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Radioactive decay and carbon dating

Exercise 1.1 Radioactive isotopes decay at random, with a fixed probability
of decay per unit time. Over a time interval ∆t, suppose that the probability
of any one isotope decaying is k∆t. If there are N isotopes, how many will
decay on average over a time interval ∆t? Deduce that

N(t + ∆t)−N(t) ≈ −Nk∆t,

and hence that dN/dt = −kN is an appropriate model for radioactive decay.

Over a time interval ∆t, Nk∆t isotopes will decay. We then have

N(t + ∆t)−N(t) = −Nk∆t.

Dividing by ∆t gives

N(t + ∆t)−N(t)
∆t

= −Nk,

and letting ∆t → 0 we obtain, using the definition of the derivative,

dN

dt
= −kN.

Exercise 1.2 Plutonium 239, virtually non-existent in nature, is one of the
radioactive materials used in the production of nuclear weapons, and is a
by-product of the generation of power in a nuclear reactor. Its half-life is
approximately 24 000 years. What is the value of k that should be used in
(1.1) for this isotope?

Since N(t) = N(s)e−k(t−s), half of the isotopes decay after a time T ,
where

N(s + T ) = 1
2N(s) = N(s)e−kT ,
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2 1 Radioactive decay and carbon dating

i.e. when 1
2 = e−kT . Thus the half-life T = ln 2/k (as derived in Section

1.1). If T = 24000 then k = ln 2/T ≈ 2.888× 10−5.

Exercise 1.3 In 1947 a large collection of papyrus scrolls, including the old-
est known manuscript version of portions of the Old Testament, was found
in a cave near the Dead Sea; they have come to be known as the ‘Dead Sea
Scrolls’. The scroll containing the book of Isaiah was dated in 1994 using
the radiocarbon technique1; it was found to contain between 75% and 77%
of the initial level of carbon 14. Between which dates was the scroll written?

We have

N(1994) = pN(s) = N(s)e−k(1994−s),

where 0.75 ≤ p ≤ 0.77. Taking logarithms gives

log p = −k(1994− s),

and so

s = 1994 +
log p

k
.

With k = 1.216× 10−4 this gives (approximately)

−372 ≤ s ≤ −155,

dating the scrolls between 372 BC and 155 BC.

Exercise 1.4 A large round table hangs on the wall of the castle in Winch-
ester. Many would like to believe that this is the Round Table of King Arthur,
who (so legend would have it) was at the height of his powers in about AD
500. If the table dates from this time, what proportion of the original carbon
14 would remain? In 1976 the table was dated using the radiocarbon tech-
nique, and 91.6% of the original quantity of carbon 14 was found2. From
when does the table date?

If the table dates from 500 AD then we would expect

N(t) = e−k(t−500)N(500),

and so in 2003 we have

N(2003) = e−1503kN(500).

The proportion of 14C isotopes remaining should there be e−1503k ≈ 83%.
1 A.J. Jull et al., ‘Radiocarbon Dating of the Scrolls and Linen Fragments from the Judean

Desert’, Radiocarbon (1995) 37, 11–19.
2 M. Biddle, King Arthur’s Round Table (Boydell Press, 2001).
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However, we in fact have 91.6% remaining in 1976. Therefore

N(1976) = 0.915N(s) = N(s)e−k(1993−s).

Taking logarithms gives

s = 1976 +
log 0.916

k
≈ 1255;

the table probably dates from during the reign of the English King Edward
I, who took the throne in 1270 AD (once the wood was well seasoned) and
had a passion for all things Arthurian.

Exercise 1.5 Radiocarbon dating is an extremely delicate process. Suppose
that the percentage of carbon 14 remaining is known to lie in the range 0.99p

to 1.01p. What is the range of possible dates for the sample?

Suppose that a proportion αp of the original 14C isotopes remain. Then

αpN(s) = N(t) = e−k(t−s)N(s),

and so

log α + log p = −k(t− s).

It follows that

s = t +
log p

k
+

log α

k
. (S1.1)

Denote by S the value of this expression when α = 1, i.e. S = t + (log p)/k.
For a proportion 0.99p the expression (S1.1) gives

s = S − 82.65,

while for a proportion 1.01p the expression gives

s = S + 81.83

(both correct to two decimal places). Small errors can give a difference of
over 160 years in the estimated date.
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Integration variables

There are no exercises for this chapter.
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Classification of differential equations

Exercise 3.1 Classify the following equations as ordinary or partial, give
their order, and state whether they are linear or nonlinear. In each case
identify the dependent and independent variables.

(i) Bessel’s equation (ν is a parameter)

x2y′′ + xy′ + (x2 − ν2)y = 0,

(ii) Burger’s equation (ν is a parameter)

∂u

∂t
− ν

∂2u

∂x2
+ u

∂u

∂x
= 0,

(iii) van der Pol’s equation (m, k, a and b are parameters)

mẍ + kx = aẋ− bẋ3,

(iv) dy/dt = t− y2,
(v) the wave equation (c is a parameter)

∂2y

∂t2
= c2 ∂2y

∂x2
,

(vi) Newton’s law of cooling (k is a parameter and A(t) is a specified
function)

dT

dt
= −k(T −A(t)),

(vii) the logistic population model (k is a parameter)

dp

dt
= kp(1− p),

5



6 3 Classification of differential equations

(viii) Newton’s second law for a particle of mass m moving in a potential
V (x),

mẍ = −V ′(x),

(ix) the coupled equations in (3.9)

ẋ = x(4− 2x− y)

ẏ = y(9− 3x− 3y),

and
(x)

dx
dt

= Ax,

where x is an n-component vector and A is an n× n matrix.

(i) linear 2nd order ODE for y(x);
(ii) nonlinear 2nd order PDE for u(x, t);
(iii) nonlinear 2nd order ODE for x(t);
(iv) nonlinear 1st order ODE for y(t);
(v) linear 2nd order PDE for y(x, t);
(vi) linear 1st order ODE for T (t);
(vii) nonlinear 1st order ODE for p(t);
(viii) 2nd order ODE for x(t), linear if V ′(x) = ax + b for some a, b ∈ R,

otherwise nonlinear;
(ix) nonlinear 1st order ODE for the pair (x(t), y(t)); and
(x) linear 1st order ODE for the vector x(t).
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*Graphical representation of solutions using
MATLAB

Exercise 4.1 Plot the graphs of the following functions:

(i) y(t) = sin 5t sin 50t for 0 ≤ t ≤ 3,
(ii) x(t) = e−t(cos 2t + sin 2t) for 0 ≤ t ≤ 5,
(iii)

T (t) =
∫ t

0
e−(t−s) sin sds for 0 ≤ t ≤ 7,

(iv) x(t) = t ln t for 0 ≤ t ≤ 5,
(v) plot y against x, where

x(t) = Be−t + Ate−t and y(t) = Ae−t,

for A and B taking integer values between −3 and 3.

(i) >> t=linspace(0,3);
>> y=sin(5*t).*sin(50*t);
>> plot(t,y)

The result is shown in Figure 4.1.
(ii) >> t=linspace(0,5);

>> x=exp(-t).*(cos(2*t)+sin(2*t));
>> plot(t,x)

The result is shown in Figure 4.2.
(iii) Use the short M-file exint.m:

f=inline(’exp(-(t-s)).*sin(s)’,’t’,’s’);

for j=0:100;
t(j+1)=7*j/100;
T(j+1)=quad(f,0,t(j+1),[],[],t(j+1));

end
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Fig. 4.1. The graph of y(t) = sin 5t sin 50t against t.
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Fig. 4.2. The graph of x(t) = e−t(cos 2t + sin 2t) against t.

plot(t,T)

The plot is shown in Figure 4.3.
(iv) >> t=linspace(0,5);

>> x=t.*log(t);
>> plot(t,x)

The resulting graph is shown in Figure 4.4.
(v) Use the short M-file param.m:

t=linspace(0,5);

hold on

for A=-3:3;
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Fig. 4.3. The graph of the integral in Exercise 4.1(iii).
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Fig. 4.4. The graph of x(t) = t ln t against t.

for B=-3:3;
x=B*exp(-t)+A.*t.*exp(-t);
y=A*exp(-t);
plot(x,y)

end
end

hold off

See Figure 4.5.
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Fig. 4.5. A collection of curves defined parametrically by x(t) = Be−t + Ate−t and
y(t) = Ae−t.

Exercise 4.2 Draw contour plots of the following functions:

(i)

F (x, y) = x2 + y2 for − 2 ≤ x, y ≤ 2;

(ii)

F (x, y) = xy2 for − 1 ≤ x, y ≤ 1,

with contour lines where F = ±0.1, ±0.2, ±0.4, and ±0.8;
(iii)

E(x, y) = y2 − 2 cos x for − 4 ≤ x, y ≤ 4;

(iv)

E(x, y) = x− 1
3x3 + 1

2y2(x4 − 2x2 + 2)

for −2 ≤ x ≤ 4 and −2 ≤ y ≤ 2, showing the contour lines where
E = 0, 0.5, 0.8, 1, 2, 3, and 4;

(v)

E(x, y) = y2 + x3 − x for − 2 ≤ x, y ≤ 2.

(i) >> [x, y]=meshgrid(-2:.1:2, -2:.1:2);
>> F=x.^2+y.^2;
>> contour(x,y,F)

These contours are shown in Figure 4.6.
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Fig. 4.6. Contours of x2 + y2

(ii) >> [x, y]=meshgrid(-1:.1:1, -1:.1:1);
>> F=x.*y.^2;
>> contour(x,y,F,[.1 .2 .4 .8 -.1 -.2 -.4 -.8])

These contours are shown in Figure 4.7.
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Fig. 4.7. Contours of xy2

(iii) >> [x, y]=meshgrid(-4:.1:4, -4:.1:4);
>> E=y.^2-2*cos(x);
>> contour(x,y,E)

These contours are shown in Figure 4.8.
(iv) >> [x, y]=meshgrid(-2:.1:4, -2:.1:2);

>> E=x-(x.^3)/3+(y.^2/2).*(x.^4-2*x.^2+2);
>> contour(x,y,E,[0 .5 .8 1 2 3 4])

These contours are shown in Figure 4.9.
(v) >> [x, y]=meshgrid(-2:.1:2, -2:.1:2);

>> E=y.^2+x.^3-x;
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Fig. 4.8. Contours of y2 − 2 cos x
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Fig. 4.9. Contours of x− 1
3x3 + 1

2y2(x4 − 2x2 + 2)

>> contour(x,y,E)
These contours are shown in Figure 4.10.
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Fig. 4.10. Contours of y2 + x3 − x
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‘Trivial’ differential equations

Exercise 5.1 Find the general solution of the following differential equa-
tions, and in each case find also the particular solution that passes through
the origin.

(i)
dθ

dt
= sin t + cos t,

(ii)
dy

dx
=

1
x2 − 1

(use partial fractions)
(iii)

dU

dt
= 4t ln t,

(iv)
dz

dx
= xe−2x,

and
(v)

dT

dt
= e−t sin 2t.

(i) Integrating both sides of

dθ

dt
= sin t + cos t

with respect to t we get

θ(t) = − cos t + sin t + c.
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14 5 ‘Trivial’ differential equations

For the solution to pass through the origin we need θ(0) = 0,
i.e. 0 = −1 + c or c = 1, and thus this solution is

θ(t) = 1− cos t + sin t.

(ii) We have
dy

dx
=

1
x2 − 1

= 1
2

(
1

x− 1
− 1

x + 1

)
,

and so

y(x) = 1
2 (log |x− 1| − log |x + 1|) + c = 1

2 log
|x− 1|
|x + 1| + c.

For this solution to pass through the origin we need

0 = y(0) = 1
2 log

| − 1|
|1| + c,

i.e. c = 0, and so we get

y(x) = 1
2 log

|x− 1|
|x + 1| .

(iii) Integrating
dU

dt
= 4t ln t

we have

U(t) =
∫

4t ln tdt =
1
2
t2 ln t− 1

4
t2 + c.

To ensure that U(0) = 0 we need c = 0, and so

U(t) =
1
2
t2 ln t− 1

4
t2.

(iv) Integrating the right-hand side of

dz

dx
= xe−2x

by parts we have

z(x) =
∫

xe−2x dx

= −1
2
xe−2x +

1
2

∫
e−2x dx

= −1
2
xe−2x − 1

4
e−2x + c,
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and for z(0) = 0 we need 0 = −(1/4) + c, i.e. c = 1/4 giving

z(x) =
1
4
(1− e−2x − 2xe−2x).

(v) We need to integrate
dT

dt
= e−t sin 2t.

The integral of e−t sin 2t will be a linear combination of e−t sin 2t and
e−t cos 2t. For

z(t) = αe−t sin 2t + βe−t cos 2t

we have
dz

dt
= α(−e−t sin 2t + 2e−t cos 2t + β(−e−t cos 2t− 2e−t sin 2t)

= (−α− 2β)e−t sin 2t + (2α− β)e−t cos 2t,

and so we need

−α− 2β = 1 and 2α− β = 0,

i.e. α = −1/5 and β = −2/5. Therefore

T (t) = −e−t sin 2t + 2e−t cos 2t

5
+ c.

For T (0) = 0 we need 0 = −(2/5) + c, i.e. c = 2/5, and so

T (t) =
2− e−t(sin 2t + 2 cos 2t)

5
.

Exercise 5.2 Find the function f(x) defined for −π/2 < x < π/2 whose
graph passes through the point (0, 2) and has slope − tanx.

We want to find a function f that satisfies

df

dx
= − tanx with f(0) = 2.

So we integrate between the limits that correspond to x values 0 and x,

f(x)− f(0) =
∫ x

0
− tan x̃dx̃

=
∫ x

0

− sin x̃

cos x̃
dx̃

= [ln | cos x̃|]x0
= ln | cosx|,
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and so, since cosx > 0 for −π/2 < x < π/2

f(x) = ln cosx + 2.

Exercise 5.3 Find the function g(x) defined for x > −1 that has slope
ln(1 + x) and passes through the origin.

The required function g(x) satisfies

dg

dx
= ln(1 + x) with g(0) = 0.

Integrating both sides of the differential equation between 0 and x gives

g(x) = g(0) +
∫ x

0
ln(1 + x̃) dx̃

=
[

(1 + x̃) ln(1 + x̃)− x̃

]x

x̃=0

= (1 + x) ln(1 + x)− x,

since ln 1 = 0.

Exercise 5.4 Find the solutions of the following equations satisfying the
given initial conditions:

(i)

ẋ = sec2 t with x(π/4) = 0,

(ii)

y′ = x− 1
3x3 with y(−1) = 1,

(iii)

dθ

dt
= 2 sin2 t with θ(π/4) = π/4,

(iv)

x
dV

dx
= 1 + x2 with V (1) = 1,

and
(v)

d
dt

[
x(t)e3t

]
= e−t with x(0) = 3,
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(i) Integrating ẋ = sec2 t from π/4 to t gives

x(t) = x(π/4) +
∫ t

π/4
sec2 t̃ dt̃

= 0 +
[

tan t̃

]t

t̃=π/4

= tan t− 1
2 .

(ii) Integrating y′ = x− 1
3x3 from −1 to x gives

y(x) = y(−1) +
∫ x

−1
x̃− 1

3 x̃3 dx̃

= 1 +
[

x̃2

2
− x̃4

12

]x

x̃=−1

= 1 +
x2

2
− x4

12
− 1

2
+

1
12

=
7
12

+
x2

2
− x4

12
.

(iii) Integrating dθ
dt = 2 sin2 t between π/4 and t we have

θ(t) = θ(π/4) +
∫ t

π/4
2 sin2 t̃ dt̃

= π/4 +
∫ t

π/4
1− cos 2t̃ dt̃

= π/4 +
[

t̃− 1
2 sin 2t̃

]t

t̃=π/4

= π/4 + t− 1
2 sin 2t− π/4 + 1

2

= 1
2 + t− 1

2 sin 2t.

(iv) Dividing xdV
dx = 1 + x2 by x and then integrating between 1 and x

we obtain

V (x) = V (1) +
∫ x

1

1
x̃

+ x̃dx̃

= 1 +
[

ln x̃ + 1
2 x̃2

]x

x̃=1

= 1 + lnx + 1
2x2 − ln 1− 1

2

= 1
2 + lnx + 1

2x2.
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(v) Integrating both sides of

d
dt

[
x(t)e3t

]
= e−t

between 0 and t gives

x(t)e3t = x(0) +
∫ t

0
e−t̃ dt̃

= 3 +
[
−e−t̃

]t

t̃=0

= 3− e−t + 1

= 4− e−t,

and so

x(t) = 4e−3t − e−4t.

Exercise 5.5 The Navier-Stokes equations that govern fluid flow were given
as an example in Chapter 3 (see equations (3.1) and (3.2)). It is not possible
to find explicit solutions of these equations in general. However, in certain
cases the equations reduce to something much simpler.

Suppose that a fluid is flowing down a pipe that has a circular cross-section
of radius a. Assuming that the velocity V of the fluid depends only on its
distance from the centre of the pipe, the equation satisfied by V is

1
r

d
dr

(
r
dV

dr

)
= −P,

where P is a positive constant.
Multiply by r and integrate once to show that

dV

dr
= −Pr

2
+

c

r

where c is an arbitrary constant. Integrate again to find an expression for
the velocity, and then use the facts that (i) the velocity should be finite at
all points in the pipe and (ii) that fluids ‘stick’ to boundaries (which means
that V (a) = 0) to show that

V (r) =
P

4
(a2 − r2),

see Figure 5.1. (This is known as Poiseuille flow.)
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a

 V(r)=P(a2−r2)/4

Fig. 5.1. The quadratic velocity profile in a circular pipe.

Multiplying the equation by r we obtain

d
dr

(
r
dV

dr

)
= −Pr,

and integrating both sides gives

r
dV

dr
= −Pr2

2
+ c,

which implies that
dV

dr
= −Pr

2
+

c

r
.

Integrating this equation gives

V (r) = −Pr2

4
+ c ln r + d.

Since ln r → −∞ as r → 0, for V (r) to be finite when r = 0 we have to take
c = 0. This then leaves

V (r) = −Pr2

4
+ d,

and to ensure that V (a) = 0 we take d = Pa2/4, so that

V (r) =
P

4
(a2 − r2)

as claimed.

Exercise 5.6 An apple of mass m falls from a height h above the ground.
Neglecting air resistance its velocity satisfies

m
dv

dt
= −mg v(0) = 0,
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where v = ẏ and y is the height above ground level. Show that the apple hits
the ground when

t =

√
2h

g
.

The velocity at time t is given by

v(t) = v(0)− gt = −gt,

and its height y above ground level satisfies

ẏ = v(t) = −gt,

and hence

y(t) = y(0)− 1
2gt2 = h− 1

2gt2.

It follows that y(t) = 0 when t =
√

2h/g as claimed.

Exercise 5.7 An artillery shell is fired from a gun, leaving the muzzle with
velocity V . If the gun is at an angle θ to the horizontal then the initial
horizontal velocity is V cos θ, and the initial vertical velocity is V sin θ (see
Figure 5.2). The horizontal velocity remains constant, but the vertical ve-
locity is affected by gravity, and obeys the equation v̇ = −g. How far does
the shell travel before it hits the ground? (Give your answer in terms of V

and θ.)

V

θ

Fig. 5.2. Firing a shell at muzzle velocity V at an angle θ to the horizontal. The
shell follows a parabolic path.

The vertical velocity v satisfies

v̇ = −g with v(0) = V sin θ,

and so integrating both sides of the differential equation between times 0
and t we obtain

v(t) = v(0)− gt = V sin θ − gt.

The height y(t) of the shell at time t satisfies

ẏ = v = V sin θ − gt with y(0) = 0,
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and so integrating both sides of this between zero and t we have

y(t) = V t sin θ − 1
2gt2.

The shell strikes the ground at time t∗, where

V t∗ sin θ − 1
2gt2∗ = 0,

i.e. when t∗ = (2V sin θ)/g. Since the horizontal velocity is constant and
equal to V cos θ, the shell will have travelled a distance

V t∗ cos θ =
2V 2 sin θ cos θ

g
=

V 2 sin 2θ

g
.

Exercise 5.8 In Dallas on 22 November 1963, President Kennedy was as-
sassinated; by Lee Harvey Oswald if you do not believe any of the conspiracy
theories. Oswald fired a Mannlicher-Carcano rifle from approximately 90 m
away. The sight on Oswald’s rifle was less than ideal: if the bullet travelled
in a straight line after leaving the rifle (at a velocity of roughly 700 m/s)
then the sight aimed about 10cm too high at a target 90 m away. How much
would the drop in the trajectory due to gravity compensate for this? (The
initial vertical velocity v is zero, and satisfies the equation v̇ = −g, while the
horizontal velocity is constant if we neglect air resistance.)

There is nothing to slow down the horizontal velocity of the bullet if we
neglect air resistance: so it takes the bullet 9/70 seconds to travel 90 m. In
this time it will have dropped vertically, its height h satisfying

d2h

dt2
= −g.

The solution of this, integrating twice, is

h(t) = h(0)− 1
2gt2,

and so with t = 9/70 and h(0) = 0 this gives a drop of 0.081 m or 8.1 cm,
compensating quite well for the dodgy sight.

Exercise 5.9 This exercise fills in the gaps in the proof of the Fundamental
Theorem of Calculus. Suppose that f is continuous at x, i.e. given any
ε > 0, there exists a δ = δ(ε) such that

|x̃− x| ≤ δ ⇒ |f(x̃)− f(x)| ≤ ε.

By writing

f(x) =
1
δx

∫ x+δx

x
f(x) dx̃
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show that for all δx with |δx| ≤ δ(ε)
∣∣∣∣f(x)− 1

δx

∫ x+δx

x
f(x̃) dx̃

∣∣∣∣ ≤ ε,

and hence that

lim
δx→0

1
δx

∫ x+δx

x
f(x̃) dx̃ = f(x).

You will need to use the fact that
∣∣∣∣
∫ b

a
g(x) dx

∣∣∣∣ ≤
∫ b

a
|g(x)|dx ≤ (b− a) max

x∈[a,b]
|g(x)|.

We have
∣∣∣∣f(x)− 1

δx

∫ x+δx

x
f(x̃) dx̃

∣∣∣∣ =
∣∣∣∣

1
δx

∫ x+δx

x
f(x) dx̃− 1

δx

∫ x+δx

x
f(x̃) dx̃

∣∣∣∣

=
1
δx

∣∣∣∣
∫ x+δx

x
f(x)− f(x̃) dx̃

∣∣∣∣

≤ 1
δx

∫ x+δx

x
|f(x)− f(x̃)| dx̃.

Then, given any ε > 0, there exists a δ(ε) > 0 such that if δx < δ(ε) then
for every x̃ ∈ [x, x + δx] we have |f(x)− f(x̃)| ≤ ε, and so

∣∣∣∣f(x)− 1
δx

∫ x+δx

x
f(x̃) dx̃

∣∣∣∣ ≤ 1
δx

∫ x+δx

x
εdx̃

=
1
δx

[ε δx]

= ε.

Therefore, using the definition of a limit,

lim
δx→0

1
δx

∫ x+δx

x
f(x̃) dx̃ = f(x),

as claimed.



6

Existence and uniqueness of solutions

Exercise 6.1 Which of the following differential equations have unique so-
lutions (at least on some small time interval) for any non-negative initial
condition (x(0) ≥ 0)?

(i) ẋ = x(1− x2)
(ii) ẋ = x3

(iii) ẋ = x1/3

(iv) ẋ = x1/2(1 + x)2

(v) ẋ = (1 + x)3/2.

In each of these questions we will denote by f(x) the right-hand side of
the differential equation. We need to check whether or not f and f ′ are
continuous for x ≥ 0.

(i) Here f(x) = x(1 − x2) and f ′(x) = 1 − 3x2 are both continuous, so
solutions are unique. [In fact for x(0) ≥ 0 solutions exist for all t ∈ R,
while for x(0) < 0 they ‘blow up’ to x = −∞ in a finite time.]

(ii) For this example f(x) = x3 and f ′(x) = 3x2 so solutions are unique.
[Solutions blow up in a finite time unless x(0) = 0.]

(iii) We have f(x) = x1/3 (which is continuous), but f ′(x) = x−2/3/3, so
f ′(x) →∞ as x → 0, and the solution of

ẋ = x1/3 with x(0) = 0

is not unique: for any choice of c ≥ 0, the function

x(t) =





0 t < c(
2(t−c)

3

)3/2
t ≥ c

solves this equation. [Note that unlike the example ẋ = x1/2 this
equation also makes sense for x < 0.]

23
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(iv) We have f(x) = x1/2(1 + x2) which is continuous, and

f ′(x) = 1
2x−1/2(1 + x2) + 2x3/2.

Near zero f ′(x) → ∞, and so the solutions with x(0) = 0 are not
unique.

(v) The function f(x) = (1+x)3/2 is continuous, and f ′(x) = 3
2(1+x)1/2

is also continuous, so solutions are unique. [Solutions blow up in a
finite time.]

Exercise 6.2 The Mean Value Theorem says that if f is differentiable on
an interval [a, b] then f(a)−f(b) = (b−a)f ′(c) for some c ∈ (a, b). Suppose
that f(x) is differentiable with |f ′(x)| ≤ L for a ≤ x ≤ b. Use the Mean
Value Theorem to show that for a ≤ x, y ≤ b we have

|f(x)− f(y)| ≤ L|x− y|.
The result is clearly true if x = y. Using the mean value theorem for

x > y we have

f(x)− f(y) = f ′(c)(x− y)

for some c ∈ (x, y). It follows that

|f(x)− f(y)| ≤ |f ′(c)||x− y|,
and since |f ′(c)| ≤ L we have

|f(x)− f(y)| ≤ L|x− y|. (S6.1)

If y > x then f(y)− f(x) = f ′(c)(y− x) and on taking the modulus of both
sides we once again arrive at (S6.1).

Exercise 6.3 This Exercise gives a simple proof of the uniqueness of solu-
tions of

ẋ = f(x, t) x(t0) = x0, (S6.2)

under the assumption that

|f(x, t)− f(y, t)| ≤ L|x− y|. (S6.3)

Suppose that x(t) and y(t) are two solutions of (S6.2). Write down the
differential equation satisfied by z(t) = x(t)− y(t), and hence show that

d
dt
|z|2 = 2z[f(x(t), t)− f(y(t), t)].
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Now use (S6.3) to show that

d
dt
|z|2 ≤ 2L|z|2.

If dZ/dt ≤ cZ it follows that Z(t) ≤ Z(t0)ec(t−t0) (see Exercise 9.7): use
this to deduce that the solution of (S6.2) is unique. Hint: any two solutions
of (S6.2) agree when t = t0.

We have
dx

dt
= f(x, t)

and
dy

dt
= f(y, t).

It follows that
dz

dt
=

d
dt

(x− y) =
dx

dt
− dy

dt
= f(x, t)− f(y, t).

Now,
d
dt
|z|2 =

dz

dt

2

= 2z
dz

dt
= 2z[f(x, t)− f(y, t)].

Using the Lipschitz property (S6.3) we have

f(x, t)− f(y, t) ≤ |f(x, t)− f(y, t)| ≤ L|x− y| = L|z|,
and so

d
dt
|z|2 ≤ 2Lz|z| ≤ 2L|z|2.

It follows (using dZ/dt ≤ cZ ⇒ Z(t) ≤ Z(t0)ec(t−t0)) that

|z(t)|2 ≤ |z(t0)|2e2L(t−t0). (S6.4)

Since x(t0) = y(t0) we have z(t0) = 0, and so (S6.4) becomes |z(t)|2 = 0. It
follows that z(t) = 0, and so x(t) = y(t), which shows that the two solutions
must be identical.

Exercise 6.4 (T) The proof of existence of solutions is much more involved
than the proof of their uniqueness. We will consider here the slightly simpler
case

ẋ = f(x) with x(0) = x0, (S6.5)

assuming that

|f(x)− f(y)| ≤ L|x− y|. (S6.6)
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The first step is to convert the differential equation into an integral equation
that is easier to deal with: we integrate both sides of (S6.5) between times 0
and t to give

x(t) = x0 +
∫ t

0
f(x(t̃)) dt̃. (S6.7)

This integral equation is equivalent to the original differential equation: any
solution of (S6.7) will solve (S6.5), and vice versa.

The idea behind the method is to use the right-hand side of (S6.7) as a
means of refining any ‘guess’ of the solution xn(t) by replacing it with

xn+1(t) = x0 +
∫ t

0
f(xn(t̃)) dt̃. (S6.8)

We start with x0(t) = x0 for all t, set

x1(t) = x0 +
∫ t

0
f(x0) dt̃,

and continue in this way using (E6.6). The hope is that xn(t) will converge
to the solution of the differential equation as n →∞.

(i) Use (S6.6) to show that

|xn+1(t)− xn(t)| ≤ L

∫ t

0
|xn(t̃)− xn−1(t̃)| dt̃,

and deduce that

max
t∈[0,1/2L]

|xn+1(t)− xn(t)| ≤ 1
2

max
t∈[0,1/2L]

|xn(t)− xn−1(t)|. (S6.9)

(ii) Using (S6.9) show that

max
t∈[0,1/2L]

|xn+1(t)− xn(t)| ≤ 1
2n−1

max
t∈[0,1/2L]

|x1(t)− x0(t)|. (S6.10)

(iii) By writing

xn(t) = [xn(t)−xn−1(t)]+[xn−1(t)−xn−2(t)]+· · ·+[x1(t)−x0(t)]+x0(t)

deduce that

max
t∈[0,1/2L]

|xn(t)− xm(t)| ≤ 1
2N−2

max
t∈[0,1/2L]

|x1(t)− x0(t)|

for all n,m ≥ N .
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It follows that xn(t) converges to some function x∞(t) as n → ∞, and
therefore taking limits in both sides of (E6.6) implies that

x∞(t) = x0 +
∫ t

0
f(x∞(t̃)) dt̃.

Thus x∞(t) satisfies (S6.7), and so is a solution of the differential equation.
The previous Exercise shows that this solution is unique.

(i) We have

xn+1(t)− xn(t) = x0 +
∫ t

0
f(xn(t̃)) dt̃− x0 −

∫ t

0
f(xn−1(t̃)) dt̃

=
∫ t

0
f(xn(t̃))− f(xn−1(t̃)) dt̃,

and so

|xn+1(t)− xn(t)| =
∣∣∣∣
∫ t

0
f(xn(t̃))− f(xn−1(t̃)) dt̃

∣∣∣∣

≤
∫ t

0
|f(xn(t̃))− f(xn−1(t̃))| dt̃

≤
∫ t

0
L|xn(t̃)− xn−1(t̃)| dt̃,

= L

∫ t

0
|xn(t̃)− xn−1(t̃)| dt̃,

using (S6.6).
Since, therefore,

|xn+1(t)− xn(t)| ≤ Lt max
t̃∈[0,t]

|xn(t̃)− xn−1(t̃)|

≤ L
1

2L
max

t̃∈[0,1/2L]
|xn(t̃)− xn−1(t̃)|

for any t ∈ [0, 1/2L], it follows that

max
t∈[0,1/2L]

|xn+1(t)− xn(t)| ≤ 1
2

max
t∈[0,1/2L]

|xn(t)− xn−1(t)|, (S6.11)

as claimed.
(ii) We will write

Dn = max
t∈[0,1/2L]

|xn(t)− xn−1(t)|;
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then (S6.11) reads Dn+1 ≤ 1
2Dn. It follows easily that

Dn+1 ≤ 2−(n−1)D1

which is (S6.10).
(iii) Taking (wlog) n > m we have

xn(t)− xm(t) = xn(t)− xn−1(t) + xn−1(t)− xn−2(t)

+ . . . + xm+1(t)− xm(t),

it follows that

max
t∈[0,1/2L]

|xn(t)− xm(t)| ≤ Dn + Dn−1 + . . . + Dm+1

≤
[

1
2n−2

+
1

2n−3
+ . . . +

1
2m−1

]
D1

≤ D1

2m−2
.
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Scalar autonomous ODEs

Exercise 7.1 For each of the following differential equations draw the phase
diagram, labelling the stationary points as stable or unstable.

(i) ẋ = −x + 1
(ii) ẋ = x(2− x)
(iii) ẋ = (1 + x)(2− x) sin x

(iv) ẋ = −x(1− x)(2− x)
(v) ẋ = x2 − x4

The Figures all show the phase diagram and the graph of the function
f(x) on the right-hand side of the equation.

(i)

ẋ = −x + 1.

There is a single stationary point at x = 1, as shown in Figure 7.1.

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

S

Fig. 7.1. The phase diagram for ẋ = −x + 1.
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30 7 Scalar autonomous ODEs

(ii)

ẋ = x(2− x).

There are two stationary points, x = 0 and x = 2, as shown in Figure
7.2.

−1 −0.5 0 0.5 1 1.5 2 2.5 3
−1.5

−1

−0.5

0

0.5

1

U S

Fig. 7.2. The phase diagram for ẋ = x(2− x).

(iii)

ẋ = (1 + x)(2− x) sinx.

There are an infinite number of stationary points, x = −1, x = 2,
and x = nπ for any integer n, as shown in Figure 7.3.

−8 −6 −4 −2 0 2 4 6 8
−30

−25

−20

−15

−10

−5

0

5

10

15

20

S U S U S U S

Fig. 7.3. The phase diagram for ẋ = (1 + x)(2− x) sin x for −7 ≤ x ≤ 7. There are
other stationary points at x = nπ for any integer n.

(iv)

ẋ = −x(1− x)(2− x).

There are three stationary points, x = 0, x = 1, and x = 2, as shown
in Figure 7.4.

(v)

ẋ = x2 − x4.
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−0.5 0 0.5 1 1.5 2 2.5
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−0.5
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1
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S U S

Fig. 7.4. The phase diagram for ẋ = −x(1− x)(2− x).

There three are stationary points, at x = 0, x = 1, and x = −1, as
shown in Figure 7.5.

−1.5 −1 −0.5 0 0.5 1 1.5
−1

−0.5

0

0.5

U U S

Fig. 7.5. The phase diagram for ẋ = x2 − x4.

Exercise 7.2 For the equations in Exercise 7.1 determine the stability of
the stationary points analytically, by considering the sign of the derivative
of the right-hand side.

(i) When f(x) = −x + 1 we have f ′(x) = −1, and the stationary point
at x = 1 is stable.

(ii) When f(x) = x(2− x) we have f ′(x) = 2− 2x: we have f ′(0) = 2, so
that the stationary point x = 0 is unstable; and we have f ′(2) = −2,
and this stationary point is stable.
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(iii) For f(x) = (1 + x)(2− x) sin x we have

f ′(x) = (1− 2x) sin x + (1 + x)(2− x) cos x.

So at x = −1 we have

f ′(−1) = 3 sin(−1) ≈ −2.52 < 0

and this point is stable; at x = 2 we have

f ′(2) = −3 sin 2 ≈ −2.73 < 0

and this point is also stable.
At x = nπ we have

f ′(nπ) = (1 + nπ)(2− nπ)(−1)n;

taking n = 0 gives f ′(0) = 2, and this point is unstable. For integer
n 6= 0,

(1 + nπ)(2− nπ) ≤ 0,

and so f ′(nπ) > 0 (these points are unstable) if n is odd and f ′(nπ) <

0 if n is even (and these points are stable).
(iv) We have f(x) = −x(1− x)(2− x), and so

f ′(x) = −3x2 + 6x− 2.

Therefore

f ′(0) = −2, f ′(1) = 1, and f ′(2) = −2,

and so x = 0 and x = 2 are stable, while x = 1 is unstable.
(v) Now we have f(x) = x2 − x4, and so f ′(x) = 2x− 4x3. This gives

f ′(−1) = 2, f ′(0) = 0, and f ′(1) = −2.

We can only tell using this method that x = −1 is unstable and
that x = 1 is stable. To find the stability of x = 0 we need to work
from the phase diagram (it is unstable, or, if you prefer, ‘semi-stable’,
i.e. stable on one side and unstable on the other).

Exercise 7.3 For all positive values of c find all the stationary points of

dx

dt
= sin x + c,

and determine analytically which are stable and unstable. Draw the portion
of the phase diagram between −π and π. There are three different cases,
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0 ≤ c < 1, c = 1, and c > 1. You will need to be more careful with the case
c = 1.

Stationary points occur whenever

f(x) ≡ sinx + c

is zero, so whenever sinx = −c. If 0 ≤ c < 1 then there are two solutions
in (−π, π], x1 between −π and −π/2, and x2 between −π/2 and 0. Since
f ′(x) = cosx we have

f ′(x1) < 0 and f ′(x2) > 0,

so that x1 is stable and x2 is unstable, see Figure 7.6.

−3 −2 −1 0 1 2 3
−0.5

0

0.5

1

1.5

US

Fig. 7.6. The two stationary points in the interval [−π, π] for the equation ẋ =
sin x + c when 0 ≤ c < 1. This figure has c = 1/2.

When c = 1 the equation sinx = −1 has only one solution between −π

and π, which is x = −π/2. Since f ′(−π/2) = cos(−π/2) = 0 we need to look
more closely. We have f ′′(x) = − sinx, so at −π/2 the second derivative is
positive. So f(x) is a minimum when x = −π/2. It follows that f(x) itself
is positive on both sides on x = −π/2, so the stationary point is unstable
(“stable from the left” but “unstable to the right”), as in Figure 7.7.

Finally when c > 1 there are no stationary points, and f(x) > 0 for all x.
So all trajectories move to the right, as in Figure 7.8.

Exercise 7.4 A simple model of the spread of an infection in a population
is

Ḣ = −kIH

İ = kIH,



34 7 Scalar autonomous ODEs
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Fig. 7.7. The phase portrait near the single stationary point x = −π/2 for the
equation ẋ = sin x + 1.

−3 −2 −1 0 1 2 3
0
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1
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2.5

Fig. 7.8. The phase portrait for the equation ẋ = sin x + c when c > 1 (this figure
has c = 1.5). There are no stationary points.

where H(t) is the number of healthy people, I(t) the number of infected people
and k the rate of infection. Since (d/dt)(H + I) = 0, it follows that the size
of the population is constant, H + I = N , say. Substitute I = N − H in
order to obtain a single equation for H(t),

dH

dt
= −kH(N −H).

Determine the stability of the stationary points for this equation, and draw its
phase diagram. Deduce that eventually all the population becomes infected.

We have Ḣ = −kIH and I = N −H. It follows that

dH

dt
= −kH(N −H).
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The stationary points are H = 0 (everybody infected) and H = N (nobody
infected). If f(H) = −kH(N −H) then f ′(H) = −kN +2kH; since f ′(0) =
−kN and f ′(N) = kN it follows that H = 0 is stable and H = N is
unstable. The phase diagram is shown in Figure 7.9; the whole population
is eventually infected.

Stable Unstable

0 N

Fig. 7.9. The phase diagram for Ḣ = −KH(N − H): eventually there are no
healthy members of the population left.

Exercise 7.5 Consider the equation

dx

dt
= f(x) ≡ x2 − k.

Draw the phase diagram for the three cases k < 0, k = 0 and k > 0, labelling
the stationary points as stable or unstable in each case. Find the stability
of the stationary points using an analytic method when k > 0. Show that
f ′(0) = 0 when k = 0. Why is this significant?

Draw the bifurcation diagram, with k on the horizontal axis and the fixed
points plotted against k, indicating stable fixed points by a solid line and
unstable fixed points by a dashed line. (This is known as a saddle node
bifurcation.)

For ẋ = x2−k when k < 0 there are no stationary points and the particle
always moves to the right, as in Figure 7.10.

When k = 0 the equation is ẋ = x2: there is one stationary point at x = 0;
we have finite-time blowup for x(0) > 0, see Figure 7.11.

However, when k > 0 there are two stationary points at ±
√

k, one stable
and one unstable, as shown in Figure 7.12.

We can check the stability and instability of the stationary points for
k > 0 analytically, since f ′(x) = 2x: f ′(−

√
k) = −2

√
k and so this point is

stable, while f ′(
√

k) = 2
√

k and this point is unstable.
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Fig. 7.10. The phase diagram for ẋ = x2 − k when k < 0. There are no stationary
points.

U

0

Fig. 7.11. The phase diagram for ẋ = x2. There is one stationary point at zero.

When k = 0 we have f ′(0) = 0. This is a necessary condition for a
bifurcation, which is precisely what we have here (the so-called saddle node
bifurcation). Plotting the stationary points on a graph of (x vs k), with
the stable points shown as a solid line and the unstable points as a dashed
line we have the bifurcation diagram shown in Figure 7.13 (cf. the pitchfork
bifurcation in section 7.6). In this ‘saddle-node bifurcation’ two stationary
points (a stable point and an unstable point) appear ‘from nowhere’.

Exercise 7.6 Draw the phase diagram for the equation

ẋ = g(x) = kx− x2

for k < 0, k = 0, and k > 0. Check the stability of the stationary points by
considering g′(x), and show that the two stationary points exchange stability
as k passes through zero. Draw the bifurcation diagram for this transcritical

bifurcation.

The stationary points occur where kx − x2 = 0, i.e. at x = 0 and x = k.
Figure 7.14 shows the phase diagrams (along with the graph of f) for k < 0,
k = 0, and k > 0.
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S U

−√k √k

Fig. 7.12. The phase diagram for ẋ = x2 − k when k is positive. There are two
stationary points, a stable point at x = −

√
k and an unstable point at x =

√
k.
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Fig. 7.13. The bifurcation for the ‘saddle-node bifurcation’ that occurs in the equa-
tion ẋ = x2 − k.

With g(x) = kx − x2 we have g′(x) = k − 2x, and so g′(0) = k and
g′(k) = −k. It follows that for k < 0, the point x = 0 is stable and
x = k is unstable, while for k > 0 this stability is reversed, with x = 0
becoming unstable and x = k becoming stable. When k = 0 we have
only one stationary point, at x = 0, and there g′(0) = 0; the stability is
indeterminate and their is the possibility of a bifurcation. The bifurcation
diagram is shown in Figure 7.15.

Exercise 7.7 One equation can exhibit a number of bifurcations. Find,
depending on the value of k, all the stationary points of the equation

ẋ = h(x) = −(1 + x)(x2 − k)
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k 0
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0 k

Fig. 7.14. The phase diagram for ẋ = kx− x2 for (left to right) k < 0, k = 0, and
k > 0.
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Fig. 7.15. A transcritical bifurcation: stability is exchanged between the origin and
x = k as k passes through zero. A solid line indicates a stable stationary point,
and a dashed line an unstable stationary point

and by considering h′(x) determine their stability. At which points, and for
which values of k, are there possible bifurcations?

Draw representative phase portraits for the five distinct parameter ranges
k < 0, k = 0, 0 < k < 1, k = 1, and k > 1, and then draw the bifurcation
diagram. Identify the type of the two bifurcations.

The stationary points occur when

h(x) = −(1 + x)(x2 − k) = 0,

so at x = −1 and x = ±
√

k. For k < 0 there is only one stationary point
(x = −1), for k = 0 there are two (x = −1 and x = 0), and for k > 0
there are three, x = −1 and x = ±

√
k, apart from k = 1 when the points at

x = −1 and x = −
√

k coincide. Since

h′(x) = −3x2 − 2x + k
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we have

h′(−1) = k − 1 and h′(±
√

k) = −2(k ±
√

k).

So x = −1 is stable for k < 1 and unstable for k > 1. When k = 1 we
have h′(−1) = 0, and there may be a bifurcation near this point.

When k = 0 we have h′(0) = 0, meaning that there may be a bifurcation
near zero. For k > 0 we always have h′(

√
k) < 0 so that this point is

always stable. For k < 1 we have h′(−
√

k) > 0 implying that x = −
√

k is
unstable, but for k > 1 we have h′(−

√
k) < 0 giving stability; for k = 1 the

derivative takes the indeterminate value h′(−
√

k) = 0, giving the chance of a
bifurcation (this again indicates the possibility of a bifurcation near x = −1
when k = 1, as above).

The phase portraits for k < 0, k = 0, 0 < k < 1, k = 1, and k > 1,
are shown in Figure 7.17. The bifurcation diagram is shown in Figure 7.16.
The bifurcation at k = 0 is a saddle-node bifurcation (two new stationary
points appear), and that at k = 1 is a transcritical bifurcation (a transfer of
stability).
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Fig. 7.16. The bifurcation diagram for the equation ẋ = −(1 + x)(x2 − k)
[solid/dashed lines indicate stable/unstable stationary points]. There is a saddle-
node bifurcation near x = 0 as k passes through zero, and a transcritical bifurcation
near x = −1 and k passes through one.

In the remaining exercises assume that f is a C1 function, i.e. that both
f and df/dx are continuous functions. Note that such an f is smooth
enough to guarantee that the equation ẋ = f(x) with x(t0) = x0 has a
unique solution. You may also assume that the solutions are defined for all
t ≥ 0.
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−1

−1 0

−1 −√k √k

−1 −1

−1−√k √k

Fig. 7.17. Phase portraits for the equation ẋ = −(1 + x)(x2 − k) for, from top to
bottom: k < 0, k = 0, 0 < k < 1, k = 1, and k > 1.

Exercise 7.8 Let x(t) be one solution of the differential equation

ẋ = f(x).

Show that

(i) if f(x(t∗)) = 0 for some t∗ then x(t) = x(t∗) for all t ∈ R (the
solution is constant, and x(t∗) is a stationary point); and hence
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(ii) if f(x(t∗)) > 0 for some t∗ then f(x(t)) > 0 for all t ∈ R (the solution
cannot ‘reverse direction’). Hint: Use the Intermediate Value The-
orem, which states that if g is a continuous function with g(a) < 0
and g(b) > 0 then there is a point c between a and b with g(c) = 0.

Of course, a similar result to (ii) holds if f(x(t∗)) < 0 for some t∗.

(i) If f(x(t∗)) = 0 then write x∗ = x(t∗). Now, since f(x∗) = 0, it
follows that x(t) = x∗ for all t ∈ R is a solution of the equation
ẋ = f(x). Since solutions are unique, there is only one solution with
x(t∗) = x∗, and so this must be x(t) = x∗ for all t. So we must have
x(t) = x(t∗) for all t, as claimed. This shows that if a solution is ever
at a stationary point, then it is always there.

(ii) First note that since f and x are continuous, f(x(t)) is a continuous
function of t. We know that f(x(t∗)) > 0; now suppose that f(x(s)) <

0 for some s. It follows from the intermediate value theorem that
there must be some τ between t∗ and s with f(x(τ)) = 0. But, then,
by part (i), the solution must in fact be constant with x(t) = x(τ)
for all t, a contradiction. So f(x(t)) > 0 for all t.

Exercise 7.9 Show that for autonomous scalar equations, if x∗ is attracting
then it must also be stable. Hint: use (ii) above.

If x∗ is attracting then there exists some ε > 0 such that

|x0 − x∗| < ε ⇒ |x(t)− x∗| → 0 as t →∞.

Suppose that x0 < x∗ (a similar argument works if x0 > x∗). Then since
the solution has to move towards x∗, at some time we must have x(t) > x0,
and at some time t∗ > 0 we must have f(x(t∗)) > 0. But then, by part (ii)
of the previous question, the solution x(t) must have f(x(t)) > 0 for all t,
so be increasing for all t. It follows that

|x0 − x∗| < ε ⇒ |x(t)− x∗| < ε for all t ≥ 0,

and so x∗ is stable.

Exercise 7.10 Suppose that x(t) is a solution of ẋ = f(x) that is moving
to the right. Show that either x(t) → +∞, or x(t) → x∗, where x∗ is a
stationary point. (Hint: If x(t) does not tend to infinity then it is increasing
and bounded above, and so tends to a limit x∗. Show that in this case we
must have f(x∗) = 0.) A similar result holds if x(t) is moving to the left,
with +∞ replaced by −∞.
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Following the hint, either x(t) → +∞, or x(t) is an increasing function
that is bounded above. In the latter case, it follows that x(t) → x∗ for some
x∗. Suppose that f(x∗) 6= 0. If f(x∗) < 0 then f(x) < 0 for x sufficiently
close to x∗, which contradicts the fact that x(t) must always move right.
If f(x∗) > 0 then, since f is continuous, for some ε > 0 we know that
f(x) > 1

2f(x∗) for all x ∈ (x∗− ε, x∗ + ε). Since x(t) → x∗, for some T large
enough x(T ) > x∗ − ε. But then

dx

dt
(t) = f(x(t)) > 1

2f(x∗) > 0,

and integrating this from T to t gives x(t) > x(T ) + 1
2(t − T )f(x∗). This

shows that for t large enough x(t) > x∗, contradicting the fact that x(t) ↑ x∗.

Exercise 7.11 Suppose that ẋ = f(x) has a stable stationary point at x0,
with f(x0) < 0. Let g be another C1 function. Use the following scalar
version of the Implicit Function Theorem to show that for ε sufficiently small
the equation

ẋ = f(x) + εg(x)

has a unique stationary point near x0 which is still stable.
Theorem. Suppose that h(x, ε), ∂h/∂x, ∂h/∂ε are all continuous functions
of both x and ε. Suppose also that h(x0, 0) = 0 and ∂h/∂x(x0, 0) 6= 0. Then
there is an open interval I that contains x0 such that for each ε sufficiently
small there is a unique solution y(ε) ∈ I of

h(y(ε), ε) = 0,

and y(ε) depends continuously on ε.

To use the theorem set

h(x; , ε) = f(x) + εg(x).

Then h, ∂h/∂x = f ′(x) + εg′(x), and ∂h/∂ε = g(x) are all continuous
functions of ε and x.

Clearly h(x∗, 0) = f(x∗) = 0 at the stationary point x∗, while from our
assumption that f ′(x∗) < 0 we have ∂h/∂x(x∗, 0) = f ′(x∗) < 0.

Then in some open interval containing x∗ (i.e. (x∗ − δ, x∗ + δ) for some
small δ) there is a unique solution y of the equation

f(y) + εg(y) = 0,

i.e. a unique stationary point of the equation

ẋ = f(x) + εg(x).
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Since f ′ and g′ are continuous functions of x, and y depends continuously
on ε, it follows for ε sufficiently small that

f ′(y) + εg′(y) < 0,

and so y is still stable.
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Separable equations

Exercise 8.1 Solve the following equations:

(i) ẋ = t3(1− x) with x(0) = 3;
(ii) y′ = (1 + y2) tan x with y(0) = 1;
(iii) ẋ = t2x (general solution);
(iv) ẋ = −x2 (general solution);
(v) for dy/dt = e−t2y2 give the solution in terms of an integral and

describe the behaviour of the solution as t → +∞, depending on the
initial condition. You may assume that

∫∞
0 e−s2

ds =
√

π/2.

