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Abstract 

Survey of roads for cracks, holes and any other distress with computerized or robotic imagers 

are completed on even basis. It is more obvious that moving plate form that capture images 

produces fluctuations in the image stabilization. Thus, measurements will in fact leads to 

inaccuracy. This work introduces a complete new approach towards the stabilization of 3D asphalt 

images. In Kalman filter affine transformation is used in the state space model. Here shaking in 

the image platform is demonstrated as virtual simulator to estimate the significant translation in 

the image and correct it via Kalman filter. Later a more robust and dynamic approach with practical 

implementation has been used with the Extended Kalman filter. A Simulink model is designed for 

Kalman filter and MATLAB code is written for Extended Kalman filter to demonstrate and to 

actually implement the technique for the stabilization of images. This work backs to previous effort 

on the metrology of asphalt images by means of Kinect. Vibration effects and displacement in 

different potholes with variable ranges has been studied. The Kalman filter is use for pure 

translation while EKF is use for translation as well as rotation purpose. A substantial difference 

between Kalman filter and EKF estimation can be seen through error.  

 

 

Key Words: UGV (Unman Ground Vehicle), Kinect, Depth Images, Pothole; Color(RGB) 

images; Extended Kalman and Kalman filter, MPU 6050, Affine Matrices for Transformations; 
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CHAPTER 1: INTRODUCTION 

 
This chapter provides introduction about stability of 3D pavement images when roads are 

scanned with automatic imagers for distresses. Movement of imaging platform presents flimsiness 

in pavement images amid picture obtaining process, consequently, gives less precise estimations. 

 

1.1 Problem Statement 

Pothole detection is one of the vital errands for the proper planning of repairs and 

rehabilitation of the asphalt-surfaced pavements. Potholes are critical pieces of information 

demonstrating structural defects, and precisely recognizing these potholes is one of imperative task 

for determining an appropriate systems of pavement support and restoration. Despite that, 

physically identifying and assessing techniques are costly and tedious. In this manner, a few 

endeavors have been made for building up an innovation which can consequently identify and 

perceive potholes, which may add to enhance efficiency of survey. But data coming from 

automatic imagers have instability. This study investigates and analyses pothole detection through 

automatic scanner which have developed and propose a potential direction of developing an 

adjustment of 3D asphalt pictures using the Kalman and Extended Kalman filter. 

1.2  Background, Scope and Motivation 

Generally video recordings are the proper sequence of fames called images by using 

vibrating or mobile platform. These platforms may be vehicle or any other instrument. After taking 

video sequence images are then analyzed. However, the trembling of platform is ignored when 

image analysis is performed. This vibration effects on images introduce numerous instabilities in 

an asphalt image. This brings in erroneousness and thus, brings forth more treacherous results. 

Therefore, acquiring video sequence using Microsoft Kinect a 3D stabilization technique is 

proposed by using the Kalman filter. Here, only pure 3D translation effects are considered. 

Rotation has non-linear property therefore it is considered in only Extended Kalman filter. State 

space equation of Kalman filter uses translation and rotation properties of affine transformation 

and measurement values are input with virtual accelerometer. State space and measurement values 
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are then used to estimate the rotation and translation of each pixel. Images translated or rotated 

due to vibration of camera or platform are then stabilized with inverse translation and rotation. 

In this regard, Numerous procedures to stabilize video sequence, different systems, 

techniques and methods have been commenced.  triangle based inverse methodology has been 

proposed to avoid and remove the vibrations effects in consecutive incoming frames, still, the 

framework cannot influence the movement of moving articles and purposeful movement of 

panning state of camera. Similarly, to cancel out the rolling-shutter disorientations with Extended 

Kalman filter and inertial measurement unit (IMU) is designed for mobile phone image 

stabilization. Camera orientation was only estimated with EKF.  

Moreover, image stabilization technique with Kalman filter has been introduced for off 

road images. This technique maintained the even movements in the images but remove the 

temporary vacillations in motion. In addition to this, depth camera of Kinect is used to detect an 

unexpected change in depth and tracking failures. Furthermore, kernel-based technique has been 

introduced to track pothole. Frames of a video were taken and afterwards calculation is applied. 

At the point when a pothole is distinguished in an image, the calculation stops to identify the 

pothole and attempted to track the pothole in the following casings until the point that the pothole 

leaves the perspective.  

1.3  Research Objectives 

 An automatic road survey and detection of cracks and potholes is very scorching 

topic nowadays. The expenses of the road upkeep have risen impressively. The damaged asphalt 

is expanding in a few territories because of the environmental change – substantial snows and 

rains, wasteful strategies to deplete the water for the roads, and growing traffic also. Stabilization 

of video for 2D and 3D approaches use a sequence of 2D and 3D transformations. In the order to 

present the imaging platform movement or vibrations, and remove variations to even these 

transformations to stabilize the video. Digital picture stabilization method is to steadily evacuate 

the undesirable rattling phenomena in the picture arrangements with affine transformation and 

Kalman estimation. Minimal and cost-effective Microsoft Kinect device commonly available now 

a day. Kinect has two cameras; depth camera provides depth information and second RGB camera 

captures color pictures.  
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1.4  Importance  

Excess traffic and heavier loads, along with worse weather conditions cause significant 

corrosion in road materials. These conditions significantly deteriorate a road by forming cracking, 

localized depressions or potholes. These localized failed areas or cracks not only reduce ride 

quality, but also provide worse environments for digital imaging. Shaky images provide less 

accuracy to calculate filling material for a pothole. As result, a complete wastage of filling material.  

Therefore, digital imaging requires stabilization method to accurately calculate filling material and 

that’s why, the subject has produced substantial interest. 

1.5   Potholes Revamping with Image Stabilization 

Pothole detection is one of the important task for the proper planning of repairs and 

rehabilitation of the asphalt surfaced pavements. Existing methods for detection and estimation of 

potholes usually used sophisticated equipment’s and impose computationally intensive tasks. In 

current practice, sophisticated digital inspection vehicles are used to collect pavement images and 

video data. Professionals physically check the damage and estimate accordingly. Estimation 

accurately requires that the incoming video which is the collection of successive images must be 

stabilize. During image analysis shaking and vibrations of the camera is some time avoided but it 

has greater impact on the correct calculation of metrology of pothole. Shaky camera or platform 

may translate, rotate or combine effect of translation and rotation may introduce imprecision and 

a reduced amount of consistent results. Therefore, the image stability is more important when 

camera or platform is mounted on a vehicle. 
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1.6   Research Methodology 

For examination and assessment, potholes were imaged using the Kinect sensor utilizing 

the Open Kinect programming in the Ubuntu Linux condition the metric (mm) depth pictures are 

utilized for further processing. Matlab is utilized as the processing purpose. Pictures are 

photographed with Kinect sensor held roughly at 0.8 meters over the ground and imported into the 

Matlab for further processing. A broad information preparing calculation is composed keeping in 

mind the end goal to process and concentrate the metrological and in addition portrayal elements 

of the pothole. 

For picture adjustment process the projected procedure utilizes affine matrix with 

translation and rotation properties in the state space model of Kalman filter for adjustment of 3D 

depth pictures. The suggested procedure utilizes the calculating centroid of 3D depth picture as a 

kind of perspective indicate estimate the unadulterated translation and rotation in three axis that 

are x, y and z. 
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CHAPTER 2: LITERATURE REVIEW 

This section shows the past work done in the field of asphalt pothole image stabilization; 

moving imaging platforms requires stabilization in any way. Which are detailed in this chapter. 

This chapter will give you a review of the research that has been carried out till yet on 

pothole image stabilization with metrology extraction. 

2.1 ADALINE Base Approach 

Joon Ki proposes a neural network approach that is use to stabilize a video cameras imaging. It is 

proposed with edge detection based on ADALINES (adaptive linear neurons). Compression in size 

and rich zooming makes it essential for cameras to have a video stabilizing system. Digital image 

stabilization system includes first edge detection second MV motion vector and third zooming 

with compensation unit of motion. Accuracy can be achieved in detected MV’s by obliterating 

undesirable features like noise in an image, it also reduces calculations by mapping. Where image 

is presented with 8 bits/pixel. [1] 

2.2 DSP (Digital Signal Processing) and Optical Image Stabilization 

Uomori write about to developed a full digital image stabilizing system based on motion 

vectors. This scheme was appropriate for video cameras and VCR’s. in this approach, the incoming 

signal is attached with motion sensor and memory. In motion detector picture is divided into four 

areas. Motion vector detector facilitates with four areas and correlations matches calculations 

between continuous fields. the most appropriate vector is chosen by computer for image 

stabilization. Band extract filter has been developed to reduce enormous calculations. Correlation 

must be calculated accurately without having higher and lower frequencies because lower 

frequencies contain flickers and higher frequencies contain noise. These actually interfere with 

vector calculation. Similarly, if contrast of an image is decreasing it would be difficult to get 

accurate motion vector. To reduce bad conditions 3 parameters were proposed which are average, 

minimum correlation and gradient about the lowest point. [2] 
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Optical image technique was introduced in 1993 by Sato Kochi for a consumer video camera to 

implement a new approach to stabilize an image. This technique uses feedback servo motors, to 

control variable, non-linear and uneven fluid prism. This provides a better frequency response. In 

this paper, authors introduced a new approach using a fluid prism. The system includes the 

properties, viz:  

• Resolution of Picture is intact 

• Fluctuation control in optically zoomed pictures   

To detect pitch and yaw of video camera two different sensors of angular velocity has been used. 

