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1 : Introduction

M.F. ATIYAH

Lie groups and their representations occupy an important
place in mathematics, with applications and regercussions over
a wide front. The connections with various aspects of physics
are of long-standing, as are the intimate relations with dif-
ferential equations and differential geometry. More recently
the global topology of Lie groups has provided a deep link with
questions of number theory. Finally, when viewed as 'non-
commutative harmonic analysis' the theory of representations
is a branch of linear analysis.

The symposium held in Oxford in July 1977 was designed to
provide an introduction to the representation theory of Lie
groups on as wide a front as possible. The main lectures,
which are reproduced in this volume, should give the reader
some indication of the scope and results of the subject. In-—
evitably there are gaps in various directions, and some areas
are treated in greater detail than others. This reflects the
particular interests of the participants and is not to be
taken as a measure of relevant importance. Broadly speaking
the symposium centred on the classical case of real Lie groups
and treated only briefly the p-adic and finite fields.

In Part I of these notes we have collected together the in-
troductory material and in Part II, the more advanced lectures.

The symposium was jointly sponsored and financed by the
Science Research Council and the London Mathematical Society.
The editorial work involved in turning lectures into manuscript
was ably supervised by Glenys Luke and I am grateful to her,
to the lecturers and to all others involved for their help in

producing this volume.






2 - Origins and early history of the theory of
unitary group representations

G.W. MACKEY
Harvard University

The theory of group representations was created by Frobenius
in 1896 in a more or less deliberate attempt to generalize the
theory of characters of finite abelian groups. The latter notion
was only formally defined in full generality by Weber in 1881.
Weber's definition was an abstraction of one given three years
earlier by Dedekind and Dedekind was more or less directly in-
spired by Gauss' implicit use of characters of order two in his
Disquisitiones Arithmeticae published in 1801.

To go back a bit further, Lagrange in the early 1770's wrote
a two-part memoir making a systematic study of equations of the
form

sz + Bxy + Cy2 =n

Here A, B, C and n are integers and the problem is to find
all integer pairs x,y satisfying the equation. Various special
cases had been studied by Fermat in the seventeenth century and
by Euler in the eighteenth and Lagrange's aim was to construct a

systematic general theory. He observed that the transformation
xl = ax +by , yl = ¢cx +dy

where a, b, ¢ and d are integers with ad-bec = 1 carries
the equation into an equivalent one having the same values for
the 'discriminant' BZ-AAC and proved that there can be at
most a finite number of inequivalent equations with a given
value D = B2—4AC . This number, called the class number, is

of key importance in the developed theory. Gauss in the work



cited above defined a notion of 'composition' for equivalence
classes of forms of a given discriminant (his definition of
equivalence was not quite the same as that of Lagrange) and
showed in effect that under this composition law the equivalence
classes form a group. We say 'in effect' because the concept
of 'group' did not then exist., In developing the theory of
equations whose class number is greater than one, he used what
amounted to characters of order two of the group of equivalence
classes and in this connection introduced the word 'character'.
As defined by Weber, a character of a finite abelian group
A is a homomorphism x =+x(x) of A into the multiplicative
group of complex numbers of modulus one. It is evident that
the set A of all characters of A 1is itself a finite abelian
group under multiplication. Moreover, it is not hard to see
that every complex-valued function f on A may be written

uniquely as a linear combination of characters

1

£= )} C..x where C =—= ) £(x) x(®
XeA X X o(A) XeA
and o0(4) 1is the order of A . The analogy with Fourier series

expansions is evident and many arguments in nineteenth century
number theory may be interpreted as Fourier analysis on finite
abelian groups. Dirichlet, in particular, used characters on
the multiplicative group of units in the ring of integers mod m
and finite Fourier analysis is the key to one step in his cel-
ebrated proof that there are an infinite number of primes in any
arithmetic progression which can not be extended to contain zero.
The primary impetus to the development of group theory itself
was provided by another long memoir of Lagrange published shortly
after the one mentioned above. In it he made a penetrating study
of the solutions of polynomial equations by radicals. He managed
to understand in a unified way the known methods for solving
equations of the second, third and fourth degrees and tried

(nearly successfully) to understand why the fifth degree equations



had proved so intractible. In particular, he saw that the key
to the question lay in studying what happened to rational func-
tions of the roots when the roots were permuted amongst them—
selves. Inspired by this work of Lagrange, Cauchy founded the
theory (of permutation groups in 1815 and by 1831, Ruffini and
Abel had proved the impossibility of solving the general quintic
and Galois had worked out his beautiful theory relating solv-
ability to the structure of the 'Galois group’ of the equationm.
It is to Galois that we owe the term group and the concept of
normal subgroup. On the other hand, the theorem that the order
of a subgroup divides the order of the group is already implicit
in Lagrange's paper.

For various reasons, including Galois' premature death at the
age of 20, his paper was not published until 1846. At this time
Hermite and Kromecker were young men at the beginning of their
careers and both became quite active in developing Galois' ideas.
However, group theory did not begin to be widely known or to be
applied outside of a rather narrow context until around 1870.

At that time, three events occurring in the space of as many
years, stimulated a considerable expansion in the scope of group
theory as well as an increased awareness of the existence and
importance of this new branch of mathematics. In 1869 Sophus
Lie began to apply the ideas of Galois to differential equatioms
and initiated the systematic study of continuous (actually dif-
ferentiable) groups. In 1870 C. Jordan published the first book
ever to be written on group theory. His Traités des substi-
tutions et des equations algébriques contained among other
things a clear exposition of Galois theory. Finally, in 1872
Felix Klein announced his celebrated Erlanger program for uni-
fying geometry through group theory and shortly thereafter began
a sort of publicity campaign to convince mathematicians of the
fruitfulness and wide applicability of the group theoretic point
of‘view.

The parallelism between Fourier analysis on finite commutative



groups as indicated above and Fourier analysis as more cgmmonly
understood arises of course because the functions x - e'™* are
precisely the continuous characters on the compact continuous
group obtained from the additive group of the real line by fac-
toring out the discrete subgroup of all integer multiples of

21 . However, the fact that such a connection exists does not
seem to have been explicitly noticed until the middle 1920's.
The theory of Fourier series and integrals arose in the early
nineteenth century to meet the needs of mathematical physics.
In the middle of the eighteenth century D. Bernoulli, D'Alembert
and Euler succeeded in extending Newton's analysis of particle
motion to an analysis of the motion of fluids and deformable
solids, More precisely, they found the analogues of Newton's
equations of motion. These turned out to be differential
equations in which partial derivatives of functions of several
variables replaced the ordinary derivatives in Newton's work.
Such partial differential equations presented mathematicians
with a new and difficult challenge which was by no means met
immediately, Progress was slow until Fourier submitted his
celebrated memoir on heat conduction to the French academy in
1807. The methods which Fourier used and which are now taught
to every mathematics and physics student were quickly seen to
apply to many of the partial differential equations arising in
physical problems and by the time Fourier's book on heat con-
duction appeared in 1822, Poisson and Cauchy had been active
for years in applying them to a variety of problems. Actually
Fourier's expansibility theorem was nearly discovered half a
century earlier in connection with studies of the one dimen-

sional wave equation

L
2,2 2
v

However, prejudices of the time made the result implausible to

many and in the end the key clues were ignored. Lagrange who



developed and systematized the work of Euler, Bernoulli and
D'Alembert and incorporated it into his great synthesis of 1787
Mécanique Analytique came close to finding Fourier's theorem
but he also refused to accept it. In fact he was one of the
referees who at first rejected Fourieér's memoir of 1807.

A group representation as defined by Frobenius is a homo-
morphism x -+ Lx of a finite group G into the multiplicative
group of all nxn non-singular complex matrices for some
n=1,2,... . Its character XL is the complex valued function
on G defined by XL(x) = Trace (Lx) . This definition evi-
dently reduces to that of Dedekind and Weber whem n = 1. More
generally one shows that XL(x) = M(x) if and only if L and
M have the same dimension (or degree) n and there exists a
non-singular nxn matrix W such that W_lLXW = Mx for all x.
One then says that 1L and M are equivalent. One also shows
that for each finite group G there exists a unique finite set
X13Xgs e s X, of linearly independent characters on G such
that the finite linear cowmbinations Xy * WXy ¥ oeee F DX
(where the nj are non-negative integers) are precisely the
characters of G ., Here r is the number of distinct conjugacy
classes of G and finding the Xj (the so-called irreducible
characters) can be a highly non-trivial problem.

The immediate stimulus for Frobenius' introduction of group
representations and their characters was a problem of Dedekind
concerning a little~known concept - the group determinant - which
he began to work on in the 1880's. He could solve it in some
cases using characters of finite groups and solicited the help of
Frobenius in dealing with more general omes. Apparently the
problem in group determinants was suggested by the study of the
discriminant of an algebraic number field. Frobenius succeeded
using his new generalized characters - which he invented ex-
pressly for the purpose. The exact story of the relationship
between Dedekind's problem and the introduction of higher di-

mensional characters is complicated and has only recently been



elucidated. For further details the reader is referred to three
recent articles by Thomas Hawkins in Archiv for the history of
the exact sciences.

For the next quarter of a century or so the theory of group
representations was a branch of pure algebra concerned more or
less exclusively with the development of Frobenius' ideas by
Frobenius himself, by Burnside and by I. Schur and others. There
were striking applications to the structure theory of finite
groups (for example, the theorem of Burnside that a group whose
order is divisible by only two primes is solvable) but none out-
side of group theory. However, in the 1920's the situation
changed radically. The scope of the theory was enlarged so as
to apply to compact Lie groups by work of Hurwitz, Schur, Cartan
and Weyl and at the same time important applications were found
to number theory and to the new quantum physics.

In 1924 Schur observed that one could apply earlier ideas of
Hurwitz on integration over manifolds to define integration of
continuous functions defined on compact Lie groups. Using
this as a substitute for summing over the group he was able to
extend the main ideas of group representation theory from finite
groups to compact Lie groups. He also was able to determine all
of the irreducible representations of the orthogonal groups. In
the next three years Weyl determined the irreducible represen-
tations (and their characters) of all the classical compact semi-
simple Lie groups and in collaboration with F. Peter proved the
celebrated Peter-Weyl theorem. This asserts in essence that the
matrix coefficients of the irreducible representations of a com-
pact Lie group are plentiful enough so that every continuous
function on the group can be uniformly approximated by their
linear combinations. It follows that one can obtain an ortho-
normal basis for the square integrable functions on the groups
whose members are such matrix elements. When the group is
commutative the basis elements are necessarily complex multiples

of characters and the Riesz-Fischer theorem in the theory of
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Fourier series is a $pecial case. It was in this work of Weyl
that the group theoretical character of classical harmonic analy-
sis was first clearly pointed out. Weyl also pointed out that
the classical theory of expansions in spherical harmonics has a
group theoretical interpretation and moreover one demanding con-
sideration of higher dimensional representations of a non- ‘
commutative group. This observation of Weyl was generalized and
further developed by E. Cartan. On the other hand Weyl made
heavy use of earlier work of Cartan on the Lie algebras of the
classical compact Lie groups in his determination of their rep-
resentations. Cartan in earlier work had given what amounted to
an infinitesimal version of Weyl's results.

The first application of the theory of higher dimensional
group representations outside of group theory itself seems to
have been made by E. Artin in 1923. Let K be an algebraic
number field; that is, a finite extension of the field Q
of all rational numbers and let RK be the ring of all
'algebraic integers' in K . Let H be any subgroup of
the group G of all automorphisms of K and let kH be
the subfield of all elements of K which are carried into
themselves by all members of H . The so-called zeta function
T of K 1is defined for all Re(s) > 1 by the convergent

Dirichlet series

¢(n)

s

It~ 8

n=1l n

where ¢(n) "is the number of ideals I in RK whose "norm'

N(I) is n . By definition N(I) is the number of elements
in the quotient ring RK/I . As shown by Hecke a few years
earlier Ty is always continuable to a meromorphic function
defined in the whole complex plane and satisfying a simple
functional equation relating the values of ;K(s) to those of
EK(l—S) . Of course, one can define CkH in the same way and

the question arises as to the relationship between these two

11



zeta functions. 1In the special case when H is commutative
it was known from previous work of Takagi that Ty factors as
a product of ¢ and o(H)-1 'L functioms'. These L func-

tions are also analytically continuable Dirichlet series of the

form
E ¥(n)
n=1 N

which satisfy simple functional equations and have no poles.
Artin extended this result in two ways. First he obtained a
completely different factorization of CK/ckH valid for all H,
commutative or not, and with the factors parameterized by the
irreducible characters of H other than the trivial one. The
corresponding factorization of Ty reflects the decomposition
of the regular representation of H in that each factor occurs
as many times as the corresponding irreducible representation
occurs in the regular representation of H ., Secondly when H
is commutative he showed that his (conceptually) completely
different factorization was the same as that of Takagi. In
other words he showed that Takagi's results implied a rein-
terpretation of the classical L functions in terms of one
dimensional characters of H and that the theory of group rep-
resentations could be used to remove the restriction that H

be commutative., Artin's generalized L functions are known to
share many properties of the classical omes. However it is
still an open question as to whether they are entire.

A rather different application of the theory of group rep-
resentations to number theory was made by E, Hecke in 1928.
Actually this application was made indirectly via the theory of
modular forms - a theory having extremely close conmections
with~number theory. Let & and k be positive integers and
let T, be the group of all 2x2 matrices (23) for which

=

ad-bc =1 and a-1, b, ¢ and d-1 are all integer multiples

of & . Then a modular form of weight k and level ¢ 1is an

12



entire function f defined in the upper half of the complex

plane which satisfies the identity

az+b
cz+d

£RZEY) o (cz+ ) £(2)

for all (23) e T as well as certain growth conditions which

L
need not be specified here. One shows that the space of all

modular forms of a given weight and level is a finite dimen-
sional vector space and a major problem is to find a basis for
this space. It is evident that a modular form of level & is

periodic with period £ and so of the form

z cj e2n13/2

j =—o0

where the cj are complex numbers. The imposed growth conditioms

are such that cj =0 for j<0 and the complex numbers T
Cose are called the Fourier coefficients of the form. As func-
tions of j the Fourier coefficients of modular forms have
important number theoretical properties.

In the case of forms of level 1 a fairly complete theory
was worked out by Klein and his pupil Hurwitz and published in
Hurwitz's thesis of 1881. Hecke's paper of 1928 makes the fol-
lowing important observation about forms of higher level. Let

Vk . denote the vector space of all modular forms of weight k
H

and level ¢ and let Gk . be the smallest vector space con-—

taining Vk . and invariant under the linear operator
bl

£z > 128 (ezv )

ab . .. . .
for all (cd) € Fl .  Then Vk . is finite dimensional and

there is a natural representation of the quotient group Fl/rl

whose space is The decomposition into multiples of

v, .
Kk,
irreducible representations of this representation of the finite

group Fl/rl carries with it a decomposition of Vk , as a
bl

19



direct sum of lower dimensional spaces parameterized by irre-
ducible characters of Tl/rz . Thus the problem of finding a

basis for is broken down into subproblems and a part of

ik, 1
the difficulty revealed to lie in understanding the represen-
tation theory of Fl/rl . The latter becomes quite difficult
when & 1is divisible by the cube of a prime and was only com-
pletely elucidated in the middle 1970's.

During roughly the same period in which Frobenius' theory of
group representations was being developed as a new branch of
algebra important results were being found in analysis and in
physics. These separate and independent advances in algebra,
analysis and physics were destined to be further developed and
blended together in a very significant way in the next two dec-
ades or so. In analysis there was the introduction of the
Lebesgue integral in 1902, and at nearly the same time the work
of Fredholm on integral equations. The former made possible
the beautiful Riesz-Fischer theorem in the theory of Fourier
series and through this led the way to the Hilbert space con-
cept. The latter, the work of Fredholm, inspired Hilbert to
make his profound study of integral equations - including es-—
pecially his study of linear operators with continuous spectra.
In physics the period from 1900 to 1925 was the period of the
so-called 'old quantum theory'. Beginning with Planck's cele-
brated work on heat radiation in 1900 and proceeding through
Einstein's theory of specific heats and the photo electric
effect to Bohr's theory of the hydrogen atom in 1913, physi-
cists found numerous ways in which experimental results could
be 'explained' or 'deduced' by combining classical mechanics
with ad hoc discreteness assumptions.

The synthesis came in 1927. 1In late 1924 and early 1925
Heisenberg and Schrddinger published mysterious but suggestive
papers showing how one could deduce the spectrum of the hydro-
gen atom without making a priori discreteness assumptions.

Their methods were completely different on the surface but were

14



later shown to be mathematically equivalent. They had found
the key to the mystery of 'quantization' and within a short
time physics was revolutionized by the emergence of the subtle
refinement of classical mechanics known as quantum mechanics.
Quantum mechanics is a self consistent scheme which reduces to
classical mechanics when masses (or energies) are sufficiently
large and which leads automatically to the discrete quantum
rules of the old quantum theory. Its chief architects other
than Heisenberg and Schrddinger were Born, Jordan and Dirac.
By a most remarkable coincidence it developed that Hilbert's
spectral theorem (generalized to apply to unbounded operators)
and the theory of group representations were both to play a
central role in the development of quantum mechanics. In 1927
von Neumann showed that the concept of abstract Hilbert space
and the spectral theorem for self adjoint operators were just
what was needed to make rigorous mathematical sense out of the
(sometimes vague and cloudy) formulations of physicists. In
the same year Weyl published a paper exploring certain foun-
dational questions via the correspondence between self adjoint
operators H and one parameter families of unitary operators
t > Ut set up by the equation Ut = §itH . The Ut are all

. tH .
uni tary and the correspondence t - et is actually a homo-

morphism of the additive group of the real line into the group
of all unitary operators in the relevant Hilbert space. Thus
it is a (usually infinite dimensional) group representation of
a non-compact (but locally compact) group. Finally the year
1927 also saw the publication of a paper by Wigner in which he
showed how the representation theory of the symmetric group on
n elements could be utilized to make rather drastic simplifi-
cations in applying 'perturbation theory' to approximate the
predictions of quantum mechanics concerning the spectrum of an
n electron atom. The possibility of doing this had been sug-
gested to Wigner by von Neumann and the method was further

developed and extended to the (compact) rotation group in joint



work of the two men. In 1928 the ideas of von Neumann, Wigner
and Weyl himself were extended and presented in integrated form
in a remarkable book by Weyl entitled Gruppentheorie and
Quantenmechanik.

In 1930 M.H. Stone published a short note rigorizing some of
the considerations of the 1927 paper of Weyl cited above. 1In
particular he proved an analogue of Hilbert's spectral theorem
for unitary representations of the additive group of the real
line. Combined with von Neumann's extension of the spectral
theorem to unbounded self adjoint operators, Stone's theorem
implied a mnatural one-to-one correspondence between all self
adjoint operators (bounded or not) and all unitary represen-
tations of the additive group of the real line. In this cor-
respondence t - Uy and H correspond to one another if and
only if Ut = eitH . Conversely, it is easy to see that in the
special case of bounded H the spectral theorem of Hilbert and
the later work of Hahn and Hellinger on 'spectral multiplicity
theory' imply a complete decomposition and classification theory
for all unitary representations of the real line having a bounded
H in the above mentioned correspondence. In other words, the
work of Hilbert and his students on spectral theory in the first
decade or so of the twentieth century was equivalent to studying
an important special case of the unitary representation theory
of a non-compact commutative group - the additive group of the
real line.

In spite of the existence of Stone's theorem, the integration
of spectral theory with the theory of representations of finite
groups and compact Lie groups did not take place at once. The
first direct stimulus toward a more general theory including
both was a remarkable paper by A. Haar, published in 1933,
showing that one had a natural extension of the Hurwitz inte-
gration process which applied not just to compact Lie groups but
to all separable, locally compact topological groups. Every

such group admits a measure invariant under right (left)
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translation which is positive on open sets and finite on com-
pact sets. As von Neumann showed a few years later this 'Haar
measure' (right or left) is uniquely determined by the group up
to a multiplicative constant. Haar observed that using his
measure one could extend the Peter-Weyl theorem and the general
theory of unitary representations from compact Lie groups to
arbitrary separable compact groups.

This stimulus by Haar was followed in 1934 and 1935 by the
work of Pontryagin and van Kampen extending the duality between
finite commutative groups and their character groups to a simi-
lar but deeper theory involving commutative, locally compact
topological groups. If G is a commutative, locally compact
topological group and G is the set of all continuous unitary
characters, that is, all continuous homomorphisms of G into
the group of all complex numbers of modulus one, then G is
itself a locally compact, commutative, topological group in a
natural way and each x in G defines a member fx of é
via the formula fx(x) = x(x) for all x ¢ G . The fundamental
duality theorem of Pontryagin and van Kampen asserts that the
map x - fx sets up an isomorphism between G and é as topo-—
logical groups. Interesting examples of locally compact, com—
mutative groups which are not Lie groups (and not discrete) are
the additive and multiplicative groups of the locally compact
field of all p-adic numbers for various primes p . Further
examples may be obtained by replacing the p-adic number fields
by their finite algebraic extensions and by the field of formal
Fourier series with coefficients in a finite field. The 'idé&le
groups' introduced by Chevalley in 1936 to deal with certain
number theoretical questions are infinite subdirect products
most of whose factors are multiplication groups of extensions
of p-adic number fields and by 1940 Chevalley had shown how to
redo the 'class field theory' of Hilbert, Takagi and Artin in a

way which exploited Pontryagin duality.

With Haar measure, the P -Weyl theorem and Pontryagin -
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van Kampen duality at hand, it was possible to construct a fairly
complete representation theory of locally compact groups which
were either commutative or compact. This theory was presented
from rather different points of view in two very influential
books, Topological Groups by L. Pontryagin was published in
Russian in 1938 and in English translationm in 1939. A. Weil's
L'intégration dans les groupes topologiques et ses applications
appeared in 1940. Weil emphasized the commections with harmonic
analysis much more than Pontryagin. The generalized Fourier
transform of Weil led to a complete analysis of the regular rep-
resentation of an arbitrary locally compact, commutative group.
However, the fact that one could generalize Stone's theorem and
so analyse an arbitrary representation of such a group was not
noticed until later. It was pointed out in 1944 in indépendent
papers of Ambrose, Godement and Naimark.

With compact groups and locally compact commutative groups
more or less under control, the obvious next step was to unify
the two theories in a single theory which applied to locally
compact groups that are neither commutative nor compact. This
program began to be developed in a systematic way in 1946 shortly
after the end of World War II. However, several significant
contributions were made in the preceding decade. In 1939 Wigner
published a now celebrated paper analysing the irreducible uni-
tary representations of the inhomogeneous Lorentz group and in
1943 Gelfand and Raikov showed that every locally compact group
has 'sufficiently many' irreducible unitary representations. In
Wigner's group all but the identity representation turned out to
be infinite dimensional and generally speaking it is rather ex-
ceptional when a non-compact non-commutative group has only
finite dimensional irreducible representations. Although its
relevance was not immediately apparent, the work of Stome and
von Neumann in 1930 and 1932 on the solutions of the Heisenberg
commutation relations is equivalent to détermining the irre-—

ducible unitary representations of a certain non-commutative,

18



non—-compact nilpotent group. Still another important contri-
bution whose relevance became clear only later was the von
Neumann - Murray theory of rings of operators published in four
instalments between 1936 and 1943,

The systematic theory which developed after 1946 proved to
be much richer than its compact and commutative predecessors.
The necessity of dealing simul taneously with infinite dimen-
sional irreducibles and with continuous decompositions produced
many new difficulties. The resulting literature is now enormous
and cannot be briefly summarized. A lengthy summary will be
found in the appendix to the author's book Unitary Group Rep-
resentations (University of Chicago Press, 1976). For a much
more detailed account of the development from Lagrange to 1946
the reader may consult the author's article 'Harmonic analysis
as the exploitation of symmetry' - an historical survey, Rice

University Studies (to appear).
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3 - Induced representations

GEORGE W. MACKEY

1. Definitions and examples

Let G be a finite group. Then by a representation L of
G one means a homomorphism x +-LX of G 1into the group of
all non-singular linear transformations of some vector space
(L) onto itself. In the theory developed by Frobenius H(L)
is a finite dimensional vector space over the complex numbers.
The character xL of L 1is the complex valued function
X > Trace(LX) . Two representations L and M are said to
be equivalent, L * M , if there exists a bijective linear
transformation V from H(L) to H(M) such that V—1MXV==LX
for all x in G . One shows that L and M are equivalent
if and only if ¥"(x) = x'(X) . One defines the direct sum
L @M of two representations in an obvious way as the direct
sum of these vector spaces and shows that XLQU = XL-+XM
A fundamental theorem asserts that every representation is a
direct sum of representations L which are irreducible in the
sense_that H(L) has no proper subspaces which are carried
into themselves by all Lx . Thus every character is a sum of
characters of irreducible representations, 1.e., of 'irreducible
characters'. The irreducible characters are orthogonal with
respect to summation over the group and hence, in particular,
are linearly independent. Thus every character is uniquely a
finite linear combination of irreducible characters with non
negative integer coefficients. It follows that to know all
characters (or equivalently all equivalence classes of rep-
resentations) it suffices to know the irreducible characters.

While each group has only a finite number of distinct

irreducible characters (or equivalence classes of irreducible

20



representations) actually constructing them can be a problem of
considerable difficulty and is in fact one of the main problems
of the theory. To deal with the problem Frobenius invented a
canonical way of comstructing characters of G from characters
of its subgroups which often (but by no means always) leads to
irreducible characters of G . This construction is called
inducing and is capable of generalisation to infinite dimen-—
sional unitary representations of locally compact groups. We
shall be chiefly interested in this generalisation, its proper-—
ties and its utility in finding and describing irreducible uni-
tary representations. However we shall begin with this simple
case treated by Frobenius.

Let x be a character of the subgroup H of the finite
group G . An obvious way to extend X to G 1is to define it
to be zero for x not in H . Denote the resulting function
on G by xl . Since characters are easily seen to be in-
variant under all inner automorphisms, xl will seldom be a
character. We can make it invariant under inner automorphisms
by the simple device of summing its transforms by the inner
automorphisms. If yy and yp belong to the same right H
coset xl(ylxyzl) = xl(yzxygl) so it makes sense to define

1

* 1 -
x (x) = X (yxy O

yeG/H
*

The function ¥ can be shown to be a character of G and is
called the character of G induced by x . The proof that x*
is a character is most easily given by constructing the rep-
resentation of which it is the character. Let L be a represen-
tation of H whose character is ¥ and consider the finite
dimensional vector space of all functions f from G to the
space H(L) of L which satisfy the identity £(hx) =Ih(f(x))
for all heH and xe G . This space is invariant under right
translation by elements of G and we obtain a representation

UL of G 1in this space by setting



(UI};)(f(y)) = f(yx) .

A straightforward calculation shows that

*
The character ¥ cannot be irreducible unless ¥ 1is

irreducible and need not be irreducible even then. For example
if H = {e} and x(e) = 1 then x* is the character of the
so-called regular representation which contains every irreducible
representation of G as a constituent, On the other hand, as
already remarked x* often is irreducible when X 1is and the
construction provides an important source of irreducible charac-

ters. Here are two simple examples.

Example I. Let G be the symmetric group on three letters and
let N be the subgroup generated by a->b, b ~>c¢c, ¢ > a.
Then N is normal and G/N 1is a cyclic group of order 2 .
Since G has three conjugate classes it can have only one irre~-
ducible character in addition to the two one dimensional ones ob-
tained from G/N . To obtain it one has only to form x* where

X 1s either of the two non trivial characters of N .

Example II. Let F be a finite field, let G denote SL(2,F)
the group of all 2x2 matrices with determinant 1 and elements
in F . Let T be the subgroup of all matrices of the form

A0 . A0
(a l/)\) and notice that the map (a 1/i
of T into the multiplicative group F  of all non zero members
A0 .
1 a l/A) > x(V) s
a one dimensional character of T and (xl)* can be shown

. . 2 1. * 1. %
to be irreducible whenever x~ £ 1 ; (xl) and (x2) are

) X 1is a homomorphism

*
of F . Then for each character y of F , (

distinct whenever X * Xo and X * XEI . In this way one ob-

tains about half of the irreducible characters of G .
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As already indicated above the chief aim of these lectures
is to define and describe the properties of a generalisation of
Frobenius' construction in which H 1is a closed subgroup of a
separable locally compact group G and L 1s a possibly infi-
nite dimensional unitary representation of H . While L will
often be finite dimensional the corresponding induced represen-—
tation UL will be infinite dimensional except when H has
finite index in G . Since characters of infinite dimensional
representations only exist in special cases and then must be
defined in a round about way it is necessary to avoid characters

and deal directly with the representations L and UL . While

it is quite straightforward to generalise the definition of UL
given above we prefer to lead the reader to it by a less direct
route in order to emphasize the connection with a natural gener-
alisation of harmonic analysis.

Let G be a separable locally compact group and let S be a
space on which G acts as a group of transformations; that is,
[slx is a well defined element of S for each s in S and
‘each x in G and one has [[slx]y = [sixy and [sje = s
where e 1is the identity of G . We say that S 1is a G space.
If S has been provided with a distinguished ¢ field of sub-
sets (called its Borel sets) in such a way that (s,x) - [s]x
is a Borel function, we say that S 1is a Borel G space. We
remark that G as a topological space has a 'natural' Borel
structure — that provided by the ¢ field generated by its open
sets. By a Borel function f from one Borel space to another
one means a function f such that f—l(A) is a Borel set wher-
ever A 1is a Borel set. It turns out that if A1 and A2 are

Borel subsets of separable complete metric spaces M1 and M

and A

2

then A are isomorphic as Borel spaces if and only if

1 2
they have the same cardinal number. Moreover the only infinite
cardinals that can occur are Ro and C the cardinal of the
continuum. Such Borel spaces are called standard.

Now let S be a standard Borel G space where G 1is as
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above and let u be a finite measure on S which is invariant
in the sense that u([E]x) = u(E) for all x in G and all
Borel sets E . Form the Hilbert space L2(S,u) and for each
x in G let U denote the unitary operator such that

Ux(f) = f([s]x) . Then it can be shown that =x ~ Ux is a uni-~
tary representation of G 1in the sense that (1) it is a homo-
morphism of G 1into the group of all unitary operators in
L2(S,u) and (2) x » UX(f) is a continuous function from G
to L2(S,u) for each f in L2(S,u) . Actually (1) is obvious
and it is not difficult to prove that x - (Ux(f).g) is a
Borel function for all £ and g in L2(S,u) . One can show
quite generally that (2) is implied by (1) and this property of
(U (5.8 .

There are many instances in mathematics and its applications
where one 1is interested in complex valued functions £ defined
on a measure space (S,u) which is invariant under a group G
as described above. For example, in considering functions on
the real line of period a > 0 one may take G to be the addi-
tive group of the real line and S to be its quotient by the
group of integer multiples of a . Simple translation gives an
action of G on S which preserves Lebesgue measure u . In
this particular case the exponential functions

2niny

play a special role in that each generates a one dimensional G
invariant subspace of L2(S,p) and that there are no other one
dimensional G 1invariant subspaces. Moreover the whole of
L2(S,u) is a direct sum of these subspaces and, as everybody

knows, the decomposition of an arbitrary function in LZ(S,u)
2miny

as a sum of multiples of the e a is a very useful device

in attacking many problems. One speaks of the harmonic analysis

of £ . In more general cases one can attempt to analyse L2(S,1
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as a direct sum (or direct integral) of invariant subspaces and
hope that the resulting decomposition will be a useful tool in
studying various questions about functions f on S . In other
words decomposing unitary representations U , defined as above
by measure preserving actions of the group G , can be regarded
as a natural generalisation of classical harmonic analysis which
one may hope will turn out to be as useful.

Given S, u, G as above let us examine the problem of decom—
posing the unitary representations U of G ., First of all a
certain decomposition may result from purely geometric consider-
ations. This happens whenever S admits Borel subsets E such
that p(E),u(S-E) # 0 and [Elx =E for all x in G . 1In
that case we may restrict u to E and S-E respectively and
obtain the G spaces E and S-E with invariant measures U

1

and and corresponding unitary representations U1 and 02,

‘2 1 2
Clearly U is a direct sum of U  and U~ . We shall not be
interested here in the geometric aspects of the decomposition of
U and will accordingly concentrate attention on the case in
which no E with the above properties exists. In that case one
says that the action of G on (S,u) 1is ergodic or metrically
transitive. There is a theorem which permits one to fiber every
G space (S,u) as a sum or integral of ergodic pieces in an
essentially unique way.

Suppose then that our G action is ergodic. It is not diffi-
cult to show that one has a sharp dichotomy. Either (a) every
orbit [s]G is of measure zero or (b) there exists an orbit
[so]G of positive measure and then its complement is of measure
zero. In case (b) one can throw away an irrelevant set of
measure zero and obtain a transitive action. In case (a) there
is no way of reducing to the transitive case and we say that the
action is properly ergodic. In principle the transitive and
properly ergodic cases are both interesting and deserving of
study. However up to now the transitive case has been much more

completely investigated. Thus in a study of generalised harmonic



analysis it is natural to concentrate attention on the case in
which the action of G on S 1is transitive.

Suppose then that G acts transitively on S and choose

8g € S . Let Hg denote the subgroup of all x in G with
[so]x =5y - It can be proved that Hg is closed and it is
evident that replacing s by another element of S simply

0
changes HSO to a closed subgroup which is conjugate to it.
Moreover the map X »—[so]x is a map of G onto S which has
the property that x. and X, have the same image in S5 if

1

. -1 . . .
and only if XX, € HSO » that is, if and only if Hsox2==HSox1

so that X and X, belong to the same right Hg coset. It
can be shown that the map of S onto the coset space G/HS
just defined is a Borel isomorphism. This S can always be
identified with a coset space G/H where H 1is some closed
subgroup of G . Moreover it is not hard to show that the in-
variant measure in G/H (when it exists) is uniquely determined
up to a multiplicative constant by G and H . We thus have a
natural unitary representation of G associated with every
closed subgroup H of G for which G/H has an invariant
measure |} . Functions from G/H may be identified with func-
tions f on G such that f(hx) = £(x) for all h in H and
all x in G and when G 1is finite we see at once that the
unitary representation U 1is precisely the representation U H
of G 1induced by the one dimensional identity representation
IH of H . It is now evident how to define U ! more gener-
ally. We take the definition in the finite case and add the
condition that |f(x)|2 be integrable with respect to u when
considered as a function on G/H . In particular we see that to
a large extent our generalisation of harmonic analysis is just
decomposing those induced representations for which the inducing
representation is the one dimensional identity.

A slight and more or less obvious generalisation of the con-

struction of U for a G space S turns out to be equivalent

in the transitive case to inducing an arbitrary one dimensional
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unitary representation of H. Suppose indeed that we are given
-lan arbitrary Borel function a from SXG to the complex num
bers of modulus one and for each x in G let Ui(f)(s) =
a(s,x)f([s]x) . Then for each x , Ui is clearly a unitary
operator. Moreover a simple calculation shows that x -+ Ui is
a unitary representation of G if and only if a satisfies

the following identity (in an almost everywhere sense)
a(s,xlxz) = a(s,xl)a([s]xl,xz) .

Such identities are known in homological algebra as one cocycles.
; Thus for every G space S with invariant measure u and every
one cocycle a we have a well defined unitary representation u?
of G . If b 1is an arbitrary Borel function from S to the
complex numbers of modulus one then (s,x) -+ b(sx)/b(s) 1is a one
cocycle and one cocycies of this kind are called coboundaries.
It 1s clear that the product of any two one cocycles is a one

cocycle and that with this definition the one cocycles form

a commutative group having the coboundaries as a subgroup. On
#he other hand one verifies easily that v? and Ua' are equiv-
:alent representations whenever a/a' is a coboundary, i.e. when-
lover a and a' are cohomologous. Thus one has a well defined
[equivalence class of representations associated tc each cohomology
lclass of cocycles. Suppose now that the action of G on S is
itransitive so that S may be identified with G/HS for some
iclosed subgroup HSO . Let a be any cocycle for which the co-

gcycle identity holds everywhere. Then for h1 and h2 in HSO

the cocycle identity reduces to

a(so,hlhz) = a(so,hl)a(so,hz)

so that h - a(so,h) is a one dimensional character of Hg .
| 0
I

It is not hard to see that this character depends only on the

icohomology class of a and that, conversely, cohomologous
| 2



cocycles lead to the same character. One can show that one caj
avoid almost everywhere difficulties and that every character
arises. Thus there is a natural one to one correspondence be-
tween the one dimensional characters of H and cohomology

classes of cocycles. Combining this with the mapping a ~> v?

one has a natural mapping of one dimensional characters of H
into equivalence classes of irreducible unitary representations
of G . When G is finite this mapping is easily seen to re-
duce to the inducing construction. v? is equivalent to the

representation % induced by the character x of H which
defines the cohomology class of a . Since v? makes sense

for infinite G we have a natural way of defining X in thif
case also. Of course UX may also be defined directly by thé,
following obvious modification of the definition when ¥ 1is
the identity. The space H(UX) of UX is the space of all

Borel functions f from G to the complex numbers such that
(a) f(hx) = x(h)f(x) for all heH and all xeG ,
2
(b) [£(x) |7 du < =
G/H

Here we identify functions which are equal almost everywhere aj
note that (b) makes sense because lf(hx)l2 = lx(h)f(x)l2 =
If(x)l2 for all h in H and x in G . If £ ¢ H(UX) thi
XD (v = £G%) .
To be led to the definition of U" for an arbitrary unita

representation L of H it is only necessary to replace
L2(S,u) by L2(S,Ho,u) the space of square summable function
on S with values in a second Hilbert space HO and replace
the scalar function a on SxG by a suitable function

(s,x) > A(s,x) from SxG to the bounded linear operators in
HO . LWe leave details to the reader. The direct dffinitionL
of U of course is the following. The space H(U™) of U

is the space of all Borel functions f from G to H(L) sucv
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that

(a) f(hx) = Lh(f(X)) for all heH and all =xeG
(b) J (f(X).f(X)) dpy < =
G/H

As before we identify functions which are equal almost every-
where and note that (b) makes sense because (f(hx).f(h(x)) =
(th(x).Lh(f(x)) = (f(x) .f(x)) for all F in H and all x
in G on account of the unitariness of the L
(O = £

In all of the above discussion it was assumed that G/H ad-

h Finelly

mits an invariant measure. We remark now that this assumption
is not really necessary. If G/H does not admit an invariant
measure 1t has at least a measure which 1s gquasi invariant in
the sense that all of its transforms have the same sets of
measure zero that it does. Choose any one of these and copy the
above construction. The resulting operators Ui will not be
unitary but become so when multiplied by appropriate Radon-
Nikodym derivatives. One thus obtains a unitary representation
whose equivalence class can be shown to be independent of the
choice of u . This UL is well defined for any unitary rep-
resentation of any closed subgroup H of G .
In passing from IH to an arbitrary unitary representation
L of H we may seem to have lost the interpretation that de-
gcomposing an induced representation is a natural generalisation
gof harmonic analysis. However this is not the case. It is
certainly a natural further generalisation of harmonic analysis
to replace complex valued functions by functions having values
in a vector space and in particular a Hilbert space. Moreover
there is no need for the Hilbert space to be the same at all
points. We may have a vector bundle s HS where each HS is
a Hilbert space and consider the Hilbert space of square inte-

Fgrable 'cross sections' of this bundle instead of L2(S,u)
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If G acts on the bundle s - HS as a group of 'bundle auto-
morphisms' the corresponding action on the space of square
integrable cross sections defines a unitary representation U
of G whose decomposition is clearly a natural generalisation
of harmonic analysis. We leave details to the reader but it is
not difficult to show that the unitary representations of G
obtained in this way are precisely the induced representations
u" where 1 varies over the unitary representations of H
and S = G/H .

Just as in the case of a finite group G many induced rep-
resentations are irreducible and inducing is one of the chief
devices available for constructing irreducible unitary represen-
tations. On the other hand the relationship just described be-
tween harmonic analysis and decomposing induced representations
tells us that there are many examples of induced representations
which are reducible. Indeed these particular reducible represen—
tations are precisely those which one is most interested in de-
composing into irreducibles. Thus induced representations play
a sort of dual role. They are both the representations which
one wants to decompose and many of the components into which one
decomposes them.

By way of an example let us consider the simply connected
double covering E of the group E generated by the translations
and rotations in physical space. Let N be the commutative nor-
mal subgroup of all spatial translations and let K be the double
covering of the group of all rotations about some fixed origin.
Then K is isomorphic to the group SU(2) of all 2x2 unitary
matrices with determinant one and every element of E is uniquely
of the form nk where ne N and ke K. If M 1is any irre-
ducible unitary representation of K then nk > Mk is an irre-
ducible unitary representation of £ . Since K is compact
these representations are finite dimensional. They were deter-
mined by Schur in 1924 and it turns out that there is just one of

every positive integer dimension. That of dimension 2j+l for
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j =O,%,1,% .+. 1s conventionally denoted by the symbol Dj' It
follows from a general theorem to be described in section 2

that all other irreducible unitary representations of t are
infinite dimensional and are induced by one dimensional represen-
tations of the subgroup generated by N and the subgroup KZ

of K consisting of members which leave the 2z axis fixed.

Specifically let r be any positive real number and let m be

any integer. Then we may identify KZ with the group of all

(ele,e real) . Given translations xX,vy, z, ¢ N and 6 ¢ KZ let

r,m irz im6
X T (x,¥,2,8) = e e

Then Xr,m is a one dimensional unitary representation of the
subgroup NKZ . Moreover the induced representation er,m is
irreducible and every infinite dimensional irreducible unitary
representation of [ is equivalent to some er,m . Finally
er,m and st,n are equivalent if and only if r =s and
m=n.
D.

Now consider the induced representations U J where
j= O,%,l,%,Z,... so that Dj ranges over the irreducible uni-
tary representations of K . These are of interest in quantum
mechanics as H(UDj) may be identified with the Hilbert space
of states of a free particle of positive mass and spin j
They are however far from irreducible and their decomposition is
relevant to the physics of the corresponding particle. One finds
in fact that

v = Jm[UXr,_ZJe er,_2J+2 ® ... 0 UXI,ZJ_2 ® UXI’ZJ]dr
0

and each irreducible constituent has a physical interpretation.

Indeed to say that the 'state vector' ¢ in H(UJ) lies in the

subspace of dr 1is to say that the particle has mo-

r+Ar r,k
[

r

mentum between r and r+Ar and 'helicity' k. The helicity of a

N



particle is the component of the 'spin angular momentum' along

the direction of the momentum vector.

2. The imprimitivity theorem and its applications

The description given in 1. of the irreducible unitary
representations of the group T is a special case of a general
theorem which describes explicitly or helps to describe ex-
plicitly all equivalence classes of irreducible unitary represen-
tations of a large and important class of separable locally com-
pact groups. This general theorem is a corollary of the so-called
'imprimitivity theorem’' and the latter theorem has among its
other corollaries the well-known Stone - von Neumann theorem on
the essential uniqueness of the solutions of the Heisenberg com-
mutation relations of quantum mechanics. In this lecture we shall
state these theorems and discuss the relationship between them.

Let G be a separable locally compact group and let N be a
closed commutative subgroup of G . Suppose that there exists a
closed subgroup H such that every element X in G 1s uniquely
of the form nh where n is in N and h 1is in H . One says
then that G 1is a semi direct product of N and H . It is easy
to see that G can be reconstructed if we are given simply N,
h of H into the %ioup of all auto-
morphisms of N defined by setting ah(n) = hnh =~ . We observe

H and the homomorphism h » a

that the group E of section 1 is a semi direct product of a
three dimensional real vector group and the group SU(2) and
that the symmetric group in three letters is a semi direct prod-
uct of the cyclic group of order three and the cyclic group of
order two.

Let G be such a semi direct product and let N denote the
character group of N . For each ¥ ¢ N and each h e H let
a:(x) be the character n 4—x(ah(n)l and let HX be the sub-
group of all h in H for which ah(x) = x . It can be shown
that H 1is closed and hence that NH 1is a closed subgroup of

G . Let L be an arbitrary irreducible unitary representation
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of HX . One verifies easily that nh->x(n)Lh is an irreduc-
ible unitary representation of the closed subgroup NHX . We
denote it by XL . The first theorem alluded to above can now

be stated as follows.

Theorem A. The induced representation o is always irre-

. L . . .
ducible and UX"l and UXL2 are equivalent if and only if L
and L

1
are equivalent. Moreover UXlLl and UX2L2 cannot

be equfval:nt unless X1 and X, are in the same H orbit;
that is ah(xl) = Xy for some h in H . If X1 and X, are
in the same H orbit then every UXlLl 1s equivalent to UX2L2
for some L2 . Finally if there exists a Borel set C which
has just one point in common with each H orbit then every ir-
reducible unitary representation of G 1is equivalent to some
o,

This theorem (when C exists) reduces the problem of deter-
mining the irreducible unitary representations of G to deter-
mining the orbits of H 1in N and to determining the irreduc-
ible unitary representations of certain closed subgroups of H .
The results of the celebrated 1939 paper of Wigner on the inhomo-
geneous Lorentz group follows from this theorem since the group
in question is a semi direct product of a four dimensional real
vector group and the homogeneous Lorentz group. In this case we
find that HX is either H 1itself the rotation group in three
space, the homogeneous Lorentz group in three dimensional space
time or the Euclidean group in the plane. The latter is again a
semi direct product in which H 1is commutative and in which C
exists. The homogeneous Lorentz group in three and four space
time dimensions present problems which were covercome only in 1947
by works of Bargmann, Gelfand and Naimark. Wigner's paper then
does not actually determine all irreducible representations. On
the other hand the omitted omnes could be argued to be irrelevant
to Wigner's physical aims.

The statement of the imprimitivity theorem involves in an
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essential way the concept of a projection valued measure. Let
b be an arbitrary o £finite measure in a Borel space S and
form L2(S,u) . For each Borel subset E of S let PE be
defined to be the projection operator which takes £ 1in
L2(S,u) into QEf where QE(S) =1 or 0O according as s ¢ E

or s ¢ E . It is easy to check that the mapping E - P_ has

E
the following properties
(1) P¢ =0 and PS =1
(2) Py =P, =PP. forall E and F
(3) P =P + P + ...
EluEZU... El E2
wherever El’EZ"" are pairwise disjoint Borel sets. In

brief E - PE is a homomorphism of the o Boolean algebra of
all Borel subsets of S into a Boolean algebra of projection
operators in L2(S,u) . Guided by this example one makes the
following definition. Let S be any Borel space and let
E -~ PE be an assignment of a projection operator in a Hilbert
space H(P) to each Borel set E in S . Then the assignment
E ~+ PE is said to be a projection valued measure if (1), (2)
and (3) above are satisfied. One is usually interested in the
special case in which S 1is standard and H(P) 1is separable
and then it is not difficult to show that every projection valued
measure on S 1is 'equivalent' to a 'direct sum' of projection
valued measures defined as above by a finite measure in S
Here 'equivalence' and 'direct sum' are defined by obvious
analogy with the corresponding concepts for unitary group rep-—
resentations.

Some insight into the nature of projection valued measures
may be obtained by considering the rather trivial discrete case

in which S 1is countable and every subset is a Borel set.

Then for all E, PE = I P{s} so that P 1is completely deter-

mined by its values at the one point sets. Now it follows
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from (1), (2) and (3) that the ranges of the P{s} are mutually
orthogonal closed subspaces whose closed linear span is H(P)
Conversely let H = ¥ H_ be an arbitrary direct sum decompo-
seS
sition of a separable Hilbert space whose components are para-
meterized by the.points of S . For each subset E of $§ let
PE be the projection on the direct sum of all HS with s € E .
Then P 1is a projection valued measure on S and P{S} is
the projection on H . In other words given a separable Hilbert
space H and a discrete standard Borel space S the projection
valued measures P on S with H(P) = H correspond one—to-one
in a natural way to the pairs consisting of a direct sum decompo-
sition of H and a parameterization of the summands by the
points of S . Of course some points of S may correspond to 0.
In the case of non discrete standard Borel spaces one has a
similar result using 'direct integrals' of Hilbert spaces instead
of direct sums. However for many purposes one may avoid talking
about direct integrals of Hilbert spaces and express everything
in terms of projection valued measures.
Classically a system of imprimitivity for a representation
x > Mx of a2 group G 1is a direct sum decomposition of H(M)
whose components, while not necessarily inva;iant under the Mx,
are at least merely permuted amongst themselves by these Mx
In other words if H(M) = = HS for some index set S then
seS
for all x and s, MX(HS) = Hs' for some s' depending on s
and x . Setting [sl]x~l = s' we see that S becomes a G
space. If this G space is transitive the system of imprimi-
tivity is said to be transitive. Now suppose that M 1is uni-
tary and that the HS are mutually orthogonal. Let E - PE be
the corresponding projection valued measure so that P{s} has
Hs as its range. The relafionship Mx(Hs) = H[s]x‘l trans-
lates-?t once into l\dxl:"{s}l\d.X = P{s}x“l and equivalently into
M.XPEMX = P[E]x‘l for all x in G and all subsets E of S.
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This reformation of the classical definition in the unitary
case at once suggests a generalisation which permits direct:
integral decompositions as well as direct sum decompositions.
Let U be a unitary representation of the separable locally
compact group G . Then a system of imprimitivity for U 1is
the pair consisting of a standard Borel G space S and a
projection valued measure P defined on S such that H(P) =
H(U) and MXPEm;l = Plpix-l

all x in G . We say that the system of imprimitivity is

for all Borel sets E < S and

based on the G space S .

A natural example of a system of imprimitivity may be ob-
tained by considering the representation U canonically
associated with an invariant measure 1 in the standard
Borel G space S, UX(f)(s) = f([sJx) . 1In addition to
the operators Ux one has the projection operators PE where
(B (£))(s) = ¥y(8)£(s) for all £ in L%(S,w) . The map
E ~» PE is a projection valued measuzi defined on S and a
simple calculation shows that UXPEUx = P[E]X“l for all x
in G and all Borel subsets E of S ., Thus P 1is a system
of imprimitivity for U based on S . Exactly the same con-
siderations apply if we introduce a ome cocycle a and replace
U by U® as defined in section 1 or more generally if we re-
place L2(S,u) by 2(S,Ho,u) for some Hilbert space Ho and
a by an operator valued one cocycle., It follows in particular
that there is a canonical system of imprimitivity associated to
each induced representation. It may be defined directly and ex-
plicitly as follows. Let L be a unitary representation of
the closed subgroup H of the separable locally compact group
G and let UL be the unitary representation of G induced
by L . Recall that H(UL) consists of Borel functions from
G to H(L) satisfying the identity f(hx) = th(x) for all
h in H and all x in G as well as a certain integrability
condition. For each Borel subset E of the coset space G/H

let wE be the function on G such that wE(x) is omne or
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zero according as x 1is or is not in a right H coset belong-
ing to E . Then f - wEf is a projection operator P; on
H(UL) . One verifies easily that E -+ PL is a projection

E
valued measure defined on G/H and a system of imprimitivity
for the induced representation UL
The imprimitivity theorem is a sort of converse of the result
just described and characterizes induced representations as
those admitting a transitive system of imprimitivity. Here is

the formal statement.

Theorem B, Let H be a closed subgroup of the separable lo-
cally compact group G and let V be a unitary representation
of G . Let P be a system of imprimitivity for 'V based on
the coset space G/H . Then there exists a unitary represen-
tation L of H and a unitary operator W from H(V) to
H(UL) such that

for all x in G and all Borel subsets E of G/H . The
equivalence class of the representation L is uniquely deter-
mined by the pair V,P and L is irreducible if and only if
V and P are irreducible when taken togethé:. More generally
there is a canonical isomorphism between the commuting algebra
of L on the one hand and the intersection of the commuting
algebras of V and P on the other.

In the special case in which H 1is open as well as closed
so that G/H 1is discrete the proof of the imprimitivity theorem
is quite straightforward. For x ¢ H , UX and P{H} commute
so that the restriction of U to H has a subrepresentation
whose space is the range of P{H} . This is L and the rest
of the proof is mainly a matter of checking and applying defi-
nitions. The reader is urged to carry out the details as an

exercise. In the general case one cannot define L so directly
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since it is an 'infinitesimal component' of the restriction of
U to H . However this difficulty can be overcome in various
ways and half a dozen or so proofs exist in the literature. An
early proof and references to others will be found in the
author's book cited in the lecture on history.

Both applications of the imprimitivity theorem mentioned at
the beginning of this section makes use of the spectral theorem
for unitary representations of locally compact commutative
groups. Let G be a locally compact commutative group which
we take for convenience to be separable. The spectral theorem
asserts the existence of a one-to-one correspondence between
the unitary representations V of G and the projection valued
measures P on G such that each V can be obtained from the
corresponding P by the following construction. For each pair
¢,¥ of vectors in H(P) the mapping E - (PE(¢).w) is a com

plex valued measure and one can form the integral

[ x(x) d(PX(¢).¢) .

V is then the unique unitary representation of G such that

V()9 = J X() d(B,($).)

for all ¢ and ¢ in H(P) = H(V) .

In the special case in which P 1is supported by a countable
subset of G one verifies that V is just the direct sum of
the characters in this countable subset, the character x oc-
curring with multiplicity equal to the dimension of the range

of P In the general case the spectral theorem essentially

y o
gives{zne the direct integral decomposition of V into irreduc-—
ibles. For most purposes the theorem can be used as it stands
without thinking about direct integrals as such.

In the special case in which G 1is the additive group of

the real line the spectral theorem was proved by Stome in 1930.
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In that case G 1is the real line and one hdas a natural one-to-
one correspondence between unitary representations of the real
line on the one hand and projection valued measures on the
other. Now the spectral theorem of Hilbert (as generalized to
unbounded operators by von Neumann) sets up a natural one-to-
one correspondence between self adjoiht operators H and pro-
jection valued measures on the line. Composing these two one-
to—-one correspondences leads to a third - a natural one-to-one
correspondence between self adjoint operators and unitary rep-
resentations of the real line. This correspondence may also

be set up directly and then takes the following simple form.

If H is a self adjoint operator them ¢t ~> eth is the corre-
sponding unitary representation of the real line.

With this background material on self adjoint operators and
spectral theory it is easy to explain how the uniqueness of the
irreducible solutions of the Heisenberg commutation relations
is a corollary of the imprimitivity theorem. Leg Ql’QZ ...Qm,
Pl’PZ ...Pm be two sets of m self adjoint operators. One
says that the Heisenberg commutation relations are satisfied
if (PjQj —Qij) = iI for all j and all other pairs commute,
i.e., Qin--QjQi = Pin--PjI:i =0 for all i and j and
PjQi--QiPj = 0 whenever i # j . Actually the statement
Pij-Qij = i1 conceals certain ambiguities since the oper-
ators are unbounded and hence not everywhere defined. This
ambiguity may be avoided by following Hermann Weyl in replacing
each Qj and each Pj by the corresponding unitéry represen=
VJt = ele t

tation of the real line. Accordingly one sets and

iP: . . .
Ui = e 3% . The commutation relations stated above are equiv-
alent (on a formal level at least) to the following commutation
. j k
relations for the VJ and U
ist

vivd = e Mdvd  for al1 j, s and t ,
t s s t

v‘:vi,—vi,v:‘: = U:Ui,—Ui,U: =0 for all k,j,t,t',s and s'
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and
vigk = %3 for all &, s, j, k with j =k .
ts s t

Now to say that the v} commute with one another is equivalent

. 1 2 .
to saying that (tl’t2""’tm) -> th Vt2 vee V?m is a represen-
tation V of the vector group of all n-tuples of real numbers.
Similarly to say that the Uk commute with one another is equiv-—

. 1 2 .
alent to saying that (51,52,...,sm) - Usl U82 een U? is a

m
representation U of this same vector group. Setting
1 2 1 2
v =Ve Vi, ...Vg and U =u, Ul ... Us
tyeeety £ Yty Tt S1S9.++Sy s] So Sy’
the remaining commutation rules can be written quite briefly as
follows:
i(s,t,*...8 t )
Ve t Ys s ° o "t s 't t
17 tm 510t S SpeeeSy Epeeety

Observe next that the most general character of the vector
gg?zpsof.?%i 2—;uples of real numbers is (tl,tz,...,tm) -
e 171 mm  yhere (31’32""’Su9 is an n-tuple of real
numbers. This suggests the following generalization of the

Weyl form of the Heisenberg commutation relations. One is

given a unitary representation V of the separable locally
compact group G and a unitary representation U of the dual

G of G and these representations satisfy the commutation
relation Vxe = x(x)UXVx for all x in G and all x in é.

One can ask to what extent this commutation relation deter-
mines V and U up to equivalence and so try to generalize the
Stone — von Neumann theorem on the uniqueness in the case in
which G 1s an n dimensional real vector group.