(i) Separate variables in the equation dx/dt = t3(1− x) to give

dx

1− x
= t3 dt

and integrate between the limits associated with t values 0 and t,
∫ x(t)

3

dx

1− x
=

∫ t

0
t̃3 dt̃

to give
[
− ln |1− x|

]x(t)

x=3

=
[
t̃4

4

]t

t̃=0

.

Therefore

− ln |1− x(t)|+ ln 2 =
t4

4
.

Exponentiating both sides gives

2
|x(t)− 1| = et4/4

44
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and rearranging we have

|x(t)− 1| = 2e−t4/4.

Since x(0) = 3 for small t we have y(t)− 1 > 0, so

y(t) = 1 + 2e−t4/4.

Noting that this gives y(t)−1 > 0 for all t this is indeed the required
solution.

(ii) Separating the variables in the equation dy/dx = (1 + y2) tan x we
have

dy

1 + y2
= tanxdx,

and so integrating both sides between the limits associated with x

values 0 and x we get
∫ y(x)

1

dy

1 + y2
=

∫ x

0
tan x̃dx̃

which gives
[

tan−1 y

]y(x)

y=1

=
[
− ln cos x̃

]x

x̃=0

.

Putting in the limits we have

tan−1(y(x))− tan−1(1) = − ln cos x.

Since tan−1 = π/4 we have

y(x) = tan
(π

4
− ln cosx

)
.

(iii) Separating the variables in dx/dt = t2x we have

dx

x
= t2 dt,

and integrating gives

ln |x| = t3

3
+ c.

Exponentiating both sides we have

|x(t)| = Aet3/3,

where A = ec is positive. Taking |x(t)| = x(t) gives a positive solu-
tion, while taking |x(t)| = −x(t) gives a negative solution. Thus the
general solution is x(t) = Aet3/3, allowing any A ∈ R.
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(iv) By separating the variables in dx/dt = −x2 we obtain the equation

−dx

x2
= dt,

and integrating both sides we obtain

1
x

= t + c.

It follows that

x(t) =
1

t + c
.

For the initial value problem with x(0) = x0, we need c = 1/x0,
and so the solution is

x(t) =
1

t + x−1
0

.

If x0 > 0 then x(t) → 0 as t →∞; if x0 < 0 then the solution blows
up in a finite time x(t) → −∞ as t → −x−1

0 .
(v) Separate variables in dy/dt = e−t2y2 to give

dy

y2
= e−t2 dt,

and integrate,
∫ y(t)

y0

dy

y2
=

∫ t

0
e−t̃2 dt̃.

Although we can integrate the left-hand side, we can find no closed
form integral for the right-hand side, so we leave it as it is:

[
−1

y

]y(t)

y=y0

=
∫ t

0
e−s2

ds

(changing the dummy variable t̃ to an s). So

− 1
y(t)

+
1
y0

=
∫ t

0
e−s2

ds,

which can be rearranged to give

y(t) =
1

y−1
0 − ∫ t

0 e−s2 ds
.

Now, note that ∫ t

0
e−s2

ds
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is increasing in t, and tends to
√

π/2 as t → ∞. It follows that if
y0 < 2/

√
π then the solution is always finite, and reaches a limiting

value,

y(t) → 1
y−1
0 − (

√
π/2)

.

If y0 = 2/
√

π then as t → ∞, y(t) → ∞, while if y0 > 2/
√

π the
solution blows up in a finite time given by that value of t∗ for which

∫ t∗

0
e−s2

ds = y−1
0 .

Exercise 8.2 Solve the linear equation

ẋ + px = q

by separation of variables.

Separating variables we have

1
q − px

dx = dt,

and so, integrating

−1
p

ln |q − px| = t + c.

Multiplying up by −p and exponentiating both sides gives

|q − px| = Ae−pt

where A = e−pc. Taking either sign for the modulus gives positive or negative
values of A, and so we have

q − px(t) = Ae−pt,

and finally

x(t) = Be−pt +
q

p

(where B = −A/p could be any constant).

Exercise 8.3 Find the general solution of the equation

xy′ = ky

that is valid for x > 0.
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After separating the variables the equation is

dy

y
=

k dx

x
.

Integrating both sides gives

ln |y| = k lnx + c,

since x > 0. Exponentiating this yields

|y| = Axk

with A = ec > 0. Depending on the sign of y(1) we obtain

y(x) = Axk

for any A ∈ R (since y(x) = 0 is clearly a solution).

Exercise 8.4 Find the function I(t) that satisfies

dI

dt
= p(t)I.

(Your answer will involve an integral.)

Separating the variables we obtain

dI

I
= p(t) dt.

Integrating both sides gives

ln |I| =
∫

p(t) dt

where we have used the notation
∫

p(t) dt to denote any anti-derivative of
p. Thus

|I(t)| = e
∫

p(t) dt,

or

I(t) = ±e
∫

p(t) dt.

Exercise 8.5 Use the method of separation of variables to show that the
general solution of the linear equation

ẋ = λx

is x(t) = Aeλt for any A ∈ R.
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First notice that x(t) = 0 for all t is a solution. Now write

dx

x
= λdt,

an integrate both sides to give

ln |x| = λt + c.

Exponentiating we have

|x(t)| = Aeλt,

where A = ec > 0. Now, depending on the sign of x(t) we either have
x(t) = Aeλt with A > 0, or x(t) = Aeλt with A < 0. Thus the general
solution is

x(t) = Aeλt

for any A ∈ R.

Exercise 8.6 In Exercise 5.6 we showed, neglecting air resistance, that an
apple falling from a height h reaches the ground when t =

√
2h/g. If we

include air resistance then provided that v ≤ 0 the equation becomes

m
dv

dt
= −mg + kv2 v(0) = 0 (S8.1)

with k > 0. Show that

v(t) = −
√

mg

k
tanh

(√
gk

m
t

)
,

and hence that the apple now takes a time

t∗ =
√

m

kg
ln

(
ekh/m −

√
e2kh/m − 1

)

to reach the ground. Check that this coincides with the answer with no air
resistance (t∗ =

√
2h/g) as k → 0. Hint: for small x, ex ≈ 1 + x and

ln(1 + x) ≈ x.

Separating variables in (S8.1) we have

dv

κv2 − g
= dt v(0) = 0,

where we have set κ = k/m for notational simplicity. Integrating both sides
of the differential equation between limits corresponding to times zero and
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t gives

1
κ

∫ v

0

dṽ

ṽ2 − (g/κ)
=

∫ t

0
dt̃,

which, using the standard integral
∫

1
a2 − x2

=
1
a

tanh−1 x

a

yields

−
[

1√
gκ

tanh−1

(
ṽ√
g/κ

)]v

ṽ=0

= t,

i.e.

− 1√
gκ

tanh−1

(
v√
g/κ

)
= t,

which implies that

v(t) = −
√

g

κ
tanh(

√
gκ t).

Writing y(t) for the height above the ground, we now have

dy

dt
= −

√
g

κ
tanh(

√
gκ t) with y(0) = h.

Integrating both sides of the differential equation between times zero and t

gives

y(t) = h−
√

g

κ

∫ t

0
tanh(

√
gκ t̃) dt̃

= h−
√

g

κ

[
1√
gκ

ln cosh(
√

gκ t̃)
]t

t̃=0

= h− 1
κ

ln cosh(
√

gκ t).

since cosh 0 = 1.
The apple will hit the ground when y = 0, so when

ln cosh(
√

gκ t∗) = κh,

i.e. when

t∗ =
1√
gκ

cosh−1(eκh).
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Since

coshx =
ex + e−x

2
,

it follows that if coshx = y then

e2x − 2yex + 1 = 0,

and solving this quadratic for ex gives

ex =
2y ±

√
4y2 − 4
2

= y ±
√

y2 − 1

and so

x = ln(y ±
√

y2 − 1).

We want the solution with t∗ > 0, so we take

t∗ =
1√
gκ

ln(eκh +
√

e2κh − 1),

as given in the question.
If k is small then κ is small, so we can use the approximations

ex ≈ 1 + x and ln(1 + x) ≈ x

(valid for small x) to write

t∗ ≈ 1√
gκ

ln(1 + κh +
√

2κh)

≈ 1√
gκ

ln(1 +
√

2κh),

≈ 1√
gκ

√
2κh

=

√
2h

g
,

where we have used the fact that when x is small,
√

x is much larger than
x.

Exercise 8.7 Show that for k 6= 0 the solution of the differential equation

dx

dt
= kx− x2 with x(0) = x0

is

x(t) =
k ektx0

x0(ekt − 1) + k
.
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Using this explicit solution describe the behaviour of x(t) as t →∞ for k < 0
and k > 0. (Note that this is much easier to do using the phase diagram
than using the explicit form of the solution.) For k = 0 see part (iv) of
Exercise 8.1.

Separating variables we have

dx

kx− x2
= dt.

Using partial fractions we have

1
k

[
1
x

+
1

k − x

]
dx = dt,

and so integrating both sides between the limits corresponds to times zero
and t we have ∫ x(t)

x0

1
x

+
1

k − x
dx =

∫ t

0
k dt̃.

This gives
[

ln |x| − ln |k − x|
]x(t)

x=x0

= kt,

which is

ln |x(t)| − ln |k − x(t)| − ln |x0|+ ln |k − x0| = kt.

Exponentiating both sides gives

|x(t)||k − x0|
|x0||k − x(t)| = ekt.

From the phase diagram, shown in Figure 8.1 (cf. Figure 7.14 above), we
can see that the signs of both x(t) and k − x(t) do not change over time.

k 0 0 k

Fig. 8.1. The phase diagram for the equation ẋ = kx− x2, for k < 0 (left) and for
k > 0 (right).

We can remove the modulus signs and then rearrange to get

x(t) =
k ektx0

x0(ekt − 1) + k
.
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When k > 0 the term x0ekt on the bottom will dominate, and so the solution
will tend to k. When k < 0 the denominator tends to k − 1, and the top
tends to zero, so x(t) → 0.

Exercise 8.8 Show that the solution of the equation

dx

dt
= −x(κ2 + x2)

with initial condition x(0) = x0 is

x(t) = ±
√

κ2

(1 + κ2x−2
0 )e2κ2t − 1

,

where the ± is chosen according to the sign of the initial condition. Deduce
that x(t) → 0 as t → ∞. As t decreases from zero the solution blows up as
t approaches a finite value t∗ < 0. When is this ‘blow up time’?

After separating variables we are left with

dx

x(κ2 + x2)
= −dt.

Using the method of partial fractions we can write

1
x(κ2 + x2)

=
1
κ2

(
1
x
− x

κ2 + x2

)
,

and so ∫ x(t)

x0

(
1
x
− x

κ2 + x2

)
dx = −

∫ t

0
κ2 dt̃,

which gives
[

ln |x| − 1
2

ln(κ2 + x2)
]x(t)

x=x0

= −κ2t,

or

ln
|x(t)|

√
κ2 + x2

0

|x0|
√

κ2 + x(t)2
= −κ2t.

Now we exponentiate both sides and square to give

x2(t)(κ2 + x2
0)

x2
0(κ2 + x(t)2)

= e−2κ2t,

and after a rearrangement we can obtain

x(t)2 =
κ2

(1 + κ2x−2
0 )e2κ2t − 1

.
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Since ẋ < 0 for x > 0, and ẋ > 0 for x < 0, while ẋ = 0 if x = 0, it is clear
that the sign of x(t) does not change.

Thus depending on the sign of x0, we have

x(t) = ±
√

κ2

(1 + κ2x−2
0 )e2κ2t − 1

.

As t →∞ the denominator tends to infinity, and so x(t) → 0. As t decreases
from zero the denominator decreases, and the solution will blow up as t

approaches t∗ where

(1 + κ2x−2
0 )e2κ2t∗ − 1 = 0,

i.e.

t∗ = − 1
2κ2

ln(1 + κ2x−2
0 ).

Exercise 8.9 We found the solution of the equation ẋ = x(κ2 − x2) in
Section 8.6.1,

x(t) = ±
√

κ2

1 + e−2κ2t(κ2x−2
0 − 1)

.

Show that if |x0| > κ the solution blows up as t decreases towards a finite
negative value, and find this critical time.

The solution will blow up if the expression

1 + e−2κ2t(κ2x−2
0 − 1)

becomes zero. If |x0| > κ then 0 < κ2x−2
0 < 1, and the expression κ2x−2

0 − 1
is negative. As t decreases from zero the contribution of the second term
becomes larger, and will tends to −1 as t → t∗ with

1 + e−2κ2t∗(κ2x−2
0 − 1) = 0,

so

t∗ =
1

2κ2
ln(1− κ2x−2

0 ).

[This is negative, since 1− κ2x−2
0 < 1.]

Exercise 8.10 Consider the equation

ẋ = xα with x(0) ≥ 0

for α > 0. Show that the only value of α for which the equation has solutions
that are both unique and exist for all time is α = 1. You should be able to
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find an initial condition for which the solutions are not unique when α < 1
(cf. (6.3)), and show that solutions with x(0) > 0 blow up in a finite time if
α > 1 (cf. (6.6)).

First we solve the equation by separating the variables,

dx

xα
= dt.

Integrating from times zero to t gives
[

1
1 + α

x1+α

]x(t)

x0

= t,

which implies that

x(t)1−α − x1−α
0 = (1− α)t,

and so

x(t) = [(1− α)t + x1−α
0 ]1/(1−α).

If α < 1 then (cf. example ẋ = x1/2 in section 6.1) for any choice of c ≥ 0
the function

x(t) =
{

0 t ≤ 0
[(1− α)(t− c) + x1−α

0 ]1/(1−α) t ≥ c

satisfies ẋ = xα with x(0) = 0.
If α > 1 then for positive initial conditions to solution will blow up in

finite time, since 1− α < 0: x(t) → +∞ as t → t∗, where

t∗ =
x1−α

0

α− 1

(cf. the example ẋ = x2 in section 6.3).
If α = 1 then solutions are unique since f(x) = x and f ′(x) = 1 are both

continuous for all x ∈ R, and the explicit form of the solution x(t) = x0et

shows that the solution exists for all time.

Exercise 8.11 Assuming that f(x) and f ′(x) are continuous, show that if
the solution of

ẋ = f(x) with x(0) = x0

blows up to x = +∞ in finite time then
∫ ∞

x0

f(x) dx < ∞.
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The solution of the equation can be found by separating variables:

dx

f(x)
= dt.

Integrating between times zero and t gives
∫ x(t)

x0

f(x) dx = t. (S8.2)

If there is a solution with x(0) = x0 that blows up to x = +∞ in a finite
time, i.e. as t → t∗, then taking limits as t → t∗ on both sides of (S8.2) we
get ∫ ∞

x0

f(x) dx = t∗ < ∞.
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First order linear equations and the integrating
factor

Exercise 9.1 Use an integrating factor to solve the following differential
equations:

(i)
dy

dx
+

y

x
= x2

(find the general solution and the only solution that is finite when
x = 0),

(ii)
dx

dt
+ tx = 4t

(find the solution with x(0) = 2),
(iii)

dz

dy
= z tan y + sin y

(find the general solution),
(iv)

y′ + e−xy = 1

(find the solution when y(0) = e, leaving your answer as an integral),
(v)

ẋ + x tanh t = 3

(find the general solution, and compare it to that for ẋ + x = 3),
(vi)

y′ + 2y cotx = 5

(find the solution with y(π/2) = 1),

57
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(vii)
dx

dt
+ 5x = t

(find the general solution),
(viii) with a > 0 find the solution of the equation

dx

dt
+

[
a +

1
t

]
x = b

for a general initial condition x(1) = x0, and show that x(t) → b/a

as t → ∞ (you would get the same result if you replaced a + t−1 by
a).

(i) The integrating factor for

dy

dx
+

y

x
= x2

is

I(x) = exp
(∫

1
x

dx

)
= exp lnx = x,

and so we have

x
dy

dx
+ y =

d
dx

(xy) = x3.

Integrating both sides with respect to x gives

xy =
x4

4
+ c

and so

y(x) =
x3

4
+

c

x
.

Note that we only have a solution near x = 0 if y(0) = 0, and this
solution is y(x) = x3/4.

(ii) The integrating factor for

dx

dt
+ tx = 4t

is

I(t) = exp
(∫

t dt

)
= et2/2.

Therefore we have

et2/2 dx

dt
+ et2/2tx =

d
dt

(xet2/2) = 4tet2/2.
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Integrating both sides between 0 and t gives

x(t)et2/2 − x(0) = 4et2/2 − 4

or, since x(0) = 2

x(t) = 4− 2e−t2/2.

(iii) Before looking for the integrating factor we need to rearrange the
equation

dz

dy
= z tan y + sin y

into the standard form
dz

dy
− (tan y)z = sin y.

Now the integrating factor is

I(y) = exp
(∫

− tan y dy

)
= exp(ln cos y) = cos y,

and so we have

cos y
d
dy

+ z sin y =
d
dy

(z cos y) = sin y cos y = 1
2 sin 2y.

Integrating both sides gives

z(y) cos y = −cos 2y

4
+ c,

and so

z(y) = − cos 2y

4 cos y
+

c

cos y
.

(iv) The integrating factor for the equation

y′ + e−xy = 1

is

I(x) = exp
(∫

e−x

)
= exp(−e−x) = e−e−x

.

Then we have
d
dx

(
ye−e−x

)
= e−e−x

,

and integrating between zero and x we get

y(x)e−e−x − y(0)e−e0 =
∫ x

0
e−e−x̃

dx̃,



60 9 First order linear equations and the integrating factor

which simplifies, since y(0) = e, to give

y(x) = 1 + ee−x

∫ x

0
e−e−x̃

dx̃.

(v)

ẋ + x tanh t = 3.

Here the integrating factor is

I(t) = exp
(∫

tanh t dt

)
= exp(ln cosh t) = cosh t.

So we have
d
dt

(x cosh t) = 3 cosh t.

Integrating both sides gives

x(t) cosh t = 3 sinh t + c,

and so

x(t) = 3 tanh t + c sech t.

As t →∞,

tanh t =
et − e−t

et + e−t
=

1− e−2t

1 + e−2t
≈ 1− 2e−2t

and

sech t =
2

et + e−t
≈ 2e−t.

So as t →∞ we have x(t) ≈ 3 + 2ce−t.
To find the solution of ẋ + x = 3 we use the integrating factor et,

and so
d
dt

(xet) = 3et ⇒ x(t)et = 3et + d ⇒ x(t) = 3 + de−t.

The equations have similar solutions for t large; this is not surprising,
since for large t we have tanh t ≈ 1 (as shown above).

(vi)

y′ + 2y cotx = 5.

The integrating factor is

I(x) = exp
(∫

2 cot xdx

)
= exp(2 ln | sinx|) = | sinx|2 = sin2 x.
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Then we have
d
dx

(y sin2 x) = 5 sin2 x.

Integrating between π/2 and x,
[

y(x̃) sin2 x̃

]x

x̃=π/2

= 5
∫ x

π/2
sin2 x̃dx̃

we obtain

y(x) sin2 x− 1 = 5
∫ x

π/2

1− cos 2x̃

2
dx̃

= 5
[

x

2
− sin 2x

4

]x

x̃=π/2

= 5
(

x

2
− sin 2x

4
− π

4

)
,

and so

y(x) =
1

sin2 x

[
1 + 5

(
x

2
− sin 2x

4
− π

4

)]
.

(vii)
dx

dt
+ 5x = t.

The integrating factor is e5t, and so

d
dt

(e5tx(t)) = te5t.

Integrating both sides gives

e5tx(t) =
∫

te5t dt

=
te5t

5
− 1

5

∫
e5t dt

=
te5t

5
− e5t

25
+ c,

and so

x(t) =
t

5
− 1

25
+ ce−5t.

(viii) The integrating factor for

dx

dt
+

[
a +

1
t

]
x = b
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is

exp
(∫

a +
1
t

dt

)
= exp(at + ln t) = teat.

Multiplying both sides by this we get

d
dt

(x(t)teat) = bteat.

Integrating between times 1 and t gives

x(t)teat − x0ea =
∫ t

1
bt̃eat̃ dt̃.

Integrating the right-hand side by parts gives

x(t)teat − x0ea =

[
bt̃eat̃

a

]t

t̃=1

−
∫ t

1

beat̃

a
dt̃

=
bteat − bea

a
−

[
beat̃

a2

]t

t̃=1

= b

(
teat − ea

a
− eat − ea

a2

)
.

Rearranging gives

x(t) =
b

a
+

(
x0 +

b

a
+

b

a2

)
ea(1−t) − b

a2t
,

and so x(t) → b/a as claimed.

Exercise 9.2 A body is found in a cold room (temperature 5◦C) at 3 p.m.
and its temperature then is 19◦C. An hour later its temperature has dropped
to 15◦C. Use Newton’s law of cooling to estimate the time of death, assuming
that body temperature is 37◦C.

Newton’s law of cooling is

dT

dt
= −k(T −A(t)) or

dT

dt
+ kT = kA(t).

When A(t) = A, a constant, we can use the integrating factor ekt and then
we have

d
dt

(ektT ) = kAekt.

Integrating between t0 and t we obtain

ektT (t)− ekt0T (t0) = A(ekt − ekt0),
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or

T (t) = A + e−k(t−t0)[T (t0)−A]. (S9.1)

First we find k using T (3) = 19, T (4) = 15, and A = 5:

15 = T (4) = 5 + e−k[19− 5] ⇒ 10 = 14e−k

which gives k = − ln(5/7) ≈ 0.337.
If the time of death was t0 then, using T (t0) = 37, we have

19 = T (3) = 5 + e−k(3−t0)[37− 5] ⇒ 14 = 32e−k(3−t0),

so that

t0 = 3 +
ln(14/32)

k
≈ 0.543,

which fixes the time of death at approximately 12:33 a.m.

Exercise 9.3 At 7 a.m. in the morning I make my wife a cup of tea using
boiling water; after adding some milk it is about 90◦C. When we leave for
the station at 7:30 a.m. the tea is still drinkable at about 45◦C. When I get
back home at 8 a.m. the neglected tea has cooled to about 30◦C. What is the
temperature of our house?

We use the solution (S9.1) from the previous exercise. We have T (7) = 90,
T (7.5) = 45, and T (8) = 30. Therefore

45 = A + e−k/2[90−A] and 30 = A + e−k[90−A].

Since e−k/2 = (45−A)/(90−A) we have

30 = A +
(45−A)2

90−A
,

which gives an equation for A,

(30−A)(90−A) = (45−A)2.

Solving this equation gives A = 22.5, and so the house is 22.5◦C.

Exercise 9.4 Use the integrating factor method to find T (t2) in terms of
T (t1) when

dT

dt
= −k(T (t)−A(t))

and

A(t) = µ + a cosω(t− φ).
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Rearrange the equation as

dT

dt
+ kT = kA(t).

The integrating factor is

exp
(∫

k dt

)
= ekt,

and so we have
d
dt

(T (t)ekt) = kektA(t).

Integrating both sides between t1 and t2 gives

T (t2)ekt2 − T (t1)ekt1 = k

∫ t2

t1

ektA(t) dt.

With the choice A(t) = µ + a cosω(t− φ) we get

T (t2)ekt2 − T (t1)ekt1 = kµ

∫ t2

t1

ekt dt + ak

∫ t2

t1

ekt cosω(t− φ) dt.

An anti-derivative of ekt cosω(t− φ) is (cf. example in Section 9.4.2)

k

k2 + ω2
ekt cosω(t− φ) +

ω

k2 + ω2
ekt sinω(t− φ),

and so

T (t2)ekt2 − T (t1)ekt1 = µ[ekt2 − ekt1 ]

+ak

[
k

k2 + ω2
ekt2 cosω(t2 − φ) +

ω

k2 + ω
ekt2 sinω(t2 − φ)

]

−ak

[
k

k2 + ω2
ekt1 cosω(t1 − φ) +

ω

k2 + ω
ekt1 sinω(t1 − φ)

]
.

Rearranging we have

T (t2) = µ + ak

[
k

k2 + ω2
cosω(t2 − φ) +

ω

k2 + ω
sinω(t2 − φ)

]

+
[
T (t1)− µ− ak

k2 + ω2
(k cosω(t1 − φ) + ω sinω(t1 − φ))

]
e−k(t2−t1).

Exercise 9.5 A dead body is found outside on a winter’s morning at 7 a.m.;
its temperature is measured as 20◦C. Measured an hour later it has dropped
to 15◦C. The air temperature A(t) fluctuates on a daily cycle about a mean
of 3◦C with A(t) = 3−5 cos ω(t−2), where t is measured in hours with t = 0
corresponding to midnight, and ω = π/12.
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(i) Use the solution from question 9.4 and the temperature observations
at 7 a.m. and 8 a.m. to show that

k = − ln
{

12(k2 + ω2)− 5k(k cos 6ω + ω sin 6ω)
17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)

}
. (S9.2)

(ii) (C) This is a MATLAB exercise. Choose an initial guess for k, and
then substitute this into the right-hand side of (S9.2) to obtain a new
guess. Continue doing this until your ‘guess’ stabilises. Once this
happens you have actually obtained the required solution of (S9.2).
Can you see why? [You should find k ≈ 0.3640.]

(iii) If the time of death was t0, use the fact that body temperature is 37◦C
(so T (t0) = 37) and T (7) = 20 to show that

t0 = 7 +
1
k

ln
{

17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)
34(k2 + ω2)− 5k(k cosω(t0 − 2) + ω sinω(t0 − 2))

}
.

(iv) (C) Use MATLAB again to refine an initial guess for the time of death
as in part (ii). You should find that t0 ≈ 4.8803, or 4:53 a.m.

(i) We have T (7) = 20, T (8) = 15, µ = 3, a = 5, φ = 2, and ω = π/12.
We need to find t0 such that T (t0) = 37. We should be able to use
the information from 7 a.m. and 8 a.m. to estimate k. Our solution
gives (leaving ω = π/12 in the equations)

15 = 3 + 5k
[

k

k2 + ω2
cos 6ω +

ω

k2 + ω2
sin 6ω

]

+
[
17− 5k

k2 + ω2
(k cos 5ω + ω sin 5ω)

]
e−k.

No matter how we rearrange this equation we cannot solve it explic-
itly for k. However, if we rearrange it as

e−k =
12(k2 + ω2)− 5k(k cos 6ω + ω sin 6ω)
17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)

we can obtain an equation for k ‘in terms of k’:

k = − ln
{

12(k2 + ω2)− 5k(k cos 6ω + ω sin 6ω)
17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)

}
. (S9.3)

(ii) What we can do with this is to guess k, and then substitute our guess
into the right-hand side to obtain a new guess for k, and continue like
this until, if we are lucky, our guess settles down to a fixed value which
will be the solution we want.
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Writing this more mathematically, given an initial guess k0 we then
calculate successive guesses kn by setting

kn+1 = − ln
{

12(k2
n + ω2)− 5kn(kn cos 6ω + ω sin 6ω)

17(k2
n + ω2)− 5kn(kn cos 5ω + ω sin 5ω)

}
.

If kn+1 = k + n = k then k must be a solution of (S9.3).
You can do this fairly easily in MATLAB, and the result is k ≈

0.3640. [The M-file findk.m will do this for you; you can check your
answer with the file temperature.m which will compute the solution
at time t2 given the temperature at time t1 and the value of k.]

(iii) To find the time of death will require a similar computer calculation,
since once again we have an equation that we cannot solve explicitly.
If we set T (t0) = 37 and T (7) = 20 then we should be able to find t0
from (we don’t replace k by 0.3640 here to simplify the algebra)

20 = 3 + 5k
[

k

k2 + ω2
cos 5ω +

ω

k2 + ω2
sin 5ω

]

+
[
34− 5k

k2 + ω2
(k cosω(t0 − 2) + ω sinω(t0 − 2))

]
e−k(7−t0)

We can rearrange this as

e−k(7−t0) =
17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)

34(k2 + ω2)− 5k(k cosω(t0 − 2) + ω sinω(t0 − 2))
,

or

t0 = 7+
1
k

log
{

17(k2 + ω2)− 5k(k cos 5ω + ω sin 5ω)
34(k2 + ω2)− 5k(k cosω(t0 − 2) + ω sinω(t0 − 2))

}
.

(iv) Iterating this (you could use the M-file findt0.m) gives t0 ≈ 4.8803,
which puts the time of death at 4:53 a.m. (Again, you could check
that this works with the temperature.m file.)

Exercise 9.6 Show that if y1 and y2 are any two solutions of

dy

dx
+ p(x)y = 0

then y1(x)/y2(x) is constant. (You do not need to solve the equation!)

Differentiating y1(x)/y2(x) with respect to x gives

d
dx

[
y1(x)
y2(x)

]
=

y2y
′
1 − y1y

′
2

y2
2

=
y2[−p(x)y1]− y1[−p(x)y2]

y2
2
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= 0,

and so y1(x)/y2(x) is constant.

Exercise 9.7 Suppose that

dx

dt
≤ ax

(this is known as a differential inequality). Use an appropriate integrating
factor to show that

d
dt

[
e−atx

] ≤ 0,

and then integrate both sides between appropriate limits to deduce that

x(t) ≤ x(s)ea(t−s)

for any t and s. Hint: it is a fundamental property of integration that if
f(x) ≤ g(x) then

∫ b

a
f(x) dx ≤

∫ b

a
g(x) dx.

We can rewrite the equation as

dx

dt
− ax ≤ 0,

and then use the integrating factor eat to obtain

eat

[
dx

dt
− ax

]
≤ 0

(this is allowed since eat is always positive). The left-hand side of the equa-
tion is just d

dt(e
−atx), so we now have

d
dt

[
e−atx

] ≤ 0

as required. Integrating both sides between times s and t gives

e−atx(t)− e−asx(s) ≤ 0

which on rearrangement yields

x(t) ≤ e−a(t−s)x(s).
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Exercise 9.8 The function sinωt can be written as a combination of complex
exponentials,

sinωt =
eiωt − e−iωt

2i
.

Using this form for sinωt, and assuming that the usual rules of integration
apply to such complex exponentials, find

∫
ekt sinωt dt.

You may also need to use the identity

cosωt =
eiωt + e−iωt

2
.

See Appendix A for more on these complex exponentials.

We write
∫

ekt sinωt dt =
∫

ekt eiωt − e−iωt

2i
dt

=
1
2i

∫
e(k+iω)t − ek−iω)t dt

=
1
2i

[
e(k+iω)t

k + iω
− e(k−iω)t

k − iω

]

=
ekt

2i

[
eiωt

k + iω
− e−iωt

k − iω

]

= ekt Im [(k − iω)(cosωt + i sinωt)]

= ekt(k sinωt− ω cosωt)

since z − z∗ = 2i Im[z].
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Two ‘tricks’ for nonlinear equations

Exercise 10.1 Check that the following equations are exact and hence solve
them.

(i)

(2xy − sec2 x) + (x2 + 2y)
dy

dx
= 0,

(ii)

(1 + exy + xexy) + (xex + 2)
dy

dx
= 0,

(iii)

(x cos y + cosx)
dy

dx
+ sin y − y sinx = 0,

and
(iv)

ex sin y + y + (ex cos y + x + ey)
dy

dx
= 0.

(i) We have

(2xy − sec2 x)︸ ︷︷ ︸
f(x,y)

+ (x2 + 2y)︸ ︷︷ ︸
g(x,y)

dy

dx
= 0.

To check that this equation this exact, i.e. that there is an F (x, y)
such that

∂F

∂x
= f(x, y) and

∂F

∂y
= g(x, y)

we need to make sure that
∂f

∂y
=

∂g

∂x
.

69
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So we check
∂f

∂y
= 2x =

∂g

∂x
.

Now to find F we first solve
∂F

∂x
= 2xy − sec2 x.

Integrating with respect to x we get

F (x, y) = x2y − tanx + C(y).

In order to find C(y) we partially differentiate F (x, y) with respect
to y,

∂F

∂y
= x2 +

dC

dy
= G(x, y) = x2 + 2y,

and so
dC

dy
= 2y

which gives C(y) = y2 + c. So the solution is

F (x, y) = x2y − tanx + y2 = c.

(ii) Now for

(1 + exy + xexy)︸ ︷︷ ︸
f(x,y)

+ (xex + 2)︸ ︷︷ ︸
g(x,y)

dy

dx
= 0

we check
∂f

∂y
= ex + xex =

∂g

∂x

and the equation is exact. First we solve

∂F

∂x
= 1 + exy + xexy,

integrating both sides with respect to x to give

F (x, y) = x + xexy + C(y).

So we have
∂F

∂y
= xex +

dC

dy
= xex + 2,

so in fact
dC

dy
= 2
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which gives C = 2y. Therefore F (x, y) = x + xexy + 2y, and we have

x + xexy + 2y = C.

This simplifies to give

y =
C − x

2 + xex
.

(iii) For

(sin y − y sinx)︸ ︷︷ ︸
f(x,y)

+(x cos y + cosx)︸ ︷︷ ︸
g(x,y)

dy

dx
= 0

we check that
∂f

∂y
= cos y − sinx =

∂g

∂x
,

and so the equation is exact.
Now we solve

∂F

∂x
= sin y − y sinx,

which gives

F (x, y) = x sin y + y cosx + C(y).

In order to find C(y) we differentiate partially with respect to y, and
then

∂F

∂y
= x cos y + cosx + C ′(y) = g(x, y) = x cos y + cosx,

and so C ′(y) = 0 and C is a constant. So the solution is

x sinx + y cosx = c

for any constant c.
(iv) Now we have

(ex sin y + y)︸ ︷︷ ︸
f(x,y)

+(ex cos y + x + ey)︸ ︷︷ ︸
g(x,y)

dy

dx
= 0,

and we check that it is exact by showing that

∂f

∂y
= ex cos y + 1 =

∂g

∂x
.

We first solve the equation

∂F

∂x
= ex sin y + y,
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so that

F (x, y) = ex sin y + xy + C(y).

Now we have

ex cos y + x + ey =
∂F

∂y
= ex cos y + x + C ′(y).

and so C ′(y) = ey which implies that C(y) = ey + c. So we obtain
the solution

ex sin y + xy + ey + c = 0..

Exercise 10.2 Find an integrating factor depending only on x that makes
the equation

e−y secx + 2 cotx− e−y dy

dx
= 0

exact, and hence find its solution. Hint:
∫

cosecxdx = ln |cosec x− cotx|.
To look for an integrating factor I(x) depending only on x we want

I(x)(e−y secx + 2 cotx)︸ ︷︷ ︸
f(x,y)

+ (−I(x)e−y)︸ ︷︷ ︸
g(x,y)

dy

dx
= 0

to be exact. This needs
∂f

∂y
= −I(x)e−y secx = −I ′(x)e−y =

∂g

∂x
,

i.e.

I ′(x) = (secx)I(x).

The solution of this is I(x) = e
∫

sec(x) dx = eln(sec x+tan x) = secx + tanx.
Using this integrating factor the original equation becomes

(sec x + tanx)(e−y sec x + 2 cotx)︸ ︷︷ ︸
f̃(x,y)

+ [−(sec x + tanx)e−y]︸ ︷︷ ︸
g̃(x,y)

dy

dx
= 0.

This new equation is exact, since

∂f̃

∂y
= (sec x + tanx)(−e−y secx) = −e−y(sec2 x + secx tanx) =

∂g̃

∂x
.

So we can now find F (x, y): we will do this by solving

∂F

∂y
= g̃(x, y) = −(secx + tanx)e−y,
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giving

F (x, y) = e−y(sec x + tanx) + C(x).

Now we want ∂F
∂x = f̃(x, y), so we need

e−y(secx tanx+sec2 x)+C ′(x) = e−y secx(sec x+tanx)+2 cotx(sec x+tanx),

which gives

C ′(x) = 2 cosecx + 2 ⇒ 2 ln |cosecx− cotx|+ 2x + c,

and so

e−y(sec x + tanx) + 2 ln |cosec x− cotx|+ 2x + c = 0.

Exercise 10.3 Show that any equation that can be written in the form

f(x) + g(y)
dy

dx
= 0

is exact, and find its solution in terms of integrals of f and g. Hence find
the solutions of

(i)

V ′(x) + 2y
dy

dx
= 0

and
(ii) (

1
y
− a

)
dy

dx
+

2
x
− b = 0,

for x, y > 0.

Here we have
∂f

∂y
= 0 =

∂g

∂y
.

First we can solve
∂F

∂x
= f(x)

giving

F (x, y) =
∫

f(x) dx + C(y).

We then need
∂F

∂y
= C ′(y) = g(y),
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and so C(y) =
∫

g(y) dy + c, giving the solution
∫

f(x) dx +
∫

g(y) dy + c = 0.

(i) The solution is V (x) + y2 = E.
(ii) The solution is ln y − ay + 2 lnx− bx = c.

Exercise 10.4 By substituting u = y/x solve the following homogeneous
equations:

(i)

xy + y2 + x2 − x2 dy

dx
= 0

(the solution is y = x tan(ln |x|+ c)).
(ii)

dx

dt
=

x2 + t
√

t2 + x2

tx

(the solution is x(t) = ±t
√

(ln |t|+ c)2 − 1).

(i) Divide through by x2, then the equation becomes

dy

dx
=

y

x
+

y2

x2
+ 1.

This is clearly homogeneous. If we put u = y/x then

u′ = − y

x2
+

y′

x
,

and so

u′ = −u

x
+

u + u2 + 1
x

,

i.e.

x
du

dx
= 1 + u2.

Separating the variables and integrating we have
∫

du

1 + u2
du =

∫
1
x

dx,

and so

tan−1(u) = ln |x|+ c,

or u = tan(ln |x|+ c). Since y = xu we get

y(x) = x tan(ln |x|+ c).
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(ii) Rearranging the equation

dx

dt
=

x2 + t
√

t2 + x2

tx

we have
dx

dt
=

x

t
+

√
(t/x)2 + 1

which is clearly homogeneous. So we substitute u = x/t, and then

u̇ = − x

t2
+

ẋ

t
or

tu̇ = −u + ẋ,

which gives

tu̇ = −u + u +
√

u−2 + 1 =
√

u−2 + 1.

So separating variables we have

du√
u−2 + 1

=
1
t

dt

which gives after a rearrangement of the left-hand side
∫

udu√
1 + u2

=
∫

1
t

dt.

Therefore

(1 + u2)1/2 = ln |t|+ c.

Squaring both sides we have

(1 + u2) = (ln |t|+ c)2,

and so

u = ±
√

(ln |t|+ c)2 − 1,

which, since y = tu, gives the required solution.

Exercise 10.5 You could solve
dx

dt
= kx− x2.

by separating variables (see Exercise 8.7). Instead, substitute u = x−1 and
show that u satisfies the linear equation

du

dt
= 1− ku.
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Solve this equation for u(t), and hence find the solution x(t).

Making the substitution u = x−1 we have du/dt = −x−2ẋ, and so

du

dt
= − 1

x2
[kx− x2] = −k

x
+ 1 = 1− ku.

This is
du

dt
+ ku = 1

which we can solve with the integrating factor ekt,

d
dt

(uekt) = ekt.

Integrating both sides we get

u(t)ekt =
ekt

k
+ c,

and so

u(t) =
1
k

+ ce−kt.

Since x(t) = u(t)−1 we have

x(t) =
1

k−1 + ce−kt
=

k

1 + cke−kt

which is the same answer as before (Exercise 8.7) if we set A = ck.

Exercise 10.6 Use an appropriate substitution to solve the equation

ẋ = x(κ2 − x2).

You should recover the solution (8.16) found by separating variables.

This is a Bernoulli equation: we can put u = x−2 and then

u̇ = −2x−3ẋ

= −2κ2x−2 + 2

= 2− 2κ2u.

Solving the equation
du

dt
+ 2κ2u = 2

using the integrating factor e2κ2t we obtain

d
dt

(ue2κ2t) = 2e2κ2t
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and so, integrating between times zero and t

u(t)e2κ2t = u(0) +
e2κ2t − 1

κ2
,

which gives

u(t) = u(0)e−2κ2t +
1− e−2κ2t

κ2
.

Since u(t) = x(t)−2 we have

x(t)−2 = x−2
0 e−2κ2t +

1− e−2κ2t

κ2
.

Rearranging this for x(t) gives

x(t) = ±
√

κ2

1 + e−2κ2t(κ2x−2
0 − 1)

,

the same solution we obtain using the method of separation of variables as
(8.16).
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Second order linear equations: general theory

Exercise 11.1 By finding the Wronskian of the following pairs of solutions,
show that they are linearly independent:

(i) x1(t) = ek1t and x2(t) = ek2t with k1 6= k2,
(ii) x1(t) = ekt and x2(t) = tekt, and
(iii) x1(t) = eρt sinωt and x2(t) = eρt cosωt.

In each case we want to show that W (x1, x2) 6= 0. We have

(i)

W (ek1t, ek2t) = ek1tk2ek2t − ek2tk1ek1t = (k2 − k1)e(k1+k2)t;

(ii)

W (ekt, tekt) = ekt(ekt + ktekt)− tektkekt = e2kt;

and
(iii)

W (eρt sinωt, eρt cosωt)

= eρt sinωt(ρeρt cosωt

−ωeρt sinωt)− eρt cosωt(ρeρt sinωt + ωeρt cosωt)

= −ωe2ρt.

In each case W (x1, x2) 6= 0, and so the two solutions are linearly indepen-
dent.

Exercise 11.2 Show that the Wronskian for two solutions x1(t) and x2(t)
of the second order differential equation

d2x

dt2
+ p1(t)

dx

dt
+ p2(t)x = 0 (S11.1)

78
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satisfies

Ẇ (t) = −p1(t)W (t).

(Write W (t) = x1(t)ẋ2(t) − x2(t)ẋ1(t), differentiate, and use the fact that
x1(t) and x2(t) satisfy the equation (S11.1).) Deduce that either W (t) = 0
for all t, or W (t) 6= 0 for all t.

We have W (t) = x1ẋ2 − x2ẋ1, and so

Ẇ = ẋ1ẋ2 + x1ẍ2 − ẋ2ẋ1 − x2ẍ1

= x1ẍ2 − x2ẍ1

= x1[−p1ẋ2 − p2x2]− x2[−p1ẋ1 − p2x1]

= −p1[x1ẋ2 − x2ẋ1]

= −p1W.

Solving this linear equation (use an integrating factor) for W gives

W (t) = W (0) exp
(∫ t

0
−p1(t̃) dt̃

)
.

Since ex is always positive, either W (t) is never zero (if W (0) 6= 0) or W (t)
is identically zero (if W (0) = 0).

Exercise 11.3 We have seen that if x1 and x2 are two solutions of a linear

differential equation, then they are linearly independent if and only if their
Wronskian is non-zero. The simple example of this question shows that this
is not true for general functions that are not the solutions of some differential
equation.

(i) Check carefully that if f(t) = t2|t| then df/dt = 3t|t| (this is easy
when t 6= 0; you will have to use the formal definition of the derivative
at t = 0).

(ii) Let

f1(t) = t2|t| and f2(t) = t3.

Show that although these two functions are linearly independent on
R, their Wronskian is identically zero.

(i) For t < 0, f(t) = −t3, so ḟ = −3t2 = 3t|t|; for t > 0 similarly
f(t) = t3 and ḟ = 3t2 = 3t|t|. At t = 0,

ḟ(0) = lim
h→0

f(h)− f(0)
h

= lim
h→0

h2|h|
h

= lim
h→0

h|h| = 0.

So ḟ = 3t|t| as claimed.
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(ii) We have ḟ1(t) = 3t|t| from part (i), and ḟ2(t) = 3t2. Therefore

W [f1, f2](t) = [t2|t| × 3t2]− [t3 × 3t|t|] = 3t4|t| − 3t4|t| = 0.

However, it is clear that the functions are linearly independent on R,
since if

αt2|t|+ βt3 = 0 for all t ∈ R
then taking any t > 0 implies that α = −β, while taking any t < 0
gives α = β, and so the only solution is α = β = 0.
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Homogeneous linear 2nd order equations with
constant coefficients

Exercise 12.1 Find the general solution of the following differential equa-
tions, and then the solution satisfying the specified initial conditions.

(i) ẍ− 3ẋ + 2x = 0 with x(0) = 2 and ẋ(0) = 6;
(ii) y′′ − 4y′ + 4y = 0 with y(0) = 0 and y′(0) = 3;
(iii) z′′ − 4z′ + 13z = 0 with z(0) = 7 and z′(0) = 42;
(iv) ÿ + ẏ − 6y = 0 with y(0) = −1 and ẏ(0) = 8;
(v) ÿ − 4ẏ = 0 with y(0) = 13 and ẏ(0) = 0;
(vi) θ̈ + 4θ = 0 with θ(0) = 0 and θ̇(0) = 10;
(vii) ÿ + 2ẏ + 10y = 0 with y(0) = 3 and ẏ(0) = 0;
(viii) 2z̈ + 7ż − 4z = 0 with z(0) = 0 and ż(0) = 9;
(ix) ÿ + 2ẏ + y = 0 with y(0) = 0 and ẏ(0) = −1;
(x) ẍ + 6ẋ + 10x = 0 with x(0) = 3 and ẋ(0) = 1;
(xi) 4ẍ− 20ẋ + 21x = 0 with x(0) = −4 and ẋ(0) = −12;
(xii) ÿ + ẏ − 2y = 0 with y(0) = 4 and ẏ(0) = −4;
(xiii) ÿ − 4y = 0 with y(0) = 10 and ẏ(0) = 0;
(xiv) y′′ + 4y′ + 4y = 0 with y(0) = 27 and y′(0) = −54; and
(xv) ÿ + ω2y = 0 with y(0) = 0 and ẏ(0) = 1.

(i)

ẍ− 3ẋ + 2x = 0 with x(0) = 2 and ẋ(0) = 6.

Try x = ekt and obtain the auxiliary equation for k,

k2 − 3k + 2 = 0

with solutions k = 2 and k = 4. The general solution is therefore

x(t) = Ae2t + Be4t.

81
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Since ẋ(t) = 2Ae2t + 4Be4t the particular solution with

x(0) = A + B = 2 and ẋ(0) = 2A + 4B = 6

has A = B = 1 and is

x(t) = e2t + e4t.

(ii)

y′′ − 4y′ + 4y = 0 with y(0) = 0 and y′(0) = 3.

Try y(x) = ekx to obtain the auxiliary equation

k2 − 4k + 4 = 0

which has k = 4 as a repeated root. The general solution is therefore

y(x) = Ae4x + Bxe4x.

Since y′(x) = 4Ae4x + B[e4x + 4xe4x] the solution with

y(0) = A + B = 0 and y′(0) = 4A + B = 3

has A = 1 and B = −1: it is

y(x) = (1− x)e4x.

(iii)

z′′ − 4z′ + 13z = 0 with z(0) = 7 and z′(0) = 42.

Try z(x) = ekx to obtain

k2 − 4k + 13 = 0,

with solutions k = 4± 6i. The general solution is therefore

z(x) = e4x(A cos 6x + B sin 6x).

We have

z′(x) = e4x(4A cos 6x + 4B sin 6x− 6A sin 6x + 6B cos 6x)

= e4x[(4A + 6B) cos 6x + (4B − 6A) sin 6x],

and so the solution with

z(0) = A + B = 7 and z′(0) = 4A + 6B = 42

has A = 0 and B = 7, and is

z(x) = 7e4x sin 6x.
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(iv)

ÿ + ẏ − 6y = 0 with y(0) = −1 and ẏ(0) = 8.

Trying y(t) = ekt gives the auxiliary equation

k2 + k − 6 = 0

with solutions k = 2 or k = −3. So the general solution is

y(t) = Ae2t + Be−3t.

Since ẏ(t) = 2Ae2t − 3Be−3t the solution with

y(0) = A + B = −1 and ẏ(0) = 2A− 3B = 8

has A = 1 and B = −2; it is

y(t) = e2t − 2e−3t.

(v)

ÿ − 4y = 0 with y(0) = 13 and ẏ(0) = 0.

We try y(t) = ekt then

k2 − 4k = 0

with solutions k = 0 or k = 4. The general solution is

y(t) = A + Be4t.

We have ẏ(t) = 4Be4t. The initial conditions

y(0) = A + B = 13 and ẏ(0) = 4B = 0

imply that A = 13 and B = 0, so the solution is

y(t) = 13.

(vi)

θ̈ + 4θ = 0 with θ(0) = 0 and θ̇(0) = 10.

With θ(t) = ekt we have

k2 + 4 = 0,

and so k = ±2i. The general solution is

θ(t) = A cos 2t + B sin 2t.
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The derivative is given by θ̇ = −2A sin 2t + 2B cos 2t. In order to
satisfy

θ(0) = A = 0 and θ̇(0) = 2B = 10

we must have A = 0 and B = 5, and the solution is

θ(t) = 5 sin 2t.

(vii)

ÿ + 2ẏ + 10y = 0 with y(0) = 3 and ẏ(0) = 0.

Try y(t) = ekt and then

k2 + 2k + 10 = 0

giving the complex conjugate roots k = −1 ± 3i and the general
solution

y(t) = e−t(A cos 3t + B sin 3t).

We have

ẏ(t) = e−t(−A cos 3t−B sin 3t− 3A sin 3t + 3B cos 3t)

= e−t[(3B −A) cos 3t− (3A + B) sin 3t].

The solution with

y(0) = A = 3 and ẏ(0) = 3B −A = 0

has A = 3 and B = 1, and is

y(t) = e−t(3 cos 3t + sin 3t).

(viii)

2z̈ + 7ż − 4z = 0 with z(0) = 0 and ż(0) = 9.

When we substitute z(t) = ekt we obtain the equation

2k2 + 7k − 4 = 0

for k. This equation has roots k = 1/2 and k = −4, so the general
solution is

z(t) = Aet/2 + Be−4t.

We have ż(t) = (A/2)et/2 − 4Be−4t, and so when

z(0) = A + B = 0 and ż(0) = (A/2)− 4B = 9
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A = 2 and B = −2; the solution is

z(t) = 2(et/2 − e−4t).

(ix)

ÿ + 2ẏ + y = 0 with y(0) = 0 and ẏ(0) = −1.

With y(t) = ekt we obtain

k2 + 2k + 1 = 0

and so k = −1 is a repeated root, giving the general solution

y(t) = Ae−t + Bte−t.