These velocities are then supplied to 10 bits ADC. CCD pixel size must be larger than the maximal 

quantization error. It must be ensured by ADC. The difference of angular velocity signals that is 

amplitude and frequency, enable microprocessor to distinguishes unexpected fluctuation and use 

of non-linear integration method single motion vector is calculated. This is called PWM. Passed 

from lowpass filter that generate signal for the servo motors to control fluid prism movement. [3] 

2.3 Global Motion Estimation 

In 2002 Vella introduced the adaptive block motion vectors filtering. A decent algorithm for video 

stabilization. By using block motion vector, motion estimation is achieved. Thus, the similar 

motion estimator can be used. Detection of undesirable movements, ME motion estimation and 

compensation is crucial for digital image stabilization. The algorithm has two zones, foreground 

and background. This all has been completed with a pragmatic technique assuming that frame 

central zone must have a subject where the background must be close to the border of image. For 

every part of frame first BM block motion and then motion vectors are estimated. BMV and MVE 

is use to estimate the global motion for background and foreground. This give an advantage to 

calculate only one motion vector from different sets of block motion estimation in the order to 

compute single GMV Global Motion Vector. Instead of calculating two linear histograms only one 

square histogram is calculated. one for each displacement, vertical and horizontal. It is also 

considered as a frequent motion vector in the frame. [4] 
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Nikolaos proposes a different digital image stabilization technique. It estimates global motion in 

log- polar plane using fuzzy Kalman. For each sub-image single, local motion vector is calculated 

to extract global motion vector. Motion estimation provides compensation filtered by Kalman. 

Log-polar transformation is the mathematical representation of human’s eyes projections to visual 

cortex by the retina plane. Its origin is related to vision mechanism. The acceptance of this 

technique into artificial vision frameworks displays a few favorable circumstances as in visual 

consideration, rate of throughput and continuous processing. Two-dimensional image 

displacements are extracted with differential optical flow method. Block matching algorithm is not 

that accurate, notwithstanding the wrong values are introduced in polar distortion, because of the 

false grey-value curvature in polar image. The Kalman filter is fed with global motion estimation 

vector. Kalman system estimate the compensation vector then. Stabilized video is then produced 

by the information provided by compensation unit. [5] 

 

S. Ertürk in 2004 explains the global motion estimation of phase correlation on sub-image with 

Kalman estimation to correct motion in images. GM (Global motion) is estimated by detecting 

local motion in four sub-images using phase correlation. Every single image in the frame from 

sequence. For phase correlation, fast furrier transform is use for computation, shape of sub-images 

must be in square shape. Pixel dimensions must be of the power of two. To keep the calculations 

of motion estimation less, sub image size is restricted to 64x64 and spatial image contents are 

included for correct estimation. Previous frame sub images based on phase correlation is use to 

estimate local motion vectors. Amplitude of the most prominent peak against the phase correlation 

is given as local motion vector in each image. [6] 

2.4 AFFINE  

 

Hansen describes in his paper about the pyramid-based technique. A front-end vision system to 

implement this process. This paper portrays both the calculation and equipment based 

implementation of the image stabilization system. This approach uses real-time stabilization to 

eliminate distortions among sequence images. After alignment, image mosaic is produced with a 

single reference coordinate scheme. A random video frame for stabilization is selected then frames 

are aligned with one another. Affine transformations are descended to each frame then every frame 

is aligned with the reference for display. Laplacian is used to estimate affine parameters. Optical 
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flow is calculated between images via cross correlation. Affine is then use to fit the stream field 

utilizing weighted minimum squares relapse. Estimated is used to change the prior image to the 

present image. [7] 

 

Chang in his paper, proposed a system that stabilize video by removing unwanted motions. In this 

algorithm, optical flow amid sequential frames is calculated the after-camera movement estimation 

by inserting the calculated visual flow field and trimmed least square TLQ technique to affine. At 

every single pixel in the frame at instance is the instantaneous motion vector and it is called optical 

flow. This is important to numerous video capturing study systems; like image mosaic, 

segmentation of motion and sequence image stabilization. Image in the first place partitioned into 

reduced P-by-N coincided blocks. camera and object motion is commonly resulted from optical 

flow vectors. To remove less prevailing object from trimmed least squares method is used to attain 

strong camera motion. With the T.L.Q algorithm, accumulating the error for all the data points 

standard derivation is use to find data points having with large errors. These data points are 

removed for model fitting. [8] 

2.5 Bit Plane 

Sung introduces a technique base on Grey coded bit plane matching. This technique is more 

suitable to uneven conditions like moving objects and jitters. Motion estimation is done via coded 

bit plane. To maintain the accuracy of motion estimation binary Boolean function is use to reduce 

complex computations. Local motion vector is use to find out global motion vector. To estimate 

local motion, grey scale image decomposition is introduced via bit plane and grey coded bit plane. 

Four sub images are placed in grey coded bit plane in a way to estimate local motion. Each vector 

of sub image in bit plane is calculated by matching of grey coded bit plane with the previous bit 

plane sub images and decide the optimal match. [9] 

 

2.6 Depth Kinect Sensor 

Lui depth information from Kinect sensor is use to stabilize the image. The propose technique 

solve two hitches; unexpected depth change and tracking failures. Previous techniques are limited 

with two main reasons. First, these techniques based on homography based frame registration. 
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Substantial depth changes in image sternly affect homography based frame registration. Second, a 

homography is restricted to, no camera translation and flat scene to register only two frames. But 

in real scenario these conditions may not be true for most real videos, and can produce cause 

sombre distortions results. Additional depth sensor in these two cases is beneficial. With the depth 

information camera pose, can be estimated accurately by motion estimation between two frames. 

By using combine colour and depth images to robustly compute 3D camera motion. 2D features 

points are then matched between two neighbour frames and their depth information is use to 

estimate relative motion. Cinematography principles are then used to recovered 3D camera 

trajectories by removing high pitch camera disturbances and low pitch shakes. [10]  

 

Moazzam and K. Kamal develop a technique to study the pavement images using Kinect depth 

sensor. The system was introduced to study the defects and cracks forms on the road. This was 

though lacking the image stabilization system but it is use estimate the filler material for the 

pothole so that there may be a less amount of wastage of material. In the same way, they also study 

the metrology of different potholes.  Trapezoidal rule helped to approximate the volume of pothole. 

In addition, area, length, and width are also estimated. [11] 
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Below table will give a batter idea about the literature review with its pros and cons 

S. No Name Technique Advantages Limitations 
1 Joon Ki et al [1] • Edge detection  

• Motion vector detection 

• 3x3 window use for 

mapping 

• Bistate Adaline use to 

detect edge 

• Correlations between two 

edges with logical 

operation 

• Compare first frame with 

second   

• 1 bit requires 

for pixel 

intensity 

• Noise 

suppression 

included 

• No blur 

controls 

• Lack of 

Image 

correction  

• Digital 

zooming 

requires extra 

bits to fill out 

boundaries 
 

2 Uomori et al [2]  • Signals sent to memory 

with motion vector 

detector 

• Picture divided into 4 

areas 

• Motion vector + 

correlations matches 

between the fields 

• Computer chooses best 

one 

• Best 

facilitates 

VCR’s+ 

Camcorders 

• Avoid high 

and low 

frequencies 

• Avoid bad 

conditions 

with average, 

Minimal and 

gradient 

correlation 

• Explicit filter 

Band extract 

filter was 

developed to 

reduce 

calculations 

• Very prone 

to high low 

frequencies 

3 Sato et al [3] • Servo motors are used for 

better frequency response 

• Angular velocity sensors 

for yaw pitch  

• Angular velocity signal 

frequency and amplitude 

enable MP to respond 

• PWM generate values for 

prism 

• Keeping 

picture 

resolution 

intact 

• Fluctuation 

control in 

optically 

zoomed 

pictures 

• Implemented 

on H/W 

• Quantization 

error must be 

less then 

pixel size, if 

not no 

information 

will be 

available 
4 Vella et al [4] • Motion estimation 

achieved by block 

matching 

• It has two main zones 

foreground and 

background 

• For every frame 

BMV+MV are estimated 

• Due to 

Single MV 

from BMV 

only one 

histogram is 

to be 

calculated 

instead 

multiple 

• Object under 

consideration 

must be close 

to border so 

that FG and 

BG are 

clearly 

visible 
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• Single MV is then 

calculated from BMV 

• This ease the 

processing 

and 

calculation  
5 Nikolaos et al [5]  • Based on Global Motion 

estimation 

• 4 local MV computer on 

sub images to get GMV 

• Two-dimensional image 

displacements are 

extracted with optical 

method 

• Block Matching 

introduces distortion in 

polar values 

• Kalman is fed for 

compensation 

• Log polar 

has an 

advantage in 

throughput 

rate + real 

time 

processing 

• Limited to 

only 2D 

images 

• BMA reduce 

the 

functionality 

of log polar 

plane. 