This problem may be attacked by using the spectral theorem
to‘replace the representation U of G by the projection
valued measure P on é (=G) which defines it. We have
(UX(¢).w) = J x(x) d(PX(¢).¢) and an easy calculation (which

we omit) shows that V. U = x(x)U V for all x and ¥ if
x X X x
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and only if VxP = P[E]x‘l Vx' Thus our original problem in-

E
volving representations of a commutative group and its dual is
replaced by an equivalent problem in which one of the represen-
tations U is replaced by a projection valued measure P . 1In
this new problem both V and P are defined on the same group

G and the relevant commutation relation VxPE = P[E]x'l Vx
makes sense whether the group is commutative or not. Indeed

it is precisely the relation defining a system of imprimitivity
in the special case in which the G space S is G itself
the action being right translation. Thus S is a coset space
G/H where H 1is the trivial subgroup consisting of e alone.
The imprimitivity theorem applies and tells us that the equiv-
alence classes of irreducible solutions of the commutation re-
lation correspond one—to-one to the equivalence classes of
irreducible unitary representations of the group {e} . Since
there is only one of the latter the required uniqueness is an
immediate corollary.

Our second application of the imprimitivity theorem
(Theorem B) is to the proof of theorem A on the irreducible
unitary representations of semi direct products U@H with
N commutative. If U 1is an arbitrary unitary representation
of G=N@®H let A and B be the restrictions of U to

N and H respectively. Then for all n ¢ N and heH we

have Unh = Ath . Thus U 1is uniquely determined by A

and B . Conversely let A and B be unitary representations
of N and H respectively and define Unh = Ath for all

nh ¢ G . Then nh ~ Unh will be a unitary representation of

G if and only if U(nlhl)(nzhz) = Unlhl Un2h2 for all n,,10,

in N and all hl,h2 in H . But (nlhl)(nzhz) =n1h1(n2)h1h2
where hl(nZ) = hanhII and is in N . Thus the condition is
Unlhl(nz)hlhz = Unlhl Un2h2 . Using the expression for U 1in
terms of A and B this reduces to

A B = A B A B
nlhl(nZ) h1h2 o, h1 n, h2
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n2
superfluous indices we see that A and B define a unitary

which simplifies to Ahl(nZ) Bhl = Bhl A . Removing now

representation of G if and only if A and B satisfy the

commutation relations

B A, T %) Bh

for all n in N and all h in H . Since N is commuta-
tive the spectral theorem implies that A defines and is de-
fined by a projection valued measure P on N . Moreover,
just as with the uniqueness theorem for solutions of the
Heisenberg commutation relations, one verifies that B and A
satisfy the indicated commutation relations if and only if B
and P satisfy the commutation relations BhPEBh‘l =P[E]h‘1
for all h in H and all Borel subsets E of N . But the
latter say precisely that P 1is a system of imprimitivity
for B based in N . Of course this imprimitivity theorem
does not apply at once since H does not act transitively on
N . On the other hand an easy argument shows that whenever U
is irreducible the action of H on K is ergodic with respect
to the invariant measure class whose null sets are the sets E
with PE = 0 . Moreover when the Borel cross section C of
theorem A exists a short further argument shows that this er-
godic invariant measure class is supported by an orbit 0 .
The restriction of P to (0 is then a transitive system of im—
primitivity for B and the imprimitivity theorem allows us to
reconstruct P and B and hence U from an irreducible rep-
resentation of the subgroup HX of H leaving fixed some ¥
in 0 ., The rest of the argument is a matter of calculation,
The reader is urged to work through the attached exercises,
If he does he will obtain considerable insight into the
Kirillov-Kostant—Auslander theory of nilpotent. and solvable
Lie groups. The principal features of this theory are already

visible in a special case which may be completely analysed

42



with the aid of theorem A.

EXERCISES
semi direct products and solvable Lie groups

Let "V be a finite dimensional real vector space and let
A be a linear transformation in V . For each real number t

let

Then eAt is a non singular linear transformation which de-
fines an automorphism of the additive group of V and t-->eAt
is a homomorphism. Using this homomorphism we may define a

semi direct product of the additive groups of V and the real

line R

At1
(Vl’tl)(VZ’tZ) = (v1 +e (v2), £+ t2) .

Call this semi direct product GA .

Exercise I. Find all possible continuous homomorphisms of the

real line into GA and note that these correspond one-to-one

in a natural way to the members of the vector space V @ R .

Then show that the vector space of the Lie algebra LA of GA

is naturally isomorphic to V @ R .

Exercise II. Compute the action of the inner automorphisms

*
of G on the vector space dual L of L and show that

the oébits of this action consist pieciselyAﬁf the following.
(1) All one point sets of the form £,u where u 1is an

arbitrary member of R* and £ an arbitrary member of v*
such that A*(l) =0 .

(2) All sets of the form 6 x R* where 6 1is an orbit of

*
the action of the dual action of R on V which contains
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more than one point.

Exercise III. Apply the theory of unitary representations of
semi direct products to show that the irreducible unitary
representations supplied by that theory (which are exhaustive
when the semi direct product has a Borel cross section for the
R orbits in V* ) are parametrized by the pairs 6,x where

6 is an R orbit in V* and ¥ 1s a character of a closed
subgroup He of R .

Exercise IV. Using the results of II and III show that there
is a natural map of the unitary representations of IIT onto
the R orbits in L* . Then show that this map is one-to—-one

A

if and only if every H, is either {0} or R.

Exercise V. Show that every Hy is either {0} or R when

and only when A has no pure imaginary eigenvalues.

Exercise VI. Show that Gy is nilpotent if and only if
Ak = 0 for some k and that there is a Borel cross section
for the R orbits in V* whenever Ak =0 for some k .

It follows from the results of these exercises that the map
of Exercise IV sets up a natural one-to-one correspondence be-
tween G, orbits in L* and (equivalence classes of) irre-

A A
ducible unitary representations of G, whenever GA is nil-

A
potent and moreover that all irreducibles are induced by one
dimensional representations of closed subgroups. In 1962
Kirillov proved that this result holds for all simply conmected

nilpotent Lie groups.

Exercise VII. Show that the exponential map of L, on G,
is bijective if and only if A has no pure imaginary eigen-
values.

In 1965 Bernat generalized Kirillov's theory as suggested
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by IV, V and VII. He proved that the Kirillov map is bijective
for all simply connected solvable Lie groups whose exponential

map is bijective.

Exercise VIII. Study the case in which A has pure imaginary
eigenvalues so that the map of IV is not one-to-one. Show that
for each orbit 6 where He is not O or R the equivalence
classes of irreducible unitary representations of GA are
naturally parametrized by the characters of the fundamental
group of © ., Show also that © is even dimensional and has a
natural symplectic structure.

The Auslander—Kostant theory of 1967-1971 is concerned with
extending the results of VIII to general solvable Lie groups.
In this case one may not be able to obtain all equivalence
classes. Indeed if A has two pure imaginary eigenvalues which
are not rational multiples of one another, there will be no

*

Borel cross section for the GA orbits in V

3. Some properties of the inducing construction
Let Hl and H2 be closed subgroups of the separable locally

compact group G and suppose that Hl < H2 . Let L be a uni~

tary representation of H Then one can ignore H2 and simply

1 °
consider the unitary representation UL of G induced by L .
On the other hand one can ignore 6 and obtain a unitary rep-

resentation M of H by regarding H, as a subgroup of H2

2 1
and inducing L to H2 . Starting with M one can then form
another induced representation UM of G . How are the two

representations UL and UM related? A useful theorem called
the 'stages theorem' or the 'theorem on inducing in stages'
asserts that UL and UM are always equivalent. In other words
in inducing L from H, to G it is possible to 'stop over'

1

at H, without affecting the equivalence class of the final re-
sult. The proof (which we omit) is both trivial and difficult.

For finite groups the reader should be able to construct the
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proof himself - it is simply a matter of comparing definitions.
In the general case one confronts rather exasperating measure -
theoretical technicalities. However as shown by Blattner these
may be reduced by using an alternative definition of UL which
avoids choosing a particular quasi invariant measure in the
coset space.

An immediate corollary is the fact that the regular represen-
tation of a closed subgroup H of G always induces the regular
representation of G . Indeed it is immediate from the defi-
nition that the identity representation of the identity subgroup
always induces the regular representation. Thus if Hl = {e}
and L 1is the identity then M is the regular representation
of H2 and U’ is the regular representation of G .

One can often obtain valuable information about the structure
of an induced representation by choosing the second subgroup
H2 properly and first studying the structure of M . For
example let G be the group SL(2,R) of all two by two real
matrices with determinant one and let H

1
all matrices of the form (i 2) . Let IH be the one dimen-—

be the subgroup of

sional identity representation of H We may determine the

Iy . 1
structure of U 1 by choosing H

A O .
a 1/}‘) . Indeed Hl is a normal sub

group of H2 and it follows immediately from the definitions

, as the group of all

matrices of the form (

that if M 1is the representation of H, induced by IH1 then

2
M is simply the regular representation of the quotient group

HZ/HI lifted to be a representation of H, . Now H2/H1 is

2
isomorphic to the commutative group of all diagonal matrices
90
0 1/A
integral of all the characters of this commutative group. Thus

and its regular representation is just the direct

M 1is the direct integral of the one dimensional representations

of H, obtained by lifting the characters ¥ of the diagonal

2

subgroup. However as in the case of SL(2,F) where F 1is a
' 2

finite field the induced representations U* for x“ % I are

all irreducible and constitute the so-called principal series
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of irreducible unitary representations of SL(2,R) . Now quite
generally it is trivial to show that inducing commutes with the
taking of direct sums and direct integrals. Hence U Hy is
seen to be a direct integral of all irreducible unitary represen-—
tations %n the prigcipal series. Since one can show further
that UXl and uX2  are equivalent if and only if xi = xé or
xi = xé_l , it follows that almost every member of the principal
series occurs with multiplicity two.

Let L be a unitary representation of the closed subgroup
H of the separable locally compact group G and let L- denote
the contragredient representation., This is defined by the
equation Lx = (L;:)—1 where L; denotes the Banach space ad-
joint of Lx in the dual of H(L) without taking into account
the fact that H(L) 1is self dual via a linear anti-automorphism.
When L is finite dimensional the character of L is the com-
plex conjugate of that of _L . It_is an immediate consequence
of the definitions that UL and UL are equivalent.

Now let L and M be unitary representations of the separ—
able locally compact groups G1 and G2 respectively. Let
H(L) ® H(M) denote the Hilbert space tensor product of H(L)
and H(M) . Then (x,y) - Lx><My defines a unitary represen-
tation of G1 x G2 . We call it the (outer) tensor or Kronecker
product of L and M and denote it by L x M. As with direct
sums, direct integrals and passage to the contragredient, taking
tensor products commutes with inducing. More precisely if L
and M are unitary representations of the closed subgroups H

1
and Hp; of the separable locally compact groups G, and G

M 1 2
then UL is equivalent to UL x UM . The proof is once again
an immediate consequence of the definitions.

A somewhat less obvious result whose proof is still quite
easy concerns what happens when an induced representation is
restricted to a closed subgroup. Let H1 and H2 be closed
subgroups of the separable locally compact group G and let L

be a unitary representation of Hl . Then the induced
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. L . . .o
representation U has a canonically associated transitive sys-

tem of imprimitivity P based on G/H, . When IP‘ is restricted

L . . f e e .
to H2, P continues to be a system of lmprimitivity but not
necessarily a transitive one. The H2 orbits in G/H1 are
easily seen to correspond one—to-one to the Hl :H2 double co-

sets in G and there will normally be more than one. If the
orbit space is well behaved - e.g. if there exists a Borel set

which meets each orbit just once, one says that H, and H, are

1
regularly related. Assuming this it is easy to see that U
restricted to H2 is a direct integral (direct sum if there are
only countably many double cosets) of representations with
transitive systems of imprimitivity. By the imprimitivity theo-
rem these are all induced by representations of closed subgroups
of H2 and it is basically a matter of computation to show that

the component assoclated with the double coset Hle2 is in-

2xx_1H1x of the representation

duced by the restriction to H
-1
£ - LxEx'l of x Hlx . Thus, when Hl and H2 are regularly

related, the restriction to H2 of the induced representation

UL of G 1s a direct integral over the Hl :H2 double cosets

of explicitly describable induced representations of H2 . This
rather elementary result is surprisingly useful. It is known
as the 'restriction theorem'.

The restriction theorem has an immediate corollary which is
useful in analysing the 'inner' tensor products of induced
representations. Let U and V be unitary representations of
the same separable locally compact group G . Then UXV as
defined above will be a unitary representation of G xG which
is irreducible whenever U and V are. This representation
of GXG may be restricted to the diagonal subgroup G of
GxG consisting of all x,y with x =y . Via the obvious
isomorphism between G and G one thus obtains a unitary
repfesentation of G which is sometimes called the inmer tensor
product of U and V and denoted by U® V . It will seldom

be irreducible even if U and V are irreducible and for each
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G , after one has found all equivalence classes of irreducible
unitary representations, there remains the problem of decom-
posing U ® V for each pair U and V of irreducibles and
finding what its irreducible constituents are. Of course when
G is commutative this is just the problem of finding the group
structure in G . When the irreducible representations U and
v are induced the theorem we are about to state provides a use-
ful first step in decomposing U ® V .

Let H and H

1 2
cally compact group G and let L and M be unitary represen—

be closed subgroups of the separable lo-

tations of H1 and H2 respectively. Then UL ® UM is ob-
tained from UL XUM by restricting the latter to G < GxG .

On the other hand, as noted above ot x? s equivalent to

ULxM . Thus UL ® UM is the restriction to G of the represen—

tation ULXM of GxG induced by the representation LxM of

Hlx H2 . Evidently the restriction theorem applies - provided
that Hl XH2 and G are regularly related. It tells us that
ULX is a direct integral over the Hl XH2 : G double coset

of certain explicitly describable induced representations of G.
One checks easily that the Hl xH2 : G double cosets in GxG

correspond one-to-one in a natural way to the H1 :H2 double

coset in G and that H, xH, and G are regularly related if

1 72

and only if Hl and H2 are regularly related. A calculation

which we leave to the reader, then shows that the contribution

of the double coset Hl XH2 to UL ® U is the representation

of G induced by the inner tensor products pf the restrictions

to xH x-l nH and M of

1 2
X lﬁlx and H2

In the special case of a finite group or more generally when

of the representations h - Lxhx'l

respectively.

the subgroups Hl and H2 have finite index in G and L and
M are finite dimensional the tensor product theorem for induced
representations has a simple corollary which allows one to deter-
mine the 'intertwining number' of any two induced representations

in terms of certain 'intertwining numbers' for the inducing
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representations.

Whether G is finite or not one defines an intertwining op-
erator for two unitary representations U and V of G to be

a bounded linear operator T from H(U) to H(V) such that

TUx = VxT for all x in G . The set of all intertwining op-
erators for a given pair U,V 1is a vector space which we denocte
by R(U,V) . Its dimension is called the intertwining number
i(u,v) for U and V. Let T be an intertwining operator,
let NT be the null space of T and let RT be the range of
T . One verifies at once that N, and the closure -ET of R,

are closed invariant subspaces of H(U) and H(V) respectively,
Moreover 1t is easy to see that T restricted to NT'L is an
intertwining operator for the subrepresentations of U and V
defined by NT'L and RT . It can be shown using the 'polar de-
composition theorem' for T that its 'unitary factor' actually
sets up an equivalence between these two subrepresentations. It
follows that 1i(U,V) # O if and only if some subrepresentation
of U 1s equivalent to some subrepresentation of V . In par-
ticular U is irreducible if and only if i(U,U) = 1 and if
U and V are both irreducible then 1(U,V) = 1 or O according
as U and V are equivalent or inequivalent.

Suppose now that the unitary representations U and V are
finite dimensional. Then the inper temsor product U @ ¥ has
as its vector space the set of all linear transformations T
from H(U) to H(V) . Moreover UI@Vﬁx(T) = UxTv;l . Hence
U® V(T) = T if and only if T 1is an intertwining operator for
U and V . Thus i(U,V) 1is the number of times which U ® ¥
contains the identity or equivalently i(U,V) = i(I,Ue¥) .
Suppose further that U and V are of the form UL and UM
respectively where L and M are unitary representations of
the closed subgroups Hl and H2 . [Of course if U and V
are finite dimensional then ", and H,
index in G and L and M must be finite dimensional.] We

conclude that i(UL,UM) = i(]’.,UL sUM) = i(I,UL @UM) . Now the

must be of finite
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tensor product theorem for induced representations implies that
JQQUM is a direct sum over the Hl :H2 double cosets of cer—
tain induced representations of G and correspondingly

i(IJﬂ;QUM) = i(UL,UM) is a sum over the H, :H double cosets,

1°72
One computes that the contribution of the double coset Hle2
is just the intertwining number for the restrictions to
XHlx_iI‘HZ of the two representations h a-Lxhx‘l and h - Mh
of x H,x and H, respectively.
1 2 L
This theorem about i(U ,UM) has a number of interesting
corollaries. For example when H2 = G there is only one double
coset and the statement of the theorem becomes i(UL,M) =
i(L,M FHl) where M FHl denotes the restriction of M to Hl.

In particular when L and M are both irreducible i(UL,M) is
just the number of times that M appears as an irreducible

cons tituent of UL and 1i(L,M le) is just the number of times
that L appears as an irreducible constituent of M restricted
to H1 . The equality of these two numbers is precisely the
celebrated reciprocity theorem of Frobenius. Another corollary
is a simple irreducibility criterion for induced representations.

1 ° Then
UL is irreducible if and only if i(UL,UL) =1 . But i(UL,UL)

Let L be an irreducible unitary representation of H

is a sum over the Hl :H1 double coset of cgrtain intertwining
operators involving restrictions of L and its conjugates. All
contributions are non negative and that of HlHl is 1 . Hence
UL is irreducible if and only if all other contributions are
zero. Recalling what the contributions are one obtains a useful
necessary and sufficient condition for irreducibility.

It is not difficult to go a step further and find an explicit
expression for the most general intertwining operator for UL
and UM . Of course we continue to assume that Hl and H2
have finite index in G and that L and M are finite dimen-
sional. Let A be any function from G to the linear oper-—
ators from H(L) to H(M) which satisfies the identity

A(Exh) =MEA(X)Lh for all Ee€¢H, , heH, and xeG . Let f

2 1
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be any member of H(UL) so that f is a function from G to
H(L) which satisfies the identity f£(hx) = th(x) for all x

in G and all h in Hl . Then A(xy—l)f(y) as a function
of y for fixed x , is a constant on the right Hl cosets.
Let
-1
(O = 1 sy Dy .
yeG/H1

Then TAf(x) is evidently a member of H(UM) and TA is an
intertwining operator for UL and UM . It is routine to com-—
pute the dimension of the space of all functions A and to
verify that it is equal to the expression found above for
i(UL,UM) . It follows then that every member of R(UL,UM) is
of the indicated form.

Although the above results about intertwining operators for
induced representations are valid in a rather limited context
they provide a useful heuristic guide in the general case. Note
for example that the functions which satisfy the identity
A(Exh) = MEA(X)Lh are determined throughout a double coset by
their value at any one point inside. Moreover given any such
function it continues to satisfy the identity if it is altered
by being reduced to zero outside of any one double coset. Let
us define TA to be a double coset intertwining operator when—
ever A(x) 1is zero except for values of x lying in a single
double coset. It follows from the above discussion then that
every intertwining operator for UL and ™ s a unique sum
of double coset intertwining operators with just one (possibly
zero) contribution from each H2 :H double coset.

1

Now given X in G and given a bounded linear operator A

from H(L) to H(M) there is at most one function x - Ax

which is zero outside of H2x0H1 and is defined in HZXOHI by

AEXOh = MEALh for all £« Hz and all hezHl . When it exists
the corresponding double coset intertwining operator may be

written down explicitly. It takes a form which makes sense in
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the general case provided that certain integrals exist and lead
to square summable functions. In other words the double coset
intertwining operators which span the space of all intertwining
operators when G 1is a finite group have formal analogues for
arbitrary separable locally compact G . The formal analogues
may or may not involve convergent integrals and lead to honest
intertwining operators. Moreover if these intertwining oper-
ators exist they may or may not span the space of all inter-
twining operators for the induced representations in question,
However this may be, analogy with the finite case and the con-
cept of a double coset intertwining operator provides a sys-

_ tematic way of looking for intertwining operators in the general
case, Furthermore inspection of the literature shows that many
of the known intertwining operators fit into this pattern and

may be identified as double coset intertwining operators.

4. Conclusion and connections with the other lectures

In my final lecture I want to talk more systematically about
the twin problems of (a) decomposing induced representations
and (b) finding the possible irreducible unitary representations
of agiven G . In doing so I will refer freely to what the
other lecturers have told you and try in thig way to summarize
and tie together the various lecture series wﬁich have been and
are being presented here,

Let me begin with problem (b). Any general solution must of
course be related to the structure of G and in particular,
when G has a closed normal subgroup N it is natural to at-
tempt to relate the problem to the corresponding problems for
G and G/N . If N is of type I and the natural action of
G/N 1in the set of irreducibles of N has a Borel cross section
for the set of orbits, then there is a theory much like that de-
scribed in section 2 for semidirect products. The problem is
reduced to finding the irreducible projective representations of

certain subgroups of G/N for certain projective multipliers o.

53



A projective representation with multiplier ¢ is a unitary op-
erator valued function on the group with the usual identity re-

placed by
ny = o(x,y)Lx.Ly

and o 1is a Borel function from GxG to |z| =1 satisfying
o(x,y2)o(y,z) = a(xy,z)o(x,y)

Further x = LX(W) is a Borel function for each V¥ e H(L) .
For each fixed o there is a theory of o-representations (pro-
jective representations with multiplier o) parallel to the

standard theory. A multiplier ¢ 1is said to be trivial if

- _Y(x,y)
O(X,Y) - \y(x)\y(y)

for some Borel function ¥ from G to (z| =1 . It is im
portant to note that if ¢ 1is nontrivial, then the difference
between ordinary and o-representations can be quite profound.
For example, let A be a separable, locally compact, com-
mutative group and let G = AxA . Then G 1is commutative and

one can define a projective multiplier ¢ on G by setting
T(X %y 5 %Xy Xp) = Xy (%)

An easy exercise shows that determining the c-representations of
G 'is equivalent to finding the most general solution to the
generalized Heisenberg commutation relations. Hence there is a
unique irreducible ¢ representation which is infinite dimen-
sional whenever G 1is infinite. All known multipliers o for
commutative groups are obtained by realizing some quotient of
the group in the form AxA and then lifting the multiplier de-

scribed above. When A is a finite dimensional vector space,
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then there is a natural symplectic form on AxA given by

[(xl,ll),(xz,lz)] = ll(xz)'-lz(xl)
and the o just defined is equivalent to ei[(xl’ll)’(xz’lz)].
Kostant's generai 'quantization' procedure associating a Hilbert
space to a polarized symplectic manifold is a generalization of
the construction of the Hilbert space for the unique
ei(ll(xz)—lz(xl)) representation of AxA . Its ubiquitous
occurrence in constructing representations of Lie groups is
perhaps not so surprising in view of the above remarks.

The so-called Weil representation of Sp(n) can be under-
stood in the same context. Let A = ]fl, then every element of
Sp(n) defines an automorphism o of A x A which preserves
s . Hence if W 1is the unique o-representation of AxA then

(x,2) ~+ Wu( is equivalent to W and hence there exists \A

x,2)
-1 . .
t = .
such tha VGW v wa(x,l) The operator Va 1s uniquely

determined up iélaamultiplicative constant and u-*Va is a pro—
jective representation of Sp(n) . This is the Weil represen-
tation. Generalizations of it occur in an essential way in the
extension of normal subgroup analysis to projective represen-—
tations (see G.W. Mackey, 'Unitary representations of group
extensions', Acta Math., 99, 1958, 265-311). E

When the group G is simple, then other methods must be used.
We divide the simple, separable, locally compact groups into &
categories according to whether they are connected or discon-
nected, compact or non compact. It follows from the work of
Gleason, Montgomery and Zippin that every simple, separable lo-
cally compact group is a Lie group. A non connected simple
group is totally disconnected and a compact, totally discon-
nected group is finite. Hence the categories are the compact
and non compact Lie groups, the finite simple groups and the
simple, totally disconnected, non compact groups which further

subdivide into the discrete and non discrete.
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The compact and non compact simple Lie groups are especially
susceptible to a deep analysis because of the availability of
differentiation and the fact that many of the properties of the
group are reflected in properties of the Lie algebra. In Pro-
fessor MacDonald's lectures we saw how to use this tool to de-
termine all possible simple Lie groups and to show that they
have many common structural features which may be exploited in
studying the representation theory. The non compact simple
Lie groups can be described purely algebraically in terms of
the real field and its algebraic closure. Most of the known
examples of non connected simple, locally compact groups are
analogues of the simple Lie groups obtained by replacing the
real field by a finite field, a countable discrete field or
the completion of a countable discrete field with respect to
a valuation. In the finite case a concerted attack is being
made on the problem of finding all exceptions by a small army
of mathematicians.

The problem of finding the irreducible unitary represen-
tations in the infinite discrete case is hopeless in principle
because such groups are not of type I. Of the other four cat—
egories the least progress has been made in the totally dis-
connected non compact case and the solution is complete in the
compact case. This latter case was the subject of Professor
Bott's lectures. He proved that a compact simple Lie group G
has a maximal commutative subgroup T , unique up to conjugacy,
whose conjugates exhaust all elements of tﬁe group. Let N
be the normalizer of T and let W =N/T . Then W is a
finite group called the Weyl group and the orbits of W in T
are precisely the intersections with T of the conjugacy
classes in G and so correspond one-to—one to these classes.
Professor Bott then went on to prove the celebrated theorem
of Hermann Weyl setting up a natural one-to-one correspondence
between the orbits of W in the dual T* of T and the

equivalence classes of irreducible unitary representations
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of G . This correspondence can be described in a number of
elegant ways.

For non compact connected Lie groups there is an analogous
theory which is much more complicated and which yields only
glmost all irreducible unitary representations of G . Many
jmportant special cases were worked out by Gelfand and his
collaborators but the theory in the general case is mainly due
to Harish—-Chandra and is described in the lectures of Professor
Schmid. An important difference lies in the fact that T must
in many cases be replaced by a finite number of commutative
groups. Another lies in the fact that all irreducibles except
the identity are infinite dimensional and that characters are
much harder to define. The lecture of Professor Atiyah was
concerned with the character problem in this case. The nature
of the commutative subgroup which replaces T in the compact
case can be appreciated by considerations involving quite gen-
eral groups G . For each xeG let Cx denote the conjugate
class of x and let H denote the centralizer of x . Then
Cx and G/Hx are isomorphic as G spaces. Let us now divide
the elements of G into genera by putting x and y with the
same genus whenever Cx and Cy are isomorphic as G spaces;
that is whenever Hx and Hy are conjugate.v Evidently every
conjugate class is contained in some genus so that the comjugate
classes themselves subdivide into genera. For each genus choose
an arbitrary element x and let Tx be the centre of Hx .

Let Nx be the normalizer of Tx in Hx and Wx = Nx/Tx .

Then it can be shown that every element of the genus containing
X 1s conjugate to an element of Tx and the Wx orbits in

Tx of the elements of the genus are in one—to-one correspondence
with the conjugacy classes in the genus. We say that a genus is
degenerate if Tx is conjugate to a proper subgroup of some Ty.
If G 1is a compact simple Lie group then there is only one non
degenerate genus and so one commutative subgroup describes all

conjugacy classes. For a non compact simple Lie group there
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are a finite number of genera and the Cartan subgroups are es-—

sentially the non degenerate omnes. As in Weyl's theory ex—

pounded by Professor Bott, Harish—-Chandra's theory parameter-
izes the irreducible unitary representations by Wx orbits in
Tx but there are now several families of representations, one
for each non degenerate genus of ‘positive measure.

The finite simple groups which have Lie analogues have a
representation theory closely amalogous to that of the simple
Lie groups. However, they share the complication of the non
compact theory in that there is always more than one non de-
generate genus. Professor Lusztig's lectures summarized the
results of this rather new theory.

The Lie analogues based on countably infinite discrete fields
are not type I groups and the determination of all these irre- |
ducible, unitary representations is not to be expected.

The unitary representation theory of the Lie analogues of
the non discrete, totally disconnected simple groups is now
under intensive study but the results are far from complete. In:
studying the centres of the centralizers of elements in SL(n,F),
the possible kth order extension fields of F enter in an
essential way for all k <n . The complications that ensue
were discussed in Kazhdan's first lecture on group represen—
tations and number theory.

Returning tc the relationship between conjugacy classes and
irreducible representations, consider the relationship between
conjugacy classes and Lie algebras in the case of Lie groups
(not necessarily semi-simple). The elements of the Lie algebra
L, of G may be identified with the continuous homomorphisms ¥

G

of the real line into G and for each VY ELG , there is a well’

defined element Y¥(1) of G . This mapping is called the ex-

ponential mapping exp of LG into G and satisfies

exp[Ad x (¢)] = x exp¢ x_l so that exp maps the orbits of the

adjoint representation in L_ onto conjugacy classes in G .

G
When exp 1is bijective, as it is for simple connected nilpotent
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groups, there is a natural omne—to-one correspondence between

the orbits in LG

on LG defines a dual action on L

and conjugacy classes. The adjoint action
*

c and because of the duality

petween conjugacy classes and irreducible unitary represen—
tations one may expect some sort of correspondence between co-
*

G
In the special case of simply connected, nilpotent groups,

adjoint orbits in L_ and irreducible unitary representations.
'Kirillov showed in 1962 that there exists a perfect one~to-one
correspondence. Later, Bernat showed that when G 1is solvable
and exp bijective then the correspondence is again one—to-one.
Kostant and Auslander showed that for any simply connected
solvable Lie group of type I, there is a many to omne mapping of
irreducible unitary representations into co—adjoint orbits.
Kostant had earlier made the important observation that the
orbits have a natural symplectic structure and Kostant and
Auslander exploited this to obtain an explicit description of
all the irreducible representations associated with each orbit
via Kostant's 'quantization' procedure. This material is de-
scribed in more detail in Professor Kostant's lectures.

Next let us turn our attention to the decomposition problem
itself. The lectures of Professor Kahzdan on integral geometry
and those of Professor Helgason on joint eigenspaces of in-
variant differential operators may be regarded as expositions
of two different general methods for dealing with this problem
in the special case in which the induced representation to be
decomposed is induced by the identity. However both are capable
of generalization. Moreover the two methods are by no means un—
related.

Professor Helgason confined himself to the case in which the
commuting algebra R(U H,UH) is commutative and G is a con-
nected Lie group. Examples in which this occurs include the
case in which H 1is the maximal compact subgroup of a connected
semi-simple Lie group with finite centre and the case in which

H=g¢ , the diagonal of the direct product GxG . The
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decomposition in this second case is equivalent to decomposing

. . G
the regular representation of G since then U can be showmn

to be equivalent to JLA ® LA du(1) where JLAd(A)du(A) is

the decomposition of the regular representation. The commuta-
tivity of R(UIH,UIH) tells us that UIH is multiplicity free
and hence that UIH has a unique decomposition into irreducible
and the associated direct integral decomposition of H(UIH) als
decomposes each TE'R(UIH,UIH) into constant operators. If the
decomposition were into discrete components then each invariant
irreducible subspace would be a joint eigenspace for all the
operators in R(U H,U H) . More generally, there exists a
unique, projection valued ?easgre P defined on & such that
each self-adjoint T ¢ R(U H,UH) is defined by the projection.
valued measure E - PWT_I(E) where WT is a Borel function
from the support of P to the real line. The functions WT
collectively label the irreducible representations in the de-
composition of UIH by joint eigenvalues of the operators T.

When G 1is a Lie group so that G/H is a smooth manifold,
then we can use invariant differential operators instead of
bounded operators in R(UIH,UIH) and make corresponding state-
ments. When the decomposition is not discrete the eigenspaces
will not comsist of square integrable functions but functions
which can be integrated to form square integrable functiomns
just as the functions ei)‘x on the real line are integrated in
the definition of the Fourier transform.

The fact that one has a natural labelling of the irreducible
components of UIH by joint eigenvalues of invariant differen-
tial operators was used by Selberg in his celebrated trace
formula to avoid dealing explicitly with infinite dimensional
irreducible representations.

The method of integral geometry consists in finding and
studying explicit intertwining operators for two induced rep-
resentations UIH and UIN where UIN has a known structure

. . I . .
and one wants information about UH , Now as I explained in
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section 3 on induced representations one can determine ex-
plicitly all possible intertwining operators for UIH and UIN
when G 1is finite. There is a one dimensional family canoni-
cally associated with each H': N double coset and choosing one
non zero member of each family gives a basis for the space of
all intertwining operators. One can write down explicit for-
mulae for these double coset intertwining operators and these
'make sense in the general case provided that certain integrals
converge. The term 'integral geometry' is used because the
formulae reduce to integrating functions defined on G/H over
certain orbits of the N action on G/H . These orbits often
have simple geometric interpretations. In Professor Kazhdan's
second lecture he applied this method to UIG where G is

the diagonal of GXxG to obtain the Plancherel formula for G
in the special case in which G is the general linear group.
As auxiliary group he used NxN where N 1is the group of

all triangular matrices with ones on the diagram,

In decomposing a unitary representation W into irreducibles
W= VAm(A)du(A) , the measure p 1is not uniquely determined.
Any other measure on é with the same null sets will do. On
the other hand, when W is an induced representation, there is
an additional condition to impose which often picks out a
unique p . This unique u , when it exists is called the
Plancherel measure and in its strict sense, proving the
Plancherel formula means computing the special u as well as
finding the decomposition. We give the appropriate definition
when W = UL and L is a finite dimensional representation
of H and H is such that its normalizer H is unimodular
and G/H has a finite invariant measure p .

Let £ be a continuous function on G with compact support
and perhaps other restrictions. When G is finite it is easy

to compute that

Trace(U?) = J - [J f(xhx_l)x(h)dh]dp(x)
G/H H
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up to a multiplicative constant. Moreover, if UL = anMJ

where the M are irreducible then
Tra ce(Uﬁ) = an Trace (M%)
and so the linear functional

£ - f . f £(xhx ) X" (h) dh dp (x)
G/H ‘H

is a linear comwbination of linearly independent linear fumnc-

tionals f — Trace(U%) , the coefficients being proportional to

the nj .  Much more generally, the expression
-1, L
~ | £(xhx 7)x (h) dh dp(x)
G/H ‘H

makes sense and is a linear functional which we try to write in
the form Trace(Mf)du(M) where 1 is a uniquely determined
measure on G . When this measure exists and is unique, one

refers to the formula

J . f £(xhx 1) ¥ (h) dh dp = JTrace(Mf) du(M)
G/H ‘H

as the Plancherel formula for the induced representation UL
The existence of u has so far been proved only in the follow-
ing special cases:

(1) when H =<e> and L = I , then the left hand side
becomes f(e) and we have the abstract Plancherel formula of
Mauntner and Segal;

(2) when G is commutatijve, H 1s arbitrary and L =1 ,
then it becomes JHf(h)dh = Hlf(x)dx where H* is the group
of all characters which are the identity on H (when G 1is
the real line and H 1is the group of integers then this is
the classical Poisson summation formula);

(3) when H is the maximal compact subgroup of a connected
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gemi-simple Lie group with finite centre and L =1 ,

The special case in which , T is a discrete subgroup of a
connected semi-simple Lie group G with finite centre and G/T
has a finite invariant measure is essentially the Selberg trace
formula. It may be regarded as a non commutative version of the
Poisson summation formula. Both have extensive applications to
number theory. The quadratic reciprocity law is one of the
earliest general theorems in number theory with some degree of
depth and perhaps the simplest proof is due to Dirichlet.
pirichlet's proof is based on a straightforward application of

the Poisson summation formula.
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4 - The geometry and representation theory of
compact Lie groups

RAOUL BOTT (Harvard University)
(Notes by G.L. Luke)

1. On the topology of compact Lie groups
A Lie group G 1is a C”-manifold which is also a group and

guch that the group laws:

multiplication m:GxG > G

inverse i:G>G
{~-]
are C -maps.

Examples
(1) r" , +; the additive group of n-dimensional Euclidean
" space,

(i1) R* s * 3 the multiplicative group of the real line,
(iii) GL(V) ; the automorphisms of a finite dimensional
real vector space V . Choosing a basis for V gives an iso—-
morphism of GL(V) and GL(n,R), the group. of nxn invert-

ible matrices with real coefficients.

If € denotes the complex numbers and H the quaternions
then GL(n,C) and GL{(n,H) are defined similarly.

(iv) compact examples are:
(a) WR/Z , + , the quotient of the additive reals by the integers
which is isomorphic to the circle group S1 of complex numbers
of unit norm.
(b) A cartesian product of Lie groups is also a Lie group. A

product of circles

T =S8 x ,..x8 , T copies



is called a torus.

(c) SU(n+l) = the group of (n+l)x(n+l) matrices with complex
coefficients and satisfying x-xt =1 , det X =1, In par-
ticular, if X e SU(2) then X = (_;
Hence SU(2) is homeomorphic to S3, the 3-sphere of unit vec-

; MEn|aF+|M2=I.

tors in m2 .

The fact that the topological spaces S1 and S3 can be
given the structure of a Lie group suggests the question:
'Which spheres are Lie groups?'. Perhaps the most accessible

theorem in this area is the following.

Theorem. None of the even dimensional spheres, S2n , are Lie

groups.

Proof. Suppose S2n is a Lie group. Consider the multipli-
2nxSZn_+SZn

and m: San{e}-+Szn both correspond to the identity map.

P

. . - n
cation map m: S The restrictions m: {e}XS2 *>S

*
Let H (Szn,ﬂﬂ denote the cohomology ring of S2n with rea]
coefficients (the deRham cohomology computed from differential

forms). Then HO(s?®,®) ¥ R, (L, R) T R, ENS?Y,R) = 0

~

in other degrees.

The multiplication map m induces a ring homomorphism

* &
o H (32 2nxSZn,

D R) > H (S R)

and it is well known that

* - % *
152%™, ) 2 1 (s, R e 0 (s, W) .

Using this identification and 1 for the generator in

HO(Szn,]D , A for the generator in Hzn(S2n

% *
m(l) =1®1 and m (A) must have the form a(A®l) +b(1®X)

,JR) we see that

for some real numbers a and b . Restricting the multipli-

* % * *
cation map to m :H (Szn,]R) + H (San{e},]R) = H (Szn,lR)

AA



where it equals the identity, we see that a =1 and similarly,
*
b=1. Hence m (A) = 281 +1®X ,

* .
However, m 1s also a ring homomorphism and hence

a8 = o (02 = (el + 1o 2

= 2201+ (A81) (182) + (182) (A®1) +182% .

But Az € H&n(SZn’HD and hence Az =0 , Further, as A may

be represented by a form of even degree, we see that
(A®1) (181) = (1®A)(A81l) = A ® )

and hence 2(A®) =.0 , Finally, it is clear that
2n SZn
b

A@AEHZH(SZH,]R) ® H ( R) 1is not zero. Hence no such

multiplication exists.

Note: In the case of an odd dimensional sphere, the generator

A5H2n+1(32n+1,1R) may be represented by a form of odd degree
and so
(A®1) (181) = - (1®1) (A8l)

and the argument above fails.

This theorem has the following generalization.

Theorem {H. Hopf). Let G be a compact connected Lie group,
then G has the cohomology (real coefficients) of a product of
odd dimensional spheres,

2ka_1, R) .

* *
H(GR)ZH(S

a

The numbers ka where 2ka_1 is the dimension of a com-
ponent sphere, are called the exponents of G . The cohomology
ring of a sphere of dimension 2ka—1 is an exterior algebra on

one generator X in degree 2ka_1 and hence

2k, -1



1

* .
H(GR) ¥® E(x.);i = 2k -1 1
. 1 o g
%
which raises the problem: 'Compute the exponents of G . i
This leads us to the main structure theorem for compact Lie |

groups.

Lemma. Let G be a compact Lie group. Then G admits a
Riemannian metric which is both left and right invariant.

For simplicity, we will say that G 1is primitive if there
exists only one bi-invariant Riemannian structure (up to a

mul tiplicative constant).

Theorem. ret G be a compact, connected, simply-connected

primitive Lie group. Then G is one of the following types.

An ~ SU(n+l) , n = 0,1,...

Bn ~ 56(2n+1), the simply connected covering of the special.
orthogonal group, n = 1,2,...

Cn ~ Sp(n) , the group of nxn matrices with coefficient:
in H such that XX" =1, n=1,2,...

Dn~s”o(2n), n=1,2,...

These groups are known as the classical groups, and the followin
as the exceptional groups:

Gy s Fy s Eg L Eo, Eg .

6 7 8

To find the exponents of a group we might proceed by a case-
by-case attack., The enumeration of the classical groups sugges t
using induction. This works perfectly for SU(n) and Sp(n) .

The group SU(n) acts naturally on the sphere g2nl of
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it vectors in €" and the stability group of a point on the
sphere is SU(n-1) . Hence he have the fibering

su(n-1) -+ SU(n) + SU(n)/SU(n-1) = g2n-1

Passing to cohomology the twisting disappears,

B*(SU(n), R) ¥ H (SU(a-1),R)@H" (5271 R)

and hence, by induction,

1

B (su(m), B 2 8 (s>, me w'(s°, me...0 1 (s? R

A similar argument works for Sp(n) . The group acts
naturally on the sphere Slm_1 of unit vectors in quaternionic
space H" with stability group Sp(n-1) which leads to

H*(Sp(n) »R) ¥ H*(S3,1R) ® H*(s7,]R) ® ... GH*(S4H_1,R)

It is interesting to note that the Betti numbers for these
groups were obtained by R. Brauer in the 1920's by a quite
different method.

For the special orthogonal groups, the coffesponding fibering
is SO0(n-1) = S0(n) Sn_1 . The numbers n-1 and n are of
different parity and the groups SO(n-1) and SO0(n) belong to
different series. A straightforward induction fails.

We pass now to other methods of computing cohomology. The
cohomology of the group-manifold G may be computed via the
deRham complex of differential forms, (Q*(G),d) where Q*(G)
denotes the exterior algebra of differential forms with real
coefficients and d the exterior derivative.

Let Invleftﬂ*(G) or Q*(g) denote the subcomplex of left

invariant forms. Such a form is determined by its value at the

. - * - - - . -
identity e ¢ G and hence Q (g) 1is a finite dimensional



*
space. Let H (g) denote the subcomplex of bi-invariant

*
differential forms. We will show later that d|H (g) 20,
Theorem. Let G be a compact, connected Lie group, then
* I DR ] )
H (G,R) EH (2 (g),d) TH (g) .

Note that this isomorphism reduces the problem of computing
the cohomology of G to a problem in invariant theory. It was
by this method that R. Brauer determined the exponents of the
classical groups. The method was also known to Cartan although
the actual isomorphism theorem first appeared in a paper of

Eilenberg and Chevalley in the 1940's.

Proof of the Theorem. A left invariant differential form is
determined by its value at the identity and evaluation yields

the isomorphism

* * %
InvleftQ (G) ¥ A (Te(G)) .
The exterior algebra A*(T:(G)) may be interpreted as the multi-
linear alternating forms on the tangent space Te(G) of G at
the identity. Further, Te(G) is isomorphic to the Lie algebra
g of left invariant vector fields on G and an invariant metric
gives us an isomorphism between ¢ and g* which explains our
notation Q*(g) .

Consider the inclusion Q*(g) > Q*(G) . Averaging the left

translations gives a projection
* * *
Lgdg: Q (G) > 8 (g)

* x %
and it follows that both £ (g) and H (Q (g)) are direct
* * %
summands in £ (G) and H (Q (G)) . Note that if w 1is a

*
closed form then so is dng . The connectedness of G implies
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*
that e and g may be joined by a path and hence w and ng
*
are cohomologous. Finally (ng—w)dg is an average of co-

*
poundaries and hence a coboundary, so w and ng are co-

homologous. This shows that
* k kO
H (G, R) ¥ H (Q (g))

We may use the same argument and right translation restricted
to Q*(g) to show that Q*(g) and H*(g) have the same co-
homology and it remains only to show that d|H*(g) =0 .

The map induced on T:(G) By the inverse map 1 is simply
-1 . Hence the induced map on APT:(G) is (—1)P . Notice
also that i* preserves bi-invariant forms. Hence if w is a

bi-invariant p—form then
* *
(—1)P+1dw =idw=4diw= (~1)Pdw
and hence dw = 0 as required.

2. The adjoint action and its orbits

Throughout this section we will assume that G 1is compact
and connected. We commence by describing our notatiom.

Let ge¢ G and X ¢ Te(G) . Then gX denotes the image of
X under the map induced on the tangent space by left translation
by g , similarly Xg for right translation and ng_l for con-
jugation. We have already defined the adjoint representation of
G on Te(G) by Ad(g)X = ng—l This is the canonical finite
dimensional representation possessed by every Lie group. The

derivative of Ad 1is denoted by
ad : Te(G) - End(Te(G))

and, in fact, ad(X)(Y) = [X,Y] for X,Y ¢ Te(G)

This is easy to see when G 1is a matrix group. Then
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2,2
Ad(g) (X) = ng_l and exp(tX) =1 +tX-+t2§ +... (matrix

multiplication). Hence

ad(X) (Y)

Ad(tX) ()
£=0

{etXY e—tx}

&l

e

£=0

= [X,¥Y] , the coefficient of t

For example G = SO(3) . The tangent space Te(G) consists

of skew symmetric matrices and taking the basis

01 0 0 0 1 0 0 o0
e. =(-1 0 0), e.=[{ 0 0 0), e.=f{0 0 1],
1 00 0 2 \-1 0 0 3 0-1 0

the adjoint representation of S0(3) becomes the usual rep-
resentation on ]R3. The (non-trivial) orbits of the Ad
action are the 2-spheres centered at O and every sphere cuts
a line through O in two points. We will generalize this fact
later and hence we give it a technical proof.

Fix X 2 0 on a given line and consider the function definec
on a sphere by Y =+ <X,Y> where < , > is the Euclidean }nner
product on ]R3. The sphere intersects the line precisely at
the maximum and minimum of the function.

Returning to the general compact group G with Lie algebra
Te(G) = g and < , > any Ad-invariant inner product on g .
The infinitesimal version of the invariance <Ad(g)X,Ad(g)¥Y> =
<X,Y> is computed by putting g = e and differentiating at
t =0 . This yields

<[z,X1,Y> + <x,[Z,Y]> =0 .

For X ¢ g, let 8y = {YI[X,¥] = 0} , the centralizer of X
and g X [X,g] , the image of adX . Then 8y is a subalgebrs:
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of g » the Lie algebra of Gx = {ge G| Ad(g)X = 0} the stabil-
jzer of X . These spaces fit together in an exact sequence

0+gx+g+gx+0

X
Lemma. The spaces gx and g are perpendicular complements.

‘Proof. Let Y € (gx)'L . Then <[Y,X],g> = <¥,[X,8]> = 0 and
so [¥,X]1 =0, Y ¢ 9 and (gx)L S8y - The argument is
completed by noting that dim(gx)'L = dim 9y -

An element X € g is said to be regular if dim.gX < dim 9y

for all Y e g .
Lemma. If X is regular then 94 is abelian.

Proof. Suppose 9y is not regular. Then there exist
Y,2 €8y such that [Y,Z] =0

Consider 9.tz for t small. Then [X+tY,X] = 0 implies
that ad(X+tY) preserves the decomposition g = 8y @ gx
Further, since ad(X) acts isomorphically on gx » so does
ad(X+tY) for t sufficiently small. Hence gx c gX+tY and

by the previous lemma. However,, and

Ix+ty 9% 248 gy
hence dimX+tY < dim 9y which is a contradiction. When X is
regular, the abelian Lie algebra 8y is called a Cartan sub-
algebra of g . It is not hard to show that the Cartan sub-
algebras are the maximal abelian subalgebras of g . These

generalize the lines through the origin in the case of S0(3)
First Conjugacy Theorem. Let G be a compact connected Lie
group with Lie algebra 9§ and H a Cartan subalgebra of g

Then for each Y € g , the adjoint orbit

0(Y) = Ad(G) (Y)
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intersects H 1in a finite non-empty set of points.

Proof. let X € g be such that H = 8y > <5 be an Ad-
invariant innexr product on g and £:0(Y) > R be defined by
£(Z) = <Z,X> . The orbit O(Y) 1is compact and hence £ O(Y)
achieves its minimum. We can assume Y ¢ 0(Y) is the minimum.
For each Z ¢ g , é% f(Ad(exp tZ)(Y))It=0 since £(Y) v
is the minimum of £|0(Y) . Hence <[Z,Y],X> =0 for all

Ze€g,
X
<lg,¥1,%> = <¥,[X,01> = <¥,g"> = 0

and hence Yegx=11.

Notice that if Y ¢ H then O0(Y) meets H perpendicularly
since 8y and gY are perpendicular. This implies that O(Y)
intersects H in a discrete and hence a finite set of points,
Also, the argument actually shows that all the critical points

of £|0(Y) belong to O0O(Y) nH .

Corollary. rLet Hl and H, be Cartan subalgebras of g .

Then there exists g € G such that Ad(g)H1 = H2 .
Proof. Let 1-11 = gxl and H2 = gxz . Then there exists g e G
such that Ad(g)X2 € Hl Hence Ad(g)H2 = H1 .

Let H be a Cartan subalgebra of g and W(H) denote the
group of automorphisms of H induced by the adjoint automorphism
of G . Then W(H) is called the Weyl group of H and is easil

seen to be finite.

Proposition. For each Y ¢ g and Cartan subalgebra H , the

intersection 0(Y) n H is an orbit of the Weyl group.

Proof. Let X,Y ¢ H be such that X = Ad(g)(Y) for some
g € G . Then 8y = gAd(g)Y = Ad(g)gY « But H S8y and hence
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Ad(g)H < 8y - Therefore H and Ad(g)H are both Cartan sub-

algebras of g X *

Let Gx be the stabilizers of X and G§ the connected

component of the identity. Then 8y is the Lie algebra of the

compact group G
Ad(exp Z)Ad(g)H

and there exists Z ¢ 8y such that

H . But Ad(exp Z)(X) = X and so

54 O

X = Ad(exp Z)(X) = Ad{(exp Z) - g}(Y)

and Ad{(exp Z) - g} induces a Weyl group transformation of H .
We illustrate these notions for the group U(n) . Then the
Lie algebra consists of skew Hermitian matrices which we identify
with the Hermitian matrices by multiplication by v~1 . The ad-
joint representation is equivalent to the representation of U(n)

acting on Hermitian matrices by conjugation.

A diagonal Hermitian matrix corresponds to a regular element
of g if and only if all the diagomnal elements are distinct and
the corresponding Cartan subalgebra consists of all the diagonal
Hermitian matrices. The Weyl group is the set of permutations
of the diagonal elements. Finally, the First Conjugation Theorem
becomes the well known fact that any Hermitian matrix can be put
into diagonal form.

For a general compact Lie group G and Cartan subalgebra
Hec g, the set of singular elements (non-regular) of H 'is a
finite union of hyperplanes. This configuration is called the
Infinitesimal Diagram of G .

For example, let G = SU(3) and H be the set of real

diagonal matrices of trace O . Let Y € H be given by

1
Y=4 O Az 0 ) s Al + Az + A3 =0 .
0 0 A3

Then the diagram of SU(3) consists of the 2-plane H and

hyperplanes Al = AZ s A, T A, e Al = A3 .
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The Weyl group is generated by reflecting across the hyperplanesf

in the diagram and the orbits have the following form:

In the general orbit there are 6 critical points, not simply a’

maximum and minimum.

Theorem (Bott). 7The critical points of f are all non-degenerats
and an index of a critical point is equal to twice the number of

hyperplanes crossed by a line joining X to the critical point.:

The proof of this theorem appears in [2] and will not be
given here. We content ourselves with illustrating the result
for SU(3) .

For the general orbit, the critical points have indices as
illustrated on the right below and the orbit in g is the flag

manifold

1A



U(3)/u(l) x u(l) x U(l)

for the first degenerate case the orbit is the complex projec-—
tive space U(3)/U(2)xU(l) and the critical points have

indices 0,2,4

o

Returning to the theorem, we see that as a consequence of
general Morse theory, each adjoint orbit is a union of even di-
mensional cells, one for each critical point. It follows that
H*(O(Y),Z) is torsion~free and the i-th Betti number is the
number of critical points of index i . Hence the cohomology of
an orbit can be computed from the infinitesimal diagram of the

group.

3. The Poincaré series of the loop space of a- compact group

The exponential map exp: g > G restricts to a diffeomor—
phism between a neighbourhood of 0 ¢ g and e e G . If Hggyg
is a Cartan subalgebra and T = exp H , the corresponding maxi-
mal torus, then exp:H +» T may be thought of as the universal
covering map. As in the case of the algebra H , we define the
Weyl group of T to be the group of automorphisms of T in-

duced by conjugation in G .

Theorem. Each orbit of the conjugation action of G intersects
the maximal torus T precisely in the orbit of the Weyl group.

Let Ad denote the conjugation action and let G have a



bi-invariant Riemannian metric. Then let P ¢ T be a generic
point - not in the image of the singular set of H = Te(T)
By Q(P,0(g)) we denote the space of smooth paths from P to
0(g) , the Ad-orbit through g .

We define the energy path u by

E(u) =J lu'(6) |? de

Then we have the following fundamental result from differential
geometry. The minimum of E on Q(P,0(g)) exists and is a
geodesic from P to O(g) which meets O(g) perpendicularly,
We will prove the above theorem by showing that such a
geodesic lies completely in T and hence T and O0(g) actu-

ally intersect,

Lemma. Let G be a Lie group which acts on a Riemannian mani-
fold M by isometries. Then a geodesic of M which intersects
one of the G-orbits perpendicularly intersects them all perpen-

dicularly.

Proof. Let wu:[0,1] +M be a geodesic (parametrized by path
length) which meets an orbit O(m) , m € M perpendicularly ~
at u(l)

Each X e g , the Lie algebra of G , induces a Killing field
&, on M and a l-parameter family of isometries corresponding

X
X .
to e°% . There results a perturbation:

u( , ) : [0,1] x (~e,e) = M

of the geodesic u = u(+,0) by geodesics u(+,s) with the
property that u(l,s) meets O(m) perpendicularly.

Consider g(t) = (Ex(u(t)) , u'(t)) , the inner product of
the Killing field and the velocity vector field along the

geodesic. Then if V denotes the Laplace-Beltrami connection
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operator, we have

W' (g = (T, gy Eyet’ (0))

(Vgxu',u')(u(t)) since [Ex, é% u(t,s)] =0

% £ (u(D) (u',u")

0 since u 1is parametrized by path length.

Hence g(t) 1s constant along the geodesic u and since it
vanishes at u(l) it vanishes everywhere along u .

It follows that u 1is perpendicular to all the orbits it
intersects since Ex gives a typical tangent vector to an
orbit.

Returning to the theorem, for a general point P ¢ T ,
TP(O(P)) is the orthogonal complement to TP(T) . Hence a
geodesic from P to O0(g) which is perpendicular to 0(g)
is also perpendicular to O(P) and hence lies in T . There-
fore 0(g) nT = ¢ .

The proof that the intersection is an orbit of the Weyl
group is similar to that given for the Cartan subalgebra.

We now study the indices of the critical ﬁoints of the energy
function E . In particular, we study the critical points of
E on the paths from P ¢ T to the identity e ¢ G . We know
that the critical points are geodesics.

When G = SU(3) and T 1is the maximal torus of special uni-
tary diagonal matrices with Lie algebra denoted by t , then the
Lie algebra g decomposes under the adjoint action restricted

to T as

=N



with T acting trivially on t and where Ea ,E are
1

,E
(12 a3
distinct two dimensional representations of T

ai: T +~ S0(2) , i=1,2,3

Let Uy, & T be the kernel of a Then the configuration
i

exP_l(Ua) ct
1 i

" Cc W

i
is called the Diagram of G . We illustrate this with the

Infinitesimal Diagram marked in thicker lines.

The vertices correspond to exp—l(Z(G)) where Z(G) denotes
the centre of G , and those distinguished by a dot to exp_l(e)
The geodesics joining a point P to e , lift in the covering
to the straight lines joining the points of exp_l(P) to O

We fix a fundamental Weyl chamber, that is, a component of
the infinitesimal diagram. Then each simplex containing a point
of exp_l(P) corresponds, under the Weyl group, to a unique

simplex in the fundamental chamber (this fact depends on

an



wl(SU(3)) = 0 ). Hence, by using the Weyl group, we may move
our geodesics into the fundamental chamber so that they are in
one-to—one correspondence with the simplices.

As before, the index of the energy function on Q(P,e)
corresponding to a particular geodesic, is twice the number of
1ines crossed by the geodesic in the Diagram. This is also
illustrated.