The derivative is ẏ(t) = −Ae−t +B(e−t− te−t), and so the solution
with

y(0) = A = 0 and ẏ(0) = −A + B = −1

has A = 0 and B = −1: it is

y(t) = −te−t.

(x)

ẍ + 6ẋ + 10x = 0 with x(0) = 3 and ẋ(0) = 1.

We try x(t) = ekt and then

k2 + 6k + 10 = 0;

this implies that k = −3± i, and gives the general solution

x(t) = e−3t(A cos t + B sin t).

We have

ẋ(t) = e−3t(−3A cos t− 3B sin t−A sin t + B cos t)

= e−3t[(B − 3A) cos t− (A + 3B) sin t].

The solution with

x(0) = A = 3 and ẋ(0) = B − 3A = 1

has A = 3 and B = 10:

x(t) = e−3t(3 cos t + 10 sin t).
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(xi)

4ẍ− 20ẋ + 21x = 0 with x(0) = −4 and ẋ(0) = −12.

Substituting x(t) = ekt produces the auxiliary equation

4k2 − 20k + 21 = 0

with roots k = 3/2 and k = 7/2. The general solution is

x(t) = Ae3t/2 + Be7t/2.

We have ẋ(t) = 1
2 [3Ae3t/2 + 7Be7t/2], and so for

x(0) = A + B = −4 and ẋ(0) =
3A + 7B

2
= −12

we need A = −1 and B = −3 and the solution is

x(t) = −e3t/2 − 3e7t/2.

(xii)

ÿ + ẏ − 2y = 0 with y(0) = 4 and ẏ(0) = −4.

Trying y(t) = ekt gives the equation for k

k2 − k − 2 = 0

with roots k = 2 and k = −1. The general solution is

y(t) = Ae2t + Be−t.

With ẏ(t) = 2Ae2t −Be−t we need

y(0) = A + B = 4 and ẏ(0) = 2A−B = −4

i.e. A = 0 and B = 4, and so

y(t) = 4e−t.

(xiii)

ÿ − 4y = 0 with y(0) = 10 and ẏ(0) = 0.

Try y(t) = ekt and then

k2 − 4 = 0

which gives k = −2 or k = 2 and the general solution

y(t) = Ae2t + Be−2t.
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The derivative is given by ẏ(t) = 2Ae2t − 2Be−2t, and so for

y(0) = A + B = 10 and ẏ(0) = 2A− 2B = 0

we need A = B = 5 and the solution

y(t) = 5(e2t + e−2t).

(xiv)

y′′ + 4y′ + 4y = 0 with y(0) = 27 and y′(0) = −54.

Try y(x) = ekx and obtain

k2 + 4k + 4 = 0

with k = −2 a repeated root. The general solution is

y(x) = Ae−2x + Bxe−2x.

We have y′(x) = −2Ae−2x + B(e−2x − 2xe−2x), and so to match
the initial conditions we need

y(0) = A = 27 and y′(0) = −2A + B = −54,

i.e. A = 27 and B = 0. The solution is

y(x) = 27e−2x.

(xv)

ÿ + ω2y = 0 with y(0) = 0 and ẏ(0) = 1.

Try y(t) = ekt and the k must satisfy

k2 + ω2 = 0,

so k = ±iω, and we obtain the general solution

y(t) = A cosωt + B sinωt.

Since ẏ(t) = −Aω sinωt + Bω cosωt we need

y(0) = A = 0 and ẏ(0) = −Aω + Bω = 1

which gives A = 0 and B = 1/ω; the solution we require is

y(t) =
sinωt

ω
.
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Exercise 12.2 If the roots of the auxiliary equation are k1 > 0 and −k2 < 0
then the solution is

x(t) = Aek1t + Be−k2t.

For most choices of initial conditions

x(0) = x0 ẋ(0) = y0

we will have x(t) → ±∞ as t →∞. However, there are some special initial
conditions for which x(t) → 0 as t → ∞. Find the relationship between x0

and y0 that ensures this.

The solution is

x(t) = Aek1t + Be−k2t;

this will only tend to zero as t → ∞ if A = 0, and then the solution is
x(t) = Be−k2t for some B. In this case, since ẋ(t) = −k2Be−k2t, we should
have

x(0) = B and ẋ(0) = −k2B.

So the solution only tends to zero if y0 = −k2x0.

Exercise 12.3 Solutions of linear equations with constant coefficients can-
not blow up in finite time: it follows that their solutions exist for all t ∈ R.
To see this, we will consider

ẍ + pẋ + qx = 0 with x(0) = x0 and ẋ(0) = y0

for t ≥ 0 (a similar argument applies for t ≤ 0). By setting y = ẋ, we can
rewrite this as a coupled pair of first order equations

ẋ = y

ẏ = −py − qx.

Show that
1
2

d
dt

(x2 + y2) = (1− q)xy − py2,

and hence that
d
dt

(x2 + y2) ≤ (1 + |q|+ 2|p|)(x2 + y2).

Using the result of Exercise 9.7 deduce that for t ≥ 0

x(t)2 + y(t)2 ≤ (x(0)2 + y(0)2)e(1+|q|+2|p|)t,
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showing that finite-time blowup is impossible. Hint: xy ≤ 1
2(x2 + y2). (The

same argument works, essentially unchanged, for

ẍ + p(t)ẋ + q(t)x = 0

provided that |p(t)| ≤ p and |q(t)| ≤ q for all t ∈ R.)

We have
1
2

d
dt(x

2 + y2) = 1
2(2xẋ + 2yẏ)

= xẋ + yẏ

= xy + y(−py − qx)

= (1− q)xy − py2.

Now it follows (using the hint) that

1
2

d
dt(x

2 + y2) ≤ (1 + |q|)x
2 + y2

2
+ |p|y2

≤
(

1 + |q|
2

+ |p|
)

(x2 + y2),

or
d
dt

(x2 + y2) ≤ (1 + |q|+ 2|p|)(x2 + y2).

It follows using the result of Exercise 9.7 that

x(t)2 + y(t)2 ≤ (x(0)2 + y(0)2)e(1+|q|+2|p|)t,

and so x(t) and ẋ(t) remain bounded for all t ≥ 0.
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Oscillations

Exercise 13.1 A spring of natural length l and spring constant k is sus-
pended vertically from a fixed point, and a weight of mass m attached. If
the system is at rest (ẍ = ẋ = 0) how far has the spring extended? If the
mass is pulled down slightly from this rest position and then released, show
that it then oscillates about its equilibrium position with period 2π/ω, where
ω2 = k/m.

Denoting by x the extension from the spring’s natural length, then the
forces on the spring are that due to the weight of the mass, mg, and the
restoring force −kx from the spring, so

mẍ = −kx + mg.

When the spring is at rest we have ẍ = 0 and so x = mg/k. If we write
x = y + (mg/k) then y satisfies

mÿ = −ky.

The solution of this can either be found by trying y(t) = eαt which gives
mα2 = −k and so α = ±i

√
k/m; or preferably you should just recognise

the equation as giving rise to simple harmonic motion. Whichever way, the
solution is

y(t) = A cos
√

k/m t + B sin
√

k/m t,

and the spring oscillates about its equilibrium position with period 2π/ω

with ω2 = k/m as claimed.

Exercise 13.2 The acceleration due to gravity in fact depends on the dis-
tance R from the centre of the earth: g = GM/R2, where M is the mass
of the earth and G Newton’s gravitational constant. Show that the period of
oscillation of a pendulum will increase as it is taken higher.
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The equation of motion for a pendulum is (cf. (13.5))

d2θ

dt2
= −ω2θ with ω2 =

g

L
.

The period of oscillation is 2π/ω, i.e.

2π

√
L

g
.

Since g = GM/R2 decreases as R increases, it follows that the period will
increase as the pendulum moves further from the centre of the earth.

Exercise 13.3 The earth bulges at the equator: at a latitude θ, the distance
to the centre of the earth (measured in kilometres) is approximately

R(θ) =
√

R2
e cos2 θ + R2

p sin θ,

where Re = 6378 and Rp = 6357.
I decide to move from Leamington Spa, at a latitude of 52◦, to Seville,

which is lies at a latitude of 37◦. My grandfather clock, which keeps perfect
time, has a pendulum of length 75 cm. How long would the pendulum need
to be to keep perfect time in Seville?

The approximate distance of Leamington from the centre of the earth
is 6365 km, while for Seville the Figure is roughly 6370 km. To keep the
period of oscillations constant I would need to keep L/g constant. Since g

is proportional to R−2, this is the same as keeping LR2 constant, i.e.

LLeamR2
Leam = LSevR

2
Sev,

which gives

LSev = 75× 63652

63702
cm = 74.88 cm

a minimal adjustment.

Exercise 13.4 The buoyancy force on an object is equal to the weight of
water that it displaces: if an object has mass M and displaces a volume V

of water then the forces on it are Mg − V g, in units where the density of
water is one; see Figure 13.1.

A bird of mass m is sitting on a cylindrical buoy of density ρ, radius R,
and height h, which is floating at rest. How much of the buoy lies below the
surface?

The bird flies away. Show that the buoy now bobs up and down, with
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Displaced volume
V

Fig. 13.1. The buoyancy force on an object is equal to the weight of water that it
displaces.

the amount below the surface oscillating about ρh with period 2π
√

ρh/g and
amplitude m/πR2.

Suppose that the buoy is immersed to a depth y. While the bird is there
the forces on the buoy are a buoyancy force πR2yg and gravitational forces
due to the mass of the buoy (M = ρπR2h) and the bird (m). So y obeys
the equation

(m + M)ÿ = (M + m)g − πR2yg.

At rest y is constant, and so ÿ = 0, and so

y =
M + m

πR2
.

When the bird leaves the equation of motion becomes

Mÿ = Mg − πR2yg.

The new equilibrium depth of immersion is y = M/πR2 = ρh; the initial
condition when the bird flies away is

y(0) =
M + m

πR2
= ρh +

m

πR2

and ẏ(0) = 0. The displacement from the equilibrium position, z = y − ρh,
satisfies

Mz̈ = −(πR2g)z.

The general solution of this equation is

z(t) = A cosωt + B sinωt,
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with ω =
√

πR2g/M =
√

g/ρh. The particular solution satisfying the initial
conditions

z(0) = m/πR2 and ż(0) = 0

is

z(t) =
m

πR2
cosωt.

Therefore the buoy oscillations about y = ρh with amplitude m/πR2 and
frequency 2π

√
ρh/g, as claimed.

Exercise 13.5 An open tin can, half full of water, is floating in a canal.
The can is 11cm tall, has a diameter of 7.5 cm, and has a mass of 50 .
Show that at rest the can is submerged a distance of approximately 6.63 cm
below the surface of the canal. If the can is pushed down further it will
then perform oscillations about its equilibrium position. Show that the can
bobs up and down every 0.21 seconds (a little under five times per second).
The acceleration due to gravity is approximately 9.8 m/s2=980 cm/s2; the
density of water is 1 g/cm3. You can check your answers in a sink with a
baked bean can.

Denote by y the amount in excess of half the height of the can that is
submerged. The forces on the can are then 50g downwards and a buoyancy
force of π(7.5/2)2yg. So, since (7.5/2)2 = 14.0625,

50ÿ = 50g − 14.0625πgy,

and the equilibrium position is

ye =
50

14.0625π
≈ 1.13,

which means that the can is submerged a distance of roughly 6.63 cm below
the surface.

If z = y − ye then z satisfies

50z̈ = −14.0625πgz,

and so the can oscillates with period

2π/
√

14.0625πg/50 ≈ 0.21s.

[You need to use g in the correct units, 980 cm/s2.]



94 13 Oscillations

Exercise 13.6 A right circular cone, of height h, radius ρ, and with base
radius R, is placed point downward in a lake. Assuming that the apex re-
mains point vertically downwards, show that if the cone is submerged to a
depth x then

ẍ = g −
(x

h

)3 g

ρ
.

(You need not solve this equation.) At equilibrium how far is the cone sub-
merged?

When the cone is submerged to a height x the volume submerged is

1
3
π[(x/h)R]2x.

Then
1
3
πR2hρẍ =

1
3
πR2hρg − 1

3
π[(x/h)R]2xg,

which simplifies to give

ẍ = g −
(x

h

)3 g

ρ
.

In equilibrium we must have

g =
(x

h

)3 g

ρ
,

and so x = hρ1/3.

Exercise 13.7 A dashpot is a device designed to add damping to a system,
consisting essentially of a plunger in a cylinder of liquid or gas, see Figure
13.2.

Fig. 13.2. A dashpot. Illustration c© 2001 Airpot Corporation. Airpot is a regis-
tered trademark of Airpot Corporation.

It produces a resisting force proportional to the velocity, precisely the kind
of ‘damping’ that we used in our model

mẍ + µẋ + kx = 0, (S13.1)
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with µ indicating the ‘strength’ of the dashpot. Dashpots are used in a variety
of applications, for example, cushioning the opening mechanism on a tape
recorder, or in car shock absorbers.

A mass-spring-dashpot system consists of a mass attached to a spring and
a dashpot, as shown in Figure 13.3. A weight of mass 10 kg is attached to
a spring with spring constant 5, and to a dashpot of strength µ. How strong
should the dashpot be to ensure that the system is over-damped? What would
the period of oscillations be if µ = 14?

Fig. 13.3. A mass-spring-dashpot system.

Trying x = eαt in the model

mẍ + µẋ + kx = 0

yields the auxiliary equation for α,

mα2 + µα + k = 0,

with solutions

α =
−µ±

√
µ2 − 4mk

2m
.

For the system to be overdamped we require

µ2 − 4mk > 0,

so we need µ > 2
√

50 ≈ 14.14. If µ = 14 then the system is under-damped:
we would have

α =
−14±√196− 200

20
=
−14± 2i

20

giving oscillations that decay like e−0.7t and have period 2π/
√

0.1 ≈ 19.9
seconds.

Exercise 13.8 When first opened, the Millennium Bridge in London (see
Figure 13.4) wobbled from side to side as people crossed; you can see this on
video at www.arup.com/MillenniumBridge. Footfalls created small side-to-
side movements of the bridge, which were then enhanced by the tendency of
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people to adjust their steps to compensate for the wobbling. With more than
a critical number of pedestrians (around 160) the bridge began to wobble
violently1.

Without any pedestrians, the displacement x of a representative point on
the bridge away from its normal position would satisfy

Mẍ + kẋ + λx = 0,

where

M ≈ 4× 105 kg, k ≈ 5× 104 kg/s, and λ ≈ 107 kg/s2.

Show that the level of damping here is only around 1% of the critical level.

Fig. 13.4. The Millennium Bridge in London (courtesy of Arup).

The effective forcing from each pedestrian was found by experiment (which
involved varying numbers of people walking across the bridge) to be propor-

1 A detailed analysis is given in P. Dallard et al., The London Millennium Footbridge, The
Structural Engineer 79 (2001) 17–33.
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tional to ẋ, with

F ≈ 300ẋ.

If there are N pedestrians, the displacement of the bridge satisfies

Mẍ + kẋ + λx = 300Nẋ.

Find the critical number N0 of pedestrians, such that if there are more than
N0 pedestrians the bridge is no longer damped. Show that if there are 200
pedestrians then there will be oscillations with a frequency of approximately
0.8 Hertz (oscillations per second) and with an amplitude which grows as
et/80.

The problem was corrected by adding additional damping, a large part of
which was essentially a collection of dashpots, in order to bring the damping
up to 20% of the critical level. What would this do to the value of k, and
how many people can now walk across the bridge without counteracting all
the damping?

Trying x = eαt in the equation gives

Mα2 + kα + λ = 0,

and so

α =
−k ±√k2 − 4Mλ

2M
.

The critical level of damping is when k2 = 4Mλ, i.e. when

k =
√

4Mλ = 4× 106.

The value of k here, 5× 104, is 1.25% of the critical level.
The forcing term 300Nẋ decreases the effect of the damping term kẋ. The

two terms would balance if

300N = 5× 104

which gives N = 1662
3 . So with 167 pedestrians the bridge is no longer

damped.
If there are 200 pedestrians then the equation of motion is

Mẍ + (k − 6× 104)︸ ︷︷ ︸
k̃

ẋ + λx = 0.

Trying x(t) = eαt yields the auxiliary equation

Mα2 + k̃α + λ = 0,
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with roots

α =
−k̃ ±

√
k̃2 − 4Mλ

2M

≈ 1
80
± 5i,

and hence solutions

x(t) = et/80(A cos 5t + B sin 5t).

The oscillations have frequency 5/2π ≈ 0.8Hz, and their amplitude grows
like et/80.

With the damping at 20% of the critical level, i.e. k is now 8 × 105, the
damping is now exactly matched if

300N = 8× 105,

i.e. N = 26662
3 . So it will now take 2667 pedestrians to counteract all the

damping, and 2666 should still be able to cross without the wobble setting
in.

Exercise 13.9 In the case of critical damping (see Section 13.3), the general
solution of (13.6) is of the form

x(t) = (A + Bt)e−λt/2.

Show that if λA < 2B then x(t) increases initially, reaching its maximum
value at

t =
2
λ
− A

B
.

If x(t) = (A + Bt)e−λt/2 then we have

ẋ(t) = e−λt/2

(
B − λ

2
(A + Bt)

)
,

and so ẋ > 0 while

B − λ

2
(A + Bt) > 0,

i.e. while

t <
2
λ
− A

B
.
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Inhomogeneous 2nd order linear equations

Exercise 14.1 Find the general solution to the following differential equa-
tions (the homogeneous parts of the equations are all treated in Exercise
12.1) In part (n) also find the one solution that has x(0) = n and ẋ(0) = 0.

(i) ẍ− 4x = t2,
(ii) ẍ− 4ẋ = t2,
(iii) ẍ + ẋ− 2x = 3e−t,
(iv) ẍ + ẋ− 2x = et,
(v) ẍ + 2ẋ + x = e−t,
(vi) for α 6= ω: ẍ + ω2x = sin αt,
(vii) for α = ω: ẍ + ω2x = sin αt,
(viii) ẍ + 2ẋ + 10x = e−t,
(ix) ẍ + 2ẋ + 10x = e−t cos 3t,
(x) ẍ + 6ẋ + 10x = e−3t cos t, and
(xi) ẍ + 4ẋ + 4x = e2t.

The solutions of the homogeneous equation can all be found in the answers
to Exercise 12.1.

(i)

ẍ− 4x = t2.

The complementary function is the general solution of the homogeneous
equation ÿ − 4y = 0, i.e.

y(t) = Ae2t + Be−2t

(see part (xiii) of Exercise 12.1).
The function on the right-hand side, t2, is a second-order polynomial.

99



100 14 Inhomogeneous 2nd order linear equations

Neither t2 nor any of its derivatives are solutions of the homogeneous equa-
tion, so for a particular integral we try a general second order polynomial,
xp(t) = at2 + bt + c. Then

ẋp = 2at + b and ẍp = 2a,

so we need

2a− 4(at2 + bt + c) = t2.

This requires a = −1/4, b = 0, and c = −1/8. So the particular integral
is

xp(t) = − t2

4
− 1

8
,

and the general solution is

x(t) = Ae2t + Be−2t − t2

4
− 1

8
.

If we want x(0) = 1 and ẋ(0) = 0 then, since

ẋ(t) = 2Ae2t − 2Be−2t − 1
2 t

we need

1 = x(0) = A + B − 1
8

and 0 = ẋ(0) = 2A− 2B,

i.e. A = B = 9/16, and so

x(t) = 9(e2t + e−2t)/16− t2

4
− 1

8
.

(ii)

ẍ− 4ẋ = t2.

The complementary function is the general solution of the homogeneous
equation ÿ − 4ẏ = 0, which is

y(t) = A + Be4t

(see part (v) of Exercise 12.1). If we were to try, as before, a second-order
polynomial for a particular integral then we would have the problem that
one of its derivatives (the second) would be a constant – and this is now
a solution of the homogeneous equation. So we have to multiply by an
extra factor t, and try xp(t) = at3 + bt2 + ct. So we have

ẋp = 3at2 + 2bt + c and ẍp = 6at + 2b.
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Substituting in we get

6at + 2b− 4(3at2 + 2bt + c) = t2,

requiring a = −1/12, 6a− 8b = 0 so b = −1/16, and 2b− 4c = 0 so that
c = −1/32, giving

xp(t) = − t3

12
− t2

16
− t

32
.

The general solution is therefore

x(t) = A + Be4t − t3

12
− t2

16
− t

32
.

For the solution with x(0) = 2 and ẋ(0) = 0 we need

A + B = 2 and 4B − 1
32

= 0,

so B = 1/128 and A = 255/128, and

x(t) =
1

128
(255 + e4t)− t3

12
− t2

16
− t

32
.

(iii)

ẍ + ẋ− 2x = 3e−t.

The complementary function is the general solution of the homogeneous
equation ÿ + ẏ − 2y = 0,

y(t) = Aet + Be−2t

(see part (xii) of Exercise 12.1). The function on the right hand side is not
a solution of the homogeneous equation, so we can just try xp(t) = ae−t.
We have

ẋp = −ae−t and ẍp = ae−t,

so we want

ae−t − ae−t − 2ae−t = 3e−t

requiring a = −3/2 and giving the particular integral

xp(t) = −3
2
e−t

and the general solution

x(t) = Aet + Be−2t − 3
2
e−t.
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To find the solution with x(0) = 3 and ẋ(0) = 0 we need, since, ẋ =
Aet − 2Be−2t + (3e−t/2),

A + B − 3
2

= 3 and A− 2B +
3
2

= 0.

This gives A = 5/2 and B = 2, and so

x(t) =
5
2
et + 2e−2t − 3

2
e−t.

(iv)

ẍ + ẋ− 2x = et.

The complementary function is as in part (iii), but now the right-hand side
is a solution of the homogeneous equation, so we have to try xp(t) = atet

for a particular integral. For this guess

ẋp = aet + atet and ẍp = 2aet + atet,

and so we want

2aet + atet + aet + atet − 2atet = et,

requiring a = 1/3. So the particular integral is xp(t) = tet/3 and the
general solution is

x(t) = Aet + Be−2t +
tet

3
.

For the solution with x(0) = 4 and ẋ(0) = 0 we require, since ẋ =
Aet + Be−2t + (et/3) + (tet/3),

A + B = 4 A− 2B +
1
3

= 0,

and so A = 23/9 and B = 13/9, giving

x(t) =
23et + 13e−2t + 3tet

9
.

(v)

ẍ + 2ẋ + x = e−t.

The complementary function is the general solution of the homogeneous
equation ÿ + 2ẏ + y = 0, which is

y(t) = Ae−t + Bte−t

(part (ix) of Exercise 12.1). Now observe that the right-hand side e−t is a
solution of the homogeneous equation, and so is te−t. Therefore we have
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to use one power of t more, and try xp(t) = at2e−t. For this guess we
have

ẋp = 2ate−t − at2e−t and ẍp = 2ae−t − 4ate−t + at2e−t.

Substituting in gives

2ae−t − 4ate−t + at2e−t + 2(2ate−t − at2e−t) + at2e−t = e−t;

notice that the terms with te−t and t2e−t cancel, leaving just 2ae−t, and
so we want a = 1/2. So the particular integral is xp(t) = t2e−t/2, and the
general solution is

x(t) =
(

A + Bt +
t2

2

)
e−t.

We have

ẋ(t) =
(
−A + B + (1−B)t− t2

2

)
e−t,

and so the solution with x(0) = 5 and ẋ(0) = 0 must have

A = 5 and −A + B = 0.

This gives A = B = 5, and so

x(t) = (5 + 5t + 1
2 t2)e−t.

(vi)

ẍ + ω2x = sinαt.

The complementary function is the general solution of the homogeneous
problem ÿ + ω2y = 0,

y(t) = A cosωt + B sinωt

(part (xv) of Exercise 12.1). The function on the right-hand side is not
a solution of the homogeneous equation, so we would in general try a
combination of sinαt and cosαt. However, we can note here that there
is no ẋ term on the left-hand side, and it is such a term that would
generally make us include a cosine term (since the derivative of sinαt

would give a term in cosαt). So here we just try xp(t) = a sinαt. Since
ẍp = −aα2 sinαt we need

−aα2 sinαt + ω2a sinαt = sin αt,
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or a = 1/(ω2 − α2). This gives the particular integral

xp(t) =
sinαt

ω2 − α2

and the general solution

x(t) = A cosωt + B sinωt +
sinαt

ω2 − α2
.

We have

ẋ(t) = −Aω sinωt + Bω cosωt +
α cosαt

ω2 − α2
,

and so for x(0) = 6 and ẋ(0) = 0 we need

A = 6 and Bω +
α

ω2 − α2
= 0.

This gives A = 6, B = −α/[ω(ω2 − α2)], and so this solution is

x(t) = 6 cosωt +
ω sinαt− α sinωt

ω(ω2 − α2)
.

(vii) We now have

ẍ + ω2x = sinωt.

We cannot try sinωt since this is a solution of the homogeneous equation,
so we have to try a combination of t sinωt and t cosωt, xp(t) = at sinωt+
bt cosωt. Then

ẋp = a sinωt + aωt cosωt + b cosωt− bωt sinωt

and

ẍp = 2aω cosωt− aω2t sinωt− bω sinωt− 2bω2t cosωt.

Substituting in we get

2aω cosωt− aω2t sinωt− 2bω sinωt− bω2t cosωt

+aω2t sinωt + bω2t cosωt = sinωt;

the terms with a factor of t cancel, leaving

2aω cosωt− 2bω sinωt = sinωt

requiring a = 0 and b = −1/2ω. So the particular integral is xp(t) =
−(t cosωt)/2 and the general solution is

x(t) = A cosωt + B sinωt− 1
2ω

t cosωt.
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The solution with x(0) = 7 and ẋ(0) = 0 must have

A = 7 and Bω − 1
2

= 0,

so A = 7, B = 1/2ω, and the solution is

x(t) = 7 cosωt +
sinωt− t cosωt

2ω
.

(viii)

ẍ + 2ẋ + 10x = e−t.

The complementary function is the general solution

y(t) = e−t(A cos 3t + B sin 3t).

of the homogeneous problem ÿ + 2ẏ + 10y = 0 (part (vii) of Exercise
12.1). Now to get the correct right-hand side (e−t) we note that although
this is involved in the complementary function, it is not a solution of the
homogeneous equation, so we can just try xp(t) = ae−t: we have

ẋp = −ae−t and ẍp = ae−t,

so we need

ae−t − 2ae−t + 10ae−t = e−t,

and this requires a = 1/9. The particular integral is xp(t) = e−t/9, and
the general solution is

x(t) = e−t

(
A cos 3t + B sin 3t +

1
9

)
.

We have

ẋ(t) = e−t

(
(−3A−B) sin 3t + (3B −A) cos 3t− 1

9

)
,

and so for x(0) = 8 and ẋ(0) = 0 we want

A +
1
9

= 8 and 3B −A− 1
9

= 0

which implies that A = 71/9 and B = 8/3. Therefore

x(t) =
e−t

9
(71 cos 3t + 24 sin 3t + 1).
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(ix)

ẍ + 2ẋ + 10x = e−t cos 3t.

The complementary function is as in part (viii), and you can see that now
the right-hand side is a solution of the homogeneous equation. So in fact
we need to try something like ate−t cos 3t. But differentiating this will
give similar terms with the cosine replaced by a sine, so we have to try

xp(t) = ate−t cos 3t + bte−t sin 3t.

So

ẋp = ae−t cos 3t− ate−t cos 3t− 3ate−t sin 3t + be−t sin 3t

−bte−t sin 3t + 3bte−t cos 3t

= ae−t cos 3t + (3b− a)te−t cos 3t− (3a + b)te−t sin 3t

+be−t sin 3t

and

ẍp = −ae−t cos 3t− 3ae−t sin 3t

+(3b− a)[e−t cos 3t− te−t cos 3t− 3te−t sin 3t]

−(3a + b)[e−t sin 3t− te−t sin 3t + 3te−t cos 3t]

−be−t sin 3t + 3be−t cos 3t

= (6b− 2a)e−t cos 3t− (8a + 6b)te−t cos 3t + (6a− 8b)te−t sin 3t

−(6a + 2b)e−t sin 3t.

Substituting in we get, after careful tidying of terms

6be−t cos 3t− 6ae−t sin 3t = e−t cos 3t,

and so we need a = 0 and b = −1/6. The particular integral is xp(t) =
−(te−t cos 3t)/6, and the general solution is

x(t) = e−t(A cos 3t + B sin 3t)− te−t cos 3t

6
.

With this general solution we have

ẋ(t) = e−t

(
(2B −A− 1

6) cos 3t− (3A + B) sin 3t +
t cos 3t

6
− t sin 3t

2

)
,

and so to ensure that x(0) = 9 and ẋ(0) = 0 we must have

A = 9 and 2B −A− 1
6

= 0,
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which gives B = 55/12. The solution satisfying these initial conditions in
therefore

x(t) =
e−t

12
(108 cos 3t + 55 sin 3t− 2t cos 3t).

(x)

ẍ + 6ẋ + 10x = e−3t cos t.

The complementary function is the general solution of the homogeneous
equation ÿ + 6ẏ + 10y = 0, which is

y(t) = e−3t(A cos t + B sin t)

(part (x) of Exercise 12.1). So the right-hand side is one solution of the
homogeneous equation, and for a particular integral we have to try

xp(t) = Cte−3t cos t + Dte−3t sin t.

Therefore

ẋp(t) = C[e−3t cos t− 3te−3t cos t− te−3t sin t]

+D[e−3t sin t− 3te−3t sin t + te−3t cos t]

= e−3t cos t[C + (D − 3C)t] + e−3t sin t[D − (C + 3D)t]

and

ẍp(t) = (D − 3C)e−3t cos t + [C + (D − 3C)t][−3e−3t cos t− e−3t sin t]

−(C + 3D)e−3t sin t + [D − (C + 3D)t][−3e−3t sin t + e−3t cos t]

= e−3t cos t[(2D − 6C) + (8C − 6D)t]

+e−3t sin t[(6C + 8D)t− (2C + 6D)].

So we have

ẍp + 6ẋp + 10xp = (2D + 10C)e−3t cos t− 2Ce−3t sin t,

and need

2D + 10C = 1 and 2C = 0,

i.e. D = 1/2. So the particular integral is xp(t) = 1
2 te−3t sin t, and the

general solution is

x(t) = e−3t(A cos t + B sin t +
t

2
sin t).

We have

ẋ(t) = e−3t

[
(B − 3A + 1

2 t) cos t +
(

3B −A + 1
2 +

3t

2

)
sin t

]
,
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and so to fit the initial conditions we need

x(0) = A = 10 and ẋ(0) = B − 3A = 0,

which gives A = 10 and B = 30, so the solution is

x(t) = e−3t

(
10 cos t + 30 sin t +

t

2
sin t

)
.

(xi)

ẍ + 4ẋ + 4ẏ = e2t.

The complementary function is the general solution of the homogeneous
equation ÿ + 4ẏ + 4y = 0, and this is

y(t) = Ae−2t + Bte−2t.

The right-hand side is not a solution of the homogeneous equation, so
we can try xp(t) = Ce2t. Since

ẋp = 2Ce2t and ẍp = 4Ce2t

we require

4C + 8C + 4C = 1,

and so C = 1/16, giving the particular integral xp(t) = e2t/16. The
general solution is therefore

x(t) = Ae−2t + Bte−2t +
e2t

16
.

The derivative is given by

ẋ(t) = −2Ae−2t + Be−2t − 2Bte−2t +
e2t

8
,

and so to satisfy the initial conditions we want

x(0) = A +
1
16

= 11 and ẋ(0) = −2A + B +
1
8

= 0,

i.e. A = 175/16 and B = 87/4. So the solution is

x(t) =
175e−2t + 348te−2t + 128e2t

16
.

Exercise 14.2 Find a particular integral for

ẍ + ẋ− 2x = 12e−t − 6et. (S14.1)

(You might find parts (iii) and (iv) of the previous exercise useful.)
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Since the equation is linear we can take an appropriate linear combination
of the particular integrals for

ẍ + ẋ− 2x = f(t) = 3e−t [this was xf (t) = −3
2
e−t]

and

ẍ + ẋ− 2x = g(t) = et [this was xg(t) =
tet

3
].

The right-hand side of (S14.1) is 4f(t)−6g(t), so the particular integral will
be

xp(t) = 4xf (t)− 6xg(t) = −6e−t − 2te3t.

Exercise 14.3 If you are feeling strong, find a particular integral for

ẍ + 4x = 289tet sin 2t.

The complementary function is the solution of the homogeneous equation
ẍ + 4x = 0, which is

xc(t) = A cos 2t + B sin 2t.

The right-hand side does not solve the homogeneous equation, and for a
particular integral we try

xp(t) = [Ct + D]et[E sin 2t + F cos 2t].

A more convenient form for this is

xp(t) = (αt + β)et sin t + (γt + δ)et cos t.

We have

ẋp(t) = [(α+β−2δ)+ (α−2γ)t)]et sin 2t+[(2β +γ + δ)+ (2α+γ)t]et cos 2t

and

ẍp(t) = [(2α− 3β − 4γ − 4δ)− (3α + 4γ)t]et sin 2t

+[(4α + 4β + 2γ − 3δ) + (4α− 3γ)t]et cos 2t,

and therefore

ẍp + 4xp = [(2α + β − 4γ − 4δ) + (α− 4γ)t]et sin 2t

+[(4α + 4β + 2γ + δ) + (4α + γ)t]et cos 2t.
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To produce 289tet sin 2t we therefore require

2α + β − 4γ − 4δ = 0

α− 4γ = 289

4α + 4β + 2γ + δ = 0

4α + γ = 0,

with solution

α = 17, β = −2, γ = −68, and δ = 76.

[You could find this by writing the simultaneous equations as a matrix equa-
tion and using MATLAB’s matrix inversion function inv.] The particular
integral is therefore

xp(t) = (17t− 2)et sin 2t + (76− 68t)et cos 2t.
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Resonance

Exercise 15.1 For α 6= ω show that the solution of the equation

ẍ + ω2x = cosαt (S15.1)

with x(0) = ẋ(0) = 0 is

x(t) =
1

ω2 − α2
(cosαt− cosωt). (S15.2)

We want to find the solution of

ẍ + ω2x = cosαt with x(0) = ẋ(0) = 0.

The complementary function is the solution of the homogeneous equation

ẍ = −ω2x,

which is

x(t) = A cosωt + B sinωt.

To find the particular integral we try xp(t) = a cosαt (the term ẋ does not
occur in the equation, so there is no reason to include the sinαt term in our
guess for a particular integral). Since ẍp = −aα2 cosαt we want

a(−α2 + ω2) cos αt = cosαt

so the particular integral is

xp(t) =
cosαt

ω2 − α2

giving the general solution

x(t) = A cosωt + B sinωt +
cosαt

ω2 − α2
.

111
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To ensure that x(0) = ẋ(0) = 0 we need

A +
1

ω2 − α2
= 0 and B = 0,

so the solution for these initial conditions is

x(t) =
cosαt− cosωt

ω2 − α2

as given.

Exercise 15.2 Use the double angle formulae

cos(θ ± φ) = cos θ cosφ∓ sin θ sinφ

to find an expression for cosx − cos y as a product of two sine functions,
and hence rewrite the solution in (S15.2) as

2
ω2 − α2

sin
(ω + α)t

2
sin

(ω − α)t
2

.

If α is close to ω then |α + ω| is much larger than ω − α; one of the two
terms oscillates much faster than the other. A graph of such an expression
when ω = 1 and α = 0.8 is shown in Figure 15.1. The periodic variation
of the amplitude of the basic oscillation is known as beating. You can hear
this when, for example, two flutes play slightly out of tune with each other.

0 50 100 150
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t

Fig. 15.1. The phenomenon of beats: the graph of sin 0.9t sin 0.1t against t (the
dashed line shows how the amplitude of the faster oscillation varies like sin 0.1t).

We have

cos(θ + φ) = cos θ cosφ− sin θ sinφ

cos(θ − φ) = cos θ cosφ + sin θ sinφ,
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and subtracting these two expressions gives

cos(θ + φ)− cos(θ − φ) = −2 sin θ sinφ.

Choosing θ + φ = x and θ − φ = y implies that

θ =
x + y

2
and φ =

x− y

2
,

and so

cosx− cos y = −2 sin
x + y

2
sin

x− y

2
.

We therefore have

1
ω2 − α2

(cos αt− cosωt) =
2

ω2 − α2
sin

(ω + α)t
2

sin
(ω − α)t

2
.

Exercise 15.3 When α = ω show that the solution of (S15.1) with x(0) =
ẋ(0) = 0 is x(t) = t sinωt/2ω. Recover this solution from that for α 6= ω by
letting α → ω in (S15.2) and using L’Hôpital’s rule.

L’Hôpital’s rule: if f(x) → 0 as x → a, and g(x) → 0 as x → a then

lim
x→a

f(x)
g(x)

= lim
x→a

f ′(x)
g′(x)

=
f ′(a)
g′(a)

(provided that f and g have continuous derivatives at x = a).

If we try to take the limit as α → ω in the solution

x(t) =
1

ω2 − α2
(cosαt− cosωt)

we find that both numerator and denominator tend to zero. However,

d
dα

(cos αt− cosωt) = −t sinαt

and
d
dα

(ω2 − α2) = −2α,

so using L’Hôpital’s rule the limit is

t sinωt

2ω

as given.

Exercise 15.4 A model for the vibrations of a wine glass is

ẍ + λẋ + ω2x = 0,



114 15 Resonance

where λ and ω are constants. Suppose that when struck the glass vibrates at
660 Hz (about the second E above middle C on a piano). Show that

√
4ω2 − λ2 = 2640π.

If it takes about 3 seconds for the sound to die away, and this happens when
the original vibrations have reduced to 1/100 of their initial level, show that

λ =
2 log 100

3
,

and hence that λ = 3.07 and ω = 4.15 × 103 (both to three significant Fig-
ures).

The glass can stand deforming only to x ≈ 1. A pure tone at 660 Hz
is produced at D decibels and aimed at the glass, forcing it at its natural
frequency, so that the vibrations are now modelled by

ẍ + λẋ + ω2x =
10(D/10)−8

3
cos 1320πt. (S15.3)

How loud should the sound be, i.e. how large should D be, in order to shatter
the glass? (Decibels are on a logarithmic scale, hence the exponential on the
right-hand side of (S15.3). The strange factor in front of the forcing produces
roughly the correct volume level.)

Trying x(t) = ekt in

ẍ + λẋ + ω2x = 0

yields the auxiliary equation

k2 + λk + ω2 = 0,

with solutions

k =
−λ±√λ2 − 4ω2

2
.

When λ2 < 4ω2 we have

k = −λ

2
±
√

4ω2 − λ2

2
i,

and the solution is

e−λt/2(A cosΩt + B sin Ωt),

with

Ω =
√

4ω2 − λ2

2
.
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The wine glass vibrates at a frequency Ω/2π, so we have

Ω
2π

=
√

4ω2 − λ2

4π
= 660,

or √
4ω2 − λ2 = 2640π. (S15.4)

The vibrations will have reached a hundredth of their initial level when

e−λt/2 =
1

100
,

and this happens after 3 seconds, so

e−3λ/2 =
1

100
.

Taking logarithms gives

−3λ/2 = − log 100 ⇒ λ =
2 log 100

3
.

This implies that λ = 3.07 and hence, using (S15.4), that ω = 4.15 × 103.
We note here for use later that

ω2 = (1320π)2 +
λ2

4
.

From the treatment in the text, the amplitude of the response to the a
forcing a cosαt is given in (15.6) as

a√
(ω2 − α2)2 + (λα)2

.

For

ẍ + λẋ + ω2x =
10(D/10)−8

3
cos 1320πt

we have a = 10(D/10)−8/3 and α = 1320π, and so the amplitude of the
resulting oscillations in the glass is

10(D/10)−8

3
× 1√

(λ2/4) + (1320λπ)2
≈ 2.6182× 10(D/10)−3.

This amplitude is one when

log10 2.6182 +
D

10
− 3 = log10 1 = 0,

so when D ≈ 136.
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Higher order linear equations with constant
coefficients

Exercise 16.1 Find the general solution of the following equations:

(i)

d3x

dt3
− 6

d2x

dt2
+ 11

dx

dt
− 6x = e−t,

(ii)

y′′′ − 3y′ + 2 = sinx,

(iii)

d4x

dt4
− 4

d3x

dt3
+ 8

d2x

dt2
− 8

dx

dt
+ 4x = sin t

(if x = ekt one solution of the corresponding quartic equation is k =
1 + i), and

(iv)

d4x

dt4
− 5

d2x

dt2
+ 4x = et.

(i)

d3x

dt3
− 6

d2x

dt2
+ 11

dx

dt
− 6x = 48e−t.

First we solve the homogeneous equation

d3x

dt3
− 6

d2x

dt2
+ 11

dx

dt
− 6x = 0,

by trying x(t) = ekt, which gives the auxiliary cubic

k3 − 6k2 + 11k − 6 = 0.

116
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By inspection one solution is k = 1, and so we can factorise

k3 − 6k2 + 11k − 6 = (k − 1)(k2 − 5k + 6)

and obtain the quadratic equation k2 − 5k + 6 = 0 which gives two
other roots, k = 2 and k = 3. So the complementary function is

xc(t) = Aet + Be2t + Ce3t.

Since e−t does not solve the homogeneous equation we can try
xp(t) = De−t for a particular integral. Then

ẋp = d3xp/dt3 = −De−t and ẍp = De−t,

so for

D[−e−t − 6e−t − 11e−t − 6e−t] = 48e−t

we must have D = −2, and the general solution is

x(t) = Aet + Be2t + Ce3t − 2e−t.

(ii)

y′′′ − 3y′ + 2y = sin x.

First we find the complementary function by solving the homogeneous
equation

y′′′ − 3y′ + 2y = 0.

Trying y(x) = ekx gives the cubic equation for k,

k3 − 3k + 2 = 0.

Again we can see by guessing that k = 1 is a solution. Factorising
once more gives

k3 − 3k + 2 = (k − 1)(k2 + k − 2),

and so the other roots are the solutions of k2 + k − 2 = 0, which are
k = 1 and k = −2. So we have k = 1 a repeated root, and k = −2.
So the complementary function is

yc(x) = Aex + Bxex + Ce−2x.

For a particular integral we try yp(x) = D sinx+E cosx, for which

y′p(x) = D cosx− E sinx, y′′p(x) = −D sinx− E cosx,

and

y′′′p (x) = −D cosx + E sinx.
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So we have

y′′′p − 3y′p + 2y = (2D + 4E) sin x + (2E − 4D) cos x.

To obtain sinx on the right-hand side we need

2D + 4E = 1 and 2E − 4D = 0,

so D = 1/10 and E = 1/5, and so the solution is

y(x) = Aex + Bxex + Ce−2x +
sinx

10
+

cosx

5
.

(iii) First we try to solve the homogeneous equation

d4x

dt4
− 4

d3x

dt3
+ 8

d2x

dt2
− 8

dx

dt
+ 4x = 0

by trying x = ekt. We get a quartic equation for k,

k4 − 4k3 + 8k2 − 8k + 4 = 0. (S16.1)

If one root is 1 + i then another must be 1− i, and so

(k − 1− i)(k − 1 + i) = k2 − 2k + 2

must be a factor of (S16.1). So we can divide by this factor using
polynomial long division,

k2 −2k +2
−− −− −− −− −−

k2 − 2k + 2 ) k4 −4k3 +8k2 −8k +4
k4 −2k3 +2k2

−− −− −− −− −−
−2k3 +6k2 −8k +4
−2k3 +4k2 −4k

−− −− −− −− −−
2k2 −4k +4
2k2 −4k +4

−− −− −− −− −−
0.

So in fact the equation factorises into

(k2 − 2k + 2)2 = 0

and the roots are 1 + i twice, and 1− i twice. So the complementary
function is

Aet sin t + Bet cos t + Ctet sin t + Dtet cos t.
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Now to find the particular integral. Is the right-hand side a solution
of the homogeneous equation? Thankfully not, so we can just try a
sum of sin t and cos t, x(t) = A sin t + B cos t. Then

ẋ = A cos t−B sin t

ẍ = −A sin t−B cos t

x(3) = −A cos t + B sin t

x(4) = A sin t + B cos t.

Substituting in we want

A sin t + B cos t− 4(−A cos t + B sin t) + 8(−A sin t−B cos t)

−8(A cos t−B sin t) + 4(A sin t + B cos t) = sin t.

Tidying this up we want

(−3A + 4B) sin t− (4A + 3B) cos t = sin t

and so A = −3/25 and B = 4/25. So the particular integral is
(−3 sin t + 4 cos t)/25 and the general solution is

Aet sin t + Bet cos t + Ctet sin t + Dtet cos t +
4 cos t− 3 sin t

25
.

(iv) First we solve the homogeneous equation

d4x

dt4
− 5

d2x

dt2
+ 4x = 0

by trying x = ekt. Then we want

k4 − 5k2 + 4 = 0.

We can factor this,

(k2 − 4)(k2 − 1) = 0,

and so k = ±2, ±1. So the complementary function is

Ae2t + Be−2t + Cet + De−t.

Now to find the particular integral. Sadly, et is a solution of the
homogeneous equation, so we have to try x(t) = Atet. Then

ẋ = A(1+t)et ẍ = A(2+t)et d3x

dt3
= A(3+t)et d4x

dt4
= A(4+t)et,

and so we want

A(4 + t)et − 5A(2 + t)et + 4Atet = et
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or −6A = 1, i.e. A = −1/6. So a particular integral is −tet/6 and
the general solution is

Ae2t + Be−2t + Cet + De−t − tet

6
.

Exercise 16.2 The linear independence of three functions f1, f2, and f3 on
an interval I depends on the number of solutions of the equation

α1f1(t) + α2f2(t) + α3f3(t) = 0 for all t ∈ I.

By differentiating this equation once, and then once more, show that α1, α2,
and α3 satisfy the matrix equation




f1 f2 f3

df1/dt df2/dt df3/dt

d2f1/dt2 d2f2/dt2 d2f3/dt2







α1

α2

α3


 =




0
0
0


 .

Deduce that if W [f1, f2, f3](t), the Wronskian of f1, f2, and f3, defined
as

W [f1, f2, f3](t) =

∣∣∣∣∣∣

f1 f2 f3

df1/dt df2/dt df3/dt

d2f1/dt2 d2f2/dt2 d2f3/dt2

∣∣∣∣∣∣
is non-zero for any t ∈ I then f1, f2, and f3 are linearly independent.

We start with

α1f1(t) + α2f2(t) + α3f2(t) = 0 for all t ∈ I.

Differentiating once we obtain

α1ḟ1(t) + α2ḟ2(t) + α3ḟ3(t) = 0 for all t ∈ I,

and differentiating again we have

α1f̈1(t) + α2f̈2(t) + α3f̈3(t) = 0 for all t ∈ I.

Combining these three we obtain the matrix equation



f1(t) f2(t) f3(t)
df1/dt(t) df2/dt(t) df3/dt(t)

d2f1/dt2(t) d2f2/dt2(t) d2f3/dt2(t)







α1

α2

α3


 =




0
0
0


 , (S16.2)

which should hold for all t ∈ I.
If the determinant of the matrix on the left-hand side is non-zero for any

t ∈ I then we can choose this value of t and multiply by the inverse of the
matrix to show that α1 = α2 = α3 = 0, which implies that f1, f2, and f3

must be linearly independent on I.
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Exercise 16.3 Show that any three solutions of a third order linear differ-
ential equation are linearly independent on an interval I if and only if their
Wronskian is non-zero on I.

If W (t) 6= 0 for all t ∈ I then we know from the previous exercise that
the three solutions x1(t), x2(t), and x3(t) are linearly independent.

If W ≡ 0 then for some (and in fact for any) s ∈ I there is a non-trivial
solution (α1, α2, α3) of the matrix equation (S16.2) with t = s. Now,

x(t) = α1x1(t) + α2x2(t) + α3x3(t)

is a solution of (S16.3) that satisfies

x(s) = ẋ(s) = ẍ(s) = 0.

But we know one solution of (S16.3) that satisfies these initial conditions,
namely x(t) ≡ 0. Since the solutions are unique, it follows that we must
have

α1x1(t) + α2x2(t) + α3x3(t) ≡ 0,

and so x1, x2, and x3 are linearly dependent on I.

Exercise 16.4 Suppose that x1, x2, and x3 are three solutions of the third
order linear equation

d3x

dt3
+ p(t)

d2x

dt2
+ q(t)

dx

dt
+ r(t)x = 0, (S16.3)

all defined on some interval I. We now show that, just as for two solutions
of a second order linear equation,

dW

dt
= −p(t)W (S16.4)

(see Exercise 11.2). You will need various properties of determinants, which
you can prove by longhand (if you wish) in the next exercise.

(i) By differentiating the determinant form of the Wronskian, show that

Ẇ =

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

d3x1/dt3 d3x2/dt3 d3x3/dt3

∣∣∣∣∣∣
.

(You will need parts (i) and (ii) of the next exercise.)
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(ii) Substitute in for d3xj/dt3 using the differential equation (S16.3), and
hence show that

Ẇ = −p(t)

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣
,

i.e. that (S16.4) holds. (You will need parts (ii) and (iii) of the next
exercise.)

(iii) Solve equation (S16.4) to find an expression for W (t) involving an
integral, and deduce that either W (t) = 0 for all t ∈ I, or W (t) 6= 0
for all t ∈ I.

(iv) Deduce that any three solutions of a third order differential equation
are linearly independent if and only if their Wronskian is non-zero.

(i) Using part (i) from the next exercise, which tells us how to differen-
tiate determinants, we have

dW

dt
(t) =

∣∣∣∣∣∣

ẋ1 ẋ2 ẋ3

ẋ1 ẋ2 ẋ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣

+

∣∣∣∣∣∣

x1 x2 x3

ẍ1 ẍ2 ẍ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣
+

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

d3x1/dt3 d3x2/dt3 d3x3/dt3

∣∣∣∣∣∣
.

Now, if two rows in a determinant are proportional then the de-
terminant is zero [part (ii) of the next exercise]. In particular this is
true if two rows are equal, so the first two terms here vanish and we
have just

Ẇ (t) =

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

d3x1/dt3 d3x2/dt3 d3x3/dt3

∣∣∣∣∣∣
.