• Stabilization 

highly 

dependent on 

compensatio

n unit 

6 Erturk et al [6] • Local motions are 

calculated by using phase 

correlations to estimate 

GMV 

• Images is divided into 4 

sub images 

• For phase correlation FFT 

used 

• Kalman is used to correct 

the amplitude of phase 

correlations 

• FFT reduce 

the complex 

calculations 

• Image size is 

restricted to 

64x64 

• Sub images 

must be in 

square shape 
 

7 Hansen et al [7] • Pyramid based image 

processing  

• S/W + H/W approach 

align images into ref 

coordinate system for 

image mosaic 

• Applied affine to each 

frame 

• Laplacian pyramid to 

estimate affine 

parameters 

• Random 

video 

sequence can 

be selected 

• Image 

sequence is 

very 

important  

• Frames must 

be aligned 

8 Chang et al [8] • Optical flow between 

frames are calculated  

• Calculate affine motion 

with TLS method  

•  •  
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9 Sung et al [9] • Motion estimation is done 

via coded bit plane 

• Grey scale image is 

decomposed via bit plane 

and GCBP 

• 4 sub images are placed 

in GCBPM to estimate 

LM  

• More 

suitable to 

uneven 

conditions 

and jitters 

• Boolean 

used to 

reduce 

calculation 

• Grey scale 

image 

required 

• If previous 

BPM is 

affected by 

noise it will 

automaticall

y affect the 

next one 
10 Lui et al [10] • Kinect depth sensor used 

• Combine color + Depth 

images to estimate robust 

3d motions 

• 2d features are matched 

between connective 

frames 
 

• Address 

depth 

changes 

when occur 

• Tracking 

failure 

• 2d features + 

depth 

information 

must be 

present  

• If one 

missing 

cinematogra

phy 

principals 

will be failed 

to implement  
11 Mozzam et al [11] • Used Kinect sensor 

• depth images were used 

to analyse the area of 

pothole 

• volume is calculated via 

trapezoidal rule 

• pothole length, area and 

width are also calculated 

•  • Lack of 

image 

stabilization  

Table 2-1: Summary Table for Literature Review 
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CHAPTER 3: TOOLS AND TECHNIQUE 

This chapter describes the propose techniques used to achieve the scopes of thesis. The Chapter 

first section gives brief idea about the tools used in the experimentation and second part explains 

the technique which stabilizes the video sequence and provide statistical data. 

3.1 KINECT 

An inexpensive and reduce price 100 dollars Kinect contain Red, Green and Blue (RGB) 

and infrared (IR cameras). IR camera provides depth while RGB camera assist to distinguish the 

facial appearance and many more features. This sensor has widespread use in object tracking. Its 

infrared projector in collaboration with CMOS monochromic sensor gives the room in 3-D style. 

Kinect sensor camera has some operating features viz.  

• IR sensor operates at different frame rates, if frames per seconds’ rate changes image 

resolution changes accordingly.  

• Like, at 30 frames per second image resolution would be the IR camera 640 × 480 pixels. 

similarly, if sensor operate at 10 frames per second rate then image resolution will be 

higher 1280 × 1024 pixels. 

• Practically it is suggested that the image can be taken from 1.8 meters (6 feet). However, 

testified range vary from 0.8 to 3.5 meters. 

• 58° horizontal angle view, 0.8–3.5 m is operating range with 70° diagonal and 45° 

vertical.  

• A tilt motor, an accelerometer, and microphones are built-in. 

Strengths of Kinect sensor as compare to other sensors are that it requires less 

computational efforts, low storage space, less power and cost. In contrast, the sensor measurements 

may be affected by sunlight, high luminance, shiny metal surfaces, water and dirt.   
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3.2 MPU-6050 

 

Figure 3.1: Polarity and Orientation of Axes of MPU 6050 [12] 

 

 The MPU-60X0 6-axis Motion Tracking device. Where Digital Motion Processor (DMP), 

3-axis accelerometer and gyroscope are combined in one package. I2C sensor bus, it accepts direct 

inputs from 3-axis external compass to provide MotionFusion™ output. The MPU-60X0 is 

designed for multiple digital sensors, for example pressure sensors. The MPU-60X0 3 16-bit 

(ADCs) for gyroscope and 16-bits three ADCs for the accelerometer.  For precision gyroscope 

full-scale range vary from  ±250 to  ±2000°/sec and accelerometer full-scale range is in between 

±2g to ±16g. 
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3.3 Gyroscope Features 

The gyroscope in the MPU-60X0 incorporates an extensive variety of components:  

• A user-programmable full-scale gyroscope output digitally-X-, Y-, and Z-Axis  

• video, image and GPS synchronization is supported by FSYNC pin  

• ADCs allow real-time sampling of gyros  

• Improved bias and temperature stability improve calibration 

• Performance has been improved to reduce noise on low-frequency noise 

• Low pass digital programable filter  

• 3.6mA low current rating 

• 5µA Stand-in current 

• Factory adjusted sensitivity factor 

3.4 Accelerometer Features 

The accelerometer in MPU-60X0 incorporates an extensive variety of components: 

• programmable full-scale digital-output with ±2g, ±4g, ±8g and ±16g ratting 

• simultaneous sampling requiring no external multiplexer 

• 500µA normal operating current  

• 10µA current ratting with low power  

• Signaling and detection of orientation 

• User programed interrupts pins 

• Level of G interrupt is High 
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3.5 Matlab 

MATLAB means Matrix Laboratory. It is textural programming environment. It can 

execute commands directly as typed in the command.  

MATLAB Simulink 

• Simulink is MATLAB’s graphical programming interface. 

• Programming is accomplished by connecting various graphical icons in a specific order. 

• Simulink graphical icons are collected in what are known as Libraries. 

• Simulink programs are known as Models 

Model is implemented in SIMULINK. that provides a full block of Kalman filter. 

3.6 Kalman Filter 

It is an optimum estimator that supposes parameters from inaccurate, incomplete, noisy 

and inexact observations.  It is a recursive model which means that when new input or 

measurement is available it processed. Optimum means Gaussian noise is only consider in Kalman 

to minimizes the mean square error. Kalman is use for estimating the linear system. Given the 

noise mean and standard deviation only for estimation.  Dynamic or Non-linear estimators provide 

improved results. 

3.6.1 Kalman Filter Commonness? 

• Provide improved results in practice. 

• Suitable for direct or online actual or real-world processing. 

• Mathematical implementation and formulation is very easy and understandable. 

• No inverted equations are requiring for modeling. 

3.6.2 Problem Expressing with Kalman Filter  

It needs a linear discrete time system describe with vector and additive white noise is use 

to model undesirable noise or fluctuations. 

3.6.3 State Space Definition 

The state is the deterministic system which may be a matrix or vector that define the past 

or previous value of the system. Knowing the state values allows to estimate and predict the system 

response and outputs the system in the absence of noise. 
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3.6.4 Representation of State Space  

State equation: 

ḿ(ℐ + 1) = 𝐹(ℐ)ḿ(ℐ) + 𝐵(ℐ)𝑢(ℐ) + 𝜓(ℐ)       ℐ = 0,1,2, …  (3.1) 

where ḿ(ℐ) is the 𝑟𝑥 state vector, 𝑢(ℐ) is the 𝑟𝑢 known input vector,  𝜓(ℐ)white noise but 

(unknown) with covariance? 

𝜉(𝜓(ℐ)𝜓(ℐ)′ = 𝑄(ℐ)     (3.2) 

Measurement/ Sensor equation: 

Ў(ℐ) = 𝛱(ℐ)ḿ(ℐ) + ᵹ(ℐ)     ℐ = 1,2, …  (3.3) 

Here Ў is the sensor or measurement matrix, 𝛱(ℐ) relates state matrix parameters to 

measurement, and ᵹ(ℐ) white measurement noise but having unknown value with known 

covariance? 

𝜉(ᵹ(ℐ)ᵹ(ℐ)′ = 𝑅(ℐ)     (3.4) 

Kalman run in two stages one is prediction and second is update. These are given below. 

Prediction Cycle:  

ḿ̂(ℐ + 1|ℐ) = 𝐹(ℐ + 1)ḿ(ℐ + 1) + 𝐵(ℐ + 1)𝑢(ℐ + 1) + 𝜓(ℐ + 1) 

Measurement /Sensor Prediction: Time Update (3.5) 

Ў(ℐ + 1|ℐ) = 𝛱(ℐ)ḿ̂(ℐ + 1|ℐ) 

Measurement Remaining: 

ᵹ(ℐ + 1) = Ў(ℐ + 1) − Ў̂(ℐ + 1|ℐ) 

State Updated Estimation: Measurement Update (3.6) 

ḿ̂(ℐ + 1|ℐ) = ḿ(ℐ + 1|ℐ) + ℵ(ℐ + 1)ᵹ(ℐ + 1) 

Here ℵ(ℐ) is Kalman Gain. 