‘ Of course, this generalizes to an arbitrary compact, connec-
ted, simply connected Lie group G .
We define the Poincaré series of a space X to be

@

P(X)= ) t
t i=0

1 dim Hi(X,R)

and QX to be the set of continuous loops in X from a fixed
base point. We note that QG is homotopy equivalent to
Q(P,e) . Then as a corollary of the previous theorem, since
all the indices of E on Q(P,e) are even, H*(QG,ZD has no
torsion and

P_(Q0) = y A

where the sum is taken over the simplices on the fundamental
chamber and A(A) 1is twice the number of hyperplanes crossed
by a line joining an interior point of the simplex to O

When G 1s a simple group, then there is a unique leading
simplex in the fundamental chamber with index 2 . Hence
wz(QG) = Z and so 1r3(G) =Z, TrZ(G) =0 .

These results give us a neat method for computing the Betti
numbers from the Diagram. We illustrate it for G = SU(3)

Consider the following strip of the diagram.

1



In each rhombus the indices are 4 greater than those to
the immediate left and hence the contribution of this strip to

the Poincaré series is

- (1+t2)

(1+t2) + t4(1+t2) + (t4)2(1+t2) + ... A
1-t

Applying the same technique to the series of strips

A
:
E
7
3
k'
A
.

we see that

1+¢2 1

(1—t4)2 (1—t2)(1—t4)

Pt(QSU(S)) =

* % 3 % 5
Recall that H (SU(3),R)=H (s),R)@ H (5 ,R) and so

corresponds to 53 and L 7 to S5 . 1=t

. . 1-t .
By comparing this Morse theory approach with the standard

2

constructions in topology one obtains a relation between the

exponents — which is easily computable and for E8 - actually

gives all the eXponents.

The idea is this: g’

4
The general rule for computing Pt(QG) from the corresponding

spheres 1is
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Pt(QG) =1 ;
1-t™1
where li is the dimension of a component sphere. The formula
holds for G simple, connected and simply connected. Hence we
have: If

2k:-1 1
= 1 = ——
Pt(G) I(1l+t ) , then P (QG) =TI _t2ki"2

(1 )

On the other hand using the Diagram we find that

p (96) = — X
m(1l-t""1)
where Q 1is a polynomial such that Q(l) =1 and Zaiai is
the sum of the positive roots expressed in terms of the simple
roots as . By comparing the behaviour of these series near

t=1, it can be shown that
2'd.I(d.-1) = Ia.
i i i

where £ 1is the rank of G and the di come from expressing
the highest root wu 1in terms of the simple roots @K =
Id.a, [2]. .

i1 -

In the case of E8 , this formula actually gives an expression
for H(ki—l) as a product of 2 primes

H(ki—l) = 1.,7.11.13.17.19.23.29
and hence

Pt(ES)

= (146D (1+eR) (1+e?) (1+ey (1) (14627 (1464T) (14220



4., The Weyl character formula

We commence by reviewing the theory of characters of rep-
resentations of compact groups.

Let G be a compact group and W a representation of G .
Then W 1is a vector space equipped with a continuous homo-
morphism from G into the group of automorphisms of W , de-
noted x +>W(x) , x ¢ G . The character

by

Xu of W is defined

xw(x) = Trace W(X) , x e G

and characters have the properties:
D Xy ew = X * X

7‘w1$w2 Xy W
2) % = © X

@
wl w2 le w2
. G G

3) xw(x)dx = dim W where W denotes the space of vectors

G

fixed by G . (This property follows from applying the

trace homomorphism to the projection PW = { W(x)dx onto WG;
G
* . 3
4) 1If W denotes the contragredient or dual representation

to W , then
-1 _—
xw*(X) = x(x ) = x(x

Next we describe the Schur orthogonality relations. Suppose
W and W' are nonequivalent, irreducible representations of G.
Then Hom(W,W')® = 0 by Schur's lemma, that is W @W')C has
zero invariant subspace. Hence J i;kw, =0 . If W and W'
are equivalent and irreducible then dim Hom(W,W')G =1 and
hence i;&w, = 1 . Therefore, the characters form an ortho-
G

normal set of functions on G .
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Notice that the characters are class functions (constant on
conjugacy classes) and the Peter-Weyl theorem gives us that the
characters of irreducible representations form an orthonormal
pasis of class functions. Hence, W can be expressed as a

direct sum of irreducible representations

W= alwl @ aZWZ ® ... ® aan

. G _ -
where the ai = dim Hom(w,wi) = JG wawi .

Suppose now that G 1is a compact, connected Lie group. The
representation theory reduces to finding the characters of the
irreducible representations. We have shown that every conjugacy
class in G intersects a fixed maximal torus T and hence a
character of a representation is determined by its restriction
to T . Of course, each representation W of G restricts to
a representation W|T and XW|T = Xyt Hence an initial step
in calculating the irreducible representations of G 1s to find
the representations and characters of T .

Let T denote the set of continuous homomorphisms from T
into the circle group. Hence T 1is the set of irreducible
representations of T . Then if Z[T] is the ring of formal,
finite linear combinations of elements of T ;nwith integer
coefficients, the restriction W|T corresponds, via its charac-

ter, to an element

z aiki e ZIT1 , a.= 0,1,2,...,Xie T .

The simplest example occurs when T = S1 , the circle group.
Then §1 ¥ Z . If we let z be a generator of §1 so
sl -2 - 2
ST =1{...,z 2,2 1,1,z,z ye-+1 , then

1

Z[élj = Z[z,z— 1 .



When G = SU(2) , we have a natural representation on Cz .

The torus

( z 0 )
T = | Tzl =1
0 z_1

is maximal in SU(2) and acts naturally on the symmetric powers

Sk(Ez) . Thinking of Sk(cz) as the space of polynomials in

two variables, x and y say, homogeneous of degree k , the
0

_y) of the torus acts by

element (z
0 =z

2 0N weii_ k-2i k-id
) Yy o=z x Ty .
0 z

Hence the character of this representation of T on Sk(Cz) is
(z_k + z—(k_z) + o0 t z(k_z) + zk )

and this formula also gives the corresponding element of Z[T]

where now zz denotes the homomorphism

(z [¢) ) R zz
0 z_1

Note that these elements of Z[T] are symmetric under the
substitution z - z_1 . This follows from the fact that the
Weyl group acts on Z[T] fixing those elements which come from
restriction of representations of G .

Consider the product

“k + z—(k_z) L zk-2 + zk) (z - z_]') = zk+1 - z_(k+1)

(z

Such an expression zf -2 % is called an elementary alternating
. 2
expression and the product shows us that the character of Sk(ﬂ)

has the form

A



elementary alternating expression
smallest elementary alternating expression

-This is the Weyl Character Formula for SU(2) .
For a general compact comnected group G with maximal torus

T, let W(T) be the Weyl group and X ¢ T . Then

I oMy
w e W(T)
denotes the element of Z[T] ‘given by the sum of Ay , the
jmage of A under the action of w ¢ W(T) on T with coef-
ficient (--1)w , the determinant of the action of w on the
Lie algebra of T . For an irreducible representation V of

G with highest weight X , the Weyl Character Formula is

_ DY Gp)”

X | T
$(-1)"p"

\'4
where p denotes half the sum of the positive roots. Here we
have used the same symbol to denote both a character and its
derivative. Also, although Z(—l)wpw may not actually give a
character unless we pass to a covering of G , the quotient
certainly makes sense on G . This formula shows how to find
the complete set of characters of irreducible representations
of G by alternating vertices of the Diagram.

To construct a representation of G from a given A e T in
the fundamental chamber, we may proceed as follows. Let LA be
the line bundle over G/T constructed from the representation
X, L, =Gx,€ . It can be shown that G/T is a complex mani-—

A A

fold and that L, 1is a complex analytic line bundle. The natu-

A

ral representation of G on the holomorphic sections of LA is
an irreducible representation with highest weight A . This re-

sult is known as the Borel-Weil Theorem.

Appendix: We describe the Weyl Character Formula in terms of

the Diagram of G (assuming G siﬁple and simply connected).
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By using the canonical bilinear form defined on the Lie al-:
gebra of T in terms of the roots, the weights may be inter-
preted as vertices of the Diagram, For a weight X , we have &
the following alternating expression Z(—l)wkw and the smallesg
alternating expression comes from alternating the vertex nearesé
to the origin in the fundamental chamber, namely p |

For G = SU(3) , the Diagram with o is as illustrated

\ /\

and the formula XV.Z(—l)wpw = Z(—l)w(k+p)w may be interpreted .

geometrically as follows. The hexagon

+1 -1

+1 -1

corresponds to the smallest alternating expression Z(—l)wpw .
In terms of the Diagram, with vertices labelled according to

the multiplicity of a weight occurring in the representation V,

multiplication of a weight T with multiplicity %k by

Z(—l)wpw , corresponds to translating the hexagon on the Diagramﬁ

to centre at the vertex T and then replacing the label k at T
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by *k at the vertices of the translated hexagon. Finally, on
summing all the new labels, we obtain Z(—l)w(k+p)w

In this way the Hermann-Weyl formula yields the character of
yr» as the solution of a difference equation; and one can solve
it inductively by the following procedure.

1) Start with putting a 1 wunder some lattice point X of
the fundamental chamber.

2) Now for our hexagon centered anywhere but at X+p, in
the fundamental chamber, the alternating sum of the multi-
plicities of V must add up to O

3) Use the fact that the multiplicities occur symmetrically
. relative to the Weyl group. For instance in the last figure I
have indicated the result of this procedure when applied to the
representation with maximal weight pz , and I recommend that
after cutting out the above hexagon the reader compute the

. . 3 . .
character of the representation with p as maximal weight.
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5 - Algebraic structure of Lie groups

I.G. MACDONALD
Queen Mary College, London

This survey of the algebraic structure of Lie groups and Lie
algebras (mainly semisimple) is a considerably expanded version
of the oral lectures at the symposium, It is limited to what is
necessary for representation theory, which is anothee way of
saying that very little has been left out. In spite of its
length, it contains few proofs or even indications of proofs,
"nor have I given chapter and verse for each of the multitude
of unproved assertions throughout the text. Instead, I have
appended references to each section, from which the diligent

reader should have no difficulty in tracking down the proofs.

I. Lie Groups and Lie Algebras

1. Vector fields

Let M be a smooth (Cm) manifold, and for each point X ¢ M
let Tx(M) denote the vector space of tangeﬁﬁiyectors to M
at x . The union of all the TX(M) is the tangent bundle T(M)
of M. Locally, if U if a coordinate neighbourhood in M ,
the restriction of T(M) to U 1is just U xR? , where n is
the dimension of M . Each smooth map ¢ : M+ N , where N is
another smooth manifold, gives rise to a tangent map T(¢) : T(M)
+ T(N) , whose restriction Tx(¢) to the tangent space Tx(M)

is a linear mapping of Tx(M) into (N) . In terms of

T

o (x)
local coordinates in M and N , Tx(¢) is given by the
Jacobian matrix. The familiar rule for differentiating a fumnc-—
tion of a function now takes the form T(¢ey) = T(9) o T(Y) , so

that T 1s a functor (from smooth manifolds to smooth manifolds).
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In particular, if N = R , each tangent space Ty(N) may be
canonically identified with R . Hence if f is a smooth real.]

valued function defined on an open neighbourhood of x ¢ M, andi
£ 1s a tangent vector at x , then Tx(f).E is a real number,
the directional derivative of f at x in the direction E§ ,
A (smooth) vector field on M 1is a function X which assigng
to each x ¢ M a tangent vector X(x) ¢ Tx(M) , varying smooﬂu;
with x ; in other words, X is a smooth section of the tangent;
bundle T(M) . X acts on smooth functions as follows:
\

Xf) (x) = Tx(f).X(x) .

In this way X acts as a derivation of the R-algebra Cm(M) of
smooth functions on M ; that is to say, X 1is R~linear and

satisfies
X(fg) = (Xf).g + £.Xg (1)

for f,g € c (M) ; this is just the expression, in the present
context, of the rule for differentiating a product of two func~
tions. Conversely, each derivation of Cm(M) arises in this
way from a unique vector field, and we may therefore identify X
with the derivation it defines.

Now let X and Y be vector fields (or derivations) on M.
Then XoY : Cm(M) -+ Cm(M) is not a derivation, but the Lie

bracket

[X,Y] = XoY - YoX

always is (just check that (1) is satisfied). It follows that
the space of vector fields on a manifold M has the structure
of a Lie algebra over R : it is a (usually infinite-dimensional)
vector space over R , equipped with a 'Lie bracket' [X,Y]

which is R-bilinear and anticommutative, and in addition
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gsatisfies the 'Jacobi identity'

[x,[Y,z11 + [Y,[Z2,Xx1] + [Z,[X,Y]] = 0.

2. The Lie algebra of a Lie group

A Lie group G 1is a smooth manifold which is also a group,
the two structures being compatible: that is to say, the map-
pings m : GXG > G and i : G > G defined by multiplication

and inversion (m(x,y) = xy, i(x) = x_l) are smooth.

_Examples
1. Any discrete group may be regarded as a Lie group (of di-
mension O ).
2. The additive group of R" (or of any finite-dimensional
real vector space) is a Lie group. Such a group is called a
vector group.
3. The circle group T = R/Z 1is a Lie group. The n-dimensional
torus T% = (R/1)" is a Lie group.
4, The general linear group GL(n,R) of invertible real nxn
matrices is an open submanifold of the space M(n,R) = an of
2ll nxn matrices, since it is the complement of the hyper-
surface det X = 0 . Hence GL(n,R) is a Lié group, of di-
mension n2 . It is not comnected but has two components, cor—
responding to positive and negative determinant. The identity
component, consisting of the matrices X with det X >0 , is
denoted by GL+(n,R)

More intrinsically, if V 1is a real vector space of dimen-
sion n , the group GL(V) of invertible linear transformations
of V is a Lie group, isomorphic to GL(n,R)

5. Likewise GL(n,C) , the group of invertible complex nxn
matrices, is a (complex) Lie group, of complex dimension n
Unlike GL(n,R) , it is connected.

6. Let H denote the division ring of quaternions. Then
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GL(n,H) is a (real) Lie group of dimension 4n2 .

For each x € G , let Ax : G+ G denote left translation

by x :
A =xy .

Clearly Ax is a diffeomorphism of G , its inverse being Ax-l

Let X be a vector field on G . We say that X 1is left-

invariant if X commutes with left translations, i.e. if

XoA =T °X

for all xe¢ G . If we regard X as a derivation, left-

invariance is expressed by

(Xf) o ;\x = X(fo )\x)

for all £ ¢ Cm(G) and x e G . It follows immediately that
the space of left-invariant vector fields on G is closed under

the Lie bracket, and is therefore a Lie algebra § = Lie(G) , ﬂ
called the Lie algebra of the Lie group G .
Each X € g is determined by its value X(e) € Te(G) at

the identity element e of G , because
X(x) = X OAX)(e) = T(AX)X(e) .

Conversely, each tangent vector £ € Te(G) determines a left-

invariant vector field X_ on G by the rule

£

. XE(X) = Te(kx)E

Consequently g may be identified with Te(G) , the tangent

space to G at the identity element e . In particular it
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follows that dimg = dim G .

We may also remark here that the tangent bundle T(G) of a
" Lie group G 1is trivial, i.e. is isomorphic (as a bundle) to
G><Te(G) . Indeed, the mapping (x,£) - Xg(x) is an isomorphism
of Gx Te(G) onto T(G) .

Now let H be another Lie group and let ¢ : G > H be a
smooth homomorphism; let g = Te(G) , b = Te(H) . The tangent
map Te(¢) : g> b 1is called the derived homomorphism of ¢
and is denoted by ¢, . It is a homomorphism of Lie algebras,

i.e. we have ¢,[X,Y] = [¢,X,0,Y] for X,Yeg . o

_Examples

1.I1f ¢ =R, then g = R" and [X,Y] =0 for all X,Ye g.
For each X ¢ g, regarded as a derivation of Cm(Rn) , 1s of
the form X = igl aia/axi , with constant coefficients a; 3

any two such derivations clearly commute, because 3 /axiaxj =

az/axjaxi on smooth functions.

2. Let G = GL(n,R) . Define a : g~ M(n,R) by
a(x)ij = (Xxij)(ln) (1 < i,j < n)

where I is the unit matrix (the identity element of G )
and xij : G >R assigns to each matrix in G its (i,])
element. Then a 1is an isomorphism of vector spaces and
a[X,Y] = a(X)a(Y) - a(¥)a(X) . The Lie algebra g¢l(n,R) of
GL(n,R) 1is therefore canonically identified with the Lie
algebra of all nxn matrices. Likewise with C or H in
place of R .

3. If V 1is a real vector space of dimension n (so that
V= R™, the Lie algebra of GL(V) (¥ GL(n,R)) is denoted by
gl (V) . As in Ex.2 we may identify ql1(V) with the Lie al-
gebra of the ring End(V) of all linear transformations of V.
4. If G 1is an abelian Lie group, then ¢ 1is an abelian Lie

algebra, i.e. [X,Y] =0 for all X,Y € g
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Remark. We could of course have started with right-invariant
. . . . -1 .
vector fields. However, the inversion 1 : x - X inter-

changes right and left, and we get nothing new.

3. The exponential map

The usual exponential function e* is a smooth mapping from }
R =¢1(1,R) onto GL+(1,R) , the multiplicative group of posi~
tive real numbers. More generally, if X is any real nxn
matrix, the exponential series nzo Xn/n! converges in the 3
space M(n,R) of nxn matrices, and its sum eX = exp(X) isé
invertible (with inverse e—X ) and has positive determinant .
(namely etrace X) . Hence X -~ eX is a smooth function on :
M(n,R) = gi(n,R) with values in GL+(n,R) . These examples arg
particular instances of the exponential map, which is defined E
for any Lie group G , and is a smooth mapping of the Lie al-
gebra ¢ into the group G .

The definition runs as follows. A one-parameter subgroup ofjl

G is a smooth homomorphism u : R ~ G . Its derived homomor- |
phism u, = To(u) is a linear mapping of R into g , the Liej
algebra of G . It is a consequence of the theorem of existence]

and uniqueness of solutions of linear ordinary differential f
equations that the mapping u - u, (1) is a bijection of the set

of one-parameter subgroups of G onto the Lie algebra g : for

each X € g there exists a unique one-parameter subgroup
uy R - G such that ux*(l) = X . The exponential map
exp. i g > G 1is now defined by

expG(X) = ux(l)

We have exp(tX) = ux(t) for all t € R, so that
exp(sX)exp(tX) = exp((s+t)X)

The exponential map is a smooth map whose derivative at
0e g is 1y , the identity mapping of g . Hence, by the

inverse function theorem, exp 1s a diffeomorphism of some
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open neighbourhood of 0 in g onto an open neighbourhood of
e in G ; that is to say, it provides a chart of G around

" the identity element. From this it follows that, if G 1is
connected, the image exp(g) of the exponential map generates
¢ (although in general exp : g + G is not surjective, except
in the cases where G 1is compact or abelian (and connected)).

For X,Ye g and t € R we have
exp(tX)exp(tY) = exp(£(X+Y) +0(t2)) 1)
[exp(tX),exp(t¥)] = exp(t’[X,Y]+0(t>)) (2

(where on the left-hand side of (2) the bracket is the commutator
[x,y1 = xyx—ly_1 in G ). Thus, under the exponential map,
mul tiplication in G corresponds approximately to addition in
g , and commutator formation in G corresponds approximately to
the Lie bracket in ¢

If G 1is.abelian, expG is additive, and therefore a homo-
morphism of the vector group g into G .

If ¢ : G+ H 1is a smooth homomorphism, then we have
¢ °exp. = exp, ° ¢,
(naturality of exp ).
4. The adjoint representation
Let G be a Lie group, g its Lie algebra. For each
xe G, let Int(x) : g~ xgx_1 be the inner automorphism of
G defined by x . Int(x) is a smooth automorphism of G ,
and its derived homomorphism is denoted by Ad(x) or AdG(x)
Ad(x) = Int(x)* tqa->g

is an automorphism of the Lie algebra g , a fortiori of the
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vector space § . Since Int(x) oInt(y) = Int(xy) , we have
Ad(x) o Ad(y) = Ad(xy) ; also Ad(x) varies smoothly with x

and therefore
Ad : G - GL(g)

is a smooth homomorphism of G into the general linear group
of g , called the adjoint representation of G .
If G 1is connected, the kernel of Ad is the centre of G,
The derived homomorphism of Ad 1is denoted by .adg or ad : :

Ad, = ad : g +gl(g)

is a Lie algebra homomorphism of g into gl(g) , called the
adjoint representation of ¢ . More directly (and without

reference to G ), ad g may be defined by

(ad X)Y = [X,Y]

for X,Y € ¢ . That [ad X, ad Y] = ad[X,Y] is just a re-
statement of the Jacobi identity (§1).

Let b be a Lie subalgebra of g . The normalizer NG(f))
of § in G 1is the group of all =x ¢ G such that Ad(x)bhch,
and the centralizer ZG(E)) of b in G is the group of all
x € G such that AdX)|p= 1f) . Likewise, the normalizer
Ng(h) of B in ¢ 1is the subalgebra of all X ¢ g such that
ad(X) hc b, and the centralizer 39 () of B in g 1is the
subalgebra of all X e¢ ¢ such that ad(X)|bh=0 . NG(I)) and
ZG(I)) are closed subgroups of G and hence (§5) are Lie groups.
The Lie algebra of NG(E)) (resp. ZG(I))) is mg m (resp.3g H)).

Let g be a (finite-dimensional) real Lie algebra, and con-

sider the polynomial in ¢t

n .
det(t-adg(x) = ] d (¢ (X e g)
1=0 .
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of degree mn = dim g . The di are polynomial functions in
g - The smallest integer & such that d2 # 0 1is called the
rank of g , and an element X ¢ g 1is said to be regular if
dl(x) # 0 . The set g' of regular elements in ¢ 1is there-
fore the complement of a real algebraic variety in g , and
hence is a dense open subset of g .

These definitions have global counterparts. Let G be a

connected Lie group, and consider the polynomial in ¢t

n .
det(t+1-AdG(x)) = z Di(x)t:1 (x e @),
i=0
. of degree n = dim G . The Di are real analytic functions

on G . The least integer % such that Dl # 0 1s called the
rank of G , and an element x € G 1is said to be regular if
Dl(x) # 0 . We have rank(G) = rank(g) , where g is the Lie
algebra of G . The set G' of regular elements of G 1is a
dense open subset of G , stable under inner automorphisms,
whose complement has measure zero with respect to (left or

right) Haar measure on G .,

5. Subgroups and subalgebras

By a Lie subgroup of a Lie group G we mean a (locally
closed) submanifold H of G which is also a subgroup of G.
It is almost immediate that H 1is a closed subgroup of G and
a Lie group. The converse of this result is also true, but
harder to prove: every closed subgroup H of a Lie group G is
a submanifold of G (and therefore a Lie subgroup of G )
(E. Cartan's theorem). The Lie algebra bh of H consists of

all X € g such that exp(tX) ¢ H for all te R .

Examples
1. The special linear group SL(n,R) , consisting of the real
nxn matrices with determinant 1 , is closed in GL(n,R) ,

hence is a Lie group. Its Lie algebra s[(n,R) consists of
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s

¢ 3
the X € gl (n,R) with trace X = 0 (because det(ex) -e racexi

Likewise with C in place of R .

2. Let K be any one of R, C or H . Let X denote the

conjugate of x ¢ K (so that x =x if K =R ). Let U(n,K)!
denote the group of all X € GL(n,K) such that XXt = 1. Then
U(n,K) 1is a subgroup of GL(n,K) , and is closed because it is€

defined by the polynmomial equations

g
x, X, =8,. ,
k=1 ik™ jk 1j

hence by Cartan's theorem is a Lie group. These equations also
2

imply that I [x..|” ==n , so that U(n,K) 1is a bounded sub-
set of M(n,iSJ, a;i is therefore compact. Hence U(n,K) 1is a |
compact Lie group, and its Lie algebra consists of all |
X € M(n,K) such that X-+it =0, i.e. such that X 1is skew-
Hermitian (or skew-symmetric, when K =R ),
(i) When K =R, U(n,K) 1is the orthogonal group 0{(n) , which
has two components (corresponding to determinant +1 and -1),
The special orthogonmal group S0(n) , consisting of the orthog-
onal matrices with determinant +1 , is a compact connected Lie
group., Its Lie algebra so(n) consists of the real skew-
symmetric nxn matrices of trace O .
(ii) When K =C , U(n,K) 1is the unitary group U(n) , which
is connected. The special unitary group SU(n) , consisting of
the unitary matrices X ¢ U(n) with det X =1, is a closed
subgroup of U{n) and therefore also a Lie group. Its Lie-
algebra su(n) consists of the complex skew-Hermitian nxn
matrices with trace 0 '
(iii) When K =H , U(n,K) 1is the quaternionic unitary group
Sp(n) .
If H is a Lie subgroup of G , the Lie algebra p of H

is a subalgebra of the Lie algebra g of G . Conversely,
however an arbitrary Lie subalgebra § of ¢ 1is not necess-—

arily the Lie algebra of a Lie subgroup of G . What is true
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is that to each Lie subalgebra § of g there exists a connec-
ted Lie group H and a smooth injective homomorphism j:H > G
" such that j, is an isomorphism of the Lie algebra of H onto
p ; and the pair (H,j) is unique up to isomorphism. The image
j(H) 1is the subgroup of G generated by expG(h) . The comnec-
ted Lie group H , identified with its image in G , is called
the immersed subgroup of G corresponding to § ; in general it
is not closed in G , and the topology of the Lie group H is
not the topology induced from G

Example. Let G be the torus T2 , so that g = R? ; let

.h =R, embedded in R2 by x - (x,6x) where 0 1is an ir-
rational number. Then H =R, and j(H) < G is a curve which
winds round and round the torus infinitely often, so that j(H)

is dense in G .

The correspondence between subalgebras § of g and immersed
subgroups H of G has all the properties that one could
reasonably expect. The centralizer (resp. normalizer) of H in
G is equal to the centralizer (resp. normalizer) of b in G .
In particular, if G 1is conmnected, H 1is normal in G if and
only if B is an ideal in g (i.e. ﬁtg(b) = g ), and the centre
C of G has Lie algebra ¢ , the centre of g (i.e. 39(9)).
Again, if G 1is connected, the derived group DG (generated by
all commutators [x,y] ) is an immersed subgroup which corre-
sponds to the derived algebra\Dg = [g,0] of g , spamnned by
all brackets [X,Y] . It follows that a connected Lie group is
solvable if and only if its Lie algebra is solvable (i.e.

Drg =0 for some r 21),.

Example. Let g be a finite-dimensional Lie algebra, Aut(g)
its group of automorphisms. Aut(g) 1is a closed (indeed al-
gebraic) subgroup of GL(g) , hence is a Lie group. Its Lie

algebra is the algebra Der(g) of derivationsof g , a
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subalgebra of gl(g) . ]
The image ad(g) of ¢ under the adjoint representation

(§4) is a subalgebra of Der(g) . To it there corresponds an
immersed subgroup Int(g) of Aut(g) , called the adjoint 910u£
of ¢ ; it is generated by the automorphisms exp(ad X), X e g

If G 1is a connected Lie group with ¢ as Lie algebra, then

Int(gq) is the image of G under the adjoint representation

(because exp(ad X) = Ad(exp X) by naturality of exp ).

If g is semisimple, Int(g) is the identity component of

Aut(g) , and ad(g) = Der(g) (i.e., every derivation of g ig -

inner) .

6. Quotients

Let G be a Lie group, H a closed subgroup of G . The

quotient set G/H , whose elements are the cosets =xH = x of

T S P UTIY

H in G , then carries a unique structure of a smooth manifold .
such that the projection p : x - x of G onto G/H is smoothf

and such that a mapping f of G/H into a smooth manifold M

is smooth if and only if fop : G - M is smooth. The tangenti
space to G/H at the image e of e is g/h = Te(G)/Te(H) .
from which it follows that dim(G/H) = dim G - dim H . More-
over, the projection p has a smooth local cross-section de-
fined on an open neighbourhood of é , from which it follows
that locally G looks like the Cartesian product of H with
G/H , or more precisely that G 1is a smooth bundle over G/H
with fibre H .

If H 1is a closed normal subgroup of G , then the group
structure and the manifold structure on G/H are compatible,

i.e. G/H 1is 'a Lie group.

Example. If G is a connected Lie group, then Ad(G) ¥ G/Z

where Z 1is the centre of G .
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7. Homomorphisms and local homomorphisms

Let ¢ : G>H be a smooth homomorphism of Lie groups.
The kernel N of ¢ 1is closed in G , hence is a Lie subgroup
of G , whose Lie algebra is the kernel of the derived homomor-—
phism ¢, : g~ h. The image ¢(G) , on the other hand, need
not be a closed subgroup of H but (provided that G 1is con-
pected) is the immersed subgroup of H corresponding to the
;ubalgebra ¢,(¢) of b . The immersion is the injective
smooth homomorphism G/N - H induced by ¢ .

For example, the one-parameter subgroups of G (%3) are

immersed subgroups.

Let G and H again be Lie groups. A (smooth) local homo-
morphism from G to H 1is a smooth mapping ¢ of an open
neighbourhood U of the identity element in G , with values
in H , such that ¢(xy) = ¢(x)¢(y) whenever X, y and xy
all lie in U . If ¢ 1is also a diffeomorphism of U onto an
open neighbourhood of the identity element in H , then ¢_1
is a local homomorphism from H to G , and ¢ 1is said to be a
local isomorphism of G with H .

Each local homomorphism ¢ from G to H has a derived
homomorphism ¢, = Te(¢) : g> b, which is a homomorphism of
Lie algebras; and ¢ 1is a local isoqorphism if and only if ¢,
is an isomorphism.

Conversely, if u : g » b is a homomorphism of Lie algebras,
there exists a local homomorphism ¢ from G to H such that
u=¢, , and moreover ¢ is essentially unique (in the sense

that 1f u = then ¢1 and ¢2 coincide on some

1% = Opy s
open neighbourhood of e in G ). It follows that two Lie
groups G,H are locally isomorphic if and only if their Lie
algebras g , h are isomorphic.

If now G 1is connected and simply-connected, every local
homomorphism from G to H has a unique extension to a (global)

smooth homomorphism of G into H (monodromy theorem). Hence
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the smooth homomorphisms of a connected and simply-connected

Lie group G into any Lie group H are in one-one corresponfz
dence (via the derived homomorphism) with the Lie algebra homo~

morphisms of g into b .

8. The universal covering group

Let G be a connected Lie group. Then G has a universal
covering group G , which is a Lie group, characterized up to
isomorphism by the following properties: (i) there exists a
surjective smooth homomorphism p: G > G with discrete kernel,
(ii) G is connected and simply—-connected. The kernel D of
p 1is isomorphic to the fundamental group nl(G) , and is a
subgroup of the centre of G (because for each d € D the
mapping x - xdx—1 of G into D is continuous, and there-
fore constant). Hence D , and therefore also nl(G) , 18
abelian.

The derived homomorphism p, :Lie(E) -+ Lie(G) = g is an
isomorphism. Hence the connected Lie groups with ¢ as Lie
algebra are all obtained from G by factoring out a discrete
subgroup of the centre of G .

Finally, every (finite-dimensional) Lie algebra g 1is the
Lie algebra of some connected Lie group G , hence also of its
universal covering G . In this way is established a one-one
correspondence between isomorphism classes of finite-dimensional
real Lie algebras and isomorphism classes of connected and
simply-connected Lie groups. Thus, for an arbitrary Lie group
G , the only information about G that is not captured by its
Lie algebra g is (i) properties that depend on the different
connected components, (ii) properties which depend on different

covering groups, i.e. on nl(G) .
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[I. Semisimple Lie Algebras

1. Generalities on Lie algebras

Many of the notions of group theory have counterparts for
Lie algebras. Let g be a finite dimensional Lie algebra
(over any field of characteristic 0 ). If a,B are vector
gubspaces of g , we denote by [a,b] the vector space
gpanned by all [X,Y] with Xea and Y e b . A vector
subspace a of g 1is a subalgebra of g if [a,a]l © a, and
an ideal in g 1if [g,a] < a : these are the counterparts of
the notions of subgroup and normal subgroup, respectively. If
@ is an ideal in g we can (as in other algebraic contexts)
factor it out to form the quotient algebra g/a. If a and
b are ideals in g , then [a,b] is also an ideal.

The derived series of g 1is the decreasing sequence of
ideals (’I)rg)rZO , where Dog = g and Dr+1g = [D'g,Dg]
Just as in group theory, if fDrg =0 for some r , the Lie
algebra g 1is said to be solvable.

The lIower central series of ¢ 1is the decreasing sequence
of ideals ((ng)rZO , Where Gog =g and Gr+lg = [g,Gﬁ;].
The upper central series of ¢ 1is the increasing sequence of
ideals (Grg)rzo , where Gog =0 and ¢r+19/6?g is the
centre of g/@rg . Just as in group theory, we have Grg =0
for large r 1if and only if (Srg =0 for large r , and the
Lie algebra ¢ is then said to be nilpotent. An equivalent
condition is that ang should be nilpotent for all X e g .

Every nilpotent Lie algebra is solvable, and a Lie algebra
g is solvable if and only if its derived algebra Dg= [g,g]
is nilpotent.

The Killing form on ¢ 1is the symmetric bilinear form By

defined by

Bg(X,Y) = trace(ad X) (ad Y)
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If g is nilpotent, B, is jdentically zero; conversely, if

Bg=0 then g 1is solvable.

Let g again be any finite dimensional Lie algebra. Then

g has a unique maximal solvable ideal (for if a and b are :

solvable ideals, then so is a+ b ). This ideal 1t 1is called

the radical of ¢ . It is also the orthogonal complement of
the derived algebra Dg with respect to the Killing form.

If r =0, that is if g has no nonzero solvable ideals,
then g 1is said to be semisimple. An equivalent condition is
that g 1is a direct product of simple Lie algebras (a Lie al-
gebra is simple if it has no nontrivial ideals and is not
abelian). Yet another equivalent condition is that the Killing
form Bg is nondegenerate.

If ¢ is again any finite-dimensional Lie algebra, r its

radical, then there exists a subalgebra | of g such that
g = I + T (1)

(direct sum). 1 1is called a Levi subalgebra of g , and ()
is a Levi decomposition. The algebra | 1is semisimple, be-
cause it is isomorphic to g/t , which has zero radical. The
algebra | in (1) is not uniquely determined, but any two are
conjugate in ¢ under the adjoint group Int(g) (I, §5). Also,
the Levi subalgebras of g are the maximal semisimple subal-
gebras of ¢ .

If the radical t 1is the centre 3 of g , the Lie algebra
g 1is said to be reductive. An equivalent condition is that
the adjoint representation adg should be completely reducible.
If g is reductive, its derived algebra Dg is semisimple, and
g 1is the direct product of Dg and 3 . Hence the reductive
Lie algebras are just direct products of abelian and semisimple

Lie algebras, and we shall therefore concentrate on the latter.

Examples. ¢l (n,R), g! (n,C), u(n) are reductive but not
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semisimple. §I(n,R), sI1(n,C), su(n) and so(n) are semi-

simple (e.g. by computing the Killing form explicitly).

In particular, if g 1is semisimple, the centre of ¢ is
zero and hence the adjoint representation embeds g in gli(g) ,
the Lie algebra of GL(g) . From the results of Chap. I, §5
it follows that g 1is isomorphic to the Lie algebra of an
‘immersed subgroup G of GL(g) . Hence every semisimple real
Lie algebra is the Lie algebra of some comnnected Lie group.

One can then use Levi's theorem above to show that every finite-
dimensional Lie algebra over R 1is the Lie algebra of a con-
nected Lie group.

If g 1is a real Lie algebra, = g@RC = g+1ig 1its com-

8.
plexification, then ¢ is semisimpge if and only if 8¢ is
semisimple. For the matrix of the Killing form, relative to a
basis of g , is the same for g c @ for g . If g is
simple, then g C is either simple or is the product of two
isomorphic simple algebras.

If g is a complex Lie algebra, let gR denote g re—
garded as a real Lie algebra. If g 1is semisimple (resp.
simple) then so is gR . We have (gR)C S gxg . We call
gR the realification of ¢ .

A subalgebra 8, of gR is a real form ;f the complex Lie
algebra g 1f g = g, * ig) . The real simple Lie algebras
are either real forms or realifications of complex simple Lie
algebras. We shall begin with the structure theory of the

complex Lie algebras.

2. Cartan subalgebras

Let g be a real or complex semisimple Lie algebra. An
element X € g 1s semisimple if the linear transformation
ad X: g> ¢ 1is semisimple (i.e. diagonalizable over C ). A
Cartan subalgebra of ¢ 1is a maximal abelian subalgebra of ¢

consisting of semisimple elements; equivalently, it is the
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centralizer in g of a regular element of g (Chapter I, §4L

Now let ¢ be complex. The importance of the Cartan sub-
algebras for unravelling the structure of g 1lies in the
fundamental fact that they are all conjugate under the adjoint
group Int(g) (Chapter I, §5). (As we shall see later, this
is not in general true for real semisimple Lie algebras, and
is one of the reasons why their structure theory is more com-
plicated.)

The (complex) dimension of a Cartan subalgebra of g 1is

equal to the rank of g , as defined in I, 84. We shall denote
it by 2 .

Example. If g = s{(n,C) , the diagonal matrices in ¢ form

a Cartan subalgebra. Hence the rank of s{(n,C) is n-1

3. Roots

Until further notice, g 1is a complex semisimple Lie al-
gebra. Since all the Cartan subalgebras of ¢ are conjugate,
there is no harm in choosing one, say b , once and for all.
Since B 1is abelian and the ground field C€ 1is algebraically
closed, the adjoint representation adg , restricted to p ,
splits up as a direct sum of one-dimensional representations.
In other words, if h* 1is the vector space dual of § , and
if for each o e h* we denote by ga the subspace of all
X eg such that ad(H).X = a(H)X for all H e ) , then g
is the direct sum of the ga . Two such subspaces ga,gB are
orthogonal with regspect to the Killing form B wunless oa+f = 0.
Moreover, go is equal to b , because § 1is its own central-
izer in ¢ . It follows that § 1is orthogonal to all the ga’
a # O , and therefore the restriction of B to D remains
nondegenerate.

Since g 1is finite-dimensional, only finitely many of the
gcl are nonzero, If o 20 and ¢” # 0, then o is said to

be a root of g (relative to the Cartan subalgebra § ) and
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ga the root-space of a . If a 1is a root, so is =-a (other—

wise ga would be orthogonal to all of g , contrary to the
pondegeneracy of B ). For each root a , we have dim ga =1

If H 1is a general element of b , the complex numbers
a(H) (a a root) are the nonzero eigenvalues of the linear
transformation adgH , L.e. they are the nonzero roots of the
characteristic equation det(A-ad H) = 0 ; this is the reason
"for the terminology.

We denote by R or R(g,bh) the set of roots: it is a fi-

nite subset of h* . We have then a direct decomposition of

g :

g =59+ ] g ¢Y)
aeR

called the root-space decomposition of g relative to § .

The roots span a real subspace V of dimension £ in bh* ,
so that ph* 1is the complexification of V . We have already
observed that the Killing form B remains nondegenerate in
restriction to b , hence defines an isomorphism A > HA of
b* onto § , and a bilinear form <A, = B(HA’Hu) on ?* .
It turns out that the restriction of this to V 1is real-
valued and positive-definite, so that V acguires the struc-
ture of a real Euclidean space. Let bR denote the vector
space spanned by the Ha , a € R; then B is the complexi-
fication of bR. and V is the dual bﬁ of bR .

In this way we have constructed from g a finite set R
of nonzero vectors in the Euclidean space V . This set R
is called the root-system of g : up to isomorphism, it is in-
dependent of the choice of B , and therefore depends only on
g . It may be thought of as in some sense the 'skeleton' of
g , and it determines g up to isomorphism. More precisely,
there is the following isomorphism theorem: 1if ' 1is another
complex semisimple Lie algebra; §' a Cartan subalgebra of

g' ; R' the root system of g¢' relative to bh' ; and if
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¢: h + b' is an isomorphism which induces 2 bijection of R’
onto R , then ¢ can be extended to a Lie algebra isomorphisy

of g onto g' .

Example. Let g =si(n,C) and let b be the Cartan subalgebr,
consisting of the diagonal matrices with trace 0 . Let Eij

(1 £i,j < n) be the matrix with 1 in the (i,j) place and
0 elsewhere; also let e (1 <1i < n) be the linear form
which maps each diagonal matrix to its ith diagonal element.

For each H ¢ § we have

[H'Eij] = (ei—ej)(H).Eij

so that Ei-ej is a root of (g,h) whenever i 2 j ; and since

g= b+ ) CE,,
b, ij

izj
it follows that these are all the roots. The real space V
spanned by the roots has dimension n-1 . For example, the

roots €;7¢ (L <1i < 0n-1) form a basis of V .

1+1
4. Geometry of the root system

For each root a ¢ R let Wt V + V¥V be the reflection in
the hyperplane Va orthogonal to a . Elementary geometry

shows that
v
wa(x) = X - <X,0 >0

for x € V , where av = 20/<a,0> 1is the coroot corresponding
to o .
The root system R has the following properties:
(1) wa(R) = R for each o € R ;
(2) <aV,B> € Z for each pair a,B € R ;

(3) if a,B € R are proportional, then B = ta .
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We have no space here for the proofs of these various as-
sertions, which may be found in any text on Lie algebras. Let
us however briefly indicate the reason for the integrality
property (2). For each pair of roots *a one can choose root-
vectors Xia ; gia such that [XQ,X_a] = HQLV , the image of
the coroot o  under the isomorphism h* 3 p induced by the
Killing form. The vector space Sy spanned by XQ,X_Q and
HaV is a Lie subalgebra of ¢ , and the mapping which takes
these three vectors respectively to the matrices (8 é) s
(? 8) and (é _g) is an isomorphism of S, onto sl (2,C)

Now a study of the representations of the Lie algebra ¢! (2,C)
shows that in any representation p the eigenvalues of p(é _?)
are integers. Since <a’,B> = B(Hav) is an eigenvalue of
adg(HaV) , i1t follows that <aV,B> is an integer.

In fact the study of the representations of sl (2,C) ob-
tained by restricting adg to the three-dimensional subalgebras
5o is the key to the proofs of the results summarized above.

We can now forget, for the time being, about the Lie algebra
g and concentrate on the root system R . Abstractly, R can
be any finite spanning set of nonzero vectors in a Euclidean
space V which satisfies (1),(2),(3) above., The group W gen-
erated by the reflections v, is called the Weyl group (of R,
or of g ); it acts faithfully as a group of permutations of R,
hence is a finite group. Next, the hyperplaﬁes vV, cutuwp V
into congruent open simplicial cones called chambers, and a
fundamental property of R 1is that the Weyl group permutes the
chambers freely and transitively: that is to say, if we choose
a chamber C , then every other chamber is expressible as wC
for a unique element w € W ., The chamber C 1is bounded by
£ (= dim V) hyperplanes Vai = V-ai (L <1i<2) . One of
each pair of roots iai » say a. , is such that <ai,x> >0
for all x € C ; the resulting set of & roots Gyseeesd is

2
called a basis of R , or a set of simple roots, It can also
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be characterized by the fact that every root a is a linear

combination of the simple roots with integer coefficients,

either all 2 0 or all < O . The set of bases of R, beingt
in one-one correspondence with the set of chambers, is permutedé
freely and transitively by the Weyl group W .

Let eij be the angle between the simple roots ai,aj

Then

=

2 2 T v v
cos 8.. = <a,,0.,> [<a.,,0,><0.,qa.> = 0.y 0.>K0, 40, >
1] 1] 1 1 3] i ] i ]

1 . |
= Z-mij say, where mij = 0,1,2 or 3 (since by (2) mij muSti

be an integer). Since eij 2 %1r , the only possible wvalues

1 2 3 5 -
for the angle eij are therefore 7T 3T s 7T and g If
m,. =0, o and o, are orthogonal, If m.. >0 , and

1] 1 ] 1]
<a.,0.> 2 <a.,a.> , then <a.,a.>/<0.,a.> = m,.
1’71 3’73 1’71 3’73 ij

The relative positioﬁs of the simple roots may be described
by the Dynkin diagram; this is a graph whose vertices are in
one-one correspondence with the simple roots, the vertices cor-
responding to oy and uj being joined by m, . bonds and (if
mij > 1) an arrow-head pointing (like the inequality sign) to-
wards the shorter of o, and aj

An equivalent method of describing the relative positions of
the simple roots is the Cartan matrix, which is the £x2 matrix
of integers whose (i, j) element is aij = <az,aj> . It has 2's
down the diagonal, and its off-diagonal elements are < 0 .

The Cartan matrix and the Dynkin diagram each determine the

other, and either determines R (and hence g ) up to isomorphist

A root system R 1is said to be irreducible if there exists
no partition of R into two non-empty subsets Rl,R2 with each
root in R, orthogonal to each root in Ry 3 this is the case
if and only if the Lie algebra g 1is simple. Since two simple
roots are orthogonal if and only if the corresponding vertices

of the Dynkin diagram are not directly linked, it is not hard
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to see that R 1is irreducible if and only if its Dynkin diagram

is connected.

ixample. If ¢ =s1(n,C) we may take the simple roots to be
o = €741 (1 €£i <n-1) , in the notation of the Example in
§3. The reflection v, corresponding to the root a = ei-ej
interchanges €; and ¢, and leaves the remaining € fixed,
from which it follows that W is isomorphic to the symmetric
group Sn , acting by permuting the e; - The Dynkin diagram

is a chain

o—O0——0— - - - —O0—0—0
and the Cartan matrix (aij) has aij =2 1if 1 =3, aij = -1-
if 1i-jl =1, aij = 0 otherwise.

5. Classification

The classification of the connected Dynkin diagrams is a
purely combinatorial undertaking, and leads to the well-known
list consisting of the four infinite series A2 (=1 , B2
=2, C2 @ =3, D2 (2 2 4) and the five 'exceptional'
diagrams E6’ E7, E8’ F4, G2 , which will be found in any text
on the subject.

Finally, the isomorphism theorem of §3 is complemented by an
existence theorem, which states that every Dynkin diagram arises
from some complex semisimple Lie algebra g . One constructs
g by writing down generators and relations, the relations in-
volving only the Cartan integers aij = <a¥,aj> . From all
this it follows that the isomorphism classes of complex simple
Lie algebras can be labelled by the same symbols Al""’GZ
used above.

Examples. The simple Lie algebra A, is s1(2+1,C) . The
other 'classical' Lie algebras BQ,CQ,D2 may be briefly de-
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scribed as follows. Let E be a complex vector space of finiq

dimension n , let f be a nondegenerate symmetric or skew- i
symmetric bilinear form on E , and let g be the Lie subal~ .

gebra of gl(E) consisting of all X e gI(E) such that
f(Xu,v) + f(u,Xv) =0 for all u,veE . Then g =B  if

§ et s R o A

2
n=20+1 and f 1is symmetric; g=Cz if n =22 and f g
skew~symmetric; and g = DJ?, if n =22 and { is symmetric. '
In more concrete terms, BJL is so0 (28+1,C) and Dl is

s (22,C) , where sp(n,C) < s1(n,C) consists of the skew—
symmetric matrices (X+Xt=0); and CJL is 5p(2n,C-)cs1(2n,C),:

consisting of the matrices X satisfying X3+ Jx° = 0 , where
/0 In)
J=1-1, ©

6. Real forms

We shall now take up the structure theory of real semisimple
Lie algebras. Here the situation is more complicated: it can
happen (in fact, as we shall see, it always does) that non-
isomorphic real Lie algebras have the same (or isomorphic) com~
plexifications. TFor example the Lie algebras su{n) and
s[(n,R) both have s1(n,C) as their complexification.

If g 1is a complex Lie algebra, a real Lie subalgebra 8,
of g is a real formof ¢ if g 1is the complexification of
8o ° i.e. if g =g°+igo (direct sum). Such a real form 9,
determines a mapping c: g - g, namely Y+iZ » Y-iZ (Y,Ze g_o) .
This mapping ¢ has the following properties:

(1) ¢ is semilinear, i.e. c(AX+nuY) = ic(X) +pc(Y) for
X,Ye g and X,ue C;

(2) ¢ 1is an involution, i.e. c2 =1
(3) e[X,Y] = [eX,cY] for X,Ye g.

A bijection c: g + g with these properties is called a

g’

conjugation of g . Conversely, any conjugation ¢ of g de-
termines uniquely a real subalgebra 8, = {Xeg: cX=X} such
that ¢ = g°+igo » that is to say a real form of g . Hence

we have a canonical one-one correspondence between conjugations
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of g and real forms of g .

Now if g, is the Lie algebra of a compact Lie group G ,
the Killing form of 8, is negative semi~definite (and negative
definite if the centre of g, is zero). For G acts on g
via the adjoint representation AdG s since G 1is compact,
there exists an Ad-invariant positive definite quadratic form
Q on g (take an arbitrary positive definite form, and
average it over G ). With respect to a Q-orthonormal basis of
g, ° the linear transformation AdG(x) for each x ¢ G is rep-
resented by an orthogonal matrix, i.e. we have AdG: G + Q(n) ,
where n = dim 8, * Hence adgo: 8, $0(n) and therefore
_each ad X is represented by a skew-symmetric matrix (Chapter

I, 55, Examples). Consequently

B(X,X) = trace(ad X)° = J (ad X).,(ad X).,
: ij ji

i,]

- E(adX)%.SO,

i,j 1
and B(X,X) =0 if and only if ad X =0 , i.e. if and only if
X 1is in the centre of 8, - For this reason a semisimple real
Lie algebra is said to be compact if its Killing form is nega-
tive definite. )

Every complex semisimple Lie algebra g has a compact real
form, which is unique up to isomorphism. It may be constructed
as follows: with the notation of §3, vectors Xa € ga can be

chosen for each root a such that for each pair of roots a,B

we have

[XQ’XB] = Na,Bxa+B if a+B € R ,
Ha if a+B =0 ,
0 otherwise,

where the constants are real and satisfy N =-N .
-a, -8 a, 8

N
a,B
From these relations it follows that B(Xa,XB) =1 or 0O ac-
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cording as o+R =0 or = O . Then the elements iHa >

e eha e e A

Xu-x—a » 1(X,+X_) span a compact real form of g :
Another real form of g 1is easily written down, namely the
real Lie algebra spanned by the H and the X, This form
is called the split (or normal, or anticompact) real form of g
it is not compact. In a sense to be explained later, these two
(the compact and split forms) are at opposite extremes, and in

general there will be other real forms as well.

7. Examples: real forms of the classical complex Lie algebras

If g = s{(n,C) , a compact real form of ¢ 1is su(n) and
a split form is s!(n,R) . The corresponding conjugations of
g are respectively X + -X° and X + X .

If n is even, say n = 2m , another real form of sl (2m,C)
is sl(m,H) = {X eql(n,H): Re(trace X) = 0} . Any quaternionic
matrix may be written as Y + Zj , where Y and Z are complex
matrices, and we can embed s (m,H) in sI (2m,C) by means of
the map

n: Y+2j » _ )

w R

the image of s[ (m,H) wunder n is denoted by su*(2m) , and
is a real form of &I (2m,C) . The corresponding conjugation is
X > JXJY | where J = n(i) .

Apart from s1(n,R) and sl (m,H) , the real forms of the
classical complex simple Lie algebras A ,B ,C

L7878
described uniformly as follows. Let K be any one of R,C,H,

’DJZ, may all be

and let E be a K-vector space of dimension n (a left vector
space if K =H). Let f: ExE - K be a nondegenerate e~
Hermitian form, where € = #*1 (so that f is K-linear in the
first variable, and f(u,v) = cf(v,u) ), and let g(E,£) < gl (E)
be -the subalgebra consisting of all X ¢ gI(E) such that

trace X = 0 and
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f(Xu,v) + f(u,Xv) =0

- for all u,v e E. Let q denote the Witt index of f (namely
the dimension of a maximal totally isotropic subspace of E )
and let p =n-q , so that p 2q =20 and p+tq =n . The in-
tegers p,q determine f up to isomorphiém. The Lie algebras
g(E,f) , for all legitimate choices of K, ¢, p and q , to-
gether with sl (n,R) and sl(n,H) , exhaust the real forms of

the classical complex simple Lie algebras.

(a) Suppose first that K =R and e =+l . Then -f is
_ symmetric, and the algebra g (E,f) is denoted by s0(p,q) . It

consists of the matrices X € sl (n,R) such that

I X+XI =0
Psq pPsq
I 0
where Ip q = (f -1 , and is a real form of so(n,C) . [As
b

it stands, $0(p,q) 1is not a subalgebra of so(n,C) , but the
. . =1 . P
rphi lgebra J S0 J s, wh J = ( . H
isomorphic alge - (p,q) p,q is, ere prq " \O 1Iq>’
the corresponding comjugation of so(n,C) is X - Ip qXIp q.]
b t]
If q =0, then so(p,q) = s0(n,0) =so(n) is the compact real
form of s0(n,C) . At the other extreme, q = [in] gives the

split form.

(b) Next suppose that K =R, € = -1 . Then f is skew-
symmetric and hence (because f 1is nondegenerate) =n 1is even,
say n = 2m , and the index q 1is equal to m . The algebra
g(E,f) 1is denoted by sp(2m,R) : it comsists of the matrices
X e s1(2m,R) satisfying XJ+JX" = 0. Hence it is the split
real form of sp (2m,C) , the conjugation being X - X .

(c) Now let K =C . Here we do not need to distinguish be-
tween € = +1 and ¢ = ~1 , because 1f f 1is antihermitian

then if is hermitian. We may therefore assume that f is
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hermitian. The algebra g (E,f) is denoted by su(p,q) : i3

consists of the matrices X ¢ s[(n,C) such that

(* I X+XI_ =0

and is a real form of sI{(n,C) , the conjugation being X -

=t E-
—Ip’qX Ip,q . When q =0, we have su(p,q) = su(n,0) =5u(n)ji

the compact real form of s51(n,C) .

(d) Let K=H, € =+1 ., Then f is a quaternionic Hermitia;
form, and the Lie algebra g(E,f) is denoted by sp(p,q) . It

consists of the matrices X € gl(n,H) satisfying (*), and

under the embedding n of gl(n,H) in g¢[(2n,C) it is a realé
form of sp(2n,C) . When q =0, we have sp(p,q) = sp(n,0) =
sp(n) = u(n,H) , the Lie algebra of the compact group Sp(n) =

U(n,H) , which is therefore the compact real form of sp (2n,C) .

(e) Finally, let K=H and € =-1 . Then f is quatern-
ionic antihermitian, which since f 1is nondegenerate implies
that the index q 1is [4n] . The corresponding Lie algebra
g (E,f) may be taken to consist of the matrices X ¢ sl (n,H)
such that Xj +j)_(t =0 ; it is denoted by sau(n,H) . Its
image in ¢! {(2n,C) wunder n 1is a subalgebra s0*(2n) of
s0(2n,C) , consisting of the X € so(2n,C) such that XJ +J%°
=0 , and is a real form of s0(2n,C) , the conjugation being

X » JX57 .

To summarize, the real forms of AJz (2 2 1) are

A = s[(2+1,R)

'd -

= Su(P,CI)

R
2
C
AR.

(where p2q20 and p+q=42+1, so that O<qs<[}(2+1)])
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Ai = sl (m+1,H) (Zsu*(2m))

(if 2 = 2m-1 is odd).

The split form is AI; and the compact form is Ag’o=5u(2.+1) .

The real forms of B.Q. (2 2 2) are

Bi’q = so(p,q)

(where p=2q20 and p+q=2¢+l , so that 0<q<g).

The split form is so(2+1,2) (g=2) and the compact form is
s0(22+1) (gq=0) .

The real forms of CQ' (2 2 3) are

C

= sp2,R)

Cg’q = 5p(p,q)

(where p2q=20 and p+q=42 , so that 0=<q<[iel).

The split form is R and the compact form is CI;’O

L
u(L,H) .
The real forms of DJL (2 2 4) are

=sp(L) =

Di’q = s o(p,q)

(where p2q=20 and p+q=2¢ , so that 0<q<g)

DI; =sau(L,H) (¥so*(22))

The split form is sp (£,2) and the compact form is sop (22)
H _ R,2

(When £ =4 , we have D4 4 .)