(ii) From the equation we know that

d3xj/dt3 = −p(t)ẍj − q(t)ẋj − r(t)xj ,

and substituting into the expression for Ẇ obtained above we have
∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

−pẍ1 − qẋ1 − rx1 −pẍ2 − qẋ2 − rx2 −pẍ3 − qẋ3 − rx3

∣∣∣∣∣∣
.
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Using part (iii) of the next exercise we can rewrite this as

Ẇ (t) = −p

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣
− q

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

ẋ1 ẋ2 ẋ2

∣∣∣∣∣∣
− r

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

x1 x2 x3

∣∣∣∣∣∣
.

Once again we can use the fact that if two rows are proportional then
the determinant is zero [part (ii) of the next exercise] to get rid of
the last two terms and end up with just

Ẇ (t) = −p(t)

∣∣∣∣∣∣

x1 x2 x3

ẋ1 ẋ2 ẋ3

ẍ1 ẍ2 ẍ3

∣∣∣∣∣∣
= −p(t)W (t),

since the determinant is precisely the definition of W [x1, x2, x3](t).
(iii) It follows from the equation

dW

dt
= −p(t)W

that

W (t) = W (s) exp
(
−

∫ t

s
p(t̃) dt̃

)
,

and so, since ez is never zero, either W (t) = 0 for all t ∈ I, or
W (t) 6= 0 for all t ∈ I (cf. Exercise 11.2).

Exercise 16.5 For the previous question you will need the following prop-
erties of determinants: you should be able to prove them in the 3 × 3 case
treated here by simple (if laborious) calculation, using the explicit expression
for the determinant of a 3× 3 matrix

∣∣∣∣∣∣

a b c

r s t

x y z

∣∣∣∣∣∣
= a(sz − ty)− b(rz − tx) + c(ry − sx).

(i)

d
dt

∣∣∣∣∣∣

a b c

r s t

x y z

∣∣∣∣∣∣
=

∣∣∣∣∣∣

ȧ ḃ ċ

r s t

x y z

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a b c

ṙ ṡ ṫ

x y z

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a b c

r s t

ẋ ẏ ż

∣∣∣∣∣∣

(i.e. differentiate one row at a time; this is essentially the product
rule),
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(ii) If any two rows are proportional then the determinant is zero: check
this for

∣∣∣∣∣∣

a b c

λa λb λc

x y z

∣∣∣∣∣∣
= 0,

(iii) Determinants depend linearly on their rows: show this for the case

∣∣∣∣∣∣

a b c

r s t

αx1 + βx2 αy1 + βy2 αz1 + βz2

∣∣∣∣∣∣

= α

∣∣∣∣∣∣

a b c

r s t

x1 y1 z1

∣∣∣∣∣∣
+ β

∣∣∣∣∣∣

a b c

r s t

x2 y2 z2

∣∣∣∣∣∣
.

(i) One way to show this result would be to use the explicit form of the
determinant, differentiate each term using the product rule, and then
recombine the results appropriately:

d
dt

∣∣∣∣∣∣

a b c

r s t

x y z

∣∣∣∣∣∣
=

d
dt

[a(sz − ty)− b(rz − tx) + c(ry − sx)]

= ȧ(sz − ty) + a(ṡz − ṫy) + a(sż − tẏ)

−ḃ(rz − tx)− b(ṙz − ṫx)− b(rż − tẋ)

+ċ(ry − sx) + c(ṙy − ṡx) + c(rẏ − sẋ)

= ȧ(sz − ty)− ḃ(rz − tx) + ċ(ry − sx)

+a(ṡz − ṫy)− b(ṙz − ṫx) + c(ṙy − ṡx)

+a(sż − tẏ)− b(rż − tẋ) + c(rẏ − sẋ)

=

∣∣∣∣∣∣

ȧ ḃ ċ

r s t

x y z

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a b c

ṙ ṡ ṫ

x y z

∣∣∣∣∣∣
+

∣∣∣∣∣∣

a b c

r s t

ẋ ẏ ż

∣∣∣∣∣∣
.

A quicker way is to note that each term in the expression for the
determinant involves one entry from each row. Thus, having differ-
entiated using the product rule, we obtain three terms which we could
group together according to which row has been differentiated, and
this will give the required expression.
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(ii) We have
∣∣∣∣∣∣

a b c

λa λb λc

x y z

∣∣∣∣∣∣
= a(λbz − λcy)− b(λaz − λcx) + c(λay − λbx)

= λ[abz − acy − abz + bcx + acy − bcx]

= 0.

(iii) Expanding the determinant we have
∣∣∣∣∣∣

a b c

r s t

αx1 + βx2 αy1 + βy2 αz1 + βz2

∣∣∣∣∣∣
= a(s[αz1 + βz2]− t[αy1 + βy2])− b(r[αz1 + βz2]− t[αx1 + βx2])

+c(r[αy1 + βy2]− s[αx1 + βx2])

= α[a(sz1 − ty1)− b(rz1 − tx1) + c(ry1 − sx1)]

+β[a(sz2 − ty2)− b(rz2 − tx2) + c(ry2 − sx2)]

= α

∣∣∣∣∣∣

a b c

r s t

x1 y1 z1

∣∣∣∣∣∣
+ β

∣∣∣∣∣∣

a b c

r s t

x2 y2 z2

∣∣∣∣∣∣
.
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Reduction of order

For further examples of the reduction of order method see also Exercises
18.1(vi), 18.1(vii), and 20.3.

Exercise 17.1 One solution of the equation

t2ÿ − (t2 + 2t)ẏ + (t + 2)y = 0

is y(t) = t. Use the reduction of order method to find a second solution, and
hence write down the general solution.

We try y = tu, and so

ẏ = u + tu̇ and ÿ = 2u̇ + tü.

Remembering that when we substitute into the equation the terms in which
u has not been differentiated will cancel1 we have

t2(tü + 2u̇)− (t2 + 2t)tu̇ = 0. (S17.1)

Simplifying this we have

t3ü− t3u̇ = 0,

and so

ü− u̇ = 0.

1 If you don’t remember this you will just have more algebra to do:

t2(tü + 2u̇)− (t2 + 2t)(u + tu̇) + (t + 2)tu = 0,

and so

t3ü + 2t2u̇− (t2 + 2t)u− (t3 + 2t2)u̇ + (t2 + 2t)u = 0;

the terms involving u now cancel and lead to (S17.1).

126
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Usually we would set v = u̇ to obtain a first order equation for v, but in this
case we can just try u(t) = ekt and obtain the auxiliary equation for k,

k2 − k = 0.

So k = 0 or k = 1, and we have

u(t) = A + Bet.

Therefore we have the general solution

y(t) = At + Btet;

the ‘new solution’ is y(t) = tet.

Exercise 17.2 One solution of

(x− 1)y′′ − xy′ + y = 0

that is valid for x > 1 is y(x) = ex. Find a second linearly independent
solution z(x), and check that the Wronskian of y(x) and z(x) is non-zero
for x > 1.

If we try y(x) = exu(x) then

y′(x) = exu(x) + exu′(x) and y′′(x) = exu + 2exu′ + exu′′,

and so, remembering that the terms in which u is not differentiated will
cancel, we have

(x− 1)[2exu′ + exu′′]− x[exu′] = 0.

Cancelling the ex gives

(x− 1)u′′ + (x− 2)u′ = 0.

Setting v = u we obtain a first order equation for v,

v′ +
x− 2
x− 1

v = 0.

We can solve this equation using the integrating factor

exp
(∫

x− 2
x− 1

dx

)
= exp

(∫
1− 1

x− 1
dx

)

= exp (x− ln |x− 1|)
=

ex

x− 1
,

since |x− 1| = x− 1 when x > 1.
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Multiplying both sides by this integrating factor we get

d
dt

[
ex

x− 1
v(x)

]
= 0,

and so
ex

x− 1
v(x) = A,

giving (recall that v(x) = u′(x))

u′(x) = Ae−x(x− 1).

Now we integrate this to give

u(x) = −Axe−x + B.

Since A is an arbitrary constant we can replace A by −A to give

y(x) = Ax + Bex.

In this case, the new solution is just y(x) = x.
The Wronskian of y1(x) = ex and y2(x) = x is

W [y1, y2](x) = y1y
′
2 − y2y

′
1 = ex − xex = (1− x)ex,

which is non-zero when x > 1.

Exercise 17.3 One solution of

(t cos t− sin t)ẍ + ẋt sin t− x sin t = 0

is x(t) = t. Find a second linearly independent solution.

With y = tu we have

ẏ = u + tu̇ and ÿ = 2u̇ + tü,

and substituting in gives

(t cos t− sin t)(2u̇ + tü) + t sin t(tu̇) = 0,

which after rearrangement is

(t2 cos t− t sin t)ü + (t2 sin t + 2t cos t− 2 sin t)u̇ = 0.

Setting v = u̇ we have the first order linear equation

(t2 cos t− t sin t)v̇ + (t2 sin t + 2t cos t− 2 sin t)v = 0.
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The integrating factor for this equation is

exp
(∫

t2 sin t + 2t cos t− 2 sin t

t2 cos t− t sin t
dt

)
= exp

(∫
t sin t

t cos t− sin t
+

2
t

)

= exp (− ln(t cos t− sin t) + 2 ln t)

=
t2

t cos t− sin t
.

We therefore have
d
dt

(
t2v

t cos t− sin t

)
= 0,

and so
t2v

t cos t− sin t
= c,

which gives

v =
du

dt
= c

t cos t− sin t

t2
.

This implies that

u(t) = c
sin t

t
,

and so

x(t) = tu(t) = c sin t,

and the second linearly independent solution is x(t) = sin t.

Exercise 17.4 One solution of

(t− t2)ẍ + (2− t2)ẋ + (2− t)x = 0

is x(t) = e−t. Find a second linearly independent solution.

We put x(t) = e−tu(t), and so

ẋ = −e−tu + e−tu̇ and ẍ = e−tu− 2e−tu̇ + e−tü.

Substituting into the equation we obtain

(t− t2)[e−tü− 2e−tu̇] + (2− t2)e−tu̇ = 0.

Cancelling the e−t terms and rearranging we have

(t− t2)ü + (t2 − 2t + 2)u̇ = 0.
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Setting v = u̇ we obtain a first order equation for v,

v̇ +
t2 − 2t + 2

t− t2
v = 0.

We can rewrite this as

v̇ +
(

2
t

+
1

1− t
− 1

)
v = 0,

and so the integrating factor is

exp
(∫

2
t

+
1

1− t
− 1 dt

)
= exp (2 ln t− ln(1− t)− t)

=
t2

1− t
e−t.

The equation for v therefore becomes

d
dt

(
vt2e−t

1− t

)
= 0,

and so

v =
du

dt
= c

[
et

t2
− et

t

]
,

which implies that

u(t) = −c
et

t
.

This gives a second solution x(t) = e−tu(t) = −c/t; a second linearly inde-
pendent solution is x(t) = 1/t.

Exercise 17.5 One solution of

y′′ − xy′ + y = 0

is y = x. Find a second linearly independent solution in the form of an
integral. Expanding the integrand in powers of x using the power series
form for ex,

ex =
∞∑

n=0

xn

n!
,

and assuming that the resulting expression can be integrated term-by-term
show that this second solution can be written as

y(x) = A

[
−1 +

∞∑

n=1

x2n

2n(2n− 1)n!

]
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(cf. Exercise 20.2(i)).

To find a second solution we put y(x) = xu(x), and so

y′(x) = u(x) + xu′(x) and y′′(x) = 2u′(x) + xu′′(x),

and so when we substitute into the original equation we obtain

2u′ + xu′′ − x2u′ = 0

which, with v = u′, gives

v′ +
(

2
x
− x

)
v = 0.

The integrating factor is

exp
(∫

2
x
− xdx

)
= exp(2 lnx− 1

2x2) = x2e−x2/2,

and so multiplying by this the equation for v becomes

d
dt

(
x2e−x2/2v(x)

)
= 0,

and so

u′(x) = v(x) = Ax−2ex2/2.

Therefore

u(x) = A

∫
x−2ex2/2 dx

and

y(x) = Ax

∫
x−2ex2/2 dx.

Using the power series expansion for ex,

ex =
∞∑

n=0

xn

n!

we have

y(x) = Ax

∫
x−2

( ∞∑

n=0

x2n

2nn!

)
dx

= Ax

∫
x−2 +

∞∑

n=1

x2n−2

2nn!
dx

= Ax

[
−x−1 +

∞∑

n=1

x2n−1

2n(2n− 1)n!

]
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= A

[
−1 +

∞∑

n=1

x2n

2n(2n− 1)n!

]
.

Exercise 17.6 One solution of

tan t
d2x

dt2
− 3

dx

dt
+ (tan t + 3 cot t)x = 0

is x(t) = sin t. Find a second linearly independent solution.

We try x(t) = u(t) sin t and then

ẋ = u̇ sin t + u cos t and ẍ = ü sin t + 2u̇ cos t− u sin t.

Substituting into the equation we obtain

tan t[ü sin t + 2u̇ cos t]− 3[u̇ sin t] = 0

which is just

ü sin t tan t− u̇ sin t = 0.

Setting v = u̇ gives

v̇ − v cot t = 0.

This can be solved using the integrating factor

exp
(
−

∫
cos t

sin t
dt

)
= exp(− ln sin t) = 1/ sin t,

so we have
d
dt

(v/ sin t) = 0,

which gives the solution

v(t) = c sin t.

Therefore u(t) = c cos t and x(t) = u(t) sin t = c sin t cos t = c sin 2t/2. So
we have shown that a second solution is x(t) = sin 2t.

Exercise 17.7 If we know one solution u(t) of the equation

d2x

dt2
+ p(t)

dx

dt
+ q(t)x = 0 (S17.2)

then the reduction of order method with x(t) = u(t)y(t), leads to the first
order linear equation

u(t)ż + [2u̇(t) + p(t)u(t)]z = 0.



Reduction of order 133

for z = ẏ (cf. (17.3). Show that

z(t) =
Ae−

∫
p(t) dt

u(t)2
,

and hence find the second linearly independent solution in the form of an
integral.

We start with

u(t)ż + [2u̇(t) + p(t)u(t)]z = 0.

Dividing by u(t) we obtain

ż +
[
2
u̇

u
+ p(t)

]
z = 0. (S17.3)

We can solve this equation using the integrating factor

exp
(∫

2
u̇

u
+ p(t) dt

)
= exp

(
2 ln u +

∫
p(t) dt

)

= u(t)2 exp
(∫

p(t) dt

)
.

Multiplying both sides of (S17.3) by the integrating factor the equation
becomes

d
dt

[
z(t)u(t)2 exp

(∫
p(t) dt

)]
= 0,

and so

z(t)u(t)2 exp
(∫

p(t) dt

)
= A,

which implies that

z(t) =
Ae−

∫
p(t) dt

u(t)2
. (S17.4)

Since ẏ = z and x(t) = u(t)y(t) we have

x(t) = u(t)
∫

Ae−
∫

p(t) dt

u(t)2
dt.

Exercise 17.8 Suppose that the two solutions of a second order linear dif-
ferential equation (S17.2) are u(t) and v(t). Use the result of the previous
exercise, to show that

d
dt

[
v(t)
u(t)

]
=

Ae−
∫

p(t) dt

u(t)2
,
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and hence that

p(t) = −uv̈ − vü

uv̇ − vu̇
.

Find the function q(t) such that u(t) is a solution of

d2x

dt2
− uv̈ − vü

uv̇ − vu̇

dx

dt
+ q(t)x = 0

(rearrange the equation for q(t) and substitute x(t) = u(t)), and hence show
that the second order linear differential equation with solutions u(t) and v(t)
can be written as

(uv̇ − vu̇)
d2x

dt2
− (uv̈ − vü)

dx

dt
+ (u̇v̈ − üv̇)x = 0.

This produced Exercises 17.1–17.6 above.

If we know u(t) and use the reduction of order method to find v(t) then
we set x(t) = u(t)y(t); if we want to end up with x(t) = v(t) then we must
find y(t) = v(t)/u(t). From the previous Exercise, z(t) = dy/dt is given by
(S17.4), and so

d
dt

[
v(t)
u(t)

]
=

Ae−
∫

p(t) dt

u(t)2
.

Differentiating the left-hand side we have

uv̇ − vu̇

u2
=

Ae−
∫

p(t) dt

u(t)2
,

and so

Ae−
∫

p(t) dt = uv̇ − vu̇.

Differentiating this we obtain

−Ap(t)e−
∫

p(t) dt = u̇v̇ + uv̈ − v̇u̇− vü = uv̈ − vü,

and so we have

p(t) = −uv̈ − vü

uv̇ − vu̇
.

We now know p(t), so the equation satisfied by u(t) and v(t) is of the form

d2x

dt2
− uv̈ − vü

uv̇ − vu̇

dx

dt
+ q(t)x = 0.

This implies that

q(t) =
1
x

(
uv̈ − vü

uv̇ − vu̇
ẋ− ẍ

)
,
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and since u(t) is a solution we can put x(t) = u(t) to find

q(t) =
1
u

(
uv̈ − vü

uv̇ − vu̇
u̇− ü

)
=

u̇v̈ − üv̇

uv̇ − vu̇
.

The equation is therefore

d2x

dt2
− uv̈ − vü

uv̇ − vu̇

dx

dt
+

u̇v̈ − üv̇

uv̇ − vu̇
x = 0,

and multiplying up by uv̇ − vu̇ yields

(uv̇ − vu̇)
d2x

dt2
− (uv̈ − vü)

dx

dt
+ (u̇v̈ − üv̇)x = 0.

Exercise 17.9 Using the result of the previous exercise, find a second order
linear differential equation whose solutions are et and cos t. Check that both
of these two functions satisfy the resulting equation.

With u(t) = et and v(t) = cos t we have

u(t) = u̇(t) = ü(t) = et

and

v(t) = cos t, v̇(t) = − sin t, and v̈(t) = − cos t.

Then the linear equation with u(t) and v(t) as solutions is

(−et sin t− et cos t)ẍ− (−et cos t− et cos t)ẋ + (−et cos t + et sin t)x = 0.

Dividing by et we obtain

(sin t + cos t)
d2x

dt2
− 2 cos t

dx

dt
+ (cos t− sin t)x = 0.

First we check that x(t) = et is a solution:

(sin t + cos t)et − 2et cos t + (cos t− sin t)et = 0,

as required. For x(t) = cos t we obtain

−(sin t + cos t) cos t + 2 cos t sin t + (cos t− sin t) cos t

= − sin t cos t− cos2 t + 2 cos t sin t + cos2 t− sin t cos t = 0,

verifying that this is also a solution.
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The variation of constants formula

Exercise 18.1 Use the method of variation of constants to find a particular
integral for the following equations:

(i) y′′ − y′ − 6y = ex (you could use the method of undetermined coeffi-
cients for this example, which would be much more sensible);

(ii) ẍ− x = t−1 (you can leave the answer as an integral);
(iii) y′′ + 4y = cot 2x. Hint:

∫
cosecxdx = ln |cosecx− cotx|;

(iv) t2ẍ− 2x = t3 (to find the solutions of the homogeneous equation try
x = tk, see next chapter);

(v) ẍ− 4ẋ = tan t (leave your answer as an integral);
(vi)

(tan2 x− 1)
d2y

dx2
− 4 tan3 x

dy

dx
+ 2y sec4 x = (tan2 x− 1)(1− 2 sin2 x),

one solution of the homogeneous equation is y(x) = sec2 x, and the
reduction of order method, which is somewhat painful, can be used
(if you wish) to show that a second linearly independent solution is
tanx. You should be able to find a particular integral explicitly for
this example.

(vii)

(1 + sin2 t)ẍ− (2 tan t + sin t cos t)ẋ + (1− 2 tan2 t)x = f(t),

one solution of the homogeneous equation is tan t, and again the re-
duction of order method will provide a second solution, cos t, after
some effort. You should leave your final answer as an integral.

(i)

y′′ − y′ − 6y = ex.

136
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To find solutions of the homogeneous equation we try y(x) = ekx and
obtain the auxiliary equation

k2 − k − 6 = 0,

so k = −2 or k = 3. So two linearly independent solutions are e−2x

and e3x. So we look for a particular integral of the form

y(x) = u(x)e−2x + v(x)e3x.

Differentiating once we have

y′(x) = u′(x)e−2x − 2e−2xu(x) + v′(x)e3x + 3v(x)e3x.

We choose

u′(x)e−2x + v′(x)e3x = 0,

so that

y′(x) = −2e−2xu(x) + 3v(x)e3x

and

y′′(x) = 4e−2xu(x)− 2e−2xu′(x) + 9v(x)e3x + 3v′(x)e3x = 0.

Substituting for y, y′, and y′′ into the equation we have

4e−2xu(x)− 2e−2xu′(x) + 9v(x)e3x + 3v′(x)e3x

−[−2e−2xu(x) + 3v(x)e3x]− 6[u(x)e−2x + v(x)e3x] = ex,

which simplifies (any terms in which u(x) and v(x) are not differenti-
ated will cancel, since e−2x and e3x are solutions of the homogeneous
equation) to give

−2e−2xu′(x) + 3e3xv′(x) = ex.

So we have two equations for u′(x) and v′(x), which are

e−2xu′(x) + e3xv′(x) = 0

−2e−2xu′(x) + 3e3xv′(x) = ex.

The easiest way to solve these for u′ and v′ is to write them as a
matrix equation

(
e−2x e3x

−2e−2x 3e3x

)(
u′

v′

)
=

(
0
ex

)
,
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and multiply both sides by the inverse of the matrix on the left-hand
side,

(
u′

v′

)
=

1
5ex

(
3e3x −e3x

2e−2x e−2x

)(
0
ex

)
,

which gives

u′(x) = −e3x

5
and v′(x) =

e−2x

5
.

Therefore

u(x) = −e3x

15
and v′(x) = −e−2x

10
.

This gives the particular integral

y(x) = u(x)e−2x + v(x)e3x = − 1
15

ex − 1
10

ex = −ex

6
.

Of course, it would be much easier to find this by trying y(x) = Aex

to start with.
(ii)

ẍ− x = t−1.

Two linearly independent solutions of the homogeneous equation ẍ =
x are x = et and x = e−t (try x = ekt). So for a particular integral
we try

x(t) = u(t)et + v(t)e−t.

Then

ẋ = u̇et + uet + v̇e−t − ve−t.

We introduce the condition

u̇et + v̇e−t = 0

so that no second derivatives of u and v occur in ẍ:

ẍ = u̇et + uet − v̇e−t + ve−t.

Substituting for ẍ and x into the equation we get, after some cancel-
lations,

u̇et − v̇e−t =
1
t
.
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Solving the matrix equation
(

et e−t

et −e−t

)(
u̇

v̇

)
=

(
0

t−1

)

we obtain (
u̇

v̇

)
=

1
−2

( −e−t −e−t

−et et

)(
0

t−1

)

and so

u̇ =
e−t

2t
and v̇ = − et

2t
.

Therefore we have

x(t) = −et

∫
e−t

2t
dt + e−t

∫
et

2t
dt.

(iii)

y′′ + 4y = cot 2x.

Two linearly independent solutions of the homogeneous equation y′′+
4y = 0 are sin 2x and cos 2x. So we look for a particular integral in
the form

y(x) = u(x) sin 2x + v(x) cos 2x.

Differentiating gives

y′ = u′ sin 2x + v′ cos 2x + 2u cos 2x− 2v sin 2x.

We impose the condition

u′ sin 2x + v′ cos 2x = 0

so that

y′ = 2u cos 2x− 2v sin 2x

and

y′′ = −4u cos 2x− 4v sin 2x + 2u′ cos 2x− 2v′ sin 2x.

When we substitute into the equation all the terms in which u and v

have not been differentiated will cancel, and we will be left with

2u′ cos 2x− 2v′ sin 2x = cot 2x.

Solving the matrix equation
(

sin 2x cos 2x

2 cos 2x −2 sin 2x

)(
u′

v′

)
=

(
0

cot 2x

)
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for u′ and v′ we obtain
(

u′

v′

)
=

1
−2

( −2 sin 2x − cos 2x

−2 cos 2x sin 2x

)(
0

cot 2x

)
,

and so

u′(x) =
cos2 2x

2 sin 2x
=

1
2 sin 2x

− sin 2x

2
and v′(x) = −cos 2x

2
.

So we have

u(x) =
ln(cosec 2x− cot 2x)

4
+

cos 2x

4
and v(x) = −sin 2x

4
,

which gives the particular integral

y(x) =
ln(cosec 2x− cot 2x) sin 2x

4
+

cos 2x sin 2x

4
− sin 2x cos 2x

4

=
ln(cosec 2x− cot 2x) sin 2x

4
.

(iv)

t2ẍ− 2x = t3.

Following the hint, we try x = tk to find solutions of the homogeneous
equation t2ẍ− 2x = 0. This guess gives

ẋ = ktk−1 and ẍ = k(k − 1)tk−2,

and so we want

k(k − 1)tk − 2tk = 0 i.e.k2 − k − 2 = 0,

cancelling the factor of tk. There are two solutions of this quadratic
equation, k = −1 and k = 2, so we obtain two linearly independent
solutions x(t) = t−1 and x(t) = t2.

We look for a particular integral of the form

x(t) =
u(t)

t
+ t2v(t).

Differentiating we have

ẋ(t) =
u̇

t
+ t2v̇ − u

t2
+ 2tv.

After imposing the condition

u̇

t
+ t2v̇ = 0
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we obtain

ẋ = − u

t2
+ 2tv and ẍ =

2u

t3
− u̇

t2
+ 2v + 2tv̇.

Substituting in, and bearing in mind that all the terms in which u

and v have not been differentiated will cancel, we obtain

t2
[
− u̇

t2
+ 2tv̇

]
= t3 or − u̇ + 2t3v̇ = t3.

Solving (
t−1 t2

−1 2t3

)(
u̇

v̇

)
=

(
0
t3

)

by multiplying by the inverse of the matrix on the left-hand side,
(

u̇

v̇

)
=

1
3t2

(
2t3 −t2

1 t−1

)(
0
t3

)
,

we obtain

u̇ = − t3

3
and v̇ =

1
3
,

which implies that

u(t) = − t4

12
and v(t) =

t

3
.

This yields the particular integral

x(t) = − t3

12
+

t3

3
=

t3

4
.

[Again this would be much quicker with the ‘guess’ x(t) = At3.]
(v)

ẍ− 4x = tan t.

The homogeneous equation has solutions e2t and e−2t, so we try

x(t) = e2tu(t) + e−2tv(t).

Differentiating gives

ẋ = 2e2tu(t)− 2e−2tv(t) + e2tu̇ + e−2tv̇.

We set

e2tu̇ + e−2tv̇ = 0
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and then

ẋ = 2e2tu− 2e−2tu and ẍ = 4e2tu + 2e2tu̇ + 4e−2tv − 2e−2tv̇.

Substituting for x and ẍ into the equation gives

2e2tu̇− 2e−2tv̇ = tan t.

We can now solve the simultaneous equations
(

e2t e−2t

2e2t −2e−2t

) (
u̇

v̇

)
=

(
0

tan t

)

for u̇ and v̇,
(

u̇

v̇

)
=

1
−4

( −2e−2t −e−2t

−2e2t e2t

)(
0

tan t

)
,

giving

u̇ =
e−2t tan t

4
and v̇ = −e2t tan t

4
.

The best we can do is to write the particular integral in the form

x(t) = e2t

∫
e−2t tan t

4
dt− e−2t

∫
e2t tan t

4
dt.

For parts (vi) and (vii) we will give here the reduction of order calculations
that yield the second solution, but in both cases they are quite unpleasant.

(vi)

(tan2 x− 1)
d2y

dx2
− 4 tan3 x

dy

dx
+ 2y sec4 x = (tan2 x− 1)(1− 2 sin2 x).

Our first task is to find a second solution of the homogeneous equation

(tan2 x− 1)
d2y

dx2
− 4 tan3 x

dy

dx
+ 2y sec4 x = 0 (S18.1)

given that one solution is sec2 x. To do this we use the reduction of
order method, trying y(x) = u(x) sec2 x. For this we have

y′(x) = u′(x) sec2 x + 2u(x) sec2 x tanx

and

y′′(x) = u′′(x) sec2 x+4u′(x) sec2 x tanx+2u(x)[2 sec2 x tan2 x+sec4 x].



The variation of constants formula 143

When we substitute these expressions into (S18.1) terms in which
u(x) is not differentiated will cancel and we obtain

(tan2 x− 1)(u′′ sec2 x + 4u′ sec2 x tanx)− 4 tan3 x(u′ sec2 x) = 0.

Putting v = u′ we obtain a first order equation for v,

v′ + v

[
4 tanx− 4 tan3 x

tan2 x− 1

]
= 0.

To solve this we use an integrating factor

exp
(∫

4 tanx− 4 tan3 x

tan2 x− 1
dx

)
.

One of these integrals is somewhat tricky,

I =
∫

4 tan3 x

tan2 x− 1
dx.

If we substitute z = tanx then dz = sec2 xdx. Since sec2 x = 1 +
tan2 x = 1 + z2 we have

I =
∫

4z3

(z2 − 1)(z2 + 1)
dz

=
∫

2z

z2 − 1
+

2z

z2 + 1
dz

= ln(z2 − 1) + ln(z2 + 1)

= ln(z4 − 1),

and so

I = ln(tan4 x− 1).

So we use the integrating factor

exp
(−4 ln(cosx)− ln(tan4 x− 1)

)
=

1
cos2 x(tan4 x− 1)

,

so that
d
dt

(
v

cos4 x(tan4 x− 1)

)
= 0,

which implies that

v(x) = C(sin4 x− cos4 x)

= C[(1− cos2 x) sin2 x− (1− sin2 x) cos2 x]

= C[sin2 x− cos2 x]

= C cos 2x,
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and so

u(x) = (C/2) sin 2x = C sinx cosx.

The second solution is therefore

y(x) = sec2 x sinx cosx = tanx.

In order to apply the variation of constants method we now try

y(x) = u(x) sec2 x + v(x) tanx.

Taking the derivative we have

y′(x) = u′(x) sec2 x + v′(x) tan x + 2u(x) sec2 x tan x + v(x) sec2 x.

We impose the condition

u′(x) sec2 x + v′(x) tan x = 0

and so obtain

y′(x) = 2u(x) sec2 x tanx + v(x) sec2 x

and

y′′(x) = 2u′(x) sec2 x tanx + v′(x) sec2 x

+[(4 sec2 x tan2 x + sec4 x)u(x) + 2v(x) sec2 x tanx].

Substituting these into the original equation we obtain

(tan2 x− 1)[2u′(x) sec2 x tanx + v′(x) sec2 x]

= (tan2 x− 1)(1− 2 sin2 x),

and so

2u′(x) sec2 x tan x + v′(x) sec2 x = 1− 2 sin2 x = cos2 x− sin2 x.

Solving the equation
(

sec2 x tanx

2 sec2 x tanx sec2 x

)(
u′

v′

)
=

(
0

cos2 x− sin2 x

)

for u′ and v′ we obtain
(

u′

v′

)
=

1
sec2 x(1− tan2 x)

(
sec2 x − tanx

−2 sec2 x tanx sec2 x

)(
0

cos2 x− sin2 x

)
,

noting that the determinant

sec4 x− 2 sec2 x tan2 x = sec2 x(sec2 x− tan2 x) = sec2 x(1− tan2 x).
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This gives

u′ =
− tanx(cos2 x− sin2 x)

sec2(1− tan2 x)
and v′ =

cos2 x− sin2 x

1− tan2 x
,

which simplify:

u′ = − sinx cos3 x and v′(x) = cos2 x =
1 + cos 2x

2
.

So

u(x) =
cos4 x

4
and v(x) =

x

2
+

sin 2x

4
.

This gives the particular integral

y(x) =
cos2 x

4
+

x tanx

2
+

sin2 x

2

=
1
4

+
x tanx

2
+

sin2 x

4
.

(vii)

(1 + sin2 t)ẍ− (2 tan t + sin t cos t)ẋ + (1− 2 tan2 t)x = f(t).

The first task is to find a second linearly independent solution of
the homogeneous problem

(1 + sin2 t)ẍ− (2 tan t + sin t cos t)ẋ + (1− 2 tan2 t)x = 0,

given that one solution is tan t. We use the reduction of order method,
trying x(t) = y(t) tan t, so that

ẋ = y sec2 t+ ẏ tan t and ẍ = 2y sec2 t tan t+2ẏ sec2 t+ ÿ tan t.

Substituting into the equation we obtain

(1 + sin2 t)[2ẏ sec2 t + ÿ tan t]− (2 tan t + sin t cos t)[ẏ tan t] = 0,

or, with z = ẏ,

ż + z

(
2 sec2 t

tan t
− 2 tan t + sin t cos t

1 + sin2 t

)
= 0.

The integrating factor is given by

exp
(∫

2 sec2 t

tan t
− 2 tan t + sin t cos t

1 + sin2 t
dt

)
.

To calculate the integral

I =
∫

2 tan t + sin t cos t

1 + sin2 t
dt
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make the substitution s = sin t. Then ds = cos t dt, and

I =
∫ 2s

1−s2 + s

1 + s2
ds =

∫
3s− s3

1− s4
ds

=
∫

s

1− s2
+

2s

1 + s2
ds

= −1
2 ln(1− s2) + ln(1 + s2),

and so

I = ln

(
1 + sin2 t√
1− sin2 t

)
= ln

(
1 + sin2 t

cos t

)
.

So the integrating factor is

exp
[
2 ln(tan t)− ln

(
1 + sin2 t

cos t

)]
=

sin t tan t

1 + sin2 t

and we have
d
dt

[
z(t) sin t tan t

1 + sin2 t

]
= 0.

Therefore

ẏ = z = C
1 + sin2 t

sin t tan t
= C

[
cos t

sin2 t
+ cos t

]
,

which implies that

y(t) = C

[
− 1

sin t
+ sin t

]
= −C

cos2 t

sin t
,

and so the second solution is

x(t) = y(t) tan t = cos t.

To use the variation of constant formula we look for a particular
integral of the form

x(t) = u(t) cos t + v(t) tan t.

Differentiating gives

ẋ = u̇ cos t + v̇ tan t− u sin t + v sec2 t.

We set

u̇ cos t + v̇ tan t = 0,

and then

ẋ = −u sin t + v sec2 t



The variation of constants formula 147

and

ẍ = −u̇ sin t + v̇ sec2 t− u cos t + 2v sec2 t tan t.

Substituting into the original equation gives

(1 + sin2 t)(−u̇ sin t + v̇ sec2 t) = f(t).

Solving
(

cos t tan t

− sin t sec2 t

)(
u̇

v̇

)
=

(
0

f(t)/(1 + sin2 t)

)

for u̇ and v̇ gives
(

u̇

v̇

)
=

1
cos t sec2 t− sin t tan t

(
sec2 t − tan t

sin t cos t

)(
0

f(t)/(1 + sin2 t)

)
,

which is

u̇ = − f(t) sin t

(1 + sin2 t)2
and v̇ =

f(t) cos2 t

(1 + sin2 t)2
.

A particular integral is

x(t) = tan t

∫
f(t) cos2 t

(1 + sin2 t)2
dt− cos t

∫
f(t) sin t

(1 + sin2 t)2
dt.
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Cauchy-Euler equations

Exercise 19.1 Find the general solution of the following equations, and also
the particular solution satisfying the two specified conditions.

(i) x2y′′ − 4xy′ + 6y = 0, y(1) = 0 and y′(1) = 1;
(ii) 4x2y′′ + y = 0, y(1) = 1 and y′(1) = 0;
(iii) t2ẍ− 5tẋ + 10x = 0; x(1) = 2 and ẋ(1) = 1;
(iv) t2ẍ + tẋ− x = 0, x(1) = ẋ(1) = 1;
(v) x2z′′ + 3xz′ + 4z = 0, z(1) = 0 and z′(1) = 5;
(vi) x2y′′ − xy′ − 3y = 0, y(1) = 1 and y′(1) = −1;
(vii) 4t2ẍ + 8tẋ + 5x = 0, x(1) = 2 and ẋ(1) = 0;
(viii) x2y′′ − 5xy′ + 5y = 0, y(1) = −2 and y′(1) = 1;
(ix) 3x2z′′ + 5xz′ − z = 0, z(1) = 3 and z′(1) = −1; and
(x) t2ẍ + 3tẋ + 13x = 0, x(1) = −1 and ẋ(1) = 2.

(i)

x2y′′ − 4xy′ + 6y = 0 with y(1) = 0 and y′(1) = 1.

We try y = xk, and so y′ = kxk−1 and y′′ = k(k−1)xk−2. Substituting
in gives

k(k − 1)xk − 4kxk + 6xk.

Cancelling xk we obtain

k2 − 5k + 6 = 0,

with roots k = 2 and k = 3. So the general solution is

y(x) = Ax2 + Bx3.

Since y′(x) = 2Ax + 3Bx3 to fit the initial conditions we want

A + B = 0 and 2A + 3B = 1,

148



Cauchy-Euler equations 149

so A = −1 and B = 1, giving the solution

y(x) = x3 − x2.

(ii)

4x2y′′ + y = 0 with y(1) = 1 and y′(1) = 0.

Trying y = xk gives the indicial equation

4k(k − 1) + 1 = 0 ⇒ 4k2 − 4k + 1 = 0

which has a repeated root k = 1/2. So the general solution is

y(x) = Ax1/2 + Bx1/2 ln x.

We have

y′(x) =
A

2x1/2
+

B ln x

2x1/2
+ Bx−1/2,

and so to fit the initial conditions we require

y(1) = A = 1 and y′(1) = 1
2A + B = 0,

so A = 1 and B = −1
2 , so the solution is

y(x) = x1/2 + 1
2x1/2 ln x.

(iii)

t2ẍ− 5tẋ + 10x with x(1) = 2 and ẋ(1) = 1.

With x(t) = tk we obtain

k(k − 1)− 5k + 10 = 0 ⇒ k2 − 6k + 10 = 0,

with roots k = 3± i. So the general solution is

x(t) = t3[A cos(ln t) + B sin(ln t)].

The derivative is

ẋ(t) = t2[(3A + B) cos(ln t) + (3B −A) sin(ln t)],

and so to fit the initial conditions we require

x(1) = A = 2 and ẋ(1) = 3A + B = 1,

i.e. A = 2 and B = −5, so the solution is

x(t) = t3[2 cos(ln t)− 5 sin(ln t)].
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(iv)

t2ẍ + tẋ− x = 0 with x(1) = ẋ(1) = 1.

We try x(t) = tk and so

k(k − 1) + k − 1 = 0 ⇒ k2 − 1 = 0,

which gives k = −1 or k = 1 and so the general solution is

x(t) =
A

t
+ Bt.

The derivative is given by ẋ = −At−2 + B, and so to fit the initial
conditions we want

A + B = 1 and B −A = 1,

i.e. A = 0 and B = 1, giving

x(t) = t.

(v)

x2z′′ + 3xz′ + 4z = 0 with z(1) = 0 and z′(1) = 5.

Trying z = xk we obtain

k(k − 1) + 3k + 4 = 0 ⇒ k2 + 2k + 4 = 0

with solutions k = −1±√3i. So the general solution is

z(x) =
A cos(

√
3 lnx) + B sin(

√
3 ln x)

x
.

We have

z′(x) =
(
√

3B −A) cos(
√

3 ln x)− (B +
√

3A) sin(
√

3 ln x)
x2

.

To fit the initial conditions we take

z(1) = A = 0 and z′(1) =
√

3B −A = 5,

so A = 0, B = 5/
√

3, and the solution is

z(x) =
5 sin(

√
3 ln x)√

3x
.
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(vi)

x2y′′ − xy′ − 3y = 0 with y(1) = 1 and y′(1) = −1.

If we try y = xk we obtain

k(k − 1)− k − 3 = 0 ⇒ k2 − 2k − 3 = 0

with roots k = −1 and k = 3. So the general solution is

y(x) =
A

x
+ Bx3.

We have y′(x) = −Ax−2 +3Bx2, so to satisfy the initial conditions
we need

y(1) = A + B = 1 and y′(1) = −A + 3B = −1,

so B = 0 and A = 1, giving the solution

y(x) =
1
x

.

(vii)

4t2ẍ + 8tẋ + 5x = 0 with x(1) = 2 and ẋ(1) = 0.

We try x(t) = tk and then

4k(k − 1) + 8k + 5 = 0 ⇒ 4k2 + 4k + 5 = 0,

which has solutions k = −1
2 ± i. The general solution is therefore

x(t) =
A cos(ln t) + B sin(ln t)√

t
.

Differentiating gives

ẋ(t) =
(B − 1

2A) cos(ln t)− (A + 1
2B) sin(ln t)

t3/2
,

so in order to satisfy the initial conditions we want

x(1) = A = 2 and ẋ(1) = B − 1
2A = 0,

so A = 2, B = 1, and the solution is

x(t) =
2 cos(ln t) + sin(ln t)√

t
.
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(viii)

x2y′′ − 5xy′ + 5y = 0 with y(1) = −2 and y′(1) = 1.

Setting y(x) = xk we obtain

k(k − 1)− 5k + 5 = 0 ⇒ k2 − 6k + 5 = 0

which has roots k = 1 and k = 5 so the general solution is

y(x) = Ax + Bx5.

We have y′(x) = A + 5Bx4, and so to obtain the correct values at
x = 1 we want

y(1) = A + B = −2 and y′(1) = A + 5B = 1,

which implies that B = 3/4 and A = −11/4, so the solution is

y(x) =
3x5 − 11x

4
.

(ix)

3x2z′′ + 5xz′ − z = 0 with z(1) = 3 and z′(1) = −1.

We try z(x) = xk and then

3k(k − 1) + 5k − 1 = 0 ⇒ 3k2 + 2k − 1 = 0

which implies that k = 1/3 or k = −1. The general solution is
therefore

z(x) = Ax1/3 +
B

x
.

We have z′(x) = Ax−2/3/3−Bx−2, and so to fit the initial condi-
tions we want

z(1) = A + B = 3 and z′(1) =
A

3
−B = −1,

so A = B = 3/2, and the solution is

z(x) =
3
2

(
x1/3 +

1
x

)
.

(x)

t2ẍ + 3tẋ + 13x = 0 with x(1) = −1 and ẋ(1) = 2.

Trying x(t) = tk we obtain

k(k − 1) + 3k + 13 = 0 ⇒ k2 + 2k + 13 = 0,
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which has roots k = −1± 2
√

3i. So the general solution is

x(t) =
A cos(2

√
3 ln t) + B sin(2

√
3 ln t)

t
.

The derivative is given by

ẋ(t) =
(2
√

3B −A) cos(2
√

3 ln t)− (B + 2
√

3A) sin(2
√

3 ln t)
t2

,

and so to fit the initial conditions we take

x(1) = A = −1 and ẋ(1) = 2
√

3B −A = 2,

which gives A = −1, B =
√

3/2, and the solution

x(t) =
√

3 sin(2
√

3 ln t)− 2 cos(2
√

3 ln t)
2t

.

Exercise 19.2 If x = ez then

d
dx

= e−z d
dz

.

Show that
d2y

dx2
= e−2z

(
d2y

dz2
− dy

dz

)
,

and hence that substituting x = ez in

ax2 d2y

dx2
+ bx

dy

dx
+ cy = 0 (S19.1)

yields the linear equation

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = 0. (S19.2)

By solving (S19.2) find the solution of (S19.1) when the auxiliary equation

ak2 + (b− a)k + c = 0

has

(i) two distinct real roots k1 and k2;
(ii) a repeated real root k; and
(iii) a complex conjugate pair of roots ρ± iω.

When x = ez we have
d
dx

= e−z d
dz

,
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so
dy

dx
= e−z dy

dz

and

d2y

dx2
=

d
dx

[
e−z dy

dz

]

= e−z d
dz

[
e−z dy

dz

]

= e−z

[
−e−z dy

dz
+ e−z d2y

dz2

]

= e−2z

[
d2y

dz2
− dy

dz

]
.

If we substitute x = ez in

ax2 d2y

dx2
+ bx

dy

dx
+ cy = 0

then we obtain

ae2ze−2z

[
d2y

dz2
− dy

dz

]
+ beze−z dy

dz
+ cy = 0,

which is

a
d2y

dz2
+ (b− a)

dy

dz
+ cy = 0.

We try y = ekz and obtain the auxiliary equation

ak2 + (b− a)k + c = 0.

(i) When this equation has two distinct roots k1 and k2 we have

y = Aek1z + Bek2z = Axk1 + Bxk2 ,

since ez = x;
(ii) when there is a repeated root k we have

y = Aekz + Bzekz = Axk + Bxk lnx,

since z = lnx; and finally
(iii) when k = ρ± iω we have

y = eρz(A cosωz + B sinωz) = xρ[A cos(ω ln x) + B sin(ω lnx)].
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Series solutions of second order linear equations

You may find the following two identities useful for these exercises:

2 · 4 · 6 · · · 2n = 2nn!

and

1 · 3 · 5 · · · (2n− 1) =
(2n)!
2nn!

.

Exercise 20.1 Legendre’s equation is

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0. (S20.1)

If y(x) is given by a power series,

y(x) =
∞∑

n=0

anxn,

find the recurrence relation satisfied by the coefficients an. Show that if l is
a positive integer then there is a solution given by a power series that has
only a finite number of terms, i.e. a polynomial. For each value l = 1, 2, 3,
and 4 find the polynomial solution that has y(1) = 1 (these are the ‘Legendre
polynomials’ Pl(x)).

We will try to find a solution of Legendre’s equation

(1− x2)y′′ − 2xy′ + l(l + 1)y = 0 (S20.2)

given as a power series in x,

y(x) =
∞∑

n=0

anxn.
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Assuming that we can differentiate term-by-term we have

y′(x) =
∞∑

n=1

nanxn−1,

and

y′′(x) =
∞∑

n=2

n(n− 1)anxn−2.

Substituting in to the original equation we obtain

(1− x2)
∞∑

n=2

n(n− 1)anxn−2 − 2x

∞∑

n=1

nanxn−1 + l(l + 1)
∞∑

n=0

anxn = 0,

and so
∞∑

n=2

n(n− 1)an[xn−2 − xn]− 2
∞∑

n=1

nanxn + l(l + 1)
∞∑

n=0

anxn = 0.

Relabelling the sums so that the powers are all xn we obtain
∞∑

n=0

[(n+1)(n+2)an+2 + l(l +1)an]xn−
∞∑

n=2

n(n− 1)anxn− 2
∞∑

n=1

nanxn = 0.

The constant (coefficient of x0) is

2a2 + l(l + 1)a0 = 0 ⇒ a2 = − l(l + 1)
2

a0, (S20.3)

and the coefficient of x (when n = 1) is

6a3 + l(l + 1)a1 − 2a1 = 0 ⇒ a3 =
2− l(l + 1)

6
a1. (S20.4)

For n ≥ 2 we have non-zero coefficients of xn from each term in the series,
which we can group together to give

(n + 1)(n + 2)an+2 − n(n + 1)an + l(l + 1)an = 0,

i.e.

an+2 = − l(l + 1)− n(n + 1)
(n + 1)(n + 2)

an

= −(l − n)(l + n + 1)
(n + 1)(n + 2)

an.

Now suppose that l is a positive integer. If it is odd then we choose a0 = 0,
which implies that a2 = 0 (from (S20.3)), and then the recurrence relation
shows that an = 0 for all even n. With a non-zero choice of a1, (S20.4) then



Series solutions of second order linear equations 157

gives a3: if l = 1 we have a3 = 0, and then the recurrence relation will give
an = 0 for all odd n.

If l > 1 then we use the recurrence relation to find an for each odd n,
until

al+2 = −(l − l)(2l + 1)
(l + 1)(l + 2)

al,

which implies that al+2 = 0. It then follows that an = 0 for all n ≥ l + 2.
So the power series is the sum of a finite number of terms, i.e. a polynomial.
The same argument works if l is an even integer, where we now take a0 6= 0
and a1 = 0.

If l = 1 we have

P1(x) = x.

For l = 2 we choose a1 = 0 and obtain

y(x) = a0[1− 3x2];

with a0 = −1/2 we obtain

P2(x) =
1
2
(3x2 − 1).

For l = 3 we set a0 = 0 and end up with

y(x) = a1

[
x− 5

3
x3

]
;

to ensure that P3(1) = 1 we choose a1 = −3/2 to give

P3(x) =
1
2
(5x3 − 3x).

Finally, when l = 4 we set a1 = 0 to obtain the polynomial solution

y(x) = a0

[
1− 10x2 +

35
3

x4

]
;

we choose a0 = 3/8 so that y(1) = 1 and have

P4(x) =
1
8
(35x4 − 30x2 + 3).

Exercise 20.2 Find two independent power series solutions of the following
equations, and use the ratio test to find their radius of convergence.

(i) y′′ − xy′ + y = 0 (cf. Exercise 17.5),
(ii) (1 + x2)y′′ + y = 0,
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(iii) 2xy′′ + y′ − 2y = 0 (you should be able to sum the two power series
to obtain explicit forms for the two solutions),

(iv) y′′ − 2xy′ + 2ky = 0. By finding the recurrence relation for the co-
efficients in the power series identify those values of k for which
one solution is a polynomial. Find both solutions when k = −2 and
k = 2:; in each case you should be able to find a simple expression for
one of the two solutions, while the other can be written as a power
series whose general term you should be able to find explicitly.

(i)

y′′ − xy′ + y = 0.

The point x = 0 is not a singular point, so we can try a simple power
series solution

y(x) =
∞∑

n=0

anxn.

Then

y′(x) =
∞∑

n=1

nanxn−1 and y′′(x) =
∞∑

n=2

n(n− 1)anxn−2.

Substituting these into the equation we obtain
∞∑

n=2

n(n− 1)anxn−2 −
∞∑

n=1

nanxn +
∞∑

n=0

anxn = 0.

Relabelling the first sum we obtain
∞∑

n=0

(n + 2)(n + 1)an+2x
n −

∞∑

n=1

nanxn +
∞∑

n=0

anxn = 0.

So we have

2a2 + a0 +
∞∑

n=1

[(n + 2)(n + 1)an+2 − (n− 1)an]xn = 0.

Equating coefficients of xn on both sides we have

a2 = −1
2a0 and an+2 =

(n− 1)an

(n + 1)(n + 2)
.

If we choose a0 6= 0 and a1 = 0 then we obtain

y(x) = a0

[
1− 1

2
x2 − 1

2 · 3 · 4 x4 − 3
2 · 3 · 4 · 5 · 6 x6 − . . .