State covariance:  

𝑃(ℐ + 1|ℐ) = 𝑃(ℐ|𝜏)𝐹(ℐ)𝐹(ℐ)𝑇 + 𝑄(ℐ)   (3.7) 

Measurement covariance:  

𝑆(ℐ + 1) = 𝑃(ℐ + 1|ℐ)𝛱(ℐ+1)𝑇𝛱(ℐ) + 𝑅(ℐ + 1)  (3.8) 

Filter Gain: 

ℵ(ℐ + 1) = 𝛱(ℐ + 1)𝑇𝑆(ℐ + 1)−1𝑃(ℐ + 1|ℐ) (3.9) 
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Updated covariance: 

𝑃(ℐ + 1|ℐ + 1) = 𝑃(ℐ + 1|ℐ) − ℵ(ℐ + 1)ℵ(ℐ + 1)𝑇𝑆(ℐ + 1)  (3.10) 

 

 

General Table for the Kalman: 

 

Figure 3.2: Time Update and Measurement Update 
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3.7 Extended Kalman Filter 

This unit, addresses dynamic system which is nonlinear. This system has no extra external 

input below exactly define a dynamic nonlinear system 

𝑚(𝑑+1) = 𝑎𝑑(𝑚𝑑) + 𝜓𝑑   (3.11) 

𝑧𝑑 = ℎ𝑑(𝑚𝑑) + ѵ𝑑    (3.12) 

Where, 

  

𝑚𝑑  ∈  𝔎𝑛  𝑎𝑑(𝑚𝑑): 𝔎𝑛 → 𝔎𝑛  (3.12) 

𝑧𝑑  ∈  𝔎𝑟  ℎ𝑑(𝑚𝑑) ∶ 𝔎𝑟 → 𝔎𝑟  (3.13) 

ѵ𝑑  ∈ 𝔎𝑟 

𝜓𝑑 ∈  𝔎𝑛 

 

Where {ѵ𝑘} and {𝜓𝑘} are white Gaussian noises 

𝜉[ѵ𝑑ѵ𝑑
𝑇] = 𝔎𝑑   (3.14) 

𝜉[𝜓𝑑𝜁𝑑
𝑇] = 𝑄𝑑  (3.15) 

𝑍1
𝑑 = {𝑧1,𝑧2, … , 𝑧𝑑,} measurement matrix set. Filter basically use measurement with state space to 

obtain an estimate 

The Computational Origins of the Filter 

𝑚𝑑+𝑖 = m𝑑+𝑖 + 𝐴(𝑚𝑑 − 𝑚̂𝑑) + 𝜓𝑑  (3.16) 

 

Jacobian “A” matrix, where 𝜕𝑎[𝑙] is the partial derivative with respect to m 

𝐴[𝑙,𝑓] =
𝜕𝑎[𝑙]

𝜕𝑚[𝑓]
(𝑚̂𝑑, 𝑢𝑑 , 𝜓𝑑)   (3.17) 

Jacobian “W” matrix, where partial derivative 𝜕𝑎[𝑙] with respect to 𝜓, 

 

𝑤[𝑙,𝑓] =
𝜕𝑎[𝑙]

𝜕𝜓[𝑓]
(𝑚̂𝑑, 𝑢𝑑 , 𝜓𝑑)   (3.18) 

 

Jacobian “H” matrix, where partial derivative 𝜕ℎ[𝑙]  with respect to m, 

𝐻[𝑙,𝑓] =
𝜕ℎ[𝑙]

𝜕𝑚[𝑓]
(𝑚̂𝑑)   (3.19) 
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Jacobian “V” matrix, where partial derivative 𝜕ℎ[𝑙] with respect to ѵ, 

 

ѵ[𝑙,𝑓] =
𝜕ℎ[𝑙]

𝜕ѵ[𝑓]
(𝑚̂𝑑)   (3.20) 

Avoid to mention time step with Jacobean because it has variable time step  

A vital element of the EKF is that the Jacobian 𝐻[𝑙,𝑓] in the condition for the Kalman gain 

serves to effectively engender or "amplify" just the significant part of the estimation data. For 

instance, if no one to one mapping between sensor and state space, the Jacobean will affect the 

gain of the filter. It will only induce the residual portion and will not affect the state. Then definitely 

if no one to one mapping is present between state and measurement then the filter will diverge 

very soon. 

3.8 Computing the Derivative 

There are two more things to consider:  

Computation of the first derivative of an actual signal, without knowing the function of the system.  

Generalization of single-valued nonlinear model to multi-value system. 

In the order to answer the first question, the first derivative of a function is well-defined as the 

limit of the difference between consecutive values of that function, divided by the timestep: 

𝜉′(𝑥) = lim
∆ɀ→0

𝜉(𝑥+∆𝑥)−𝜉(𝑥)

∆ɀ
 (3.21) 

deducting successive differences of measurement y to approximate its first derivative: 

(Ӱ(𝑛+1)−𝑦𝑛)

𝑡𝑖𝑚𝑒𝑠𝑡𝑒𝑝 (∆ℐ)
   (3.22) 
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3.9 The Jacobian 

A non-linear model is often designed with the jacobian, a matrix whose row size equals to 

number of measurement inputs or sensors and columns size must be equal to states; yet, the 

jacobian matrix must have sensor and state current values as well as its partial derivatives  This 

partial derivative is call the Jacobian. 

 

Linear model is as under 

𝑥(ℐ) = 𝐴𝑥(ℐ−1) + 𝑤ℐ  (3.22) 

Will becomes 

𝑥(ℐ+1) = 𝑓ℐ(𝑥ℐ) + 𝑤ℐ  (3.23) 

where A matrix is Changed with the Jacobian of the state-transition function 𝑓𝑘. Similarly, 

𝐻𝑘 is replaced with the ℎ. 

In our system 

𝑓 =

[
 
 
 
 
 1 0 0

𝜕ℎ

𝜕𝑥

0 1 0
𝜕𝑘

𝜕𝑥

0
0

0
0

1
0

𝜕𝑗

𝜕𝑥

1 ]
 
 
 
 
 

  (3.24) 

 

MODEL 

𝑚(𝑑+1) = 𝑎𝑑(𝑚𝑑, 𝑢𝑑  ) + 𝜓𝑑  (3.25) 

𝑧𝑑 = ℎ𝑑(𝑚𝑑) + ѵ𝑑   (3.26) 

 

PREDICT 

𝑥(𝑑+1) = 𝑎𝑑(𝑚𝑑, 𝑢𝑑  )   (3.27) 

𝑃𝑑 = 𝑎𝑑−1𝑃𝑑−1𝑎𝑑−1
𝑇 + 𝑄𝑑−1  (3.28) 

 

 

UPDATE 

𝐵𝑑 = 𝑃𝑑ℎ𝑑
𝑇(ℎ𝑑𝑃𝑑ℎ𝑑

𝑇 + 𝔎)−1   (3.292) 
𝑚(𝑑+1) = 𝑚(𝑑) + 𝐵𝑑(𝑦𝑑 − ℎ𝑑(𝑚𝑑))  (3.30) 

𝑃𝑑+1 = (𝐼 − 𝐵𝑑ℎ𝑑)𝑃𝑑    (3.31) 

 

http://en.wikipedia.org/wiki/Partial_derivative
http://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant


 

22 
 

3.10 Transformations 

 Geometric transformations are used to transform object from one coordinate system to 

itself. The geometric model experiences change in respect to its MCS (Model Coordinate System). 

Object represented by point sets are prone to transformation 

3.10.1 Fixed Body Motion:  

The relative separations between object particles stay steady Affine and Non-Affine maps. 

Transformed point set ᴚ* = ᴫ (ƥ, transform object).  

When discussing geometric changes, we must be extremely watchful about the object being 

changed or moved. Here two options can take into account, either the geometric items are changed 

or the organize framework is changed. These two are firmly related; at the same time, the formulae 

that do the employment are distinctive. 

3.11 Euclidean Transformations  

 The Euclidean transformation are the most regularly utilized transformation. A 

Euclidean change is either an interpretation or translation, a turn or rotation, or a reflection. This 

proposition might talk about interpretations and pivots as it were.  

3.11.1 Translations 

For 2D translation the only x axis and y axis points are requires  

[
𝑥
𝑦
1
]  (3.32) 

For translation 

[
𝑥′

𝑦′

1

]=[
1 0 ℎ
0 1 𝑘
0 0 1

].[
𝑥
𝑦
1
]=[

𝑥 + ℎ
𝑦 + 𝑘

1
]  (3.33) 

Similarly, for inverse translation 

[
𝑥
𝑦
1
]=[

1 0 ℎ
0 1 𝑘
0 0 1

].[
𝑥′

𝑦′

1

]=[
𝑥′ − ℎ
𝑦′ − 𝑘

1
]  (3.34) 
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 Similarly, in this fashion it is easy to translate a point in a 3D space. Saying that the 

point is in the xyz-plane move to new place with the addition of vector <h, k, j>, addition of this 

vector places the point to new position that is (x', y', z'). 