8. The Cartan decomposition

Let us return to the general theory. Let g be a complex

semisimple Lie algebra, u a compact real form of ¢ , and
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.y the conjugation (§6) of g defined by u . If ¢ is any

conjugation of g , there exists an automorphism ¢ of g

such that u commutes with ¢c¢_1 ; hence to find all real
forms of g , up to isomorphism, it is enough to find all con-~
jugations c¢ of ¢ which commute with Cy "

If ¢ commutes with c, » ve have c(u) = u and c(iu) =
iu. Let T and ip be respectively the +1 and -1 eigen-

spaces of ¢ 1in u , so that

u =1 +ip

(direct sum), and the +1 and -1 eigenspaces of ¢ on iy

!

are p and 1t , so that !
b

in=p+it

Hence if 8, is the real form of g determined by c , we
have

(*) g, =1t+p;

f= g, N u is a subalgebra of a, and p= 8, 0 iu is a
vector subspace (not a subalgebra) such that

(i) the Killing form B is negative definite on f and

8
positive definite on p ; °
(1i) the map ce =ce= 0: Y+Z »Y-Z (Yet, Zep) is

an automorphism of a, -

A direct decomposition (*) of g, > constructed as above
from a compact real form 1y of g such that ¢, commutes
with c¢ , is called a Cartan decomposition of the real Lie al-
gebra 9, > and 6 1is a Cartan involution of 8, - The Cartan
decomposition is determined by the involution 6 , since f and

p are the +1 and -1 eigenspaces of © 1in 9, - We have

[t,p} ¢« p and [p,pl c ', and ¥ and p are orthogonal with
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respect to Bgo .
If 6 1is any involutory automorphism of 8, the bilinear

form <X’Y>6 = —Bgo(X,GY) is symmetric, and 6 is a Cartan
jovolution if and only if <X,)(>6 is positive definite.

The importance of the Cartan decomposition is that it is
unique up to conjugacy: if 8, = f'+p' 1is another Cartan de—
composition, there exists ¢ ¢ Int(go) such that ¥' = ¢(1)
and p' = ¢(p) .

Define the Cartan signature (some say Cartan index) s of

8, to be the signature of the real quadratic form Bgo , 1.e.
s =dim p -~ dim ¥

Then we have
~dim ¢ £ s < rank g

s

and s = -dim g <=> 8, is compact,

(7]
n

rank g <=> 8, is split.

Examples

1. For the compact real form we have p =0, f = _qo , and 8

is the identity map. For the split real form of g , spanned

by the H and the X, (§6), T 1is spanned by the Xa_x-a
and p 1is spanned by the Ha and the Xa+x-a .

2. For the real forms of the classical complex Lie algebras
listed in §7, in each case 8: X - -x* (= <% if X is real)
is a Cartan involution. Hence I consists of the skew Hermitian

matrices in g , and p consists of the Hermitian matrices.

9. The Iwasawa decomposition
From now on the emphasis will be on a fixed real semisimple

Lie algebra, which we shall denote by g (rather than g o s
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3
the complexification of g , which is a complex semisimple Lie:
algebra, will be denoted by g (instead of g as heretoforej

Let
g =%t+p

be a Cartan decomposition of g , and let 8 be the associateq
Cartan involution, so that 8 is the identity on f , and miny

the identity on p . The bilinear form on g
<X,Y>6 = -Bg(x,eY)

is symmetric and positive definite (it coincides with Bg on i
and with —Bg on f ), hence endows g with the structure of
a finite~dimensional real Hilbert space. For any X ¢ g , the
adjoint of ad X (with respect to this scalar product) is
-ad 8(X) . Hence, with respect to an orthonormal basis of g¢ ,:
ad X 1is represented by a symmetric matrix if X e p , and by a’
skew-symmetric matrix if X ¢ ¥ . It follows that the elements
of T and p are semisimple.

let ap be a maximal abelian subalgebra of the vector space

p , and let w; be the vector space dual to ay - For each

A€ a§ let
gA = {Xeg: [H,X] = A(H)X for all Heapl .

Since adg(ap) is a commuting family of self-adjoint linear
transformations of g , it follows that g 1is the orthogonal
direct sum of the subspaces gA . If A =#0 and gA =0,

A is said to be a root of g relative to ay , and gA is
the root-space corresponding to A . Let § = S(g,ap) denote

the set of roots. Then we have a root space decomposition

g =1 + z gA
AeS
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(orthogonal direct sum), in which [ 1is the centralizer of ap
in g - The set S ¢ a; is called the relative root system

of g (with respect to ay ) ; up to isomorphism, it depends
only on g . However, there are divergences from the complex
case considered in 853, First, S 1is a root system in (1; ,

in the sense of §4, but need not be reduced (i.e. need not
satisfy condition (3) of §4: this means that it may happen that

rve$S and 2X € S ). Secondly, the dimension m of gA (the

A
multiplicity of A € S ) may be bigger than 1 . Thirdly, 1

is usually bigger than ay: in fact we have

where m 1is the centralizer of ap in ¥ . Finally, the root
system S does not of itself determine g up to isomorphism;
for this purpose we require a more elaborate combinatorial ob-
ject, which we shall describe in the next section.

Choose a basis of S , and let s* be the set of positive

roots relative to this basis; and write

-2

We have G(gA) = g_A for all 3 € S (because 8 acts as -1
on “p) and therefore 6n=m . n and N are nilpotent

subalgebras of g , and we have
g = I+ap+ n

(direct sum); this is the Iwasawa decomposition of g . If
s =ap+n, then s is a solvable subalgebra of g .

In Chapter III we shall see that the Iwasawa decomposition
has a global counterpart, for any connected semisimple Lie

group.



10. The relative root system

We retain the notation of §9. To get more insight into the

relative root system S , we shall compare it with the (absolurte
root system R of the complexification 8. of g , relative tg

a suitably chosen Cartan subalgebra. For this purpose let a be

a maximal abelian subalgebra of g which contains ap . Then :
a is a Cartan subalgebra of g ; we have ap = anp, and if we
put Gy = ant then

a = a;* ay

(direct sum), so that a is stable under 8 . The dimension of
ap is called the relative rank (or split rank) of g

The complexification B = a, of a 1is a Cartan subalgebra
of 8, - Hence (§3) we have a root-space decomposition of 8.

relative to §
a
g =b+ ] 8
aeR

where R = R(gc,b) < b; is the root system of 9 with respect
to h . Here I)R is the real vector space spanned by the Ha ,

a e R, as in §3, and in fact

Moreover, iI)R =4a,+1iq, is a Cartan subalgebra of the compact

t p
form u = t+ip of 4. -
Let po: b; - a’; denote restriction to ap . The kernel of
p may be identified with (iaf)* . For each a ¢ R, the re~
striction p(a) of a to ap is either 0 or is an element
of S . Let Ro be the set of roots o ¢ R which vanish on
@y, OT eauivalently such that Ha € ia ;e Then Ro is a root

. .k .
system in (1af) (except that it may span a proper subspace

of (iaf)*) , and is the root system of the complex reductive
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Lie algebra m (where m 1is the centralizer of ap in £ )
relative to its Cartan subalgebra (uf)c : we have another root-

space decomposition

m,.= @) + ) g°
te aeRo ¢

The projection p maps R-R0 onto S , and for each A ¢ S

the multiplicity m, 1is equal to the number of roots a ¢ R—R0

A
such that p(a) = X .

Let c¢ be the conjugation of 6. defined by g , so that
c(X+1iY) = X-iY for X,Y e g . ¢ acts on the root spaces as

follows: for each root o ¢ R define a® by
o?(H) = a(c(H) (Hep) .

Then c(g:) = g:o . The mapping a -+ o’  extends by linearity
to an involutory isometry of the Euclidean space b; , under
which R—R0 is stable, and R0 is the set of roots o ¢ R
such that a%+a = 0 . We have a’-a ¢ R for all o ¢ R .

Abstractly, therefore, we are led to consider pairs (R,0) ,
where R 1is a reduced root system in a Euclidean space V ,
and ¢ 1is an involutory isometry of V such that o(R) =R .
The pair (R,0) 1is said to be normal if a cR = o’ ¢ R .

Let p = 3(l+g) , so that p 1is the orthogonal projection
of V on V; =V’ withkernel V_ =V . Let R =Rn 7V
and S = p(R—RO) . Then R0 is a reduced root system in Vo
(but may span a proper subspace of Vo) and S 1is a (not
necessarily reduced) root system in V1 . We can choose a
basis I of R such that Fo =T n R0 is a basis of Ro ,
and such that R+—R; is o-stable, where R+ and R: are the
sets of positive roots determined by [ and Fo respectively.
The involution o determines an involutory permutation of

F—Fo as follows: 1if a € F—Fo , there exists a unique B ¢

F—Fo such that o° = g (mod. ZFO) , and the mapping a - 8 1is
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a permutation of order 2 . We have p(a) = p(R) = 3(a+B) ,

and A = p(F—FO) is a basis of the root system S . Finally,

if WQR), W(Ro) and W(S) are the Weyl groups of the root
systems R, R ,5 , and if W(R)® 1is the centralizer of o in
W(R) , then restriction to V1 defines a homomorphism of W(R)
onto W(S) , the kernel being W(RO) .

Each real semisimple Lie algebra g therefore determines a
normal pair (R,0) , which determines g up to isomorphism.

As described in §4, the reduced root system R may be rep-

o g

resented by its Dynkin diagram, the vertices of which represent
the elements of the basis T of R . The action of ¢ may be
indicated as follows: the vertices of the diagram which rep~
resent the elements of To are coloured black, the remainder
white, and two white vertices representing elements a,8 ¢ F—Po

as above, such that p(a) = p(B) , are joined by an arrow ¥y .

The resulting diagram is called the Satake diagram of g , and

determines g wup to isomorphism.

Examples

1. If g 1is compact we have g =f , p =0, ay = 0, so
that R =R and S = @ . In this case all the vertices of
the Satake diagram of g are black.

2. At the other extreme, if g is split, we may take p to
be the vector subspace spanned by the Ha and the Xa+X_a (58,
Ex.1l), and 4y to be spanned by the Ha s thus ap, = a and

a, = 0, so that Ro = @ and o is the identity. In this case

ail the vertices of the Satake diagram of g are white, and it
coincides with the Dynkin diagram of R (or 8 ).

3. Let 8y be a complex semisimple Lie algebra, g = g? its
realification (§1). Multiplication by i 1is an endomorphism of
g satisfying 12 = -1 and [X,iY] = (iX,Y] = i[X,Y] for all
X,Ye g . Let ¥ be a compact real form of 8y - Then

g =t+if is a Cartan decomposition of g . We may take ay =

it , where t is a Cartan subalgebra of ¥ ; then a =t+it

126



is a Cartan subalgebra of g , and is the realification of a
Cartan subalgebra bl of 8, . The root space decomposition
of g with respect to ay is then the same as the root space
decomposition of 8y with respect to bl . Hence if we denote
by R1 the set of roots of (gl,bl) , we have R = R1><R1 ,

R, = @ and S =R, . The Satake diagram of g therefore con-

1

sists of two copies of the Dynkin diagram of R, , correspond-~

ing vertices in the two copies being joined by irrows.

4, TFor a concrete example not covered by Exx.1-3, consider

g =sl(n,H) (87). Then (§8, Ex.2) we may take I =sp(n)

(= u(n,H)) and p to consist of the quaternionic Hermitian
. matrices with trace O . We may then take Gy to consist of
the real diagonal matrices with trace 0 , and a to consist
of the complex diagonal matrices X with Re(trace X) =0

If we embed sl(n,H) in s1(2n,C) as in §7, then a, =}
consists of the diagonal matrices in s!(2n,C) , and we have

R = {ei—e.: i=3j, 1 <1i,j € 2n} 1in the notation of §3,

Example. Here R = {ei—ej: [i-j| = n} ; hence if we put
' =
Es € 4y » Ve may take
= T —-g! L. . | L.
r {el €161 755 €5 Egsanes € TENED en} ,
- 1 v "_
L {el €15E5 €gsenes€l en}

and the Satake diagram is
—Oo——O0— - - - —0—=e

there being n black vertices and n-1 white ones. The rela-
tive root system is non-reduced, of type BCn_1
5. TFor another example, take g = su(p,q) , consisting of all

complex matrices of the form
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where A en(p), B eu(q), trace A+ trace C=0, and B !
is any pxq complex matrix. As in §7, we shall assume p 2 g i

Let H(X,Y,Z) denote the matrix

< O X
© N O
M O w

where X,Y,Z are diagonal matrices of sizes q,p-q,q respect~ :

ively. We may take ay to consist of all H(0,Y,0) with Y
a real diagonal matrix; @y to consist of all H(iX,0,iZ) with
X,Z diagonal matrices, and trace H=0 . Then § = a, con~
sists of all H(X,Y,2) with X,Y,Z complex diagonal matrices

(and trace H =0) . Conjugation by the matrix a 0 a\ ,
0 I O
1 -a 0 a
where a = 7 Iq » transforms H into the standard Cartan sub-

algebra of 8. = s[ (p+q,C) . Hence if £j (resp. nj, resp. cﬁ
is the linear form on 1§ whose value at H(X,Y,Z) 1is the jth
diagonal element of X (resp. Y, resp. Z) , then the roots of

(gc,b) are the differences between pairs of

+ e eee - cen - .
51 nls s£q+nq’§1’ ’Ep_q,gq nq’ ’51 nl
We may take the basis I to consist of the differences of con—
* ..
secutive pairs of these p+q elements of ) . On restriction
to ay s all Ej and Ck vanish; if ﬁj is the restriction
of nj to a, the restrictions to ay of the elements of T

are therefore

ﬂl‘nz,---,nq_l‘nq,nq,O,---,0,nq,nq_1‘ q;---’nl‘nz .

~ o~
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1t follows that the Satake diagram is

o—O0— - ———Cf——%}———;
o—-0— - - ———*3———(}———1
there being q pairs of white vertices and p-q-1 black ver-

tices. The root system S 1is of type BCq

_11. Cartan subalgebras again
Let ¢ be a real semisimple Lie algebra. By contrast with
the complex case, as we have already observed, it is no longer
true in general that all Cartan subalgebras of g are conju-
gate under the adjoint group Int(g) (unless ¢ is compact);
instead, they form a finite number of conjugacy classes. They
all have the same dimension (namely rank g ), because their

complexifications are Cartan subalgebras of 8.

Example, Let g =sI(2,R) and let a (resp. b) be the subspace
1 0 o 1
0 -1 -1 O
Cartan subalgebras of g . They cannot be conjugate in g , be-

of @ spanned by ( ) (resp. ( )). Then a and b are

cause the subgroup exp(a) of SL(2,R) consists of all matrices

e
(
0 .
particular is not compact; whereas exp(b) consists of all ma-
cos9 sine)

3

-sin8 cosh

QA), hence is isomorphic to the additive group R, and in
e

trices ( hence is S0(2) and therefore compact.
Fix a Cartan decomposition ¢ =f+p, and let 6 be the
associated Cartan involution. As in §10, let a = af+ap be a
8-stable Cartan subalgebra of g such that a, = an p is a
maximal abelian subalgebra of the vector space p .
If now b 1is any Cartan subalgebra of g , there exists a

conjugate of b which is 8-stable, i.e. such that
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b = bf + bp

where by = bni and by=bnp . The component by, is
called the toral part (or the compact part), and by the
vector part of b . The vector part bp is an abelian sub-
algebra of p , hence is contained in a maximal abelian sub-
algebra of p . By conjugating b , we may arrange that

bp < @y
we can also arrange that bf 2@y . The Cartan subalgebra b

and then by conjugating again, leaving by fixed,

is said to be standard (relative to 8 and a ) i1f these con-~
ditions are satisfied.

The classification of Cartan subalgebras up to conjugacy in

g can now be reduced to a combinatorial problem, as follows.
A subset E of the root system R (810) is said to be strongly
orthogonal if a*8 ¢ R for all pairs a,8 ¢ E . Now let b be
a standard Cartan subalgebra of g . Then there exists a
strongly orthogonal set E in R such that the vectors Ha s
a ¢ E , form a basis of the orthogonal complement of bp in
a, ; moreover E is determined by b wup to conjugacy by the
Weyl group W of R . In this way one establishes a one-one
correspondence between the conjugacy classes of Cartan subalge-~
bras in g and the W-orbits of strongly orthogonal subsets of
the set of roots a ¢ R such that Ha € ap .'

The two extreme cases are:
(i) the vector part bp of b 1is as large as possible: if b
is standard, this means that bp =ap, hence bf = a and
consequently b = a . These are the minimally compact Cartan
subalgebras of g ; they are all conjugate, and they correspond
to E =@ above.
(ii) the toral part b of b 1is as large as possible: this
means that by is a Cartan subalgebra of the reductive Lie al-
gebra f . These are the maximally compact (or fundamental)
Cartan subalgebras of g ; again they form a single conjugacy

class. If g itself is compact, they are the only ones.
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Examples

1. ¢ =sI(n,R) , f=su(n) , p the space of real symmetric
pxn matrices with zero trace; a = Ty is the space of diag~
onal matrices with trace 0 , 'and @y = 0 . Any strongly or-

thogonal set E 1is, up to conjugacy by W = Sn » of the form

E = {81_62’63_64’""€2k-1_€2k}
where k < in . Hence the number of conjugacy classes of Cartan
subalgebras in sl (n,R) is 1 + [in] . For O <k < [jnl, let

b(k) denote the set of matrices in sl (n,R) which are of the

- form

dlag(XI’XZ, e ’xk’Y)

where Xi = (_;i Zi) and Y is a diagonal matrix of size n-2k.
The b(k) are representatives of the classes of Cartan subal-
gebras.

2. g =sl(n,H) . Here all the Cartan subalgebras are conju-

gate to the algebra a described in 510, Ex.3, since a 1is
both maximally and minimally compact.

3. g =su(p,q) (p 2 q) . Here there are g+l conjugacy
classes of Cartan subalgebras, representative; of which may be
described as follows. With the notation of 5§10, Ex.4, for each

j =0,1,...,q let b(J) consist of all matrices in g of the

form

ix o ¥ R
0o iz o
Y o0 ix

where X,Y,Z are real diagonal matrices of sizes q-j, q~j,

p~q+2j respectively. Then b(o),...,b(q) are q+l non-
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conjugate Cartan subalgebras of g = su(p,q) ; b(o) is mini-

(q)

mally compact and b is maximally compact.

I1I. Semisimple Lie groups

1. Semisimple and reductive Lie groups

Let G be a Lie group. The largest connected solvable nor-
mal subgroup of G 1is called the radical R of G . It is a
closed subgroup of G , and its Lie algebra is the radical (II,
§1) of the Lie algebra g of G .

A connected Lie group G 1is said to be semisimple if R =
{e} , or equivalently if its Lie algebra g is semisimple.
Every semisimple Lie group G 1is equal to its derived group
[G,G] , and the centre of G is discrete. If g is simple, G
is said to be almost simple. A connected and simply-connected
Lie group G 1is semisimple if and only if it is a direct prod-‘
uct of almost simple groups.

Finally, a connected Lie group is said to be reductive if
its Lie algebra is reductive. Every compact connected Lie group

is reductive.

Examples. SL(n,R) , SU(n) are semisimple (indeed almost

simple); GL+(n,R) , U(n) are reductive but not semisimple.

2. Cartan and Iwasawa decompositions
Let G be a semisimple Lie group, g its Lie algebra, and

let
g=1IT+p

be a Cartan decomposition (II, §8) of g . The immersed sub-
group K of G which corresponds to the subalgebra f of g

(II, §5) is then closed in G , and expG(p) =P say is a
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closed submanifold of G (not a subgroup). We have
G = K.P

and more precisely the mapping (x,Y) » xX.exp Y is a diffeo-
morphism of Kxp onto G . This is the Cartan decomposition
of G : it is the global counterpart of the Cartan decompo-
;ition of ¢ . The mapping 8 : xy - xy_1 (xeK, yeP) is
an involutory automorphism of G , and K is its group of
fixed points.

The group K is compact if and only if the centre of G 1is
. finite, In general we have K = KOXV where K0 is a maximal
compact subgroup of G (necessarily connected), and V 1is a
vector group. 1t follows that G 1is diffeomorphic to the prod-
uct of K0 and a vector group, and therefore wl(G) = wl(Ko) .

Next let

g =1+ ay + n
be an Iwasawa decomposition (IL, 89) of g , and let Ap and
N be the immersed subgroups of G which correspond to the
subalgebras ay and n of g . Then Ap and N are closed
subgroups of G , and the exponential map expGT is an isomor-
phism of ap onto Ap, and a diffeomorphism of n onto N ;
A is a vector group and N is a nilpotent Lie group. We have

P

G = KAPN
and more precisely the mapping (x,y,z) > xyz is a diffeomor-
phism of KXAPXN onto G . Finally, APN is a closed solv-
able subgroup of G in which N 'is normal., This is the
Iwasawa decomposition of G ; it is the global counterpart of

the Iwasawa decomposition of g .



Example. Let G = SL(n,R) ,K = SO(n) . Then we may take Ay
to be the group of real diagonal matrices with positive element,’
(and determinant 1), and N to be the group of upper triamgu-
lar matrices with 1l's down the diagonal. The manifold P in
the Cartan decomposition consists of the positive definite sym-
metric matrices with determinant 1 (because if X ep 1is a
symmetric matrix, exp(X) is symmetric and positive definite),
We have nl(SL(n,R)) = nl(so(n)) =2Z if n =2, Z/2Z if

n>2.

3. Maximal compact subgroups

Let G be a (connected) semisimple Lie group, Ko a maxi-
mal compact subgroup of G . Then X = G/Ko may be given the
structure of a complete simply-connected Riemannian manifold
with negativ2 curvature. If K. 1is any compact subgroup of

1
G , then K, acts on X by left translations as a group of

isometries if X , and by a well-known theorem of Riemannian
geometry this action has a fixed point x = xKo € X . _fhis

means that nyo = be for all y € Kl » 1.e. that x le c
Ko . In particular, if K1 is a maximal compact subgroup of

G , we have x—lK X = Ko , and therefore all maximal compact

1
subgroups of G are conjugate in G .

4. Parabolic subgroups
As in §2 let

g=f+ap+n, G = KApN

be Iwasawa decompositions of ¢ and G , and assume from now
on that the centre of G 1is finite (so that K 1is a maximal
compact subgroup of G ). Let M and M* be respectively the
centralizer and normalizer of ap (oxr Ap) in K . Then M*/M
acts on ap , hence by transposition also on the dual space a;,
and is isomorphic to the relative Weyl group W = W(g,ap) . The

group
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is a closed subgroup of G (because both M and Ap normalize
N) and is the normalizer of N in G . Po and its conjugates
in G are the minimal parabolic subgroups of G .

Warning: the group M (and therefore also Po ) need not be
connected. (However, it has at most finitely many connected com-
ponents.) In any event, the identity component M® of M is
the subgroup of G corresponding to the Lie algebra m , the

centralizer of ap in ¥ . Hence the Lie algebra of Po is
m+ap+n=I+zg)‘
A>0
in the notation of II, §9.

Example. Let G = SL(n,R) and let K, Ay, N be the subgroups
defined in the Example in §2. Then M consists of the diagonal
matrices in which each element is 1 (and determinant equal to
1), hence is a finite group of order 2n—1 H M.Ap is therefore
the group of all diagonal matrices in G , and Po = MADN the
group of upper triangular matrices in G . So Po has 2n~1
connected components, corresponding to the various choices of

sign for the diagonal elements.

If x ¢ M* , the double coset P xP depends only on the
coset xM , that is to say on the image w of x in M*/M=W,
so that we may write PoxPo = PowPo unambiguously. We have

then

G= u PwP (disjoint union).
o o0
weW

This is the Bruhat decomposition of G . The group W has a

. . - +
unique element w, which transforms each positive root A € §

1

into a negative root, and Pow Po is a dense open submanifold

1
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of G , whose complement has zero Haar measure. All the doublej
cosets PowPo are locally closed submanifolds of G
The pair of subgroups (Po’M*) is a BN-pair or Tits system 4
in G . Abstractly, a Tits system in a group G consists of a§
pair of subgroups B,N which together generate G and satisfy%
certain axioms which we shall not reproduce here. The group :
H=BnN is normal in N , and W = N/H is called the Weyl :
group; it has a distinguished set A of involutory generators, j
For each x ¢ N , the double coset BxB depends only on the
image w=xH of x in W , and is denoted by BwB . It is
then a consequence of the axioms of a Tits system that G has

a Bruhat decomposition

G= u BwB (disjoint uniomn).
weW

For each subset E of A let WE be the subgroup of W

generated by E . Then PE = BWEB is a subgroup of G , and

the mapping E + P is an inclusion-preserving bijection of

E
the set of subsets of A onto the set of subgroups of G

which contain B . Each group P_ 1is its own normalizer, and

E
no two of them are conjugate in G . In particular, P¢ =B
and PA = G . Generalizing the Bruhat decomposition we have
G = ] P wPF (disjoint union)
WEWE\W/WF

for any subsets E,F of A .

In the present situation, B 1is the minimal parabolic sub-
group Po , and N is the normalizer M* of Ay in K
The group H = BnN is M*nPo=M, and W= M/M is the
relgtive Weyl group of G . The subgroups PE and their conT
jugates in G are called parabolic subgroups. They form 22
conjugacy classes, where &' = card(A) = dim ap is the relative

rank of g .
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;. The Langlands decomposition of a parabolic subgroup

We retain the notation and assumptions of §3. As in II,
§10, let S = S(g,ap) be the relative root system of g , and
let A be the basis of S§ deétermined by the Iwasawa decompo-
gition (in which n = )\ES*' gk , where S+ is the set of posi-
tive roots defined by A ).

Let E be any subset of A , <E> the subsystem of §
generated by E . Let gE be the Lie algebra generated by the
root spaces g)\ for X e <E> . (If E = A , then gE =g .)
Then gE is a semisimple subalgebra of g . If we put fE =

E+pE is a Cartan de-

fngE and pE = pngE , then gE =t
composition of gE , and dg =ap ngE is a maximal abelian sub-~-
algebra of the vector space p

Let a be the orthogonal complement (with respect to the

E
Killing form Bg) of ag in ay - Equivalently, ag is the
intersection of the kermels of the linear forms X ¢ E . As in
11, §9, adg(aE) is a commuting set of self-adjoint endomor-

phisms of g , and so we have a root-space decomposition

g =1_ + z qu
ueSE
=lg *mg *Mg
where | is the centralizer of ay in g , and SE=S—<E> ,
and n, = ) . g, TTE = Z,, g" . Now define
ueSE ueSE

m, = IEnf + [IE,IE]np ;

then me is a reductive subalgebra of g , and we have

[ =m_ +a (direct sum).

We shall now pass from the Lie algebra to the group G .

E o] 0 . .
Let Ap , AE , LE R ME , NE respectively be the connected Lie
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groups immersed in G which correspond to the Lie algebras

we have Ap = APAE (direct product), and LE = MEAE .

Let LE be the centralizer of ag (or AE) in G, so
o . . .
that LE is the identity component of LE . Put ME(K) =

LEer , the centralizer of AE in K , and let ME:=ME(K)ME ,

so that Mg is the identity component of Mﬁ . We have

LE = MEAE , and the groups LE ,ME and

All these subgroups are closed in G ;

Pp = MpApNp = LgMg

are closed subgroups of G , and PE contains the minimal
parabolic subgroup Po (= P¢) . So the groups P , for all
subsets E of A , are the parabolic subgroups of G which
contain Po . The Lie algebra of PE is IE-H'IE =P -
Example. ZLet us illustrate all this by reference to the group
SL(n,R) . As before (§3, Ex.) we take as minimal parabolic

Po the group of upper triangular matrices with determinant 1,
and we take K = S0(n) . The relative root system $ 1is the
same as the absolute root system R , and 1is of type A4 -
Each subgset E of the basis A may be described by a subset
{ml,...,mr} of {1,2,...,n-1} , where mo<my, <...<m,

or equivalently by the sequence
(nl,nz,...,nr+1) = (ml,mz—ml,...,mr—mr_l,n—mr)

of positive integers whose sum is n . Correspondingly we
write each matrix X € SL(n,R) or sI(n,R) 1in block form:
X = (X..) where X.,. has n., yows and n, columns
1] 1] 1 ]

(1 £1i,j € r+l) . Then ag (resp. AE) consists of all block

iag 1 tri L. = i i =] 1 T 5 H
diagonal matrices (XlJ 0 if i # 3j) with X11 xllnl

(1 <1< r+l) and Znixi = 0 (resp. each X, >0 and

-
Hxil = 1), The centralizer ‘E of ag consists of all block
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diagonal matrices X with trace 0 , and me consists of
block diagonal matrices X with trace xii =0 (1<is<r+l) ,

S i.e. mg =1 sI(n;,R) . The corresponding groups are
i

j
L}

SL(n,R) n (I GL+(ni,R))
i

=
[}

SL{(n,R) n (1 GL(ni,R))
i

(so that (L_:L

o =
E E) 2

ME(K) = LEI1K = SL(n,R)rwg o(ni)

I SL(ni,R)
i

W o

{diag(xl,...,xr+1), X; € GL(n,,R), det X, = £1}

= = . = i 1> =
N, = {X ;) 2% =0 if 1>, X, Ini}
- . 0 if 45 -
P {X e (xij) .xij 0 if i>j, det X =1}

So PE consists of the matrices in SL(n,R) which are upper

triangular in the block form determined by (nl’n2""’nr+l)'

The subgroup NE of the parabolic group PE can be charac-

terized intrinsically: it is the unipotent radical of PE »
i.e. the largest comnnected normal subgroup of PE whose ele-

ments are unipotent, and its Lie algebra n is the largest

E

ideal of P whose elements are nilpotent. The subgroup LE

is a Levi subgroup of PE , that is to say a reductive closed

subgroup L of PE such that PE = L.NE (semidirect product).

Hence if P 1is any parabolic subgroup of G, NP its uni-

potent radical, we have
P = L.N (semidirect product) (1)
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where L 1is a Levi subgroup of P (Levi decomposition of P)_'
The Levi component L is not unique, but if L' 1is another
then we have L' = xLx—1 for some x ¢ NP

The subgroup AE above can be characterized as the largest
connected split abelian subgroup of the centre of the Levi sub-

group L. (an abelian subgroup A of G 1is split if for each

x € A, EAdG(x) is diagonalizable over R ). The group Mﬁ
can be described as the intersection of the kermels of all con-
tinuous homomorphisms ¥ : LE + R . Hence, if P 1is any para-
bolic subgroup of G and L a Levi subgroup of P we have

L=MA, MnA = {1} , and hence by (1)
P = MAN (2)

where M =n Ker(x:L »-R) and A 1is the largest connected
split abelian subgroup of the centre of L ; moreover the
product mapping of MXA_XNP onto P 1is a diffeomorphism.
This is the Langlands decomposition of P . The group A 1is
called a split component of P ; it is unique up to conjugation
by elements of NP . The dimension of A 1is called the para-
bolic rank of P . (Thus the parabolic rank of PE is
card(A-E) .)

Two parabolic subgroups P,P' are said to be associated if
P and xP'x-1 have a common Levi subgroup, for some x ¢ G .
Clearly conjugate parabolics are associated, but the converse
is false., For example, in G = SL(n,R) , the parabolic sub-

groups P_,P are associated if and only if the sequences

'
(ni) andE (Ei) determined respectively by E and E' are
permutations of each other. Hence the number of classes of
associated parabolic subgroups in SL(n,R) 1is equal to the
number of partitions of n (whereas the number of conjugacy

classes of parabolic subgroups is 2n—1 ).
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6. Cartan subgroups

As before, let G be a connected semisimple Lie group with
finite centre, @ the Lie algebra of G . A Cartan subgroup
of G is the centralizer B in G of a Cartan subalgebra b
of g : B = ZG(b) . It is a closed subgroup of G , but is
not necessarily connected. Its identity component B® is the
closed subgroup expG(b) with Lie algebra b , and the group

of components B/B® is finite.

Example. Let G = SL(2,R) and let a, b be the Cartan sub-

1 o o 1
o-p ™ (5 o

. respectively (II, §11). The corresponding Cartan subgroups

algebras of g =s1{(2,R) generated by (

of G are A , consisting of all diagonal matrices (g a91)
(so that A £ R* and therefore has two components) and

B = SO(2) (which is connected).

Another warning: Cartan subgroups need not be abelianm.

(If a 1is the Cartan subalgebra of g = sI(3,R) consisting
of the diagonal matrices, and G 1is the simply—-connected
double covering group of SL(3,R) , then the centralizer A
of a in G 1is not abelian.) However, if G admits a
faithful finite-dimensional representation, then all Cartan
subgroups of G are abelian; so that in any case the Cartan
subgroups of G are abelian modulo the centre of G . »

Moreover, if b is a maximally compact (or fundamental)
Cartan subalgebra of g , them B = ZG(b) is both connected
and abelian.

Let ¢ = I+ p be a Cartan decompositon of g , let 6 be
the associated Cartan involution and let b = bf + by be a
f6-stable Cartan subalgebra of g . Let B be the centralizer
of p in G, let Bp
(82) is the compact subgroup of G with ¥ as Lie algebra.

= exp(bp) , and BK =B n K, where K

B, is a vector group (the vector part of B ) and BK is a

(not necessarily connected) compact group (the compact part



of B ), and we have B = BK'BD . The identity component B;

of BK is the subgroup of G corresponding to b t

Examples
1. 1If G =SL(n,R) , g =s1(n,R) , there are up to conjugacy
in ¢ [in] +1 distinct Cartan subalgebras bj (0<j<s[ind),
where the i?ems?ts of bj are diagonmal sums of j 2%x2 ma-
trices (_b; a;) and a diagonal matrix of size n-2j (II,
§11, Examples). The centralizer Bj of bj in G consists
of the matrices of the same description and determinant equal
to 1 . Since the group of nonzero ma:rices (_E 2) is iso-
morphic to the multiplicative group C , it follows that B,
is isomorphic to (C*)j ><(R*)n—2j_1 .
has 2n—2j—1

% j- ~ - . .
morphic to (C yd 1X'I = Tk XRF 1 , where T 1is the circle

(unless n = 2j ), hence

connected components. If =n = 2j , Bj is iso-~

group.

2. 1f G = SL(n,H) , g =sl(n,H) , there is up to conjugacy
in g only one Cartan subalgebra a , consisting of the com-
plex diagonal matrices X ¢ g such that Re(trace X) =0

(II, §10, Examples). The corresponding Cartan subgroup A of
G consists of the complex diagonal matrices X such that
|det X| = 1 , hence is isomorphic to (C*)n—lx T Tt an-l .
3. 1If G = SU{(p,q) , the group of linear transformations of
C® with determinant 1 which leave invariant the Hermitian
form

2yZ; ¥ .. ¥ zpzp - zp+1zp+1 T oeee 2z ’
then g =su(p,q) has g+l conjugacy classes of Cartan sub-
3 (0sjsq)

in G consists

algebras (II, §11, Examples), represented by b
(loc.cit.). The centralizer B(J) of b(J)

of the matrices
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elX ch Y 0 elX sh Y
0] e 0]
elX sh Y 0 elX chY
where X,Y,Z are real diagonal matrices of sizes q-j, q-]
and p-q+2j respectively, and 2 trace X + trace Z =0 ;
B(J) is connected and abelian, isomorphic to 'I'IH'J--]'qu—J .
7. The regular set
Let G be a connected semisimple Lie group with finite
centre, g 1its Lie algebra. As in Chapter I, §4, let
g' (resp. G') denote the set of regular elements of
g (resp. G) . For any Cartan subalgebra b of g , let
b' = g'n b, and define

8pr = U x(p') = u Adx)(p') .

x € Int(g) xXeG
Likewise, if B 1is a Cartan subgroup of G , let B' = G'nB,
and define

B'= v xB'x L .

XeG
Now let b i (1si<r) be a set of representatives of the
conjugacy classes of Cartan subalgebras of g , and let Bi
be the centralizer of bi in G , so that every Cartan sub-

group of G 1is conjugate to exactly ome of the Bi ~ Then

we have
rg
g' = u b!
i-1
and
r
G'= u GBJY_
i=1
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Since each bi (resp. Bi) has only a finite number of connec-
ted components, it follows that the number of components of
g' (resp. G') 1is finite.

Let again b be a Cartan subalgebra of g , and let B;B*
be respectively the centralizer and normalizer of b in G .
The group B*/B = W(G,B) 1is finite. It acts on G/B by
right multiplication: if w = nB ¢ W(G,B) and % = xB ¢ G/B,
then %w = xBnB = xnB . Also W(G,B) acts on b' by the
rule w.H = AdG(n).H . Hence W(G,B) acts on (G/B) x b'

w(x,H) = (oo LwH) . Let

o : (G/B) xb' + Ob

be the mapping (%,H) ~ AdG(x)H . Then ¢ 1s an everywhere
regular covering map of degree |W(G,B)|

For the global analogue of this result we must replace the
Cartan subgroup B by its centri B0 , since B might not
be abelian. Define W(G,Bo) =B /Bo , which is still a finite
group. This group acts (on the right) on G/Bo and by conju-
gation on B' . Let

b /B xB' > OBt

be the mapping (x,b) ~ xbx—1 . Then ¢ 1is an everywhere
regular covering map of degree |W(G,Bo)| .

These results enable integration over ¢q (resp. G) to be
reduced to integration over (G/Bi) Xbi (resp. (G/Bio) XBi) ,
i=1,...,r , on the lines of Weyl's integration formula for

compact Lie groups.

8. Complex Lie groups
In this section we shall briefly review the structure
theory of complex semisimple Lie groups, which is a much

simpler business than the real theory: in particular, the
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phenomena of disconnectedness (of Cartan subgroups and para-
polic subgroups) do mot arise in the complex case.

A complex Lie group is a complex—analytic manifold G
which is a group, the group operations being holomorphic
pappings. Semisimplicity, Cartan subgroups, parabolic sub-
groups etc. are defined exactly as in the real case.

Let G be a complex semisimple Lie group, ¢ 1its Lie
aigebra, b a Cartan subalgebra of g , H the centralizer
of 5 1in G (the Cartan subgroup of G corresponding to
h). Then H = expG(b) and is a il;sed complex—analytic
subgroup of G , isomorphic to (C )~ where & = dimcb is
the (complex) rank of ¢ (or of G ). All Cartan subgroups
of G are conjugate to H (because all Cartan subalgebras
of @ are conjugate to b ).

*
As in Chapter II, §3 let R c bp be the root system of

(g>h) . We define three lattices LO , L1 and LG in bR ,
as follows. L1 is the lattice of all X ¢ bR such that

alX) € Z for*all roots o € R, 1.e. Ll is the dual of the
lattice in b R spanned by the roots. LO is the lattice in

bR spanned by the vectors HuV corresponding to the coroots
aV = 2a/<a,a> , @ € R . Since B(Huv) = <av,B> € Z for any
two roots a,B8 ¢ R, it follows that LO is a sublattice of
L
L, and L depend only on the root system R . Finally,

0 1

the lattice LG is the kernel of the homomorphism e:h + H

defined by e(X) = expG(ZﬂiX) ;

. Moreover the quotient Ll/LO is a finité'group. Both

is surjective and there-

H . The lattice LG lies

e
s

fore induces an isomorphism §/L
between LO and L1 ; also
(1) The homomorphism e :h -~ H defines an isomorphism of

LI/LG onto the centre of G .

(2) The canonical mapping rl(H) +—r1(G) is surjective
and defines an isomorphism of LG/LO onto rl(G)
It follows that L, =1L if and only if G 1is simply

G

0
connected, and that L _ =L

G 1 if and only if G 1is adjoint

1L
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(i.e. G = Ad(G) ). For each lattice L lying between LO
and L1 there exists a connected complex semisimple Lie group

G with Lie algebra g such that LG =L, and G 1is unique

E

(up to isomorphism).

Example. Let G = SL(n,C) , and take H to be the diagomal
subgroup of G . Then bR consists of the real diagonal
matrices with trace 0 ; L consists of the diagonal matrices

0
with trace O and integer elements (so that L T " 1) and

L1 consists of the diagonal matrices diag(al,?..,aﬁ) with
Zai =0 and ai—aj € Z for all 1i,j . It follows that
Ll/LO is cyclic of order n ; we have LG = LO , iln agreement
with the fact that SL(n,C) 1is simply-connected. Hence the
almost simple connected complex Lie groups with Lie algebra
s7(n,C) are in one-one correspondence with the subgroups of

a cyclic group of order n , i.e. with the divisors of n .
Let

a
g =h+ } g
aeR
be the root-space decomposition of g with respect to b
(II, §3). Let R* be the set of positive roots of R rela-

tive to a chosen basis, and let

a
’ b a§R+ ’
Then b 1s a subalgebra of g , called a Borel subalgebra.
It is a maximal solvable subalgebra of g , and every solvable
subalgebra of g 1is conjugate to a subalgebra of b
. Let B be the immersed subgroup of G corresponding to
b . Then B is a closed complex—analytic subgroup of G,
called a Borel subgroup of G . It is a maximal connected

closed solvable subgroup of G , and every comnected solvable

1L



subgroup of G 1is conjugate to a subgroup of B .

In the terminology of §4, the Borel subgroups are the mini-
* mal parabolic subgroups of G . The parabolic subgroups of G
are therefore the subgroups of G which contain a Borel sub-
group; they are closed, connected complex—analytic subgroups
of G . Moreover, a closed complex-analytic subgroup Q of
G 1s a parabolic subgroup if and only if the homogeneous
épace G/Q 1is compact.

Let K be a maximal compact subgroup of G, B a Borel
subgroup. Then T =B n K is a maximal torus (i.e. Cartan
subgroup) of the compact (real) Lie group K . Since G = KB

. (Iwasawa decomposition) we have
G/B = KB/B = K/BnK = K/T

More generally, if P 1is a parabolic subgroup of G , then
KP = PnK 1is a subgroup of K containing a maximal torus,

and G/P = K/KP .

9, Lie groups and algebraic groups

Let g be a real semisimple Lie algebra. The adjoint
representation ady maps g isomorphically onto a subalgebra
of gl (g) = gl(n,R) where n = dim g . Thus™g can be re-
alized as a Lie algebra of matrices. '

On the other hand, if G 1is a real semisimple Lie group,
it is not necessarily the case that G can be realized as a
group of matrices - or, equivalently, that G has a faithful
finite-dimensional representation - even if the centre of G
is finite.

A semisimple Lie group G 1is said to be lipear if G has
a faithful finite-dimensional representation, i.e. if there
exists a smooth injective homomorphism i :G -+ GL(n,C) for
some n . It follows then that i(G) 1is a closed subgroup

of GL(n,C) . An equivalent condition is that G 1is algebraic,



i.e. isomorphic to the identity component (with respect to the
usual topology) of the group of real points of a semisimple
algebraic group defined over R .

Let G and EC be the simply-comnected Lie groups with
Lie algebras g ,g c respectively, and let ¢ :G - GC be the
homomorphism corresponding to the injection X +X ® 1 of g
into 8, - This homomorphism ¢ is not necessarily injective;
it maps the centre of G 1into the centre of GC , and its
kernel D0 is a subgroup of the (discrete) centre of G . The
group Go = G/Do is the 'largest algebraic quotient” of G .

If G 1is any connected Lie group with g as Lie algebra,
let N{(G) denote the intersection of the kernels of the
finite-dimensional representations of G . Then (1) there
exists a representation of G whose kernel is exactly N(G) ,
and (2) N(G) 1is the image of Do = ker(¢) under the cover—-

ing map G~+G .

Example. 1f G = SL(n,R) , then EC = SL(n,C) and ¢: E-*EC
is the composition of the covering map p:G + G with the
embedding SL(n,R) + SL(n,C) . Consequently no proper cover-
ing group of SL{(n,R) 1is algebraic.

Finally, if G 1is compact and semisimple (which means that
the centre of G is finite) then G is compact, ¢ 1is in-
jective, and ¢ maps the centre of G isomorphically onto
the centre of EC . Hence every compact semisimple group is

algebraic, and
G/D <> Go/o(D)
(where D 1is a subgroup of the (finite) centre of G ) sets

up a one-one correspondence (up to isomorphism) between com

pact semisimple groups and complex semisimple groups.
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6 - Liegroups and physics
D.J. SIMMS

Trinity College, Dublin
(Notes by K.C. Hannabuss)

Introduction

Lie groups play a basic r6le in both classical mechanics
and quantum mechanics. In these lectures we shall show how
symmetry in quantum mechanics leads to the study of unitary
representations of Lie groups, whilst in classical wmechanics
symmetry leads one to investigate the action of Lie groups on
symplectic manifolds. We shall see how fundamental physical
quantities such as energy, linear momentum, mass and angular
momentum arise naturally in this context. More briefly at
the end we shall outline a quantisation procedure which en-
ables one to pass from a classical system to its quantum
analogue.

There will not, of course, be time to do more than outline
the main ideas, and the bibliography at the end can be used
to fill in some of the details. The basic structure of quan-
tum mechanics and the rdle of group theory wighin it can be
found in [5], [6], [8] and [10]. Relativistic;symmetry groups
are discussed in detail in the last three of these. Referxr-.
ences [6] and [8] include a discussion of internal symmetry
groups. The geometric structure of classical mechanics is
discussed in [5], and also in [7] and [9] where the connection
with the Lie algebra dual is described. Reference [4] also
contains most of the useful material on symplectic geometry

which underlies classical mechanics.

1. Quantum mechanics
The conventional mathematical model of quantum mechanics

associates with each system a complex Hilbert space H .
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From this can be formed the projective space i , whose ele-
ments are the one-dimensional subspaces of H . For each
non-zero vector Y in H we let ¥ be the one-dimensional
subspace (or ray) containing y . Then H = {ycH; ¢ ¢ H ,
¢ = 0} . The pure states of the quantum mechanical system
are represented by the elements of H . Since we shall have
no need here to discuss general states of a quantum mechanical
system we shall often omit the word pure, and simply talk of
states. A non-zero vector Y in H 1is often called a wave
vector representing the state. When H 1is actually modelled
on a function space, as is often the case, we call it a wave

function.

Example. A non-relativistic particle moving in R . The
relevant Hilbert space is then H = LZCR3).

If ¢ 1is a wave function representing the state @ ,
chosen so that Hw”z = ﬁm3|w(x)|2d3x = 1 , then for each
Borel set E in iR3 the integral E |w(x)|2d3x takes a
value in [0,1] , which is interpreted as the probability of

finding the particle in E .

If ¢ and Y are non—-zero vectors in H then one can
form the scalar quantity |<¢,w>|2/|hbH2H¢|I2 . By the
Cauchy-Schwarz inequality this is a real number lying in the
interval [0,1] , and it depends only on the rays $ and @
on which ¢ and ¢ 1lie. It is interpreted as the tran-
sition probability between the two states $ and @ , that
is, the probability that when the system is known to be in
the state $ an observation will find it in the state ¢ .
We shall denote this probability by (§$,9) .

. Each observable of the system is represented by a self-
adjoint operator on H . If A:H - H is one of these it

has a spectral representation of the form



A = f A PR an)
R

for some projection-valued measure PA on R. If E 1is a
porel set in TR then we interpret the quantity <w,PA(E)w>/
H¢H2 in [0,1] , which depends only on A, E and @ , as
the probability that the observable represented by A takes

a value in the set E when the system is in a state ¢ .

Example. If we are dealing with a particle in R so that
H= LZ(R) , and we take the observable to be the position of

the particle then A acts on a vector ¢ 1in its domain by
(Aap) (x) = xv(x)

Then <¢,PA(E)¢>/IIwH2 = I ]w(x)lzdx , so that the interpret-
E
ation of this as a probability is consistent with our sugges-

tion in an earlier example.

If Hl and H2 are the Hilbert spaces associated with two
quantum—mechanical systems then the combined system is rep-—

resented by Hl ® H2 .

Example. Two particles in ® are associated with

LZ(IQ) ® LZ(RQ) = Lz(mﬁ). The first three coordinates in
Ié are interpreted as referring to the first particle and

the last three coordinates to the second particle. (If the
two particles are totally indistinguishable so that the labels

'first' and 'second' have no meaning then the Hilbert space

has to be modified.)

2. Relativistic symmetries of quantum-mechanical systems
In the Special Theory of Relativity the laws of physics are
held to be the same for all observers in uniform relative mo-

tion. (A similar situation pertained in pre-relativistic
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mechanics where the laws of mechanics were the same in all
inertial frames of reference.) This assertion has conse-
quences in quantum mechanics which we shall now investigate,
The Special Theory of Relativity is modelled on a four-
dimensional real vector space M (representing space-time),
which is equipped with a bilinear form, whose signature is
(+,=-,-,=). (We shall write x.y for the result of applying

the bilinear form to a pair of vectors x and y in M .

The variety {xeM: x.x = O} represents a light-cone in M.)

:
E:
2
.g

The permissible transformations of M consist of translationg

by vectors in M together with the linear transformations of
M , which preserve the bilinear form. These linear transfor-
mations form a group O(M) isomorphic to 0(1,3) , but we
shall concern ourselves only with its connected component
SOO(M) . (One can deal with the other components too, but it
is simpler and more convenient to omit them. This does not

seriously change the nature of the conclusions reached.) The

full group of permissible transformations then consists of the

natural semi-direct product of M with SOO(M) . This is

called the Poincaré group or inhomogeneous Lorentz group. The

action of (a,A) in M@ SOO(M) on X in M takes it to
A.x + a . This transforms space—time as seen in one frame of
reference into space-time as seen in another frame. The mul-
tiplication law for (a,A) and (b,B) 1in M(s)SOO(M) is
(a,A).(b,B) = (a+A.b,A.B) .

There is a similar group of permissible transformations in
non-relativistic mechanics, called the Galilean group. This
is isomorphic to ]R4 ® (]R3©SO(3)) , where the semi-direct
product of S0(3) with R? is the ngtural one, and the ac-—
tion of ]R3© S0(3) omn ]R4 defining the other semi-direct

product is

(v,R) ¢ (x,t) = (R.x + tv,t)



. 3 .
for (v,R) in R @®S0(3), x 1in ]R3 and t in R,

Whenever we have a group of symmetries G of the laws of
‘physics there must be a corresponding action of the group on
the states of a quantum—mechanical system. In fact the group
element g transforms our old frame of reference into a new
one, and corresponding to each state ? will be a new state
T (§) which viewed from the new frame looks the same as @
d%d in the old frame. This defines a map Tg from H to it-
self. TFor consistency we requireAthat Tgh(@) = Tg(Th(@))
for all g and h in G, and ¢ in H . ¢

Since the laws of physics are not supposed to be changed
by the action of G , transition probabilities must be pre-
served. So (Tg($),Tg(@)) = ($,9) for all g in G and
$,@ in H . It turns out that in cases of interest this
forces each Tg to be a genuine projective transformation

and indeed that we have the following remarkable theorem of

Wigner.

Theorem. If G is a connected group and g - Tg is a homo-
morphism from G to the transformations of H which satisfy
(Tg(&),Tg(@)) = (¢,9) for all ¢,9 in H and g in G,
then Tg is 'induced' by a unitary transformation of H .
That is, there is a unitary transformation Ug'%of H (for
each g im G ) such that

A .
(Ugw) = Tg(w)

for all ¥ 1in H .

Proofs of this result can be found in Wigner [11] and in
Bargmann [1]. In these references the group is not assumed to
be connected, but the price paid is that anti-unitary operators
may be needed. We write U(H) for the unitary operators on

H , U(ﬁ) for the induced transformations of H , and 7w for
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the matural projection from U(H) to U(ﬁ)

One can now ask whether the operators Ug can be chosen in
such a way that g - Ug is a homomorphism. Unfortunately thig
is not usually possible. However, one can form the pull-back

*
group m G = {(g,V) eGxU(H) : T m(V)} , which is an exten-

sion of G by the circle group gsl . Then the homomorphism T
automatically lifts to a homomorphism from n*G to U(H)

One trouble with ﬂ*G is that it depends through 7 on the
Hilbert space used. We would prefer to be able to use an ex-
tension depending on G alone, such as its universal simply-
connected covering group C . Unfortunately there is an ob-
struction to doing this which lies in Hz(g;R) (see the lec~
tures of Bott), but if this vanishes it is possible to 1lift T
to a homomorphism from G to U(H) . Another advantage of
this situation is that the dimension of G is the same as
that of G (when G is a Lie group), whereas the dimension
of n*G is higher by 1 .

For any semi-simple group and also for the Poincaré group
Hz(g,m) vanishes and we can find a homomorphism from ¢ to
U(H) . In the case of the Poincaré group G can easily be
described. There is a homomorphism from the group SL(2,C)
onto SOO(M) having the two element centre of SL(2,€) as
its kernel. This allows us to define an action of SL(2,C)
on M (by factoring through SOO(M) ), and then to form
M@ SL(2,C) . This is G for G the Poincaré group. Be-
cause it is this group which is of most importance in the
applications we have in mind we shall henceforth change our
terminology and refer to M@ SL(2,C) as the Poincaré group.
We shall also introduce the notation E(M) for it.

For the Galilean group the situation is rather different.
The .cohomology group Hz(g,m) is isomorphic to 1R and con-
tains an obstruction which forces us to make a one-dimensional

extension of the group.

Returning to the Poincaré group, we know that inducing each



homomorphism T from M@ SO_(M) to U(H) is a homomorphism
from E(M) to U(H) . We shall now adjust our notation and
call this latter homomorphism T as well., So T furnishes
us with a unitary representation of E(M) on H . In the
lectures of Schmid it is shown that such a unitary represen-
tation of a group G gives rise to a representation T of
its Lie algebra g as skew—adjoint operators having a common
deﬁse domain Hw (the space of analytic vectors in H ).
This representation T can be uniquely extended to give a
representation of the universal enveloping algebra Ug in
the algebra of normal operators defined on Hw . The rep-
resentations T and T are connected by the fact that

T(exp X) = exp(T(X)) for each X in g . For each X in

g an observable % i(X) can be defined.

Example. G =EM), g = e(M)

For each m in M we pick P(m) in g to be the infini-
tesimal generator of translations in the direction of m
(normalised so that exp(P(m)) 1is precisely translation
through m ). The subgroup SU(2) of SL(2,f) fixes a unit
vector e, in M , and the observable % T(P(eo)) is called
the energy of the system. The three-dimensional subspace of
M orthogonal to e, (with respect to the biiihear form) is
also invariant under SU(2) which acts on it as ordinary
rotations. (SU(2) 1is a double cover of S0(3).) We can pick
an orthogonal basis of vectors {ejs M: j=1,2,3} for this
subSpaci,.each normalised so that ej.ej = -1 . The observ-
ables 7 T(P(ej)) are called the lin;ar momenta.

Any decomposable element o in A™M defines a two dimen-
sional subspace of M consisting of vectors whose exterior
product with o 1is zero. The subgroup of SL(2,f) which
fixes this subspace induces a one-parameter group of trans-—
formations on it and we write L(a) for its (suitably nor-

malised) infinitesimal generator. In fact the normalisation
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can be chosen so that the map taking o to L(a) extends
linearly to all elements of AZM . By convention the gener-
ators L(e2 Ae3) , L(e3 Ael) and L(e1 Aez) are called Ll’

L2 and L3 respectively. They lie in su(2) , and, with’

respect to suitable coordinates, can be written as

01 .0 i 1 o,
= 14 = - = =13
L]. il(l 0) * Lz %l(_i 0) s L3 21(0 _1)
They generate about spatial axes in M . The observables
% i(Lj) j=1,2,3, to which they give rise, are called the

angular momenta of the system.

Just as states change under the action of the relativistic
group so do the obserables. Let us suppose that a new frame
of reference is related to the old one by the action of g
in the group. Then a relativistic transformation which ap-
peared to be h (¢ G) 1in the old reference frame looks like
ghg_1 in the new one. That is, the change of reference frame
is represented by acting on G by Ad(g) . As a result of
this the change of reference frame affects the infinitesimal
generators lying in g by the adjoint action of g . If X
lies in g then the observable %—T(Adg(x)) plays the same
r6le in the new frame of reference as %TT(X) did in the old
frame.

This can be extended to the whole of the universal envelop-
ing algebra Ug . It suggests that elements in the centre of
the enveloping algebra 3 will be particularly important,
since these will give rise to the same observables in all
frames of reference. The elements of 3 are called Casimir

elements.

Example. G =E® , g =e(@ .
For each element m in M we have P(m) in g . This

gives a linear map P in Hom(M,g) . But using the bilinear




form we can identify Hom(M,g) with M ® g, and think of P
as an element of this tensor broduct.

Now, quite generally, if we have vector spaces Ul , U2 ,
Vl and V2 and linear maps ¢i from Ui to Vi (i =1,2)

we can form the linear map ¢1 ® ¢2 from Ul ® U2 to

v, ® V2 . Putting Ul =M ® M which maps under the bilinear
form to Vl = R, and U2 = g ® g which maps bilinearly under
multiplication to V, = Ug, we see that there is a linear map

[ )

from M ® g ® M ®g MeM®g®g to Re Ug: Uy ., Identi-
fying P with an element of M® g we canmap P ® P to an
element P.P in Ug . Checking the action of G on P.P we
find that it lies in 3 , the centre of Ug . In coordinate

terms

Il W

P.P = P(e )2 -
[o]

2
P(e.)
i ]

1

We can apply a somewhat similar analysis to the case of

Ul = AZM ® M which maps under exterior multiplication to A3M

and then under the Hodge duality map to v =M, together with
U2 = g®g and V2 =Ug as before, to justify the definition
of an element W = *(LAP) in M®g . (L can be identified
with an element of AZM ® g and then W is the image of L@®P
under the composite map A Me gOM® g ¥ A2M®Mbg® g+ Meug )
An element W.W can now be formed in the same way that P.P
was.
The element W.W 1is also central in U _ and the two ele-

ments Zl = P.P and Z2 = W.W generate : . The two observ-
ables T(Zj) j = 1,2 are therefore relativistically invariant,.
(Since both Zl and Z2 are of even order they give rise di-
rectly to self-adjoint observables without the need for any

factors of 1 .)