]
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= a0

[
1−

∞∑

n=1

(2n− 2)!
(n− 1)!2n−1(2n)!

x2n

]

= a0

[
1−

∞∑

n=1

1
n!2n(2n− 1)

x2n

]
.

The sum converges for all x, since the ratio of consecutive terms is

1
(n + 1)!2n+1(2n + 1)

x2(n+1)

/
1

n!2n(2n− 1)
x2n

=
2n− 1

(n + 1)(2n + 1)
x2

which converges to zero as n →∞.
For a second linearly independent solution we choose a0 = 0 and

a1 6= 0. In this case we obtain a3 = 0 from the recurrence relation,
and so an = 0 for all n ≥ 2, and the solution is y(x) = a1x.

(ii)

(1 + x2)y′′ + y = 0.

Once again x = 0 is not a singular point, so we try

y(x) =
∞∑

n=0

anxn.

With

y′′(x) =
∞∑

n=2

n(n− 1)anxn−2

the equation becomes

∞∑

n=2

n(n− 1)an[xn−2 + xn] +
∞∑

n=0

anxn.

So we have
∞∑

n=0

[(n + 1)(n + 2)an+2 + an]xn +
∞∑

n=2

n(n− 1)anxn = 0

or

(2a2 +a0)+ (6a3 +a1)x+
∞∑

n=2

[(n+1)(n+2)an+2 +(n2−n+1)an]xn.
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So

a2 = −1
2a0, a3 = −a1

6
, and an+2 = − n2 − n + 1

(n + 1)(n + 2)
an.

For one solution we take a0 6= 0 and a1 = 0, to obtain

y1(x) = a0

[
1− x2

2
+

3x4

4!
− 3 · 13x6

7!
+ . . .

]

and for the other we choose a0 = 0 and a1 6= 0,

y2(x) = a1

[
x− x3

6
+

7x5

5!
− 7 · 21x7

7!
+ . . .

]

The radius of convergence can be found by considering the ratio of
successive terms in each series:

an+2x
n+2

anxn
=

an+2

an
x2 = − n2 − n + 1

(n + 1)(n + 2)
x2 → x2

as n → ∞. This is less than one provided that |x| < 1, and greater
than one if |x| > 1, so the radius of convergence is 1.

(iii)

2xy′′ + y′ − 2y = 0. (S20.5)

Written in the standard form this is

y′′ +
y′

2x
− y

x
= 0,

and so x = 0 is a regular singular point. We can look for a solution
in the form

y(x) =
∞∑

n=0

anxσ+n. (S20.6)

For this we have

y′(x) =
∞∑

n=0

(n + σ)anxσ+n−1

and

y′′(x) =
∞∑

n=0

(n + σ)(n + σ − 1)anxσ+n−2.
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Substituting these expressions into the equation (S20.5) we obtain

2
∞∑

n=0

(n + σ)(n + σ − 1)anxσ+n−1 +
∞∑

n=0

(n + σ)anxσ+n−1

−2
∞∑

n=0

anxσ+n = 0.

If we set the coefficient of the lowest order power in x, xσ+n−1, to
zero, we obtain the indicial equation

a0[2σ(σ − 1) + σ] = 0 ⇒ 2σ2 − σ = 0

which has solutions σ = 0 and σ = 1
2 . These do not differ by an

integer, so we should be able to find two linearly independent series
solutions in the form (S20.6)

First we use σ = 0, for which the equation reads

2
∞∑

n=2

n(n− 1)anxn−1 +
∞∑

n=1

nanxn−1 − 2
∞∑

n=0

anxn = 0.

This is the same as

2
∞∑

n=1

n(n + 1)an+1x
n +

∞∑

n=0

(n + 1)an+1x
n − 2

∞∑

n=0

anxn = 0,

and so equating coefficients of powers of x on both sides we have

a1 − 2a0 = 0 and 2n(n + 1)an+1 + (n + 1)an+1 − 2an = 0

where the general relation, valid only for n ≥ 1, can be simplified to
give

an+1 =
2

(2n + 1)(n + 1)
an.

So, if we choose a0 = 1,

y1(x) = 1 + 2x +
22

2 · 3 x2 +
23

2 · 3 · 3 · 5x3 +
24

2 · 3 · 3 · 5 · 4 · 7 x4 + . . .

=
∞∑

n=0

2nn!2n

n!(2n)!
xn =

∞∑

n=0

22n

(2n)!
xn

=
∞∑

n=0

(2
√

x)2n

(2n)!

=
e2
√

x + e−2
√

x

2
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= cosh 2
√

x.

This converges for all x since the series for coshx converges; or you
can check it directly since the ratio of consecutive terms in the power
series form of the solution is

an+1x
n+1

anxn
=

2
(2n + 1)(n + 1)

x → 0

as n →∞.
To find a second solution we use σ = 1

2 , and then the equation is

2
∞∑

n=0

(n + 1
2)(n− 1

2)anxn−1
2 +

∞∑

n=0

(n + 1
2)anxn−1

2 − 2
∞∑

n=0

anxn+
1
2 = 0.

The coefficient of x−1/2 vanishes by the choice of σ, and for n ≥ 1
the coefficient of n + 1

2 is

2(n + 1
2)(n− 1

2)an + (n + 1
2)an − 2an−1 = 0.

So

an =
2

n(2n + 1)
an−1.

Now we have (choosing a0 = 1)

y2(x) = x1/2

(
1 +

2
3

x +
22

3 · 2 · 5 x2 +
23

3 · 2 · 5 · 3 · 7 x3 + . . .

)

= x1/2
∞∑

n=0

2n2nn!
n!(2n + 1)!

xn

= x1/2
∞∑

n=0

22n

(2n + 1)!
xn

= 1
2

∞∑

n=0

(2
√

x)2n+1

(2n + 1)!

=
e2
√

x − e−2
√

x

4
= 1

2 sinh 2
√

x,

and so a second linearly independent solution is sinh 2
√

x (and the
series converges, as before, for all x).

(iv)

y′′ − 2xy′ + 2ky = 0.
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Zero is not a singular point, so we try

y(x) =
∞∑

n=0

anxn.

We therefore have

y′(x) =
∞∑

n=1

nanxn−1 and y′′(x) =
∞∑

n=2

n(n− 1)anxn−2,

and substituting into the original equation we obtain
∞∑

n=2

n(n− 1)anxn−2 − 2
∞∑

n=1

nanxn + 2k
∞∑

n=0

anxn = 0,

Relabelling the first sum we have

[2a2 + 2ka0] +
∞∑

n=1

[(n + 1)(n + 2)an+2 + 2(k − n)an]xn = 0,

and so

a2 = −ka0 and an+2 =
2(n− k)

(n + 1)(n + 2)
an for n ≥ 1.

One solution will be a polynomial if k is a positive integer, since
then ak+2 = 0. Otherwise we have

y1(x) = a0

[
1− kx2 − 22(2− k)

4!
x4 − 23(2− k)(4− k)

6!
x6 − . . .

]

and

y2(x) = a1

[
x +

2(1− k)
3!

x3 +
22(1− k)(3− k)

5!
x5 + . . .

]
.

The ratio of successive terms in these series are

an+2x
n+2

anxn
=

(n + 1)(n + 2)(n− k − 2)
n(n− 1)(n− k)

x2 → x2

as n →∞, so the radius of convergence is 1.
If k = −2 then the two solutions are

y1(x) = a0

[
1 + 2x2 +

22

3
x4 +

23

3 · 5 x6 + . . .

]

= a0

∞∑

n=0

2n2nn!
(2n)!

x2n
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= a0

∞∑

n=0

4nn!
(2n)!

x2n

and

y2(x) = a1

[
x + x3 +

x5

2!
+

x7

4!
+ . . .

]

= a1

∞∑

n=0

x2n+1

n!

= a1x

∞∑

n=0

(x2)n

n!

= a1xex2
.

If k = 2 then the two solutions are

y1(x) = a0

[
1− 2x2

]

and

y2(x) = a1

[
x− 2

3!
x3 − 22

5!
x5 − 23 · 3

7!
x7 − . . .

]
.

In general, for n ≥ 2 the coefficient of x2n+1 is given by

a2n+1 = −a1
2n · 3 · 5 · (2n− 3)

(2n + 1)!

= −a1
2n(2n− 2)!

2n−1(n− 1)!(2n + 1)!

= −2a1
(2n− 2)!

(n− 1)!(2n + 1)!
.

With the convention that 0! = 1 we can write the solution as

y2(x) = a1

[
x−

∞∑

n=1

2(2n− 2)!
(n− 1)!(2n + 1)!

x2n+1

]
.

Exercise 20.3 Find one power series solution of the equation

x(1− x)y′′ − 3xy′ − y = 0.

You should be able to sum this power series to write down the solution ex-
plicitly. Now use the reduction of order method to find a second solution.
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Zero is a regular singular point, so we try a solution of the form

y(x) =
∞∑

n=0

anxσ+n.

We therefore have

y′(x) =
∞∑

n=0

(σ+n)anxσ+n−1 and y′′(x) =
∞∑

n=0

(σ+n)(σ+n−1)anxσ+n−2,

and substituting into the equation gives

∞∑

n=0

(σ+n)(σ+n−1)an[xσ+n−1−xσ+n]−3
∞∑

n=0

(σ+n)anxσ+n−
∞∑

n=0

anxσ+n = 0.

Setting the coefficient of the lowest power of x, xσ−1 to zero gives the indicial
equation for σ,

σ(σ − 1) = 0.

This gives σ = 0 or σ = 1. These roots differ by an integer, so we would
anticipate problems.

We use the larger choice, σ = 1, in order to find one series solution of this
form, and put

y(x) =
∞∑

n=1

anxn, y′(x) =
∞∑

n=1

nanxn−1, and y′′(x) =
∞∑

n=2

n(n−1)anxn−2,

and then we have
∞∑

n=2

n(n− 1)an[xn−1 − xn]− 3
∞∑

n=1

nanxn −
∞∑

n=1

anxn = 0.

With some relabelling and rearrangement this becomes

−
∞∑

n=2

n(n− 1)anxn +
∞∑

n=1

[n(n + 1)an+1 − 3nan]xn −
∞∑

n=1

anxn = 0.

From the coefficient of x we have

2a2 − 4a1 = 0 ⇒ a2 = 2a1

and from the coefficient of xn for n ≥ 2 we obtain

an+1 =
n + 1

n
an.
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Therefore, taking a1 = 1, one solution is

y(x) = x + 2x2 + 3x3 + 4x4 + 5x5 + . . .

= x[1 + 2x + 3x2 + 4x3 + . . .]

= x
d
dx

[1 + x + x2 + x3 + x4 + . . .]

= x
d
dx

1
1− x

=
x

(1− x)2
.

To use the reduction of order method we try

y(x) =
xu(x)

(1− x)2
,

and so

y′(x) =
xu′

(1− x)2
+

u

(1− x)2
+

2xu

(1− x)3

and

y′′(x) =
xu′′

(1− x)2
+

2u′

(1− x)2
+

4xu′

(1− x)3
+

4u

(1− x)3
+

6xu

(1− x)4
.

When we substitute these expressions into the original equation – remem-
bering that the terms in which u has not been differentiated will (thankfully)
cancel – we obtain

x(1− x)
[

xu′′

(1− x)2
+

2u′

(1− x)2
+

4xu′

(1− x)3

]
− 3x2u′

(1− x)2
= 0.

Multiplying up by (1− x)2 we obtain

x(1− x)
[
xu′′ + 2u′ +

4xu′

1− x

]
− 3x2u′ = 0.

Setting v = u′ and rearranging gives

v′ + v

[
2
x

+
1

1− x

]
= 0.

The integrating factor for this equation is

exp
(∫

2
x

+
1

1− x
dx

)
= exp(2 lnx− ln(1− x)) =

x2

1− x
,

and so we have
d
dt

[
x2v

1− x

]
= 0.
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Therefore

v(x) = u′(x) = A
1− x

x2
= A

[
1
x2
− 1

x

]
,

This gives

u(x) = A

[
−1

x
− ln x

]

and so the second solution is

y(x) =
1

(1− x)2
+

x lnx

(1− x)2
.

Exercise 20.4 Find one series solution of the ‘modified Bessel equation’

x2y′′ + xy′ − x2y = 0.

Zero is a regular singular point, so we try a solution of the form

y(x) =
∞∑

n=0

anxσ+n,

and then

y′(x) =
∞∑

n=0

(σ+n)anxσ+n−1 and y′′(x) =
∞∑

n=0

(σ+n)(σ+n−1)anxσ+n−2.

Substituting these into the equation we have

∞∑

n=0

(σ + n)(σ + n− 1)anxσ+n +
∞∑

n=0

(σ + n)anxσ+n −
∞∑

n=0

anxσ+n+2 = 0.

The coefficient of xσ is

σ(σ − 1) + σ = σ2,

so we have a repeated root σ = 0. We can therefore try a standard power
series solution

y(x) =
∞∑

n=0

anxn,

and obtain
∞∑

n=2

n(n− 1)anxn +
∞∑

n=1

nanxn −
∞∑

n=0

anxn+2 = 0.
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Relabelling the final sum we have
∞∑

n=2

n(n− 1)anxn +
∞∑

n=1

nanxn −
∞∑

n=2

an−2x
n = 0.

From the coefficient of x we obtain a1 = 0, and from the coefficient of xn

with n ≥ 2 we have

an+2 =
an

n2
.

So, taking a0 = 1, one solution is

y(x) = 1 + x2 +
x4

22
+

x6

2242
+

x8

224262
+ . . .

= 1 + x2
∞∑

n=0

x2n

4n(n!)2
.

Exercise 20.5 Find a series solution for Bessel’s equation of order one,

x2y′′ + xy′ + (x2 − 1)y = 0. (S20.7)

You should obtain

y(x) = cx
∞∑

n=0

(−1)nx2n

22n(n + 1)!n!
;

with the choice c = 1/2 this gives the standard form of the Bessel function
J1(x),

J1(x) =
∞∑

n=0

(−1)n

(n + 1)!n!

(x

2

)2n+1
.

From the analysis in the text (Section 20.4) we look for a solution
∑∞

n=0 anxσ+n

with σ = 1:

y(x) =
∞∑

n=1

anxn.

With this choice for y(x) we have

y′(x) =
∞∑

n=1

nanxn−1 and y′′(x) =
∞∑

n=2

n(n− 1)anxn−2.

Substituting into the equation we obtain
∞∑

n=2

n(n− 1)anxn +
∞∑

n=1

nanxn +
∞∑

n=1

an[xn+2 − xn] = 0.
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Relabelling we have
∞∑

n=2

n(n− 1)anxn +
∞∑

n=1

(n− 1)anxn +
∞∑

n=3

an−2x
n = 0.

The coefficient of x vanishes; the coefficient of x2 is 3a2, and so a2 = 0,
and the recurrence relation, valid for n ≥ 3,

an = − an−2

(n + 1)(n− 1)
,

shows that an = 0 for all even n. With a1 = c we therefore obtain the
solution

y(x) = c

[
x− x3

2 · 4 +
x5

2 · 4 · 4 · 6 −
x7

2 · 4 · 4 · 6 · 6 · 8 + . . .

]

= cx

[
1− x2

2 · 4 +
x4

2 · 4 · 4 · 6 −
x6

2 · 4 · 4 · 6 · 6 · 8 + . . .

]

= 2cx
∞∑

n=0

(−1)nx2n

22nn!(n + 1)!
;

with the choice c = 1/4 we obtain

J1(x) =
∞∑

n=0

(−1)n

(n + 1)!n!

(x

2

)2n+1
.

Exercise 20.6 In order to find a second solution of (S20.7), substitute

y(x) = J1(x) ln x +
1
x

[ ∞∑

n=0

bnxn

]
,

where J1(x) is the series solution from the previous question, to show that

b1 + b0x +
∞∑

n=2

[(n2 − 1)bn+1 + bn−1]xn = −2
∞∑

k=0

(−1)k(2k + 1)
(k + 1)! k!

(x

2

)2k+1
.

Hence show that b0 = −1, b1 = 0, and that bn obeys the recurrence relation

(n2 − 1)bn+1 + bn−1 = 0

if n is even and, for k = 1, 2, 3, . . .,

[(2k + 1)2 − 1]b2(k+1) + b2k = −(−1)k(2k + 1)
22k(k + 1)! k!

. (S20.8)

Deduce that bj = 0 for all odd values of j.
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Denoting by Hn the sum

Hn =
n∑

j=1

1
j
,

verify that

b2k =
(−1)k(Hk + Hk−1)

22kk! (k − 1)!

solves (S20.8) and hence write down a second solution of (S20.7).

To find a second solution of

x2y′′ + xy′ + (x2 − 1)y = 0 (S20.9)

we try

y(x) = J1(x) lnx +
b0

x
+

∑
n = 0∞bn+1x

n,

and so

y′(x) = J ′1(x) lnx +
J1(x)

x
− b0

x2
+

∞∑

n=1

nbn+1x
n−1

and

y′′(x) = J ′′1 (x) ln x +
2J ′1(x)

x
− J1(x)

x2
+

2b0

x3
+

∞∑

n=2

n(n− 1)bn+1x
n−2.

Substituting these expressions into the equation (S20.9) gives

x2J
′′
1 lnx + 2xJ ′1 − J1 +

2b0

x
+

∞∑

n=2

n(n− 1)bn+1x
n + xJ ′1 ln x + J1 − b0

x

+
∞∑

n=1

nbn+1x
n + (x2 − 1)

[
J1 lnx +

b0

x
+

∞∑

n=0

bn+1x
n

]
= 0,

which after cancellations becomes

2xJ ′1(x) +
∞∑

n=2

n(n− 1)bn+1x
n +

∞∑

n=1

nbn+1x
n + b0x

+
∞∑

n=0

(bn+1x
n+2 − bn+1x

n) = 0.

Using the series solution for J1(x) we obtain

−2
∞∑

n=0

(−1)n(2n + 1)
(n + 1)!n!

(x

2

)2n+1
=

∞∑

n=0

(n2 − 1)bn+1x
n +

∞∑

n=2

bn−1x
n + b0x.
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The coefficients of x0 and x give

b1 = 0 and b0 = −1.

For even n ≥ 2 we have

(n2 − 1)bn+1 + bn−1 = 0,

which, given that b1 = 0, shows that all odd coefficients are zero.
For odd n = 2k + 1, the coefficient of x2k+1 gives

[(2k + 1)2 − 1]b2(k+1) + b2(k−1) =
(−1)k(2k + 1)
(k + 1)!k!22k

.

We write

Hn =
n∑

j=1

1
j
,

and want to check that

b2k =
(−1)k(Hk + Hk−1)

22kk!(k − 1)!

satisfies this equation. We have

[(2k + 1)2 − 1]
[
(−1)k+1(Hk+1 + Hk)

22k+2(k + 1)!k!

]
+

(−1)k(Hk + Hk−1)
22kk!(k − 1)!

=
−(−1)k

22kk!(k − 1)!

[
((2k + 1)2 − 1)(Hk+1 + Hk)

4(k + 1)k
− (Hk + Hk−1)

]

=
−(−1)k

22kk!(k − 1)!
[(Hk+1 + Hk)− (Hk + Hk−1)]

=
−(−1)k

22kk!(k − 1)!

[
1

k + 1
+

1
k

]

=
−(−1)k

22kk!(k − 1)!
2k + 1

k(k + 1)

=
(−1)k(2k + 1)
(k + 1)!k!22k

,

as required.
The second solution to Bessel’s equation of order one is therefore

y(x) = lnx
∞∑

n=0

(−1)n

(n + 1)!n!

(x

2

)2n+1
+

1
x

[ ∞∑

n=0

(−1)n(Hn + Hn−1)
(n + 1)!n!22n

x2n

]
.
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Exercise 20.7 Show that when n is a positive integer one solution of
Bessel’s equation

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0

can be written as the power series

Jn(x) =
∞∑

j=0

(−1)j 1
j!(n + j)!

(x

2

)n+2j
. (S20.10)

Bessel’s equation of order n is

x2 d2y

dx2
+ x

dy

dx
+ (x2 − n2)y = 0.

Since zero is a regular singular point we try a solution of the form

y(x) =
∞∑

j=0

ajx
σ+j ,

and then from the treatment in section 20.4 the indicial equation implies
that σ = ±n. We take σ = n, the larger of the two roots, and so try for a
solution in the form

y(x) =
∞∑

j=n

ajx
j .

We therefore have

y′(x) =
∞∑

j=n

jajx
j−1 and y′′(x) =

∞∑

j=n

j(j − 1)ajx
j−2.

Substituting these two expressions into the equation we obtain
∞∑

j=n

j(j − 1)ajx
j +

∞∑

j=n

jajx
j +

∞∑

j=n

aj [xj+2 − n2xj ] = 0.

The coefficients of xn and xn+1 give

n(n−1)an+nan−n2an = 0 and n(n+1)an+1+(n+1)an+1−n2an+1 = 0,

so an is arbitrary and an+1 = 0. The coefficient of xj for j ≥ n + 2 gives

j(j − 1)aj + jaj + aj−2 − n2aj = 0,

which provides the recurrence relation

aj = − aj−2

j2 − n2
= − aj−2

(j + n)(j − n)
.



Series solutions of second order linear equations 173

So we have

Jn(x) = an

[
xn − 1

(2n + 2)2
xn+2 +

1
(2n + 2)(2n + 4)2 · 4 xn+4

− 1
(2n + 2)(2n + 4)(2n + 6)2 · 4 · 6 xn+6 + . . .

]

= anxn
∞∑

j=0

(−1)j n!
2j(n + j)!2jj!

x2j

= 2nann!
∞∑

j=0

(−1)j

j!(n + j)!

(x

2

)n+2j
.

Choosing an = 1/(2nn!) we obtain the standard form of Jn(x),

Jn(x) =
∞∑

j=0

(−1)j

j!(n + j)!

(x

2

)n+2j
.

Exercise 20.8 The gamma function generalises the factorial function to
values that are not integers. For any real number z we define

Γ(z) =
∫ ∞

0
tz−1e−t dt.

Integrate by parts in order to show that for a positive integer n

Γ(n + 1) = nΓ(n).

Since Γ(1) = 1, deduce that Γ(n + 1) = n!. (Using the gamma function in
place of one of the factorials in the power series (S20.10) gives

Jν(x) =
∞∑

j=0

(−1)j 1
j! Γ(ν + j + 1)

(x

2

)ν+2j
,

and this formula now applies for any real number ν. This is where the
strange normalisation of Jν for non-integer ν comes from (see comments
after Example 20.3).)

We have

Γ(z) =
∫ ∞

0
tz−1e−t dt.

Integrating by parts we obtain

Γ(n + 1) =
[
−tne−t

]∞

0

+
∫ ∞

0
ntn−1e−t dt
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= n

∫ ∞

0
tn−1e−t dt

= nΓ(n),

and we have

Γ(1) =
∫ ∞

0
e−t dt = 1,

so

Γ(n + 1) = n!

Exercise 20.9 (C) Write a short program to generate the coefficients in
the power series expansion of Jν(x) for any value of ν using the recurrence
relation (20.17). Investigate how many terms of the expansion you need to
take in order to approximate the solution well on a fixed interval (0 ≤ x ≤ 10,
say). (You might like to look at the M-file besselseries.m, which produced
the Bessel function figures in this chapter.)

Below is the listing of the file besselseries.m, which calculates the coef-
ficients in the power series expansion, and then plots various approximations
given by a finite number of terms, along with the ‘exact’ values generated
by MATLAB’s besselj function.

%% Bessel function of order nu from its series expansion

%% Sum up to power x^(2n)

nu=input(’nu = ’); N=input(’N= ’);

a(1)=-1/(4*(1+nu));

%% a(i) is coefficient of x^(2i)

for i=2:N;

a(i)=-a(i-1)/(4*i*(i+nu));

end

x=linspace(0,10,1000);

y=1+0.*x; hold on
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for k=1:N;
y=y+a(k)*x.^(2*k);
ay=y.*x.^nu;
if (k/2)~=floor(k/2) & k>1;

plot(x,ay);
end

end

%% Change the normalisation

z=besselj(nu,x)*2^nu*gamma(1+nu);

plot(x,z,’linewidth’,2)

ylim([1.5*min(z),1.5*max(z)])

Exercise 20.10 (T) The Bessel functions might seem exotic, but they arise
very naturally in problems that have radial symmetry. For example, the
vibrations of a circular drum satisfy

∂2u

∂t2
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
, (S20.11)

where u(r, θ, t) is the displacement of the circular skin of the drum at a point
expressed in polar coordinates. In the method of separation of variables we
look for a solution of the form

u(r, θ, t) = R(r)Θ(θ)T (t),

and try this guess in the equation. Substitute this in to (S20.11) and show
that

1
T

d2T

dt2
=

1
rR

d
dr

(
r
dR

dr

)
+

1
r2Θ

d2Θ
dθ2

. (S20.12)

The left-hand side of this equation is a function of t alone, and the right-
hand side a function of r and θ, so in order to be always equal they must
both be constants. Choosing

1
T

d2T

dt2
= −k2
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(there are good physical reasons for choosing this constant to be negative)
show that we can rearrange (S20.12) to give

− 1
Θ

d2Θ
dθ2

=
r

R

d
dr

(
r
dR

dr

)
+ r2k2. (S20.13)

Now the left-hand side is a function of θ alone, while the right-hand side is
a function of r alone: so both sides must be equal to a constant. Now we
choose

− 1
Θ

d2Θ
dθ2

= ν2

(again there are good physical reasons why this constant should be positive);
show that in this case (S20.13) can be rearranged to give

r2 d2R

dr2
+ r

dR

dr
+ (r2k2 − ν2)R = 0.

Finally substitute x = rk to show that R satisfies Bessel’s equation of order
ν,

x2 d2R

dx2
+ x

dR

dx
+ (x2 − ν2)R = 0.

Substituting u = R(r)Θ(θ)T (t) into

∂2u

∂2t
=

1
r

∂

∂r

(
r
∂u

∂r

)
+

1
r2

∂2u

∂θ2
,

we obtain

RΘ
d2T

dt2
=

ΘT

r

d
dr

(
r
dR

dr

)
+

RT

r2

d2Θ
dθ2

.

Dividing by RΘT gives

1
T

d2T

dt2
=

1
rR

d
dr

(
r
dR

dr

)
+

1
r2Θ

d2Θ
dθ2

.

The left-hand side is a function of t alone, and the right-hand side depends
only on r and θ. For these always to be equal they must equal a constant,
which we choose as −k2. In this case we have

1
rR

d
dr

(
r
dR

dr

)
+

1
r2Θ

d2Θ
dθ2

= −k2.

Multiplying through by r2 and rearranging yields

r

R

d
dr

(
r
dR

dr

)
+ k2r2 = − 1

Θ
d2Θ
dθ2

.
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In this equation the left-hand side depends only on r and the right-hand
side depends only on θ: so both sides must be equal to a constant, which
we choose to be ν2. This gives

r

R

d
dr

(
r
dR

dr

)
+ k2r2 = ν2,

and if we differentiate on the left we have

r2

R

d2R

dr2
+

r

R

dR

dr
+ k2r2 = ν2.

Multiplying up by R and rearranging we obtain

r2 d2R

dr2
+ r

dR

dr
+ (k2r2 − ν2)R = 0.

Finally we set x = kr; then

r
d
dr

= x
d
dx

,

and so the equation becomes

x2 d2R

dx2
+ x

dR

dx
+ (x2 − ν2)R = 0,

which is Bessel’s equation of order ν.



21

Euler’s method

Exercise 21.1 Apply Euler’s method to the general linear equation ẋ =
λx. Find the approximation xn, and using (21.6) show that as h → 0 the
numerical solution converges to the true solution.

We have

xn+1 = xn + hλxn = (1 + hλ)xn,

and so

xn = (1 + hλ)nx0.

The approximation this provides to x(t) is given by xn, where nh = t, so
is

x(t) ≈ xn = (1 +
λt

n
)nx0,

where we have replaced h by t/n in this expression. We now use the limiting
behaviour (

1 +
t

n

)n

→ et

to deduce that as h → 0, i.e. as n →∞, we have
(

1 +
λt

n

)n

x0 → eλtx0,

which is the exact solution.

Exercise 21.2 There are variants of the Euler method that have the ad-
vantage of better stability properties, but have the disadvantage of no longer
being explicit schemes. For example, the backwards Euler method is

xn+1 = xn + hf(xn+1, tn+1),

178
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which has to be solved at each stage to find xn+1 in terms of xn. Apply this
method to the linear equation ẋ = x, and show that once again the method
converges to the true solution x(t) = et as t →∞.

If we use the backwards Euler method for ẋ = x then we have

xn+1 = xn + hxn+1.

In this simple case we can solve easily to find an expression for xn+1 in terms
of xn, namely

xn+1 =
xn

1− h
.

This has solution

xn =
x0

(1− h)n
.

The approximation this gives for x(t) when t = nh is

x(t) ≈ x0

(
1− t

n

)−n

,

and as h → 0, i.e. as n →∞, this converges to
x0

e−t
= x0et,

the exact solution.

Exercise 21.3 Another variant of the standard Euler method is the trape-
zoidal Euler method. If x(t) is the solution of ẋ = f(x, t) then we have

x(t + h) = x(t) +
∫ t+h

t
f(x(s), s) ds.

Use the trapezium rule to approximate the integral to derive this scheme,

xn+1 = xn + h[12f(xn, tn) + 1
2f(xn+1, tn+1)].

Starting with

x(t + h) = x(t) +
∫ t+h

t
f(x(s), s) ds,

we can approximate the integral using the trapezium rule,
∫ t+h

t
f(x(s), s) ds ≈ h

2
[f(x(t), t) + f(x(t + h), t + h)],

see Figure 21.1.
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0

 x  x+h

 f(x)

 f(x+h)

Fig. 21.1. The trapezium rule: the integral between x and x + h is approximated
by the shaded area.

With xn = x(nh) this gives the numerical approximation

xn+1 = xn + h[12f(xn, tn) + 1
2f(xn+1, tn+1)].

Exercise 21.4 (T) Since d
dxex = ex, if we calculate the derivative of ex at

x = 0 as a limit it follows that

lim
h→0

eh − 1
h

= 1.

By rearranging this (note that 1 = limh→0 1) show that

e = lim
h→0

(1 + h)1/h,

and hence that

ex = lim
n→∞

(
1 +

x

n

)1/n
.

[Hint: if

lim
h→0

f(h) = lim
h→0

g(h) = y,

and κ(x) is continuous at x = y, then

lim
h→0

κ[f(h)] = lim
h→0

κ[g(h)].

You will need to use this once for each step.]

Using the hint we take f(h) = (eh − 1)/h, g(h) = 1, and

κ(x) = (xf(x) + 1)1/x.
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Since κ is continuous at x = 1 the limit is preserved, and so we have

e = lim
h→0

(1 + h)1/h.

Since the functions x 7→ ex and h 7→ (1 + h)1/h are also continuous, we
have

ex = lim
h→0

(1 + h)x/h.

If we put n = x/h then we will have n →∞ and h = x/n, which gives

ex = lim
n→∞

(
1 +

x

n

)1/n
,

as required.

Exercise 21.5 (T) In this question we suppose that f satisfies the Lipschitz
condition

|f(x)− f(y)| ≤ L|x− y| (S21.1)

and consider the Euler θ-method for approximating the solutions of ẋ = f(x),

xn+1 = xn + h[(1− θ)f(xn) + θf(xn+1)].

For θ = 0 this is the standard Euler method; for θ = 1
2 this is the trapezoidal

Euler method; and for θ = 1 this is the ‘backwards Euler’ method. Since
xn+1 is not given explicitly as a function of xn+1, we need a way of reliable
way of calculating it numerically.

(i) The first thing we must check is that there is a unique solution for
xn+1. Suppose that

y = xn + h[(1− θ)f(xn) + θf(y)] and

z = xn + h[(1− θ)f(xn) + θf(z)],

i.e. that both y and z satisfy the equation. By subtracting these two
equations show that

y − z = θh[f(y)− f(z)],

and hence deduce that

|y − z| ≤ hLθ|y − z|,

and therefore that y = z provided that h < 1/Lθ.
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(ii) Suppose therefore that h < 1/Lθ. Given an initial guess y0 for xn+1,
we can refine this guess successively by setting

yj+1 = xn + h[(1− θ)f(xn) + θf(yj)]; (S21.2)

if yj+1 = yj = y then

y = xn + h[(1− θ)f(xn) + θf(y)],

and so y would be the required value for xn+1. Show that

|yj+1 − yj | ≤ hLθ|yj − yj−1|, (S21.3)

and hence that successive values of yj are closer together. Thus,
for large j, we would expect that yj+1 ≈ yj and that yj is a good
approximation to xn+1.

(iii) Still assuming that h < 1/Lθ, use (S21.3) show that

|yj+1 − yj | ≤ (hLθ)j |y1 − y0|,
and hence that

|yj − yk| ≤ (hLθ)J

1− hLθ
|y1 − y0|

for any j, k ≥ J .

It follows that {yj} is a Cauchy sequence, and so converges to a limit y.
Taking limits as j →∞ on both sides of (S21.2) we get

y = x + 1
2h[f(xn) + f(y)],

and thus xn+1 = y.

(i) We have

y = xn + h[(1− θ)f(xn) + θf(y)] and

z = xn + h[(1− θ)f(xn) + θf(z)],

and subtracting these two equations we obtain

y − z = θh[f(y)− f(z)].

Using the Lipschitz condition from (S21.1),

|f(y)− f(z)| ≤ L|y − z|,
this implies that

|y − z| = θh|f(y)− f(z)| ≤ hLθ|y − z|.
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Now if y 6= z and hLθ < 1, i.e. if h < 1/Lθ, we have

|y − z| < |y − z|,
which is impossible. So for h < 1/Lθ we have y = z and the solution
is unique.

(ii) We have

yj+1 = xn + h[(1− θ)f(xn) + θf(yj)]

and

yj = xn + h[(1− θ)f(xn) + θf(yj−1)],

and so

yj+1 − yj = hθ[f(yj)− f(yj−1)].

Using the Lipschitz property of f we can obtain

|yj+1 − yj | ≤ hLθ|yj − yj+1|. (S21.4)

(iii) If we write δj = |yj+1 − yj | then (S21.4) is

δj ≤ hLθ δj−1,

and so

δj ≤ (hLθ)j−1δ1,

i.e.

|yj+1 − yj | ≤ (hLθ)j |y1 − y0|.
Assuming wlog that j ≥ k ≥ J , it follows that

|yj − yk| = |yj − yj−1 + yj−1 − yj−2 + yj−2 − . . . + yk+1 − yk|
≤ |yj − yj−1|+ |yj−1 − yj−2|+ . . . + |yk+1 − yk|

≤
∞∑

n=J

|yn+1 − yn|

≤
[ ∞∑

n=J

(hLθ)n

]
|y1 − y0|

≤ (hLθ)J

1− hLθ
|y1 − y0|.

Exercise 21.6 (C) For a number of values of t and h compare the exact
solution of ẋ = x with the solution from Euler’s method, and verify the error
estimate in (21.7).
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The exact solution is x(t) = x(0)et, while the solution of Euler’s method
is xn = x0(1 + h)t/h. Comparing the solutions for x(0) = 1 at time t = 1
(the exact solution is x(1) = e) for h = 2−n we have

x(1)− x1/h

h
=

e− (1 + 2−n)n

2−n
,

and so, when h = 2−n, we have

n [x1/h − x(1)]/h

1 0.9366
2 1.1075
3 1.2200
4 1.2857
5 1.3213
6 1.3400
7 1.3495
8 1.3543
9 1.3567
10 1.3579
11 1.3585
12 1.3588
13 1.3590
14 1.3591
15 1.3591

showing that for h small enough we have

x1/h − x(1) = 1.3591h

and the Euler scheme is indeed of order h. These numbers were produced
by the simple MATLAB code

for i=1:20;
x(i)=(1+2^(-i))^(2^i);
d(i)=(exp(1)-x(i))/(2^(-i))

end

Exercise 21.7 (C) Implement the backwards Euler scheme of Exercise 21.2
numerically, and apply it to the equation ẋ = x(1 − x) to find the solution
when x(0) = 1

2 for 0 ≤ t ≤ 8. In order to find xn+1 given xn you can use
the approach of Exercise 21.5, and iterate

gk+1 = xn + hgk(1− gk)
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to give a succession of ‘guesses’ gk for xn+1 until gk appears to stabilise
(e.g. until |gk+1−gk| < h3). You will need to choose h carefully to ensure that
your sequence of guesses converges. (Can you work out, using the theoretical
results of Exercise 21.5, what value of h should suffice?) The MATLAB M-file
backeuler.m, implementing this scheme, can be downloaded from the web.

The M-file backeuler.m is as follows:

%% backwards Euler method

T=8; %% final time

h=0.5; %% timestep

%% MATLAB does not allow an index 0
%% on a vector, so x_n is x(n+1) here

t(1)=0; %% initial time
x(1)=0.5; %% initial condition

for n=1:T/h;

t(n+1)=n*h;

%% Use iterative method to find x(n+1) given x(n)

gn=x(n); g=gn+2*h^3;

while abs(gn-g)>h^3;

%% method is O(h) so approximate x(n+1) to within O(h^3)

g=gn;
gn=x(n)+h*g*(1-g);

end

x(n+1)=gn;

end
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plot(t,x)

The resulting solution is shown in figure 21.2.
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Fig. 21.2. The solution of the equation ẋ = x(1 − x) with x(0) = 1
2 , calculated

using the backwards Euler scheme with h = 0.5.

We have f(x) = x(1−x), and so f ′(x) = 1−2x. If the numerical solution
is consistent with the true solution then x(t) ≤ 1 for all t, and so we should
have f ′(x(t)) ≤ 1, and therefore (using the result of Exercise 6.2), we should
have L ≤ 1. Since θ = 1 for the backwards Euler scheme, we expect that
our iteration for xn+1 will work provided that h < 1. The numerics above
are calculated with h = 0.5.

Exercise 21.8 (C) Write a MATLAB program to implement the Runge-Kutta
method introduced at the end of the chapter. Apply this method to ẋ = t−x2

when h = 0.5, and compare this to the solution obtained using Euler’s method
with the same timestep. You can download the MATLAB M-file rungekutta.m
from the web if you wish.

The method is implemented in the M-file rungekutta.m:

%% Runge-Kutta scheme

T=12;
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h=0.5;

t(1)=0; %% initial time
x(1)=0; %% initial condition

for n=1:T/h;

t(n+1)=n*h;

f1=t(n)-x(n)^2;
f2=(t(n)+(h/2))-(x(n)+(h*f1/2))^2;
f3=(t(n)+(h/2))-(x(n)+(h*f2/2))^2;
f4=(t(n)+h)-(x(n)+h*f3)^2;
x(n+1)=x(n) + h * (f1+(2*f2)+(2*f3)+f4)/6;

end

[t x] %% display values

plot(t,x)

This is shown (as a solid line) along with the Euler solution with the same
timestep (dashed line) in figure 21.3.
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Fig. 21.3. The solution of ẋ = t−x2 calculated using the fourth order Runge-Kutta
scheme (solid line) and the Euler method (dashed line), both with h = 1

2 .
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Difference equations

Exercise 22.1 Find the solutions of the following difference equations sat-
isfying the given initial conditions.

(i) xn+2 − 4xn+1 + 3xn = 0 with x0 = 0 and x1 = 1;
(ii) 2xn+1 − 3xn − 2xn−1 = 0 with x1 = x2 = 1;
(iii) xn+2 = 2xn+1 − 2xn with x0 = 1 and x1 = 2;
(iv) xn+2 + 6xn+1 + 9xn = 0 with x0 = 1 and x1 = 6;
(v) 2xn = 3xn−1 − xn−2 with x0 = 3 and x1 = 2; and
(vi) xn+2 − 2xn+1 + 5xn = 0 with x0 =

√
5 and x1 = 5 cos tan−1 2.

(i)

xn+2 − 4xn+1 + 3xn with x0 = 0 and x1 = 1.

We try xn = kn and obtain the auxiliary equation for k,

k2 − 4k + 3 = 0.

This has solutions k = 1 and k = 3, and so the general solution is

xn = A + B3n.

For the initial conditions we need

x0 = A + B = 0 and x1 = A + 3B = 1,

i.e. A = −1/2 and B = 1/2, and so the solution is

xn =
3n − 1

2
.

(ii)

2xn+1 − 3xn − 2xn−1 = 0 with x1 = x2 = 1.

188
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With xn = xk we obtain

2k2 − 3k − 2 = 0,

which has solutions k = 2 and k = −1
2 . The general solution is

therefore

xn = A2n + B(−1
2)n.

In order to satisfy the initial conditions we must have

x1 = 2A− 1
2B = 1 and x2 = 4A + B

4 = 1.

So we have A = 3/10, B = −4/5, and the solution is

xn =
3× 2n − 8(−1

2)n

10
.

(iii)

xn+2 = 2xn+1 − 2xn with x0 = 1 and x1 = 2.

Setting xn = nk we obtain the auxiliary equation

k2 = 2k − 1,

and so k = 1 twice. The general solution is therefore

xn = A + Bn.

The initial conditions require

x0 = A = 1 and x1 = A + B = 2,

and so A = B = 1 and the solution is

xn = n + 1.

(iv)

xn+2 + 6xn+1 + 9xn = 0 with x0 = 1 and x1 = 6.

We set xn = nk, and so

k2 + 6k + 9 = 0.

This has a repeated root k = −3, so the general solution is

xn = A(−3)n + Bn(−3)n.

The initial conditions are

x0 = A = 1 and x1 = A− 3A− 3B = 6,
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and so A = 1, B = −1, and the solution is

xn = (−3)n(1 + n).

(v)

2xn = 3xn−1 − xn−2 with x0 = 3 and x1 = 2.

With xn = kn we obtain

2k2 = 3k − 1,

and so k = 1 or k = 1
2 . The general solution is therefore

xn = A + B2−n.

In order to satisfy

x0 = A + B = 3 and x1 = A + 1
2B = 2

we need A = 1 and B = 2, giving the solution

xn = 1 + 21−n.

(vi)

xn+2−2xn+1+5xn = 0 with x0 =
√

5 and x1 = 5 cos tan−1 2.

Trying xn = nk we obtain

k2 − 2k + 5 = 0,

which has a complex conjugate pair of roots, k = 1±2i =
√

5ei tan−1(2).
The general solution of the equation is therefore

xn = 5n/2(A cosn tan−1(2) + B sinn tan−1(2)).

In order to fit the initial conditions we need

x0 = A =
√

5 and 5(A cos tan−1(2) + B sin tan−1(2)),

and so A =
√

5, B = 0, and the solution is

xn = 5(1+n)/2 cosn tan−1(2).

Exercise 22.2 Show that if the auxiliary equation

ak2 + bk + c = 0

has a repeated root k = λ then the difference equation

axn+2 + bxn+1 + cxn = 0
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can be rewritten in the form

xn+2 − 2λxn+1 + λ2xn = 0.

Since the roots of the equation ak2+bk+c = 0 are k = (−b±√b2 − 4ac)/2a,
if the equation has a repeated real root then b2 = 4ac and the root is
k = λ = −b/2a. If we divide the original difference equation

axn+2 + bxn+1 + cxn = 0

through by a we obtain

xn+2 +
b

a
xn+1 +

c

a
xn = 0.

Since c = b2/4a we can rewrite this as

xn+2 +
b

a
xn+1 +

b2

4a2
xn = 0,

which is just

xn+2 − 2λxn+1 + λ2xn = 0,

as claimed.

Exercise 22.3 The “golden ratio” is the ratio (greater than one) of the sides
of a rectangle with the following property: remove a square whose sides are
the length of the shorter side of the rectangle, and the remaining rectangle is
similar to the original one (its sides are in the same ratio), see Figure 22.1.
This ratio was used by the Greeks in constructing the Parthenon (among
many other monuments), and has been a favourite tool of artists ever since.

Remove
this
square

Fig. 22.1. The golden rectangle.
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Suppose that {xn} is a sequence of numbers satisfying the recurrence re-
lation

xn+2 = xn+1 + xn.

Show that if all the elements of the sequence are integers then the ratio of
consecutive terms, xn+1/xn, converges to the golden ration. Show that the
same result is true if all the terms in the sequence have the same sign. (In
particular this is true for the Fibonacci numbers, which have x0 = 0 and
x1 = 1.)

First we have to find an expression for the golden ratio (the ratio of the
longer side of the rectangle to the shorter). If the original sides are x and rx,
then the sides of the smaller rectangle are (r− 1)x and x; the ratio between
them is 1/(r − 1), and this should be r. So

1
r − 1

= r

giving

r2 − r − 1 = 0.

The solutions of this are

r =
1±√5

2
.

We want the positive square root (since r > 0), giving r = (1 +
√

5)/2.
Now we find an expression for xn. We try xn = kn in

xn+1 = xn+1 + xn (S22.1)

and find that

k2 = k + 1.

So

k =
1±√5

2
,

and the general solution of (S22.1) is

xn = A

(
1 +

√
5

2

)n

+ B

(
1−√5

2

)n

.

The ratio xn+1/xn is given by

xn+1

xn
=

A
(

1+
√

5
2

)n+1
+ B

(
1−√5

2

)n+1

A
(

1+
√

5
2

)n
+ B

(
1−√5

2

)n .
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If A 6= 0 then as n →∞ the second terms on both the top and the bottom
of this fraction tend to zero (since (1−√5)/2 is smaller than 1), and so we
would expect the limiting value to be

1 +
√

5
2

,

precisely the golden ration.
To be more careful, we have

xn+1

xn
=

(
1 +

√
5

2

)
1

1 + (B/A)
(

1−√5
1+
√

5

)n +
B

(
1−√5

2

)n+1

A
(

1+
√

5
2

)n
+ B

(
1−√5

2

)n ,

and this tends to (1 +
√

5)/2 since

1−√5
1 +

√
5

< 1

(for the first term) and (1−√5)/2 < 1 (for the second).
If A = 0 the above argument does not work, and then

xn+1 =
1−√5

2
xn,

and it is not possible for all terms in the sequence to be integers. Similarly,
since (1−√5)/2 < 0, the signs of the terms in the sequence must alternate.
So it is not possible for all terms in the sequence to have the same sign
either.

Exercise 22.4 Find the general solution of the following difference equa-
tions, and then find the solution that satisfies the specified initial conditions:

(i) xn+2 − 4xn = 27n2, with x0 = 1 and x1 = 3;
(ii) xn+1 − 4xn + 3xn−1 = 36n2, with x0 = 12 and x1 = 0;
(iii) xn+1 − 4xn + 3xn−1 = 2n, with x0 = −4 and x1 = −6;
(iv) xn+1 − 4xn + 3xn−1 = 3n, with x0 = 2 and x1 = 13/2;
(v) xn+2 − 2xn+1 + xn = 1, with x0 = 3 and x1 = 6;
(vi) xn+2 + xn = 2n, with x0 = x1 = 0;
(vii) xn+2 + xn+1 + xn = c (the general solution is enough here).

(i)

xn+2 − 4xn = 27n2 with x0 = 1 and x1 = 3.

First solve the homogeneous problem

xn+2 − 4xn = 0
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by trying xn = kn. Then k must satisfy

k2 − 4 = 0,

so that k = 2 or −2, giving the complementary function A2n +
B(−2)n. For the particular solution we try a polynomial of the same
order, xn = an2 + bn + c, so that

xn+2 = a(n + 2)2 + b(n + 2) + c = an2 + (2a + b)n + (4a + 2b + c),

and we need

an2 + (2a + b)n + (4a + 2b + c)− 4(an2 + bn + c)

= −3an2 + (2a− 3b)n + (4a + 2b− 3c) = 27n2.

So we take a = −9, b = −6, and c = −16, so that the general solution
is

A2n + B(−2)n − 9n2 − 6n− 16.

To fit the initial conditions we want

x0 = A + B − 16 = 1 and x1 = 2A− 2B − 9− 6− 16 = 3,

i.e. A = 17 and B = 0, so that

xn = 17(2n)− 9n2 − 6n− 16.

(ii)

xn+1− 4xn + 3xn−1 = 36n2 with x0 = 12 and x1 = 0.

To solve the homogeneous problem

xn+1 − 4xn + 3xn−1 = 0

we try xn = kn, and then

k2 − 4k + 3 = 0,

giving k = 1 or k = 3. So the complementary function is A + B3n.
In this case a derivative of the right-hand side (n2) is a solution of
the homogeneous equation (d2/dn2(n2) = 2), and so we have to try
a polynomial of one order higher, xn = an3 + bn2 +cn (we don’t need
the constant term, since that will just give zero). Then

xn−1 = a(n− 1)3 + b(n− 1)2 + c(n− 1)

= a(n3 − 3n2 + 3n− 1) + b(n2 − 2n + 1) + c(n− 1)

= an3 + (b− 3a)n3 + (3a− 2b + c)n + (b− a− c)
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and

xn+1 = a(n + 1)3 + b(n + 1)2 + c(n + 1)

= a(n3 + 3n2 + 3n + 1) + b(n2 + 2n + 1) + c(n + 1)

= an3 + (3a + b)n2 + (3a + 2b + c)n + (a + b + c).

Substituting into the difference equation gives

an3 + (3a + b)n2 + (3a + 2b + c)n + (a + b + c)

−4[an3 + bn2 + cn]

+3[an3 + (b− 3a)n3 + (3a− 2b + c)n + (b− a− c)] = 36n2

or tidying up

−6an2 + (12a− 4b)n + (−2a + 4b− 6c) = 36n2.

So we need a = −6, b = −18, and c = −10. So the general solution
is

A + B3n − 6n3 − 18n2 − 10n.

To fit the initial conditions we need

x0 = A + B = 12 and A + 3B − 6− 18− 10 = 0,

which implies that A = 1, B = 11, and the solution is

xn = 11(3n)− 6n3 − 18n2 − 10n + 1.

(iii)

xn+1 − 4xn + 3xn−1 = 2n with x0 = −4 and x1 = −6.

We have already solved the homogeneous equation, and note that 2n

is not a solution. So we can just try xn = a2n, and then we need

a2n+1 − 4a2n + 3a2n−1 = 2n,

or

4a− 8a + 3a = 4,

i.e. we want a = −4, so the general solution is

A + B3n − 2n+2.

The initial conditions require

x0 = A + B − 4 = −4 and A + 3B − 8 = −6,
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which implies that A = −1, B = 1, and the solution is

xn = 3n − 2n+2 − 1.