Suppose we have equations 𝑞′ = 𝑞 + ℎ, 𝑤′ = 𝑤 + 𝑘 and  𝑟′ = 𝑟 + 𝑗. Let consider these 

points in homogeneous coordinates. That is to say, a column vectors whose fourth component is 

1. Thus, the below matrix of point (q, w, r) converts to the following matrix: 

[

𝑞
𝑤
𝑟
1

]  (3.35) 

Then, (x, y, z) and (x', y', z') points are related in the matrix shown below: 

[

𝑞′

𝑤′

𝑟′

1

]=[

1 0 0 ℎ
0 1 0 𝑘
0
0

0
0

1
0

𝑗
1

].[
𝑞
𝑤
𝑟
1

]=[

𝑞 + ℎ

𝑤 + 𝑘
𝑟 + 𝑗

1

]  (3.36) 

In the order to get original values simply put a negative sign in case of translation before the 

transformation value viz. 

[

𝑞
𝑤
𝑟
1

]=[

1 0 0 −ℎ
0 1 0 −𝑘
0
0

0
0

1
0

−𝑗
1

].[
𝑞′

𝑤′

𝑟′

1

]=[

𝑞′ − ℎ

𝑤′ − 𝑘
𝑟′ − 𝑗

1

]  (3.37) 

3.11.2 Rotations 

2D point for example points in the x-y plane or coordinate is rotated about the origin with 

some amount of an angle, the relationships can be depicted as: 

[
𝑥′

𝑦′

1

]=[
cose𝜑 − sine𝜑 0
sine𝜑 cose𝜑 0

0 0 1
]. [

𝑥
𝑦
1
]  (3.38) 

Inverse rotation is given as 

[
𝑥
𝑦
1
]=[

cose𝜑 sine𝜑 0
−sine𝜑 cose𝜑 0

0 0 1
]. [

𝑥′

𝑦′

1

]  (3.39) 
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Figure 3.3: Rotation vectors about Origin [13] 
 

It is worth mentioning that in rotation, the magnitude of a unit of both x and y-axis is 

maintained as shown in the above figure. 

In same fashion when a 3D point says (x, y, z) in x-y coordinate is rotated about origin 

with some amount of an angle the point will become (x', y', z'), 3D rotation has three portions yaw, 

pitch roll rotations. x-axis rotation is Roll where, y-axis rotation is Pitch about and z-axis rotation 

is Yaw about. viz: 

Roll or x-axis Rotation  

𝑅𝑥
𝜑

= [

1
0

0
cose𝜑

0 0
sine𝜑 0

0 − sine𝜑 cose𝜑 0

0 0 0 1

]  (3.39) 

Pitch or y-axis Rotation 

𝑅𝑦
𝜔 = [

cose𝜔
0

0
1

− sine𝜔 0
0 0

sine𝜔 0 cose𝜔 0
0 0 0 1

]  (3.39) 

Yaw or z-axis Rotation  

𝑅𝑧
𝛿 = [

cose 𝛿
− sine 𝛿

sine 𝛿
cose 𝛿

0 0
0 0

0 0 1 0
0 0 0 1

]  (3.39) 

Where 𝜔,𝜑 𝑎𝑛𝑑 𝛿 are the angles of rotations. The complete rotation matrix for moving from the 

single axis to combine one 
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𝑅𝐼
𝐵(𝜑, 𝜔, 𝛿) = 𝑅𝑥

𝜑
(𝜑)𝑅𝑦

𝜔(𝜔)𝑅𝑧
𝛿(𝛿)  (3.39) 

Three rotation vectors produces 6 types of matrices having different orders, generally they 

all are of equal status. It is enlightening to figure the estimations of the six conceivable composite 

matrices of rotations R and to decide their impact on the world's gravitational field of 1g at first 

adjusted downwards along the z-axis. 

𝑅(𝛼,𝜔, 𝛿) (
0
0
1
) = 𝑅𝑥

𝜑
(𝜑)𝑅𝑦

𝜔(𝜔)𝑅𝑧
𝛿(𝛿). [

0
0
1
] = (

−sine (𝜔)

sine (𝜑) cose(𝜔)

cose (𝜑) cose(𝜔)
)  (3.40) 

 

𝑅(𝜔, 𝛼, 𝛿) (
0
0
1
) = 𝑅𝑦

𝜔(𝜔)𝑅𝑥
𝜑
(𝜑)𝑅𝑧

𝛿(𝛿). [
0
0
1
] = (

−sine (𝜔)cose (𝛼)
sin (𝛼)

cose (𝜑)cose(𝜔)
)   (3.41) 

 

𝑅(𝜑, 𝛿, 𝜔) (
0
0
1
) = 𝑅𝑥

𝜑(𝜑)𝑅𝑧
𝛿(𝛿)𝑅𝑦

𝜔(𝜔). [
0
0
1
] = (

−cose (𝛿)sine (𝜔)

sine(𝜑) cose(𝜔) + sin 𝑒(𝛿) cose(𝜑) sine (𝜔)

cos 𝑒(𝜔) cose(𝜑) − sin 𝑒(𝜔) sine (𝛿) sine(𝜑)
)  (3.42) 

 

𝑅(𝜔, 𝛿, 𝛼) (
0
0
1
) = 𝑅𝑦

𝜔(𝜔)𝑅𝑧
𝛿(𝛿)𝑅𝑥

𝜑(𝜑). [
0
0
1
] = (

sine(𝜑) cose(𝜔) sine(𝛿) − sine (𝜔) cose(𝜑)

sine (𝜑) sine(𝛿)

cose(𝜑) cose(𝜔) + sine(𝜑) sine (𝛿) sine(𝜔)
)  (3.43) 

 

𝑅(𝛿, 𝛼, 𝜔) (
0
0
1
) = 𝑅𝑧

𝛿(𝛿)𝑅𝑥
𝜑(𝜑)𝑅𝑦

𝜔(𝜔). [
0
0
1
] = (

sine(𝜑) sine(𝛿) cose(𝜔) − cose(𝛿) sine (𝜔)

cose(𝛿) sine (𝜑) cose(𝜔) + sine (𝛿)sine(𝜔)

cose(𝜑) cose(𝜔)
)  (3.45) 

 

𝑅(𝛿, 𝜔, 𝜑) (
0
0
1
) = 𝑅𝑧

𝛿(𝛿)𝑅𝑦
𝜔(𝜔)𝑅𝑥

𝜑(𝜑). [
0
0
1
] = (

sine(𝛿) sine(𝜑) − cose (𝛿) cose(𝜑) sine (𝜔)

cose(𝛿) sine(𝜑) + cose(𝜑)sine (𝜔)sine(𝛿)

cose(𝜔) cose(𝜑)
)  (3.46) 
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It obvious from the  Equations 25 to 30 six compound rotations and the six estimations of 

the deliberate gravitational vector are on the whole extraordinary. A result is that pitch, roll and 

yaw pivot points are negligible deprived of first characterizing the order wherein these turns are to 

be connected.  

Those rotations which are unsuitable to determin an object orientation, will be rejected 

instantly. In this regard four of the equations will be removed. The output of accelerometer has 

three segments yet, since the vector size should constantly measure up to 1g without straight 

increasing speed, has only flexibility of two degrees. The vector of accelerometer lies on the 

surface of a circle with covering radius of 1g. It is not subsequently conceivable to unravel for 

three exceptional estimations that are roll 𝜔, pitch 𝜑 and yaw 𝛿. The 4th rotation Equations 27 to 

30 bring about the output of accelerometer being an element of every one of the three turn angles 

and can't in this way be resolved. 

Interestingly, the two rotation successions in Equations 25 to 26 depend just on the roll 𝜔 

and pitch 𝜑 and can be explained. The absence of any reliance on the angle of yaw 𝛿 is 

straightforward physically since the primary rotation is in yaw 𝛿 around the z-axis of the object. 

which is at first lined up pointing in downwards in the direction of gravitational field. All 

accelerometers are totally impervious to rotations in the direction of gravitational field vector and 

can't be utilized to decide such a rotation. 

It is traditional consequently to choose either 𝑅𝜔𝜑𝛿 of Equations 25 or the succession 𝑅𝜑𝜔𝛿 

of Equations 26 to wipe out the yaw 𝛿 and permit answer for the roll 𝜔 and pitch 𝜑 points. The 

obscure yaw edge 𝛿 speaks to the rotation of object from north however its assurance requires the 

expansion of a magnetometer to make an electronic compass which is outside the extent of this 

postulation. 

Equation 25 can be reshaped as equation 31 to normalize the accelerometer reading 𝐺𝑝 

 

|𝐺𝑝|

‖𝐺𝑝‖
= (

−sine (𝜑)

cose(𝜑) sine (𝜔 )

cose(𝜑) cose (𝜔 )
) ⇒

1

√𝐺𝑝𝑥
2 +𝐺𝑝𝑦

2 +𝐺𝑝𝑧
2

(

𝐺𝑝𝑥

𝐺𝑝𝑦

𝐺𝑝𝑧

) = (

−sine (𝜑)

cose(𝜑) sine (𝜔 )

cose(𝜑)cose (𝜔 )
) (3.47) 
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Understanding the Equation 24 for pitch and roll, utilizing the subscript xyz to indicate that 

the pitch and roll are registered by the rotation succession Rxyz , gives: 

tan𝜔 𝑥𝑦𝑧 = (
𝐺𝑝𝑦

𝐺𝑝𝑧
)  (3.48) 

tan𝜑
𝑥𝑦𝑧

= (
−𝐺𝑝𝑥

𝐺𝑝𝑦 sin(𝛼)+𝐺𝑝𝑧cos (𝛼)
) =

−𝐺𝑝𝑥

√𝐺𝑝𝑦
2 +𝐺𝑝𝑧

2
  (3.49) 

 

Order 𝑅𝜔𝜑𝛿 used in the aerospace industry therefore, it is also called aerospace rotations. 