We now turn our attention to the unitary representations of

the relativistic symmetry group G on a Hilbert space H .

159



Usually it will be possible to decompose the space into a di- ;
rect sum or integral of irreducible subspaces (see the lectureg
of Mackey). We can think of this as breaking the physical l
system up into more elementary pieces. We therefore think of
the Hilbert space of an irreducible representation as being
associated with an elementary relativistic particle.

Of course, a composite system containing two elementary par~
ticles will not usually be elementary since the tensor product
Hl ® H2 will then decompose into a direct integral of irreduc-
ible subrepresentations. It is often of physical importance
to know precisely what this decomposition is.

This suggests two mathematical problems. The first is to
classify all the irreducible unitary representation of the
relativistic symmetry groups, in particular of the Poincaré
group. (This was essentially done by Wigner in a paper which
is reprinted in [3].) The second is to describe in detail the
decomposition of tensor products of such representations.

We shall only concern ourselves with the first of these
problems, and even there we shall only describe some of the
physically most interesting representations.

In his lectures Mackey indicates how the problem of finding
all the irreducible unitary representations of semi-direct
product groups can often be reduced to a similar problem for
certain of their subgroups, and thence solved. He describes
this in detail in the case of the Euclidean group ]R3() su(2) .
(More details can be found in [6].) The case of the Poincaré
group is similar, and all its irreducible unitary represen-
tations can be found by inducing representations of certain
subgroups.

The inducing construction provides répresentations of the
group acting on sections of vector bundles. (This is described
in the lectures of Mackey but also in those of Bott and of
Helgason.)

In general we have in G a closed subgroup K which has




2 unitary representation L on a Hilbert space V . A vector
pundle over X = G/K can be constructed by using the principal
pundle G = G/K = X . In fact we first form G x V and then
factor out by the equivalence relation (gk,v) ~ (g,L{k)v)
for all k in X, g in G and v in V . This giwes a
vector bundle GL over X whose fibre is V . The existence
of a quasi~invariant measure u on X allows us to define
the spdce of square integrable sections LZ(X,GL,u) . Since
¢ acts on GL = GxV/~ (by left translation on G ), it also
acts on these sections, and this gives the induced represen-~
tation.

One of the subgroups of G = E(M) from which the general
procédure tells us that we can induce irreducibles is K =
M® SU(2) . This gives rise to vector bundles over X = G/K
~8L(2,C)/SU(2) . This homogeneous space can be thought of as
the hyperboloid

X ={xeM: x.x = mz, x.e >0} ,

m o
for m a positive real number.

As a matter of fact there is a natural vector bundle sitting
over Xm , namely the complexified tangent bundle TC(Xm) .
If we think of Xm as imbedded in M we can thépk of T(Xm)
as a subspace of M x M given by {(x,Vv) ¢ X xMiox.v = o} ,
and TG(M) can be obtained from this by letting v lie in the
complexification of M (subject to the same constraints). The
group element (a,A) in E(M) can be made tn act on this
bundle by sending (x,v) to (A.x, exp(i(a.Ax))A.v) . The
corresponding action of E(M) on L2~sections of the bundle
provides a unitary irreducible representation U(m,l) . More
complicated representations U(m,s) can be constructed for s
in §Z+, by taking the spinor bundle, whose fibre is Gz » and
then forming the symmetrised tensor product bundle whose fibre
@25 2

€~ . In this case the fibres are (2s+l)~dimensional.
Symm

is
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As the notation suggests, in the case of s = 1 this gives the!

complex tangent bundle.
The relativistically-invariant observables defined by Zl

and Z, take scalar values in these representations (as they

must by Schur's lemma). In fact

. _ 2
U(m,s)(zl) =m 1

and

U(m,s

) (2)) = @ls(s+1)1 .

The representations U(m,s) are thought of as describing
elementary particles of mass m and spin s . (The parameter
m 1s identified with the mass because n” represents the
value taken by P.P , and in the classical theory a similar
relationship links the linear momentum, energy and mass of a
particle., The spin is so called because the restriction of
U(m,s) to the Euclidean group ]f3C) SU(2) gives a represen-—
tation in LZCR3,CZS+1) in which s 1is clearly seen to be
the spin of a 'localisable' particle. (See Chapter 3 in [61].)

There is a somewhat similar parametrisation of the irreduc-
ible unitary representations of the extension of the Galilean
group, but in that case the mass m appears in connection

with the centre of the extension.

3. Internal symmetries in quantum mechanics

It became apparent in the 1930's that the newly discovered
neutron was remarkably similar to the proton in all its dy-
namical properties (having the same spin and almost identical
mass), and Heisenberg suggested that it might just be another
state of the same particle, the nucleon., Ignoring for the
moment the small mass difference both particles transformed
under the representation U(m,%) of E(M) (with m = 939
MeV). The direct sum of their associated Hilbert spaces could

be thought of as H ® V where H was the Hilbert space on
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which U(m’%) acted and V was a two—dimensional space whose
vectors told one whether one was in the proton or neutron
state. This was the Hilbert space associated with the nucleon.
ynfortunately by its very construction it is not an irreducible
representation space for E(M) , and so would not seem to de-
fine an elementary relativistic system. However, in contrast
with the 'external' geometrical symmetries of E(M) one can
alsé produce an 'internal' symmetry group SU(2) acting on V,
and then H ® V 1s an irreducible representation space for

the direct product group E(M) x SU(2) . Because of its sig-—
nificance in discussing isotopes, and by analogy with the copy
of SU(2) contained in E(M) which describes ordinary spin,
the new group SU(2) was called the isospin group.

Strictly speaking this picture could not be quite accurate
because of the slight difference in the masses of the two
particles (which was about 0.7Z of their total mass). How-
ever, confidence in the model was increased by the discovery
in the next two decades of other groups of particles similar
in their dynamical properties and linked together in other
" representations of SU(2) . For example, three 7T-mesons
transformed with the three-dimensional representation of
SU(2) .

Early in the 1960's Gell-Mann and Ne'eman realised that if
one supposed that the internal symmetry group was SU(3) ra-
ther than SU(2) then many more relativistically similar
particles could be linked together. In fact 40 known par-
ticle states could be assigned to five irreducible 8-dimen-
sional representations. We shall now outline this theory,
suppressing all but the internal symmetries.

The group SU(3) is an eight-dimensional compact simple

Lie group. Amongst its eight generators are the elements

o1 0 0 i 0 1 0 o0
I, =~ 0 o), 1,=~i|-i o o0)and 1;=-4il0 -1 O
0O 0 O 0o 0 O O 0 O
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which generate the isospin subgroup used in the earlier theory,

and

1 1 00
Q=§'i 0-2 0
o 0 1

The observables associated with the Ij (j =1,2,3) are
called the components of isospin, and that associated with Q
is called the electric charge.

Together Q and I3 generate a Cartan subalgebra of
su(3) : b = {diag(Al,Az,XB)e su(3) : A1+A2+A3==0} . Following
Cartan's method, if one has a representation R of su(3)

then one can look for weight vectors wu in the representation

space such that

R(I¥, = iu(Ty,
and

i«o)wu = i@,

The positive roots of § in g can be taken to be a,B
and a+B , which assign to diag(kl,xz,AB) the values AB—AZ,

Al—A3 and Al—xz respectively. The weight diagram for the

adjoint representation in which these occur is

-8 a
[ J [ J

-(a+B)® 0® ®a+p

—a® .

We now give as an example one of the octets of particles

whose charges and third component of isospin agree with the
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values of u(Q) and u(I3) in the adjoint representation

w(Iy) = -1 -1 0 + +1
| IKo : ! :
| K
| T\ I *\ !
| oS ] P!
| AN Lo
} | \\l [o] ! \‘ I +
— ~
T @ | ‘JT ! L
N 0. ~ I N
. | n N I .
N | \\ N
N N N
Sl A \
\‘E \.\ K0 \\
N AN AN
N N N
N A N
\\ N M.
w(Q) = -1 0 +1

All these particles have spin s = 0 and mass m = 628 *
135 MeV . The particles at the same vertical level on this
diagram were already linked together by the isospin subgroup.

As we have already mentioned a total of forty known par-
ticles could be linked together into such multiplets, and a
further nine could be assigned to an irreducible represen—
tation whose highest weight is 2a+f . Now this represen-
tation is in fact ten-dimensional but at the time no particle
was known which could be associated with the we}ght -a+8 .
However, the properties of such a particle could-be predicted
and a search soon discovered a particle (Q ) which fitted
the theoretical description exactly. The weight diagram is
given below.

One of the reasons why £ could be described so well by
the theory was that SU(3) not only linked together particles
of approximately the same mass but could also be used to pre-
dict the mass differences within a single representation.

Such predictions were based on a purely empirical formula but
led to the hope that both SU(3) and the Poincaré group might
be subgroups of a larger group in which such experimental re-

lationships would find an explanation. Unfortunately a theorem
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-a-28 -8 o 2a+8

[ [ [ ] [
-a-f 0 a+f
[ [ J [
- B
® ®
0"
—a+8

of O'Raiffeartaigh showed that it was not possible to include
both the Poincaré group and SU(3) 1in a larger Lie group ex-
cept by having them centralise each other (see [3]). This
means that a theoretical understanding of the mass differences
is still lacking.

More recently the discovery of a new species of particle
has renewed speculation that the internal symmetry group might
be yet larger, for example SU(4) . The observable associated
with the additional generator needed for a Cartan subgroup has

been christened 'charm'.

4. Classical mechanics

In classical mechanics one associated with each system a
configuration space X which is a C -manifold. The tangent
bundle T(X) is called the velocity phase space, and points
of it represent the pure states of the system. (Again we

shall have no need to talk of states which are not pure.)

Example. A particle moving on a sphere has configuration

space

X

SZ~{stR3: x| = 1} s
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and velocity phase-space

3

T(Sz) ~ {(x,v) es?xm?: x.v = 0} .

The dynamics of the system are derived from a Lagrangian
function L : T(X) » R which is equal to the kinetic energy

minus the potential energy.

Example. A particle in R" moving under the influence of a

potential V
T(X) ~ R™R" = {(x,v) ¢ R™xR"}

Here (x,v) represents z vl —27- if we let x be the j=th
i e
component of X .

Then

L(x,v) = dmlvi? - v(x)

Let us take any point (x,v) 1in TX(X) . Thgn TX(X) is
naturally isomorphic to the space of tangent vectars to T(X)
which are tangential to TX(X) at (x,v) . Hence the restric-
tion of the differential dL to this subspace defines a linear
form on Tx(f) . In other words we have a way of mapping
TX(X) to TX(X) . If this map defines a diffeomorphism from
T(X) to T*(X) then it is called a Legendre transformation.
Such maps enable us to think of the states as being in T*(X)
rather than in T(X) . The cotangent bundle is simply called
the phase space of the system, and the description of classi-
cal mechanics to which it gives rise is called the Hamiltonian
formulation in order to contrast it with the Lagrangian formu-

lation in T(X) . Corresponding to the Lagrangian function on
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*
T(X) is a Hamiltonian function on T X . In simple situationg

this 1s just the total energy (kinetic plus potential),

Example. A particle in R" moving under the influence of &

potential V

L(x,v) = imlviz - V(%)

dL Z —E%f dvj + Z —EET dxj

v ax?

m Z vjdvj - 2 —Eyr dxj
axJ

The restriction of dL to vectors tangential to TX(X) is
given by dxd =0 » leaving m 2 vlav? , and, on making the
*
identification with an element of TX(X) this becomes

m Z vjdvj

*
If we choose the natural coordinates {pj} in TX(X) (co-

ordinates with respect to the basis dxJ ) then the Legendre
o . In general it is pj = Jﬂ%.

]
2 V) . X

transformation here is pj =

The Hamiltonian is H = _%E Ipl

*

The phase-space Y = T X possesses a natural one-form
a = Z pjdqj if we lift coordinates q from X and choose the
natural coordinates pj on qu . (This one-form can also be
defined in a coordinate-free way.) The two-form w® = da =
Z dpj /\dqj being exact is certainly closed, and it is also
non-degenerate. We call a non-degenerate closed two-form a
symplectic form, and a ¢ -manifold on which a symplectic form
w 15 defined is called a symplectic manifold. We have thus
shown that T*(X) is a symplectic manifold.

Now on any C -manifold Y the exterior derivative maps

Cw(Y) into the one-forms Ql(Y) . On a symplectic manifold
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the form w gives an identification of the tangent and co-
tangent spaces which enables cone to turn the forms into vector
fields (and vice versa). Explicitly the vector field & on Y
comes from the form &fw = w(g,+) . Composing this identi-
fication with the exXterior derivative gives a map from Cm(Y)
into the vector fields on Y , which takes ¢ in Cm(Y) into
5¢ -such that d¢ = §¢ w . The vector fields obtained in this
way are called Hamiltonian vector fields. We write Ham(Y)

for the space of all Hamiltonian vector fields: {E¢: $e ¢ ().

One has the diagram:

. 0 ——constant functions » Cm(Y) »Ham(Y) =—0

N

ac™wy cat (v

The horizontal sequence becomes an exact sequence of Lie al-
gebras if we turn c”(Y) into a Lie algebra by defining the
Poisson bracket of two functions ¢ and ¢ to be [¢,y] =€¢(W)-

In a classical mechanical system the Hamiltonian H gives
rise to a Zector field EH on Y = T*(X) . This determines a
flow on T (X) and (using ® to make the usual identification)
also on T(X) . Both these flows project onto ;he.same flow
on X .

Often we require a mechanical system to be invariant under
some relativistic symmetry group G such as the Poincare group
(or Galilean group). We then study the action of G on Y ,
which must preserve w .

If G 1is a connected Lie group with Lie algebra g then

each X in g gives a vector field gx on Y defined by
X d o
(£ () = - g5 ¢exp(tDY)| ¥V ye¥,9ecC (V)
t=0
The condition that the action of G preserves w 1s equivalent

169



to saying that E}jm is a closed one-form. If Hl(Y,]R) =0,
or if [g,gl = g , then Ex must be a Hamiltonian vector
field. In this case we have a map from g to Ham(Y) . We
should like to 1lift this to a Lie algebra homomorphism from g
to C(Y) :

C”(Y) ———— Ham(Y)
“~
~
?\\‘\
~
Ng

This is reminiscent of the situation in quantum mechanics.
It is always possible to make an extension E of g by R
by defining

E=((X,0) e gxC(D: £ = F,d,} ;
such that E can be represented in Cm(Y) . If this extension
splits (that is, if there is a homomorphism g + E such that
g »E > g is the identity), then we can represent ¢ itself
in Cm(Y) . Usually, however, there is an obstruction to such
a splitting in Hz(g,m). Fortunately, for the Poincaré group
E(M) and for any semi-simple Lie group this obstruction van-
ishes, and the lifting can always be made. For the Galilean
group, however, an extension is necessary, the mass of the par-
ticle appearing as the obstruction to the lifting. (See

O'Raiffeartaigh in [2].)

Example. G = SO(3) . Since G is semi-simple, the lifting
to a map s0(3) -+ C (Y) can always be made. If L, (j=1,2,3)
generate rotations about the three axes in ]R3 thei the corre-
sponding functions ¢Lj (j=1,2,3) in Cm(Y) are called the

angular momentum functions.
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Observables in classical mechanics are identified with C -
functions on Y . They can thus be constructed from the Lie
- algebra in much the same way as in quantum mechanics. From
the -Poincaré group generators one obtains energy, linear mo-

pmentum and angular momentum observables.

Example. Although many groups have to be extended before the
Homomorphism from g to Ham(Y) can be lifted to Cm(Y) ,
every group has some actions on symplectic manifolds which
permit a lifting without the mneed for any extension. We give
an example of this due originally to Kirillowv.

Any Lie group G acts via the adjoint representation on
its Lie algebra g . If g* is the vector space dual of g
then G acts on g* by the coadjoint action, that is by the
transpose of the adjoint action. This action allows us to
decompose g* into orbits under G . Kirillov showed that
each of these has a natural symplectic structure. In fact X
and W in g give rise to vector fields EX and Ew on
0 by the general construction given above. At a point f£
in 0 ¢ ¢* one defines mo by

S e = < mul

It is easy to check that this is well-defined (that it
depends only on Ex and Ew and not on X and W ). It can
also be shown that mo is a non-degenerate two—form on @ ,
and moreover the Jacobi identity in forces it to be
closed. Consequently, (O,mo) is a symplectic manifold.

But also for each X in g one can define ¢xe Cm(O) by
¢x(f) = <f,X> for all f in 0 ¢ g* . One can check quite
easily that this provides a lifting of the map from g to
Ham(0) .

We shall return to this example shortly.
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In quantum mechanics we identified the elementary relativ-
istic systems as those associated with irreducible unitary
representations of E(M) . For similar reasons we can think
of an elementary relativistic system in classical mechanics
as one associated with a transitive action of E(M) on a
symplectic manifold (Y,w) .

The problem analogous to classifying all the irreducible
unitary representations of a group G 1is thus to find the
possible symplectic manifolds on which G acts tramsitively.
(Not all of these have the form Y = T*X .) This problem has
been solved completely by Kostant and Souriau ([4] and [9]).

Suppose that G acts tramsitively on Y and that it is
possible to find a homomorphism from g to Cm(Y) . We
shall write ¢X for the image of X in ¢ wunder this map.
Then for each y in Y the map sending X to ¢x(y) is a
linear functional, ¢'(y) . We thus have a map ¢° from Y
to g* which sends y to ¢°(y) . This is called the moment
map. If we let G act on g* by the coadjoint action of the
previous example then the moment map commutes with the action
of G . In fact it maps Y onto an orbit of G in g*, and
even maps the symplectic structure on Y onto the Kirillov

symplectic structure on the orbit.

Theorem. If (Y,w) is a symplectic manifold on which G acts
transitively and which permits a lifting Of the action to a
Lomomorphism from g to ¢ (Y) , then there is a covering map
from (Y,w) to (O,mo) for some coadjoint orbit 0 in g * s
which is a G-map.

In those cases where it is necessary to make a central ex-
tension E of g before the lifting g »—Cm(Y) exists the
conclusion is that every homogeneous symplectic G-manifold

. *
covers a G-orbit in E .
As a result of this theorem the elementary relativistic

172




systems in classical mechanics can be found by classifying the
possible coadjoint orbits of G in g*

As before we let 3 be the centre of the universal envelop-
ing algebra U, . The elements of 3 can be identified with
¢ invariant symmetric elements of Ug» and so with G-invariant
polynomials on g* . The level sets of these polynomials
(where they take comstant values) pick out G-invariant subsets
of g* . These must necessarily be unions of G-orbits in 5;*,

and in the most favourable case may be single orbits.

Example. To obtain the elementary relativistic systems in
.classical mechanics we must classify the orbits of the Poincaré
group in the dual of its Lie algebra.

We saw earlier that the centre 3 of Ug is in this case
spanned by the two elements Zl = P.P and Z2 = W.W (where
W=*(LAP) ).

We now pick m > 0 and s > 0 and look for the variety in
e(M)* on which Zl and Z2 take the values m2 and mzs2
réspectively. This level set turns out to be an 8-dimensional
submanifold of e(M)* which is the union of two orbits. (Omn
one orbit the polynomial defined by P.e0 is positive and on
the other it takes negative values.) The topology of each
orbit is that of mﬁ XSZ . If one insists that the orbits be
integral orbits (see the lectures of Kostant) them s has to
be half-integral just as in quantum theory. These orbits are
the nearest ome can get to a phase-space of a classical rela-

tivistic particle of mass m and spin s

5. Quantisation

Up till now we have treated classical mechanics and quantum
mechanics separately, but there are methods for relating them.
Geometric quantisation takes a symplectic manifold (Y,w) such
as the classical mechanical phase space and constructs from it

a Hilbert space in the way outlined below.



(i) A line bundle L - Y 1is chosen having both a hermitian
structure and a comnnexion V whose curvature form is w .
This is possible if and only if w defines an integral class
in the de Rham cohomology.

(ii) Amn involutive subbundle F of TC(Y) is chosen, which
is isotropic with respect to w , and which has half the di-
mension of Y . Such an F 1is called a polarisation.

(1ii) A Hilbert space structure is found for the sections of
L which are autoparallel along F (that is {s € T(L)

Vgs =0 V E£e F}). Structures of this kind which are closely
related to the hermitian structure on L do exist.

This type of comstruction is motivated partly by quantum
mechanics, partly by the representation theory of compact Lie
groups, and partly by the Kirillov method for milpotent Lie
groups.

In representation theory (Y,w) is an orbit of G in g*,
and F 1is chosen to be a G-invariant foliation. Such polar-
isations can be found by choosing certain Lie subalgebras of
the complexification of g . (See Kostant's discussion of

solvable Lie groups.)

Example. From an elementary relativistic classical system of
mass m and spin s it is possible in this way to construct
the Hilbert space of the corresponding elementary quantum

system.

When applied to the phase-space of a genmeral classical
mechanical system this procedure is closely related to the
quantisation methods used by physicists, and the Schrodinger

equation can be derived from it.

: *
Example. Y =T (X) , w = do is exact. The cotangent spaces
are themselves the leaves of a suitable polarisation. Sections

autoparallel along them can be represented by their values on
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the zero sectiom, that is, on X itself. If ome chooses a
pundle L which is trivial then one obtains the Hilbert

space L2(X) , and this gives the usual quantisationm.
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7 - The Harish-Chandra character

M.F. ATIYAH
Mathematical Institute, Oxford

(Notes by G. Wilson)

In this lecture we shall give an elementary introduction to
the idea of the character of an infinite-dimensional represen-
tation.

Recall first that if T: G > GL(V) 1is a representation of
G on a finite-dimensional vector space V , one defines the

character of T by
XT(g) = trace Tg , g €G

From the theory of finite groups one knows that this is an
extremely useful object, and one would naturally like to con-
struct something like it in the infinife—dimensional case. To
get a clue as to how this might be dome, consider the special
case of the regular representation, that is, V = LZ(G) and G
acts by tramslation. For G finite it is easy to compute the
character of this representation: we have

= 1 P
Xreg(g) 0 if g e

X (e) dim V = |G| .

reg

Thus for non-finite G we might expect the character of the
regular representation to be zero away from e , and infinite
at e , that is, to be the Dirac delta 'fumction'.

To see how to make semse of this we comsider the case of
the ecircle group G = Sl = {z¢ Cl |zj= 1} . From the theory
of Fourier series we know that LZ(G) has an orthonormal
basis {z"} . If g = eie is an element of G , the ac-

nezZ .
n iné n
=e .,z

tion of g on the basis is given by ng , SO
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tbat the matrix of Tg is an (infinite) diagonmal matrix

diag(elne) Thus trace Tg = Zelne . Of course this

neZ °
series does not comverge in the usGZl sense; but it does con-
verge 'weakly', that is in the sense of distribution theory.
For if f ¢ Cm(G) , i1t is well-known that the Fourier series
) a i?ne of £ 90§verges absolutely (where

-in

VA
a = ——'f f(8)e de ) , so that
n 27 o

1 E sz £(8)ei™ a0 = ¥ a_ = £(0) = 6 _(£)
PL o ?
60 being the Dirac distribution at the identity.

Another way of formulating this is as follows. Recall
that for G finite one usually extends a representation T
of G to a representation of the group algebra, consisting
of formal sums £ = zfigi , fie C, g; € G : one sets Tf =
zfiTgi . If one thinks of £ as a function on G , the
generalization to the non-finite case is clear: we set

f
Banach space of bounded linear operators on the space of the

T, = [ f(g)ngg (here we integrate with values in the
G

representation). In the case of the regular representation

m
of G = Sl we have Tf = é%—[ f(8) Tede ; thus the matrix
of T, with respect to our basis {z"} is diag(a_n) ,

where a are the Fourier coefficients of f . The trace
Zan is finite for fe¢ Cw(G) , 50 we can define the character
to be the distribution £ - trace Tf
Now consider an arbitrary unita;y representation T :

G~>UMH), G = Sl . Then H decomposes H = Hn.’ where Hn
is the subspace omn which eiee G acts as scalar multipli-
cation by eine . Suppose each fﬂl is finite-dimensional, say
dim Hn = Mn . Then we should like to define the character of

T to be the distribution Xp = ZBglelne . To see when this

. . . . . . 1nf
is in fact a distribution, note first that a series z ane o
o0

is the Fourier series of a C function if and only if we

have a = o(nk) for all integers k (for we must be able



to differentiate the series term by term.arbitrarily of ten) .,
It follows easily that the series zr&lelne will converge' as
a distribution 1f and only if Mn = O(nk) for some k, that
is, if the Mh have (at worst) 'polynomial growth' with re-
spect to n . Whenever this is the case, then, we can defime
the character of our representation as a distribution on Sl.
Next we indicate how to gemeralize this to any compact Lie

group K . Again consider first the regular representation

LZ(K) . The Peter-Weyl theorem states that

- *
L2 = 1V, @ v,
AR

Here as usual K is the (countable) set of isomorphism classeg
of irreducible representations of K (they are all finite-

dimensional) and V is a fixed representatiomn in the class

A
A . The above is really a decomposition as K xK -spaces

(K acts by both left and right translatiomns on LZ(K) , on

*
the left on V., and on the right on Vx ). 1f we comsider

A
just the left action of K om LZ(K) , we get

AeK ATA
where dk = dim VA . The character is given by XW:=zdk'Xk ,
where XA 1s the character of VA ; as for K=S* , this sum

converges as a distribution on K to the Dirac distribution
Ge at the identity.
If T: K~ U(H) 1is now any representation of K , we can

decompose it as H = XZK Hx , where H. 1is the subspace of H

A
on which K acts as a direct sum of copies of v, . We as-
sume all the H, are finite-dimensional, so that we have H =

A
EMXVA s MX some non-negative integers. By analogy with the

case of Sl we expect the sum ZMKX to converge to a dis-

A

tribution on K provided the Mx do not grow too fast in

some sense. A convenient yardstick for measuring the growth
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_some number u(A) =20 . All the matrix coefficients of V

of M, is provided by the Laplacian. Recall that on any

compact Riemannian manifold X we have the Laplace operator

" pA: 1t is an elliptic self-adjoint second order differential

1

operator with eigenvalues 0 < u, < £ ... . (On S we

u

d 1 2
have A = - —5 .) We can write any C~ function f on X

de
as a convergent sum f = Zalwl , Wi an eigenfunction of A
with eigenvalue P and a formal sum ZMiWi will comverge
to a distribution on X if and omnly if Mi = O(ui) for some
k . In the case whem X = K with a bi-invariant metric, A
is a bi-invariant operator on K , hence (Schur's lemma) A

acts on each representation V, as scalar multiplication by

A
3y’
hence also the character X, » are eigenfunctions of A cor-
responding to the eigenvalue u(d) . Thus the sum ZMAXA
will converge to a distribution provided that MA = O(u(l)k)
for some k . When that is the case we define this distri-
bution to be the character of the representation EMAVA .
Remark If K is semi-simple there are other equivalent ways to
measure the growth of MX . Instead of the eigenvalues ()
we can use the degree d(A) of the irreducible representation
vy s or the norm |A| of the maximal weight vector.

Finally we consider the case of a non-compact Lie group G.
Let K ¢ G be a compact subgroup. We have in mind principally
the case where G 1s semi-simple and K is a maximal compact
subgroup, e.g. if G = SL(2,R) then K = S0(2) . Let T: G -
U(H) be a unitary representation of K, so that H splits up

as before: H = ) MAHA . Thus if the M, are finite and grow

slowly as explai%é% above we have the 'K—Zharacter‘ ZMAXA .
This is a distribution on G. By restriction, it can be viewed
as a representation of K, which is not good enough for many
purposes. For example when G = SL(2,R) , K = S0(2) and its
conjugates give the elliptic elements of G, but miss the open
set of hyperbolic elements (real eigenvalues). A 'good'

character should deal with all comjugacy classes. We wish
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therefore to define the character as a distribution on G. For
this we go back to the second description of the character that
we gave for G==Sl . Let fe¢ C:(G) (Cw with compact support),
Then we have the operator Tf = c Tgf(g)dg . 1f we could take
the 'trace' of this operator, we could try to defime the charac
ter to be the distribution £ -+ trace Tf

Now the trace can be defined omly for a restricted class
of operators on H (called 'trace class' operators). Let
{ei} be an orthomormal basis for #H ; then an operator
A: H > H 1is said to be trace class provided that we have
2\<Aei,ei>\ <= for all bases {e;} (i.e. the sum of the
diagonal elements in the infinite matrix representing A is
absolutely convergent). When this is so, the sum Z<Aei,ei>
is independent of the choice of basis, and is defined to be
the trace of A . Thus we need to know when our operators
Tf are trace class, The main results are as follows.
Theorem 1. With the above notation, suppose we have MA =
O(d(x)k) for some k . Then for every f ¢ C:(G) , the op-
erator T_ 1is trace class, and the map £ > trace T_ is

£ £
continuous, that is, it is a distribution on G .

Theorem 2. Let G be comnected semi-simple with finite
centre, K © G a maximal compact subgroup. Then for every
irreducible unitary representation of G -we have MA < d(x) .

Putting the two theorems together we get:
Corollary. 1If G is connected semi-simple with finite
centre, then every irreducible unitary representation of G

has a character which is a distribution on G .

It is natural to ask how bad a distribution the character

can be. It would be most convenient if it were simply a
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function on G , as in the finite-dimensional case, (Recall
that a locally L' function ¥ on G 1is identified with the
distribution £ - J f(g)¥(g)dg .) TFor general G this is
pot so: for example if G is a semi-direct product G =
H@N with H compact and N abelian, thenm, as explained in
Mackey's lectures, G has irreducible representations that
are induced from one—dimensional representations of the nor-
mai subgroup N . These representations have distribution
characters in the sense explained above; and ome can show that
(as for fimite groups) these characters are supported on N ,
Thus they can certainly not be any kind of function om G .

In the semi-simple case, however, ome has the following

theorem of Harish-Chandra.

Theorem. TFor G comnected semi-simple with finite cemntre,

the character of every irreducible unitary representation is
1 . . .

a locally L function on G . In fact the function is real

analytic except on a 'singular set' of measure zero.
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8 - Representations of semi-simple Lie groups

W. SCHMID
Columbia University

(Notes by B.F. Steer)

1. A natural start is to discuss the Peter-Weyl theorem. Let
G ‘be a compact topological group with normalized Haar measure
dg . Let G denote the set of isomorphism classes of irre-
ducible unitary representations. As G 1s compact each of
these is finite dimensional and we choose representatives
(ni,Vi) , where Vi is a (finite dimensiomnal) Hilbertzspace
and ﬂi: G > Aut(Vi) , for each class i ¢ G . Let L7(G)

be the space of L2 functions on G with respect to the

measure dg and let & denote the Hilbert space direct sum.

-~ * ~
Theorem 1.1 (Peter-Weyl) LZ(G) ¥ o V.GV T o Hom(Vi,Vi) .
ieG ieG
This isomorphism respects the action of G on the left
(left translation of functions in LZ(G) and action on the
left factor Vi ) and on the right. It may be made explicit.

To do this, define for each i € G a map

2
T L7(G) » Hom(Vi,Vi)

by the formula

2

m.(f) = J f(g)m.(gddg , £ e L7(G)

i i

G
The map £ -+ (ni(f))iea is the isomorphism above. It is a
Hilbert space isomorphism if we renormalize the matural inmer
*

product <*,*>, on vi@vi by the factor dim Vi= degree 1.
Understanding the representations of G 1is thus equivalent

to understanding LZ(G) . It is a very general theorem and

does not tell you what the Vi, 1e¢ é, are. To get more
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e s

information one must specify G or restrict the class of

G to be considered.

If G 1is a compact Lie group then one can enumerate the
irreducible representations by their highest weights. These
are lattice points lying in a conme: a closed Weyl chamber
which is chosen at the beginning. The Weyl character formula
determines the character of the representation in terms of
the highest weight. Now the character is, up to a defimite
constant (dim Vi) , the inverse image of the identity map
Ie¢ Hom(Vi,Vi) under the Peter-Weyl isomorphism. Hence each
Vi , and so the class of any irreducible representatiom, is
determined by its character. So ome has mot just a para-
metrization of the irreducible representations but a good
understanding of their structure. For a compact Lie group
the Peter-Weyl theorem thus gives very nearly complete con-
trol on LZ(G) . It has, too, the following corollary which

we have just used.

Corollary 1.2. Any two irreducible representations (of a
compact topological group) are equivalent if and omly if

they have the same character.

Let G mnow be a locally compact unimodular group of
type I, and let G denote the set of isomorphism classes of
irreducible unitary representations. As before, let
(ﬂi,Vi) , i € G, be a set of explicit representatives. 'G
of type I' is just the hypothesis required to make the Abstrac
Plancherel Theorem hold. It is significant that a large class
of groups - all semi-simple Lie groups, for example - are of

type I.
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Theorem 1.3 (Abstract Plancherel Theorem). If G is unimodular
and of type I then LZ(G) = [& ViGVI dfi(i) , where:

(a) @ denotes the completed temsor product;

(b) fi is a certain positive measure on & - the
plancherel measure;

(¢) the direct integral of the Hilbert spaces is a Hilbert
space of which the elements assign to each i ¢ G an element
in ViGV: . This assigmment 1s required to be measurable and
square-integrable with respect to I . (One may think of the
direct integral as the space of L2 sections of a vector
bundle in the measure category.)

If G is compact ome sees that (i) = degree i and so 1
is performing the renormalization we needed to make the Peter-
Weyl isomorphism one of Hilbert spaces.

As in the Peter-Weyl theorem the isomorphism may be made
explicit, at least on a dense subset of LZ(G) . First notice
that Vi<®VI is isomorphic to the algebra of Hilbert-Schmidt
operators on V., : we shall write the latter HomHS(Vi) . Now

define ﬂi(f) ,ieG, formally as before: namely

m (£) = fc £(g)m (g)dg .

For an arbitrary f € LZ(G) there is no reason'why this inte-

gral should make sense. But if £ € Ll(G) then the integral

converges for all i € G . The analytical assertion above is

that if f ¢ Ll(G) n LZ(G) then ﬂi(f) is Hilbert-Schmidt for

almost all i € G and f‘ ||1T.(f)||2 dn = ||f||2 . Hence there
P 1 HS 2

is a unique continuous extemsion to L2(G) .

Example 1.4. G = R . Then L2(R) & JR Vy dy , where dy is
Lebegue measure and Vy is the l-dimemsional representation
space spanned by x - e'™ (a function not in L2 D

Remark 1.5. As in the compact case the map is compatible with
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the group actions on the right and on the left.

Remark 1.6. The Abstract Plancherel Theorem is not as easy to
prove as the Peter-Weyl theorem. By itself it does not tell
you anything for a particular, concrete, group. For a gemeral
locally compact group it is totally imexplicit but it can be
very useful indeed for a special class of groups: for example,

semi-simple Lie groups.

Henceforth G will be a connected semi-simple Lie group
with finite centre. (The latter comdition is probably not
essential, but does avoid several unpleasant techmical compli-
cations.) Harish-Chandra's programme was to determine the
various ingredients of the Abstract Plancherel Theorem (e.g.

é , the Plancherel measure ﬂ , together with some structural
information about the irreducible representations) and to find,
for a non-compact semi-simple group, an analogue of the Weyl
character formula.

There are two comments to be made. First, in the non-
compact case there is not such a tight relation between the
irreducible representations and LZ(G) as there is in the
compact case. The Plancherel measure i may miss large sub-
sets of G so that to make . explicit is a very different
matter from determining & completely. At the moment the
Plancherel measure (and so enough of G to carry that measure)
is, in principle, completely determined; but & is mot so
determined. Here is an example to illustrate these differ-

ences. Let T € G be a cocompact discrete subgroup. Then
2 o~ A
L°(C'\G) £ & r.m, s
.4 11
1€G

where T, € N . Such I and this decomposition are of inter-
est in a number of arithmetic and geometric questioms. (For

example, in the case that I’ is a fuchsian group once this
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decomposition is known so is the spectrum of the Laplacian
[26, last chapter].) Now in LZ(T \ G) representations which
" occur do so discretely so that one cannot leave any given ome
out. Moreover, as far as we know any given T ieé , may
occur with non-zero multiplicity in LZ(T \G) for some T .
Only partial answers are yet known for the decomposition of
LZ(T'\G) whereas, as we have said, the Plancherel measure is,
in principle, completely determined.

The second comment is that, although we are really interested
in unitary representations, certaln constructions will lead us
outside the category of unitary representations on Hilbert

.spaces. We shall need to consider representations on Banach
spaces. A representation 7: G + End(V) on a Banach space V
is a homomorphism such that the associated map GxV + V 1is
continuous. Normally we shall want to comsider (topologically)
irreducible ones: that is those containing no proper closed
invariant subspace. A price has to be paid if one wishes so to
extend one's comsiderations. It is this. Frequently, indeed
typically, ome can find representations (ﬂi,Vi), i=1,2,
and a continuous G-invariant map f: Vl - V2 which has dense
image yet is mot surjective. This may be interpreted as sugges-
ting that on Banach spaces there are representations which dif-
fer essentially only in the choice of topologft We do not wish
to distinguish representations which differ omly in topology
and need a precise criterion of when two Banach space represen-—
tations should be identified. The associated infinitesimal
representation of the Lie algebra g is used to give such a
criterion. In finite dimensions a continuous representation is
necessarily analytic and hence onme obtains a representation of
the Lie algebra g upon differentiafing. That representation
determines the original one (of G) and every representation of
g lifts to a representation of a covering of G , if not to G
itself. 1In infinite dimensions the definitiom is more intri-

cate.
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Definition 1.7. v € V is an analytic vectorf for the Bamach
space representation w: G - End(V) if and only if the map
G >V defined by g » w(g).v 1is a real analytic map of G ,

considered as a real analytic manifold, into V .

Let Vm denote the space of amalytic vectors of V for the
representation % . Differentiating we find a representation

of g , the Lie algebra of G , on Vm .

Theorem 1.8 (Harish-Chandra). If G is a semi-simple Lie
group and m: G - End(V) a Banach space representation then

Vm is dense in V .

This theorem has been extended to arbitrary Lie groups.
The idea of the proof is not difficult, but the details are.
To see the idea comsider the corresponding result for smooth
vectors. Let VS denote the space of smooth vectors. Take a
compactly supported smooth function £ on G . Define

7f € End(V) by

m(£) =J f(g)n(g)dg ,
G

as earlier. Thenm w(£)(V) < VS s, for essentially formal
reasons. Now take a sequence (fn) , ne N, of smooth com-
pactly supported functioms, approximating the Dirac &§-function
at 1 . Then n(fn)(v) approximates v . So as to do the
same thing for amalytic vectors ome must approximate the §-
function by analytic functions which die fast at infinity.
This can be dome using the heat operator. We do need the re-

sult for amalytic vectors, not just smooth vectors, as we

+Godement in [11] uses 'weakly analytic vectors' which satisfy
*
g + o(m(g).v) analytic for all o € V . They are easier to

handle.



shall shortly see.
Let gC = g@RC denote the complexified Lie algebra of G .

Definition 1.9. The universal emvelopping algebra ll(gc) of
gC is the smallest associative algebra containing gc as a

Lie subalgebra.

It may be defined as T(gc)/{xﬁy-yax-[x,y] 3 X,V € gC} s
where T(W) denotes the tensor algebra of W .

Given a representation T of G on V one gets one of g
on Vm , the amalytic vectors, socone of QC and hence one,

.which also denote by 7w , of u(g’) omn Vm . {(We use the
same symbol because, for a large class of representations, one
determines the other.) We should like to say that (a) ﬂ:ll(gc)
+ End(V,) determines w: G - End(V) wuniquely, and that (b)
mtu (g > End(V ) is irreducible if m: G > End(V) is. As
we shall see (and have noted) the first is true for a large
class of representations; but the second is false. The ideas
involved in overcoming this difficulty are crucial to the whole
development.

Let K be a maximal compact subgroup of G . According to
Cartan's theorem [see, e.g. 23] any two are cenjugate. More-
over, such a K 1is connected and NGK =K . iet K be the
set of isomorphism classes of irreducible representations of
K. Let mw: G - End(V) be a Banach space representation of

G . For each i e K , let

<l
]

® (WcV: W is K-invariant and K-irreducible of type i}

K-invariant subspace of V of type i .

~

Definition 1.10. = is admissible <=> dim Vi <o ¥ ieK.

In future chapters we shall consider only admissible



representations. For irreducible unitary representations this
is no loss for such are always admissible; we shall note this
formally in a moment. Whether it is a definite restriction for
irreducible Banach space representations is still unknown. Now

let us return for a little to the gemeral situation.

Definition 1.11. Vv_= @ V. is the space of K-finite vectors,
® ieR *

Notice that V_ is demse in V by the theorem of Mostow. But

not only is this so, V_ < Vm . This is a coroléary of one

proof of theorem 1.8. A map g @RVm -+ Vm and g @CVm - Vm is

thus defined, and 1t is not hard to see that v, is stable

under gc ; for if U 1is a finite—dimensional K-invariant sub-

space so is the image of gCGCU under the map =x®u -+ T(X)u ,

which is equivariant., So there is attached to w: G - End(V)

a representation of u(gc) on V_ . This is called the infipi-

tesimal representation associated to w , The criterion we

were looking for is the following; it gives a precise meaning

to the informal idea that two representations differ only in a

choice of topology.

Definition 1.12. Two representations (ﬂi,Vi), i=1,2, are
infinitesimally equivalent <=> the associated infinitesimal

representations are algebraically isomorphic.

The infinitesimal representation has the advantage that it is
irreducible if w was. For if W ¢ V is the closure in V
of any ﬂ(gc)—invariant subspace of V°° then W is G-invariant
and hence W =V ., But V_ is the direct sum of finite-
dimensional subspaces and hemce W =V_ . This explains both
why we have chosen V_ and why we have used Vm : we need
analyticity to lift a subrepresentation of g to one of G .
What does all this mean for unitary representations? In

the first place there is the following theorem, of which
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clause (a) was mentioned above.

Theorem 1.13,

(a) (m,V) irreducible unitary representation => 7 is admiss~
ible;

(b) (m,V) irreducible admissible Bamach space representation
=> dim Vi < (deg i)2 viek (that is, 1 occurs in w|K

with multiplicity at most its degree).

The second clause is there because one argument does both. The
most elementary is that of Godement [11], but it only works
when G admits a faithful finite-dimensiomnal (so not unitary
in general!l) representation. Using the universal envelopping
algebra one shows first that dim Vi is finite. Then one can
complete the proof by using the fact that any such may be rep-
resented - up to infinitesimal equivalence - as a subrepresen—

tation of a primcipal series representation.

Finally, here is a theorem which may be used to find unitary
representations for 'small' groups, where 'small' here means of
low real rank. (Examples are provided by SL(2,R), SU(m,l),
S0(n,1) .) To do this we determine certain representations and
then look to see which admit an invariant pre—HIIbert space
structure. Note that (m,V) 1is an irreducible unitary rep-
resentation them V_ is a pre-Hilbert space and g operates

via skew-hermitian operators.

Theorem 1.14.

(a) If (m,V) 1is an irreducible Bamach space representation
and a pre-Hilbert space structure exists omn V_ such that g
acts via skew-hermitian operators, then that structure is
unique up to a scalar multiple. Consequently, infinitesimally
equivalent implies unitarily equivalent,.

(b) If there is a direct sum of finite-dimensional
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representations of K admitting an extension of the action of
f to g and a pre-Hilbert space structure such that ¢ acts
via skew-hermitian operators then there is a unique (up to
equivalent) unitary representation of G infinitesimally

equivalent to the given one of ¢

2. Here we shall discuss the irreducible unitary represen-
tations of SL(2,R) wusing the method suggested at the end of
the last lecture. (It was one of the examples given there of
a 'small' group.) SL(2,R) € SU(1,1) and it is often simpler
to think in terms of SU(1,1) . Let G , then, denote

SU(1,1) = (f B): 0,8 ¢C, lal®-181% =1
B &

The complexified Lie algebra aC has a basis (over C) thus:

_f[1 0 [ o1 _fo o
Z'(o—l)’ X+"'(o o)’ X (1 0 ’

where Z = -Z and i+ = X_ , the bar denoting conjugation in

c

g . The commutation relations are as follows:

[Z’X+] = 2X+ » [Z’X_] = _zx_ » [X+)X_] =1

Let
i8
kK=1k_ =|¢ 9 ; 8 ¢ [o,2m
[°] -i6
0 e

be a maximal compact subgroup. The vector 1iZ = d/d8 1is

tangent to K and so is an infinitesimal generator. Note,
216X

+
Let (m,V) be an irreducible admissible Banach space rep-

for future use, that ad(ke)X+ =@

resentation. As before, let V_ denote the K-finite vectors.

The universal envelopping algebra 1l(gc) operates irreducibly
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on V_ , as we noted just after definition 1.12. K ¥ Sl so

that R = Z , and a particular isémorphism is n > (pn,C)
where pn(ke)z = enlez , z€ C . Let V(n) be the subspace
of V of type o - Then, because 1iZ 1is an infinitesimal

generator for sl 5
mM(Z)v =nv , v e V(n) .

‘Thus, from the commutation formulae, we see that
X (V(n)) ¢ V(n2) .

Hence gc preserves the parity of n . But (mV) was sup-
posed irreducible. Thus either V(n) =0V n = 0(2) or

V(n) =0 V¥n = 1(2) . Call the first the odd case, the second
the even case, In the odd case consider the sequence of odd
integers for which V(n) 2 0 . If there is one odd integer,
say q , missing then the pieces on either side of that in-
teger g are invariant since ﬂ(X+)V(n) ¢ V(n*2) . So irre-
ducibility implies that if one int;ger q 1is missing then
either V(j) =0 Vj<q or V(j) =0V j=2q . There is a
similar argument in the even case. The possible configurations

for an irreducible representation are thus:

(1) Finite interval : 3 myne Z , m<n & m = n(2) such
that { V(j) 20 if m < j <n , j = m(2)
V(j) = 0 otherwise.

(2) Half-bounded interval, bounded above : 3 m e Z. such
that |V(j) 20 if j 2m, j 2 m(2)
V(j) = 0 otherwise.

(3) Half-bounded interval, bounded below.

1(2)
0(2)

or vice versa.

(4) Whole line : {v(j) 20 Vj
V(i) =0 Vj
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The odd and even cases are similar. Now, for definiteness,
we shall restrict ourselves to the odd case. First choose
v, € V(n)\O for some n . In configurations 1 & 2 take n
maximal, in configuration 3 minimal. Consider first configur-

ations 1 & 2 when n 1is maximal. Set

_ k
Voo T m(X_) AN V(n-2k) .

Again from irreducibility we see that V(j) 1is at most one-

dimensional and that Voo T 0 only in configuration 1 and
for n-2k <m . Thus
1r-(X+)vn_2k =AYV orsn 0 A € c .

Because n was maximal a = O . Using the extension of the
representation to u(gc) and the commutation formulae we see

further that

1r(X+)vn_2 = n([x+,X_])vn + TT(X_,X+)Vn

ﬂ([X+,X;])vn

'n(ZZ)vn

2nv
n

1

Hence a, = 2n and, inductively, one shows that a = 2kn -
n
2k(k-1) . It follows that if n>0 then @& V(k) is an in-

. . =-n
variant subspace. There is an analogous calculation for con-—
figuration 3. Using it we reach the following conclusions

with respect to configurations 1, 2 and 3.

(1) Finite interval. m = -n and for each n ¢ N there
exists a unique, irreducible representation S such that

V(j) =0 <=> j € {-n,=n+2,...,n-2,n} .
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(2) Half-bounded interval, bounded above. For each n ¢ N
there exists a unique, irreducible representation n; such

that V (j) # 0 <=> j = -n,-n-2,... .

(3) Half-bounded interval, bounded below. For each n € N
. . . . . +
there exists a unique, irreducible representation m such

that V+(j) 20 <=> 3 =n,n+2,... .

Notice that if m > O in configuration 2 then the represen-

. . . - + *
tation is an extension of ¢_ by = » also (m.) =m_ .
m m-1 n n

The configuration 4 is more complicated. Here we do not
have a =0 sowe cannot start from there and determine the
numbers a inductively. Nonetheless, from any particular
a, we may determine the others inductively in terms of that
a > just as above. Moreover, the sequence of complex num-
bers (ak) k € Z determines the representation. For this
configuration it is convenient to renormalize the choice of
generators and select v e V(n) \0O (for all odd n or all
even n as the case may be) such that

= _ (s+1+n) _(s+1-n)
w(Z)v, =nv ., n(X+)vn-————§——— Varzr TRV =5V 5>

for some s € C . (In the even case if we select v, o€ v(0)

and compute a as defined above we find a =““'slz-l .) Now

1 1
should s be an integer k we see that n(X+)v_k_1 =0 so
that n(X+)V(_k_l) =0 . Hence if we wish for an irreducible

representation we must insist that:
s mnot an odd integer in the even case;
s not an even integer in the odd case.

Subject teo this assumption the representations are irreducible.

. . +s+1 . .
In the irreducible case the map v_ - o-s v' gives an iso-
n  nts-1 'n
morphism of with and similarly for s

s,even -s,even
odd. Otherwise they are all distinct. The representations

for s and -s are dual. If we call these two families of
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and we then see that they

representations Ts,o0dd Ts,even
have the following properties.

(1) Ty even irreducible <=> s # 1(2) , s e C ,

s, 0dd irreducible <=> s 2 0(2) , se C ;

and all these irreducible representations are distinct, except

for the isomorphisms T T ™ =27
P s,even -s,even’ s,o0dd -s,0dd

-

(2) T 0dd is the only semi-simple non—irredgcible rep-
resentation of these families, “o,odd ¥ m ® LI

*
(3) “s,even = ﬂ-s,even and similarly for “s,odd
4 ﬂZk,odd , k e N\O, has the direct sum of “;k+l and
Toxel a5 2 subrepresentation, with quotient Topol * The

extension is montrivial and the order is inverted by (3)

above) for behaves analogously,

T_2k,0dd * "2k-1,even

. ., . + -
with composition factors ﬂ2k s ﬂ2k and GZk—Z .

(5 The families T s € C contain all ir-

T .
s,even’ s,odd ’
reducible admissible representations as quotients or sub-

representations.

It remains to decide which of the infinitesimal represen-
tations above correspond to unitary representations of G: to
do this we must decide whether we can find an inner product on
V such that gc operates by skew-hermitian transformations.
If so, then Z must be hermitian and so V(j) L V(k) if k= j
since each is an eigenspace for Z . A little more manipu-
lation using the bases above and one finds that only the fol~-
lowing irreducible infinitesimal representations admit such

pre-Hilbert structures.+
+For example, in configuration 4 one sees quickly that
sz-(n+l)2 must be negative on computing <ﬂ(X_X+)vn,vn> R

using the fact that n(X_X+) must be negative definite.
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(0) Trivial representation.
(1) n; & n; ; ne N\o :
(2 ; seiR DT e e T_s even ’

s,even s,even ,ev \ List 2.1

. > - (4

Ts,odd 5 SEIRNO = 4y F o odd

(3) Ty even 5 S € R\O, |s] <1 .
b

According to Theorem 1.14(b) one may

realize all these infini-

tesimal representations by unitary representations of SL(2,R),

but to understand them well we must understand the geometric

realizations.
[26], as for the preceding argument.
[101.

tations , ne N\O, which all

(cn)

References for this are Bargmann [4] and Lang

One may also refer to

We shall not discuss the finite non-unitary represen-

come from the restriction

of algebraic representations of SL(2,()

We shall treat the three classes
First we take class 1.

The group SU(1,1)

at a time.
disc in C . ope
fractional transformations. (In the

have to take H

Let

the upper half-plane.

1, 2, 3 of 1list 2.1 one

A be the open unit
rates on it by linear
SL(2,R) picture we should

It is more complicated.)

Fix an integer n > 1 and define a space Hn of holomorphic
functions as follows
Hn = {f: A > C |f holomorphic and
2. 2 dxd
f (1-12zI )78 |© —=L— < =}
A (1-1z|

With the obvious immer product,
2
<f’g> = [ (1-|Z| )

Hn forms a non-zero Hilbert space.

" £(2)g(2) -————ll——-
(1- IZI

(The form dxdy/(l-IZIz)z
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defines an invariant measure on A , unique up to constant.)

On Hn the group acts according to the rule

@D @ = @B tEED) = (-8 e

a, B - a,-B
if g=(-'-) so that g1=(-, ) . Now Xen skelN,
B>a “Bs o n
. i6
- k _ -(n+2k)i8 k | _ et? o
and nn(ke)z = e z 3 where ke = ( 0 e'le)

Hence (zk) , k ¢ N, are orthogonal vectors in Hn and they
clearly form a complete basis. Moreover, they are trivially
K-finite vectors and - as we can see directly here - analytic.
Thus (ﬂ;,Hn) is a realization of the infini:esimal equival-
ence class ﬂ; . As we have noted n; = (n;) and is realized
on H by the contragredient representation to (nn,Hn)
((ﬂ;g)f)(z) = (a+Bz)_nf(gz) . These representations are called
the discrete series representations; initially because they
depended on a discrete parameter but very soon afterwards for
a more fundamental reason which we shall see. That reason ex-

+
plains why 7 are not regarded as forming part of the discrete

1
series. (These representations can be realized on Hl = {f:
Hl ={f:A~>C | f holomorphic and
2 2
e e [ Q- BT e 2 oy
0 A (1-{z1%)

The representations of class 2 of list 2.1 are called the
principal or continuous series. To construct realizations of
these we shall think directly in terms of SL(2,R) instead of
SU(1,1) . The subgroups K,A,N of the Iwasawa decomposition
G = KAN are, in the case of SL(2,R) , as follows:

cosf sin8
= = < .
K {ke -sin8 «cosd J°’ 0 <8 <2m ;

et O
A= {a =( ), teR} H
t -t
0 e
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N={n = ( 1 x ) , xe R .
x 0 1

The principal series consists of those irreducible unitary
representations of G induced from (1-dimensional) charac-
ters of AN . For s ¢ iR consider the character atnx+-e_St

on AN and the space

s,even ={f: 6> C: f(-g) = f(g) » f|K€L2(K) ’

_(S+1)tf(g)},

f(gatnx) =e
‘Hs may be interpreted as the Lz-sections of the line bundle
over G/AN = K whose total space is GXANC , where AN acts
on C by the character above xe © . This explains what the
induced action of G should be: (gf)(h) = £(g 'h) ; £ e H,
g,h € G . An element of HS is determined by its value on K
and we think of the space in terms of the restrictions of the
functions to K . The term eft is the positive square root
of the modulus function on AN ; we need it if we are to get a
unitary representation with the Hilbert structure that of
LZ(K) . This being so, one guesses that the K-finite func-
tions are the functions with finite Fourier series. It is,
indeed, the case and one may further see that the smooth vec-

tors are the smooth functions and the analytic vectors the
ni6

analytic functions. Consider the vector ke > e » which
we shall call enle for short. It is an eigenfunction for
the group K with eigenvalue k, 6 - e_n1¢ . Under the isomor-

¢
phism SU(1,1) & SL(2,R) ,

Z » -iW = -id/dé

>4
¥
N

_1,.d -, - .. d .
E, =5 {gr7id/de T 2i T}

+

where we have denoted the tangent vectors to K,A,N by
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d/de , d/dt , d/dx , using the above paFametrizaFion of these

groups. It is trivial to see that Zenle = ne™® . 10 cal-
culate X+(enie) , consider Hs as a subspace of functions

on G . There, there is an action of G on the left (the ome
we have) and on the right. The functions have nice invariance

properties with respect to AN acting on the right. If r
C

denotes the right action of g then the two are related by

the following equation:
c
(Y£)(g) = (r((adg)Y).f)(g) ¢ Yea , geG

In the case when Y =X and g = ke (the case which inter-

ests us) one has

W

(X, ) (k) = (r((ad k)X )k,

@)Dk

since \X+ is an eigenvector for ad(ke) with eigenvalue
e219 Specializing further to £ = ™% nd using the

equation for X+ in terms of d/dt , d/d8 , d/dx one finds

that
X+(enle) = (:E%;il) e(n+2)1e and similarly,
X_(enle) - (n+;+1) e(n—2)1e )
The representation H is thus a realization of the
s,even
infinitesimal equivalence class T in class 2 of the
s,even
list 2.1.

Let us note here that we could have taken f ¢ LP(K)
without really modifying the representation. There is an
enormous family of possible topologies and we now see some

justification for considering infinitesimal equivalence.

202



It is not so easy to realize the representations of the
complementary series; class (3) in the above list. We can

proceed to define a space as above, and we get a re-

H
s,even
alization in the appropriate infinitesimal equivalence class.