(iv)

xn+1 − 4xn + 3xn−1 = 3n with x0 = 2 and x1 = 13/2.

Now, 3n is a solution of the homogeneous equation. So we have to
try xn = an3n. So

xn−1 = a(n− 1)3n−1 and xn+1 = a(n + 1)3n+1,

and we want

an3n+1 + a3n+1 − 4an3n + 3an3n−1 − 3a3n−1 = 3n,

which tidies up to give

a3n+1 − a3n = 3n,

or 2a = 1, i.e. a = 1/2. So the general solution is

xn = A + B3n +
n3n

2
.

The initial conditions,

x0 = A + B = 2 and x1 = A + 3B +
3
2

=
13
2

imply that A = 1
2 and B = 3

2 , and therefore

xn =
1 + 3n+1 + n3n

2
.

(v)

xn+2 − 2xn+1 + xn = 1 with x0 = 3 and x1 = 6.

To solve the homogeneous equation

xn+2 − 2xn+1 + xn = 0

we try xn = kn. Then

k2 − 2k + 1 = 0

which gives k = 1 twice. So the complementary function is

A(1n) + Bn(1n) = A + Bn.

To try to find a particular solution we can’t try xn = c, since this
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would be a solution of the homogeneous equation; nor can we try
xn = cn, since this also solves the homogeneous equation. So we
have to try xn = cn2. Substituting this in we get

c[n2 + 4n + 4− 2(n2 + 2n + 1) + n2] = 2c = 1,

so we want c = 1/2 and the general solution is

A + Bn +
n2

2
.

The initial conditions require us to choose A and B such that

x0 = A = 3 and x1 = A + B +
1
2

= 6,

i.e. A = 3 and B = 5/2: the solution is

xn =
6 + 5n + n2

2
.

(vi)

xn+2 + xn = 2n with x0 = x1 = 0.

In order to solve the homogeneous equation

xn+2 + xn = 0,

we put xn = kn and find that k must satisfy k2 = −1. The roots are
±i = e±iπ/2, and so the solution is

xn = A sin(nπ/2) + B cos(nπ/2).

To find the particular solution note that 2n is not a solution of the
homogeneous equation, so we can just try xn = a2n, and need

a2n+2 + a2n = 2n,

or 5a = 1. So the general solution is

A sin(nπ/2) + B cos(nπ/2) +
2n

5
.

To fit the initial conditions we take

x0 = B = 0 and x1 = A +
2
5

= 0,

so

xn =
2n − 2 sin(nπ/2)

5
.
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(vii)

xn+2 + xn+1 + xn = c.

To solve

xn+2 + xn+1 + xn = 0

we put xn = kn and get

k2 + k + 1 = 0.

The solutions of this are

k =
−1±√1− 4

2
k = −1

2
± i
√

3
2

.

Rewriting this in modulus and argument form gives

k = e±i2π/3,

and so

xn = A cos 2nπ/3 + B sin 2nπ/3.

We now try xn = C, and then 3C = c, which implies that C = c/3,
giving the solution

xn =
c

3
+ A cos 2nπ/3 + B sin 2nπ/3.

Exercise 22.5 Find the solution of the difference equation

xn+1 = xn(1 + xn),

with x1 = 1. Now show that if x1 = c then

xn = c
Γ(c + n)
Γ(c + 1)

,

where the Γ function, which was defined in Exercise 20.8, satisfies Γ(x+1) =
xΓ(x).

When x1 = 1 we have

x1 = 1, x2 = 2 · 1, x3 = 3 · 2 · 1, . . .

and so xn = n!. To check this using induction, we know that x1 = 1 = 1.
Now suppose that xk = k!; then xk+1 = (k + 1)k! = (k + 1)!. It follows that
xn = n! for all n, as claimed.

If x1 = c then

x2 = c(c+1), x3 = c(c+1)(c+2), x4 = c(c+1)(c+2)(c+3), . . . .
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It follows that xn = cΓ(c+n)/Γ(c+1), which is simple to check by induction,
since x1 = c, and if xk = cΓ(c + k)/Γ(c + 1),

xk+1 =
c(c + k)Γ(c + k)

Γ(c + 1)
=

cΓ(c + k + 1)
Γ(c + 1)

= xk+1,

as required.
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Nonlinear first order difference equations

Exercise 23.1 Show that there is an orbit of period 3 containing the point
x = 1 for the difference equation

xn+1 =
14
3

x2
n −

13
2

xn +
7
3
.

We have

f(1) =
14
3
− 13

2
+

7
3

=
1
2
,

f2(1) = f(1
2) =

14
3

1
4
− 13

2
1
2

+
7
3

=
1
4
,

f3(1) = f(1/4) =
14
3

1
16
− 13

2
1
4

+
7
3

= 1,

and so there is a periodic orbit of period 3, consisting of the points 1, 1
2 , and

1/4.

Exercise 23.2 Suppose that the differential equation ẋ = f(x) has a sta-
tionary point x∗ where f ′(x∗) < 0. We saw that the point x∗ is a stable fixed
point for

xn+1 = xn + hf(xn).

provided that h < 1/|f ′(x∗)|. Assuming that x0 is sufficiently close to x∗,
show that if h > 1/(2|f ′(x∗)|) then xn is alternately greater than and less
than x∗, while if h < 1/(2|f ′(x∗)|) the orbit xn approaches x∗ monotonically.

200
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Writing xn = x∗ + δn we have

x∗ + δn+1 = x∗ + δn + hf(x∗ + δn)

= x∗ + δn + hf(x∗) + hf ′(x∗)δn + . . . ,

and so, since f(x∗) = 0, if we drop the higher order terms (which are very
small when δn is small), we obtain

δn+1 = (1 + hf ′(x∗))δn.

If 1/(2|f ′(x∗)|) < h < 1/|f ′(x∗)| then, since f ′(x∗) < 0, we have

−1 < 1 + hf ′(x∗) < 0,

and so the sign of δn switches between successive values of n; while if h <

1/(2|f ′(x∗|) we have 0 < 1+hf ′(x∗) < 1, and the sign of δn doesn’t change.

Exercise 23.3 In this question we consider the trapezoidal Euler method

xn+1 = xn + 1
2h[f(xn) + f(xn+1)].

Show that xn+1 = xn = x∗ if and only if f(x∗) = 0, i.e. that the fixed
points of the numerical scheme coincide with the stationary points of the
differential equation ẋ = f(x).

Using the chain rule show that

dxn+1

dxn
=

1 + 1
2hf ′(xn)

1− 1
2hf ′(xn+1)

,

and hence that a fixed point x∗ is stable if f ′(x∗) < 0 and unstable if f ′(x∗) >

0, i.e. that whatever the timestep the stability coincides with that of the
corresponding stationary point in the differential equation.

For the trapezoidal Euler method

xn+1 = xn + 1
2h[f(xn) + f(xn+1)],

we have a fixed point xn = xn+1 = x∗ if

x∗ = x∗ + 1
2h[f(x∗) + f(x∗)],

i.e. if f(x∗) = 0. So the fixed points of the numerical scheme are the same
as those of the differential equation ẋ = f(x).

Applying the chain rule we differentiate both sides with respect to xn and
obtain

dxn+1

dxn
= 1 + 1

2h

[
f ′(xn) + f ′(xn+1)

dxn+1

dxn

]
,
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Rearranging this we have

dxn+1

dxn
=

1 + 1
2hf ′(xn)

1− 1
2hf ′(xn+1)

.

The fixed point is stable provided that at xn = x∗ this derivative has
modulus less than 1. Since x∗ is a fixed point we also have xn+1 = x∗, and
so the fixed point is stable if

∣∣∣∣∣
1 + 1

2hf ′(x∗)
1− 1

2hf ′(x∗)

∣∣∣∣∣ < 1,

which is the same as

|1 + 1
2hf ′(∗)| < |1− 1

2hf ′(x∗)|.

Squaring both sides we obtain

1 + hf ′(x∗) +
1
4
h2f ′(x∗)2 < 1− hf ′(x∗) +

1
4
h2f ′(x∗),

i.e. if f ′(x∗) < 0. In a similar way we obtain instability of x∗ whenever
f ′(x∗) > 0. So the stability of the fixed points coincides with that of the
stationary points of the original differential equation whatever the value of
h.

Exercise 23.4 (T) It follows from the definition of the derivative that

f(x∗ + h) = f(x∗) + f ′(x∗)h + o(h),

where o(h) indicates that the remainder terms satisfy

o(h)
h

→ 0 as h → 0.

In particular, given ε > 0 there exists a δ > 0 such that

|o(h)| ≤ εh

for all |h| ≤ δ. Use this to show rigorously that a fixed point x∗ of xn+1 =
f(xn) is stable if |f ′(x∗)| < 1 and unstable if |f ′(x∗)| > 1. (Recall that a fixed
point x∗ is stable if given an ε > 0 there exists a δ > 0 such that whenever
|x0 − x∗| < δ we have |fn(x0) − x∗| < ε for all n = 0, 1, . . .. In fact you
should be able to show that when |f ′(x∗)| < 1 the fixed point is attracting.)
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If we write xn = x∗ + δn then we have

x∗ + δn+1 = xn+1 = f(xn) = f(x∗ + δn)

= f(x∗) + f ′(x∗)δn + o(δn)

= x∗ + f ′(x∗)δn + o(δn),

and so

δn+1 = f ′(x∗)δn + o(δn).

Now choose ε = 1
2 |f ′(x∗)− 1|, and then δ∗ small enough that |o(h)| ≤ εh for

all h with |h| ≤ δ∗; this means that if |δn| ≤ δ∗ then

δn+1 = [f ′(x∗) + g(δn)]δn, (S23.1)

where |g(δn)| < ε for |δn| < δ∗.
By the way we have chosen ε, for all |δn| < δ∗ we have

|f ′(x∗) + g(δn)| < 1 if |f ′(x∗)| < 1,

and

|f ′(x∗) + g(δn)| > 1 if |f ′(x∗)| > 1.

It follows by iterating (S23.1) that if |f ′(x∗)| < 1 then δn → 0 as n → ∞,
and so x∗ is stable; while if |f ′(x∗)| > 1 then |δn| → ∞ as n → ∞, so that
xn leaves any small neighbourhood of x∗, showing that x∗ is unstable.

Exercise 23.5 (T) Suppose that f has a periodic orbit of order k, consisting
of the points {x1, . . . , xk}. Show that each of the points on the orbit is a fixed
point for the map g(x) = fk(x).

A periodic orbit is said to be stable if each point on the orbit is a stable
fixed point of fk. Show that a periodic orbit {x1, x2} of period 2 is stable
provided that

|f ′(x1)f ′(x2)| < 1,

and that a periodic orbit {x1, . . . , xk} of period k is stable provided that

|f ′(x1)f ′(x2) · · · f ′(xk−1)f ′(xk)| < 1.

Note in particular that if one point on the orbit is a stable fixed point of fk

then so are all the others.

If f(x) has a periodic orbit of period k, {x1, . . . , xk}, then

xj = f j(x1) and fk(x1) = x1.
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Applying f j to both sides of fk(x1) = x1 shows that

fk(xj) = fk+j(x1) = f j+k(x1) = f j(x1) = xj ,

so all the points on the orbit are fixed points of fk.
Each element of a periodic orbit of period 2, {x1, x2}, is a fixed point of

the map g = f2. By definition this orbit is stable if |g′(xj)| < 1. Now,

g(x) = f(f(x)),

and so using the chain rule

g′(x) = f ′(f(x))f ′(x).

It follows that x1 lies on a stable periodic orbit if

|g′(x1)| = |f ′(f(x1))f ′(x1)| = |f ′(x2)f ′(x1)| < 1;

we obtain the same condition starting with x2, since f(x2) = x1.
If g = fk then we have

g(x) = f(f(· · · f(f(︸ ︷︷ ︸
k times

x)) · · ·)),

and so

g′(x) = f ′(fk−1(x))f ′(fk−2(x)) · · · f ′(x).

A periodic orbit is stable if |g′(xj)| < 1, i.e. if

|g′(x1)| = |f ′(fk(xj))f ′(fk−1(xj)) · · · f ′(xj)|
= |f ′(xj−1)f ′(xj−2) · · · f ′(x1)f ′(xk) · · · f ′(xj)|
= |f ′(x1) · · · f ′(xk)| < 1.

Exercise 23.6 (T) Consider the iterated map

yn+1 = f(yn) = ryn + y2
n

for r ≤ 0. Find the two fixed points, and show that the fixed point at y = 0
is stable for −1 < r ≤ 0 and unstable for r < −1.

Show that if y lies on an orbit of period 2 then

y2 + (r + 1)y + (r + 1) = 0,

and deduce that there is a period 2 orbit if r < −1. [Hint: we must have
f2(y) = y, and you can factorise the resulting equation since f(0) = 0 and
f(1− r) = 1− r.]
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If y1 and y2 are the points on this orbit, show that

f ′(y1)f ′(y2) = 4 + 2r − r2,

and hence that this orbit is stable for 1−√6 < r < −1.

There are two fixed points, i.e. values of y for which y = f(y) = ry + y2.
One is y = 0, and the other is y = 1− r.

The stability of the fixed point at y = 0 is determined by the modulus of
f ′(0). Since f ′(0) = r, this fixed point is stable if −1 < r ≤ 0 and unstable
for r < −1.

If y lies on an orbit of period 2 then f2(y) = y, so

r[ry + y2] + [ry + y2]2 = y.

This implies that

r2y + ry2 + r2y2 + 2ry3 + y4 = y,

and so, cancelling a factor of y (this would give the fixed point at y = 0) we
have

y3 + 2ry2 + (r + r2)y + (r2 − 1) = 0.

Since y = 1− r is also a solution, a factor of this equation will be y− 1 + r:

(y − 1 + r)(y2 + (r + 1)y + (r + 1)) = 0.

The initial factor gives the fixed point at 1 − r, so there will be a periodic
orbit of period 2 if

y2 + (r + 1)y + (r + 1) = 0 (S23.2)

has a solution; since the solution is

y =
−(r + 1)±

√
(r + 1)2 − 4(r + 1)

2
,

for this solution to be real we require

(r + 1)2 − 4(r + 1) > 0 ⇒ r2 − 2r − 3 > 0,

which implies that r < −1.
If y1 and y2 are the points on this orbit then we have

f ′(y1)f ′(y2) = (r + 2y1)(r + 2y2) = r2 + 2r(y1 + y2) + 4y1y2.

Since y1 and y2 are the solutions of (S23.2), it follows that

y1 + y2 = −(r + 1) and y1y2 = (r + 1).
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[You can see this if you expand (y − y1)(y − y2) = 0 and compare with
(S23.2).] So therefore

f ′(y1)f ′(y2) = r2 − 2r(r + 1) + 4(r + 1) = −r2 + 2r + 4.

Using the result of Exercise 23.5, this orbit is stable provided that

| − r2 + 2r + 4| < 1.

The maximum value of the expression in the modulus signs is when r = −1,
and is 1; the expression has the value −1 when

−r2 + 2r + 4 = −1,

i.e. when r2 − 2r − 5 = 0,

r =
2±√4 + 20

2
= 1±

√
6.

So this periodic orbit is stable while 1−√6 < r < −1.

Exercise 23.7 (C) Apply Euler’s method with timestep h to the equation
ẋ = x(k − x) (cf. Exercise 7.6). Investigate how the stability of the fixed
points depends on k and h. Now implement this Euler scheme numerically
and verify your results (e.g. compare the cases k = 1 and k = 3 with timestep
h = 1). (You could adapt the MATLAB M-file euler.m, which is available on
the web.)

Euler’s method applied to this equation gives rise to the map

xn+1 = g(xn) := xn + hxn(k − xn).

The fixed points of this map are the same as the stationary points of the
differential equation ẋ = x(k − x), namely zero and k.

To investigate the stability of the fixed points we consider

g′(x) = 1 + hk − 2hx

at the two fixed points. We have

g′(0) = 1 + hk and g′(k) = 1− hk.

We saw in Exercise 7.6 that for k < 0 the origin is stable and x = k is
unstable, while for k > 0 the origin is unstable and x = k is stable.

For Euler’s method, the origin will be stable if

|g′(0)| = |1 + hk| < 1,
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i.e. if −2 < hk < 0, and unstable otherwise. The fixed point at x = k will be
unstable if |1−hk| > 1, so for any choice of k < 0 (h is always positive), and
also if hk > 2. Thus for a fixed h the fixed points have the correct stability
properties for |k| < 2/h, while to ensure the correct stability properties for
a fixed k we need to take h < 2/|k|.

The output shown graphically in Figure 23.1 (k = 1 and h = 1 with
the correct stability properties) and Figure 23.2 (k = 3 and h = 1 with
strange stability properties) was produced by the two M-files tccobweb.m
and tcgraph.m.
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Fig. 23.1. Successive values of xn (on the left) and the cobweb diagram (on the
right) for the map xn+1 = xn + xn(1 − xn). The fixed points have the same
stability properties as those of the corresponding differential equation ẋ = x(1−x).
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Fig. 23.2. Successive values of xn (on the left) and the cobweb diagram (on the
right) for the map xn+1 = xn + xn(3 − xn). Although zero is still unstable, the
fixed point at x = 3 is also unstable, in contrast to the behaviour of the differential
equation ẋ = x(3− x).
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The logistic map

Exercise 24.1 Consider the iterated map

xn+1 = rxn(1− x2
n).

Show that for 0 < r < 3
√

3/2 if 0 ≤ xn ≤ 1 then 0 ≤ xn+1 ≤ 1. Show that
if r < 1 then the only fixed point in [0, 1] is zero, and that this is stable.

When r > 1 there is another fixed point in [0, 1]. Find the value of this
fixed point (as a function of r). For which values of r is it stable, and for
which values is it unstable?

What would you expect to happen when r > 2?

Clearly xn+1 ≥ 0. The thing to check is the maximum value of f(x) =
rx(1− x2) for x ∈ [0, 1]. This occurs when f ′(x) = 0, and

f ′(x) = r(1− 3x2).

So the maximum is always at x = 1/
√

3, and is 2r/3
√

3. So this is no greater
than 1 provided that r ≤ 3

√
3/2 as claimed.

The fixed points are given by x = f(x), so are solutions of

x = rx(1− x2).

One of them is x = 0, leaving 1 = r − rx2, or x2 = (r − 1)/r. When r < 1
there is only one fixed point at x = 0, since the quadratic equation has no
real root.

The stability of this fixed point can be found by considering f ′(x) at
x = 0. We have f ′(0) = r, so for r < 1 the fixed point will be stable (while
for r > 1 it will be unstable).

When r > 1 there is another fixed point in [0, 1], namely
√

1− (1/r). If
we look at

f ′(1− (1/r)) = 3− 2r

208
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we can see that this point is stable when 1 < r < 2 and unstable once r > 2.
For r > 2 we would expect an orbit of period 2, then period 4, then 8...

the “period doubling cascade”.

Exercise 24.2 (C) Use the M-files logistic.m (which draws cobweb dia-
grams), xnvsn.m (which plots successive values of xn vs n), and bifurcation.m
(which draws the bifurcation diagram for a given range of r) to investigate
the dynamics of the logistic map. Modify the programs to investigate the
dynamics of the map in the previous exercise.

The figures below show some of the behaviour of the map

xn+1 = rxn(1− x2
n)

which was the subject of the previous exercise. There we saw that for r < 1
the origin is stable, as shown in Figure 24.1.
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Fig. 24.1. The cobweb diagram for r = 0.5. The origin is the only fixed point, and
it is stable.

For r > 1 the origin loses stability, and there is a new fixed point which
is stable while r < 2. This shown in Figure 24.2.

When r > 2 the non-zero fixed point loses stability, and a stable periodic
orbit of period 2 appears (see Figure 24.3).

As predicted above, the period-doubling sequence then sets in: Figure
24.4 shows an orbit of period 4, and Figure 24.5 has an orbit of period 8.

Beyond a critical value of r the orbits appear to be chaotic, as shown in
Figure 24.6 for r = 2.5.

Figure 24.7 shows the bifurcation diagram for this equation for all allow-
able values of r (0 ≤ r ≤ 3

√
3/2), while Figure 24.8 shows the ‘interesting’

region where r > 1.9.
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Fig. 24.2. The cobweb diagram for r = 1.5. The new non-zero fixed point is now
stable, and the origin is unstable.
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Fig. 24.3. The cobweb diagram when r = 2.1: there is a stable periodic orbit of
period 2.

Having the bifurcation diagram allows us to find other parameter values
with interesting behaviour. For example, there is a stable periodic orbit of
period three for r = 2.46, as shown in Figure 24.9.

Exercise 24.3 (C & T) The M-file f2.m plots the graph of f(x) and of f2(x)
in the left-hand Figure, and the graph of f2 restricted to the little box in a
blown-up version on the right (see Figure 24.14). By looking at a succession
of pictures as r increases from 0 to 4, observe that the rescaled version of
f2 behaves in the same way that f does as r increases. This can be made
precise, and explains the period doubling cascade. Since the fixed point of f

becomes unstable and gives rise to a period 2 orbit, the same thing happens
to f2: its fixed point (a period 2 orbit for f) becomes unstable and gives
rise to a period 2 orbit (a period 4 orbit for f). Since whatever happens
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Fig. 24.4. A stable periodic orbit of period 4 when r = 2.25.
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Fig. 24.5. A stable periodic orbit of period 8 when r = 2.29.

to f happens to f2, whatever happens to f2 happens to (f2)2 = f4: its
fixed point (a period 4 orbit for f) will become unstable and give rise to a
period 2 orbit (a period 8 orbit for f). Similar reasoning holds for each
orbit of period 2k, showing that it becomes unstable and produces an orbit
of period 2k+1. The map formed by restricting f2 to the little box, and then
rescaling to the interval [0, 1], is known as the renormalisation of f . You
can investigate the dynamics of the renormalised map as r changes using
the M-file renormalised.m.

We know that for r < 3 there are no periodic orbits, and the non-zero
fixed point is stable. So f2 should only have fixed point at the origin and
at the non-zero fixed point. This is shown in Figure 24.10 when r = 2.5.
The process of creating a new map from the old one by looking at the
little box and then blowing it up is called ‘renormalisation’. The M-file
renormalised.m enables you to investigate the dynamics of this map as r
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Fig. 24.6. A chaotic orbit when r = 2.5.
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Fig. 24.7. The bifurcation diagram for the map xn+1 = rxn(1−x2
n). Thirty points

on the orbit (after an initial 500 iterations) are plotted on the vertical axis for a
range of values of r.

is varied (the sequence of pictures will match that in the text for the logistic
map itself, and the sequence above for the cubic version of Exercise 24.1, so
we will not repeat the whole set here).

When r > 3, however, a periodic orbits of period 2 appears. This situation
is shown in Figure 24.12, and the cobweb diagram for the renormalised map
in Figure 24.13.

When the period 2 orbit becomes unstable for f , this means that fixed
point of f2 will become unstable and give rise to an orbit of period 2, as
illustrated in Figure 24.14.
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Fig. 24.8. The more ‘interesting’ part of Figure 24.7 showing greater detail for
1.9 ≤ r ≤ 3

√
3/2.
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Fig. 24.9. A stable orbit of period 3 when r = 2.46.
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Fig. 24.10. For r < 3 (in the figure r = 2.5) there are no periodic orbits, and f2

has no fixed points ‘of its own’, merely inheriting those of f . On the left is the
graph of f and f2 (in bold), while on the right the ‘renormalised’ map only has the
uninteresting fixed point at the origin, as shown in Figure ??.
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Fig. 24.11. The renormalised map when r = 2.5 has only a fixed point at zero.
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Fig. 24.12. On the left is the graph of f and f2 (in bold) for r = 1 +
√

5. On the
right is a magnified version of the box in the left-hand Figure, showing that f2 has
a new fixed point.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 24.13. The phase diagram for the renormalised map when r = 1 +
√

5; this
now has a non-zero fixed point, corresponding to a period 2 orbit.
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Fig. 24.14. For r = 3.5 there is in fact an orbit of period 4. The non-zero fixed
point of the ‘renormalised’ map in the right-hand picture is in fact now unstable,
as can be seen in the cobweb diagram of Figure 24.15.
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Fig. 24.15. The cobweb diagram of the renormalised map when r = 3.5: this map
has a periodic orbit of period 2, corresponding to an orbit of period 4 for f .
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Vector first order equations and higher order
equations

Exercise 25.1 By choosing an appropriate collection of new variables x1, . . . xn

rewrite the nth order differential equation

dnx

dtn
= f

(
dn−1x

dtn−1
, . . . ,

dx

dt
, x, t

)

as a set of n coupled linear first order equations. Find the conditions on
the function f(xn, . . . , x1, t) for the original differential equation to have a
unique solution.

We set x1 = x, x2 = ẋ, and in general xj = dj−1x/dtj−1. Then we can
write

ẋ1 = x2

ẋ2 = x3

... =
...

ẋn−1 = xn

ẋn = f(xn−1, . . . , x2, x1, t).

With x = (x1, . . . , xn) and

f(x) = (x2, x3, . . . , f(xn−1, . . . , x1, t)),

we can rewrite the original nth order equation as

dx
dt

= f(x).

The equation has a unique solution provided that f and its partial derivatives
are continuous functions of x and t. Since the first n − 1 components of f
clearly satisfy these conditions, we only require that f and ∂f/∂xj for each
j = 1, . . . , n are continuous functions of x = (x1, . . . , xn) and t.
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Exercise 25.2 Suppose that f is a Lipschitz function of x, i.e. that for some
L > 0

|f(x)− f(y)| ≤ L|x− y|.
Use an argument similar to that of Exercise 6.3 to show that if x(t) and y(t)
are two solutions of

dx/dt = f(x) with x(0) = x0 (S25.1)

and z(t) = x(t)− y(t) then

d
dt
|z|2 ≤ 2L|z|2,

and hence that the solution of (S25.1) is unique. [You might find the Cauchy-
Schwarz inequality |a · b| ≤ |a||b| useful.]

Suppose that x(t) and y(t) satisfy

dx/dt = f(x) with x(0) = x0

and

dy/dt = f(y) with y(0) = x0.

Then, if z = x− y we have

dz/dt = f(x)− f(y) and z(0) = 0.

Taking the inner product of the equation with z we have

1
2

d
dt
|z|2 = z · [f(x)− f(y)],

and so

1
2

d
dt
|z|2 ≤ |x · [f(x)− f(y)]| ≤ |z||f(x)− f(y)|

≤ L|z|2,
using the Lipschitz condition on f ,

|f(x)− f(y)| ≤ L|x− y|.
It follows that d|z|2/dt ≤ 2L|z|2, and so, using the result of Exercise 9.7,

we must have

|z(t)|2 ≤ e2Lt|z(0)|2.
However, z(0) = 0, from which it follows that z(t) = 0 for all t, and so
x(t) = y(t) for all t: the solutions are unique.
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Explicit solutions of coupled linear systems

Exercise 26.1 Find the general solutions of the following differential equa-
tions by converting them into a single second-order equation. Also find the
solution that satisfies the given initial conditions.

(i)

ẋ = 4x− y

ẏ = 2x + y + t2,
x(0) = 0 and y(0) = 1;

(ii)

ẋ = x− 4y + cos 2t
ẏ = x + y,

x(0) = 1 and y(0) = 1;

(iii)

ẋ = 2x + 2y

ẏ = 6x + 3y + et,
x(0) = 0 and ẋ(0) = 1;

(iv)

ẋ = 5x− 4y + e3t

ẏ = x + y,
x(0) = 1 and y(0) = −1;

(v)

ẋ = 2x + 5y

ẏ = −2x + cos 3t,
x(0) = 2 and y(0) = −1;

(vi)

ẋ = x + y + e−t

ẏ = 4x− 2y + e2t,
y(0) = −1 and x(0) = 1;

and

219
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(vii)

ẋ = 8x + 14y

ẏ = 7x + y,
x(0) = y(0) = 1.

(i)

ẋ = 4x− y

ẏ = 2x + y + t2,
with x(0) = 0 and y(0) = 1.

From the first equation we have y = 4x − ẋ, and so ẏ = 4ẋ − ẍ.
Substituting these expressions into the equation for y we obtain

4ẋ− ẍ = 2x + [4x− ẋ] + t2,

and so

ẍ− 5ẋ + 6x = −t2.

We can find the solution of the homogeneous equation

z̈ − 5ż + 6z = 0

by trying z = ekt, and then k2 − 5k + 6 = 0. This gives k = 2 or
k = 3, and so the complementary function is z(t) = Ae2t + Be3t. To
find the particular integral we try

xp(t) = Ct2 + Dt + E,

for which

ẋp(t) = 2Ct + D and ẍp(t) = 2C.

We therefore want

2C − 5[2Ct + D] + 6[Ct2 + Dt + E] = −t2,

which implies that

6C = −1, −10C + 6D = 0, and 2C − 5D + 6E = 0,

i.e. C = −1/6, D = −5/18, and E = −19/18. We therefore have

x(t) = Ae2t + Be3t − 3t2 + 5t + 19
18

.

Since y = 4x− ẋ we have

y(t) = 4Ae2t + 4Be3t − 4(3t2 + 5t + 19)
18

− 2Ae2t − 3Be3t +
6t5
18

= 2Ae2t + Be3t − 12t2 + 14t + 71
18

.
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Now in order to satisfy the initial conditions we require

x(0) = A + B − 19
18

= 0 and y(0) = 2A + B − 71
18

= 1.

This gives A = 6, B = −89/18, and the solution

x(t) = 6e2t − 89e3t + 3t2 + 5t + 19
18

y(t) = 12e2t − 89e3t − 12t2 − 14t− 71
18

.

(ii)

ẋ = x− 4y + cos 2t
ẏ = x + y

with x(0) = 1 and y(0) = 1.

From the second equation we have x = ẏ − y, and so ẋ = ÿ − ẏ.
Substituting these into the equation for ẋ we obtain

ÿ − ẏ = ẏ − y − 4y + cos 2t,

or

ÿ − 2ẏ + 5y = cos 2t.

In order to solve this we first find the solution of the homogeneous
equation

z̈ − 2ż + 5z = 0

by trying z(t) = ekt. This gives the auxiliary equation for k,

k2 − 2k + 5 = 0,

with solutions k = 1± 2i. Therefore

z(t) = et(A cos 2t + B sin 2t).

For a particular integral we try yp(t) = C cos 2t + D sin 2t, and then
we have

ẏp(t) = −2C sin 2t+2D cos 2t and ÿp(t) = −4C cos 2t−4D sin 2t.

Substituting these into the equation we require

[−4C cos 2t− 4D sin 2t]− 2[−2C sin 2t + 2D cos 2t]

+5[C cos 2t + D sin 2t]

= cos 2t[C − 4D] + sin 2t[D + 4C]

= cos 2t,
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i.e. we need

C − 4D = 1 and D + 4C = 0,

which implies that C = 1/17 and D = −4/17, and so

y(t) = et(A cos 2t + B sin 2t) +
cos 2t− 4 sin 2t

17
.

Now we can recover x(t) using x = ẏ − y, giving

x(t) = et[2B cos 2t− 2A sin 2t]− 7 cos 2t + 6 sin 2t
17

.

In order to satisfy the initial conditions we now need

x(0) = 2B − 7
17

= 1 and y(0) = A +
1
17

= 1,

which gives A = 16/17, B = 12/17, and the solution

x(t) =
et(24 cos 2t− 32 sin 2t)− 7 cos 2t + 6 sin 2t

17

y(t) =
et(16 cos 2t + 12 sin 2t) + cos 2t− 4 sin 2t

17
.

(iii)

ẋ = 2x + 2y

ẏ = 6x + 3y + et with x(0) = 0 and ẋ(0) = 1.

From the first equation we have y = 1
2 ẋ− x, ẏ = 1

2 ẍ− ẋ, and so

1
2 ẍ− ẋ = 6x + 3[12 ẋ− x] + et,

which is

ẍ− 5ẋ− 6x = 2et.

First we solve the homogeneous problem z̈−5ż−6z = 0 by setting
z = ekt; we obtain two roots k = −1 and k = 6 as the solutions of
k2 − 5k − 6 = 0, giving the complementary function

z(t) = Ae−t + Be6t.

To find a particular integral we try xp(t) = Cet, and so we require
−10C = 2, or C = −1/5. So the solution for x(t) is

x(t) = Ae−t + Be6t − et

5
.
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Using y = 1
2 ẋ− x we therefore have

y(t) = 1
2

[
−Ae−t + 6Be6t − et

5

]
−

[
Ae−t + Be6t − et

5

]

= −3Ae−t

2
+ 2Be6t +

et

10
.

Now we satisfy the initial conditions, by taking

x(0) = A + B − 1
5

= 0 and ẋ(0) = −A + 6B − 1
5

= 1,

i.e. B = 1/5 and A = 0, yielding the solution

x(t) =
e6t − et

5

y(t) =
4e6t + et

10
.

(iv)

ẋ = 5x− 4y + e3t

ẏ = x + y
with x(0) = 1 and y(0) = −1.

From the second equation we have x = ẏ − y and ẋ = ÿ − ẏ; substi-
tuting these into the first equation we obtain

ÿ − ẏ = 5[ẏ − y]− 4y + e3t,

which simplifies to give

ÿ − 6ẏ + 9y = e3t.

The solution of the homogeneous equation

z̈ − 6ż + 9z = 0

can be found by setting z = ekt. From this we obtain the auxiliary
equation k2 − 6k + 9 = 0, which has a repeated root k = 3. The
complementary function is therefore

z(t) = Ae3t + Bte3t.

In order to find a particular integral we have to try yp(t) = Ct2e3t.
For this guess we have

ẏp(t) = C(3t2 + 2t)e3t and ÿp(t) = C(9t2 + 12t + 2)e3t,

and so we need

C[(9t2 + 12t + 2)− 6(3t2 + 2t) + 9t2] = 1,
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i.e. C = 1
2 . It follows that

y(t) = (A + Bt + 1
2 t2)e3t,

and so, using x = ẏ − y, we also have

x(t) = e3t[(2A + B) + (2B + 1)t + t2].

Choosing A and B to satisfy the initial conditions we require

x(0) = 2A + B = 1 and y(0) = A = −1,

i.e. A = −1, B = 3, and the solution is

x(t) = e3t(1 + 7t + t2)

y(t) = e3t(−1 + 3t + 1
2 t2).

(v)

ẋ = 2x + 5y

ẏ = −2x + cos 3t
with x(0) = 2 and y(0) = −1.

From first equation we have y = (ẋ− 2x)/5, and so

ẍ− 2ẋ

5
= −2x + cos 3t,

or more neatly

ẍ− 2ẋ + 10x = 5 cos 3t.

Solving the homogeneous equation z̈− 2ż +10z = 0 using the substi-
tution z(t) = ekt yields the auxiliary equation

k2 − 2k + 10 = 0,

which has roots k = 1± 3i, and so the complementary function is

z(t) = et(A cos 3t + B sin 3t).

For the particular integral we try xp(t) = C cos 3t + D sin 3t, so

ẋp(t) = −3C sin 3t+3D cos 3t and ẍp(t) = −9C cos 3t−9D sin 3t.

Substituting these into the equation gives

(−9C cos 3t− 9D sin 3t)− 2(−3C sin 3t + 3D cos 3t)

+10(C cos 3t + D sin 3t)

(C − 6D) cos 3t + (D + 6C) sin 3t = 5 cos 3t,
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and so

C − 6D = 5 and D + 6C = 0.

This implies that C = 5/37, D = −30/37, and so

x(t) = et(A cos 3t + B sin 3t) +
5 cos 3t− 30 sin 3t

37
.

Now, using y = (ẋ− 2x)/5, we have

y(t) =
1
5

(
et([3A + B] cos 3t + [3B −A] sin 3t)

−30 sin 3t + 90 cos 3t
37

− 2et(A cos 3t + B sin 3t)

−10 cos 3t− 60 sin 3t
37

)

=
1
5

(
et([A + B] cos 3t + [B −A] sin 3t)

+
30 sin 3t− 100 cos 3t

37

)
.

Now for the initial conditions we want

x(0) = A +
5
37

= 2 and y(0) =
1
5

(
A + B − 100

37

)
= −1,

which implies that A = 69/37, B = −154/37, and the solution is

x(t) =
et(69 cos 3t− 154 sin 3t) + 5 cos 3t− 30 sin 3t

37

y(t) =
et(−17 cos 3t− (223/5) sin 3t) + 6 sin 3t− 20 cos 3t

37
.

(vi)

ẋ = x + y + e−t

ẏ = 4x− 2y + e2t with x(0) = 1 and y(0) = −1.

From the first equation we have y = ẋ− x− e−t, so

ẏ = ẍ− ẋ + e−t,

and substituting these into the equation for ẏ we obtain

ẍ− ẋ + e−t = 4x− 2[ẋ− x− e−t] + e2t,

which is just

ẍ + ẋ− 6x = e−t + e2t.
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In order to solve the homogeneous equation

z̈ + ż − 6z = 0

we put z = ekt and obtain the auxiliary equation k2 +k−6 = 0, with
solutions k = 2 and k = −3, so that the complementary function is

z(t) = Ae2t + Be−3t.

For a particular integral we can try xp(t) = Ce−t +Dte2t. This gives

ẋp(t) = −Ce−t+D(1+2t)e2t and ẍp(t) = Ce−t+D(4+4t)e2t,

and so we want

C[1− 1− 6]e−t + D[4 + 4t + 1 + 2t− 6t] = e−t + e2t,

which implies that C = −1/6, D = 1/5, and

x(t) = Ae2t + Be−3t − 1
6
e−t +

1
5
te2t.

We can now obtain y(t) using y = ẋ− x− e−t:

y(t) = Ae2t − 2Be−3t − 2
3
e−t +

1
5
(t + 1)e2t.

For the initial conditions we require

x(0) = A + B − 1
6

= 1 and y(0) = A− 2B − 2
3

+
1
5

= −1.

The solutions of these equations for A and B are A = 18/30 and
B = 17/30, and so

x(t) =
18e2t + 17e−3t − 5e−t + 6te5t

30

y(t) =
24e2t − 34e−3t − 20e−t + 6te2t

30
.

(vii)

ẋ = 8x + 14y
ẏ = 7x + y

with x(0) = y(0) = 1.

We have y = (ẋ− 8x)/14, and so

ẍ− 8ẋ = 98x + ẋ− 8x,

which simplifies to give

ẍ− 9ẋ− 90x = 0.
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Trying x(t) = ekt we obtain the auxiliary equation k2 − 9k − 90 = 0,
which has roots k = −6 and k = 15. The solution for x(t) is therefore

x(t) + Ae−6t + Be15t,

while y(t) = (ẋ− 8x)/14, and so

y(t) = −Ae−6t − 1
2Be15t.

In order to satisfy the initial conditions we need

A + B = 1 and −A− 1
2B = 1,

so A = −3, B = 4, and the solution is

x(t) = 4e15t − 3e−6t

y(t) = 3e−6t − 2e15t.
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Eigenvalues and eigenvectors

Exercise 27.1 Find the eigenvectors and eigenvalues of the following ma-
trices:

(i) (
1 2
1 0

)
,

(ii) (
2 2
0 −4

)
,

(iii) (
7 −2
26 −1

)
,

(iv) (
9 2
2 6

)
,

(v) (
7 1
−4 11

)
,

(vi) (
2 −3
3 2

)
,

(vii) (
6 0
0 −13

)
,

228
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(viii)
(

4 −2
1 2

)
,

(ix)
(

3 −1
1 1

)
,

(x)
( −7 6

12 −1

)
.

(i) With

A =
(

1 2
1 0

)

we find the eigenvalues λ by setting |A− λI| = 0, so
∣∣∣∣

1− λ 2
1 −λ

∣∣∣∣ = −λ(1− λ)− 2 = λ2 − λ− 2 = 0.

The solutions are this quadratic equation are the eigenvalues, λ1 =
−1 and λ2 = 2. To find the eigenvector corresponding to λ1 = −1 we
solve (A− λ1I)v = 0,

(
2 2
1 1

)(
v1

v2

)
= 0,

and so v1 + v2 = 0, i.e. v2 = −v1. A representative choice of eigen-
vector is therefore

v1 =
(

1
−1

)
.

For the eigenvector corresponding to λ2 = 2 we consider
( −1 2

1 −2

)(
v1

v2

)
= 0,

which implies that v1 = 2v2, so the eigenvector is

v2 =
(

2
1

)
.
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(ii) The matrix

A =
(

2 2
0 −4

)

is one of those that we can recognise using Example 27.3 as having
eigenvalues that we can simply read off: they are the diagonal ele-
ments λ1 = 2 and λ2 = −4. The eigenvector corresponding to λ1 = 2
is

v1 =
(

1
0

)
.

For the eigenvector corresponding to λ2 = −4 we have to consider
(A− λ2I)v = 0:

(
6 2
0 0

)(
v1

v2

)
= 0,

which gives 6v1 + 2v2 = 0, so v2 = −3v1, and a representative eigen-
vector is

v2 =
(

1
−3

)
.

(iii) With

A =
(

7 −2
26 −1

)

we have

|A− λI| =
∣∣∣∣

7− λ −2
26 −1− λ

∣∣∣∣ = (7− λ)(−1− λ) + 52 = 0.

This simplifies to

λ2 − 6λ + 45 = 0,

with roots

λ =
6±√36− 180

2
= 3± 6i.

Since the eigenvalues form a complex conjugate pair, so do the cor-
responding eigenvectors; so we only have to perform the calculations
to find one of them. We will do this for the eigenvalue λ+ = 3 + 6i.
The eigenvector v+ satisfies (A− λ+I)v+ = 0, so we have

(
4− 6i −2

26 −4− 6i

) (
v1

v2

)
= 0,
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which means that we need (4 − 6i)v1 − 2v2 = 0, so v2 = (2 − 3i)v1,
yielding the eigenvector

v+ =
(

1
2− 3i

)
.

The eigenvector corresponding to λ− = 3−6i is the complex conjugate
of this,

v=

(
1

2 + 3i

)
.

(iv) We now have

A =
(

9 2
2 6

)
,

and so the eigenvalues are the solutions of

|A− λI| =
∣∣∣∣

9− λ 2
2 6− λ

∣∣∣∣ = (9− λ)(6− λ)− 4 = 0.

This gives the quadratic equation

λ2 − 15λ + 50 = 0,

with solutions λ1 = 5 and λ2 = 10. To find the eigenvalue corre-
sponding to λ1 = 5 we consider

(
4 2
2 1

)(
v1

v2

)
= 0,

which implies that 2v1 + v2 = 0, so v2 = −2v1 and the eigenvector is

v1 =
(

1
−2

)
.

For the eigenvector corresponding to λ2 = 10 we want
( −1 2

2 −4

)(
v1

v2

)
= 0,

so we require −v1 + 2v2 = 0, i.e. v1 = 2v2 and the eigenvector is

v2 =
(

2
1

)
.

(v)

A =
(

7 1
−4 11

)
.
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We have

|A− λI| =
∣∣∣∣

7− λ 1
−4 11− λ

∣∣∣∣ = (7− λ)(11− λ) + 4 = 0.

The quadratic equation

λ2 − 18λ + 81 = 0

has a repeated root λ = 9, so there is only one eigenvalue. Conse-
quently we only expect to find one eigenvector, given by

( −2 1
−4 2

)(
v1

v2

)
= 0.

This implies that −2v1 + v2 = 0, so v2 = 2v1 and the eigenvector is

v =
(

1
2

)
.

(vi)

A =
(

2 −3
3 2

)
.

The eigenvalues are the solutions of

|A− λI| =
∣∣∣∣

2− λ −3
3 2− λ

∣∣∣∣ = (2− λ)2 + 9 = λ2 − 4λ + 13 = 0,

so are

λ± =
4±√16− 52

2
= 2± 3i.

The eigenvector corresponding to λ+ = 2 + 3i is given by
( −3i −3

3 −3i

)(
v1

v2

)
= 0,

so we must have −3iv1− 3v2 = 0, i.e. v2 = −iv1 and the eigenvectors
are

v± =
(

1
∓i

)
.

(vii)

A =
(

6 0
0 −13

)
.
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This is a diagonal matrix, as in Example 27.2. The eigenvalues are
λ1 = 6 and λ2 = −13 with corresponding eigenvectors

v1 =
(

1
0

)
and v2 =

(
0
1

)
.

(viii)

A =
(

4 −2
1 2

)
.

To find the eigenvalues consider

|A− λI| =
∣∣∣∣

4− λ −2
1 2− λ

∣∣∣∣ = (4− λ)(2− λ) + 2 = λ2 − 6λ + 10 = 0,

which has solutions

λ± =
6±√36− 40

2
= 3± i.

The eigenvector corresponding to λ+ = 3 + i is given by
(

1− i −2
1 −1− i

)(
v1

v2

)
= 0,

so we require v1 = (1 + i)v2, and one choice for the eigenvector is

v+ =
(

1 + i
1

)
.

The eigenvector corresponding to λ− = 3 − i is just the complex
conjugate of this,

v− =
(

1− i
1

)
.

(ix)

A =
(

3 −1
1 1

)
.

The eigenvalues satisfy

|A− λI| =
∣∣∣∣

3− λ −1
1 1− λ

∣∣∣∣ = (3− λ)(1− λ) + 1 = λ2 − 4λ + 4 = 0,

and so there is just one eigenvalue λ = 2. It follows that there is just
one eigenvector given by

(
1 −1
1 −1

)(
v1

v2

)
= 0,
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i.e. v1 − v2 = 0 and so the eigenvector is
(

1
1

)
.

(x) Finally

A =
( −7 6

12 −1

)

has eigenvalues given by the solutions of the characteristic equation
∣∣∣∣
−7− λ 6

12 −1− λ

∣∣∣∣ = (−7− λ)(−1− λ)− 72 = λ2 + 8λ− 65 = 0,

i.e. λ1 = −13 or λ2 = 5. The eigenvector corresponding to λ1 = −13
can be found from (

6 6
12 12

) (
v1

v2

)
= 0,

and so has v1 + v2 = 0, i.e. is

v1 =
(

1
−1

)
.

The eigenvector for λ2 = 5 satisfies
( −12 6

12 −6

)(
v1

v2

)
= 0,

and so has 2v1 = v2; it is

v2 =
(

1
2

)
.
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Distinct real eigenvalues

Exercise 28.1 Write down the general solution and draw the phase portrait
for the equation ẋ = Ax, when the eigenvalues and eigenvectors of A are as
follows. You should take particular care with stable (or unstable) nodes to
ensure that the trajectories approach (or move away from) the origin tangent
to the correct eigenvector.

(i) λ1 = 1, v1 = (1, 1) and λ2 = 2, v2 = (1, −1);
(ii) λ1 = 1, v1 = (1, 0) and λ2 = −2, v2 = (1, 1);
(iii) λ1 = −2, v1 = (1, 2) and λ2 = −3, v2 = (2, −3);
(iv) λ1 = 3, v1 = (2, 3) and λ2 = −5, v2 = (0, 1);
(v) λ1 = 3, v1 = (1, 2) and λ2 = 1, v2 = (1, −3);
(vi) λ1 = 2, v1 = (0, 1) and λ2 = −3, v2 = (1, 5);
(vii) λ1 = 1, v1 = (1, 1) and λ2 = 2, v2 = (2, 1); and
(viii) λ1 = −3, v1 = (1, 3) and λ2 = −1, v2 = (−3, 2).

(i)

λ1 = 1 with v1 =
(

1
1

)
and λ2 = 2 with v2 =

(
1
−1

)
.

The general solution is

x(t) = Aet

(
1
1

)
+ Be2t

(
1
−1

)
.

The origin is an unstable node, and solutions move away tangent to
v1 (since |λ1| < |λ2|).

(ii)

λ1 = 1 with v1 =
(

1
0

)
and λ2 = −2 with v2 =

(
1
1

)
.

235
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Fig. 28.1. The phase portrait for Exercise 28.1(i).

The general solution is

x(t) = Aet

(
1
0

)
+ Be−2t

(
1
1

)
,

and the origin is a saddle point.

Fig. 28.2. The phase portrait for Exercise 28.1(ii).

(iii)

λ1 = −2 with v1 =
(

1
2

)
and λ2 = −3 with v2 =

(
2
−3

)
.

The general solution is

x(t) = Ae−2t

(
1
2

)
+ Be−3t

(
2
−3

)
.

Trajectories approach to origin, a stable node, tangent to v1 (since
|λ1| < |λ2|).
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Fig. 28.3. The phase portrait for Exercise 28.1(iii).

(iv)

λ1 = 3 with v1 =
(

2
3

)
and λ2 = −5 with v2 =

(
0
1

)
.

The origin is a saddle point, and the general solution is

x(t) = Ae3t

(
2
3

)
+ Be−5t

(
0
1

)
.

Fig. 28.4. The phase portrait for Exercise 28.1(iv).

(v)

λ1 = 3 with v1 =
(

1
2

)
and λ2 = 1 with v2 =

(
1
−3

)
.

The general solution is

x(t) = Ae3t

(
1
2

)
+ Bet

(
1
−3

)
.
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Trajectories move away from the origin, which is an unstable node,
tangent to v2 (since |λ2| < |λ1|).

Fig. 28.5. The phase portrait for Exercise 28.1(v).

(vi)

λ1 = 2 with v1 =
(

0
1

)
and λ2 = −3 with v2 =

(
1
5

)
.

The general solution is

x(t) = Ae2t

(
0
1

)
+ Be−3t

(
1
5

)
,

and the origin is a saddle.

Fig. 28.6. The phase portrait for Exercise 28.1(vi).
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(vii)

λ1 = 1 with v1 =
(

1
1

)
and λ2 = 2 with v2 =

(
2
1

)
.

The general solution is

x(t) = Aet

(
1
1

)
+ Be2t

(
2
1

)
.

The origin is an unstable node, and trajectories move away tangent
to v1, since |λ1| < |λ2|.

Fig. 28.7. The phase portrait for Exercise 28.1(vii).

(viii)

λ1 = −3 with v1 =
(

1
3

)
and λ2 = −1 with v2 =

( −3
2

)
.

The general solution is

x(t) = Ae−3t

(
1
3

)
+ Be−t

( −3
2

)
.

The origin is a stable node, approached tangent to v2 since |λ2| < |λ1|.

Exercise 28.2 For the following equations find the eigenvalues and eigen-
vectors of the matrix on the right-hand side, and hence find the coordinate
transformation that will decouple the equations. Show that this transforma-
tion has the desired effect. (You can also write down the general solution
and draw the phase portrait for the equation if you wish.)