Similarly, the calculation of finding tilt angle is given as: 

 

𝐺𝑝. (
0
0
1
) = 𝐺𝑝𝑧 = |𝐺𝑝| cos(𝛿) =

𝐺𝑝𝑧

√𝐺𝑝𝑥
2 +𝐺𝑝𝑦

2 +𝐺𝑝𝑧
2

 (3.50) 
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3.12 Affine Transformations 

In numerous imaging system, identified pictures are liable to geometric distortion 

presented by point of view abnormalities wherein the position of the camera(s) as for the scene 

changes the clear measurements of the scene geometry. Applying a relative change to a 

consistently distorted picture can amend for a scope of point of view bends by changing the 

estimations from the perfect directions to those really utilized. 

An affine tranform is a vital class of straight 2-D geometric changes which maps factors 

(e.g. intensity of a pixel is situated at position (𝑥1, 𝑦1) in an information picture) into new factors 

(e.g. (𝑥2, 𝑦2)  in an output picture) by applying a direct rotation and translation operations. 

Similarly, instead 2D; transformation can also be applied in the same way to 3D space 

vectors . This is accomplished by combining of transformations to a single combined matrix that 

shows all the transformation. Here sequence among transformation must be maintained. A 

combined matrix is 

[𝕋][𝔐] = [𝑋][𝕋1][𝕋2][𝑇3]… [𝕋𝑛−1][𝕋𝑛]  (3.51) 

Where  [𝕋𝑛] are any combination of 

• Translation 

• Rotation  

• Scaling 

• Shearing  

• Reflection 

For combining translation and rotation into a single matrix, where 3-by-3 matrix in the upper-

left the 𝔎's is rotation and h, k and j are the translation vector values. This matrix constitutes a 

composite matrix for rotations and translation. 

[𝔐′]=

[
 
 
 
 
𝔎(𝑟1,𝑐1) 𝔎(𝑟1,𝑐2) 𝔎(𝑟1,𝑐3) ℎ

𝔎(𝑟2,𝑐1) 𝔎(𝑟2,𝑐2) 𝔎(𝑟2,𝑐3) 𝑘

𝔎(𝑟3,𝑐1)

0

𝔎(𝑟3,𝑐2)

0

𝔎(𝑟3,𝑐3)

0

𝑗
1]
 
 
 
 

. [𝔐]  (3.52) 
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Length and angle of measurement is preserved in Euclidean transformations. Additionally, it 

has no effect on the shape of the geometric object. It means that if there is a line it will transfom 

to line, in similary way planes, circles and ellipsoid will transform to planes, circles and ellipsoid 

with no distortion in the shape of an object. The only thing that will change is the position and the 

orientation. Euclidean transforms are generalized in affine with slight change that is line 

tranformation to line but circle changed to ellipse with no preservation of angle and length. 

3.13 AFFINE in General  

The following matrix below is the general affine transformation: 

[

𝑥′

𝑦′

𝑧′

1

]=

[
 
 
 
 
ɸ(𝑟1,𝑐1) ɸ(𝑟1,𝑐2) ɸ(𝑟1,𝑐3) ɸ(𝑟1,𝑐4)

ɸ(𝑟2,𝑐1) ɸ(𝑟2,𝑐2) ɸ(𝑟2,𝑐3) ɸ(𝑟2,𝑐4)

ɸ(𝑟3,𝑐1)

0

ɸ(𝑟3,𝑐2)

0

ɸ(𝑟3,𝑐3)

0

ɸ(𝑟3,𝑐4)

1 ]
 
 
 
 

.[
𝑥
𝑦
𝑧
1

]  (3.53) 

Earlier discussed matrices including translations and rotations one can perceive that all the 

these matrices can easly fit into (3.53) and thus it is called an affine transform matrix.  

As discussed transformations perfomed with affine not really modify the polynomial degree 

such as parallel, intersecting planes as well as lines are transformed to parallel, intersecting 

lines/planes. In contrast, transformation perfomed through affine failed to keep the angles and 

lengths and this lead to change in geometric object shape. 

To find the inverse Affine transformation matrix only take the inverse of transformation matrix 

or transpose in MATLAB. The below equation gives the idea. 

[

𝑥
𝑦
𝑧
1

]=

[
 
 
 
 
ɸ(𝑟1,𝑐1) ɸ(𝑟1,𝑐2) ɸ(𝑟1,𝑐3) ɸ(𝑟1,𝑐4)

ɸ(𝑟2,𝑐1) ɸ(𝑟2,𝑐2) ɸ(𝑟2,𝑐3) ɸ(𝑟2,𝑐4)

ɸ(𝑟3,𝑐1)

0

ɸ(𝑟3,𝑐2)

0

ɸ(𝑟3,𝑐3)

0

ɸ(𝑟3,𝑐4)

1 ]
 
 
 
 
−1

.[
𝑥′

𝑦′

𝑧′

1

]  (3.54) 
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3.14 Test Rig 

 

 

Figure 3.4: Test Rig for Experimentation 

 

This test rig is made to actually implement the model after successful implementation on 

simulation. Simulink MATLAB application is use to implement the simulation model on virtual 

accelerometer. The same model of Kalman will then implement on the test rig which is a 

benchmark for testing the pothole metrology.  

This test rig includes Hemisphere, Prism, Pyramid, Cone, Cylinder and Cube. The above 

figure demonstrates the model of test-rig is designed with CAD. Each item on the rig have its own 

specifications.  

Rig total length: 6.5 feet 

Rig total width: 2.5 feet 

 

S.No Name Max Depth in mm Max Volume in cm3 

1 Hemisphere 40 150 

2 Prism 78 545 

3 Pyramid 100 340 

4 Cone 81 403 

5 Cylinder 80 950 

6 Cube 78 780 

Table 2-1: Original depth and Volume of the Rig potholes 

 

Test rig provides a balance condition for the calibration of accelerometer and gyro sensor as 

the rig is place on a smooth and clean surface. It also provides a template to compare the sensor 

values with the actual depth and volume values of each object on the rig.   
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CHAPTER 4: EXPERIMENTATION AND RESULTS 

At the current position now we have enough knowledge to formulate the problem into a model. 

Images of the pothole has been captured at college of EME, NUST Rawalpindi, Pakistan through 

Microsoft Kinect, for the examination and analysis of pothole in the evening. Excess light passes 

through Kinect sensor infrared camera cause less accurate image depth that why to avoiding excess 

exposure of light evening has been chosen. Sensor has taken images from 0.8 m of height from the 

ground level. As Kinect sensor may be affected by direct sunlight, therefore, sensor is sheltered 

with a covering to reduce the direct sunlight interference. Depth resolution of the images was set 

to 640 by 480 pixels at the time of shooting. Setup of experimentation is shown in figure below. 

OpenKinect library for acquiring images with Kinect under Ubuntu operating is used. MATLAB 

was used to further analyze the images taken. 

 

 

Figure 4.1: Test Rig with Kinect and accelerometer are mounted on UGV for Experimentation 
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The image sequence taken with the Kinect is given below with image on the left is depth 

image and on the right side RGB image. 

 

 

Figure 4.2 : Pothole on the ground for study   

 

Stabilization of 3D asphalt/ pavement images Kalman filter with affine transform approach is 

suggested. At this stage, pure translation is considered in 3D. Below image gives the idea of the 

proposed technique.  

 

 

Figure 4.3: Flow algorithm for calculating KF estimation 
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Acquisition of image frame through Kinect camera has resolution 640 x 480, therefore, it is 

cropped to 200×200. By introducing the virtual accelerometer random values to translate the 

images. As shown in the figure below 

 

 

Figure 4.4: Virtual Accelerometer and Image Centroid System in Simulink   

 

Here previous frame is translated to next location in the x and y coordinate. Now the reading 

coming from the accelerometer is fed into Kalman state space model, after estimation these values 

will be use to translate the previous frame and find the centroid of the image.  

By using the above Equation 37 of Affine translation for 3D to form a state space model for 

Kalman. State space is the mathematical representation of the problem.  

𝔽 = [

1 0 0 𝑇𝑥(𝑝)

0 1 0 𝑇𝑦(𝑝)
0
0

0
0

1
0

𝑇𝑧(𝑝)
1

]  (4.1) 

Where, translation property of affine is shown in matrix 𝔽 as a state space model, 𝑇𝑖(𝑝) is the 

translation in between the consecutive frames and 𝑝 is the incremental index of an array. Here left 

3 x 3 matrix of Affine transformation matrix is identity because of the fact that the pure translation 

is considered. Rotation is ignored with one other fact that the rotation model is dynamic. 