But it is not unitary: the inner product has to be modified.

If (m,V) 1is a unitary representation we may decompose it
as a sum of l1-dimensional eigenspaces of K and so take a
basis (vn) > v having eigenvalue n . It is natural to

consider the matrix coefficients
<1m >
. (8)v, > v

of g . We know what happens when g € K, so a convenient

.. . .o +
decomposition is the Cartan-decomposition G = KA K , where

b
]
Q
1A
(a3

< o .
-t
e

We need, therefore, to understand the action of A" : essen-
tially to understand the behaviour of the function & -
<n(at)vn,vn> for t > 0 . From the concrete realizations of
the infinitesimal equivalence classes one can see that the

behaviour is as follows:

+
Class (1) - the discrete series n; , n2 2, and the mock

. . + . . =
discrete series nl . The function behaves like Ce nt for
some non-zero constant C .

las 2) - th incipal i m : i
Class (2) the principal series s,even’ﬂs,odd S_isiﬁ)t
(s # 0 in odd case). The function behaves like c.e +

+(s- . .
c_e (s=1)t , except for w when it behaves like

et e et o,even
1 2 *
With respect to the Cartan decomposition, Haar measure

dg = sinh(t)dkdtdk . Thus we see that the discrete series

representations have coefficients in LZ(G) . The mock
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discrete series does not. The coefficients of the principal
series are 'almost' in LZ(G) . If one had written down the
inner product for the complementary series one would find that
ﬂs,even’ -1<s<1, 820 , have coefficients far from LZ(G)
the integrals diverge exponentially.

In the Plancherel measure on G , the mock discrete series
and the complementary series form a null set. The discrete
series occurs discretely and the principal series continuously,
However, if T 1is a discrete cocompact subgroup of G and if

1

the Laplacian has eigenvalues of modulus < 3 then complemen-

. . . 2
tary series representations do occur in L7(T\G) .

3. Let G be a connected semi-simple Lie group with finite
centre. Let K be a maximal compact subgroup and (m,V) an
irreducible unitary representation. For each 1i ¢ K let
V(i) denote the space of K-finite vectors of type i . One
finds that dim V(i) < (deg i)2 . This is the crucial property
making semi-simple Lie groups of type I. It is the property,
too, which implies the existence of a global distributional
character for an irreducible unitary representation. (There
is a proof of this property for a group admitting a faithful
finite-dimensional representation in §2 of [2].) Before dis-
cussing this, the global or Harish-Chandra character, we men-—
tion the infinitesimal character.

Let 3 denote the centre of u(gc) . Regard the latter as
the algebra of left—invariant differential operators, so that
3 1s the algebra of bi-invariant differential operators. The
algebraic structure of u (gc) is complicated, but 3 is a
polynomial algebra over ( [31]. In the infinitesimal rep-
resentation associated to (m,V) , 3 commutes with ll(gc)
and preserves V(i) , i € K . It follows that 3 operates by
scalars: that is, there is a homomorphism I B C such

that w(Z) = x“(Z)I 5 YZ € 3 . This homomorphism is called
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the infinitesimal character. It does not determine the rep-
resentation up to infinitesimal equivalence, as does the glo-
bal character to which we now turn.

Suppose first that (m,V) 1is unitary. As in §1 define
nf € End(V) , for f € C:(G) - the space of smooth functions
of compact support — by nf = J f(g)m(g)dg . There is the
following basic proposition of garish—Chandra.
Proposition 3.1. The operator =f 1is of trace class. (That
is, for any orthonormal basis (en), ne N, z <nf(en),en>
converges absolutely. This number is independent of the

.basis.)

Consequently we may set Oﬁf = trace 1f , f ¢ C:(G) 'k If
(ey) , ne N, is an orthonormal basis for Vv, £ -

y <(mf)e ,e > 1is a continuous function on c”(G) and, for
n=1 n’ n o

each f , their values tend to Onf as k tends to = .,
But C:(G) is an inductive limit of Fréchet spaces and so
0“ is continuous on C:(G) by the Banach-Steinhaus theorem.

Hence G)TT € D'(G) , the distributions on G .

Definition 3.2. 0, € D'(G) 1is the Harish-Chandra, or global,

character.

G)TT has properties other than those used in defining it. We

list some:
(a) @TT is invariant under conjugation.

* *
(b)) 2 G)TT = x_"(Z)G)TT s YZ ¢ 3 ; where X - X 1is the unique
; C

anti-isomorphism of u (gc) extending X - -X on g .
(c) If 1ie¢ K and p;: V - V(i) 1is the unique K-invariant

projection to V(i) , then

0 = z trace F,. »
u . o5 b
i€k
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where the right-hand side converges in the sense of distri-
butions and Fi: G > Hom(V(i),V(i)) 1is defined by Fi(g)(v)=
pi(w(g)v) : g€ G, ve V()

(d) G)TT determines (m,V) up to infinitesimal equivalence.
(This is because G)TT determines the spherical trace functions,
trace F,.p, for i ¢ K . These determine finite-dimensional
representations of certain subalgebras of LZ(G) and a short
calculation shows that the 'diagonal matrix coefficients' -with
respect to bases whose elements lie in V. - are also deter-
mined. But two irreducible unitary representations with a

common non-zero coefficient are infinitesimally equivalent.)

If, now, (m,V) 1is an irreducible admissible Banach space
representation we may use (c) to define G)TT . Properties (a),
(b) and (d) still hold in this case.

A distribution satisfying (a) and (b) is called an in-

variant eigendistribution.

Distributions are hard to manipulate. The following is a
deep and difficult theorem of Harish-Chandra. Its proof oc-

cupies several of his longer papers.

Theorem 3.3. Every invariant eigendistribution is locally an
L1 function on G . Moreover, that function is analytic on

G' , the set of regular semi-simple elements of G .

Note that G' 1is an open dense subset of G and its comple-
ment is a real analytic subvariety. Consequently the theorem
tells us that if we know the character on G' we know it com—
pletely.

In a moment we shall give a sketch of a proof (due to M.F.
Atiyah & W. Schmid) [2] of this theorem. But first we shall
see what the character is for the concrete representations of
SL(2,R) constructed in §2 and indicate the relation of G)TT

with the K-character mentioned by M.F. Atiyah in his lecture.
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Assume that = is a unitary representation. If £ e C®(K)
then the operator wa = [Kf(k)ﬂ(k)dk is of trace class kbe—
cause of the bounds on dim V(i) ) and the map £ - trace wa
is a distribution on K . This distribution, which we write
T is called the K-character. From the decomposition of V,

into invariant subspaces one sees that

T = .ZA ni(w)xi = .ZA trace FiIK ,
1eK 1¢K
where ni(ﬂ) is the multiplicity of i in V(i) . The two

characters are related in the following way.

Theorem 3.4. T“|K{1G' is (integration against) a real ana-
lytic function and Tﬂle]G' = OﬁlKrwG' . (However, T 1is
often highly singular and is not usually locally ! on K.)

It can happen that T, 20 on KnG' but T, E 0, as we
shall see.

Now we take the case of SL(2,R) as an example. We shall
use the notation of §2 and, in particular, the parametrization
of K,A,N . Denote the characters of the principal series
(s ¢ iR) by. © ,

T
s,even > 's,odd . s,even

Os odd ° The representations are induced from a character on
’

AN , so the character is too and hence will be supported on

representations T

those conjucacy classes meeting AN : up to a set of
measure zero, this is (iA)G , the union of the conjugacy
classes which meet *A . Every semi-simple element is con-—
jugate to an element in K or A (but, except for the
centre, never to an element in both). So it is sufficient

to find © ,. 0 on G'nK and G'nz*A
s,even s,odd

t = = t .
es,even | KnG 0 es,odd | KnG H
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-st st

= & te = .
G)s,even(at) Iet-e-tl G)s,odd(at) ?
e_St+eSt
%, even' ™2 = St E| = 9,0aa(73)
et 0
where a_ = as in §2. 1In this case T and
t 0 e-t s,even
- 1

Ts,odd vanish on KnG' , because es,even and es-odd do.

1 = i
But (Ts,even’ ) 1 , as we can see from the theory of Fourier
series.
. . . + -
For the discrete series representations nn,nn (and also
for the mock discrete series) we find that on KnG' the

characters are as follows:

o . i(n-1)06
+ _ o+ _ i(n+2r)6 - _e .
O kg) = T (kg) = Z € s _-is °
r= e -e
L) . -i(n-1)8
- i(-n-2r) _ e ©
0 (kg) = T (ky) = ] e 16 _-1i6
r= e -e

8 2 0,7 ; where ke = ( cosb , 31n9) . It is not so easy to
-sin® , cos#

see what O;(at) should be. Some fortunate accidents tell
us. Note that the character can be defined for any reducible

representation of finite length so that it makes sense to talk

of © ,0

n,odd’ n,even
follows from the list of representations in §2 that o _
o + 0 + Xa , where ¢ is a finite-dimensional
n n n-1 n-1

representation. Now en—l'e is the character of the
’

(reducible) principal series representation

for ne N . If e = parity of n , it

i,e -

n-1,e ’
and one finds, as above, that

e-(n-l)t . e+(n-l)t

t -t 3
l[e -e 7|

0 (a) =

n-l,e" t




(a,)

_ _ €
© (cap = (D76 (g

n-1l,¢

On KnG' , of course, 0 vanishes. Now g is the
n-1,¢ n-1

representation of dimension n-1 coming from that of

SL(2,C) . It is unique and a standard form of it is on the

space of homogeneous polynomials of degree n-2 1in two vari-

ables (the symmetric product of the fundamental representation

of SL(2,C)). 1Its character is easily computed on A :

LD e =(a-1)t

X, (&) = s 5
n-1 e —e
(-a) = (-1 (a,)
Xs 2¢ IR
n-1 n-1
+ - ze_(n_l) l tl
We deduce that G)n(at) + @n(at) = W N and
+ - _ (_1\E -(n-1) | t| t_ -t
en( at) + On( at) (-1)" 2e /le -e "] , Because
. ) o1 .
a, 1is conjugate to a_, (use -1 o0 ) and nis dual

- + +
h =
to 7 one sees that @n(at) On(a_t) and that

+ -
On(at) = On(a_t) . Comsequently
-(n-1) | t]
+ e
@ (a) =————= 0_ (a) ,
n t |et_e tI n, t
e =(n-1)[t]
+ (-1)" e -
0'(-a) = - =6 (-a)
n t Iet_e tI n t

+
As t » o> On(at) -0 .

The proof of the regularity theorem (theorem 3.3) in [2]
works for any invariant eigendistribution. Here we shall il-
lustrate how the theorem is proved by giving an outline of
the proof in the case of SL(2,R) . In this instance SL(2,R)
gives a good idea of how to proceed in general: the general

case is a matter of loading in the structure of g to the
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machinery set up. The proof breaks up into three parts.

(1 @IG' is analytic, where G' 1is the set of regular semi-
simple elements and © 1is an invariant eigendistribution.

(We have seen that this is so for the characters of the prin-
cipal and discrete series.)

(2) 1f ©|G' =F then F 1is locally L1 on G . (Note

that G' 1is a dense open subset with complement a real
analytic subvariety. Thus G\G' 1is of measure O .) So

@ =F+S where supp S « G\G'
(3) s=o0.

Of these three parts the third is the hardest. For use during
the proof, let G" denote the set of regular elements - so

¢" > G

The elements of SL(2,R) fall into three types according
to their Jordan forms. Let g e SL(2,R)

g 1is elliptic <=> g 1is conjugate (in SL(2,R)) to
ie
e

gie sy, 0 <6 <
0 e
<=> | trace g | < 2
. . . . (0] *
g 1is hyperbolic <=> g is conjugate to 1) » * ¢ R
a

<=> | trace g | > 2

g 1is parabolic (or unipotent) <=> g has repeated eigen-—

values +1 or -1
<=> | trace g | = 2

The trace function t thus distinguishes the three types of
elements. It is constant on conjugacy classes and dtz0 on
G" . Thus for a regular element g , t 1is a good coordinate

to choose when investigating the behaviour of a function or



distribution near g ; especially when that function or dis-
tribution is invariant (under conjugation). As the distri-
bution © 1is so invariant it is interesting to see what the
conjugacy classes of elements look like in SL(2,R) . There
is a global picture in [2]. The conjugacy classes are the
orbits of the conjugation action: the corresponding infini-

tesimal picture at 1 1is the following:

7/

@ elliptic

unipotent

—— e = — D

® (@ hyperbolic
i
|
|
|
1
|
N
/

Orbits are (1) the origin, (2) each half of the cone\origin,
(3) each, sheet of the hyperboloid of two sheets (these are the

elliptic elements), (4) each hyperboloid of one sheet.

For a semi-simple Lie group the centre 3 of n(gc) is a
polynomial algebra on r generators, where r 1is the rank.
SL(2,R) has rank 1 and so 3 1is generated by one element:
the Casimir operator § . This is the operator of order 2

which is represented by the Killing form (identifying g with
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*
g ) : thus with respect to an orthonormal basis Xl,..

n
for 9, Q= ’Zl Xi . Let g e G" and choose, in a neigh-
i=

bourhood, coordinates (t,u,v) , where t 1is the trace func-

X
n

tion as above and (u,v) are coordinates along the conjugacy
classes - so that 3/8u , 3/3v are always tangent to these

classes. In terms of these coordinates we may write

where Dt involves only differentiation with respect to t
(3/3u and 3/3v are not present) and in Q every term has a
3/3u or 3/3v occurring on the extreme right (and so is the
first operator to be applied). Thus Q will annihilate any
function constant on conjugacy classes. The characters of the
1, 2 and 3~dimensional irreducible representations of SL(2,R)
are 1, t and tz-l respectively. For these the Casimir
operator takes the values O, 3 and 8 respectively (dimz-lL
Hence D = (tz—é) 32/3t2 + 3t 3/8t . On the unipotent ele-
ments t2 = 4 , but away from them t2 #z 4 ., So on (the conju-
gacy classes of elements in) G' the operator is elliptic.

But any invariant eigendistribution © satisfies an equation
Dte = c0® for some constant c . So since Dt is (transver-
sally) elliptic on G' , there © will be a real analytic
function, F say. It is now a matter of studying how F be-

haves as we approach a parabolic point: this is part 2.

Let a,a-l be the eigenvalues of a matrix in SL(2,R) .
Away from G\ G' we may make a coherent choice for a (say
a>1 or a = eie » 0 <8 <7 and so we can use a as a
coordinate instead of t . With this new coordinate one finds

that

2
D =D == (a —EJ A+ c ,
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. -1 .
where ¢ 1is a constant and A = o—o . Thus AF 1is an

eigenfunction for (a 5%02 . Consequently if ¢ =21 ,
F = l-(c ax+ a_x) wher AT = c-1 d ¢ -
~leg <, , e an 1°C, are con
stants. (If ¢ = 1 , there is also a logarithmic term.) The
function AF 1is clearly bounded as we approach g € G\G'
since there o =1 . To establish that F ¢ Lioc it is thus
L . Direct computation
loc
is not easy, even on SL(2,R) . (The computation is performed

in [2].) Let S = {(g,2) ¢ G><S2 | gz = 2z} , where 52 is

sufficient to show that 1/|A| € L

regarded as the Riemann sphere. The projection w: S =+ G is

a proper map and g ¢ G' , 4#p—1(g) = 2 ., It is thus generi-
cally a 2-fold covering and would be a 2-fold branched covering
but for the points *1 where the inverse image is infinite.

If one pulls back Haar measure dg one finds that p*dg==Am s

where ® 1is a smooth 3-formon S < G><P1(C) . But p is
1

1
proper, so € L

Finally, there is part 3. Let T =0-F . It is a distri-
bution with support concentrated on G\G' (double cone). We
must show that it is zero. This will be done in two steps:
first we shall show that it is zero away from +1 , then that
it is zero at 1 . Let g, € G\G' , g, # +] , Take coor-
dinates (tnu,v) in a neighbourhood of g, » where t 1s the
trace as above and is transverse to the conjugacy classes,
whilst u,v are coordinates along the conjugacy classes.
Since ©O,F are constant along conjugacy classes they are
functions of just the one variable t , Hence so is T and

it satisfies the equation

(Dt-c)T = (Dt—c)F N
since Q0 = c0 . The support of T 1is concentrated on the
parabolic points where t = *2 ., For definiteness let us sup-

pose that t(go) =2 , and let 8 denote the Dirac §—function
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at 2 . We can write

D e

T = — § .

osten ¥ ac®

If T = 0 we may arrange that the 'leading term’ a ® o .
Recall that Dt = (t2—4) 32/3t2 + 3t 3/9t and compute the

left-hand side of the equation above.

n+l

dtn+1

(Dt'c)T = (-4(n+2)+6)a 8§ + lower terms

For no integer n can the 'leading term' vanish because
6-4(n+2) 1is always non-zero. Now consider the right-hand
side. F 1is a locally L1 function so one can show by an
elementary estimate that (Dt—c)F can be at most a multiple
of &8 . It is now intuitively clear that this equation can-
not hold because the left-hand side is at least one degree
more singular than the right-hand side. To make this precise
define the degree of singularity of a distribution P at O
to be < n if éig EnP(¢E) = 0 for all smooth ¢ with com-
pact support, where ¢E(t) = ¢(t/e) . A distribution has de-
gree exactly n (at 0) if it has degree < n but not degree
< n-1 . It is easy to see that (1) a locally L1 function
has degree 0 , (2) in

agk
(3) differentiation raises degree by 1 . The above argument

8 has degree (exactly) k+l1 , and

is made precise by comparing the degrees of each side.

The proof is completed by making a similar argument at *1
to show that the support of T cannot be concentrated there.
At these points one has to use distributions in three vari-
ables, but the argument is much simpler because here the
leading symbol of Q , being the Killing form, does not

vanish.
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4. To do representation theory one must have representations.
There is the basic method of induction, but even here one must
have somewhere to start. For the case of nilpotent Lie groups
Kirillov has shown that all unitary representations are ob-
tained by inducing from one-dimensional representations. In
the case of solvable groups this is no longer so. There are
two stages in the construction of a representation: (a) holo-
morphic induction from a one-dimensional character to an inter-
mediate group, (b) unitary induction from that subgroup to the
whole group. (Of course, for a given representation one step
may be vacuous.) By contrast, the case of a semi-simple Lie
group is hard; in Kostant's language, there is in general no
positive polarization. However, we have seen for SL(2,R)
that the representations of the principal series come from
one-dimensional characters by induction. Those of the dis-
crete series come from holomorphic induction, the stage (a)
above. But this is not a good guide to the general situation
and we now discuss the analogue of (a) needed in general.
There one must use (other) differential operators to select
a class of sections. A convenient way to discuss this is in
the context of the construction of representations of the
discrete series. ..

Let (m,V) be an irreducible unitary represéntation of G

~

and p the Plancherel measure on @ .

Definition 4.1. n is square-integrable <=> ﬁ{n} z 0 <=>

. . 2
T occurs on an invariant subspace of L7(G) .

Definition 4.2. éd = set of isomorphism classes of represen-—

tations in the discrete series = {me G : p{m} = 0} .

Theorem 4.3 (Harish-Chandra). 6d % @ <=> rank G = rank K <=>

there exists a compact Cartan subgroup in G .
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[This theorem is proved in [20]. We shall come back to it
later.] Thus, examples of groups which have discrete series
representations are SL(2,R), Sp(n,R), SU(p,q) and SO(p,q)
for pq = 0(2) . On the other hand, SL(n,R), n > 2 , ard
S0(p,q) », pq odd, have no discrete series representations.
Nor does any complex semi-simple Lie group.

Suppose that G has a discrete series. First we shall
show how to constuct most of its discrete series represen—
tations. (They will appear as subspaces of a function space
and we shall use the Dirac operator to pick out the appropriat
subspace.) Then we shall go on (in §5) to discuss the basic
results of Harish-Chandra [19,20] on the characters of the
discrete series representations., These results, which do not
depend upon explicit knowledge of the actual representations,
are used to prove that the construction yields, in fact, all
discrete series representations. (The discrete series rep-
resentations present some similarities with the represen-
tation theory of a compact Lie group; for example, in their
parametrization. The Dirac operator for a compact group is
discussed in §7 of Bott's paper [7].)

Let G be a semi-simple Lie group such that rank G =
rank K . Let H be a compact Cartan subgroup of G . We
may suppose that H cKc G, Now g= £& P and dim p
is even since dim G = rank G mod 2 and dim K = rank K
mod 2 . Let ¢: K » SO(p) be the map induced from the re-
striction of the adjoint action of G to K . Let us assume
that ¢ 1lifts to Spin (p) : if not we can take a double
covering of K , and hence of G . Because dim p = 0(2) ,
Spin (p) has two irreducible (complex half-spin) modules
S+,S_ . The lift of ¢ gives these a K-module structure.
For. any (finite-dimensional) K-module V there is associated
a homogeneous vector bundle V on G/K . The total space
is GXKV where K acts on the right on G and on the left

on V . There is an obvious action of G on the left on
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the total space. Now fix an irreducible K-module V and an
invariant hermitian structure on V . Consider the vector
bundles UV @ St and VesS . (These correspond to the K-
modules V @ st , V®S and all we need is that these, not
that Vv, S+ and S~ individually, should be K-modules.)
There one has a first order homogeneous differential operator

(the Dirac operator) which is elliptic and self-adjoint:

Dy : r(vesH » r(wes)
B‘.,: r(vesS) » r(ves)

(The tangent space to G/K may be identified with Gx_p,

K
where K acts on p by the adjoint action. With this

identification Jthe symbol of SV becomes, when lifted to

G<p, the Clifford multiplication p ®S s; s= S+®S_ .

Because ?X is invariant the symbol determines it.) Set
+
H$ = ker D"r]LZU/®S‘) . These are Hilbert spaces and,

since the operator is homogeneous and the induced action of
G 1is unitary on sections, they are unitary G-spaces. Of
course, they might be zero. What we should wish is the

following:

“ x* L, .
(1) For a 'general' V , one of the two spaces"HV is irre-
ducible and is a discrete series representation whereas the

other is zero.
+
(2) For 'other' V get H; =0 .

(3) Every discrete series representation may be realized in

this way.

These are all true but are proved in stages. TFirst (1) is
established when the highest weight of V is 'very non-

singular', 4.17 . Then (2) is proved when the highest weight

is singular and, moreover, one establishes that HV =0 for

all V . Finally (1) for other non-singular highest weights



is proved using results on characters: this is outlined
in §5.

When G = SL(2,R) the operator is the 3 operator = 3/3z
and the process is holomorphic induction. In general, even
when G/K has an invariant complex structure (it does in
roughly half the cases), the operator is not always 3/3z
and, although we do indeed get positive polarizations and part
of the discrete series is realized by holomorphic induction,
not all of it is.

As we have said above, both spaces H$ might be 0 . We
need a tool to establish the existence of non-trivial sections,
s , satisfying Ds = O . That tool is the Atiyah L2 index
theorem. To apply it successfully the following theoreim of

Borel [5] is crucial.

Theorem 4.4 (Borel). If G is a semi-simple (linear) Lie
group 3 T < G, a discrete subgroup such that T\G 1is compact

and T operates on G/K without fixed point.

The L2 index theorem is concerned with a smooth (galois)
covering, M>M » with group T where the base M 1is a com-
pact Riemannian manifold. One has an elliptic differential
operator D: T(E) - T'(F) between two hermitian vector bundles
E and F on M, and consequently an elliptic differential
operator D: T'(E) » I'(F) between the lifted vector bundles.
Set H = ker D n LZ(E) s

T = ker 5* n LZ(F) .

H

The orthogonal projections from LZ(E) to H+ and from

Lz(f) to H have smooth kernels Kt(x,y) s X,V € M , which
are invariant with respect to the diagonal action of T on
MxM . (Kt(x,y) may be regarded as extensions of the Bergman
kernel.) Let A < M be a fundamental domain for the action

of T .
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Definition 4.5. The I-dimension of H' = dimF H =
+ ~
f trx K (x,x)dx = IM k+(y)dy , where tr is the pointwise
A ~
trace, dy is the induced measure on M and dx the lift

+ . . . .
to M, k the induced function on M from the T'-invariant

. + ~
function trx K (x,x) on M.

. . . ~ 0, . + .
When T 1is finite so that M 1is compact, dim H = |T| dim
: . + . .
ker D and dlmF H =1/|Tr| dim HY = dim ker D . The L2
index theorem is an extension of this to infinite coyerings.

J ‘'

Theorem 4.6 (L2 index theorem). Index, D = dim, ut- dim,, H =

_Index D .

Combined with the standard index theorem this theorem gives a
topological formula for indexr D . The proof is definitely

of a lower order of difficulty than that of the standard index
theorem. In our situation, G/K will play the role of M

and F\G/K that of M , where T 1is a group acting on G/K
without fixed point: such exists by Theorem 4.4, The operator
will be the Dirac operator '13;: [‘(V@S+) > T(VeS ) discussed
above. Here D is not just T-invariant but G-invariant. This
enables us to simplify the computations of thg‘indices in The-
orem 4.6. One finds that, with a suitable normalization of

Haar measure on G ,
+ .
Index DV = dim FV vol(T'\G) ,

where FV is a certain irreducible K-module depending on V:
precisely, if V has highest weight X then FV is that with
highest weight A—pn » where o= 1Za, ace€ Q: , the positive
non-compact roots. (Should A-p  Tmot be a weight then dim Fy
is the number given by the Weyl character formula evaluated
at 1.) When G 1is a real form of the simply-connected com-

plex group GC one normalizes in such a way that the dual, M,
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of G with the corresponding metric has volume 1 . The
result can not be deduced from Bott's computation [7] by
passing to the compact dual M/K of G/K and using
Hirzebruch's proportionality principle [24]. For the other
index, Index 5; , the calculation does not follow quite such

r
well-worn tracks. Let u denote the Plancherel measure. The-

L2wes") ¢ (@) sveshHl
where K acts on the right on L2(G) , and
* I ~
(LZ(G) ®V®S+)K = L Via (Vi®V®S+)K du(i) ,
G

according to the Abstract Plancherel Theorem (1.3). The space
* + . .. . . . .

(ViQ‘IQS )K is finite—-dimensional since it corresponds to

the K-factor of that representation where K acts trivially,

*
and V., 1is admissible since unitary. We may gain information

+ .
about HV here by the common method of passing to the 'square
~ ~t % ~amrg ) . L.
of D' = (DV) 5; = DVDV , the spinor Laplacian. Up to addition
of a scalar it is the Casimir operator: 5;3; = —Q-+cv , where

<y is a constant depending on the K-module V. Ker BV==Ker Sé

and so
H;={feL2:Qf=ch}+

Let X5 denote the infinitesimal character of i ¢ G . From
the line above one sees that the Dirac operator picks out a

. 2 * ..
subrepresentation of L“(V®S~) consisting only of represen-

tations 1 for which xi(Q) =cyt

- + - .
+(CV same for both DVDV and DJD : the precise formula is

due to Parthasarathy [28].)
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H;’-:{iec J . ViG(V:®V®S+)K an@) . (4.7)
:xi(ﬂ)—cv}

If one unravels the definition of dimr (using the fact that
the operator D 1is, indeed, G-invariant so that dimG(kerD)

has a meaning) one sees that because dimr = vol(T\G) dimG

dim, HY = vol(T\G) _ ' J ) dim(V;QV@S+)K dnici)
{1eG.xi(9)—cV}

Now one may put together the computations and deduce that

* \ * - R
J {dim(Vi®V®S+)K—dim(Vi®V®S )K du(i)

{ieG:x (Q)=cv}

i
= dim FV (4.8)

From 4.7, 4.8 and knowledge of what F_ 1is, it is clear that

for 'generic' V one of H$ is non—zZro. The next step is
to prove that the integrand in 4.8 vanishes outside a finite
set. (Thus H;-—H; will involve only discrete series rep-
resentations.) We shall do this by computing the infinitesi-
mal character of those i for which the integrand is non-
zero: we shall show that they all have the same infinitesimal
character. .

Let HcKcG be a compact Cartan subgroup of G and let
¢ be the root system of (gcbbc) ; let AC:ib* be the inte-
gral lattice. Say that a root o 1is compact <=> a root of
(fc,bc) . Thus & = o1 o" , where ¢¢ is the set of com
pact roots, The non-compact roots 8" describe exactly the
action of h on pc : each B8 e ¢ occurs with multiplicity
one there (see [23], [30]). Let ci denote the characters
of Si . The weights of the half spin representations of
S0(2q) are 1} ISES e;u;» € = *l, where 15¥Sq e, = +1
in one case, -1 in the other and iul,...,iuq are the weights
of the standard representation of S0(2q) . Consequently,

for a convenient choice of positive roots, ¢+ ,
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(c+-0-) |H= 1 n (eB/z--e—B/2

Be¢+

)

Fix such a choice. For each Cartan subgroup, H , there is an
isomorphism 7Yy: 3 S(b ) e » where WC denotes the Weyl

group of GC and S(bc) the symmetric algebra on b [18,311.
Under this isomorphism (interpreting vy(Z) as a differential

operator on H ),
zo | HngG =A;1 v(2) (8 e |HnG', ze3 , (4.9)

for any function © constant along conjugacy classes, where

AH - (ea/2__e—a/2) .

€
117 ¢+

(This is the generalization of what we have seen in §3 for
SL(2,R) and the Casimir operator.) The key to the compu-

tation is that
+ -
AH = DK (o0 -0) (4.10)

where DK is the denominator (for K) in the Weyl character
formula. Now, for essentially formal reasons [29], for each
ieg (c+—cr.)1'i is a finite linear combination of irreduc-
ible characters of K with integer coefficients. Hence, if

Oi denotes the character of i ¢ G as in §3,

AH®i|HnG'=AHri|HnG'= y nie)‘|HnG' , (4.11)
A€F.
1

where Fi is a finite subset of A and n; € L . Thus:

x,@e, = o, = 1/a, ] niEMHwet
A€F,
1

where Z ¢ 3 , the equations are valid on HnG' . Conse-

quently, if n; 2 0 for some ) then
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*
xi(Z) = (y(2 D) = xA(Z) s

for all Z e 3 . (XA is the character of the irreducible rep-
resentation of K wiéh highest weight A -P, +.) Moreover, as
the polynomials on ) invariant under W separate the We
orbits in (bc)* we see that given ni # 0 , then ni z 0 <=>
W =W\, some W € WC . This partially computes the infini-
tesimal character X; and proves (because AH = DK(0+—0-) ,

as noted) the following proposition.

.

Proposition 4.13. 1If, for some highest weight X , both
'(0+‘0_)Ti and (c+—0_)rj contain the character of VA with

non-zero coefficient then i and j have the same infini-

tesimal character.

* -
Let q =4 dim p = § dim G/K . Then (S+) *s* or 87 ac-
cording as q 1is even or odd. Let ¥ denote the character

of the irreducible K-module V and ) its highest weight.

+ K *
Denote (Vi®V®S) by Vi . Then

dim V; - dim V; (-1)Y{multiplicity of x in (c+—0-)Ti}

i (4.14)
- n)‘+pc
From proposition 4.13 we see that dim VI - dim V; .0 and
dim VT - dim V, 2 0 => X; = Xj ; as we wished.

The following proposition of Harish—-Chandra, combined with

the above, now tells us that the discrete series is not empty.

~I-Recall that if C 1is a fundamental Weyl chamber for G with
respect to H,¢+, then the irreducible finite dimensional
representations of G may be parametrized by X e CnA or,

alternatively, by their highest weight A -p e CnA .
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Proposition 4.15. For any infinitesimal character ¥ , the
number of irreducible unitary representations which corres-—

pond to it is finirte.

[This is because the space of invariant eigendistributions
with a given infinitesimal character is finite-dimensional,
as can be seen quickly from 4.9 if one remembers that there
is a finite number of distinct conjugacy classes of Cartan

subgroups. ]

The discrete series is non-empty because the integral in 4.8
is (in general) non-zero but the integrand is zero outside a
finite set by 4.14 and 4.15. Thus p(i) = 0 for some i€ .
We set ﬁ(i) = d(i) and call it the formal dimension of 1i .
Alth:ugh we have shown that dim VI - dim V; =0 => xi(Z) =
(vy(z ))(A+pc) = XA+DC(Z) , where X is the+highest weig&t of
V , this by no means implies that if dim Vi = 0 = dim Vj ,

then X; = Xj though we do know that xi(ﬂ) = xj(ﬂ) where
Q 1is the Casimir operator, It is mot hard to get further.

Fix a homomorphism x:.3 »> C and define

ey = ) d(i)e,
ie Gd,xi=x

We can compute ©O(x) wusing 4.11 and letting V vary. (Note
that the coefficients in 4.1l satisfy ni = sign w niA for
w € W, the Weyl group of K - so Wc We .) We deduce
that 0(y) |Hr1G' = 0 unless ¥ 1is determined by a weight
A s.t A+p is non-singular, where p = {Za , o € o .

Finally, one fixes an irreducible K-module V with highest
weight p which is 'very non-singular'. That means that p
is well inside a Weyl chamber - precisely, the condition is

the following:
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<utp 2> > <B,a> V o€ o, (4.17)
if B 1is any sum of distinct elements of QE .

Algebraic arguments now show that (for such V) if H; = 0
then there is a unique 1 € G such that

. * * -
1) dim(Vi®V@S+)K =1, (v eves ¥ oo

\

2) (vgsvasi)K=o vV joe G\ (i}
.[Of course, @i |Hr1G' = (DK/AH)Xu+pc .J

So, for such a V, H; is a representation in the discrete
series. Logically, we get most of them this way and these
are parametrized by a subset of W orbits of A+p (sup-
posing G linear). The computations above give us strong
information about the K-character of such discrete series
representations. Such information can be obtained indepen-—
dently for any discrete series character and is needed to

prove exhaustion.

5. We begin with a statement of the main reshlt on discrete
series characters. As in Lecture 4, H<cKcG denotes a com—
pact Cartan subgroup, A = H‘:ib* is the lattice of weights,
W= NGH/H = NKH/H is the Weyl group and wC the Weyl group
of (gc,bc) . & is the root system of (gc,bc) and o°
the subset of compact roots; ¢ _ will be a suitable system
of positive roots. We shall regaxd G as a subgroup GC
and shall suppose - for convenience - that GC is simply-
connected. Recall from §3 that if © 1is an invariant
eigendistribution and A the Weyl denominator then A makes
sense on each Cartan subgroup, |A| makes sense globally

and |A|@ is locally bounded.
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Theorem 5.1 (Harish-Chandra [20]). For each non-singular
A € A there exists a unique invariant eigendistribution GA
such that

(a) GA decays at « (this means that ‘AB1|®A‘ +>0 at o

on any Cartan subgroup B ) ;

® o Jung = DI J sign(we /a,
weW
where AH = 1 (ea/2 - e_a/2

€d
ey

) .

Moreover, every such 0 is a discrete series character, and

A
conversely.

There are several remarks to be made about this theorem.

5.2 1If GA is bounded at <« and satisfies (b) then @A
decays at ~ if X 1is non-singular (i.e. <X,a> = O

Vae ¢°) . We may see this on SL(2,R) . The set of ellip-
tic conjugacy classes is compact so that the assertion only
has content for the hyperbolic ones. For A real, A # 0 we

have on A

At -it
c,e +oche
() = Tt
e -e
If GA is bounded at « then ¢, =0 or ¢, =0 depending
on the sign of X . So not only is O, bounded at e« , it

A
decays there. For a general group this remark tells us that

we may, in the same way, replace 'decay' by 'bounded'.

5.3 If 1w e éd (i.e. 7w 1is in the discrete series) then

@n extends continuously from C:(G) to the n-th global
Sobolev space Hn for some large n . (f ¢ Hn <=> f ¢ L2
and Xf ¢ L2 for all X €ll(gc) of degree < n .) This

follows from the proof of the existence of the character
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plus the fact that if 7 ¢ éd then the Hilbert-Schmidt norm
of w(£) , () llyg

is defined for f ¢ Lzerl and bounded
by some constant, Kn , times the Lz—norm of f :

1 .2
Im(E)llyg s K NEI, ¥ £el nl

(The inequality is established quickly from the Abstract
Plancherel Theorem.) That @n extends to a global Sobolev
space is a slightly stronger statement than Harish—Chaana's
result that o, is tempered [20] (@Tr is tempered <=>
@n € S where S 1is the analogue on G for the Schwartz

_space on R" .)

5.4 If © is an invariant eigendistribution and © extends
continuocusly to a global Sobolev space then @ decays at o ,
(This may be seen by considering Sobolev spaces on Cartan sub-

groups.)

5.5 If © is an invariant eigendistribution and if © decays
at ® then (1) © 20 => rkG = rank K, (2) 0 |KnG' 20
and (3) © is entirely determined by its valye on KnG'

and hence by its values on HnG' . (Nonetheless it is far
from easy to write down what © 1is on another Cartan sub-

group.)

5.6 The discrete series is parametrized by the orbits under
W of the non-singular elements in A : that is, by certain

orbits in the dual of the Lie algebra.

Between them, remarks 5.3-5.5 constitute a proof of
theorem 4.3.
In this lecture we shall sketch a proof of Harish-Chandra's

theorem (5.1) and, at the same time, prove the exhaustion
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statement for the discrete series. The argument depends cru-
cially on remarks 5.3-5.5. We state two results contained in

those remarks once again.

5.7 (1) Every discrete series character decays at = .
(2) If © decays at = then O is determined by ©|HngG',

where 0O 1is an invariant eigendistribution.
Note that (1) is established without explicit knowledge of the

discrete series.

If the highest weight 1 of the irreducible K-module V

was very non-singular (see 4.17) we had indicated that Hv o,

that HV was an irreducible representation in Gd having a
character whose restriction to HnG' was ®u+p , where
c
c . .
=4Xa, ac ¢, . This formula is that of clause (b) of

theorem 5.1. Because of 5.7(2) the character is thus com-
pletely determined and is the eu+pc of the theorem. It turns
out that the result for the very non-singular case together
with the formula for ©(x) |HnG' - which can be obtained from
4.11 - implies all of theorem 5.1. (6(x) =ZId(i)e,: i « éd
and X; =X .) This uses a trick due to G.Zuckerman. It is
to tensor with finite-dimensional representations of G and
to study what happens. It is not hard but it is somewhat sur-
prising that it is successful. One is naturally led outside
the category of unitary representations. Indeed, this is a
modest example of the principle that one need to consider
Banach space representations too. Details are in §8 of [3].
What one proves is that any discrete series representation can
be realized as a subrepresentation of one of the form H;<8W
where V 1is an irreducible K-module with very non-singular
highest weight p and W is a finite-dimensional represen-
tation of G . This is done by a character computation (using

4.11) and by consideration of the possible global characters

with a given infinitesimal character ¥x : that is, we consider
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0(x) as a sum of irreducible characters. We arrive at the

following exhaustion statement.

Proposition 5.8.

(i) 1f x 1is an infinitesimal character (i.e. x: 3 > @) such
that 0(x) |Htwc' = 0 then $ ie éd such that X =X .
(ii) o(y) = Zd()\)eA on HnG' , where d(A) = Plancherel
measure of X, X, T X Ae AnC and C 1is t?e fundamental

chamber.

The discrete series representations are parametrized in the
. same way as the finite—dimensional representations of a com-
pact group. For them the Harish-Chandra character formula
(5.1) looks like Weyl's character formula, But there is a
substantial difference. Weyl's formula determines the charac-
ter globally because the conjugates of the torus cover the
compact group; but the conjugates of H do not cover G so
that the Harish-Chandra formula only determines the character
in principle. (As we have indicated, the formulae for a gen-
eral Cartan subgroup are impossibly hard.) There is a formal
analogue to che theorem of the highest weight and an analogue
(Blattner's conjecture [22]) to the formulaw[25] for the mul-
tiplicity of a weight. In particular, if =, ~is the rep-

A
resentation with character © (GA as in 5.1) then the irre-

ducible K-module of highest wéight A*-pn-pc occurs exactly
once in the restriction nle .

Finally, using powerful results on the explicit form of the
Plancherel measure one can prove that if the representation
V has highest weight 1y such that u-ch is non-singular

then H; =0 and H; is irreducible with character 0

- utpe °
Moreover, if nte, is singular then HV =0 = HV . All dis-
crete series can consequently be realised in this way. [If

G 1is a linear group this last assertion can be proved much

more simply, though not the two earlier ones.]
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Now we turn briefly to the problem of constructing other
series of representations. The discrete series representations
are the most difficult and they correspond to a compact Cartan
subgroup. (There is at most one conjugacy class of such.)

To each conjugacy class {B} of Cartan subgroup B we have a
series of representations - the B series. At one extreme is
the discrete series; at the other we have the primcipal series,
corresponding to a maximally non-compact Cartan subgroup.

As earlier, let us suppose that GCGC and that G is
simply comnected. Let B be a Cartan subgroup of G . Recall
that B is not necessarily connected and that B/Bo is per-
haps non-abelian, B° = AxT where T is compact and A is
a vector space. ZGA = M.A for some M , where M 1is reduc-
tive and BnM is a compact Cartan subgroup in M . (M,
again, may not always be connected.) Let n = Lie algebra
spanned by those roots of (gc,bc) whose restriction to a
is positive, Let N be the corresponding nilpotent subgroup.
The group P = M.A.N 1is a cuspidal parabolic subgroup.
(Cuspidal means that M - the Levi subgroup of the parabolic
group P - has a compact Cartan subgroup, [31].)

Although M may not be semi-simple it is nearly so. There
will, however, be some minor problems if it Is not connected.
These we shall ignore. Let <t ¢ ﬂd , e’ ¢ A and set nr,v =
indGP(TQerI) ; the representation of G induced from the
indicated one of P . G/P will not have an invariant measure
so we shall have to take the modified induction procedure as
for SL(2,R) . As we have seen, Tt 1is parametrized by uni—
tary characters of B nNM modulo the action of the Weyl group.
The pair (r,ev) may thus be given in terms of unitary charac-
ters of B , and for every character ¢ ¢ B we get a represen-
tation T of G such that if ¢ = (r,ev) then L nr,v .
Theorem 5.9.

(i) o non-singular => L is irreducible and L is
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independent of the choice of N .
(ii) If o,0' are non-singular TR M, <=>g=wo' ,wel

= NGB/B .

By considering restrictions of the characters to B we see
that T is never equivalent to a representation coming from
a Cartan subgroup B' not conjugate to B . So to each con-
jugacy class of Cartan subgroups there is associated a series
of irreducible unitary representations parametrized by the

non-singular unitary dual of B mod W It is called the

B -
non-degenerate series corresponding to B .

On the one extreme we have the discrete series if B is
compact so that there is no inducing : P = G . At the other
extreme when A is as large as possible M is compact and
we have the unitary principal series. Usually there are
others in between, but in the case of SL(2,R) only the two
extremes occur: and if G 1is complex semi-simple only the
last extreme occurs. In general (when there may be no compact
Cartan subgroup) the fundamental series is that corresponding
to the (unique) Cartan subgroup with maximal compact part.

(So for G semi-simple complex the principal and fundamental
series coincide!) In case of each series we can say - if we
adopt Kostant's point of view = that they are parametrized
by certain orbits in the dual of the Lie algebra.

These constructions give us many unitary representations,
but not all. However, they are enough to support the Plan-
cherel measure, as Harish-Chandra has shown. We shall finish
with a short discussion of the Plancherel measure. According

to the Abstract Plancherel Theorem (1.3)

n

2 ® A
L7(G) ¥ [A Viavidu(i)

: f“ Hom(Vi,Vi)HSdu(l) .

G

As such the measure class only is determined, but once one

fixes an explicit isomorphism there is a unique measure.
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Suppose f € QZomp(G) = C:(G) is a smooth function with com—

-1,
pact support. Set *(g) = £(g )

* 2 2 .
£xg (D) = IIEl; = | lm £ll5 dn(i)

[] ]
[2] [2]

EZICR TR STLIEN

]
—
«

, trom (£ £)an(i)

]
—
«

*
L0, (E% £)an(D)
By approximating one sees that for all f ¢ C:(G) s

£(1) = J @i(f)dﬁ(i) (5.10)

~

G

This formula determines on G . In particular, if we have

>

‘a measurable subset S © G and a positive measure u on S

such that

£(1) = J 9, (£)du(i)
i
S
for all f ¢ C:(G) then we know that that measure is the
Plancherel measure. From this we learn what to do: ideally
we do not need to find all of G .
Let us consider SL(2,R) by way of example. We have the

principal series T s € iR+ , and the discrete

. s,even’ns,odd ;
series ; » n € \\{0,1} . We shall write ©_  for the
character corresponding to w_, as in §3. Let K,A be as

there, too (so K =850(2) and A £ R) and let e(n) denote

the sign of n .

For f ¢ C:(G) .

232



we) = 3 Inll | o5 (9a(pdg
Z G |n|
ne K
nz0, +1
where KG = union of conjugacy classes meeting K . One shows

this by making into an integral over K ¥ Sl and then using

Fourier analysis. Now

o fe e

so that one can rewrite the right-hand side and obtain:

amel) = 5 Io-1] o5 (g
neZ In|
nz0,+1 e(n)
- f(tA)G( nzz [n-1] elnl f) dg

nz0,+1
The integral on the right can now be reduced to an integral
over A of principal series characters. Note that such
characters vanish on KnG' and hence on KG . Indeed, this
is typical: characters of a B-series will vanish on any more

compact Cartan subgroup.

Finally, we remark that recent work of Langlands, Knapp-
Zuckerman and Vogan has resulted in a complete classification
of the irreducible admissible Banach space repfesentations of
a semi-simple Lie group. But one does not know which are

unitary.
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9 - Invariant differential operators and
eigenspace representations

SIGURDUR HELGASON
Massachusetts Institute of Technology

1. Introduction

These lectures will focus on the construction and proper—
ties of certain representations of Lie groups, which I have
called eigenspace representations. The construction 1s rather
general and in fact, all representations of Lie groups with
which I am familiar can be realized by means of this process.
However, there is no particular emphasis on unitary represen-—
tations.

The construction is based on the concept of an invariant
differential operator. Let M be a manifold. A differential
operator on M 1is a linear mapping D: C:(M) - C:(M) such
that for each p ¢ M there exists a coordinate neighbourhood
U with coordinates (xl,...,xm) such that

n, n
(DE) (x) = ) a 0. ) () (1)
(n) 1 m
for f e C:(U) » x €U where 3, = Blaxi and the coefficients
a Cog are C€” functions on U .
The following criterion ([18]) is often convenient when one
wants to know whether a certain operator is a differential op-

erator.

Theorem 1.1. A linear mapping L:Cm(M) -+ Cm(M) with the
property that

supp(Lf) < supp(f) £ e C (M)
(supp denoting support) is a differential operator.
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If L is assumed continuous this is an immediate conse-
quence of Schwartz' theorem about distributions of point sup-—
port ([8(a)l, p.242).

Let D be a differential operator on a manifold M and

let ¢ be a diffeomorphism of M onto itself. Put
£ = f oot £ e CT(M)

and define p? by

-1 -
p? i £ (0F? )% = (D(fog)) o ¢t

Then D¢ is a differential operator (use Theorem 1.1); it is
called invariant under ¢ 1if D¢ =D, i.e., if D(fog¢) =
(Df) o ¢ for all £ . Note that (Df)® = D%e® | justifying

the notation.

Examples

- . . n . . .
(1) A differential operator on R is invariant under all
translations if and only if it has constant coefficients (in

. n
the standard coordinate system on TR ).

(i1) The d'Alembertian

and the polynomials in it are characterized by their invari-

ance under the Poincaré group.

(111) The operator

on the Heisenberg group of matrices
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X,y,x € R

Q

[}
o O =
O M K
<

is invariant under all left translations LOO: 0+ 0,50 . To
verify this note that under the correspondence o + (x,y,2z)
we have 990 * (xo-bx,y0-+y, zo-kz-kxoy) so

[E(f °L00](0) = (Blf)(ooo) + 1(32f)(000) + 1x0(33f)(000)

+ ix(aaf)(coc)

and

(Ef)(ooc) = (Blf)(ooo) + i(32f)(000) + i(x0+x)(33f)(000)

Let us now assume that the manifold M 1is homogeneous,
i.e., that it has a separable Lie group G acting transi-
tively on it., Then if p € M 1is arbitrary and Gp the sub-

group of G fixing p (the isotropy group at p) the mapping
ng + 8°p (2)

is a diffeomorphism of G/Gp onto M . This fact is ex-—
tremely important because the Lie—theoretic information about
G/Gp gets transferred to M wvia (2). On the other hand if
H 1is a closed subgroup of a Lie group G , the space G/H

of left cosets is a manifold such that by means of the trans-
lations 1(g): xH -+ gxH the group G acts transitively on
G/H .

Examples

a) The group S0(3) acts transitively on the two-sphere Sz;
the isotropy group at each point can be identified with S0(2)

SO
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S0(3) /s0(2) = 52 . (3)

b) Let M(2) be the group of orientation—-preserving iso-

metries of the plane Rz. Then

M(2)/50(2) = R® . (4)

é) Let SU(l,1) denote the group of matrices

2 2
g=(i E), a2 < b1 .
b a -

*Then SU(l,1) acts transitively on the hyperbolic plane 'H2
(the unit disk |z| < 1) by

az+b
g*z =
bz+a
S0
2
SU(l,1)/s0(2) = H . (5)

Let D be a differential operator on the manifold G/H
(H a closed subgroup of the Lie group G); D 1is called
invariant (or G-~invariant) if DT(g) =D forﬁgll g€ G.
Let D(G/H) denote the set of G-invariant differential op-
erators on G/H ; under addition and composition of operators
D(G/H) 1is an algebra over the complex numbers. It is easy
to verify for Example b) above that ID(G/H) consists of the
polynomials in the Laplacian 32/3x2 + 32/3y2 . For Example
a) and Example c) the same result holds with L respectively,
replaced by the Laplacian

2 - 2

] 3 . -
L=—=+cot 8 7+ sin 06 —5
362 36 3¢2

on 52 and by the Laplacian
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2 2
L= (l—xz—yz)2 —3—'2- + “3'7) (6)

on the hyperbolic disk I-I2 with the Riemannian metric

d52 = (l—xz—yz)_z(dx2+dy2) . The reason that for these ex-
amples DD(G/H) has just one generator is the high degree of
mobility of the spaces: They are two-point homogeneous in
the sense that for each r > 0 the isometry group permutes
transitively all pairs of points of distance r . TFor such

spaces we have in fact (cf. [8(a)] and Corollary 2.10 below).

Theorem 1.2. If M is a two-point homogeneous space, G
the Lie group of all isometries, then the only G-invariant
differential operators on M are the polynomials in the
Laplace-Beltrami operator. The same result holds if M 1is

any isotropic Lorentz manifold.

Since invariant differential operators form a natural
generalization of constant coefficient differential operators
there is a host of problems which automatically suggest them—
selves. In these lectures we will focus attention on the
joint eigenfunctions of these operators and on the represen-
tations induced on the joint eigenspaces. Let us now explain
this in more detail.

Let G be a topological group, V a topological vector
space, and Aut(V) the group of linear homeomorphisms of V
onto itself. A representation of G on V 1is a homomorphism
7 G *> Aut(V) such that the mapping (g,v) - w(g)v 1is con-
tinuous from GXV to V .

If H 1is a closed subgroup of the Lie group G we want
to study a particularly interesting class of functions on
G/H namely those which are eigenfunctions of each of the

operators in IDD(G/H) . So we fix a homomorphism
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x: D(G/H) ~ €

and let EX denote the corresponding space of joint eigen-—

functions, i.e.,
E = {£<C7(G/H) [DE = x(D)f  for all D e D(G/H)} .

Then Ex is a closed subspace of the topological vector
space C”(¢/H) , hence it is another topological vector

space. We now define a representation Tx of G on Ex

T(g)
T f=1f € G, £ E .
X(g) p24 > € X

In fact, fT(g) € E

X and the definition of the topology of
c®(M) ([191) shows that Tx has the continuity property
required of a representation.

The representations Tx (introduced in [8(e)]) will be
called eigenspace representations. These representations of
G are a kind of a counterpart to the induced representations
of G (see e.g., Mackey [15]); the first class of represen-
tations is given by the homomorphism x: D(G/H) - € , the

second class by the representations of H .

Problem. For a given coset space G/H determine the joint
eigenspaces Ex and identify the representations Tx 5 1n

particular, for what x is TX irreducible?

This problem is considerably broadened by replacing func-
tions by sections of vector bundles over M and replacing
D by a differential operator on the space of sections in-—
variant under the action of G . The Dirac operator becomes
an invariant differential operator in this general sense.

We shall now discuss the problem above for some examples.

More general cases and indications of proofs will be
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given later.

Theorem 1. 3.

(a) The eigenspaces of the Laplacian L on the sphere

32 = S0(3)/S0(2) are of the form

_ K, 2.2 2 _
Ek = span of {(asl+852+ys3) |a +RT+y" = o} s

k being a nonnegative integer. Here

»8,) € 82 c R? and o,B,y € ¢

(512857554

(b) The group S0(3) acts irreducibly on each eigenspace
Ek .

This result is well known from the classical theory of
spherical harmonics. Next we consider the case SU(1l,1)/

S0(2) = Hz. The Poisson kernel

1-1z|?

P(z,b) =
| z-b |2

lz] <1, |bl =1

is of course annihilated by the Laplacian

L= (1—|z|2)2 (a§+a§) . It can also be written

P(z,b) = e2<z’b>

where <z,b> 1is the non-Euclidean distance (with sign)

from O to the horocycle through z and b . More gener-
ally, if v e C a direct computation shows that z-+e2v<z’b>

is an eigenfunction,

e2\)<z,b> 2v<z,b>

Lz( ) = 4v(v-1De .
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and we shall now see that all the eigenfunctions of L are

given by superposition of these (cf. [8(d)], p.139, [8(g)]).

Theorem 1.4.
(a) The eigenfunctions of L on H2 are precisely the

functions

2v<z,b>
e

B

F(z) = J dT(b) ,
where v ¢ € and T is an analytic functional on the

boundary B .

(b) The representation Tv of SU(l,1) on the eigenspace

Ev = {u: Lu = 4v(v-1)u}

is irreducible if and only if v is not an integer.

We recall the concept of analytic functional: Let
A(B) < C7(B) be the subspace of analytic functions on the

circumference B: if f ¢ N(B) and b0 ¢ B, f has a

power series expansion near b0 in terms of the arc par-

ameter. We now describe the topology of U (B)- and here B

is allowed to be any compact analytic Riemannian manifold

(cf. [14]) with Laplace-Beltrami operator LB . For M>0
we put
1
IFl, = sup —mr MOILEFL
M K ¢ 7+ (2k) ! B
where || || 1is the L2 norm on B and put

A, (B) = {Fec®] IFl, <=}
Then QIM(B) is a Banach space, W (B) is the union of the
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spaces QIM(B) and is accordingly given the inductive limit
topology: a convex subset U c fA(B) is a neighbourhood of

0 if U nﬁlM(B) is a neighbourhood of 0 1in ﬁlM(B) for
each M . With this topology of U (B) the dual space U'(B)
consists, by definition, of the analytic functionals.

While (b) is best understood as a special case of its gen-
eralization to symmetric spaces stated later ome can see as
follows that for certain v the space Ev has invariant sub-
spaces. The space ]i2 can be viewed as the quadric —xf -
xg + xg =1 in ]R3 with the induced Riemannian structure.
The group S0(2,1) then acts on the eigenspaces of the
Laplacian L . The 'Lorgntzian' Laplaci;n on iR3 has the

2 2 -

2 2
form 0O = Br + = ar -r L (£ = X~ X,

a homogeneous polynomial satisfying [P = O then the restric-

+-x§) so if P 1is

. 2, . . . .
tion P|H® is an eigenfunction of L . In this way we obtain
finite-dimensional invariant eigenspaces of L .

Next we consider our problem in the case of the plane

M(2)/s0(2) = m? for which L = Bi + 3; generates the in-

0]
. . . 2 .
variant differential operators. If x € R° and w a unit

vector, the scalar product (x,w) 1is the analog of <z,b>

2 e1A(x,w)

for H~ and is an eigenfunction of L. with

0
eigenvalue -22 . This holds more generally for the function

f(X)=J AWy
Sl

: . . : . 1
where T 1is an analytic functional on the unit circle §
But in order to get all the eigenfunctions we need more gen-—
eral functionals.

Given a,b > 0 let Ea denote the space of holomorphic

b
k]
functions £ on € - (0) satisfying

1
) < )

= sup(lf(z)le_a[zl_blzl_

IEN, 4
¥4

Then Ea is a Banach space with norm the left hand side

b
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of (7) and we give the union E = a?b Ea,b the inductive
limit topology. Identifying the members of E with their
restrictions to Sl we have a continuous imbedding E(:ﬂ(sl)
so the dual E' , whose members we call entire functionals on
Sl , contains A'(B) . We now have the following solution to

our problem for the plane Rz ([8(g) D).

Theorem 1.5.