(i)

dx
dt

=
(

8 14
7 1

)
x
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Fig. 28.8. The phase portrait for Exercise 28.1(viii).

(ii)

dx
dt

=
(

2 0
−5 −3

)
x

(iii)

dx
dt

=
(

11 −2
3 4

)
x

and
(iv)

dx
dt

=
(

1 20
40 −19

)
x.

Throughout these solutions we use A to denote the matrix appearing on
the right-hand side of the differential equation, and x̃ = (x̃, ỹ).

(i) The eigenvalues of the matrix
(

8 14
7 1

)

are the solutions of
∣∣∣∣

8− λ 14
7 1− λ

∣∣∣∣ = (8− λ)(1− λ)− 98 = λ2 − 9λ− 90 = 0,

and so are λ1 = −6 and λ2 = 15. The corresponding eigenvectors
are: for λ− 1 = −6, given by

(
14 14
7 7

) (
v1

v2

)
= 0,
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and so is v1 = (1, −1); for λ2 = 15 given by
( −7 14

7 −14

)(
v1

v2

)
= 0,

and so is v2 = (2, 1).
If we write

x = x̃

(
1
−1

)
+ ỹ

(
2
1

)
=

(
1 2
−1 1

)(
x̃

ỹ

)
=

(
1 2
−1 1

)
x̃

then we have

x̃ =
(

1 2
−1 1

)−1

=
1
3

(
1 −2
1 1

)
x,

and so

dx̃
dt

=
1
3

(
1 −2
1 1

)(
8 14
7 1

)(
1 2
−1 1

)
x̃

=
1
3

(
1 −2
1 1

)( −6 30
6 15

)
x̃

=
( −6 0

0 15

)
x̃.

(ii) The eigenvalues of the matrix
(

2 0
−5 −3

)

are λ1 = −3 and λ2 = 2 (see Example 27.3). The eigenvector cor-
responding to λ1 = −3 is v1 = (0, 1), while that corresponding to
λ2 = 2 can be found by considering

(
0 0
−5 −5

)(
v1

v2

)
= 0,

so is v2 = (1, −1).
If we set

x = x̃

(
0
1

)
+ ỹ

(
1
−1

)
=

(
0 1
1 −1

)
x̃

we have

x̃ =
(

0 1
1 −1

)−1

x =
(

1 1
1 0

)
x.
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Therefore

dx̃
dt

=
(

1 1
1 0

)(
2 0
−5 −3

)(
0 1
1 −1

)
x̃

=
(

1 1
1 0

)(
0 2
−3 −2

)
x̃

=
( −3 0

0 2

)
x̃.

(iii) The eigenvalues of the matrix
(

11 −2
3 4

)

are the solutions of the characteristic equation,
∣∣∣∣

11− λ −2
3 4− λ

∣∣∣∣ = (11− λ)(4− λ) + 6 = λ2 − 15λ + 50 = 0,

and so are λ1 = 5 and λ2 = 10. The eigenvector corresponding to λ1

is given by (
6 −2
3 −1

)(
v1

v2

)
= 0,

and so is v1 = (1, 3); while that corresponding to λ2 can be found
from (

1 −2
3 −6

)(
v1

v2

)
= 0,

and so is v2 = (2, 1).
We now set

x = x̃

(
1
3

)
+ ỹ

(
2
1

)
=

(
1 2
3 1

)
x̃,

and so

x̃ =
(

1 2
3 1

)−1

x = −1
5

(
1 −2
−3 1

)
x.

We therefore have

dx̃
dt

= −1
5

(
1 −2
−3 1

)(
11 −2
3 4

)(
1 2
3 1

)
x̃

= −1
5

(
1 −2
−3 1

)(
5 20
15 10

)
x̃
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=
(

5 0
0 10

)
x̃.

(iv) To find the eigenvalues of
(

1 20
40 −19

)

we consider∣∣∣∣
1− λ 20
40 −19− λ

∣∣∣∣ = (1− λ)(−19− λ)− 800 = λ2 + 18λ− 819 = 0,

which has solutions λ1 = 21 and λ2 = −39. The eigenvector corre-
sponding to λ1 = 21 is given by

( −20 20
40 −40

)(
v1

v2

)
= 0,

and so is v1 = (1, 1); while that corresponding to λ2 = −39 is given
by (

40 20
40 20

) (
v1

v2

)
= 0,

i.e. it is v2 = (1, −2).
We now set

x = x̃

(
1
1

)
+ ỹ

(
1
−2

)
=

(
1 1
1 −2

)
x̃,

which implies that

x̃ =
(

1 1
1 −2

)−1

x = −1
3

( −2 −1
−1 1

)
x.

Thus

dx̃
dt

=
1
3

(
2 1
1 −1

)(
1 20
40 −19

)(
1 1
1 −2

)
x̃

=
1
3

(
2 1
1 −1

)(
21 −39
21 78

)
x̃

=
(

21 0
0 −39

)
x̃.

Exercise 28.3 (C) Given a matrix

A =
(

a b

c d

)
,
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the M-file lportrait.m will draw the phase portrait for the linear equation
ẋ = Ax. The program draws the trajectory forwards and backwards from a
given initial condition, placing an arrow there indicating the direction the
solution moves as t increases. Draw the phase portraits for the equations in
the previous exercise using this program.

All the phase portraits above in the solutions for Exercise 28.1 were pro-
duced using lportait.m.

Exercise 28.4 (T) Using the chain rule, if y = y(x(t)) then

dy

dt
=

dy

dx

dx

dt
,

from which it follows that

dy

dx
=

dy

dt

/
dx

dt
.

Therefore if
dx

dt
= λ1x and

dy

dt
= λ2y (S28.1)

we have
dy

dx
=

λ2y

λ1x
.

Solve this to find the equation of the curves traced out by trajectories of
(S28.1).

We can separate variables in the equation

dy

dx
=

λ2y

λ1x

to give
dy

λ2y
=

dx

λ1x
.

Integrating both sides we obtain

λ2 ln |y| = λ1 ln |x|+ c,

or taking exponentials,

|y|λ2 = A|x|λ1 with A > 0,

or

|y| = C|x|λ1/λ2
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(where C = A1/λ2 is another arbitrary, but positive, constant). We obtain
all possible solutions by removing the modulus signs:

y = Cxλ1/λ2 ,

cf. (28.13).

Exercise 28.5 (T) We have seen in this chapter that if A has distinct real
eigenvalues λ1 and λ2, with corresponding eigenvectors v1 and v2, then

P−1AP =
(

λ1 0
0 λ2

)
,

where P = [v1 v2]. It follows, conversely, that the matrix with these eigen-
values and eigenvector is

A = P
(

λ1 0
0 λ2

)
P−1.

(This is how the M-file makematrix.m constructs matrices with specified eigen-
values and eigenvectors.) Find the matrices whose eigenvalues and eigen-
vectors are as follows:

(i) λ1 = 3, v1 = (1, 2) and λ2 = 6, v2 = (1, −1);
(ii) λ1 = 3, v1 = (1, 0) and λ2 = −1, v2 = (2, 1); and
(iii) λ1 = 5, v1 = (1, 1) and λ2 = 1, v2 = (1− 1, ).

(You could now check your phase portraits for Exercise 28.1, using the M-file
makematrix.m to find the matrix with the specified eigenvalues and eigen-
vectors, and then lportrait.m to draw the phase portraits.)

(i) The matrix with eigenvalues and eigenvectors λ1 = 3, v1 = (1, 2)
and λ2 = 6, v2 = (1, −1) is given by

A =
(

1 1
2 −1

)(
3 0
0 6

)(
1 1
2 −1

)−1

=
(

1 1
2 −1

)(
3 0
0 6

)
×−1

3

( −1 −1
−2 1

)

=
(

1 1
2 −1

)(
1 1
4 −2

)

=
(

5 −1
−2 4

)
.
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(ii) The matrix with eigenvalues and eigenvectors λ1 = 3, v1 = (1, 0)
and λ2 = −1, v2 = (2, 1) is given by

A =
(

1 2
0 1

)(
3 0
0 −1

)(
1 2
0 1

)−1

=
(

1 2
0 1

)(
3 0
0 −1

)(
1 −2
0 1

)

=
(

1 2
0 1

)(
3 −6
0 −1

)

=
(

3 −8
0 −1

)
.

(iii) The matrix with eigenvalues and eigenvectors λ1 = 5, v1 = (1, 1)
and λ2 = 1, v2 = (1− 1, ) is given by

A =
(

1 1
1 −1

)(
5 0
0 1

)(
1 1
1 −1

)−1

=
(

1 1
1 −1

)(
5 0
0 1

)
×−1

2

( −1 −1
−1 1

)

= −1
2

(
1 1
1 −1

)( −5 −5
−1 1

)

=
(

3 2
2 3

)
.

Exercise 28.6 Suppose that A has two eigenvalues, λ1 = 0 with eigenvector
v1 and λ2 6= 0 with eigenvector v2.

(i) Write down the general solution of the equation ẋ = Ax.
(ii) After changing to a coordinate system referred to the eigenvectors the

equation will become

dx̃
dt

=
(

0 0
0 λ2

)
x̃,

i.e
dx̃

dt
= 0 and

dỹ

dt
= λỹ.

By solving these equations draw the phase portrait in the (x̃, ỹ) sys-
tem, and hence sketch the phase portrait for the original coordinates.
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(iii) Draw the phase portrait for the equation

dx
dt

=
( −2 2

1 −1

)
x.

(i) The general solution is

x(t) = Aeλ1tv1 + Beλ2tv2 = Av1 + Beλ2tv2.

(ii) When

dx̃/dt = 0 and dỹ/dt = λỹ

the solutions are x̃(t) = x̃(0) and ỹ(t) = eλtỹ(0). So x̃ is constant,
and ỹ either increases exponentially (if λ > 0) or tends to zero expo-
nentially (if λ < 0). The phase portrait for the case λ > 0 is shown
to the left in Figure 28.9, while the phase portrait in the original
coordinates in shown to the right.

v
1
 

v
2

 

Fig. 28.9. Phase portraits when one real eigenvalue is zero: canonical coordinates
on the left, original coordinates on the right.

(iii) The matrix occurring in the equation

dx
dt

=
( −2 2

1 −1

)
x (S28.2)

has eigenvalues given by the solutions of the characteristic equation
∣∣∣∣
−2− λ 2

1 −1− λ

∣∣∣∣ = (−2− λ)(−1− λ)− 2 = λ2 + 3λ = 0,

so λ1 = 0 or λ2 = −3. The corresponding eigenvectors are v1 = (1, 1)
and v2 = (−2, 1), and the phase portrait is shown in Figure 28.10.
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Fig. 28.10. The phase portrait for equation (S28.2).
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Complex eigenvalues

Exercise 29.1 Draw the phase portrait for the equation dx/dt = Ax, when
the eigenvalues (λ±) and eigenvectors (η±) of A are as follows. Also given
is the sign of ẋ when x = 0 and y > 0.

(i) λ± = 1± 3i with η± = (1, 2∓ i), ẋ < 0;
(ii) λ± = ±3i with η± = (1± 2i, 1∓ 3i), ẋ < 0;
(iii) λ± = −2± i with η± = (1∓ i, 3± i), ẋ > 0;
(iv) λ± = −1± i with η± = (1, ±i), ẋ > 0;
(v) λ± = 2± 2i with η± = (±3i, 5∓ 4i), ẋ < 0;
(vi) λ± = 5± 3i with η± = (2± 5i, ∓i), ẋ < 0;
(vii) λ± = ±7i with η± = (1± i, −1± 2i), ẋ > 0; and
(viii) λ± = −13± 17i with η± = (±6i− 8, 4∓ 5i), ẋ > 0.

(i)

λ± = 1±3i with η± = (1, 2∓i) ẋ < 0 when x = 0 and y > 0.

Since the real part of λ is positive the origin is an unstable spiral;
since ẋ < 0 when x = 0 and y > 0 the orbits rotate anti-clockwise
around the origin, and the phase portrait is as in Figure 29.1.

(ii)

λ± = ±3i with η± = (1±2i, 1∓3i) ẋ < 0 when x = 0 and y > 0.

The eigenvalues have zero real part, so the origin is a centre. Since
ẋ < 0 when x = 0 and y > 0 the orbits rotate anti-clockwise around
the origin, and the phase portrait is as in Figure 29.2.

(iii)

λ± = −2±i with η± = (1∓i, 3±i) ẋ > 0 when x = 0 and y > 0.

Since the real part of the eigenvalues is negative the origin is a stable

249
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Fig. 29.1. Phase portrait for Exercise 29.1(i).

Fig. 29.2. Phase portrait for Exercise 29.1(ii).

spiral; with ẋ > 0 when x = 0 and y > 0 the solutions circle the
origin is a clockwise direction, and the phase portrait is shown in
Figure 29.3.

Fig. 29.3. Phase portrait for Exercise 29.1(iii).
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(iv)

λ± = −1± i with η± = (1, ±i) ẋ > 0 when x = 0 and y > 0.

Since the real part of the eigenvalues is negative the origin is a stable
spiral; since ẋ > 0 when x = 0 and y > 0 the solutions move clockwise
around the origin, and the phase portrait is shown in Figure 29.4.

Fig. 29.4. Phase portrait for Exercise 29.1(iv).

(v)

λ± = 2±2i with η± = (±3i, 5∓4i) ẋ < 0 when x = 0 and y > 0.

Since the real part of the eigenvalues is positive the origin is an un-
stable spiral; since ẋ < 0 when x = 0 and y > 0 orbits circle the
origin anti-clockwise, and the phase portrait is as in Figure 29.5.

Fig. 29.5. Phase portrait for Exercise 29.1(v).

(vi)

λ± = 5±3i with η± = (2±5i, ∓i) ẋ < 0 when x = 0 and y > 0.
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Since the real part of the eigenvalues is positive the origin is an un-
stable spiral; since ẋ < 0 when x = 0 and y > 0 the orbits spiral
around the origin anti-clockwise, and the phase portrait is shown in
Figure 29.6.

Fig. 29.6. Phase portrait for Exercise 29.1(vi).

(vii)

λ± = ±7i with η± = (1±i, −1±2i) ẋ > 0 when x = 0 and y > 0.

The real part of the eigenvalues is zero, so the origin is a centre.
Orbits circle to origin clockwise, since ẋ > 0 when x = 0 and y > 0.
The phase portrait is shown in Figure 29.7.

Fig. 29.7. Phase portrait for Exercise 29.1(vii).

(viii)

λ± = −13±17i with η± = (±6i−8, 4∓5i) ẋ > 0 when x = 0 and y > 0.
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The real part of the eigenvalues is negative, so the origin is a stable
spiral. Since ẋ > 0 when x = 0 and y > 0, orbits circle the origin
clockwise, as shown in Figure 29.8.

Fig. 29.8. Phase portrait for Exercise 29.1(viii).

Exercise 29.2 Write down the general solution of the equation dx/dt =
Ax when the eigenvalues (λ±) and eigenvectors (η±) of A are those in the
previous exercise.

Throughout this exercise, the arbitrary constant C is the complex number
α + iβ.

(i) When λ± = 1± 3i with η± = (1, 2∓ i) the general solution is given
by

x(t) = Ce(1+3i)t

(
1

2− i

)
+ C∗e(1−3i)t

(
1

2 + i

)

= 2 Re
[
Ce(1+3i)t

(
1

2− i

)]

= 2etRe
[
(α + iβ)(cos 3t + i sin 3t)

(
1

2− i

)]

= 2etRe
[(

(α cos 3t− β sin 3t) + i(β cos 3t + α sin 3t)
)(

1
2− i

)]

= 2et

(
α cos 3t− β sin 3t

+2(α cos 3t− β sin 3t) + (β cos 3t + α sin 3t)

)

= et

(
A cos 3t + B sin 3t

(2A−B) cos 3t + (A + 2B) sin 3t

)
,

where A = 2α and B = −2β.
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(ii) When λ± = ±3i with η± = (1 ± 2i, 1 ∓ 3i) the general solution is
given by

x(t) = Ce3it

(
1 + 2i
1− 3i

)
+ C∗e−3it

(
1− 2i
1 + 3i

)

= 2 Re
[
Ce3it

(
1 + 2i
1− 3i

)]

= 2 Re
[
(α + iβ)(cos 3t + i sin 3t)

(
1 + 2i
1− 3i

)]

= 2 Re
[(

(α cos 3t− β sin 3t) + i(α sin 3t + β cos 3t)
)(

1 + i
1− 3i

)]

= 2
(

α cos 3t− β sin 3t− α sin 3t− β cos 3t

α cos 3t− β sin 3t + 3α sin 3t + 3β cos 3t

)

=
(

(A−B) cos 3t− (A + B) sin 3t
(A + 3B) cos 3t + (3A−B) sin 3t

)
,

where A = 2α and B = 2β.
(iii) When λ± = −2 ± i with η± = (1 ∓ i, 3 ± i) the explicit solution is

given by

x(t) = Ce(−2+i)t

(
1− i
3 + i

)
+ C∗e(−2−i)t

(
1 + i
3− i

)

= 2 Re
[
Ce(−2+i)t

(
1− i
3 + i

)]

= 2e−2tRe
[
(α + iβ)(cos t + i sin t)

(
1− i
3 + i

)]

= 2e−2tRe
[(

(α cos t− β sin t) + i(α sin t + β cos t)
)(

1− i
3 + i

)]

= 2e−2t

(
α cos t− β sin t + α sin t + β cos t

3α cos t− 3β sin t− α sin t− β cos t

)

= e−2t

(
(A + B) cos t + (A−B) sin t

(3A−B) cos t− (A + 3B) sin t

)
,

with A = 2α and B = 2β.
(iv) When λ± = −1 ± i with η± = (1, ±i) the explicit solution is given

by

x(t) = Ce(−1+i)t

(
1
i

)
+ C∗e(−1−i)t

(
1
−i

)
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= 2 Re
[
Ce(−1+i)t

(
1
i

)]

= 2e−tRe
[
(α + iβ)(cos t + i sin t)

(
1
i

)]

= 2e−tRe
[(

(α cos t− β sin t) + i(α cos t + β cos t)
)(

1
i

)]

= e−t

(
A cos t−B sin t

−A cos t−B sin t

)
,

with A = 2α and B = 2β.
(v) When λ± = 2 ± 2i with η± = (±3i, 5 ∓ 4i) the explicit solution is

given by

x(t) = Ce(2+2i)t

(
3i

5− 4i

)
+ C∗e(2−2i)t

( −3i
5 + 4i

)

= 2 Re
[
Ce(2+2i)t

(
3i

5− 4i

)]

= 2e2tRe
[
(α + iβ)(cos 2t + i sin 2t)

(
3i

5− 4i

)]

= 2e2tRe
[(

(α cos 2t− β sin 2t) + i(α sin 2t + β cos 2t)
)(

3i
5− 4i

)]

= 2e2t

( −3α sin 2t− 3β cos 2t

5α cos 2t− 5β sin 2t + 4α sin 2t + 4β cos 2t

)

= e2t

(
3A sin 2t + 3B cos 2t

(5B − 4A) sin 2t− (5A + 4B) cos 2t

)
,

where A = −2α and B = −2β.
(vi) When λ± = 5± 3i with η± = (2± 5i, ∓i) the explicit solution is

x(t) = Ce(5+3i)t

(
2 + 5i
−i

)
+ C∗e(5−3i)t

(
2− 5i

i

)

= 2 Re
[
Ce(5+3i)t

(
2 + 5i
−i

)]

= 2e5tRe
[
(α + iβ)(cos 3t + i sin 3t)

(
2 + 5i
−i

)]

= 2e5tRe
[(

(α cos 3t− β sin 3t) + i(β cos 3t + α sin 3t)
)(

2 + 5i
−i

)]

= 2e5t

(
2α cos 3t− 2β sin 3t− 5β cos 3t− 5α sin 3t

β cos 3t + α sin 3t

)
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= e5t

(
(2A− 5B) cos 3t− (5A + 2B) sin 3t

B cos 3t + A sin 3t

)
,

where A = 2α and B = 2β.
(vii) When λ± = ±7i with η± = (1 ± i, −1 ± 2i) the explicit solution is

given by

x(t) = Ce7it

(
1 + i
−1 + 2i

)
+ C∗e−7it

(
1− i
−1− 2i

)

= 2 Re
[
Ce7it

(
1 + i
−1 + 2i

)]

= 2 Re
[
(α + iβ)(cos 7t + i sin 7t)

(
1 + i
−1 + 2i

)]

= 2 Re
[(

(α cos 7t− β sin 7t) + i(α sin 7t + β cos 7t)
)(

1 + i
−1 + 2i

)]

=
(

A cos 7t−B sin 7t−A sin 7t−B cos 7t

−A cos 7t + B sin 7t− 2A sin 7t− 2B cos 7t

)

=
(

(A−B) cos 7t− (A + B) sin 7t
(B − 2A) sin 7t− (A + 2B) cos 7t

)
,

where A = 2α and B = 2β.
(viii) When λ± = −13±17i with η± = (±6i−8, 4∓5i) the explicit solution

is given by

x(t) = Ce(−13+17i)t

(
6i− 8
4− 5i

)
+ C∗e(−13−17i)t

( −6i− 8
4 + 5i

)

= 2 Re
[
Ce(−13+17i)t

(
6i− 8
4− 5i

)]

= 2e−13tRe
[
(α + iβ)(cos 17t + i sin 17t)

(
6i− 8
4− 5i

)]

= 2e−13tRe
[(

(α cos 17t− β sin 17t) + i(β cos 17t + α sin 17t)
)(

6i− 8
4− 5i

)]

= e−13t

( −6B cos 17t− 6A sin 17t− 8A cos 17t + 8B sin 17t
4A cos 17t− 4B sin 17t + 5B cos 17t + 5A sin 17t

)

= e−13t

(
(8B − 6A) sin 17t− (8A + 6B) cos 17t
(4A + 5B) cos 17t + (5A− 4B) sin 17t

)
.

Exercise 29.3 For the following equations find the eigenvalues and eigen-
vectors of the matrix on the right-hand side, and hence find the coordinate
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transformation that will put the equations into their standard simple (canon-
ical) form. Show that this transformation has the desired effect.

(i)

dx
dt

=
(

0 −1
1 −1

)
x;

(ii)

dx
dt

=
( −2 3
−6 4

)
x;

(iii)

dx
dt

=
( −11 −2

13 −9

)
x;

and
(iv)

dx
dt

=
(

7 −5
10 −3

)
x.

Throughout these solutions we use A to denote the matrix appearing on
the right-hand side of the differential equation, and x̃ = (x̃, ỹ).

(i) The eigenvalues of

A =
(

0 −1
1 −1

)

are the solutions of∣∣∣∣
−λ −1
1 −1− λ

∣∣∣∣ = −λ(−1− λ) + 1 = λ2 + λ + 1 = 0,

which are

λ =
−1±√1− 4

2
= −1

2
±
√

3
2

i.

The eigenvector corresponding to λ+ = −1
2 +

√
3

2 i is given by
(

1
2 −

√
3

2 i −1
1 1

2 −
√

3
2 i

)(
v1

v2

)
= 0,

and so v2 = (1
2 −

√
3

2 i)v1, and a representative eigenvector is

v =
(

2
1−√3i

)
.
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So we set

x = x̃

(
2
1

)
+ ỹ

(
0

−√3

)
=

(
2 0
1 −√3

)
x̃,

which implies that

x̃ =
(

2 0
1 −√3

)−1

x = − 1
2
√

3

( −√3 0
−1 2

)
x.

Therefore we have

dx̃
dt

= − 1
2
√

3

( −√3 0
−1 2

)(
0 −1
1 −1

)(
2 0
1 −√3

)
x̃

= − 1
2
√

3

( −√3 0
−1 2

)( −1
√

3
1

√
3

)
x̃

= − 1
2
√

3

( √
3 −3

3
√

3

)
x̃

=

(
−1

2

√
3

2

−
√

3
2 −1

2

)
x̃.

(ii) The matrix ( −2 3
−6 4

)

has eigenvalues given by the roots of the characteristic equation
∣∣∣∣
−2− λ 3
−6 4− λ

∣∣∣∣ = (−2− λ)(4− λ) + 18 = λ2 − 2λ + 10 = 0,

i.e.

λ =
2±√4− 40

2
= 1± 3i.

The eigenvector corresponding to λ+ = 1 + 3i is given by
( −3− 3i 3

−6 3− 3i

) (
v1

v2

)
= 0,

so −(1 + i)v1 + v2 = 0, and a representative eigenvector is
(

1
1 + i

)
.

If we set

x = x̃

(
1
1

)
+ ỹ

(
0
1

)
=

(
1 0
1 1

)
x̃
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then

x̃ =
(

1 0
1 1

)−1

x =
(

1 0
−1 1

)
x,

and we have

dx̃
dt

=
(

1 0
−1 1

) ( −2 3
−6 4

)(
1 0
1 1

)
x̃

=
(

1 0
−1 1

) (
1 3
−2 4

)
x̃

=
(

1 3
−3 1

)
x̃.

(iii) To find the eigenvalues of the matrix
( −11 −2

13 −9

)

we consider
∣∣∣∣
−11− λ −2

13 −9− λ

∣∣∣∣ = (−11−λ)(−9−λ)+26 = λ2 +20λ+125 = 0,

and obtain

λ =
−20±√400− 500

2
= −10± 5i.

The eigenvector corresponding to the eigenvalue −10 + 5i can be
determined from

( −1− 5i −2
13 1− 5i

) (
v1

v2

)
= 0,

i.e. (−1− 5i)v1 − 2v2 = 0. A representative eigenvector is therefore
( −2

1 + 5i

)
.

We set

x = x̃

( −2
1

)
+ ỹ

(
0
5

)
=

( −2 0
1 5

)
x̃,

and then

x̃ =
( −2 0

1 5

)−1

x = − 1
10

(
5 0
−1 −2

)
x.
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Therefore

dx̃
dt

= − 1
10

(
5 0
−1 −2

)( −11 −2
13 −9

)( −2 0
1 5

)
x̃

= − 1
10

(
5 0
−1 −2

)(
20 −10
−35 −45

)
x̃

=
(

10 5
−5 10

)
x̃.

(iv) The eigenvalues of (
7 −5
10 −3

)

are given by the solutions of
∣∣∣∣

7− λ −5
10 −3− λ

∣∣∣∣ = (7− λ)(−3− λ) + 50 = λ2 − 4λ + 29 = 0,

i.e.

λ =
4±√16− 116

2
= 2± 5i.

The eigenvector corresponding to 2 + 5i is determined by
(

5− 5i −5
10 −5− 5i

) (
v1

v2

)
= 0,

and so is (
1

1− i

)
.

Now if we set

x = x̃

(
1
1

)
+ ỹ

(
0
−1

)
=

(
1 0
1 −1

)
x̃,

which gives

x̃ =
(

1 0
1 −1

)−1

x =
(

1 0
1 −1

)
x,

we obtain

dx̃
dt

=
(

1 0
1 −1

)(
7 −5
10 −3

)(
1 0
1 −1

)
x̃

=
(

1 0
1 −1

)(
2 5
7 3

)
x̃



Complex eigenvalues 261

=
(

2 5
−5 2

)
x̃.

Exercise 29.4 (T) In the previous chapter we used the result that the eigen-
vectors corresponding to distinct eigenvalues are linearly independent. Use
this result to show that the real and imaginary parts of complex eigenvectors
are linearly independent.

Denote the eigenvalues by λ±, and the corresponding eigenvectors by
η± = v1± iv2. Since λ+ 6= λ−, the two eigenvectors η+ and η− are linearly
independent. Now suppose that

αv1 + βv2 = 0. (S29.1)

Since 2v1 = η+ + η− and 2v2 = −i(η+ − η−), equation (S29.1) is the same
as

α(η+ + η−)− βi(η+ − η−) = 0,

or

(α− 2iβ)η+ + (α + 2iβ)η− = 0.

Since η+ and η− are linearly independent it follows that

α− 2iβ = 0 and α + 2iβ = 0,

from which we obtain α = β = 0, and so v1 and v2 are linearly independent.

Exercise 29.5 (T) Following the same line of reasoning as in Exercise 28.5,
show how to construct a matrix with a complex conjugate pair of eigenvalues
λ± = ρ± iω and corresponding eigenvectors η± = v1 ± iv2. Hence find the
matrices with the following eigenvalues and eigenvectors:

(i) λ± = 3± 3i with η± = (2± i, 1∓ i);
(ii) λ± = ±3i with η± = (±i, 3± 2i); and
(iii) λ± = −2± i with η± = (1± i, 1∓ i).

(The M-file makematrix.m will do this for you. You could use this to check
that the signs of ẋ given in Exercise 29.1 are correct by finding the appro-
priate matrix A and then looking at ẋ when x = 0 and y > 0.)

If A has complex conjugate eigenvalues λ± = ρ ± iω with corresponding
eigenvectors η± = v1 ± iv2, we have seen that if we define

P = [v1 v2]
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then

P−1AP =
(

ρ ω

−ω ρ

)
,

so it follows that the matrix A with these specified eigenvalues and eigen-
vectors can be written in the form

A = P
(

ρ ω

−ω ρ

)
P−1.

(i) The matrix with eigenvalues λ± = 3 ± 3i and eigenvectors η± =
(2± i, 1∓ i) is

A =
(

2 1
1 −1

)(
3 3
−3 3

)
×−1

3

( −1 −1
−1 2

)

= −
(

2 1
1 −1

)( −2 1
0 3

)

=
(

4 −5
2 2

)
.

(ii) The matrix with eigenvalues λ± = ±3i and eigenvectors η± = (±i, 3±
2i) is

A =
(

0 1
3 2

)(
0 3
−3 0

)
×−1

3

(
2 −1
−3 0

)

= −1
3

(
0 1
3 2

)( −9 0
−6 3

)

= −1
3

( −6 3
−39 6

)
=

(
2 −1
13 −2

)
.

(iii) The matrix with eigenvalues λ± = −2 ± i and eigenvectors η± =
(1± i, 1∓ i) is

A =
(

1 1
1 −1

)( −2 1
−1 −2

)
×−1

2

( −1 −1
−1 1

)

= −1
2

(
1 1
1 −1

)(
1 3
3 −1

)

= −1
2

(
4 2
−2 4

)
=

( −2 −1
1 −2

)
.
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Yet more phase portraits: a repeated real
eigenvalue

Exercise 30.1 Find the eigenvalue and eigenvector of the matrices occurring
in the following equations, and hence draw the phase portrait. Find also the
coordinate transformation that will put the equation into canonical form and
show that this works. Write down the general solution.

(i)

dx
dt

=
(

5 −4
1 1

)
x;

(ii)

dx
dt

=
( −6 2
−2 −2

)
x;

(iii)

dx
dt

=
( −3 −1

1 −5

)
x;

(iv)

dx
dt

=
(

13 0
0 13

)
x;

and
(v)

dx
dt

=
(

7 −4
1 3

)
x.

Throughout these solutions we use A to denote the matrix appearing on
the right-hand side of the differential equation, and x̃ = (x̃, ỹ).

263



264 30 A repeated real eigenvalue

(i)

dx
dt

=
(

5 −4
1 1

)
x.

The eigenvalue is the solution of
∣∣∣∣

5− λ −4
1 1− λ

∣∣∣∣ = (5− λ)(1− λ) + 4 = λ2 − 6λ + 9 = 0,

so is λ = 3. The corresponding eigenvector, determined by
(

2 −4
1 −2

)(
v1

v2

)
= 0

is

v =
(

2
1

)
.

When x = 0 and y > 0, ẋ = −4y < 0; ẋ = 0 on the line 5x = 4y,
and the phase portrait is as shown in Figure 30.1.

Fig. 30.1. Phase portrait for the equation in Exercise 30.1(i).

We now choose a second vector that is linearly independent from
v, e.g. here we choose the vector

v2 =
(

1
−2

)
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that is orthogonal to v, but any choice would do. We then set

v1 = (A− λI)v2 =
(

2 −4
1 −2

)(
1
−2

)
=

(
10
5

)
.

Now we make the change of coordinates

x = x̃

(
10
5

)
+ ỹ

(
1
−2

)
=

(
10 1
5 −2

)
x̃, (S30.1)

which implies that

x̃ =
(

10 1
5 −2

)−1

x =
1
−25

( −2 −1
−5 10

)
x.

Therefore

dx̃
dt

=
1
−25

( −2 −1
−5 10

)(
5 −4
1 1

)(
10 1
5 −2

)
x̃

= − 1
25

( −2 −1
−5 10

)(
30 13
15 −1

)
x̃

= − 1
25

( −75 −25
0 −75

)
x̃

=
(

3 1
0 3

)
x̃.

The explicit solution is

x(t) = [Ate3t + Be3t]
(

10
5

)
+ Ae3t

(
1
−2

)
(S30.2)

=
(

10Ate3t + (A + 10B)e3t

5Ate3t + (5B − 2A)e3t

)
.

[Rather than try to remember the form of the explicit solution,

x(t) = [Ateλt + Beλt]v1 + Aeλtv2, (S30.3)

it is perhaps safer to derive it each time from the decoupled system.
In this case we have

dx̃/dt = 3x̃ + ỹ

dỹ/dt = 3ỹ,

And so clearly ỹ(t) = Ae3t. Using this in the equation for dx̃/dt we
obtain

dx̃

dt
= 3x̃ + Ae3t.
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Using the integrating factor e−3t this is

d
dt

[
x̃e−3t

]
= A,

and so

x̃(t)e−3t = At + B ⇒ x̃(t) = [At + B]e3t.

Now using (S30.1) we obtain (S30.2). In the remaining solutions we
will use (S30.3) directly.]

(ii)

dx
dt

=
( −6 2
−2 −2

)
x.

The eigenvalue of the matrix A is the solution of
∣∣∣∣
−6− λ 2
−2 −2− λ

∣∣∣∣ = (−6− λ)(−2− λ) + 4 = λ2 + 8λ + 16 = 0,

i.e. λ = −4. The corresponding eigenvector is determined by
( −2 2
−2 2

)(
v1

v2

)
= 0,

so is

v =
(

1
1

)
.

The derivative ẋ = 0 on the line 6x = 2y, and when x = 0 and
y > 0 this derivative is positive. The phase portrait is shown in
Figure 30.2.

In order to transform the equation into its canonical form we choose
another direction v2. Again, we will make the canonical choice of a
vector perpendicular to v, taking

v2 =
(

1
−1

)
.

We now set

v1 = (A+ 4I)v2 =
( −2 2
−2 2

)(
1
−1

)
=

( −4
−4

)
,

and make the change of coordinates

x = x̃

( −4
−4

)
+ ỹ

(
1
−1

)
=

( −4 1
−4 −1

)
x̃.
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Fig. 30.2. Phase portrait for the equation of Exercise 30.1(ii).

It follows that

x̃ =
( −4 1
−4 −1

)−1

x =
1
8

( −1 −1
4 −4

)
x,

and the differential equation satisfied by x̃ is

dx̃
dt

=
1
8

( −1 −1
4 −4

)( −6 2
−2 −2

)( −4 1
−4 −1

)
x̃

=
1
8

( −1 −1
4 −4

)(
16 −8
16 0

)
x̃

=
( −4 1

0 −4

)
x̃.

The explicit solution is

x(t) = [Ate−4t + Be−4t]
( −4
−4

)
+ Ae−4t

(
1
−1

)

=
(

(A− 4B)e−4t − 4Ate−4t

−(A + 4B)e−4t − 4Ate−4t

)
.

(iii)

dx
dt

=
( −3 −1

1 −5

)
x.



268 30 A repeated real eigenvalue

The eigenvalue is the repeated real root of
∣∣∣∣
−3− λ −1

1 −5− λ

∣∣∣∣ = (−3− λ)(−5− λ) + 1 = λ2 + 8λ + 16 = 0,

i.e. λ = −4 again. This time the eigenvector is (by inspection) v =
(1, 1).

We have ẋ = 0 on the line y = −3x, and when x = 0 and y > 0,
ẋ < 0, so the phase portrait is as in Figure 30.3.

Fig. 30.3. The phase portrait for the equation of Exercise 30.1(iii).

The axes for our new coordinate system we choose to be

v2 =
(

1
−1

)
and v1 =

(
1 −1
1 −1

)(
1
−1

)
=

(
2
2

)
,

and set

x = x̃

(
2
2

)
+ ỹ

(
1
−1

)
=

(
2 1
2 −1

)
x̃,

which implies that

x̃ =
(

2 1
2 −1

)−1

x = −1
4

( −1 −1
−2 2

)
x.

The derivative of x̃ satisfies the differential equation

dx̃
dt

= −1
4

( −1 −1
−2 2

)( −3 −1
1 −5

)(
2 1
2 −1

)
x̃
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= −1
4

( −1 −1
−2 2

)( −8 −2
−8 6

)
x̃

=
( −4 1

0 −4

)
x̃.

The explicit solution is given by

x(t) = [Ate−4t + Be−4t]
(

2
2

)
+ Ae−4t

(
1
−1

)

=
(

(A + 2B)e−4t + 2Ate−4t

(2B −A)e−4t + 2Ate−4t

)
.

(iv)

dx
dt

=
(

13 0
0 13

)
x.

Here the repeated eigenvalue is λ = 13. The matrix is a multiple of
the identity, so every vector is an eigenvector. Since the eigenvalue
is positive, the origin is an unstable star, and the phase portrait is
shown in Figure 30.4.

Fig. 30.4. The phase portrait for the equation in Exercise 30.1(iv).

The equation is already in its ‘canonical form’, and the explicit
solution is simply

x(t) = ve13t

for any vector v.
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(v)

dx
dt

=
(

7 −4
1 3

)
x.

The eigenvalue is the solution of
∣∣∣∣

7− λ −4
1 3− λ

∣∣∣∣ = (7− λ)(3− λ) + 4 = λ2 − 10λ + 25 = 0,

i.e. λ = 5. The eigenvector can be determined from
(

2 −4
1 −2

)(
v1

v2

)
= 0,

so is

v =
(

2
1

)
.

We have ẋ = 0 when 7x = 4y, and for x = 0 and y > 0 the
derivative ẋ < 0; the phase portrait is shown in Figure 30.5.

Fig. 30.5. The phase portrait for the equation in Exercise 30.1(v).

To transform the equation into its canonical form we choose

v2 =
(

1
−2

)
and v1 =

(
2 −4
1 −2

)(
1
−2

)
=

(
10
5

)
,

set

x = x̃

(
10
5

)
+ ỹ

(
1
−2

)
=

(
10 1
5 −2

)
x̃.
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It follows that

x̃ =
(

10 1
5 −2

)−1

x = − 1
25

( −2 −1
−5 10

)
x

and so

dx̃
dt

= − 1
25

( −2 −1
−5 10

)(
7 −4
1 3

)(
10 1
5 −2

)
x̃

= − 1
25

( −2 −1
−5 10

)(
50 15
25 −5

)
x̃

= − 1
25

( −125 −25
0 −125

)
x̃

=
(

5 1
0 5

)
x̃.

The explicit solution is given by

x(t) = [Ate5t + Be5t]
(

10
5

)
+ Ae5t

(
1
−2

)

=
(

(A + 10B)e5t + 10Ate5t

(5B − 2A)e5t + 5Ate5t

)
.

Exercise 30.2 (T) The characteristic equation for a 2× 2 matrix

A =
(

a b

c d

)

is |A− kI| = 0, i.e.

k2 − (a + d)k + (ad− bc) = 0.

By explicit calculation show that A satisfies its own characteristic equation,
i.e. that

A2 − (a + d)A+ (ad− bc)I = O,

where O is the 2×2 matrix of zeros. This is a particular case of the Cayley-
Hamilton Theorem.

We have

A =
(

a b

c d

)
and A2 =

(
a b

c d

)(
a b

c d

)
=

(
a2 + bc b(a + d)
c(a + d) bc + d2

)
.

Substituting these into the expression

A2 − (a + d)A+ (ad− bc)I
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we obtain
(

a2 + bc b(a + d)
c(a + d) bc + d2

)
−

(
a2 + ad (a + d)b
(a + d)c ad + d2

)
+

(
ad− bc 0

0 ad− bc

)

=
(

0 0
0 0

)
,

so we do indeed have

A2 − (a + d)A+ (ad− bc)I = O,

and A satisfies its own characteristic equation.

Exercise 30.3 (T) If A has a repeated eigenvalue λ with eigenvector v then
its characteristic equation can be written

(k − λ)2 = 0.

Use the Cayley-Hamilton Theorem from the previous exercise to deduce that

(A− λI)2 = O,

and hence that (A− λI)x is an eigenvector of A for any choice of non-zero
vector x 6= v.

Using (A− λI)2 = O it follows in particular that

(A− λI)2x = O.

Setting ṽ = (A− λI)x this equation can be rewritten as

(A− λI)ṽ = O,

or, upon rearrangement,

Aṽ = λṽ,

showing that ṽ is an eigenvector of A with eigenvalue λ. It follows, since
there is only one ‘eigendirection’, that (A−λI)x = ṽ is in the same direction
as v.

Exercise 30.4 (T) By following the ideas of Exercise 28.5, show how to
construct a matrix with a single eigenvalue λ and corresponding eigenvector
v. (There will be many such matrices.) Find two matrices with eigenvalue
−1 and eigenvector (1, 1).
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Given a matrix A with eigenvector v and eigenvalue λ, we have seen that
for an arbitrary choice of vector v2 in a different direction to v, if we set
v1 = (A− λI)v2 this is in the same direction as v, and then if we define

P = [v1 v2] (S30.4)

we have

P−1AP =
(

λ 1
0 λ

)
. (S30.5)

To find a matrix A with specified eigenvalue λ and eigenvector v we can
choose v1 to be v, and v2 to be arbitrary. The matrix A that we obtain
from (S30.5),

A = P
(

λ 1
0 λ

)
P−1

with P defined as in (S30.4), will have the required eigenvalue and eigenvec-
tor (and will be consistent, in that v1 = (A− λI)v2).

So, to construct a matrix with a repeated eigenvalue −1 and eigenvector
v1 = (1, 1) we first have to choose another direction. If we choose v2 =
(1, −1) (the orthogonal direction) then

P =
(

1 1
1 −1

)
⇒ P−1 = −1

2

( −1 −1
−1 1

)
,

and we can take

A = −1
2

(
1 1
1 −1

)( −1 1
0 −1

)( −1 −1
−1 1

)

= −1
2

(
1 1
1 −1

)(
0 2
1 −1

)

=
( −1/2 −1/2

1/2 −3/2

)
.

For another matrix with the same eigenvalue and eigenvector, we make a
different choice for v2, for example v2 = (1, 0). Then we have

P =
(

1 1
1 0

)
⇒ P−1 =

(
0 1
1 −1

)
.

We now obtain the matrix

A =
(

1 1
1 0

)( −1 1
0 −1

)(
0 1
1 −1

)
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=
(

1 1
1 0

)(
1 −2
−1 1

)

=
(

0 −1
1 −2

)
.

Exercise 30.5 (T) Suppose that the matrix A has zero as a repeated eigen-
value, with eigenvector v. Then we can change to coordinates referred to v2

and v1 = Av2, where v2 is any vector in a different direction to v, so that
x̃ = x̃v1 + ỹv2. The equation becomes

dx̃
dt

=
(

0 1
0 0

)
x̃,

and so
dx̃

dt
= ỹ and ỹ = 0.

(i) Solve the equations for x̃(t) and ỹ(t), and hence write down the gen-
eral solution for x(t).

(ii) Draw the phase diagram in the (x̃, ỹ) plane, and hence in the (x, y)
plane.

(iii) Draw the phase diagram for the equation

dx
dt

=
( −1 1
−1 1

)
x.

(i) We have ỹ(t) = A, which gives dx̃/dt = A, and hence x̃(t) = At + B.
Since x = x̃v1 + ỹv2 the general solution is

x(t) = [At + B]v1 + Av2.

(ii) The phase portrait in the (x̃, ỹ) plane is shown in the left-hand picture
of Figure 30.6, and the phase portrait in the (x, y) plane in the right-
hand picture.

(iii) The matrix in the equation

dx
dt

=
( −1 1
−1 1

)
x

has repeated eigenvalue zero corresponding to the eigenvector (1, 1).
The phase portrait is shown in Figure 30.7.
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v
1
 

Fig. 30.6. Phase portraits for a repeated real eigenvalue zero with eigenvector v1,
in the transformed plane (left) and the original coordinates (right). In both cases
the bold line consists entirely of stationary points.

Fig. 30.7. The phase portrait for the equation in Exercise 30.5(iii). All points on
the bold line are stationary.
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Summary of phase portraits for linear equations

Exercise 31.1 Draw the phase portrait for the equation dx/dt = Ax when
the eigenvalues and eigenvectors of A are the following:

(i) λ1 = 3 with v1 = (1, 1) and λ2 = −2 with v2 = (1, −2);
(ii) complex conjugate eigenvalues λ± = −1± 3i, with ẋ < 0 when x = 0

and y > 0;
(iii) a single eigenvalue λ = 13 with eigenvector (3, 2), and ẋ > 0 when

x = 0 and y > 0;
(iv) λ1 = −2 with v1 = (2, 1) and λ2 = −3 with v2 = (1, −1);
(v) a single eigenvalue λ = −3 with eigenvector (1, −1), and ẋ > 0 when

x = 0 and y > 0;
(vi) λ = ±2i, where ẏ < 0 when y = 0 and x > 0;
(vii) λ1 = 1 with v1 = (3, 2) and λ2 = 5 with v2 = (1, −4);
(viii) λ = 5± i, and ẏ > 0 when y = 0 and x > 0; and
(ix) a single eigenvalue λ = −7, with the matrix A a multiple of the

identity.

(i) When λ1 = 3 with v1 = (1, 1) and λ2 = −2 with v2 = (1, −2), the
two eigenvalues are both real, but have opposite sign. The origin is
therefore a saddle point, and the phase portrait is shown in Figure
31.1.

(ii) When there are complex conjugate eigenvalues λ = −1 ± 3i, with
ẋ < 0 when x = 0 and y > 0, the origin is a stable spiral (the real
part of λ± is negative), with orbits circling anti-clockwise, as shown
in Figure 31.2.

(iii) When there is a single eigenvalue λ = 13 with eigenvector (3, 2), and
ẋ > 0 when x = 0 and y > 0, the origin is an unstable improper
node. The phase portrait is shown in Figure 31.3.

276
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Fig. 31.1. The phase portrait for Exercise 31.1(i).

Fig. 31.2. The phase portrait for Exercise 31.1(ii).

(iv) When λ1 = −2 with v1 = (2, 1) and λ2 = −3 with v2 = (1, −1)
both eigenvalues are real and negative, so the origin is a stable node,
and trajectories approach tangent to v1, as shown in Figure 31.4.

(v) When there is a single eigenvalue λ = −3 with eigenvector (1, −1),
and ẋ > 0 when x = 0 and y > 0, the origin is a stable improper
node. The phase portrait is shown in Figure 31.5.

(vi) When λ = ±2i, with ẏ < 0 when y = 0 and x > 0, the origin is a
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Fig. 31.3. The phase portrait for Exercise 31.1(iii).

Fig. 31.4. The phase portrait for Exercise 31.1(iv).

centre, and trajectories spiral clockwise around it, as shown in Figure
31.6.

(vii) When λ1 = 1 with v1 = (3, 2) and λ2 = 5 with v2 = (1, −4) the
origin is an unstable node (both eigenvalues are real and positive).
Trajectories move away from the origin tangent to v1: the phase
portrait is shown in Figure 31.7.

(viii) When λ = 5 ± i, and ẏ > 0 when y = 0 and x > 0, the origin is a
centre. Orbits circle it anti-clockwise, as shown in Figure 31.8.

(ix) Finally, if there is a single eigenvalue λ = −7 and the matrix A a
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Fig. 31.5. The phase portrait for Exercise 31.1(v).

Fig. 31.6. The phase portrait for Exercise 31.1(vi).

multiple of the identity the origin is a stable star. The phase portrait
is shown in Figure 31.9.
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Fig. 31.7. The phase portrait for Exercise 31.1(vii).

Fig. 31.8. The phase portrait for Exercise 31.1(viii).
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Fig. 31.9. The phase portrait for Exercise 31.1(ix).
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Coupled nonlinear equations

In the solutions for this and all subsequent chapters, the eigenvalues and
eigenvectors have been calculated using MATLAB.

Exercise 32.1 The Hartman-Grobman theorem guarantees that the phase
portrait for a nonlinear equation looks like the linearised phase portrait suf-
ficiently close to a stationary point provided that the eigenvalues have non-

zero real part. In particular, the linearised system may not give a quali-
tatively correct picture when the linearised equation produces a centre, as
this example demonstrates. First show that the origin is a centre for the
linearised version of the equation

ẋ = −y + λx(x2 + y2)

ẏ = x + λy(x2 + y2).

Now write down the equation satisfied by r, where

r2 = x2 + y2,

and hence show that the stability of the origin depends on the sign of λ.
Draw the phase portrait for λ < 0.

The linearisation of the equations

ẋ = −y + λx(x2 + y2)

ẏ = x + λy(x2 + y2).

near the origin is just

d
dt

(
x

y

)
=

(
0 −1
1 0

)(
x

y

)
.

282
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Fig. 32.1. The phase portrait for the linearised equation near the origin.

The matrix has eigenvalues ±i, so the linearisation yields a centre, see Figure
32.1.

However, if we set x = r cos θ and y = r sin θ then we have (see the
discussion after (29.8))

θ̇ =
xẏ − yẋ

r2

=
x2 + λxy(x2 + y2) + y2 − λxy(x2 + y2)

r2

= 1,

so that θ(t) = θ0 + t, and, since r2 = x2 + y2 then we obtain

2rṙ = 2xẋ + 2yẏ

= 2λx2(x2 + y2) + 2λy2(x2 + y2)

= 2λr4,

and so we have

ṙ = λr3.

We can solve this equation explicitly, since we can separate the variables to
give

dr

r3
= λdt.

Integrating both sides between limits corresponding to times 0 and t we
obtain [

− 1
2r2

]r(t)

r=r0

= λt,
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and so

r(t) =
1√

r−2
0 − 2λt

.

Therefore if λ > 0 trajectories move away from the origin, while if λ < 0
trajectories move slowly towards the origin, see Figure 32.2 for the case
λ = −1.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

Fig. 32.2. The phase portrait for the nonlinear equation for λ = −1: trajectories
spiral slowly in towards the origin on curves like those shown here.
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Ecological models

Pictures of the local phase portraits (the linearised phase diagrams) near all
the stationary points are given in the solutions of Exercise 33.1, but not for
the subsequent exercises.