 State space of Kalman block in Simulink is acquainted with the difference in the translation 

of two frames. The translation in the direction of x, y and z are estimated via Kalman by 

introducing measurement and the state space values. As shown the figure 

Virtual 

Accelerometer 

Frame Translated 

according to 

accelerometer 

reading 

Centroid of the 

Translated Frame 
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Figure 4.5: Kalman Block in Simulink   
 

 

 

 

 

Then the centroid of the two images or frames are calculated so to find the translation between 

the two. The difference between the two will gives pure translation. 

 

 

Figure 4.6: Image Translation and Correction System in Simulink   

State Transition Matrix is 

State Space Matrix 

Initial Condition means 

Kalman requires a start value 

Measurement Matrix means 

Sensor Input Value 

Output Estimated 

Value 𝑥(𝑘 + 1) 

Original Frame 

Translated with 

Kalman Values  
Kalman 

Estimated x,y 

values 

Centroid of an  

Centroid after 

translation with 

Kalman values 
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The stabilization of image is achieved from the estimated values of Kalman filter. These values 

translated the frame close to original one as shown in above figure.  

 

Depth images constitute to determine the metrology (perimeter and volume) of pothole. The 

algorithm to achieve this is given below. 

  

 

Figure 4.7: Algorithm for calculating the Volume and Perimeter 

 

Depth is calculated after binarization of each frame at every single millimeter. the number of 

white pixels are calculated for it. Using these area values, volume is calculated by using the area 

depth graph by accumulating the curve area. These binary pictures with are used to measure the 

peak depth and perimeter. Full simulation model is given below. 
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Figure 4.8: Full Estimation and Prediction Model in Simulink 
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4.1 Modeling via Simulation 

Depth images are recorded in a video sequence as shown in the below. Depth image on the 

right and color RGB image on the left.  

 

Figure 4.9: RGB image of Pothole 
 

Figure 4.10: Depth Image of Pothole 

 

Kalman filter uses value coming from sensor and update the estimate via previous value 

from the model. Therefore, it is implemented through MATLAB software by using an arbitrary 

linear movement in each frame in the direction of x, y and z. This simulation has intended to keep 

the noise zero.  white Gaussian noise and variance values are set to 0 and 1 for measurement in the 

model. Process noise is assumed to be 0 because system for estimation is consider to be noise free, 

and after simulation process noise is calculated by the model itself.  The estimated value coming 

from Kalman by using the state space model is use to translate the image and find its centroid.  

Conversely, the sensor/ measured signals/ values are simulated random values that are coming 

from virtual accelerometer. 
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4.2 Results 

 All the values coming from sensor, prediction or estimation using Kalman filter are in 

millimetre. These values are considered for translation in each frame in x, y, and z plane. All the 

figures below showing the red line which is measured/ sensor mean values. Green line shows the 

predicted values. Whereas the estimated values are shown via blue line.  

It is obvious from the graphs that the difference in sensor/measured values and the 

estimated values are because of sensor noise. As the Kalman state space model has no noise that’s 

why it estimates and predict the values near original values if noise is subtracted from the sensor 

value. 

In contrast, estimated values using Kalman lies amidst the red and green values. In other 

figures estimated and predicted values are close to each other or overlaps. The fact is that the 

Kalman filter is converging. If the gap become larger and larger with the increment in time then 

the filter is not designed accurately.  

 

 

 

 

Figure 4.11: Sensor, Estimated and Predicted Kalman Graphs 
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As compare with x, y and z graphs has faster convergence. The possible reason is that the 

estimated values in y and z direction are closer to sensor values.    

Image on the left side is the difference between original/reference frame and the next or 

translated frame. The image on the right is the difference between original/ reference frame and 

the translated image through Kalman estimation.   

 

  

 

 

 

 

 

 

 

It is purely visible from the above picture that thick white line in left image has higher 

difference where picture on the right has thin line, means that the difference between the reference 

and deformed frame is less. Perimeter, volume and maximum depth calculated after stabilization 

of the frames. The table below show the values  

 

Figure 4.14: Volume, Perimeter displacement with original and translated values. Average Errors are also visible 
 

 

 

Figure 4.12: Original and Measured 

difference 

 

Figure 4.13: Difference of Original and 

Estimated 
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4.3 Summary 

The technique proposed via Kalman demonstrated improved results for image 3D pothole 

stabilization. The error in volume calculations are significantly reduced from 5.38% to 3.09% for 

volume. Similarly, error in perimeter calculations are reduce from 3.27% to 1.59% respectively.  
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CHAPTER 5. PROBLEM FORMULATION WITH EKF 

 After successful implementation of simulation in SIMULINK now real reading has been 

taken by using the Kinect sensor. In addition to this, an accelerometer with gyroscope is used to 

take the reading from 0.8 mm of distance from the ground. Full setup is implemented on the UGV 

which is controlled with remote control.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Kinect mount point is 0.8 

meter from the ground 

Remote Control 

UGV 

Figure 5.1: UGV Where Sensors and Kinect are Mounted 
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Complete Flow Diagram of Stabilization System  

  

 Accelerometer 

Calibration 

Gyroscope 
Camera 

 

 

 

 

Image Acquisition 
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Figure 5.2: Full Flow Diagram of The System 
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Accelerometer and gyro reading is taken for every 1mm. UAV speed is kept constant at the rate 

of 1meter per minute. Microcontroller code is use to convert the coming voltages from the sensor 

to meaningful data. Kinect camera is taking images with rate of 25 frames per seconds. Sampling 

rate for the controller is  

𝑆𝑎𝑚𝑝𝑙𝑒 𝑅𝑎𝑡𝑒 =
1

(1+𝑆𝑎𝑚𝑝𝑙𝑒𝑟 𝐷𝑖𝑣𝑖𝑑𝑒𝑟)
 𝐾𝐻𝑧  (5.1) 

Sampler Divider is frame rate at which frames will be captured per seconds. 

The above equation 64 will give us sampling rate for microcontroller 0.03846 KHz. Baud rate 

for the serial communication is set to 115200.      

5.1 Pseudo Code for Microcontroller 

{ 

Call wake (); 

Begin transmission (MPU 6050); 

Delay (100); 

Write  register ≈ 0b000000; 

Close(); 

} 

Call MPU Calibration(); 

MPU_ReadData(); 

Set xangle ⟶ angle_roll_gyro_x; 

Set yanlge ⟶ angle_pitch_gyro_y; 

Set zangle ⟶ angle_yaw_gyro_z; 

Loop 

{ 

 ReadData(); 

 Set xangle  ⟶ (angle_roll_x+current_gyro_x)/2 

Set yangle  ⟶ (angle_pitch_y+current_gyro_y)/2 

Set zangle  ⟶ (angle_yaw_z+current_gyro_z)/2 

} 
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Similar for accel 

Repeat the loop; 

  Offset calibration of the controller is very important. Reading coming from accelerometer 

and gyro must be set to final value by removing the offset. Calibration has one more importance 

when there is rough terrain. 

Call wire.h; 

Define time ⟶20; 

Define radian to degree ⟶ 57.3 

Setup ()  

 Begin(); 

 Call wake(); 

Setgains(); 

Set offset(); 

Loop 

 Gyro angle at x ⟶ x_value_ scaled*( time/1000)+anglex); 

Gyro angle at y ⟶ (y_value_ scaled*(time/1000)+angley); 

Gyro angle at z ⟶ (z_value_ scaled*(time/1000)+anglez); 

calculate angle with tan(); 

theta ⟶a2tan(); 

set filter gain() 

end 

serial out all variable⟶? 
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5.2 Matlab Code for Accessing Microcontroller 

Call Controller Function 

Define COM3 port 

Define baud rate 115200 

Open port for Arduino(); 

Readsync(); 

Loop 

 Check for data(); 

End 

Loop 

 Concatenate different inputs(); 

 Check Arduino buffer status(); 
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5.3 Implementation With K.F 

In the order to implement the stabilization on images Kalman model is once again 

implemented in Simulink. Related images with reading is also implemented with the Extended 

Kalman filter. This for the purpose to find the difference between the two approaches.  

 In first place, Kalman filter is implemented in SIMULINK with the reading coming from 

the microcontroller. First reading of microcontroller has been taken via .m file KINECT.m.  

Procedure  

• Reading of x, y and z for accelerometer and gyroscope is fed into SIMULINK via variable 

sensor_value  

• Initial values for Kalman in x,y and z direction are also put into SIMULINK InitFcn 

• SIMULINK model parameter configuration is set to Fixed step start from 0 and end time 15. 

(here 15 means maximum samples or readings). Solver is set to ode1 (Euler) 

• Kalman block is set according to state space model matrix with giving initial value. Initial 

value is the average value of first few readings. 

• State space modelling and transformation matrices are discussed on pages 14 and 19 

• System upon running for fifteen values will take sensor reading from InitFcn  

• The estimated and predicted values are then store is respective variables 

 

Figure 5.3: Initial Values of Accelerometer for Estimation and Prediction Model in Simulink 

Model Properties Block 

Initial Sensor values 

of Accelerometer 

Initial Values 

Function in 

SIMULINK 
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Figure 5.4: Initial Gyro values for Estimation and Prediction Model in Simulink 
 

• When sensor send values accordingly they are compared with previous reading. Difference 

is required to put into Kalman state space model.  