(a) The eigenfunctions of the Laplacian L0 on R? are

precisely the harmonic functions and the functions ,

f(X) - f 1 elA(X,w)dT(w)
S
where A ¢ €-(0) and T is an entire functional on Sl .

(b) The action of the group M(2) on the eigenspace

{u: Lou = —Azu} (A e @

is irreducible if and only if X =0 .

Let us look closer at the exceptional case A =0 . Now
there is a bigger group acting on the eigenspace. In fact,
LO is quasi-invarian£ under the conformal group in the fol-
lowing sense. The group SL(2,8) acts on ]Rz (or rather
its compactification SZ) by

az+b (a b

g:z—*zz—ﬁ if g = c d) , detg=1 .

We have
2
Ly =4 —— ,
3zdz
where
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e

2 ya .8 Y I B
3z 9% 3y )’ 27 2\ 3x 3y

so since
g _ =
._?_ = (cz—a)2 ._?_ s -—B-— = (cz—a)2 —?—
9z 9z - -
\ 9z 8z

we derive

g . |4
Lo lcz a| LO .
Thus if u is harmonic on U ¢ ]R2 then u o g 1is harmonic
on (g_lU) n ]R2 . But since SL(2,C) does not map ]R2 into
itself we consider the induced action of s2(2,C) (6-dimen—
sional Lie algebra over R) defined as follows. Let

X e s2(2,0) , g, = exp tX ,u € Cm(]Rz) . We define

g
(x0) (2) =(§E u t) (2)
=0

Then Lou = 0 implies LOXu =0 so we have a representation
of s2(2,8) (as a real Lie algebra) on the space X of har-
monic functions on ]R2 . We have then the following easy com—

plement to Theorem 1.5(b), cf. [8(h)].

Proposition 1.6. 7The action of s%(2,8) on the space ¥ of
, , 2, . , ,

harmonic functions on R~ 1is 'scalar irreducible' i.e., the

only continuous operators which commute with the action are

the scalar multiples of I .

We conclude this section with some further cases of eigen—
space representations. Let N be a simply comnected nil-
potent Lie group with Lie algebra n . Let X ¢ n* , the dual
of n and let mc n be a subalgebra of maximal dimension
satisfying A(Im,m]) =0 . Put $ = mn kernel(}) , and let

H ¢ N be the analytic subgroup corresponding to $ . Using
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Kirillov's description of the unitary representations of N ,

Hole [9] proved the following result.

Theorem 1.7. The eigenspace representations for N/H are
irreducible for all nonzero homomorphisms w: D(N/H) - ¢ .
The choice of special u and L2 eigenfunctions gives rise

to all the irreducible unitary representations of N .

Next, let G be a simply connected complex semisimple Lie
group, N the connected Lie subgroup whose Lie algebra is
spanned by the positive root vectors. As we shall prove in
83 the finite—dimensional representations of G are precisely
the eigenspace representations of holomorphic functions on
G/N .

The case of the (ax+b)-group was worked out by Henrik
Stetkaer at the conference. He verified that all its unitary
representations arise as eigenspace representations if one

takes both nontrivial subgroups into account.

2. Invariant differential operators on Lie groups and
homogeneous spaces

Given a coset space G/H our aim is now to describe the
operators in I(G/H) . First we consider the case when
H = (e) and write ID(G) for D(G/(e)) , the set of left in-
variant differential operators on G .

If V is a finite—-dimensional vector space over R the
symmetric algebra S(V) over V 1is defined as the algebra
of complex-valued polynomial functions on the dual space V*.
If Xl""’xn is a basis of V, S(V) can be identified

with the (commutative) algebra of polynomials
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Let g denote the Lie algebra of G (the tangent space to
G at e ) and exp: g = G the exponential mapping which maps
a line RX through O in g onto a one-parameter subgroup
t+exp tX of G . If Xe g let X denote the vector

field on G given by

X = o -4 ©
G0 (o) = X(EoL) {3k f(gem W} v ored@

where Lg denotes the left translation x = gx of G onto
itself. Then X 1is a differential operator on G and if
hecG

@0 - ooy = @0 ()

so i € D(G) . Moreover, the bracket on g 1is by definition

given by
[X,Y]N = XY - ¥X , Ye g ,

the multiplication on the right hand side being composition
of operators.

The following result connecting S(3) and D(G) is a
modification of results of Harish—-Chandra and Schwartz

([6(a), p.192] and [6(c), p.111]).
Theorem 2.1. Let G be any Lie group with Lie algebra g .

Let S(8) denote the symmetric algebra over the vector space

4 . Then there exists a unique linear bijection
A: S(g) » D(G)

such that R(Xm) = (Xeg, me Z+) . If Xl,.;.,Xn is

any basis of g and P e S(g) then
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(AP)H)(g) = {P(Bl,...,an)f(g exp(th1+...+tan)} , (2)
t=0

where f ¢ C°(G) , B, = 98/dt, and t = (t;,...,t) .
Proof. Fix a basis Xl,...,Xn of g . The the mapping
g exp(th1+...+tan) - (tl,...,tn)

is a coordinate system on a neighbourhood of g in G so
formula (2) defines a differential operator A(P) on G .
Clearly A(P) 1is left invariant and by (1), X(Xi) = Ei , SO
by linearity A(X) =X for X e g . Also

#6) () = ¥EO) () = {% &) (g exp tX)}
£=0
= { a%:-{ags-if( g exp tX exp SX)}

2

={-—d—~—2— £(g exp tX)}
dt t=0

s=0}t=0

which, writing X =

3

xiXi » equals
Ix %, OX) D (@) = AEHD @R

By the same argument

A(Xm) = Xeg, me zt . (3)

For a fixed m € z* , the powers o (X ¢ g) span the sub-
space Sm(g) c S(g) of homogeneous elements of degree m .

In fact, the bilinear form on Sm(g) x Sm(g*) determined by

my+e .M

my ™ P31 Pn 3 n P1 Pn

<X ...Xn ,Xl ...Xn > = ——;;————-——— 1 Xy
1

1
Bxl ...axn
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is nondegenerate and the amnihilator of all Ve (X eg) 1is
O . Thus (3) shows that although A 1is defined by means of
a basis, it is actually independent of this basis,

Next we prove that A 1is one-to-one. In fact suppose
A(P) =0 where P # 0 . With respect to a 'lexicographic
ordering' let aXTl... :n be the leading term in P . Let
f be a smooth function on a neighbourhood of e in G such
that

m m
Flexp(t X +... 4t X)) = t. 4.t ™
11 nn 1 n

for small t . Then (A(P)f)(e) = O contradicting A(P) =0,

Finally, A maps S(g) onto ID(G) . In fact, if
u € D(G) , there exists a polynomial P such that

(uf) (e) ={_P(3 .,an)f(eXp(t1X1+.. .+tan)}

see
L t=0

Then by the left invariance of u, u= }(P) so A is

surjective.

Definition. The mapping A 1is usually called symmetriz-

ation.

Exercise. Let Yl""’Yp € g , not necessarily all differ-

ent. Then

1
p:

~ ~

ey Yo

A(Yl.r.Yp) =

gep
p
where Dp is the symmetric group on p letters.

During the proof above we saw that

) &
(X") (8) ={——m f(g exp tX)} .
dt t=0

This gives the following version of Taylor's formula.
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Corollary 2.2. If f is an analytic function on a neighbour-
hood of g 1in G then

flgexpt) = | - ("O)(2)

)
n=0

for X e g provided t is sufficiently small.

We now recall some facts concerning the adjoint represen-
tation Ad of G (or AdG ) and the adjoint representation
ad of g (or adg ). If g e G the mapping x -+ gxg_l
is an automorphism of G ; the corresponding automorphism

of g 1is denoted Ad(g) . Thus
-1
exp Ad(g)X = g exp Xg Xeg, geG . (4)

Then the mapping g - Ad(g) 1is a representation of G on

g . By general theory it induces a representation of g on
g , denoted ad . Thus, by definition
Ad(exp X) = 24 % Xeg , (5)

where for a linear transformation A , eA denotes Z ﬁ%—An .
From (4) and (5) one can deduce A 0
ad X(Y) = [X,Y] X,Yeg . 6)
These operations can now be extended to differential oper-
ators. Let us calculate (Ad(g)X)~ . Recalling the trans-
lations

L:x-+gx R: x-+x
g 24 » g 8

we have for f ¢ C¥(G) ,
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[(Ad(@X) £1(0) = {g%f(xexpt:Ad(g>x>}
t=0

d -1 _fa Rg }
{Ef(xg exp tXg )} _{Ef (xg exp tX)

t=0 t=0

~ R ~ R_ R_-1
= (Xf B)(xg) = (Xf 5) & (»)

SO

. R-1
(Ad(g)X) =X 8

Thus we define for D ¢ D(G)

R -1
Ad(g)p =D 8 ¢))

Then Ad(g) is an automorphism of ID(G) .
Next we observe that

(ad(x) ()"~ = ¥ - ¥
so we define for D € D(G)
(ad X)(D) = XD - DX (8)

and then ad X 1is a derivation of the algebra D(G) . We can

also define

L

= (ad 0™D) D ¢ D(G) (9)

ead X(D) -

or~18

because (ad X)n(D) by (8) is a differential operator of order
< order of D ; thus all the terms in the series (9) lie in a
finite-dimensional vector space so there is no convergence

problem. Now using Leibnitz' formula for the power of a deri-

vation applied to a product we have for D,,D, € D(G) ,
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ad X _ T 1 n

e (D,D,) = g Zr(ad ©™(0,D,)
s 1 n! i j

=lor I i) @edn’o,)
0 ™ osi,j,i+tj=a "7
SO
ad X _ adX ad X
(D1D2) = e (Dl)e (D2) .

Thus Ad(exp X) and ead X are automorphisms of D(G) ;
they coincide on 5 , hence on all of I(G) since by Theorem
2.1, E generates ID(G) . Consequently

adCexp 3D = 24 %) De DG . (10)

Lemma 2.3. zet Xeg , De D(G). Then XD = DX if and only
if

Rexp tX -

D D for te R .

In fact we have by (7)-(10)

R
lim L (p eXP(~tX)

t+0

-D) =3 -DX

so the 'if' part is immediate. On the other hand if XD = DX

R
we have D °XP S D by (7) and (10).

Corollary 2.4. Assume G is connected. Let Z(G) denote

the centre of D(G) and I(g) < S(g) the sét of Ad(G) -in-

variants. Then
A(Idg)) = z(&) . (11)
Moreover Z(G) consists of the right invariant differential
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operators in DD(G) .

The last statement is immediate from the lemma (since G

is connected). Since
A(Ad(g)P) = Ad(g)A(P) P ¢ 5(g)

statement (11) follows immediately (cf. [4(a)] and [6(a),
p.1921).

Now suppose G 1is a connected Lie group and H < G a
closed subgroup. Let g > § be their respective Lie al-
gebras and m a complementary subspace, g = m@® § (direct
sum). We mow use M to introduce coordinates on G/H (ef.
[8(a), Ch.II]). Let (Xl""’xr) and (Xr+1,..,,Xn) be
bases of m and $ respectively, and w: G + G/H the

natural projection. Then if g € G, the mapping
(xl""’xr) -+ N(g exp(x1x1+---+xrxr)) (12)

is a diffeomorphism of a neighbourhood of 0 in m onto a
neighbourhood of w(g) in G/H . The inverse of (12) is a
local coordinate system near w(g) , turning G/H into a
mani fold.

The mapping m: G + G/H has a differential dm which
maps ¢ onto the tangent space (G/H)0 to G/H at the
origin O = {H} . The kernel of dr is $§ . The translation
t(g): xH + gxH satisfies

T o Lg =1(g) om

and since 1w o Rh =7 , AdG(g)X = dR

the differentials,

g_l ° dLg(X) , we have for

dmr o AdG(h)X = d'r(h)0 o dr(X) Xe g .
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Thus under the isomorphism
5/9% /M), (13)

the linear transformation AdG(h) of g/ $ corresponds to the
linear transformation d'r(h)o of (G/H)0 .
The coset space G/H is called reductive ([161) if the

subspace mt © g can be chosen such that
g=me H, AdG(h)mcm (h € H) .

. If H 1is compact (or if just AdG(H) is compact) then G/H
is reductive. In fact g will then have a positive definite
quadratic form invariant under AdG(H) and we can take for
m the orthogonal complement of § in g . Let

Bh

DH(G) ={DeD@G)ID =D for all h e H}

and 1f £ 1is a function on G/H we put f=fom. We
have now a Lie—algebraic description of D(G/H) for a re-

ductive coset space ([8(a), Ch.III]).

Theorem 2.5. Assume G/H reductive. Then the mapping

u-=+D where
u
(Duf)~ = uf £ e C (G/H)

is a homomorphism of ]DH(G) onto D(G/H) . The kernel is
DH(G) nD(G)H so we have the isomorphism

D, (G) /DE(G) n D(G)$ = D(G/H) .

Proof. Let u eDy(G) and f ¢ CT(G/H) . Then uf is

right-invariant under H , so of the form 3 , £, € C:(G/H) ;

1
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Du is .the map £ - fl . It decreases supports so Du is a

differential operator. It is G-invariant because
-1 -1 L
" &5y~ = (0 £7® @Y~ L ((p T8 Ny B
u u u
e~ L 2 ~
= (u(£78 Yy B = uf = (0 6)

so DT(g) =D , whence D e D(G/H) . Also u =D is a
u u u u
homomorphism.

Next we prove that the mapping is surjective. Let E ¢

D(G/H) . We express E at O in terms of x ces X 3

122 %
there exists a polynomial P such that

. 9 3
(Ef)(0) = [P(ﬁ,...,E)f(w(exp(xlxlh..+err)))}(0) .
By the G-invariance,
&h
(Ef)(g-0) = Ef '8 ’(0) =
: RICa)
P(E{,...,E;)f (w(exp(x1X1+...+err))) 0)
= {P(a—a—,...,—a—a—)f(g exp(x1X1+...+x X ))} .
X, X o
In particular take g =h ¢ H . Then

(EE) (0) = {P(—%,...,%)E(exp Ad(_h)(x1X1+...+err))}
1 r

x.=0
i

so we conclude P is Ad(H)-invariant. Put u = A(P) e D(G) .
Then

R 1
u B = Ad(h)u = A(Ad(h)P) = A(P) = u

so ue]DH(G) . Also



(wH)(g) = A(®D)(g) =

] 3 .7
{P(BT,. e F)f(g exp(x1X1 +... +xrxr)}
1 T xi=0

= (Bf)(g) so D _=E .
Thus our map is surjective.
It remains to prove D =0<=>uce¢ ]DH(G) nDGY.

For this we insert
Lemma 2.6. D(G) =D{c) H& A(S(m)) (direct sum).

Proof. Given P € S(g) , I claim 3Q ¢ S(m) with A(P-Q) ¢
D(G)H . This is clear if P has degree 1 . We assume claim
true for P € S(g) of degree < d . We must prove it holds
for P of degree d . We may assume P = X:l e X:n in

X of $ .

+...t¢ >0,
n

terms of the bases xl,...,xr of m , Xr+1,...,

If er+l+...+en=0 we can take Q =P . If e i1

A(P) 1is a linear combination ial i“d » where X ¢ §
i

for some i. Put D) = AC Y 5%(g)) . Then

e<d
~ ~ ~ ~ ~ ~ o~ d-1
Xa ...Xa -Xa --.Xa Xa ...Xa Xa EV_;D (G
1 d 1 i-1 i+l d i -
80
d-1

A(P) - D eD(®H for some DeD ) .

By induction hypothesis, there exists a Q ¢ S(m) such that
A(Q -DeD(®S ,

whence A(P-Q) ¢ D(G)H . This gives the decomposition.
Next we prove the directness. Let P ¢ Sfm) , P 20 .,

*
Then there exists a function f (xl,...,xr) such that
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9 9 *
(P(F;I ooy er)f)(O) z2 0 .

Choose f ¢ C*(G/H) such that
f*
f(w(exp(x1X1+...+err))) = (xl,...,xr)
for X, sufficiently small. Then
A(P)(fom)(e) 20

so A(P) {D(E)H.

Since both summands are stable under AdG(H) we deduce

Corollary 2.7. Let 1I(m) denote the set of AdG(H) -invariants

in S(w) . Then

Dy (6) = (DL(G) n D(G)H) ® A(I(m) .

We can now finish the proof of Theorem 2.5. Let u ¢ ]DH(G)
such that Du =0 . Let

as in Corollary 2.7. Then D“l =0 so D‘12 =0 . But u, =

A(Pz) s P2 e I(m) . We claim u, = 0 . If not, then as we
saw above there exists f ¢ C”(G/H) with uZE z 0 so Duzto s
a contradiction. Thus u, = 0 so uce 'DH(G) nD(EY .

Theorem 2.8. Let G/H be a reductive homogeneous space. The
mapping Q - DA(q) is a linear bijection of 1I(m) onto
D(G/H) . Explicitly, if Q e€ Itm) then

2

( (3;1_’..

£)(g-0) = | Q -’3)%;)?(3 exp(x; X +...4x X )) {(0)

Dy
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While the mapping Q - DA(Q) is not in general multipli-

cative (even when ID(G/H) 1is commutative) we have

D =D D +.D
A(Ple) A(Pl) A(Pz) A(Q)

where Q e I(im) has degree < deg P1 + deg P2 .
By induction we obtain,

Corollary 2.9. If I(m) has a finite system of generators

Pl""’PZ and we put Di = Dk(Pi) then each D ¢ D(G/H)
can be written
n n
1 L
D = an n D1 . D2

Corollary 2.10. Let M be a two-point homogeneous space.
M = G/KX where G = I(M) . Then D(G/K) consists of the

polynomials in the Laplace-Beltrami operator.

In fact, since AdG(K) acts transitively on the unit

sphere in the tangent space (G/K)0 it is clear that I(m)
2

1s generated by X

+...-+X3 s if (Xi) is an orthonormal
basis of m . h

A particularly interesting class of homogeneous spaces are
the symmetric coset spaces G/H where G 1is a connected Lie
group with an involutive automorphism o whose fixed point
set is the group H . If in addition H 1is compact we call
G/H Riemannian symmetric coset space (because it has a G-
invariant Riemannian metric).

The spaces (3), (4), (5) in §1 are examples of these coset

spaces; for (5) the involution o 1is given by

b a -b

b a -5 a
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Theorem 2.11. Let G/H be a symmetric coset space, G semi-

simple and H connected. Then D(G/H) is commutative.

For the proof let us first assume that H 1is compact. Let
Cc(G) denote the space of continuous functions on G of com-

pact support; this space is an algebra under comvolution:

(F*g)(x) = f tay Demdy = | tme ey
G ‘G .
Here we used the bi-invariance of the Haar measure dy on G.
Since o 1is involutive it preserves dy so the map f + £
is an automorphism of Cc(G) . By the symmetry of G/H , each
geG can be written g = hp where h e¢ H and o(p) = p-l .
Let C#(G) denote the set of functioms in C:(G) which
are bi-invariant under H . As noticed by Gelfand [4(b)],
C#(G) is commutative under convolution. In fact, if f,g €

v -
Cc(G) and we put f(g) = f(g 1) then (* denoting convolution)
v
fry = (g*6)’ .

Since (f"'g)CI = fo*gCI and since f° = g for f € C#(G) we
obtain f*g =g*f for C#(G) .

Now let D,E € DH(G) and f,g € d#(G) . Then since D is
left invariant, D{(f*g) = £*Dg =Dg*f so

DE(f * g) D(Eg*f) = Eg*Df = Df *Eg

ED(f * g) Eg * Df .

]

ED(g * £)

Thus E and D commute on the subspace C#* C# of C#(G) ,
hence, by density, on all of C#(G) .
Now if F ¢ C:(G) is right invariant under H we consider

the function

F*(x,y) =f F(yhx)dh ,
H
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where dh 1is normalized Haar measure on H . (Then (sub-
script 1 denoting differentiation with respect to the first
argument), we have since F* is bi-invariant under H in

the first variable

(D, F*) (x,y) = f (DF) (yhx)dh = (DE)*(x,y) ,
H
s0

(OB (y) = (D F¥)(e,y) .

Hence

(DEF) (y) = (Dl(EF)-*)(e,y) = (DlElF*)(e,y) = (ElDlF*)(e,y)
= (EDF)(y)

so by Theorem 2.5, D(G/H) 1is commutative.

Now we drop the assumption that H is compact. Let

g =H+g (14)
be the decomposition of g into the eigenspaces of do for
the eigenvalue +1 and -1 , respectively. Then $ 1is the
Lie algebra of H . By a standard result on séﬁisimple Lie

algebras (cf. [2, p.100]1, [8(c), p.29]), there exists a

Cartan decomposition of g
g=T+p , (15)

which is compatible with (14) in the sense that the correspond-

ing Cartan involution of ¢
0: T+X > T-X Tet, Xep

commutes with o . Let g, be the complexification of g ,
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$, and q, the subspaces of g, genmerated by $ and g .
Put u= ¥+ ip. Then u 1is a compact real form of ¢ c and
since o6 = 60 we have

= 1105c + unqc R

§c=unﬁc + i(ung) .
The subspace

s=‘un§c + 1(unqc) (16)
is a real form of 8. and (16) is a Cartan decomposition of
s . Let S = Int(s) be the adjoint group of s , put H* =
u 05c , and let H* be the analytic subgroup of S with Lie
algebra $* . Then H* is compact and S/H* is a Riemannian
symmetric coset space., By the first part of the proof,
D(S/H*) 1is commutative so by Theorem 2.5,

DH*(S)/]DH*(S) n D(S)H* is commutative. an
Passing to the complexifications, (17) means that

Z,.5 (gc) /Z5 (gc)n U('gc)ﬁc is commutative. (18)

c c
Here U(gc) denotes the universal enveloping algebra of 8.
and Z5 (gc) denotes the centralizer of 5(: in U(gc) . But
c

just as (17) is equivalent to (18), property (18) is equivalent
to

DH(G)/]DH(G) n DG is commutative

which by Theorem 2.5 proves D(G/H) commutative.
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Remark. Theorem 2.11, for H compact, is stated in a differ-
ent form in Harish-Chandra [6(b), Lemma 1] and is proved in
Selberg [20]. The result is indicated in [4(b)], but the
'proof' as described in [1, p.340] is insufficient because it
is based on the statement that 2(G) gets mapped onto D(G/H)
by applying the operators in 2(G) to functions on G which
are right invariant under H (cf. Theorem 2.5). As shown in
[8(b)] this 'onto' property fails when G 1is a suitable real
form of the exceptiomal groups E6 , E7 or E8,
pens to be true whenever G 1is a real or complex classical

but it hap-

group.

The present proof of Theorem 2.11, valid for H compact
or not was written in 1960 following a discussion with Harish-
Chandra. In [13], Lichnérowicz proves the same result under

the assumption that G/H has an invariant volume element.

3. Finite-dimensional representations

We shall now sketch the basic theory of finite-dimensional
representations of a simply connected complex semisimple Lie
group G and show how these representations arise as eigen-
space representations (Theorem 3.5). Let $ “be a Cartan
subalgebra of the Lie algebra g of G and é =9+ Ig ¢
the corresponding root space decomposition. For each :oot a
let Ha € ® be chosen such that <H’Ha> =q(H) (He H)
where <,> denotes the Killing form of g . Let W = W(g,9
denote the Weyl group. Let = be a finite-dimensional rep—-
resentation of g on V . An element A in the dual $*
is called a weight of m 1s there exists a v z0 in V
such that w(H)v = A(H)v (He$) . The following facts

(1)-(iv) are classical results of E.Cartan.

(i) Each 1w bhas a weight and W permutes the weights of T .



(ii) X € 9* is a weight of some T if and only if

<A,a>
<a,a>

2

e 2 for each root a . (1)

In particular the weights are real on the space 5]R = I ]RHa. .
a

An element X €$H* is called integral if (1) holds. As-
suming the dual 5;{ ordered, A 1is called dominant integral
if

hLI:Id ezt for each root a >0 . (2)
<a,a>
Given A integral exactly one transform sXA (seW) is domi-

nant integral. Hence we have

(iii) Let w be an irreducible finite-dimensional represen-
tation of g , A its highest weight. Then X is dominant

integral.

. * . . .
(iv) Assume A € Sjm dominant integral. Then there exists
an irreducible finite-dimensional representation = (unigue

up to eqguivalence) with highest weight X .

In addition to the subalgebra $ c g consider the sub-

algebras

and let H, N, N and B denote the corresponding analytic

subgroups. We can choose Xa 20 in ga such that the space

U= ZR(iHa) + Zm(xa-x_a) + gx(i(xa+x_a))

is a compact real form of g . Let T c U be the (compact)
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analytic subgroups of G corresponding to EZR(iHa) =tcl,
In the coset space G/B consider the U-orbit of the origin
U0 =U/UnB . Since UnB has Lie algebra t we have
dim.RU-O = dim]RG/B so we conclude: 1) G/B is compact;

a) U/T has a complex structure. From the Bruhat decompo-

sition we know that
NHN is open and dense in G . 3

Consider now a holomorphic homomorphism w:H -+ C* ., Ex-
tending ®w to B by the condition w(hn) = w(h) (h e H,

-n ¢ N) we consider the vector space
Vm = {F holomorphic on G: F(gb) = w(b)F(g)}

The homomorphism w:B -+ ¢* defines a complex line bundle over
G/B in which Vm is the space of holomorphic sections. It
is well known that dim Vw < » ; this is for example contained
in [3] and the following simple proof was communicated to me
by J.-P.Serre. (Another proof based on Liouville's theorem is
given in [8(d), p.148].) The vector space Vw becomes a
Banach space when topologized by uniform convergence on the
compact set G/B . Using the fact that a unifdrmly bounded
sequence of holomorphic functions has a subsequence converging
uniformly on compacts, Vw is easily seen to be locally com-
pact. Thus Vm is a locally compact Banach space, hence
finite-dimensional. We now prove the Borel-Weil theorem ([21])

that Vm is irreducible.

Lemma 3.1. The representation L of B on Vw is irreducible.

Proof. By the semisimplicity of G, Vw =@ Vi where G
i

acts irreducibly on Vi . Let F ¢ Vi be a lowest weight

1) Cf. S.Bochner, Tensor fields with finite basis, Ann. of
Math. 53 (1951), 400-411.
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vector. Then F(ng) = F(g) . Thus F(nhn) = F(h) = w(h)F(e)
so by (3) (F is the same for all i . This proves the

lemma.

Let wm be any irreducible finite-dimensional represen-
tation of g (and G) on V , and Vo 2 highest weight vec-
tor. Let w:H - ¢* be the homomorphism defined by 1r(h)v0 =
m(h)v0 (h € H) . Then if v* belongs to the dual V* the
function F(g) = <1r(g)v0,v*> belongs to v, and the mapping

' (the contra-

v* - F sets up an equivalence between 7
gredient of w7 ) and L

Now we need a description of D(G/N) ; since G/N 1is not
in general reductive, Theorem 2.8 does not apply. Neverthe-
less, we begin by determining the invariants of AdG(N) in
the symmetric algebra S(g/n) . Equivalently, if o:g+n+$9
is the projection corresponding to the direct decomposition
g = (M+9H) +n we determine the set I(n+$H) of invariants

of the group coAdG(N) in SM+%)
Lemma 3.2. I(n+$) = S(H)

Proof. The inclusion S($) < I{(n+$) is trivial since

coAdG(n) =1 on $ . For the converse let @ >0,

be the positive roots and put Bi =-a, . Select a basis
B: .
Eg ,Fg, = JEg, of g 1, J denoting the complex structure.
i i _
For Xen let d(X) denote the derivation of S(n+$H) ex-

..>a_ >0
P

tending the endomorphism coad (X) of n+9H . Then P €
n
IM+9H) if and only if d(X)P =0 (X en) . Writing

m

Z 1 nl mp np
P = r E-F ...EPFP e S(p)
(m,n) (m,n) B, "8 » % (m,n)

B.
we use the relations d(X_ )P =0, d(X )&+ r g 1) =0 to
1 1 i>1
conclude that Esl s FBl do mot occur in P ., Repeating this

with X"'Z' vee ,Xap the lemma follows.
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Now given U e S($) define DU by

(D, (a0 = {Uh<f<ghN>>}h=e , £edem . W

This is well-defined since nNh_1 c N for each he H. In

terms of the fibration of G/N over G/B with general fiber
{ghN: h € H} , DU is a differential operator on the bundle
given by a constant coefficient operator on each fiber. It is

clear that DU e M(G/N)

Lemma 3.3. The mapping U - D, is an isomorphism of S(9)
.onto M(G/N)

It remains to prove that the mapping is surjective. Let
D e D(G/N) . Let xl,_...,xr,...,xq be a basis of $+n with
the r first elements in § , the rest in T . We express D
at the origin 0 in G/N in the coordinate system

eXp(% tixi)N - (tl,...,tq) . Then

(Df) (0) = {P(Bl,...,aq)f(exp(§ tiXi)N)}t.=0 ,
i
where P 1is a polynomial. We decompose P jinto monomials
and let P* denote the sum of the terms of highest total
degree. For n € N we write the mapping T(n): gN -+ ngN in

coordinates
T(n)exp(i tixi)N = exp(i Sixi)N
i i

and if F(tl""’tq) = f(exp(L tixi)N) the invariance
i
D(f o T(n))(0) = (Df)(0) 1implies

9 9
P, ey ) (F(t syt ) =F(S.,..4,S ))} =0. (5
{ Btl th 1 q 1 q ti=0

Although the coordinate change (tl,...,tq) - (Sl""’sq) is
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not linear, the highest order term P*(Bl,...,Bq) in
p(al,...,aq) is transformed by the linear transformation
d-r(n)0 . Since F 1is arbitrary, (5) implies that P* 1is
invariant under the action of N , so by Lemma 3.2, P* e S(H) .
We can then define Dy by (5). Then D - Dy, has lower
order than D at O , hence everywhere, by the invariance.

By induction we get D = D

v for some U e S(§) so Lemma 3.3

is proved.

Corollary 3.4. The holomorphic joint eigenfunctions of the
operators in D(G/N) are the holomorphic functions f satis-

fying

f(ghN) = f£(gN)w(h)

where w: H + €* is a holomorphic homomorphism.

The functions g =+ f(gN) (g € G) are therefore precisely
the members of Vm so Corollary 3.4 and Lemma 3.1 give the
following result ([8(d)], p.145).

Theorem 3.5. For each homomorphism wu: D(G/N) + € let Iu
be the space of holomorphic functions f on G/N satisfying

Df = u(D)f D e D(G/N)

and “u the representation of G on xu . Then 1ru is
finite-dimensional and irreducible and all such represen-

tations of G arise from a suitable u

If we drop the holomorphy condition in Theorem 3.5 the
eigenspace representations for G/N constitute the principal
series for G (except that we are not in Hilbert spaces so

do not concern ourselves with the problem of unitarity).
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4. The Euclidean case

Now we consider R" as a coset space ﬁ(n) /0(n) where
M(n) denotes the group of all isometries of R" . For AeC
we consider the eigenspace (E)\ = {f €C°°(]Rn) : LEf = —Azf} ,
L being the Laplacian.

Theorem 4.1. [8(g)] The action of M(n) on (E)‘ is irre-~
ducible if and only if X # 0 .

The following lemma reduces the proof to a problem for the

compact group O(n) .

Lemma 4.2. ret X e € . Then there exists a sphere
S)\: |x] = R)\ such that if f € Cm(an) satisfies

Lf = -2"f s f

n
o

on S

then

Proof. Let BA denote the ball |x| < Rx and define the

norm || || on CW(BX) by

||\1||2 = J (lu(x) |2 + <grad u, grad u>)dx
B
A

If fe C°(R") vanishes identically on the boundary S}‘

of B)‘ and if € > 0 there exists a ¢ € C:(B)‘) such that

[|[f-¢!l < € . To see this, let for 6 >0 , as be an even

function in C®(R) satisfying

1 a
2) a

1 omn [O,RA-AGJ ;
0 on [RA-G,R)‘) 3



D eyl s st

4) Iadl <1 .

Let a € Cm(Bk) be defined by a(x) = as(lxl) . Then if §
is small enough, ¢ = af has the desired property. In fact,
expressing the gradient in polar coordinates (61,...,en) ,

where On = r , the relation

) _ . f da
'TH (af=-£f) = (a=1) Y + T f
i i i
shows that we just have to prove
Ja 2
I — f} dx + 0 as §+0 . (1)
B ar
A
But
R,-§
I —g%f‘ dxss‘zfk er €15 a0, ... de__,
BA RA-46 (8)
and
R 2 R R 2
2 A of A A |9f
= —_— < ——
|f(61,...,6n_1,r)| J 5 dp‘ _J d J ‘Bp’ dp .
r r r
Hence

R 2
2 A f
If(el,...,en_l,r)l S4<SJ ‘—55 dp , R,=46<r=<R ,
R,=-48
A
. of |2 .
so if m = max|— on B, we obtain
9p A
Ja 2
— f| dx < 16m vol(L,) .
dr §
Bk

where 26 is the shell RA-46 < |x| =< RA- §. This proves (1).

If ¢,¢ € Cc(BA) we have

J ¢Ly dx = - J <grad ¢, grad ¥> dx
B B



so by approximation as above
J fLY dx = - I <grad f, grad ¥> dx s
B B

if £ 20 omn Sy -+ If, in addition, Lf = -sz then by the

symmetry of L ,

Az J fy dx = J <grad f, grad > dx
BA BA

so approximating f by ¢ we deduce
2 12 =
A |£]“dx = <grad f, grad F>dx . 2)
B B

On the other hand, if ¢ ¢ C:(BA) and we write

X
j 9
3 % (xl,...,t,...,xn)dt

_RA

$(x) = J

we get by Schwarz's inequality and integration over B, , the

Poincaré inequality,

J |¢I2dx < 4> J <grad ¢, grad ¢> dx .
B A B

Again we get by approximation in | || , B

[ lflzdx < 4R§ [ <grad f, grad > dx . (3)
B B

Thus if 1212482 <1, (2) and (3) imply £ 20 on B, ,

hence of R" by analyticity. Thus the lemma holds for every

such RA .
Remark. If A =0 , the proof shows that R, can be chosen
arbitrarily (as is also clear from the maximum principle).

4

But the function sin(A®x) on R shows that in general RA

will depend on A .
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Llemma 4.3. Let A 20 . Then the map F + f of L2(Sn_l)
into (EA given by
£(x) = ( . elk(x,m) F(w)dw W
Jg™™

is one-to-one.

Obvious by differentiatiom.

If a group G acts on a space X a function f on X
is called G-finite if the tramslates {f%|g ¢ G} span a

finite-dimensional space V If, in addition, V_. = @ Vi

f° f
i
where each Vi is G-invariant and irreducible and the rep-
resentation of G on each v, equivalent to a fixed rep-
resentation & , the function f 1is said to be G-finite of

type 6 .

Llemma 4.4. Let A #0 . The O(n)-finite eigenfunctions in

GA are precisely

f(x) = [ n-1 eik(x,m) F (w)dw R
S

where F is an O(n)-finite function on Sn_1

Proof. Let SA be as in Lemma 4.2 and let § be an irre-

ducible representation of O0(n) . Let C:(SA) , C:(Sn-l) .

GA s be the space of O(n)-finite functions of type & in
the spaces CW(SA) , Cw(Sn-l) s EA ,» respectively. Consider
the maps

f e eA,G - (fISA)‘e CS(SA) s

F € C:(Sn_l) + f € GA (cf. (4)).

6

By Lemmas 4.2-4.3 these maps are one~to-one so



. o n-1 . . o
dim C(S(S ) < dlm(E)‘ < dim CG(SA) .

»0
But then the equality signs must hold so the lemma follows

since g(E)‘ s constitutes all the O(n)-finite functions
2
in € 3
For A =0 let E)‘ denote the space of functioms £ in
(4); giving £ the norm ||f]]l = IIFII2 (as we can by Lemma

4.3) turns ¥ A into a Hilbert space.
Corollary 4.5. Let X =0 . Then x)‘ is dense in €, .

Let f G by expanding the function k =+ f(k-x) omn

0(n) into 0(:;)-finite functions by the Peter-Weyl theory
(cf. also [6(e), §3]) we get a series £ = IZ{ fn which con~
verges in the topology of € A and where, by Lemma 4.4, each
fn lies in X Az

We can now prove Theorem 4.1. An approximation argument
like the one used for Corollary 4.5 shows that it suffices
to prove M(n) acts irreducibly on X 3 + Let Ve 3)‘ be a
closed invariant subspace, V2 0 . Then there exists an
feV, £(0) =1 . Writing f in the form (4) we see that

the average ¢(x) = I f(k-x)dk belongs to-.V and is

given by 0(n)

$(x) = fn_l g,
S

But since V 1is translation-invariant it will then for each

t ¢ R® contain the function

x _*f elk(x,m) eik(t,m) dw
Sn—l

But then Lemma 4.3 shows that the annihilator of V in £>‘

is 0 so V =£)‘ , whence the irreducibility.
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5. The case of a noncompact symmetric space

We shall now discuss Theorem 1.4 and its generalization to
a symmetric space G/K where G is a comnected semisimple
Lie group with finite centre and K a maximal compact sub-
group. Let g and T be their respective Lie algebras so
g=1%+p , where p is the orthogonal complement to t with
respect to the Killing form <,> of g . For a maximal ab-

elian subspace a c p consider the root space decomposition

qa =

ey

+ Y q
0 aeL ¢ '

where
e, = {X €g: [H,X] = a(H)X for Hea}

and £ = {a} is the set of restricted roots. The dimension
o = dim.ga is called the multiplicity of o . It is known
(by classification) that the triple (a,Z,m) characterizes
g and G/K . Thus any problem about G/K should, in prin-
ciple, be answerable in terms of these data.

Let M and M' , respectively, denote the centralizer and
normalizer of & in K and W the (finite) factor group
M'/M , the Weyl group. It can be viewed as a group of linear
transformations of a . Let I(a) = I(a*) be the set of W-

invariant polynomials.

Example. Let Ir denote the unit rxr matrix and consider

the symmetric matrix

The corresponding quadratic form has signature (p,q) . The

A=y



identity component of the corresponding orthogonal group is

SOo(p,q) . The corresponding Lie algebra is

xI%J3 +J3 x=0} ,
Psq Psq
where t-'X denotes the transpose of the (p+q) x(p+q) matrix
X . The mapping X -+ Jp,qXJp,q is a Cartan involution of
thls Lie algebra, the Killing form being B(X,Y) = (p+q-2)Tr(XY).
Now let us consider the case p =2, q =4, G = 800(2,4)

and let
a =1 +0p

be the Cartan decomposition given by the involution X -+

J2 AXJZ 4 Now for the maximal abelian subspace ia < p we
? ?
can take

h1

By
_hl
a = {H = -h : hl’hZ € R} .
2
0

— o—

* 1 = =
If f1 f2 @ are defined by fl(H) hl , fZ(H> h2 the

set I of roots is found to be
= +f +(f. %
T {tfl,_fz,_(fl_fz)}
with multiplicities

m =2, m =2, m =1 .
t(fli-fz)

We can take for It .the set f , £ Thus dim n=6.

2,f1 f2 .
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The Weyl group W is here found to be generated by the maps
f. »¢e,f ,., where 0 is a permutation of {1,2} and

i i7o(i)

g = %1 and the invariants are given by

I(A) = I(a) = c[f ‘; fi] X

Returning now to the general case we shall construct

some special joint eigenfunctions of the operators in
N

D(G/K) . For an ordering of the restricted roots,
let n = I 8y > and N < G the corresponding analytic
a>Q

subgroup. Then we have the Iwasawa decompositions

g=n+a+1?, G=NAK soeach ge G is uniquely

written g = n exp A(g)k(g) (neN, A(g) e a, k(g) €K).

Then we put X = G/K , B = K/M and define the map

A: XxB »> a by A(gKk,kM) = A(k—lg) .Let p=} I ma.
a> @

We need the following well known lemma.

Lemma 5.1.
(i) If X ea*, b e B,
function of D(G/K) ,

e(1)\+p)(A(x,b)) is a joint eigen-

p (MY ALLDY) L () (BAI ALD)) . pamy . (1)

(ii) The mapping D - P_ is an isomorphism of D(G/K) onto

I(a%x) .,

D

Since the ring S(a*) can be shown to be integral over

I(a*) one deduces the following consequence of (ii) above.

Corollary 5.2. Each homomorphism u: D(G/K) - € has the

form D - PD(A) for some A € a: .

Consequently, each joint eigenspace of D(G/K) has the

form

a12c



€ = {fecC(0:Df=P(NE for D eDG/)}
for some A € az . Let TA denote the representation of G
on @A given by (Tk(g)f)(x) = f(g_l-x) . We would now like
to have a criterion for the irreducibility of TA in terms
of the triple (a,Z,m) . We shall now state such a result and
then explain its relationship to the theory of spherical func-
tiéns and to the spherical principal series.

Let a_ = a/<a,a> for a € I , let L. denote the set of

0 0
indivisible roots and put

FX(A) = T TUUm +1+<iA,a0>))P(§(&md+m

ano

20L+<:‘L>‘,cu0>)) .

Theorem 5.3. Let X ¢ a: and let TA be the eigenspace rep-
resentation of G on G)‘ . Then

T is irreducible <=> 1 z 0 .

A PX( A)

Remark 1. Consider the spherical function on X ,

.

b, (x) = J o (12+0) (A(x,B)) &
B

where db is the K-invariant normalized measure on B . Up
to a constant multiple this is the unique K-invariant function
in GA and on the positive Weyl chamber e’ c a it has the
asymptotic behaviour

(isA-p) (H) +

¢A(exp H-0) ~ ) c(s\e Hea (2)

seW

(cf. [6(d)]) where Harish—Chandra's c-function satisfies

([6(d)1, 05D
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r[ I3
aezor(<1k,a0>)
ce(Ne(-)) = %o R c. = const.

0
Iy

Now let {¢A} denote the closed subspace of ‘EA gener-
ated by all the G-translates of ¢A . Then G acts irre-
ducibly on {¢A} because any closed invariant subspace V
will contain a non-zero K-invariant, so ¢A € V . Thus the

irreducibility question for T, amounts to the problem of

A
deciding for which 2 e a* we have {¢A} =€, . Itis

therefore natural that the answer turns out to be related to
the c-function. Note however that in the ratio representing

c()A) there is extensive cancellation.

Remark 2. It is of interest to compare the eigenspace rep-

resentations TA (A‘ea:) of G/K to the spherical principal

series. This is by definition the family of representations
ix(loga)

LY (A ea :) of G induced by the character man -+ e
of MAN . It is known (Parthasarathy, Ranga~Rao and Varadara-
jan [17] for complex G and Kostant [11] for real G ) for
which A é:a: s T is irreducible. Their method is purely
algebraic (working with U(g) instead of G ) and the points
A of non-irreducibility appear as the zeros of a certain
family of polynomials. By examining the poles of the T-
function one verifies that these 1A are precisely the ones

in Theorem 5.3. Thus we have the following consequence.

Corollary 5.4. Let 1 ¢ a* . Then T, is irreducible if

A
and only if ‘l'.A is irreducible.

One might ask whether this could be proved directly by

proving a priori that TA' and T, are equivalent in some
weak sense, This however is out of the question because,
while TA = TsA for every s e W, LY is not in general

equivalent to Toy * On the other hand, the representations



™ (x e a:) can be viewed as the eigenspace representations
for the coset space G/MN ({8(d)], Ch.III).
The proof of Theorem 5.3 is given in [8(f)], [8(d), II];

it involves determining the range of the Fourier transform

£(x) ~ £(A,b) = J AT (A(XD)) povay | £ e c:(x)
X

and the determination of those X ¢ a: for which the Poisson

transform

(EX40) (AG,B)) fops gy FecC (B)

F(b) » f
B

is one-to-one. For the latter problem we use results of

Kostant and Rallis on K-harmonic polynomials on p ([11],

{12]). The proof gives the following partial solution to

the joint eigenfunction problem [8(d), p.207].

Theorem 5.5. The K-finite joint eigenfunctions of W(G/K)

are precisely the Poisson integrals

ulx) = J (B (ALY prpygy
B

where F 1is a K-finite continuous functionon B .’

Since each f €@ A has a convergent expansion f = Zﬁ f6
N de
(K = set of equivalence classes of irreducible representations

of K) where f6 is K-finite function in GA of type 6,
it follows that f 1s a superposition

& (i2+0) (A(x,D))

f(x) = f aT(d) 3

B
where T is a 'functional' on B (possibly depending om 2
and f). In a remarkable joint work [10], Kashiwara, Kowata,

Minemura, Okamota, Oshima, and Tanaka proved that the T



which arise in (3) above are precisely the analytic func-
tionals on B as the special case in Theorem 1.4 and some

further evidence had led me to hope.

6. The tangent space to a symmetric space

Following the notation of §5 let X.0 denote the tangent
space to the symmetric space X = G/K at the fixed point
o of K . We consider XO as the homogeneous space GO/K
where Go is the group of affine transformations of X0
generated by the translations and the natural action of K
on Xo . Our problem is to determine the joint eigen-
functions of the differential operator algebra 'D(GO/K) and
to answer the question of irreducibility of the corresponding
eigenspace representations.

The algebra ?D(GO/K) is clearly canonically isomorphic
to the algebra I(p) of K-invariants in the symmetric al-
gebra S(p) . But I(p) 1is isomorphic to 1I(a) via
Chevalley's restriction theorem. Since S(a) is integral
over I(a) each homomorphism of I(a) into C is given by
evaluation at a point 1 € a: . Identifying p and X
let for p e I(p) 3(p) denote the corresponding member of
E(GO/K). If X e : let Gk(p) denote the joint eigenspace

€ () = {£eC(p) |3(p)f = p(iNf for all peI(M} ,

with the topology induced by that of C (p) . Each joint
eigenspace of the operators 3(I(p)) = D(GO/K) is of this
form for a suitible A and Gsk(p) = Gk(p) for each seW .
For each 3 ¢ a, let AA €a, be determined by <AA’H> =
A(H) for all He a . If F is a continuous function on

K/M then its 'Poisson transform'

£(X) = I ei<k.A)\,X> F(kM)dkM



belongs to Gk(p) . Here dkM denotes the normaliz:_d
K-invariant measure on K/M . We recall that ) ¢ a, is
said to be regular if G(A)\) 20 forall aeI . We
have now the following analog to Theorem 5.5, proved in

8¢ 1.

*
Theorem 6.1. Assume X ¢ 6, regular. Then the K-finite

elements in (Ek(p) are the functions

ei<k.A>‘,X>

oo - |
K/M

F(k.M)dkM
where F 1is a K-finite continuous function on K/M .

In contrast to Theorem 5.5 the regularity assumption can
of course not be dropped in Theorem 6.1. But then we have

the following substitute.

*
Theorem 6.2. Let A ¢ a. and let f e (EA(P) be K-finite.
Then f is a finite sum

e1<k'AA’X>

£(X) =7 q.(%) f
3 ]

F. (kM)dk
K/M 3 ¥

N
where each qJ. is a polynomial in Go(p) and edch Fj is

a K-finite continuous function on K/M .

For the eigenspace representations we have the following

result, proved in 8(i) .

*
Theorem 6.3. Let A € a, and let TA denote the natural

representation of G0 on the joint eigenspace @A(P) .

Then TA is irreducible if and only if ) is regular.



7. The compact case

Theorem 7.1. Let K be a closed subgroup of a compact Lie
group U . Then each eigenspace representation TX on U/K

is irreducible.

Proof. The space U/K has a U-invariant Riemannian structure
and the corresponding Laplace-Beltrami operator belongs to
D(U/K) . Since the eigenspaces of the Laplacian on a compact
Riemannian manifold are finite-dimensional it is clear that
dim EX < o for each x . Let EX = f Ei be the direct de-
composition into U-irreducible subspaces. Each Ei contains
a function which is = O at the point O = {K} , so by inte-
gration over K each E, contains a K-invariant function

fi , fi(O) =1 . Now if D € D(U) the operator

- |
0 U

belongs to ZDK(U) and the function Ei(u) = fi(u-O) » being

pR) g

bi-invariant under KT satisfies
(Dfi)(e) = (Dofi)(e) .

But DOE; = c%& (c ¢ €©) where c¢ is independent of i

Hence
D(fi—fj)(e) =0

for all i,j and all D e D(U) so by the analyticity and
Corollary 2.2, fi = fj » proving the irreducibility of TX
For the case when U/K is symmetric these eigenfunctions
and eigenspace representations can be described much more ex-
plicitly. For this we assume U simply connected and assume

U/K to be the compact dual of the symmetric space G/K in §5.
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This means that u is a compact real form of the complexifi-

cation g, of g and that if Gc is the simply connected

Lie group with Lie algebra g, then U and G are analytic

subgroups corresponding to u and g , respectively. The

mapping A: G + a given by the Iwasawa decomposition g =

n exp A(g)k can be extended uniquely to a holomorphic map

A: Gg +a. of a neighbourhood Gg of e in GC into the

complexification a, of a as follows (Stanton [23],

Sherman [22(a),(b)]). For the complexified Iwasawa decompo-—
o

sition g =n_+a_ +fc the mapping
(X,8,T) »exp X exp Hexp T

is a holomorphic diffeomorphism of a neighbourhood of (0,0,0)
in n_ xa_ x% onto a neighbourhood GO of e in G_ .

c c c c c
The mapping exp X exp Hexp T + H is then the desired holo-
morphic mapping A: Gg >a, . Let U, be an open ball arounc

0

e in U contained in Gg and B_ the corresponding ball

around the origin in U/K . Let (?* denote the dual of a
and let $ be a Cartan subalgebra of g containing a .
Then § =H n t +a . We have now the following result
([8(h),(d), p.79]).

Theorem 7.2. The restrictions to BO of the joint eigen-

functions of D(U/K) are precisely the functions

(A k)

F(kM) (ueU)
K/M St

e - | o

where dkM is the invariant measure, F e Cm(K/M) and

uea* satisfies

<y, a> +
u,a‘ € Z for all restricted roots a > 0 . (2)
<a, o>

The linear functions py on 9 satisfying (2) and u($n¥) =0

2R3



are precisely the highest weights of the eigenspace represen—
tations. (If s* is the maximal Weyl group element -—s*y

is the highest weight of the representation of U on the
space of functions (1), F ¢ cT(R/M) )
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10 - Quantization and representation theory

BERTRAM KOSTANT
(Massachusetts Institute of Technology)

The following diagram represents the main topics discussed in
‘these lectures, the lines representing the comnections empha-

sized.

Hamilton Jacobi theory Lie group theory

~ 7

Co-adjoint orbit theory

AN

Construction of
irreducible
representations

Geometric quantization

For the most part we will deal with the top of the picture,

- discussing the complete integrability of the Toda lattice, a
finite analogue of the Korteweg - de Vries equation, and some
finite generalizations. The quantization of ths system leads
us to the Whittaker model (see [5]) and the représentation

theory of solvable groups.

1. Hamilton Jacobi theory
Consider phase space ]Rzn with canonical co-ordinate
functions PpoesesPpdyaenesdy and a Hamiltonian H ¢ Cm(an)

The problem is to solve

a system describing the evolution in time of a mechanical

system with total energy H (the pi's are the momentum
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variables and the qj s the position variables). For example,

for a particle on the line with total energy

2

=P
H 2m

+ £(q) s

Hamilton's equations are the following equations of Newtonian

mechanics
Pp.dg '(q) = - 3
m-a @ it

The usual technique for dealing with the equation is to
introduce a symplectic structure (a closed, non-singular 2-

form w ). The canonical choice in this case is

In general, a symplectic form ®w on a manifold X defines
a mapping from smooth functions to vector fields, assigning to

a function ¢ the vector field &, satisfying

¢

n(¢) = w(E¢,n)

for all vector fields n . We then define a Lie algebra

structure on functions by putting

[o,9] = €, , b0« (X

The bracket operation is called the Poisson bracket.

In this notation the problem of solving Hamilton's equations
becomes that of integrating the vector field EH .

A function G such that [G,H] = 0 is called a conserved
quantity. For example, if H is a function of the differences
qi-qj then M= Zpi , the total momentum, is a conserved quan-

tity. A set of functions which Poisson commute with each other
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is called a system in involution and there are at most n
such functions on im?n with differentials which are linearly
independent at each point.

Suppose we have a system Hl,...,Hn (H1 = H) of conserved
quantities in involution with differentials which are every-
where linearly independent. These functions define a foliation
by the requirement that the functions are constant on the
leaves and these leaves are Lagrangian submanifolds of ]R2n
(the tangent spaces are maximally isotropic with respect to
w ). Such a foliation F by Lagrangian leaves is called a
real polarization. Each leaf inherits a flat affine connection
given by taking the vector fields EHi to be parallel.

Let CF cm?“) be the set of functions constant along the

leaves and
c;(nazn) - (fe R | [f,cF(nazn)] c cF(nRZ“)} .

A function f € C;(]Rzn) is easily seen to be linear along the
leaves with respect to the flat comnection. More properly this
is done locally obtaining a sheaf of such functions.

If we have been able to find a system H H as above,

1208,

1
we then seek G Gn € CF’ such that Hl""’ﬂn’cl""’c

10002
is a co-ordinate system. The flow of EH takes ‘the form

n

Hi(t) = constant , Gi(t) = a, +bit , i=1,...,n .

Finally, expressing the original p's and q's in terms of

the new co-ordinates

Py = B (), B 060 0G) g = Q(H) L LH LG G)

ERRRERA

gives an explicit solution for the position and momentum of

the system.
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2. Symplectic manifolds, G-actions and co-adjoint orbits

Let X be a smooth manifold and w a closed, non-singular
2-form on X . Then ® is called a symplectic structure.
Darboux's theorem states that there exist local co-ordinates
pl,...,pn,ql,...,qn such that in that co-ordinate patch
w = dei A dqi . Hence locally (X,w) is like the phase
space example described in the previous section.

An important family of symplectic manifolds comes from the

co-tangent spaces of manifolds. Let in = T*(Mn) , then

in has a natural symplectic structure. In terms of local
co—ordinates Ujs.eepu  OD Open U< M and the natural
projection m: MY > M, put q; =wu;°m . Each point
b € T*(U) may be expressed in the form b = Zpi(b)dui .
The functions PpseeesPsdyseeesq, are canonical coordinates
on T#(U) . Finally, let w = dei Adqi . It is easy to
check that ® is independent of the original coordinates and
hence is globally well-defined. Notice that the co—-tangent
bundle X has a natural polarization F by the fibres of
the bundle and that the q; € CF and the p; € Cé .
Another family of examples comes from group actions. Let
G be a Lie group with Lie algebra g and let g¢'=Hom(q,R) .
'

Then G acts on g' by the co-adjoint action. The space g

decomposes into G orbits,

g' = u G.f
fegq
and each orbit has a canonical symplectic structure. Let
fegq' and X,y e q . Then x and y define vector fields
Ex and Ey on the orbit O = G.f . The symplectic form we

is given by
X
wf(gy,g ) = <f,|:X,}']>
To illustrate this, consider the ax+b group,
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a b 5
¢=1{( ) la=0} .
Then dim g = 2 and generators X,y € g maffbe chosen such

that [x,y] =y . Interpreting x and y as coordinate
functions on g' and {f ¢ g'" | <f,y> > 0} as the upper
half plane in g' , the co-adjoint orbits are the upper half

plane, the lower half plane and the single points along the

real axis y =0 . The symplectic form on the upper half
plane orbit coincides with the usual hyperbolic volume form
w = dx A o4

x > .

Anothe¥ simple example is given by G = SO0(3) . In this
case the non-trivial co-adjoint orbits are 2-spheres and the
symplectic form on any one of these is given by the vector
triple product. If xeg' , x=20, Y and Z are tangent

to the orbit at x then
mx(Z’Y) = (Y X Z) «X

In the previous section we saw how a symplectic structure
on X induces a Poisson bracket on Cm(X) and a homomorphism
of Lie algebras from Cm(X) to vector fields. A vector field
in the image A(X) of this map is called a HaQiltonian vector

field. Hence we have an exact sequence of Lie algebras
0+ R+C(X) »A(X) +0

where CQ(X) occurs as a central extension of the Lie algebra
of Hamiltonian vector fields. In general, this sequence is
non-split, For example, consider phase space ]RZn. with co—
ordinates PyseeesPsdys ey - Then EPi = —3/3qi and

Eqi = 3/3pi . The functions pl,...,pn,ql,...,qn,l generate

the Heisenberg algebra

[qi,pi] = 3,.

ij > [l’Pi] =0 , [l’qj] = 0
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The image in A(R?n) is abelian and hence it is clear that no
splitting exists.

