opposite direction by an angle less
than 360 degrees.

So rotating clockwise through (360) = 509.11688 . . . degrees
is the same as rotating anti-clockwise through 149.11688 . . .
degrees?

Yes. And if we want to stick with clockwise rotations, there is
nothing stopping us from rotating in this direction through the
relevant angle less than 360 degrees.

Which for the multiple means rotating clockwise through
149.11688 . . . degrees.

And means that we are simply using - 1 as the multiplier
of the full angle, rather than .

This is also an irrational multiplier because - 1 is irrational.

An irrational multiplier between 0 and 1 that, when applied to
one hundred of our dots, produces this picture

with all its spirals. These are more visible in this next diagram,
created by replacing every second dot with a grey dot:

2
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If there are radial arms here, I don’t see them.

Nor do I. The dots seem to me to be arranged very nicely. Can
we do better?

Before I tell you what I have read about the answer to this 
question, let me ask if you have ever seen anything in nature
that resembles the array of dots just created by the - 1
multiplier.

So this is the question you had in mind at the outset of this 
discussion.

Yes.

I was wondering when you were going to ask me to make a con-
nection between nature and the pictures we have been creating
mathematically.

And any ideas?

Not really.

True but what if each dot represents a seed or floret that you
see on daisies or sunflowers?

I’m afraid I have never observed flowers in any great detail.

One model that correctly describes the arrangement of florets
in daisies and sunflowers uses the scheme we have described
with the distance of a typical dot from the center being scaled

2
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by some constant—a distance scaling factor—and a different
irrational multiple of the full angle of revolution.

I suppose the distance scaling factor may depend on the flower
in question.

Perhaps. The multiple used is one of mathematic’s most
famous irrational numbers,

known as the golden ratio.

Golden? The ratio must be very special.

Indeed, but that is a story for another day. Some call the
arrangement produced with this golden multiplier the golden
flower.

An attractive name. So might we not call the arrangement we
generated with the multiplier the -flower?

Why not, even if it may not have an actual counterpart in the
botanical world. In fact, we could have a virtual garden full of
irrational flowers generated by various irrational multipliers.

But the golden one would be the best of all.

So I’m told, in the sense of giving the best possible 
distribution.

Which is a very good reason.

Since the golden ratio, like , lies between 1 and 2, we sub-
tract 1 from it and use

as the irrational multiple.

According to my calculator, this number’s decimal expansion
begins 0.61803398 . . . , which when multiplied by 360 gives
222.49223. . . .

So we can choose this number of degrees as our fixed angle of
rotation or subtract it from 360 degrees to get 137.50776 . . .
degrees and use this as the angle, if we prefer.

And this special angle is going to produce a particularly good
arrangement?

Yes. Let me tell you, in terms of continued fractions, which I’m
sure you have forgotten all about, that
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Apparently it is this infinite sequence of 1s and the fact that 1
is the smallest a positive integer can be, that make the golden
ratio the best possible multiplier in terms of distribution.

You are right: I had forgotten our discussion of continued frac-
tions, but I still find this fascinating. So because 2 is the next-
smallest positive integer, it may be that the multiplier is up
with the best of them in terms of being a good multiplier.

Perhaps, I myself would like to learn more about this some-
time. Why don’t we generate a golden flower with one hundred
florets, admire it for a while and afterward superimpose it on
our floral arrangement to judge visually for ourselves how
the two arrangements compare in terms of distribution.

A good idea.

Here is a golden flower with 100 florets:

What do you think?

It looks well, splendid in fact.

Let’s see how our -flower compares with it. Here they are
together, the florets of the golden flower in all their splendour
beside the flower with its grey dots:2

2
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What do you think?

It’s hard to say. There doesn’t seem to be much difference
between them, but perhaps the golden flower is slightly better
distributed.

A shade more uniform; visually at any rate. They both look
better than the ones derived using rational numbers.

Which for me has been a real revelation.

Why?

This particular discussion has shown me that irrational
numbers can be superior to rational ones. I take it for granted
that fractions, or rational numbers, are ones that make them-
selves useful in all sorts of ways.

From cutting cake to musical scales. Whereas and other
irrational numbers would have to be considered awkward
numbers, almost curiosities, that we can really get by without
when it comes to most practical tasks?

Perhaps, but the rationals have their own shortcomings, as this
distribution of dots problem shows.

This shortcoming is not shared by the irrational community.

I am about to cast off such prejudice, now that I have been
further enlightened about the nature of numbers.

2
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The time has come to draw our discussion to a close.

It has been quite an odyssey and one which I feel has taught me
many lessons.

In that case, it has been a journey well worth the undertaking
and one which I enjoyed very much.

As did I, even though when we began I was quite sure that
talking about numbers would be of only passing interest to me.

And no one would blame you if that were still the case.

However, when our little search at the outset to find one square
exactly equal to twice another didn’t quite pan out as I was
hoping it would in fairly short order, I suppose it was then that
I became hooked, without my even knowing it.

Ah yes, as someone one wrote, “Mathematics is a trap. If you
are once caught in this trap you hardly ever get out again to
find your way back to the original state of mind in which you
were before you began to investigate mathematics.”

Well then, I’m well and truly trapped, because after all the
explorations, observations and careful investigations we’ve been
through, I’m sure I’ve no idea how I used to think.

Alas, you are warped forever!

I’m afraid so. I’ll never be able to think straight again now that
I have gained some understanding of how it is mathematicians
think, how it is they form conjectures and how they place them
on a firm footing afterward.

And this often with no more than a simple use of algebra as we
witnessed time and time again.

But the main thing I’ve come to realise is that thinking about
things for no other reason than just thinking about them for
their own sake can be simply great fun.

Epilogue
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This inequality show that if the current approximation a satisfies

then the error of the next iteration satisfies
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