Exercise 33.1 For each of the following models of two species, describe first
the type of situation being modelled, then find the stationary points, deter-
mine their stability type and draw the phase portrait for x, y ≥ 0. Finally,
say what the phase portrait means for the two species.

(i)

ẋ = x(2− x− y)

ẏ = y(2− 2y − 2x)

(ii)

ẋ = x(2− x− y)

ẏ = y(2− 2y − x/4)

(iii)

ẋ = x(2− x− 3y)

ẏ = y(2− 2y − 3x)

(iv)

ẋ = x(1− 2y)

ẏ = y(−2 + 3x),

find also the equations of the curves along which the solutions move,

285
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(v)

ẋ = x(4− x/2− 3y)

ẏ = y(−2 + x)

(vi)

ẋ = x(10− x− 3y)

ẏ = y(1 + x− 10y)

(vii)

ẋ = x(3− x− y)

ẏ = y(−2 + x).

(You could use the MATLAB program lotkaplane.m to help draw some of
these phase portraits. It asks for the parameters that occur in the general
form of the equations

ẋ = x(A + ax + by)

ẏ = y(B + cx + dy),

and then draws the trajectory forwards and backwards through specified initial
conditions.)

To find out what type of situation is being modelled you can consider first
the behaviour of one species without the other, and then the interaction
terms.

(i)

ẋ = x(2− x− y)

ẏ = y(2− 2y − 2x).

On its own x evolves according to ẋ = x(2−x), a normal population
equation. So x can survive on the natural resources available. Sim-
ilarly, on its own y satisfies ẏ(2 − 2y), so y is also living on natural
resources. The interaction terms means that y disadvantages x and
vice versa, so we have a competition situation.

The stationary points are at

(0, 0), (0, 1), (2, 0).

(There is no fourth stationary point with x, y ≥ 0.)



Ecological models 287

The Jacobian matrix is

J(x, y) =
(

2− 2x− y −x

−2y 2− 4y − 2x

)
.

At the origin we get

J(0, 0) =
(

2 0
0 2

)

so that both eigenvalues are equal to 2 and this point is an unstable
star, see Figure 33.1.

Fig. 33.1. The phase portrait near (0, 0).

At (0, 1) we get

J(0, 1) =
(

1 0
−2 −2

)
.

The eigenvalues are 1 and −2, so that this point is a saddle. The
λ = 1 eigenvector is given by

(
0 0
−2 −3

)(
x

y

)
= 0,

and so is (3, −2); the eigenvector for λ = −2 is just along the y

axis, (0, 1). The linearised phase portrait near this stationary point
is shown in Figure 33.2.

At (2, 0) we get

J(2, 0) =
( −2 −2

0 −2

)
,

so the eigenvalues are both −2 and we have an stable improper node.
The one eigenvector is along the x axis, (1, 0). The local phase
portrait is shown in Figure 33.3.
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Fig. 33.2. The phase portrait near (0, 1).

Fig. 33.3. The phase portrait near (2, 0).

The global phase portrait, incorporating these three local pictures,
is as shown in Figure 33.4.

0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

Fig. 33.4. The phase portrait for Exercise 33.1(i).

Species x is stronger, and always drives species y to extinction.
(ii)

ẋ = x(2− x− y)
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ẏ = y(2− 2y − x/4)

The stationary points occur when

x(2− x− y) = 0 and y(2− 2y − x/4) = 0,

so we have

(0, 0), (0, 1), (2, 0), and (8/7, 6/7).

The Jacobian matrix is

J(x, y) =
(

2− 2x− y −2x

−y/4 2− 4y − x/4

)
.

At the origin

J(0, 0) =
(

2 0
0 2

)
,

and so the origin is an unstable star, and the phase portrait is as in
Figure 33.1.

At the stationary point on the x axis, (2, 0), we have

J(2, 0) =
( −2 −4

0 3/2

)
.

The eigenvalues are −2 with corresponding eigenvector (1, 0), and
3/2 with eigenvector (1, −7/8), and so this stationary point is a
saddle, as in Figure 33.5.

Fig. 33.5. The phase portrait near (2, 0).

At the stationary point on the y axis, (0, 1), we have

J(0, 1) =
(

1 0
−1/4 −2

)
,

and so the eigenvalues here are −2 with eigenvector (0, 1), and 1 with
eigenvector (1, −1/12); the phase portrait of the linearised equation
near this point is shown in Figure 33.6.
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Fig. 33.6. The linearised phase portrait near (0, 1).

Finally at the interior stationary point (8/7, 6/7) we have

J(8/7, 6/7) =
( −8/7 −12/7
−3/14 −12/7

)
,

and so the eigenvalues are given by
∣∣∣∣
−8/7− λ −12/7
−3/14 −12/7− λ

∣∣∣∣ =
(
−8

7
− λ

) (
−12

7
− λ

)
− 18

49

= λ2 +
20
7

λ +
78
49

= 0,

which gives

λ =
−20±√400− 312

14
=
−10±√22

7
,

The eigenvector corresponding to λ± = (−10±√22)/7 is given by
(

2/7∓√22/7 −12/7
−3/14 −2/7∓√22/7

)(
v1

v2

)
= 0,

i.e.

v± =
(

12
2±√22

)
.

This point is a stable node; the local phase portrait is shown in Figure
33.7.

The global phase portrait is shown in Figure 33.8.
(iii)

ẋ = x(2− x− 3y)

ẏ = y(2− 2y − 3x).
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Fig. 33.7. The local phase portrait near (8/7, 6/7).

0 0.5 1 1.5 2 2.5

0

0.5

1
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Fig. 33.8. The phase portrait for Exercise 33.1(ii).

A competition case again. Here the stationary points are (0, 0), (0, 1),
(2, 0) and a fourth given by finding the solution of

2− x− 3y = 0 with 2− 2y − 3x = 0.

Solving these gives x = 2/7 and y = 4/7. So we have four stationary
points

(0, 0), (0, 1), (2, 0), and (2/7, 4/7).

The Jacobian matrix is

J(x, y) =
(

2− 2x− 3y −3x

−2y 2− 4y − 2x

)
.
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At the origin this is
(

2 0
0 2

)

so that the origin is an unstable star again (see Figure 33.1).
At (0, 1) we have

( −1 0
−2 −2

)
,

so the eigenvalues are −2 (with eigenvector along the y axis) and −1
with eigenvector given by

(
0 0
−2 −3

)(
x

y

)
= 0,

i.e. (3, −2). This point is a stable node, and trajectories approach
tangent to the (3, −2) direction, and shown in Figure 33.9.

Fig. 33.9. The local phase portrait (0, 1).

At (2, 0) we have
( −2 −6

0 −4

)
,

so the eigenvalues are −2 (along the x axis) and −4, with eigenvector
given by

( −6 −6
0 0

)(
x

y

)
= 0,

i.e. (1,−1)T . This is another stable node, approached by trajectories
tangent to the x axis, as in Figure 33.10.
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Fig. 33.10. The phase portrait near (2, 0).

Finally, at the interior stationary point (2/7, 4/7) we have

J(2/7, 4/7) =
( −2/7 −6/7
−8/7 −8/7

)
= −2

7

(
1 3
4 4

)
.

The eigenvalues will be −2/7 times the eigenvalues of
(

1 3
4 4

)

and will have the same eigenvectors. The eigenvalues of this simpler
matrix are given by the solutions of

∣∣∣∣
1− λ 3

4 4− λ

∣∣∣∣ = λ2 − 5λ− 8 = 0.

These are real and of opposite sign, so this point is a saddle, as
shown in Figure 33.11. (Ideally we should calculate the directions of
the eigenvectors, but this would be too messy.)

Fig. 33.11. The phase portrait near the interior stationary point (2/7, 4/7).

The full phase portrait is shown in Figure 33.12.
The stable manifold of the saddle point separates the phase space

into two regions: in one species x always “wins”, while in the other
it is species y that comes out on top.
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Fig. 33.12. The phase portrait for Exercise 33.1(iii).

(iv)

ẋ = x(1− 2y)

ẏ = y(−2 + 3x).

Left alone species x satisfies ẋ = x and reproduces without bound,
happily feeding on the natural resources. But species y alone has
ẏ = −2y and dies out. The interaction shows that this is a predator-
prey situation (with x the prey), since presence of y disadvantages x,
but presence of x is good for y.

There are only two stationary points, (0, 0) and (2/3, 1/2). The
Jacobian is (

1− 2y −2x

3y −2 + 3x

)
.

At the origin this is (
1 0
0 −2

)

with eigenvalues 1 (along the x axis) and −2 (along the y axis) so
this is a saddle (see Figure 33.13).

At the interior stationary point we have
(

0 −4/3
3/2 0

)
,

so that the eigenvalues are ±√2i, and this point is a linear centre, as
shown in Figure 33.14.
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Fig. 33.13. The phase portrait near (0, 0).

Fig. 33.14. The interior stationary point (2/3, 1/2) is a linearised centre.

In fact it is surrounded by closed orbits: we can find the equation
of these. Dividing ẏ by ẋ we get

dy

dx
=

y(−2 + 3x)
x(1− 2y)

,

and this equation can be separated to give
∫

1
y
− 2 dy =

∫
−2

x
+ 3 dx.

Integrating both sides we get

ln y − 2y = −2 lnx + 3x + c,

and so

ye−2y = Kx−2e3x.

The phase portrait is shown in Figure 33.15.
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Fig. 33.15. The phase portrait for Exercise 33.1(iv). The populations cycle repeat-
edly.

(v)

ẋ = x(4− x/2− 3y)

ẏ = y(−2 + x).

On its own x obeys ẋ = x(4− x/2), the logistic population equation,
so settles down to a steady population of x = 8. On its own once
again y will die out (ẏ = −2y), and the interaction terms show that
x is the prey and y the predator once again.

There are now three stationary points,

(0, 0), (8, 0), and (2, 1).

The Jacobian matrix is

J(x, y) =
(

4− x− 3y −3x

y −2 + x

)
.

So at the origin

J(0, 0) =
(

4 0
0 −2

)

and this gives a saddle (with the x axis unstable and the y axis stable);
see Figure 33.16.
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Fig. 33.16. The phase portrait near the origin.

At (8, 0) we get

J(8, 0) =
( −4 −24

0 6

)

so the eigenvalues are −4 (along the x axis) and 6: the eigenvalue in
the unstable direction can be found from( −10 −24

0 0

)(
x

y

)
= 0

and so is (12,−5)T . This point is a saddle, as shown in Figure 33.17.

Fig. 33.17. The local phase portrait at (8, 0).

At the interior stationary point we have

J(2, 1) =
( −1 −6

1 0

)
.

The eigenvalues of this matrix are the solutions of
∣∣∣∣
−1− λ −6

1 −λ

∣∣∣∣ = λ2 + λ + 6 = 0

and so are

λ = −1±√1− 242 :
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a complex conjugate pair with negative real part, so this point is a
stable focus, as shown in Figure 33.18.

Fig. 33.18. The phase portrait of the linearised equation near (2, 1).

The global phase portrait is shown in Figure 33.19.
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Fig. 33.19. The phase portrait for Exercise 33.1(v).

Provided that there is a mixture of the species, they eventually
settle down to the coexistent steady state (2, 1).

(vi)

ẋ = x(10− x− 3y)

ẏ = y(1 + x− 10y).

On its own x satisfies ẋ = x(10 − x): reproducing quickly and set-
tling to a population of 10. On its own y satisfies ẏ = y(1− 10y), so
reproduces more slowly, and has a much smaller limiting population
of 1/10. The interaction terms show that the presence of y disad-
vantages x, while the presence of x advantages y. This could be a
predator-prey situation, or perhaps a host-parasite model.

The stationary points are at

(0, 0), (10, 0), (0, 1/10), and (97/13, 11/13).
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The Jacobian matrix is

J(x, y) =
(

10− 2x− 3y −3x

y 1 + x− 20y

)
.

At the origin we get
(

10 0
0 1

)
,

so this is an unstable node as in Figure 33.20.

Fig. 33.20. The phase portrait near the origin.

At (0, 1/10) we have
(

9.7 0
0.1 −1

)
:

the point is a saddle, with a eigenvalue −1 in the direction of the y

axis, and eigenvalue 9.7 corresponding to the eigenvector (1,−9.6)T .
See Figure 33.21.

Fig. 33.21. The phase portrait near (0, 1/10). Note that this point is very close to
the origin, so that we will see little of the behaviour shown in Figure 33.20 in our
final phase diagram.
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At (10, 0) we have ( −10 −30
0 11

)
,

another saddle, with eigenvalues −10 along the x axis and eigenvalue
11 in the direction (30,−21)T ; see Figure 33.22.

Fig. 33.22. The linearised phase portrait at (10, 0).

At the interior stationary point

J(97/13, 11/13) =
( −97/13 −291/13

11/13 −110/13

)
.

A messy calculation (or a quick use of MATLAB) shows that the eigen-
values here are a complex conjugate pair with negative real part, so
this is a stable focus, as you can see in Figure 33.23.

Fig. 33.23. The stable focus (97/13, 11/13).

The global phase portrait is shown in Figure 33.24.
(vii) The model

ẋ = x(3− x− y)

ẏ = y(−2 + x)
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0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

Fig. 33.24. The phase portrait for Exercise 33.1(vi). The population always settles
down to a coexistent state.

has stationary points at

(0, 0), (2, 1), and (3, 0).

The matrix of partial derivatives is given by

Df(x, y) =
(

3− 2x− y −x

y −2 + x

)
.

At the origin we have

dξ

dt
=

(
3 0
0 −2

)
ξ,

and the eigenvalues and eigenvectors of the matrix are

λ1 = 3 with v1 =
(

1
0

)
and λ2 = −2 with v2 =

(
0
1

)
.

This is a saddle point; see Figure 33.25.

Fig. 33.25. The origin is a saddle point.

At (2, 1) we have

dξ

dt
=

( −2 −2
1 0

)
ξ.
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The eigenvalues are −1± i; this point is a stable spiral, as shown in
Figure 33.26.

Fig. 33.26. The interior stationary point (2, 1) is a stable spiral.

At (3, 0) we have

dξ

dt
=

( −3 −3
0 1

)
ξ.

The matrix has eigenvalues and eigenvectors

λ1 = −3 with v1 =
(

1
0

)
and λ2 = 1 with v2 =

( −3
4

)
.

This is a saddle point.

Fig. 33.27. A second saddle point at (3, 0).

The global phase portrait is shown in Figure 33.28.

Exercise 33.2 The situation in which two species cooperate, so that the
presence of one enhances the environment for the other, can be modelled by
a coupled pair of equations of the form

ẋ = x(A− ax + by)

ẏ = y(B + cx− dy),
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Fig. 33.28. The phase portrait for Exercise 33.1(vii).

where all the parameters are positive. Draw the phase portraits for the fol-
lowing cooperative equations:

(i)

ẋ = x(1− x + y)

ẏ = y(1 + x− 2y).

and
(ii)

ẋ = x(2− x + y)

ẏ = y(4 + 2x− y).

(i) The equations

ẋ = x(1− x + y)

ẏ = y(1 + x− 2y)

have the stationary points

(0, 0), (0, 1
2), (1, 0), and (3, 2).

The matrix of partial derivatives Df is

Df(x, y) =
(

1− 2x + y x

y 1 + x− 4y

)
.



304 33 Ecological models

The linearisation near (0, 0) is

dξ

dt
=

(
1 0
0 1

)
ξ :

this points is an unstable star.
Near (0, 1

2) we have

dξ

dt
=

(
3/2 0
1/2 −1

)
ξ,

so the eigenvalues here are −1 with eigenvector (0, 1) and 3/2 with
eigenvector (5, 1). So this point is a saddle.

Near (1, 0) the linearisation is

dξ

dt
=

( −1 1
0 2

)
ξ.

One eigenvalue is −1 with eigenvector (1, 0), and the other is 2 with
eigenvector (1, 3). This point is another saddle.

Near the interior stationary point (3, 2) the linearisation is

dξ

dt
=

( −3 3
2 −4

)
ξ.

The eigenvalues here are λ1 = −1 with eigenvector (3, 2) and λ2 = −6
with eigenvector (1, −1). In particular, both of these eigenvalues are
negative, so the interior stationary point is a stable node.

The phase portrait is shown in Figure 33.29: the species settle to
the coexistent state (8, 6).

(ii) The equations

ẋ = x(2− x + y)

ẏ = y(4 + 2x− y)

have only three non-negative stationary points, at

(0, 0), (2, 0), and (0, 4).

The matrix of partial derivatives is

Df(x, y) =
(

2− 2x + y x

2y 4 + 2x− 2y

)
,

and so the linearisation at the origin is

dξ

dt
=

(
2 0
0 4

)
ξ;
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Fig. 33.29. The phase portrait for the cooperative system of Exercise 33.2(i), set-
tling to a coexistent state with bounded numbers of both species.

this is an unstable node, with the eigenvectors directed along the
axes.

At the stationary point (2, 0) on the x axis the linearisation is

dξ

dt
=

( −2 2
0 6

)
ξ.

The eigenvalues and eigenvectors are

λ1 = −2 with v1 =
(

1
0

)
and λ2 = 6 with v2 =

(
1
4

)
,

and this is a saddle point.
At the stationary point on the y axis, (0, 4), we obtain the linearised

equation

dξ

dt
=

(
6 0
8 −4

)
ξ.

Here the eigenvalues and eigenvectors are

λ1 = −4 with v1 =
(

0
1

)
and λ2 = 6 with v2 =

(
5
4

)
,

another saddle.
The phase portrait is shown in Figure 33.30: the number of both

species increases to +∞ as t →∞.
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Fig. 33.30. For the cooperative system of Exercise 33.2(ii) both populations increase
forever.

Exercise 33.3 (T) Consider the general model of two competing species,

ẋ = x(A− ax− by)

ẏ = y(B − cx− dy),

where all the parameters are positive. Assuming that the intercepts of the
nullclines (lines on which ẋ = 0 and ẏ = 0) with the x and y axes do
not coincide, by considering the relative positions of these intercepts show
that there are four distinct possibilities for the behaviour of solutions, and
find the parameter ranges over which they occur. Check that your results
are consistent with what you found for the competitive examples in Exercise
33.1.

The nullclines for ẋ = 0 occur when x = 0 and when A− ax− by = 0; the
second of these two lines intercepts the y axis at y = A/b and the x axis at
x = A/a. The nullclines for ẏ = 0 occur when y = 0 and when B−cx−dy =
0; the second of these two lines intercepts the y axis at y = B/d and the
x axis at x = B/c. The relative positions of these intercepts determine the
asymptotic behaviour of the model. We can therefore distinguish four cases:

[Y] When A/b < B/d and A/a < B/c. The nullclines do not intersect, except
on the axes, yielding only three stationary points with x, y ≥ 0, as shown
in Figure 33.31. The trajectories are attracted to the stationary point
(0, B/d) on the y axis.

[X/Y] When A/b < B/d and A/a > B/c the nullclines intersect in the interior of
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A/a B/c

A/b

B/d

Fig. 33.31. The nullclines when A/b < B/d and A/a < B/c (ẋ = 0 on solid line,
ẏ = 0 on dashed line). Trajectories are attracted to (0, B/d) (case [Y]).

the quadrant, and we have four stationary points in total, see Figure 33.32.
In this case there are two possible attracting stationary points, one on the
x axis and one on the y axis. The nullclines give little indication of the rôle
of the stable manifold of the interior stationary points as the ‘separatrix’
that divides the two regions leading to these different outcomes.

B/c A/a

A/b

B/d

Fig. 33.32. The nullclines when A/b < B/d and A/a > B/c (ẋ = 0 on solid line,
ẏ = 0 on dashed line). In this case there are two possible attracting points, those
on either axis (case [X/Y]).
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[X] When A/b > B/d and A/a > B/c the nullclines do not intersect and we
have only three stationary points, see Figure 33.33. This time it is the
point on the x axis, (A/a, 0), which attracts all the trajectories.

B/c A/a

B/d

A/b

Fig. 33.33. The nullclines when A/b > B/d and A/a > B/c (ẋ = 0 on solid line,
ẏ = 0 on dashed line). The stationary point (A/a, 0) attracts all trajectories (case
[X]).

[XY] When A/b > B/d and B/c > A/a there is once again an interior station-
ary point, as shown in Figure 33.34, and now all trajectories are attracted
to this coexistent state.

The following parts of Exercise 33.1 are competitive:

(i)

ẋ = x(2− x− y)

ẏ = y(2− 2y − 2x).

Here A = B = 2, a = b = 1, and c = d = 2: we have

A/b = 2 > 1 = B/d and A/a = 2 > 1 = B/c,

so we are in case [X], and all trajectories are attracted to the stationary
point on the x axis.

(ii)

ẋ = x(2− x− y)

ẏ = y(2− 2y − x/4).



Ecological models 309

A/a B/c

B/d

A/b

Fig. 33.34. The nullclines when A/b > B/d and B/c > A/a (ẋ = 0 on solid line,
ẏ = 0 on dashed line). There is an attracting coexistent state (case [XY]).

Now A = B = 2, a = b = 1, c = 1/4 and d = 2. We have

A/b = 2 > 1 = B/d and A/a = 2 < 8 = B/c,

so we are in case [XY] and the interior (coexistent) stationary point is
attracting.

(iii)

ẋ = x(2− x− 3y)

ẏ = y(2− 2y − 3x).

Now A = B = 2, a = 1, b = c = 3, and d = 2. So

A/b = 2/3 < B/d = 1 and A/a = 1 > 2/3 = B/c;

we are in case [X/Y] and could end up at the stationary point on either
axis depending on the initial condition.
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Newtonian dynamics
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Fig. 34.1. From left to right, the potentials from parts (i), (ii), and (iii) of Exercise
34.1, plotted against x.

Exercise 34.1 For the following choices of potential functions V (x) write
down the total energy for a particle of unit mass, and assuming that this is
conserved write down a coupled system for x and y = ẋ. Draw the phase
portrait and interpret the dynamics.

(i) V (x) = 1
2ω2x2;

(ii) V (x) = 1
2x4 − x2; and

(iii) V (x) = 1
6x6 − 5

4x4 + 2x2.

(Pictures of these potentials are shown in Figure 34.1.)

(i) When V (x) = 1
2ω2x2 the energy is

E = 1
2 ẋ2 + 1

2ω2x2.

Differentiating this gives

0 =
dE

dt
= ẋẍ + ω2xẋ,

310
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yielding the differential equation

ẍ = −ω2x.

This equation gives rise to simple harmonic motion, and has the
general solution

A cosωt + B sinωt.

Here we look at this from the phase plane point of view.
If we put y = ẋ then we get

ẋ = y

ẏ = −ω2x.

There is only one stationary point, at the origin, and there the Jaco-
bian matrix is (

0 1
−ω2 0

)
.

The eigenvalues of this matrix are ±iω, and since the equation is
linear we really do have a centre. Indeed, it is easy to see that the
trajectories move on ellipses, since

E = 1
2ω2x2 + 1

2y2

is constant. This should bring home the fact that oscillations corre-
spond to closed orbits in the phase plane.

Fig. 34.2. The phase portrait for a particle in the potential V (x) = 1
2ω2x2.

(ii) For the potential V (x) = 1
2x4 − x2 the total energy is

E = 1
2 ẋ2 + 1

2x4 − x2.
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Differentiating we have

ẋẍ + 2x3ẋ− 2xẋ = 0,

and so dividing by ẋ we obtain

ẍ + 2x3 − 2x = 0.

Setting y = ẋ we obtain the coupled system

ẋ = y

ẏ = −2x3 + 2x.

The stationary points of this equation are at (±1, 0) and (0, 0).
The matrix of partial derivatives is

Df(x, y) =
(

0 1
−6x2 + 2 0

)
,

and so

Df(±1, 0) =
(

0 1
−4 0

)
,

which shows that (±1, 0) are centres (eigenvalues ±2i); and at (0, 0)
we have

Df(0, 0) =
(

0 1
2 0

)
:

the eigenvalues are ±√2 with eigenvectors (1, ±√2), and this is a
saddle point. The phase portrait is shown in Figure 34.3.

(iii) When the potential is

V (x) =
1
6
x6 − 5

4
x4 + 2x2

the total energy is given by

E = 1
2 ẋ2 + 1

6x6 − 5
4x4 + 2x2.

Since E is constant, if we differentiate we obtain

dE

dt
= 0 = ẋẍ + x5ẋ− 5x3ẋ + 4xẋ.

Dividing by ẋ we obtain the second order equation

ẍ + x5 − 5x3 + 4x = 0,
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Fig. 34.3. The phase portrait for a particle moving in the potential V (x) = 1
4x4−x2.

and on setting y = ẋ this can be rewritten as the coupled equations

ẋ = y

ẏ = −x5 + 5x3 − 4x.

The stationary points for this system occur at

(−2, 0), (−1, 0), (0, 0), (1, 0), and (2, 0).

The matrix of partial derivatives is

Df =
(

0 1
−5x4 + 15x2 − 4 0

)
.

The linearisations at the two points (±2, 0) are the same:

dξ

dt
=

(
0 1
−24 0

)
ξ,

so that this point is a centre (the eigenvalues are ±2
√

6i).
The linearisations at the two points (±1, 0) are also the same:

dξ

dt
=

(
0 1
6 0

)
ξ,

with eigenvalues ±√6 and eigenvectors (1, ±√6). These points are
both saddles, while at the origin the linearisation

dξ

dt
=

(
0 1
−4 0

)
ξ
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shows that this point is another centre.
Since the energy is constant all the ‘linearised centres’ here are

indeed centres for the nonlinear equation: the phase portrait is shown
in Figure 34.4.
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Fig. 34.4. The phase portrait for a particle moving in the potential V (x) = 1
6x6 −

5
4x4 + 2x2.

Exercise 34.2 For the functions V (x) in parts (i) and (ii) of exercise 34.1
write down the kinetic energy of a particle of unit mass moving on a wire
whose height as a function of x is V (x). Taking g = 1 write down the total
energy, and hence derive the second order equation satisfied by x. Write
down a coupled system for x and y = ẋ, and draw the phase portrait.

(i) The coordinates of a particle of unit mass moving on a wire whose
height at position x is V (x) = 1

2ω2x2 are

x = (x, 1
2ω2x2);

its velocity is therefore

ẋ = (ẋ, ω2xẋ)

and so

|ẋ|2 = ẋ2(1 + ω4x2).

The total energy of the particle (taking g = 1) is therefore

E = 1
2 ẋ2(1 + ω4x2) + 1

2ω2x2.
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Since E is constant if we differentiate with respect to t we obtain

dE

dt
= 0 = ẋẍ(1 + ω4x2) + ω4xẋ3 + ω2xẋ.

Dividing by ẋ we obtain the second order equation

(1 + ω4x2)ẍ + ω4xẋ2 + ω2x = 0.

With y = ẋ we can write this as the coupled system

ẋ = y

ẏ = −ω2x(1 + ω2y2)
1 + ω4x2

.

Although this looks complicated, we know that the stationary
points will be the same as for the much simpler problem in part
(i) of the previous exercise. Indeed, it is easy to see that if y = 0
(which we need to ensure that ẋ = 0) then the only stationary point
must have x = 0 also.

The matrix of partial derivatives here is very messy,

Df(x, y) =

(
0 1

−ω2(1+ω2y)(1−ω4x2)
(1+ω4x2)2

ω4x
1+ω4x2

)
,

but at the origin it reduces to the much more manageable

Df(0, 0) =
(

0 1
−ω2 0

)
,

showing that the origin is a centre for the linearised equation (the
eigenvalues are ±iω). This will still be a centre for the nonlinear
equation due to the conservation of the energy E.

The phase portrait (equivalent to a plot of curves of constant E)
is shown in Figure 34.5.

(ii) The position of the particle is given by

x = (x, 1
2x4 − x2),

and so its velocity is

ẋ = (ẋ, ẋ(2x3 − x)).

The total energy is therefore

E = 1
2 |ẋ|2 + [12x4 − x2]

= 1
2 ẋ2(1 + (2x3 − x)2) + 1

2x4 − x2,
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Fig. 34.5. The phase portrait for a particle rolling on a wire in the shape 1
2x2

(ω = 1).

and so differentiating we have

dE

dt
= 0 = ẋẍ(1 + (2x3 − x)2) + ẋ3(2x3 − x)(6x2 − 1) + 2x3ẋ− 2xẋ.

Dividing by ẋ we obtain

(1 + (2x3 − x)2)ẍ = −ẋ2(2x3 − x)(6x2 − 1)− 2x3 + 2x,

and on setting y = ẋ we have the coupled system

ẋ = y

ẏ =
−(2x3 − x)(6x2 − 1)y2 − 2x3 + 2x

1 + (2x3 − x)2
.

The stationary points occur when y = 0 (for ẋ = 0) and then ẏ = 0
requires x = ±1 or x = 0.

In order to find the stability of the stationary points it is much eas-
ier to use the general analysis of Section 34.2 than to write down the
matrix of partial derivatives of the right-hand side of the governing
equation (although we did this for the very simple example in part
(i) of this Exercise above). Indeed, the general analysis shows that
the stability of the fixed points is the same as for the simple equation
ẍ = −V ′(x). We analysed this in part (ii) of the previous Exercise:
(±1, 0) are centres, and (0, 0) is a saddle. The qualitative behaviour
is the same, although the details of the phase portrait (the curves of
which E is constant) and somewhat different, see Figure 34.6.
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Fig. 34.6. The phase portrait for a particle moving on a wire in the shape 1
2x4−x2.

Exercise 34.3 Write down the equation of motion for a particle of unit
mass moving in each of the potentials in Exercise 34.1, when there is an
additional damping force −ẋ (in part (i) take ω = 1). Draw the phase
portrait for each case.

(i) With ω = 1 and a damping force −ẋ the equations are now

ẋ = y

ẏ = −x− y.

The origin is still the only stationary point; the equation is linear
already,

dx
dt

=
(

0 1
−1 −1

)
x,

and the matrix has eigenvalues −1
2 ±

√
3

2 i, so the origin is a stable
spiral. The phase portrait is shown in Figure 34.7.

(ii) The equations are

ẋ = y

ẏ = −2x3 + 2x− y,

with stationary points (±1, 0) and (0, 0).
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Fig. 34.7. The phase portrait for a particle moving in the potential 1
2x2 with damp-

ing −ẋ.

The matrix of partial derivatives is

Df(x, y) =
(

0 1
−6x2 + 2 −1

)
.

At (±1, 0) the linearisation is

dξ

dt
=

(
0 1
−4 −1

)
ξ,

with eigenvalues given by the solutions of
∣∣∣∣
−λ 1
−4 −1− λ

∣∣∣∣ = −λ(−1− λ) + 4 = λ2 + λ + 4 = 0,

i.e.

λ =
−1±√1− 16

2
= −1

2 ±
√

15
2 i,

so these two points are stable spirals.
At the origin the linearisation is

dξ

dt
=

(
0 1
2 −1

)
ξ,

with eigenvalues and eigenvectors

λ1 = 1 with v1 =
(

1
1

)
and λ2 = −2 with v2 =

(
1
−2

)
,

so this point is a saddle.
The phase portrait is shown in Figure 34.8.
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Fig. 34.8. The phase portrait for a particle moving the potential 1
2x4 − x2 with

damping −ẋ.

(iii) The equations of motion are now

ẋ = y

ẏ = −x5 + 5x3 − 4x− y,

with stationary points at (±2, 0), (±1, 0), and (0, 0). The matrix Df
of partial derivatives is given by

Df(x, y) =
(

0 1
−5x4 + 15x2 − 4 −1

)
.

The linearisation at (±2, 0) is

dξ

dt
=

(
0 1
−24 −1

)
ξ,

and the eigenvalues are −1
2 ±

√
95
2 i, so these two points are stable
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spirals, as is the origin where the linearisation is

dξ

dt
=

(
0 1
−4 −1

)
ξ

and the relevant eigenvalues are −1
2 ±

√
15
2 i.

Near the other two stationary points, (±1, 0), the linearisation

dξ

dt
=

(
0 1
6 −1

)
ξ

yields eigenvalues and eigenvectors

λ1 = 2 with v1 =
(

1
2

)
and λ2 = −3 with v2 =

(
1
−3

)
,

so this point is a saddle.
The phase portrait is shown in Figure 34.9.
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Fig. 34.9. The phase portrait for a particle moving in the potential 1
6x6− 5

4x4 +2x2

with damping −ẋ.
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Exercise 34.4 (T) A particle of unit mass moves on a wire whose height
as a function of x is V (x), and is subject to an additional damping force
−kẋ. Write down the equation of motion, and show that the behaviour of
this system is qualitatively the same as that of

ẍ = −V ′(x)− kẋ.

The equation of motion for the particle on a wire was derived as equation
(34.6), namely

ẍ = −V ′(x)
[
1 + V ′′(x)ẋ2

1 + V ′(x)2

]
.

With the addition of a damping force −kẋ the equation becomes

ẍ = −V ′(x)
[
1 + V ′′(x)ẋ2

1 + V ′(x)2

]
− kẋ. (S34.1)

We want to compare the qualitative behaviour of this equation with that
of

ẍ = −V ′(x)− kẋ.

The general analysis of dissipative systems in Section 34.3 shows that the
stationary points occur at turning points of V : at maxima the stationary
point is a saddle, while at minima it is a stable spiral. We want to recover
the same results for the more complicated model (S34.1)

First we write the equations as a coupled system: setting y = ẋ we obtain

ẋ = y

ẏ = −V ′(x)
[
1 + V ′′(x)y2

1 + V ′(x)2

]
− ky.

At a stationary point we must have ẋ = 0, which implies that y = 0; then
have ẋ = 0 we require

−V ′(x)
[

1
1 + V ′(x)2

]
= 0,

and since the term in square brackets is always strictly greater than zero,
stationary points only occur when V ′(x) = 0. So our two systems have the
same stationary points.

Now we look at the matrix of partial derivatives. This is the same horrific
expression as we obtained in Section 34.2 before, with the addition of a −k

term in the lower right entry:

Df(x) =

(
0 1

−V ′′
[

1+V ′′y2

1+V ′2

]
− V ′

[
(1+V ′2)V ′′′y2−2V ′V ′′(1+V ′′y2)

(1+V ′2)2

]
−2yV ′V ′′

1+V ′2 − k

)
.
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As before, we obtain a significant simplification of this at any stationary
point (x∗, 0), since we have both y = 0 and V ′(x∗) = 0:

Df(x∗, 0) =
(

0 1
−V ′′(x∗) −k

)
.

This gives rise to the same linearisation near the stationary point (x∗, 0)
as we obtained in equation (34.10) for the simple system

ẍ = −V ′(x)− kẋ. (S34.2)

It follows that not only does the ‘damped particle on a wire’ equation have
the same stationary points as (S34.2), but that all the stationary points have
the same stability properties. It follows that the two systems have the same
qualitative behaviour.

Exercise 34.5 (C) Investigate the dynamics of the equations in exercise
34.1 both with and without damping, using the M-file newtonplane.m. The
program asks for the level of damping k, and then a succession of initial
conditions. The equation is specified in the file newtonde.m, currently set
up for the example V (x) = x − 1

3x3 in the main text. By changing this file
you should be able to consider all the examples in Exercise 34.1, and also
the equivalent problems for a ball rolling on a wire.

The phase portraits in the solutions for this chapter were all drawn using
the M-file newtonplane.m. It can also be useful to plot the contours of
constant E using the MATLAB’s contour command.



35

The ‘real’ pendulum

Exercise 35.1 Draw the phase portrait for the damped pendulum equations
in (35.5) when k = 2 and when k = 3.

Here we use the analysis from Section 35.2, inserting the correct value of
k. In both cases the points at (±π, 0) are still saddles; it is the stability type
of the stable equilibrium position (0, 0) that depends on K.

• When k = 2 the matrix on the right-hand side of the linearised equation

dξ

dt
=

(
0 −1
1 −2

)
ξ

has a repeated real eigenvalue −1. So the origin is a stable improper node.
The single eigenvector is (1, −1). The phase portrait is shown in Figure
35.1.

• When k = 3 we have the linearisation

dξ

dt
=

(
0 −1
1 −3

)
ξ,

and the relevant eigenvalues and eigenvectors are

λ1 =
−3 +

√
5

2
with v1 =

(
2

3−√5

)

and

λ2 =
−3−√5

2
with v2 =

(
2

3 +
√

5

)
.

Both these eigenvalues are negative, and so this point is a stable node.
Trajectories approach tangent to the eigenvector v1, and the phase por-
trait is shown in Figure 35.2.

323
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Fig. 35.1. The phase portrait for the damped pendulum when k = 2.

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Fig. 35.2. The phase portrait for the damped pendulum when k = 3.

Exercise 35.2 Consider the equation for a pendulum with a quadratic damp-
ing term

ẋ = y

ẏ = − sinx− ky|y|.
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Show that if E = 1
2y2 − cosx then

dE

dt
= −ky2|y|. (S35.1)

Show that the point (0, 0) is a centre for the linearised equation, but using
(S35.1) deduce that for the nonlinear equation it behaves like a stable spiral,
and hence draw the phase diagram. (Remember that ‘linearised centres’ do
not have to be centres for the nonlinear equation.)

We consider the system

ẋ = y

ẏ = − sinx− ky|y|.
Defining E = 1

2y2 − cosx, the total energy, we have

dE

dt
= yẏ + sinxẋ

= −y sinx− ky2|y|+ y sinx

= −ky2|y|.
It follows that this energy decreases while y 6= 0, i.e. while the particle is
moving.

The matrix of partial derivatives is

Df(x, y) =
(

0 1
− cosx −2k|y|

)
,

so at the origin the linearisation is

dξ

dt
=

(
0 1
−1 0

)
ξ,

giving a centre. So solutions will certainly circle around the origin.
However, near the origin we have

E ≈ 1
2y2 + 1

2x2 − 1 + . . .

(using the series expansion cosx ≈ 1 − 1
2x2, valid for small x). Since E

decreases it follows that the distance from the origin,
√

x2 + y2, decreases,
and so the origin behaves like a stable spiral. The phase portrait is shown
in Figure 35.3.
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Fig. 35.3. The phase portrait for the nonlinearly damped pendulum.
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Periodic orbits

Exercise 36.1 Use Dulac’s criterion to show that periodic orbits in the
equations

ẋ = y

ẏ = −ky − V ′(x)

are only possible if k = 0.

If we write

f(x, y) = (f(x, y), g(x, y)) = (y, −ky − V ′(x))

then we have

∇ · f =
∂f

∂x
+

∂g

∂y
= −k.

Therefore we can apply Dulac’s criterion with h = 1, and deduce that there
can be no periodic orbits in any region if k 6= 0.

Exercise 36.2 Consider the coupled system1

ẋ = y + 1
4x(1− 2r2)

ẏ = −x + 1
2y(1− r2),

where r2 = x2 + y2. First, show that the system has only one stationary
point which lies at the origin. Now, by finding the equation satisfied by r,
show that trajectories enter (and do not leave) the region D, where

D = {(x, y) : 1
2 ≤ r2 ≤ 1}.

1 This example is taken from P.A. Glendinning, Stability, instability, and chaos (Cambridge
University Press, 1994)
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Use the Poincaré-Bendixson Theorem to deduce that the system has a peri-
odic orbit lying within D.

The stationary points occur when ẋ = ẏ = 0, i.e. when

y +
x

4
(1− 2r2) = 0 and x = 1

2y(1− r2).

Substituting for x in the first equation we obtain

y

[
1 +

(1− r2)(1− 2r2)
8

]
= 0.

If y = 0 then it follows from the equation for ẏ that x = 0; so we now
consider the term in the square brackets. For this to be zero we require

(1− r2)(1− 2r2) + 8 = 0 ⇒ 2r4 − 3r2 + 9 = 0.

This has a real solution for r2 if the discriminant (b2− 4ac) is positive. But
b2 − 4ac = 9 − 72 < 0, so the equation has no real solution. Thus there is
only one stationary point, which is at the origin.

We can find the equation for ṙ simply. From the identity r2 = x2 + y2 we
obtain

rṙ = xẋ + yẏ

= xy +
1
4
x2(1− 2r2)− xy +

y2

2
(1− r2)

=
r2

4
+

y2

4
− r4

2

=
r2

4
(1 + sin2 θ)− r4

2
,

since in polar coordinates y = r sin θ.
It follows that if r2 < 1/2 then ṙ > 0, while if r2 > 1 we must have ṙ < 0.

Thus on trajectories r increases if r2 < 1/2, and decreases if r > 1. Therefore
trajectories will enter, and cannot leave the region D. Since D contains no
stationary points (the only such point is the origin), the Poincaré-Bendixson
Theorem can be applied to deduce the existence of a periodic orbit within
D.
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The Lorenz equations

There are no exercises for this chapter.
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What next?

This sequence of exercises treats the problem of the vibrating string using the
method of separation of variables. This produces a simple boundary value
problem, and serves to introduce the idea of Fourier series.

The equation for the vibrations of a string stretched between x = 0 and
x = 1 and attached at both endpoints is

∂2u

∂t2
= c2 ∂2u

∂x2
, (S38.1)

with u(x, t) representing the height of the string at position x at time t. Since
the string is fixed at the endpoints, we should have u(0, t) = u(1, t) = 0 for
all t. See Figure 38.1.

x

u(x,t)

0 1

Fig. 38.1. A vibrating string, fixed at the endpoints x = 0 and x = 1.

Exercise 38.1 Show that the principle of superposition is valid: if two func-
tions u1(x, t) and u2(x, t) satisfy the equation and the boundary conditions,
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then u(x, t) = αu1(x, t) + βu2(x, t) also satisfies both the equation and the
boundary conditions.

Suppose that

∂2u1

∂t2
= c2 ∂2u1

∂x2
with u1(0, t) = u1(1, t) = 0

and
∂2u2

∂t2
= c2 ∂2u2

∂x2
with u2(0, t) = u2(1, t) = 0.

Then if u(x, t) = αu1(x, t) + βu2(x, t) we have

∂2u

∂t2
= α

∂2u1

∂t2
+ β

∂2u2

∂t2

= αc2 ∂2u1

∂x2
+ βc2 ∂2u2

∂x2

= c2 ∂2u

∂x2
,

while clearly

u(0, t) = αu1(0, t) + βu2(0, t)

and similarly for u(1, t). So u(x, t) is also a solution of the equation satisfying
the boundary conditions.

Exercise 38.2 Show that if we guess that a solution has the form u(x, t) =
X(x)T (t) then X(x) and T (t) must satisfy

1
c2T

d2T

dt2
=

1
X

d2X

dx2
.

Now we try u(x, t) = X(x)T (t) in the equation. This yields

X
d2T

dt2
= c2T

d2X

dx2
,

or equivalently
1

c2T

d2T

dt2
=

1
X

d2X

dx2
.

Since the left-hand side is a function of t alone, and the right-hand side is
a function of x alone, the only way that they can be equal is if they are both
constant. If we choose this constant to be −λ then we obtain two equations:

d2T

dt2
= −λc2T (S38.2)
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and the boundary value problem

d2X

dx2
= −λX with X(0) = X(1) = 0. (S38.3)

Exercise 38.3 Show that if λ ≤ 0 then the only solution of (S38.3) is
X(x) = 0 for all x ∈ [0, 1]. (You can find the general solution using the
methods you have learned in this book, and then choose the constants in
order to satisfy the boundary conditions.)

In order to find the general solution of the second order differential equa-
tion

d2X

dx2
= −λX

we try X(x) = ekx, and obtain the auxiliary equation k2 = −λ. Since λ < 0
this gives two real roots, ±k = ±

√
|λ|, so the general solution is

X(x) = Aekx + Be−kx.

The boundary conditions require

X(0) = A + B = 0 and X(1) = Aek + Be−k = 0,

which implies that A = B = 0, and so X(x) = 0.

Exercise 38.4 Show that if λ > 0 then we only have X(x) 6= 0 if we choose
λ = n2π2 for some integer n, and then

X(x) = AXn(x), where Xn(x) = sinnπx

and A is an arbitrary constant.

Now the general solution of the second order equation X ′′ = −λX is

X(x) = A cos
√

λx + B sin
√

λx.

In order to satisfy the boundary condition X(0) = 0 we must have A = 0;
then to satisfy the boundary condition at x = 1 we need

B sin
√

λ = 0.

Choosing B = 0 just gives X(x) = 0; but we can also satisfy this boundary
condition by choosing

√
λ = nπ for some integer n. So if we take λ = n2π2

we have the solution

X(x) = AXn(x) with Xn(x) = sinnπx.



What next? 333

The values λn = n2π2, and the corresponding solutions Xn(x), are known
as the eigenvalues and eigenfunctions for the problem

d2X

dx2
= −λX with X(0) = X(1) = 0. (S38.4)

Exercise 38.5 By requiring the solution of (S38.4) to be non-zero we have
restricted the possible values of λ to the eigenvalues λn = n2π2. Find the
solution of (S38.2) when λ = λn, and hence show that once solution of
(S38.1) is

u(x, t) = (A sinnπct + B cosnπct) sinnπx. (S38.5)

Use the principle of superposition to show that

u(x, t) =
∞∑

n=1

(An sinnπct + Bn cosnπct) sin nπx (S38.6)

solves (S38.1) for any choice of coefficients An and Bn.

When λ = n2π2, the equation (S38.2) for T (t) becomes

d2T

dt2
= −n2π2c2T.

This has the general solution

T (t) = A sinnπct + B cosnπct,

and since we originally put u(x, t) = X(x)T (t) this gives us the solution

u(x, t) = (A sinnπct + B cosnπct) sinnπx.

The principle of superposition means that we can add up linear combinations
of individual solutions. Assuming that this works for an infinite number of
solutions, we obtain a solution in the form of a series,

u(x, t) =
∞∑

n=1

(An sinnπct + Bn cosnπct) sin nπx. (S38.7)

Exercise 38.6 Assuming that any solution of (S38.1) can be written in
the form (S38.6), the problem becomes to determine the coefficients An and
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Bn. Show that if the initial position and velocity of the string, u(x, 0) and
∂u/∂t(x, 0), are given then An and Bn must satisfy

u(x, 0) =
∞∑

n=1

Bn sinnπx (S38.8)

and
∂u

∂t
(x, 0) =

∞∑

n=1

nπc An sinnπx.

If the solution is given in the form (S38.7) then we have

u(x, 0) =
∞∑

n=1

Bn sinnπx,

and since, assuming that we can differentiate the series term-by-term, we
have

∂u

∂t
(x, t) =

∞∑

n=1

(nπcAn cosnπct− nπcBn sinnπct) sin nπx,

it follows that
∂u

∂t
(x, 0) =

∞∑

n=1

nπcAn sinnπx.

An expansion of a function f(x) as a sum of sine functions,

f(x) =
∞∑

n=1

cn sinnπx (S38.9)

is known as a Fourier series expansion of f . It is one of the wonders of
mathematics that any reasonably smooth function f that has f(0) = f(1) = 0
can be expanded in such a series. (If we also include cosine functions then
we can remove the restrictions at the endpoints.) Finding the coefficients cn

is also relatively straightforward, at least in principle.

Exercise 38.7 Check that
∫ 1

0
sinnπx sinmπxdx =

{
0 n 6= m
1
2 n = m.

(‘The functions sinnπx and sinmπx are orthogonal on [0, 1]’.)

If n 6= m then, using the double angle formula

2 sin a sin b = cos(a− b)− cos(a + b)
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we have
∫ 1

0
sinnπx sinmπxdx = 1

2

∫ 1
0 cos(n−m)πx− cos(n + m)πxdx

= 1
2

[
1

(n−m)π sin(n−m)πx− 1
(n+m)π sin(n + m)πx

]1

0

= 0,

while if n = m we have

2 sin2 a = 1− cos 2a,

and so
∫ 1

0
sin2 nπxdx = 1

2

∫ 1
0 1− cos 2nπx dx

= 1
2 .

Exercise 38.8 Multiply both sides of (S38.9) by sinmπx and, assuming that
it is possible to integrate the series term-by-term, show that the coefficient
cm is given by

cm = 2
∫ 1

0
f(x) sin mπxdx.

If we multiply both sides of (S38.9) by sinmπx and integrate we obtain
∫ 1

0
f(x) sinmπxdx =

∫
sinmπx

∞∑

n=1

cn sinnπxdx.

Assuming that we can change the order of the sum and integral on the
right-hand side we have

∫ 1

0
f(x) sin mπxdx =

∞∑

n=1

(∫ 1

0
sinmπx cn sinnπxdx

)

= 1
2cm,

since all the integrals vanish except when n = m. Therefore the coefficient
cm is given by the integral

cm = 2
∫ 1

0
f(x) sinmπx dx.

Sturm-Liouville theory treats the more general eigenvalue problem

− d
dx

(
p(x)

dy

dx

)
+ q(x)y = λw(x)y with y(a) = y(b) = 0
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(in equation (S38.3) we had p(x) = w(x) = 1, q(x) = 0, a = 0, and b = 1).
There are, again, an infinite set of eigenvalues λn for which there is a cor-
responding non-zero eigenfunction yn(x). The eigenfunctions are ‘orthonor-
mal on [a, b] with respect to the weight function w(x)’,

∫ b

a
yn(x)ym(x)w(x) dx =

{
0 n 6= m

1 n = m.
(S38.10)

Furthermore, any function f(x) satisfying the boundary conditions can be
expanded as a generalised Fourier series using the eigenfunctions yn(x),

f(x) =
∞∑

n=1

cnyn(x). (S38.11)

Exercise 38.9 Using the orthonormality relation in (S38.10) show that the
coefficients cm in (S38.11) are given by

cm =
∫ b

a
f(x)ym(x)w(x) dx.

Now we assume that
∫ b

a
yn(x)ym(x)w(x) dx =

{
0 n 6= m

1 n = m.

If we try to write

f(x) =
∞∑

n=1

cnyn(x)

then to find the coefficients we multiply both sides by ym(x)w(x) and inte-
grate between 0 and 1. Feeling free to change the order of summation and
integral we obtain

∫ 1

0
f(x)ym(x)w(x) dx =

∫ 1

0
ym(x)w(x)

∞∑

n=1

cnyn(x) dx

=
∞∑

n=1

cn

(∫ 1

0
ymyn(x)w(x) dx

)

= cm,

and so

cm =
∫ 1

0
f(x)ym(x)w(x) dx.