Suppose now that we have a Lie group G acting on X by
transformations which preserve the symplectic structure. Then
the Lie algebra g of G induces locally Hamiltonian vector
fields on X . In many cases these vector fields will auto-
matically be Hamiltonian; for example, if g = [g,4] or if

X 1is a co-adjoint orbit. Then we have a diagram

0 - R > C (X) —— A(X) ——— 0

If this map from g to A(X) 1lifts to a homomorphism of Lie

algebras from g to Cm(X) » then we say the G-action is

Hamiltonian. For example, if ¢ 1is semi-simple then the

lifting exists (H°(4,R)=0) and it is unique (H (4, R) =0) .
Co-adjoint orbits are Hamiltonian. Let f eg' , O = G.f

and X € g . Then x defines a function ¢x on O by

¢x(f) = <f,x> and the map x - ¢x is a homomorphism of Lie

algebras,
65,671 = oY) and £ = X

In general, the mapping from g to Cm(X) induces a map-

ping from X to gq'

known as the moment mapping, by assigning
to pe X, fp € q' given by fp(x) = ¢x(p) . If X is a
general orbit of G (not necessarily co-adjoint) then the

image of the moment mapping is a co—-adjoint orbit.

Theorem. Let G be a simply connected Lie group and (X,w)
a symplectic manifold with a Hamiltonmian G-action which is
transitive. Then the moment mapping is a covering map from

X to a co-adjoint orbit.
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3. The Poisson algebra
Let A be an associative, commutative algebra. A Poisson

structure on A 1is a bilinear form

with respect to which A 1is a Lie algebra and such that
[ab,c] = a[b,c] + [a,c]b for all a,b,c € A

For example, the Poisson bracket on smooth functions on a
symplectic manifold satisfies these properties.

The smooth functions on g' , the dual space to the Lie
algebra g of G , possesses a natural Poisson structure
even though it is not in gemeral a symplectic manifold. The
Poisson structure on Cm(T*(G)) restricts to the left in-—
variant functions which are determined by their values on
g' = T:(G) . This correspondence induces the Poisson struc-
ture on Cm(g')

Let x ,...,x be a basis for g and z cesZ the
1 n n

1°°
dual basis for g ' . Let 3(zi) = 3/3xi be differentiation
in the direction z; . Then if ¢,9 € C®(g) , £ € g,
[o,9] (£) = J 3(2y) (9 (£).3(2;) (W) (£) - <F, [x;,x. 1>
i,]

where [xi’xj] is the Lie bracket on g . Defining
o(¢): g' > @
by
o) (£) = ] 3(z)(9) (£)x;
i

the formula becomes
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Lo,v] (£) = <£,0a(¢)(£),0(¥)(£)]> .

This Poisson structure on Cm(g') is universal in the
sense that if 0 cg' is an orbit of the co-adjoint action,
then the restriction from Cm(g') to Cm(O) is a homomor-
phism of Poisson algebras. The space S(g) of polynomial
functions on gq' 1is preserved by this Poisson bracket which
coincides with the bracket induced by the Lie bracket on g
(see later). Putting these homomorphisms together we obtain

the commutative diagram:

c (") ——=C"(0)

v

g —— 5(g)

4. The Toda lattice

The Toda lattice is a completely integrable classical
mechanical system consisting of n particles on a line, each
with mass 1 and subject to a system of springs which behave

exponentially, The Hamiltonian energy function is

SRR

The problem of determining the behaviour of this system was
solved by J. Moser and in his solution the pi's and eqi's
appear as rational functions of the G's and H's , the re-
lationship coming from the theory of continued fractions. He
was also able to determine the scattering of the system show—
ing that the i-th particle described a path asymptotic to
lines of the form cit-c-di and cit-ﬁdi near ® and -» ,

respectively.

Recall that in terms of the natural basis A; of weights
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is no coincidence that the potential in the system above con-

the simple roots of SL(n,RR) are A it
tains a similar expression. In fact, every simple Lie algebra
has a corresponding completely integrable system. For example,

for .the algebra B, the potential is

3

9,79 9,79 q
e 1 72 ‘e 273 + e 3

so that there are three particles where the third particle is
attracted to a fixed mass as well as to the second particle.
In all cases we can give explicitly the formula for qi(t) in
terms of the fundamental finite dimensional representations of
the corresponding group. In fact, qi(t) is a linear combi-
pation of terms which are logs of a finite sum of exponentials
arising from the weights of the fundamental representations.
The highest and lowest weights dictate the asymptotic behaviour
as t - to ., In the example just cited, ql(t) is the log of
7 exponentials corresponding to the 7 dimensional represen-
tation of B3 . To compute qz(t) and q3(t) we need also the
21 and the 8 dimensional representations of B3 .
The following idea is due to P. Lax. Convert phase space
m?“ into a space of matrices on which the Hami};onian becomes
the Killing form, Cor

H=1} tr nz .

Then the system of conserved quantities in involution, the

H's , become functions of eigenvalues and the flows on the

corresponding leaves, isospectral flows. It turns out that

the G's are characters of representations of a certain torus.
First we reduce the problem. The total momentum, M = Zpi s

is an invariant of motion (a conserved quantity) and the linear

space M_l(O) » @ 2n-1 dimensional submanifold of R?n with

tangent vector field
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This field is isotropic for the symplectic form

= . A dq.
z dpl 93
2n-2 .
Let X denote the space of integral curves of EM on
M_l(O) . Then ®w determines a symplectic structure w_, on

X
2n-2 . .
X . The functions P Vl PO and H are still well

. 2n—-2 .
defined on X and hence we can consider the problem on
this collapsed space.

For Lax's matrix formulation, consider the set of trace-—

less, symmetric Jacobi matrices

b1 Val
ap by
bn—l an—l
Ya b
n-1
aj,.0e5a >0, Zbi =0 , zeros elsewhere. This set of
matrices is a 2n-2 dimensional manifold J . Let
- n— da,.
W 2 idb.)/\—l .
j=1 1 a

.= ;
Then (3,w3) is a symplectic manifold.
The correspondences between the two systems are:
in_z — ]
Y — Y3
91791 +1
e

a.
1

p. *——3 b,
i i

H 4—} tr n2
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The conserved quantities Hl""’Hn are obtained from the

eigenvalues by

n—1

det(AI-n) = A" + § H. (A" |
i=1 *
If the continued fraction
1
A= bn * an—l
Ao bn—l * an—2
A
2

is expressed in the form I rz/A—Ai then the poles Ai are
constants of the flow and the ri's are (essentially) linear.
Further the ai's and bj's are rational functions of the
ri's and Aj's .

Our role here began when we observed that Wy is in fact
the symplectic structure of a certain orbit of a group of
lower triangular matrices and that the continued fractions
expansion corresponds to the Bruhat decomposition of certain
elements. &?'

Before we proceed to the generalization of this situation’

let us observe that a Jacobi matrix

b Y3
/;i b2
N
\
\ T
bn-l -1
Ya b
n-1

is conjugate (via-a diagonal matrix) to
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n-1 n-1

Let J denote the set of Jacobi matrices of this form. Con-—

jugation induces a symplectic isomorphism
(J,u3) = J,0))

where w_ 1s given by the same expression as wy

5. The generalized Toda lattice
Let g be a real, split, semi-simple Lie algebra, $ a

Cartan subalgebra and

b =9 + z Re

$>0 ¢

b = H + z Re_

g0 ¢

Borel subalgebras where ¢ 1is a root and e¢ a correspond-
ing root vector., Let B and B be the corresponding sub-
groups of G where G 1is the subgroup of the complexified
adjoint group which stabilizes the real Lie algebra g . Let
8 be the Cartan involution associated with a Cartan decompo-
sition g = f+p and define x* = -9x , x € g . Then the

bilinear form
P(x,y) = Q(x,y*%) >

where Q is the Killing form, is positive definite. We may

assume that the choices are made so that §h* =D. Further,
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if ae¢ B, xe b, then the co—adjoint action of B on b

coincides with the orthogonal projection of the adjoint action
Co-ad(a)(x) = Proj bA.d(a)(x) .
Llet x € g , then X is said to be regular if
‘a¥ ={y egl [xy]=0}
is such that
dim gx = rank g = 2 .

A regular nilpotent element is called principal nilpotent.

Let Gyseeesdy be simple, positive roots. Then

is a principal nilpotent element. If g = s2(n,R) then these

choices may be made so that

o1

e = , zeros elsewhere.

Let O = B,e under the action described above, We will

show that dim O = 22 . Each element of the form I a; ey, »
i

a, > 0 may be obtained from e by conjugation by an element
of the Cartan subgroup H ¢ B . Let N = [B,B], the group
corresponding to the span of the negative root vectors

ad(Zc.e_ )
e i -ay (e)

Ad(exp ) N e_a')(e)
i

e + c.e el + ...
[Je; - 1
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The elements [e ,e
et S

that

0=9 + ZiR+ e,. .
1

The orbit O = B.e carries a natural symplectic structure.
We illustrate this for g = s2(n,R) . Let E1seees€y be the
basis of 9 dual to the simple roots Upseees®, . Then the:

coefficients a; of the matrix

by 1
b2 N
\\ \\
~ ~N
b “Na
n—-1 n—-1
b
n
€. €-a.
are the functions ¢ 1 (recall ¢ I(x) = Q(e_ai,x)) and
hence
4 e ]
¢J=§b .
i=1 J
e_

. o €31 . .
The functions ¢ L , ¢ J give coordinates on O . Further,

e e—aj [ei,e_aj] e ..
[d’ :¢ ] = ¢ = 6ij ¢ 3
L4 %, %1 =0

€, €.

[¢ ,¢ J] =0

In generai, if (X,w) is a syﬁplectic manifold with local co-
ordinate functions U ,...,Uu and w = Ib.,du. A du. , then
1 n 1] 1 3

[ui,uj] = a.. where (aij) is one half the inverse matrix
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to (bi') . Hence the symplectic formon O = B.e 1is

n-1 j da.
w= 7 % ab.,) A —3
j=1 i=1 *  ?j

6. The Lie algebra theory of the generalized Toda lattice
" Let S(q) be the symmetric algebra of g , then by a

theorem of Chevalley

S(g)G=]R[11,...,12] R

that is, the algebra S(g)G of symmetric invariants is a

2

called the primitive elements. We may take I1 to be the

polynomial algebra with homogeneous generators Il,...,I

Killing form.

We have already described how the subspace S(g) of
Cm(g') inherits a Poisson structure by regarding its elements
as left invariant functions on T*(G) . It is not difficult
to check that if ¢ € S(g)G then ¢ Poisson commutes with
S(g) .

The conserved quantities in involution (thg\ H's) on the
phase space B.e , of the generalized Toda lattice will be
constructed using the primitive elements Il,...,I2 . Of
course, these functions are comnstant on G-orbits but we will
be concerned with their behaviour on B.e translated by
another principal nilpotent element f . We construct as

algebra isomorphism
G —
S(a) " % S(b)f

where S(E)f S S(b) 1is defined by

f

o]

5(B) ; =wreIf,...,1
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where

e_a . zeb
1 i

Il t~1

I?(z) - Len £
(regarding S(b) as polynomials on % ).
Lemma. The algebra S(t_\)f is Poisson commutative.
Proof. Let I, I ¢ S(g)G » Z €b . Then
15,1810 = a2, loth) (20,01 (203
We introduce the splitting
o(I)(x) = o(I)=(x) + o(I) (%)
b n
where c(I);(x) € b and c(I)n(x) en . Then
f
a(I7)(z) = O(I)i‘-(f+z)
and hence
15,15 1(2) = az,Lo(1h) (2),0(EH (22D
= Q(z,[c(I)B(f+Z),c(i)g(f+2)])
= Q(z+f,[c(I)—h-(f+z),c(i)-t;(f+z)])

since f 1is Q-orthogonal to [b,b] . But =z+f is regular

+f is spanned by

and hence gz
fo(I)(z+8) | I ¢ S

Hence
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xf, 102

]

-Q(Z+f,[c(1)n(2+f),c(i)g(z+f)])

"

Qz+£,L0(D)_(z+6),0(D)_(z+5)])
using the fact that Q 1is invariant, hence

' Q([a,bl,e) = Q(a,[b,c])
and also that

CLo(D(z+D),z4£]1 = 0 .

Finally, =z+f 1 [n,n] and so [If,if] =0 .

Let J=f+0 where 0 =B.e and f = iél e_ai so that
for the case of SL(n,R), J 1is the space of Jacobi matrices
defined in §4. Also the translation by f carries the sym
plectic structure on 0O to a symplectic structure w; on J
which for the case of SL(n,R) agrees with the symplectic
structure on J defined in §4.

Let 7T: g > R' be given by

T(x) = (Il(x)"..’ll(x)) .
Assume that the e,  are chosen so that Q(e_a.,ea,) >0 .
i i i
Now for any £ 1in the image T(H*) 1let J(&) =1"1(&) n J .
It may be shown that the primitive elements Il""’Iz still
have linearly independent differentials when restricted to J.

It follows that J(&) is a submanifold of dimension & and

J =u J(§) (*)
g

is the foliation corresponding to the polarization of J de-
fined by 'Ii|J » 1 =1,...,8 . Explicitly if y = f+z ¢ J
and Ty(J(E)) is the tangent space to J(£) at y then
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Ty(J(E)) = [ny,}’]

where ny is the Q-orthocomplement in n of [y,[n,n]] . The
latter is a subspace of codimension £ in 7 .

Now for any z, €eH* lert z = f+z0 so that z 1s a reg-
ular element in b . Then z and z  are conjugate by an
element m e B . Let Gzo and G® be their respective cen-—
tralizers in G so that Gzo is the Cartan subgroup corres-—
ponding to $ . The groups Gz° and G° are not comnected.
Let G-

*
to that component in G © containing the set of elements

. z . . - —
be the unique component of G~ which is m conjugate

z .
B, € G © such that ggl < 0 for 1=1,...,8 . Then for
any g € G: there exists unique elements n =n(g) ¢ N =

[B,B], n=mn(g) ¢ N=[B,B] and h = h(g) ¢ H where H is

the connected Lie subgroup corresponding to $ , so that
-1 -
a(®) g = nhn

where ® 1is the unique element of the Weyl group W such
that ¢ <O for ¢ >0 and a(®) € G 1is the unique element
in the normalizer of § such that a(k'{)eui =e ag

Now for any £ € T($*) , J(&) has a flat affine connection
as the J(E) are leaves of a polarization. On the other hand
G: has a natural flat affine connection since G- is an
abelian Lie group.

Theorem. Let z, €9* and put £ = T(Zo) . Then for any
g € G: » Ad n(g)z € J(E) . Moreover, the map g - Ad n(g)z
defines an isomorphism

B: Gy + J(&)

of flat affinely connected manifolds.
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Note that G: is complete with respect to the flat affine
connection. This means the polarization defined by the J(&)

satisfies the Pukansky condition.

Corollary. For any I ¢ S(g)G let EI be the Hamiltonian
vector field on J corresponding to the function IIJ’eCm(J).
Then 51 can be integrated for all values of the time par-
ameter, that is, it generates a global onme parameter group.

We are of course interested in the case where I = I1 is
the Hamiltonian of our gemeralized Toda lattice. Given the
initial condition z = f+zo in the notation of the theorem

and g € G: we have the following result.

Theorem. The trajectory of g; through B(g) 1is B(gexp tz)

for t e R .

To be more explicit we first write

-1 -

a(®) g exp tz = n()h(t)n(r) -
Then

B(gexp tz) = Ad n(t)z

L
= f + x(t) + Z s, (the

i=1 i

where x(t) ¢ $ and Si(t) > 0 . Thus for the case of the

usual Toda lattice

s.(t) = eqi(t)—qi+l(t)
; .

In general, Si(t) = h(t:)_mi » 50 the problem of determining
the trajectory is the same as computing h(t:)_ai . However,

if Xi », 1 =1,...,2 are the highest weights of the
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fundamental representations o of g it suffices to compute
h(t:))\i since the h(t:)—ufL are related to the h(t:))\i by the
Cartan matrix. If VAi is the module of o and vAi and

v A are respectively the highest and the lowest weight vec-
tors of in , then (replacing the adjoint group by the simply
connected group)

A.
h(e) = (Oi(g exp tz)vx.,v
i

)
YA;
where the inner product ( , ) is invariant under the compact

form £+ ip. However, writing
g exp tz = m(g_ exp tz )ﬁ—l
o o

we have, as a sum of exponentials,

\Y] t<v, Z24>
e > %0
o

h(t)Xl =lec, 8
v
where Vv Truns over a weight basis of Vli and the constants
c, are expressed in terms of the operator ci(ﬁ) . Sini?
this may be given explicitly we have a formula for h(t) 1 and
hence h(l:)_mi . Furthermore, we may choose z0 to be in the
fundamental chamber so that the asymptotic line for ¢t - +x

is given by

t<i,,z > + log c
i’%o g AL

and the asymptotic line for t + —= by

t<mi,zo> + log CNM .

Moser's results on the asymptotic behaviour follow easily from

these facts when g 1is the Lie algebra of SL(n,R) .
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7. Quantization of the Toda lattice

We have constructed ) commuting elements Ii,...,Iﬁ in
S(b) and now seek the quantum analogue of this picture. The
orbit O = B.e determines a unique representation M, of B.
The quantum analogue will consist of constructing £ elements
~k ~k
Il""’IZ
spectral resolution of (Tk) . (Tk) .
) : 01"’ >0

in U(f) and then constructing the simultaneous

For example, if g = B3 then

£, 2 2 2 979, 9793 93
1= %(p1+p2+p3) + e + e + e

I
_and the quantum analogue involves finding the spectral resol-

ution of the operator

a2 a2 4% 9 9y 9
—_— e + e + e
The splitting § = I+ b induces

U(g) = U(g) £ + U(B)

which in turn defines a mapping from U(q) to U(H) which
restricted to the centre of U(g) becomes avbpmomorphism of
algebras. The centre of U(g) 1is in 1-1 correspondence
with S(g)G and we let f# be the image in U(p) of the
primitive element Ij € S(g)G .

On the other hand the direct sum
S(a) = S(b) e ts(9)

defines a projection map from S(g) to S(b) . Let e S(k)
be the image of Ij . First we consider the sense in wﬁich
ﬁo(f§) is the quantization of I? |0 .

The representation w, is defined as follows (a more com-

0
plete review of the theory is given in the next section). The
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isotropy subgroup of B at e is [N,N] and the triple
[Mi,ml cmch
defines a polarization at e . Let x e 1 . Then

X = z d¢ e_¢
$>0
and the character of N corresponding to e is
271 I d.c.
11

X(exp x) = e

where c., = e,.se_y.) . The representation
3 = Qleg;seg;) P

Ind ¥ .

o 1S simply

Since B = HN , the representatiom ™ defines a rep-

resentation

Tyt U(6) - End C (H)

of U(b) as differential operators on H . However, we can

regard O as the cotangent bundle of H . Using the standard
filtration of U(b) we see that I? | 0 is the symbol of
"O(TT) Thus ﬂo(iﬁ) (modulo an appropriate power of v-1)

k
k i
ﬂo(Il) may be expressed in terms of the Bessel's operator.

is a quantization of I, |0 . We note that for s&(n,R) ,
Next we describe the simul taneous eigenfunction expansion
of the “b(iﬁ) using eigenfunctions which decay exponentially
at <« , However, before describing the ﬂo(iﬁ) let us recall
some elementary facts of the harmonic analysis theory of the
representation theory of groups. Let c7(6) and C:(G) be
the spaces of smooth functions of arbitrary and compact sup—
port, respéctively, on a Lie groﬁp G , with their usual top-

clogies. Let Disto(G) and Dist (G) be their respective

continuous duals. There are natural embeddings of both G
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and U(g) 1in Disto(G) .
Let 7 be a representation of G on a Hilbert space H .
Then let H < H be the space of smooth vectors. The space

H  with the locally convex topology induced by the semi-norms
il » ueUlg)

@

lvll = lluvll , v eH
. u

is complete. Let H be its continuous dual. Then
U(g) also acts on H_m . In fact, there is a natural action
of Dist (G) on both H® and H = . Note that if v e H

and ¢ € C:(G) then 7m(¢)v € H . Let v,v' € H and

define

dv’v.(dr) = <v,m($)v'> .

The distribution dV ' ©on G 1is a function of either v
2

or v' and belongs to -

The element v' € H ~ is called a Whittaker vector (with
respect to X ) if w(a)v' = x(a)v' for all a e N .

In [5] we have proved that if 7 1is any member of the
principal series, there exists (up to scalars)ma unique
Whittaker vector v' € H . Now ‘Sjé parametrizes the
spherical principal series. For each Aezbé let LI denote’
the corresponding principal series representation on HA .
—= ©
Let v' ¢ HA be a Whittaker vector and let v ¢ HA be a
spherical vector. Then if a ¢ H , the function d;(a) =
dv,v'(a) 1s an eigenvector for the operators ﬂo(ig) . This
is clear using the Iwasawa decomposition G = KHN and the

fact that “A(Ti) is a scalar ci(A) . Then
~k
TrO(Ii)dA = ci(A)dA .
For SL(2,R), d, can be expressed in terms of the

A
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Whittaker function W or Bessel functions

0,s(%) O
Let X: n~> iR so that x(x) = iQ(t,x) . Then ¥ ex-
tends to a homomorphism x:U(n) -~ ¢ . Let Ux(n) be the

kernel of this extension so that
Ulg) = U(B) @ v Un(n) .

For any 1 e U(g) , let it be its image in U(B) with
respect to this decomposition. If W(p) < U(B) is the image
of the centre Z of U(g) then W(h) = C[Tf,...,fﬁ] is a
polynomial algebra. There exists a filtration (the X -
filtration in U(b) , see [5]) such that modulo the appropri-
ate power of V-1 , I§ € S(b) 1is the symbol of E? . This
carries over to the orbit O and hence, modulo the appropri-
ate power of -1 , using this filtration, no(fﬁ) is a

quantization of I§ |0

Remark. If t: 0 -0 is given by

L L 2
T(x + 'z riea-) =X + .Z r.e,. ,
i=0 1 i=1 1

then it can be shown that

The simultaneous eigenfunctions for the “0(f§) are found in
a way similar to the definition above except that v 1is re-
placed by a Whittaker vector with respect to ¥ . Using an
ellipticity argument it can be shown that the corresponding

distribution is actually a function on H .

8. Representation theory of solvable groups

If a group G 1is of Type I then an arbitrary unitary
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representation may be expressed 'uniquely' as the direct in-
tegral of irreducible representations. The general solvable
group is not of this type as is shown by the following counter
example of Mauntner. This group is the semi-direct product
]RxS(GXG) with s: R - Aut(€ x¢) given by

iit

,e Z.) A irrational.

. s(t)(zl,zz) = (eitz 2

1
Let G be a connected, simply connected solvable group.
Then the property of being of Type I may be characterized in
terms of the co—adjoint orbit structure.
Let f ¢ G.f . Then if Gf denotes the isotropy group,
0 = G/Gf and in general, Gf need not be connected. Hence
the orbit may possess interesting geometry, On O we have

the symplectic 2-form we given by
w(L,X) = <£,[%Y>, XYe g,
which defines a cohomology class

[w] € B0, ®)

.
independent of the representative f ¢ O . The orbit is said

to be integral if [w.] lies in the image HZ(O,ZZ)-+ HZ(O,HU .

f
The isotropy algebra gf , the Lie algebra of Gf , is

characterized by
<f,[gf,g]> =0 .
Hence <f,[gf,gf]> = 0 and the map
2mif: _qf -+ iR
is a homomorphism of Lie algebras. The orbit is integral iff
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21if induces a homomorphism

. 8 1
Xgt G > 8

of Lie groups.

Theorem (Auslander and Kostant). Let G be a connected,
simply connected solvable Lie group. Then G 1is of Type I

iff every co-adjoint orbit is
(1) the intersection of an open and a closed set,

) [wf] =0 .

All algebraic solvable groups satisfy these conditioms.

Let G denote the set of irreducible, unitary represen—
tations of G . These representations may be constructed
from the orbits but the theory differs from that of nilpotent
groups (developed by Kirillov) in that there may be more tﬁan
one representation coming from a single orbit. We describe
(without proofs) the precise parametrization. The main point
is that for a given f e g', Gf need not be connected and
hence there may be more than one character of Gf with dif-
ferentia%g\Zﬂif . .

Let G~ denote the set of all characters X on G such
that

do | of = 2nif .
Then for each Y ¢ (Gf/Gﬁ)A s YeX € é?\ (Gﬁ is the identity
component of%\Gf ). In fact, (Gf/Gi)A acts simply, transi-
tively on G . A 2
In what follows we describe how to assign to each yx € G
a representation L of G . Then defining d€5)=‘(nxl xer}

we have
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~\
G = ] G(0)
all orbits
There is a special class of solvable groups, the exponen-—
tial solvable groups, where the representation theory is
simpler and the parametrization of ¢ given by the co-adjoint
orbits. This theory was developed by Bernmat. A Lie group G

is said to be exponential if the exponential map
exp: 4+ G

is bijective. We describe the construction briefly.
Let the dimension of an orbit O = G.f be 2k . Then a

real polarization at f is a subalgebra 9 such that

dim g- dim $ = dim § - dim g* = k , and <£,[$,91> = 0 .

Let Ho be the corresponding subgroup of G and H = Gf.Ho.

Then Xg extends to a character of H, ng: H » S1 . In the

case of a nilpotent group we simply take

G
T = Ind 4 n .
£

X H
However, in the solvable case, this representation is not, in
general, irreducible unless the polarization satisfies the
following extra condition,

Let 5'LE g' be the space of functionals vanishing on § .

Then H.f 1is contained in £ + bl as an open subset,
The Pukansky condition. The Pukansky condition is that

H =f+97 .
G
If $§ satisfies this condition then Ind 4 ne is an

H
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irreducible representation of G . In geometric terms, we
have a fibration G/Gf + G/H with fibre Gf/H . The fibres
are leaves of a Lagrangian foliation and the Pukansky con-
dition requires that the leaves be complete.

Although a real polarization $ at f satisfying the
Pukansky condition is not unique, all of them lead to the
same representation.

For a general solvable group, it is necessary to introduce

R ¢ .
A complex polarization at f 1is a complex vector space § ,

the notion of a complex polarization. Let 9g = 9 ®

ggc 5C9¢

such that
1) <£,[9,9> =0
) ) U -
2) dlmc g9 c dlmc H = dlmmﬁ dlmm 8¢
3) $ 1is stable under Gf

4) 9+ 9 1is a Lie subalgebra of g ¢

let d =$ng and e=(5+b n g . Then
bm =$n 9 and ¢ = $+9 .

Let Do and Eo be the corresponding subgroups of G ,
D= Gf.Di and E = Gf.Eo . In this case the Pukansky con-
dition is that E.f is closed.

There i1s a natural symplectic form Bf on e/d: let
x,y ¢ € and %,¥ be the images of x and y 1in the.

quotient e/b , then

Bf(i,y) = <f,{x,y]> .

On the complexification,



(e/d)y = (§/0) ¢ @ (5/0) ¢
there is a natural j operator,
jl(.f)/b)c = -i and jl(;j/r.)C =1

which makes E/D into a Kahler manifold.

A polarization $ is said to be positive if the symmetric
form Sf(ﬁ,}A') = Bf(j;(,};) is positive on e/ d. To conmstruct a
representation from a positive polarization we proceed as fol-

f . .
lows. A character on G has a unique extension nf to

X
D, a character with gerivative 27if . Then the represen—
tation Ind(xf,sj) is a certain subrepresentation of Ind+(nf) .

The space E/D has a complex structure in which (5/'0)(: is
the space of anti-holomorphic tangent vectors and an invariant
measure corresponding to Sf . Let V be the space of smooth
functions ¢ on E such that ¢(xa) = nf(a_]')q;(x) ,X e E,
aeD, |¢| is square integrable on E/D and such that

.z =2 i<f,z> for all z e (f)/b)qz where

¢.x(y) = % oy exp(—t:x))lt___0 for xe€ ¢ . Then E has a
unitary representation my on the Hilbert space V . Let
Ind(xf,f, = Indg(rrv) .

Let n be the nilradical of g and let 9. be a polaris-
ation at f e g' . Then $ is said to be admissible if
9Hn ne is a polariz;t':ion at f' = f|ln . Notice ttf1?t Gf pre—
serves n and if G = {xeG|x.f’' = £f'} them G 226G .
The polarization 9 1is said to be strongly admissible if, in
addition, Gf' preserves 9 n ne -
Theorem (Auslander and Kostant). Let G be a connected, sim-
ply connected solvable group and f ¢ q' . Then there exists
a strongly admissible polarization $ and f . The represen—

tation Ind(xf,.f,) is irreducible and independent of 9 .
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Hence we have described a mapping

£ A
G -+ G: Xg -+ Ind(xf, )

which is injective and gives

G = U G(0)
co-adjoint
orbits O

when G 1is of Type I. '
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11 - Integral geometry and representation

theory

D. KAZHDAN
(Harvard University)
(Notes by G. Lusztig)

1. An important question in representation theory is that of
decomposing induced representations. Let G be a Lie group
and let H be a closed subgroup; assume that X = H\G has a
G-invariant measure so that we have a unitary representation
on L2(X) . We shall explain how it decomposes in the special
case where G = SL(2,R), H = group of upper triangular uni-
potent matrices in G . In this case, X «can be identified
with Rz—(0,0) with the usual action of SL(2,R), which
leaves invariant the Lebesgue measure. For each A € R* we
have an operator Py LZ(X) +L2(X) given by (p)‘f) (x) =
f(Ax) , x € X . It commutes with the action of G . The op-
erators g, give rise to a decomposition of LZ(X) cgﬁlﬁatible

with the G-action, into a direct integral

L2(x) = [ L_dn s
1r
Ak
me R .
Ak

where dn 1is a Haar measure on the set IR ~-of unitary charac-

* Ak
ters of R and, for 7 e¢ R , L-n is the Hilbert space of
all functions f on X which are square integrable on any
circle in IR2 with centre at the origin and satisfy p)‘(f) =

*

m(A)f , for all A e R . This gives the required decompo-
sition of L2(X) , indeed the G-modules L-n are irreducible

except when 1r2 =1 . Note also that the G-modules L_",L_",

+
are isomorphic if and only if =' = 1r_1

; we can express this
fact by saying that L2(X) has a 'double spectrum’'.

Now let f be a smooth complex value function with compact
support on G . Following Gelfand, we associate to f the

function f: GxG + € defined by
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£(g,,8,) =J f(g;1 (

teR

It is clear that f will satisfy

1 ¢t

) dt .
0132)

a

~ b a c
£(( “08, 5 ( _)8,) = £(gy,8,)

0 a 1°°1 0 a 1°°2 1’92

* ~
for all ae R ,be R, c €« R. Thus, f may be regarded
as a function on X x X , invariant under all transformations
*

of X x X of the form (x,x') - (ax,ax'), ae R . Using
the decomposition of LZ(X) described above, we see that £

can be regarded as an element of

L'=I L eL _, dn .
x T w
me R
The map £ - f extends to a map of GXG-modules Y: L2(G)-+L'

¥ is not surjective since L' has a 'double spectrum’' while
LZ(G) has a simple spectrum (as a GxG-module). BRoughly
Speaki;g, the image of ¢ 1is half of L' . All this remains
valid if in the previous discussion R is replaced by ¢ ,
so that SL(2,R) is replaced by SL(2,8) . On the other
hand, the description of the kernel of ¢ depends very much
on the ground field: in the complex case, ker y = 0, while
in the real case, ker ¥ is a direct sum of countably many
irreducible representations (the discrete series). This is
intimately related with questions in integral geometry, as we
shall now explain. We may regard SL(2) as a quadric

ad-bec =1 in the four-dimensional space with coordinates
(a,b,c,d) . The subsets of SL(2) of the form gIIHgZ are
precisely the straight lines on our quadric. The map f - f
considered above associates to a function f defined on the
quadric, the function f on the set of lines on the quadric
obtained by integrating f along each of these lines. The
question whether ker § = 0 can then be reformulated as

follows: can the function f be reconstructed from the
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function f , L.e. from the knowledge of the integrals of f
on each line on the quadric? This is a typical question of

integral geometry.

2. Recently in [3] a general theorem was proved which throws
some light on this question of integral geometry. Before
stating this result, we consider a very simple variant of it,

' for finite sets. Consider a diagram of finite sets

Z

X Y

such that wxp: Z +» XxY identifies Z with a Subset of
XxY . Assume that there exist two constants ¢ % ¢' such

that, if _Gx = o(n—lx) , then Ile = ¢ for all x e X and

Ier1Gx.| = ¢' for all x = x' in X . Define R: €(x) -
€(Y) by
RO = 1 £f&® ,  (fe€X)
xeX
(x,y)e2

and R%: €(Y) »~ €(X) by

®RED@E = ] £ ., (E' e CD)
: yeY
(x,y)€eZ

One checks immediately that, if dxo is the characteristic
function of X, € X , then (Rt °R)(6x0)(x) = Ier1GxO| s it
follows that ker R = 0 . (This applies, for example, in the
case where X 1is an affine space of dimension 2 2 over a
finite field, Y is the set of affine lines in this affine
space and Z 1is the incidence relation between points and

lines.)
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Let us now drop the assumption that X,Y,Z are finite, we
assume only that X,Y,Z are smooth manifolds, m,p are c’
fibrations and 7 1is proper. Assume also that wXxp: Z>XxY
identifies Z with a submanifold of XxY and that we are
given a smooth measure dz on Z. We define the "Radon trans-
form" R from smooth functions f on X with compact support

to smooth measures on Y with compact support by the formula

*
[ R(f) = f 1 w f£.dz
Y P (Yo)
for any open set Y < Y ., The transpose Rt of R associ-

0]

ates to a smooth function f' on Y a smooth measure on Xl

by the formula

* *
f R (f") = f 1 p £'.dx
Xo i (XO)

for any relatively compact open set Xo c X . If we assume
that on X and Y we are given some fixed, nowhere vanish-
ing, smooth measures, we may identify smooth functions and
smooth measures on X and Y , and we may consider the com~
position R o R as a map from smooth functions with compact
support on X to smooth functions om X .

We shall also make the following two assumptions.

(a) For each x € X , consider the compact submanifold
G = o(n-l(x)) of Y . Then if x = x' , G, and Gy
intersect transversally in Y .

(b) Let Nz c T*(X><Y) be the conormal bundle of Z in
XxY (= annihilator of tangent bundle of 2 ). Then
Nz-o < (E*(x)-o) X (T*(Y) -0) and p induces an immersion
NZ-O - T (Y)-0.

It is proved in [3] that under these assumptionms, RE o T
is an elliptic pseudo-differential operator on X .

It follows that a function £ in the kernel of R is

automatically c and, if it has sufficiently small support,
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it is actually zero; moreover, if X 1is compact, ker R is

finite dimensional.

3. Let E be an n-dimensional affine space over k and let
Hk be the set of all k-dimensional subspaces of E (k<n-1).
The assumptions of (a),(b) of [3] are satisfied if we take
X=E, Y= Hk and 2Z = the incidence relation between points
and k-planes in E . This example has been investigated by
Gelfand, Graev and Shapiro in [2]. Before explaining this re-
sult we shall need some notation.

If W is a complex vector space, we have a canonical de-

composition

Weoee =W ouW
R

defined as,foll&ws: consider the map I:W:g ¢ +-W:g ¢ defined
by I(we®l) = (iw) ® A and define W' to be the i-eigenspace
of I and W" to be the (-i)-eigenspace of I . Let A be
the line bundle over Hk whose fibre at x ¢ Hk is Ak(L') ®
Ak(L") where L is the vector space of translations of the
affine space x . (The correspondence x + L gives a map
p: Hk -+ Gk where Gk is the set of all k-dimensional sub-
spaces of the vector space V of translations of E .,) Then
the Radon transform (integration over x ) can be regarded as

a linear map

where S denotes the space of Schwartz functions on E or

sections of A . Let Qkk be the bundle of differential

*
forms of type (k,k) on Gk and let = Qkk

under the natural projection w: Gk xE +-Gk . We define a

be its pull-back

linear map
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D: C7(H,A) > €7 *E , Tk

as follows. Let f ¢ Cm(l-lk,A) , L € Gk , e € E be given.
Let fL be the restriction of f to the (n-k)-dimensional.
affine space p-l(L) (with space of translations V/L ) and

let e be the point in this affine space defined by e .

Let v]'-,...,vl'( be vectors in (V/L) and let v']f,...,v; be
vectors in (V/L)" . The expression
32ka K K
(e) ¢e A (LY A (LM
1 [] " "
Bvl...avk.avl...avk

is multilinear in vi,v’{ and symmetric in v]'_,...,vl'( and in
"

1,...,\)" , hence it defines a linear map

v
sECv/my e sK(vm™ » Af@wn e Afam

(vhere S° is the k-th symmetric power) hence a linmear map
e e sk e Aam e s(vmym » ¢ .

Now, given two vector spaces Vl,V2 » there is a canonical

surjective map
k k k
A (V1®V2) + A (Vl) ® S (V2) ;

taking (V;,V,) = (LD*,(V/L)') or ((L™*,(V/L)") and

composing with the previous map, we get a linear map
k t A k ” ”n
A(L"*e(V/L)") @ A (LM*e (V/L)") »+ ¢ .

If we identify the tangent space TGk(L) to Gk at L

.k
with L x (V/L) , we get a linear map

K K
A(T, (L)) @ A(T, (L") =€ .
G Gy

322



We define (Df)L,e to be this linear map. This completes
the definition of D ., Note that D is a differential oper-
ator of order 2k .

The first main result of [2] is that a section f € S(Hk,A)
is in the image of R if and only if Df 1is a closed form on
Gk (depending on a parameter in E ). The second main result
of [2] is that R is injective. The idea of the proof is as

"follows. Let Y be a 2k-dimensional homology class of Gk .
Given f ¢ S(E) , we may integrate D(R(fl)) (regarded as a
differential form on Gk .

over a cycle representing y . The result is a function

depending on a parameter in E )

Sy(fl) on E which does not depend on the choice of the
cycle in the homology class y . Using the fact that all our
constructions are equivariant with respect to the group of
affine transformations of E , we see that sy(fl) must in

fact be of the form f1 , where cY is a constant inde-

c_.
pendent of f1 . To pzove that ker R =0 , it is then

enough to find y such that cY # 0 . The cycle in Gy
consisting of all k-planes contained in a fixed (k+l)-plane
will have this property.

(In the real case, a result analogous to the first main
result of [2] holds; however, in this case, R 1is not in
general injective since no suitable cycles in the real
Grassmannian can be found.)

The above result on the injectivity of R 1is not in it-
self sufficient for the application to representation theory
given in no.l. One needs an inversion formula i.e. a way to
recover f ¢ S(E) when only the restriction of R(f) to a
certain n—-dimensional manifold of Hk is known. The problem
of characterizing these n-dimensional submanifolds of Hk
for which such an inversion formula exists 1s a very interest-—
ing one. The reader is referred to [1],[3] for a study of

this problem in the case k =1 .
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12 - On the reflection representation
of a finite Chevalley group

G. LUSZTIG
(University of Warwick)

One of the most natural representations of a finite Chevalley
‘group is the permutation representation on the set of Borel
subgroups. Although the degrees of the irreducible components
of this representation are known (except in type E8 ), very
little is known about their characters, say, on regular semi-
simple elements. In his thesis [9], Kilmoyer constructed a
remarkable irreducible component of this permutation represen-
tation (called the reflection representation). For PGLn(F ),
it is just the representation of degree qn-1+qn—2+...+q ;L
the functions on the projective space whose sum of values is
zero; more generally, for a simple group of type A, D or E
this representation has degree qe1 +qe2-+... +qe2 where e,
are the exponents of the Weyl group. One of the main results
of this paper is a formula for the character of the reflection
representation, for a group of A, D or E on any regular
semisimple element. For type A this is very easy to prove;
however, in the general case, we have to use some [ -adic co-
homology machinery.

In the first part of this paper, we shall define some vir-
tual representations of the Weyl group of a complex semisimple
group; in the second part these virtual representations are
used to show that the character of any irreducible component
of the permutation representation of a finite Chevalley group,
considered above, is given, on the set of regular semisimple
elements by a universal formula, independent of the finite
ground field., This result is then used in the third part to

study the reflection representation.

125



1. Let G be a simple adjoint algebraic group over € . We
denote by G' the set of regular semisimple elements in G
and by X the set of Borel subgroups in G . The set of or-
bits of G on XxX (pairs of Borel subgroups) will be de-
noted W and called the Weyl group. (It has a natural group
structure which can be described, for instance, as follows.
Let T be a maximal torus in G . Any Borel subgroup B
containing T gives rise to an isomorphism of the Weyl group
W(T) of T with W by the formula w -+ orbit of (B,&Bv’v-l) ’
where W 1is a representative for w in the normalizer of T.
If we change B , this isomorphism is changed into its compo-
sition with an inner automorphism of W . We shall often
identify W and W(T) as indicated and use the notation W
without further explanation.)

The orbit corresponding to w € W will be denoted b -
For each s € G' , let I‘S c XxX be defined as the graph of
the map ad(s): X - X ; in other words, I‘S = {(B,sBs_l) IBeX} .
We have the following.

lemma 1.1. For each w e W, I is transversal to O in
XxX .

Let y = (B,sBs-l) € I‘S an . We denote by b,g the Lie
algebras of B,G . The tangent space Ty(XXX) is just
(g/b) x (g/ad(s)b) . The tangent space Ty(I‘S) is  {(v,v")
€ (g/b) x(g/ad(s)b) | v' = ad(s)v} . The tangent space Ty(Dw)
is {(¢1(V),¢2(V)) € (g/b) x (g/ad(s)b) | v € g/(bnad(s)b)} ,
where ¢1,¢2 are the natural projections of _&/(Rn ad(s)b)
onto g/b, g/ad(s)b respectively. To prove that Ty(XXX)
= Ty(I‘S) +Ty(Dw) amounts to proving the following statement:
given (v,v') € gxg , there exists V] €8sV € such

v'(mod ad(s)b) . This

that v. +v
. 1)'

1 2 2
is the same as proving that the image of the map 1 -ad(s

= v(mod _t_>_) , ad(s)vl +v

g * g spans, together with b , the whole of g .

Let t =g be the Lie algebra of the unique maximal torus
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T in G containing s . Then (l-ad(s-l))_a is just the
sum I of all root spaces in g with respect to t . Let

x € g be a vector in g orthogonal (with respect to the
Killing form) to I and to b . It follows that, on the one
hand, x € t (hence it is semisimple) and, on the other hand,
x 1is in the orthogonal of b (hence it is nilpotent). Thus,

x = 0 and the Lemma is proved,

Remark. This argument uses the non-degeneracy of the Killing
form, hence it would not apply in a characteristic ;p situ-
ation when the Killing form may be degenerate. The following
. argument (for which I am indebted to Roger Richardson) can be
used in that situation. Let 2Z be the set of all Borel sub-
algebras b of g such that I +b has minimum dimension.
Clearly, Z 1is a closed subvariety of the variety of all
Borel subalgebras and Z 1is stable under conjugation by
elements in T . By a well known fixed point theorem of
Borel, there exists -Eo € Z fixed by all elements of T ,
i.e. such that -Eo > t . But for such -Eo , it is clear that
I+ 20 =g . For arbitrary b , we have dim(I+b) 2dim(I+_tl°)

hence I+b =g , as required.

)

Given we W and s € G' we define Ys,w={BeXI(B,sBs-
€ ew} . This can be regarded as the intersection of I‘S and
Gw and therefore, by Lemma 1.1, it is a non-singular variety
of pure dimension 2(w) , where % is the length function on

W . Let T be a maximal torus in G . One can show that,

when s wvaries in G' n T , the cohomology groups Hi(Ys’w,‘t)
form a locally constant (flat) vector bundle HY over G'nT.
According to Deligne [4],[5], this vector bundle has a canoni-
c:al finite filtration consisting of flat sub—bundles ... c

W(T) of T acts maturally on the vector bundle wt (compat-

c wrll c ... (the weight filtration). Now the Weyl group

ibly with the weight filtration and with the flat structure;

.
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it induces the usual action of W(T) on G' n T . We have

Proposition 1.2. The successive quotients w;/w;_l of the

weight filtration are trivial flat vector bundles over G' nT.

The Weyl group W(T) acts naturally on the space of con-

. i,,i . . .
stant global sections of wn/wn ; this representation will

1
be denoted pi w " (Using the isomorphism W(T) ¥ W , which

’
is well defined up to an inner automorphism of W , we see

i .
that P, can also be regarded as a representation of ‘W ).

We put ;n,w = E(-l)ipi’w and 0y = an,w (a virtual rep-
resentation of W(T) or W).

To prove the Proposition we note that the flat vector
bundles wi/wi_l have the property of being completely re-—
ducible (cf. Deligne [5]), i.e. any flat sub-bundle admits a
flat complement. It is therefore enough to show that H:.L has
a finite filtration by flat sub-bundles whose successive
quotients are trivial. Choose a Borel subgroup Bo contain-—

ing T ; let U be its unipotent radical and let U; be

the unipotent radical. For s € G' n T , we define a par-
1]

tition of Y into locally closed subvarieties Y: w
H 1] H]
[ W = .
(w' € W) where Ys,w {B EYS,W I(BO,B) eew,} . It will then

, 1]

be enough to show that, when s wvaries in G'nT, Hz(Yz S,G)
’
form trivial flat bundles over G' n T . We will actually

show that the bundle E over G' n T whose fibre at s €
1

G'nT 1is YZ w is a trivial bundle. Let w,w' be rep-
3

resentatives for w,w' in the normalizer of T (using the
1

. can be
YW

, where u €

isomorphism W(T) ~ W given by Bo ). Any B € Y:
written uniquely in the form B = &'uBou_lﬁ'_L

- =1l . P -1.,-1 ., .
U nw' Uow' satisfies u W' "sw'u € BowBo . Let s =

1
w
w'Tlew' . As S, is regular, the map u-+u'lsw,usw,'1 =u
- o=l . . . . . . L.
of Uo nw' Uow' into itself is an automorphism of varieties.
1]
. . . . w ~ = L,=lo .
This defines an isomorphism of YS W onto {uernw' Uw'n
’ (o]

BO&BO} . Thus the bundle E is trivial and the Proposition
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is proved.

From now on, G will denote a simple adjoint algebraic
group over k , an algebraic closure of the field Fp with
p elements. We shall use the same notations x,ggew,c',T,

Y .+. as in the complex case. All the results proved

>
ii’Zhe complex case remain valid in the presént case (we now
use l.—adic cohomology instead of ordinary cohomology). The

' representations pi’w of W in this new situation will be
the same as the representations constructed in the complex
case, for a group of the same type as G ; note that the Weyl
groups of these two groups can be identified. (This follows
from known results on the behaviour of cohomology under re-
duction mod p of a scheme over Z .) We now assume that
we are given an Fq—rational structure on G (Fq a finite
sub-field of k), with corresponding Frobenius map F:G - G
such that G 1is split over Fq » i.e. F acts trivially on
W . Let T be an F-stable maximal torus. There is a unique
element w, € W(T) such that F(t) = &ltqﬁzl for all teT.

1

F 1induces maps F:Y"s’w - YF(s),w

endomorphism F*:H'+H" (compatible with the flat structure

(s € G'nT) hence an

and with the weight filtration). Hence it defines endomor-
phisms F* of the trivial bundles w;/w;_l and of their

spaces of constant sections.

Proposition 1.3. all eigenvalues of the endomorphism wIIF*
of the space of constant sections of w;n/w;n_l are equal to
n g1 g1 -

q . We have uzn-1/”2n—2 o .

It is easy to see that the truth of this statement for
some F-stable maximal torus in G implies its truth for any
other F-stable maximal torus. Therefore, we may assume that
T is contained in an F-stable Borel subgroup Bo 3 in which
case we have Wy = 1 . The eigenvalues of F* on the space

. i, i .
of constant sections of (/Y are, 1n any case, known to
n  n-

1
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have complex absolute value qn/2 .

It will be enough to show that in this case, there exists a
finite filtration of Hi by flat sub-bundles stable under F*
and such that its successive quotients are trivial, with F*
having on their spaces of constant section only eigenvalues
which are integral powers of q . As in the proof of Prop-
osition 1.2, we see that it is enough to prove that the eigen-
values of F* on the cohomology of the variety

U 0w UG 0 B uB

o o o
are integral powers of q , for any w' e W(T) . (UO,U; are
defined as in the proof of Proposition 1.2.) This can be
shown by decomposing this variety into locally closed pieces
each of which is an iterated fibration over a point with

fibres k or k¥* .

Corollary 1.4. Let s € T G' and let Wy € W(T) be de-

fined as above. Then

L(w)
F n
Y = Tr .
| s,w' nZO (wl’DZn,w)q

This follows from the previous Proposition and the trace for-

mula for Frobenius.

Remark. If w,w' ¢ W are conjugate, we have 0y = Pyt [In-
deed, we can assume that w'=rwr, 2(r) =1, 2w')2o(w). We
can check directly as in [6, Proof of Thm. 1.6] that |Y§ w'| =
Youl if L) = () and, i€ L) > 2@ Y5, il =
F -

qle,wl + (q l)le,rwl . We then apply the Corollary and set
q=1.] One can show that, when G 1is of type Al » we have
oy = xEW Tr(w,x)x . This is, however, not true in the general

case.
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2. Let § be the vector space of all complex valued func-
tions on XF ; this is a GF—module in a natural way (the per-
mutation representation on the set of F -rational Borel sub-
groups) . The endomorphism algebra of this GF—module can be
described (following [2]) as follows. It has a basis con-

sisting of endomorphisms Tw (one for each w ¢ W), where

(T HE = Y. £y), (FeF, xeX)
w yeXF .
(x,y)eOw

the multiplication in this algebra is given by
TT,=T_ , if wy,2w'eW , L(ww') = 2(w) +2(w")

wow' wwW (%)

(Tw+1)(Tw—q) =0 1if weW , 2(w)=1

let A denote the abstract algebra over € with basis
(Tw)weﬂ and multiplication defined by (*); here q can be
any complex number. It is known (see [7]) that this algebra
is semisimple for all q e R o " If \Xq denotes the set of
isomorphis;x classes of irreducible representations of Aq s
then the Aq are the fibres of a finite unramified covering
of the open subset of € consisting of those q for which

A is semisimple. This covering must be trivial over the

set R . In particular there is a natural bijection

v

Aq > A1 . Note that Ay is just the group algebra of W .
v

rfor each irreducible representation X ¢ W and =2ach ¢ elR)o s

v
we denote by Xq the corresponding element in Aq . .
Returning to our GF-module F , we decompose it as a

GF % Aq—module:
3: @ R @ ¥

where RX is an irreducible GF-module. We shall be interested

in the character of the GF—modules RX on a regular semisimple
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element s € GF . Let T be the unique maximal torus in G

containing s and let LA W(T) be such that F(t)==&1tqﬁ11

for all t e T . We also denote by vy the corresponding

element of W ; it is well defined only up to conjugacy.

Proposition 2.1. Tr(s,R ) = m_]'l 2 Tr(w_ ,p )Tr(w,X) .
X = weW 1°"w

(In particular this is independent of the ground field F_.)

We compute Tr(sTw,F) in two different ways. On the one hand
it is equal to

{BEXFI(B,sBs_l) € ew} = {BeX| (B,sBs_l) €6_, FB = B}

F
S,W

=Y. | .

On the other hand, it is equal to

- .Tr(s,R_)Tr(T
XE‘vJ ( 1 ] x) (w’xq)

Thus we have, for all w e W :

F
e | = I, Te(s,R)Te(T ,x ) -
S,W Xel X w o q

We now use the orthogonality formula [3]:

q'l(W)Tr(Tw,x )Te(T _1,x2) = O . if x2x' (Xox'eW)

el q w q
dim X . = !
P@gmer HF x=x' (xeD
where

) 2(w

P(q) = q S
weW

and deduce that
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dim R
F -2(w) X 1
Tr(s,R) = ) IY. _|Te(T _.,x)q T By
X wel S,W w 1°%q dim ¥ P(q)
We now substitute for |YF | the value given by Corollary
b
1.4:
= n =2(w)
Tr(s,R) = § (JTr(w ,p,  )qDT(T _.,x )4
X 1’ " 2n,w 1’ %q
weW n w
dim RX, 1
dim ¥ P(q)

The left hand side of this equality is an integer less
than |W| in absolute value (cf. [6, 7.9, 6.8]). The right
hand side of this equality can be regarded as a rational
function in the complex variable vq (indeed, by a theorem
of Benson and Curtis [1], dim R can be regarded as a poly-
nomial in q , and Tr(Tw—l’Xq) can be regarded as a poly-
nomial in /ﬁ ). This rational function takes only finitely
many values on an infinite subset of C (corresponding to ¢
a power of a prime) hence it must be a constant. Its value

1
wZwTr(wl,pw)Tr(w,x) .

for q=1 is |W|”
(Indeed, for q =1,  Tr(T —l’xq) becomes Tr(w,y) =
- w
Tr(w l,x) , dim RX becomes dim x and P(q) becomes |W|.)

This ends the proof.

3. From now on, we assume that all roots of G have the same
length, i.e. that G 1is of type Al (L=z1) , Dl (224) or
EL (2=6, 7 or 8). Let ¥ be the standard %-dimensional rep-
resentation of W . The corresponding GF-module R. will be
called the reflection representation of GF . It has been ob-
served by Kilmoyer that R_ 1is the unique irreducible rep-
resentation of GF such that for any F-stable parabolic sub-
group P c G , we have <RX’Ind§§(1)>GF = 4 =-4"', where '
is the semisimple rank of the Levi part of P

Let s ¢ GF be a regular semisimple element, and let
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w, € W the corresponding element of W (defined up to con-

1
jugacy). We have

Theorem 3.1. Tr(s,R ) = Tr(wl,x) .

This is well known and easy to prove when G 1is of type
A, . From now om, we shall assume that G 1is of type D,
(224) or EJZ, (2=6,7 or 8) . Moreover, we see from Prop-
osition 2,1 that the truth of 3.1 for a particular q implies
its truth for arbitrary q . We may, therefore, assume that
the characteristic p of Fq is so large that the results of
Kazhdan [8] and Springer [10] on Green functions are wvalid.
Let u € GF be a subregular unipotent element (it follows
from results of Dynkin that u 1is well defined up to GF-con-
jugacy and that its centralizer in GF has order ql+2 ).
Jet T c G be an F-stable maximal torus, let w be the cor-
responding element of W (defined up to conjugacy) and let
e:TF +¢* be a homomorphism. Consider the virtual GF~modu1e
Ro(8) defined in [61,[81].

As a consequence of the results of Kazhdan and Springer
(loc.cit.), we have Tr(u,Rg(e)) = 1+qTr(w,X) .

We now prove the following

Lemma 3.2. We have

G
(9)
) Tr(u,Rg(e)) s RTG = ). Tr(u,p)p .
(T,0) <Rp(8),R1(8)> o pe(EDY
mod GF G

We denote by f the character of the left hand side and by
f' the character of the right hand side., To show that f=f',

it is enough to prove that <f,f'> _ = <f f> _ = <f',f'>
' F F

G G G

First note that <f',f'> 1is equal to the order of the

. . F ey s +2
centralizer of u in G , hence it is qZ .

F
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On the other hand, we have

G 2
Tr(u,Ry(8))
<f,f> = <f,f'>

G G
(T,8) <R,(8),R_.(8)>
mod GF *r *r e

-1

) (1+qTr(w,x))2 det(q-w,x) .
weW

(1A

A computation with characters of W (using the fact that
2 is not an exponent of W ) shows that the last expression
L+2 .
equals q » as required.
Let us now use the disjointness theorem 6.3 of [6]. If we
_denote Rw = R,g(l) (where w € W corresponds to T ) we

deduce from Lemma 3.2 that

-1
(W] Z (1+qTr(w,))R_= Z Tru,p)p .
weW v pe(GF)$
' unipotent

According to [6, 7.14] the identity representation of GF

can be expressed as

1= 1wty R, -
weW

Subtracting this from the previous identity gives

ZFV Tr(u,p)p = ql¥| 1 Z T1:'(w,)()Rw .
pe(G") wel
unipotent

p=l

Let us assume that q =p . It is known that the character
of any p 1in the sum at a regular unipotent element is zero;
on the other hand this is clearly congruent mod p to its
character at u . Thus q—lTr(u,p) is an integer for all o
in the sum, It follows that

-1

W] L TrGw,0R,

weW
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is a virtual representation of G . It is clearly irreduc—

ible, of degree

+1
-1 -1, e+l ©y
(W Z Tr(w,x)det(l-wq,x) ~(q -1)...(q -1)
weW el ey
=q " t...*+tq
where € se.se,  are the exponents of W . It is the unique

unipotent representation # 1 whose character is non—zero at
u (its value at u equals q ). Its inner products with
Indgg(l) are easily seen to be the same as for RX ; there-—
fore it must coincide with RX . We have proved that when

q =p 1is sufficiently large, we have

-1

R, = || 2 Tr(w,x)Rw .

weW
If s 1is as in the statement of Theorem 3.1, we have (cf.

[6, 7.91)
Tr(s,RX) = <Rx,Rw1> = Tr(wl,x)

Thus Theorem 3.1 is proved when q = p is sufficiently large

and hence also for arbitrary q .
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