• The difference between two consecutive readings shows that how much translation or 

rotation has been occurred 

• In real values coming from sensors must have a noise and have large difference.  

• In addition to this, estimated values coming from Kalman will reduce the error significantly 

After initial values, model is set to estimate and predict the sensor values. As shown in the figure 

below 

Initial Sensor values 

of Gyroscope 
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Figure 5.5: Figure shows the Image Correction section with KF block 
 

The two Kalman blocks in the picture shows the complete model for the estimation of 

accelerometer values and on the right side Kalman model for estimating gyroscope values. 

 The images coming from the Kinect in the model is stored in the .tiff file format. It worth 

mentioning that the images are corrected with estimation done by using the rotation and translation 

block in the model. The difference among original picture and the estimated image is very slight 

because of the fact 25 frames per seconds one meter per minute.   

 Until now, we were implementing a linear model in the Kalman. Now the same approach 

with non-linear properties are implemented with the Extended Kalman Filter. The difference 

between KF and EKF is that to avoid the uncertainties in KF. Jaccobian matrix with parital 

derivatives are used in EKF to address the non-linearity.  

Complete model is given on the next page 
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Figure 5.6: Full Estimation and Prediction Model in Simulink 
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5.4 Implementation With Ekf 

This similar approach is used with EKF. The only difference is the jaccobian matrix with 

partial derivative. As in our case, the reading coming from accelerometer and gyroscope are 

numerical so here only difference in time will work better. Please refer to equation no 24-25. 

Procedure 

• Initialize all values that are require for the EKF in the beginning (it use use only once at 

the start of the code). 

• Initially system must have two average values previous value and previous value 1. It is 

because of the fact that system requires derivative values in state space model.  

• State space modeling discussed in detail on page no 14 and 19 

• Partial derivative is taken by using the equation 24-25 

• Each time when the reading come from sensor it is compare with the previous one. The 

previous values is then subtracted from the current value and put it to state space model. 

• EKF explicitly run and estimate for accelerometer and gyroscope. 

• Every reading is put into the EKF funciton ekf_fun() for estimation and prediction.  

• When filter is runing it currently updating the images with the estimated values. 

Imshowpair command is use to show the difference. 

• Most important in filter is the stabilizaiton of an image. For this, a transformation matrix 

is defined to inverse translate and rotate the image for the purpose of stabilization.  

• Translation and rotation properties are used in this filter are AFFINE transform.  

• Stabilization of an image requires AFFINE transformation object here tformr 

• AFFINE also requires a matrix that contains transformation matrix Tr 

• Applying transformation on the image affine2d()function is used 

• Difference between the image coming from kinect and the estimated image is shown with 

the imshowpair() 

Psudeo Code for the EKF with description is given on the next page 
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EKF Pseudo Code 

Initialize all variables 

Previous value_accel⟶initialize; 

Previous value_gyro⟶initialize; 

P⟶identity value matrix; 

H⟶identity value matrix; 

V⟶ identity value matrix; 

R⟶ identity value matrix; 

Initialize sensor values⟶accel; 

Initialize sensor values⟶gyro; 

%gyro data% 

Loop 

 Call ekf(); 

 Set Estimated Value; 

 Set predicted value; 

Assign Theta ⟶ Estimated value x 

Assign Roh⟶ Estimated value y 

Assign PHI⟶ Estimated value z 

End 

%Accelerometer Data% 

   Loop 

   Call ekf(); 

 Set Estimated Value; 

 Set predicted value; 
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Assign Ax⟶ Estimated value; 

Assign Ay⟶Estimated value; 

Assign Az⟶Estimated value; 

End 

Define Yaw⟶rotation matrix; 

Define Pitch⟶ rotation matrix; 

Define Roll⟶rotation matrix; 

Tr⟶ the composite Affine matrix with yaw, pitch and roll including Ax 

and Ay; 

Call affine2d(Tr); // correction and translation back section 

Call showpair(); // for showing difference  

The following piece of code will basically initialize the values. calling of 

EKF function continuously and in addition to this, stabilize image is also 

displayed. 
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EKF FUNCTION 

 Function- (arguments) 

 Define time ⟶1/30 // for derivative 

 Loop 

  Derivative⟶ (abs(previous value)-abs(current value)); 

 End 

Define A- state space model matrix with derivative values 

Perform prediction 

 M⟶A*M; // M has to have previous estimate 

 P⟶A*P*A’ + W + Q + W’;  // perform for covariance  

Calculate Measurement values 

 MU⟶H+M; // H may have identity matrix 

Perform update 

 Define S ⟶set its equation; 

 Define K⟶ set gain equation; 

 Define Estimate- set estimate equation with measured value; 

 Define Covariance- predicted covariance will be updated; 
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5.5 Summary  

This chapter defines the whole idea of image stabilization via model and codes. 

Understanding on code reveals that how this whole project is implemented. Calibration of 

sensors mounted on Kinect is very important. Reading values in MATLAB along with Kinect 

images requires a lot of processing. The designing of state space model is trickier when there 

are only values. All the issues are discussed in detail along with the procedure 
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CHAPTER 6. RESULTS AND DISCUSSION 

This part discusses the results that are generated by the Kalman and Extended Kalman. 

Tables displacement of different axis shows the difference between KF and EKF. These results 

clearly depict the nature of the KF estimation and EKF estimation. 

EKF results better as here we remove non-linearity with the partial derivatives. Tables 

given below with graphs shows the actual displacement is the x, y and z direction. Similarly, angles 

are also calculated and displayed on the graph. 

 

6.1 X Axis Displacement In mm 

X AXIS 

DISPLACEMENT 

IN MM 

KF ESTIMATED X 

AXIS 

DISPLACEMENT 

IN MM 

EKF ESTIMATED 

DISPLACEMENT 

X AXIS IN MM 

DELTA-

DISPLACEMENT 

IN MM 

(KF-EKF) 

70.92 68.03045171 65.43176045 2.598691257 

67.2 70.00943556 66.91608472 3.09335084 

67.46 71.16005448 66.50782159 4.65223289 

66.23 71.88593916 66.37881112 5.507128042 

64.54 71.82491073 66.06590713 5.759003601 

67.3 71.57692113 65.69148244 5.885438693 

66.85 71.34875987 65.69044207 5.658317796 

67.3 71.02320682 65.64481633 5.378390492 

68.1 70.68288274 65.61158259 5.071300148 

69.95 70.45200242 65.62386791 4.828134514 

64.15 70.25004964 65.68342449 4.566625152 

67.14 70.10568369 65.84365182 4.26203187 

65.41 68.73319187 65.60045509 3.132736774 

66.55 67.97582813 65.57644112 2.399387008 

65.86 67.66589852 65.4843248 2.181573723 

66.11 67.34564039 65.46234672 1.88329367 

Table 6-1: Displacement with difference in x direction for KF and EKF (Estimation) 
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X AXIS 

DISPLACEMENT 

IN MM 

KF PREDICTED 

X AXIS 

DISPLACEMENT 

IN MM 

EKF 

PREDICTED 

DISPLACEMENT 

X AXIS IN MM 

DELTA-

DISPLACEMENT IN 

MM 

(KF-EKF) 

70.92 69.94461353 65.04897662 4.895636907 

67.2 72.11137063 66.70767196 5.403698669 

67.46 73.29455884 66.33591988 6.958638951 

66.23 73.94895414 65.9934825 7.955471639 

64.54 73.61360459 65.85626137 7.757343213 

67.3 73.3644329 65.55192189 7.812511009 

66.85 72.85231414 65.18250324 7.669810901 

67.3 72.33852724 65.16912376 7.169403476 

68.1 71.84499865 65.12533451 6.719664141 

69.95 71.50564067 65.09195475 6.41368593 

64.15 71.12716417 65.1026373 6.024526872 

67.14 70.66106589 65.16015801 5.500907882 

65.41 68.90983165 65.31578463 3.594047024 

66.55 67.80784178 65.08785878 2.719983001 

65.86 67.68253925 65.05678729 2.625751965 

66.11 67.28973338 64.96765411 2.322079276 

Table 6.2: Displacement with difference in x direction for KF and EKF (Prediction) 

 

 

 
 

 

Figure 6.1: Estimated/ Predicted Values graph for KF and EKF in X axis displacement (mm) 

 

These values are taken for the hemisphere from the rig. The reason behind this is that in 

the real world most of the potholes are likely to be in a sphere shape. These 15 values actually 

shows the sensors values and on that volume and perimeter will be calculated. 
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The upper two graphs explain the KF and EKF estimation. If we compare the two graphs 

we can batter see that estimation of EKF is more batter than KF. It the fact that the convergence 

of the EKF is slower than the KF but it estimates more sharply than KF. If we analyze the graph 

on the left it may one can consider that the values on the blue line has more pecks than that of the 

predicted and estimated one.  

To answer this question, it is simple that we have more noise in the sensor values while 

the estimated one and the predicted one may be noise free. It is because of the fact that the state 

space model for both KF and EKF are noise free.  

KF values when time increases the estimated, predicted and sensor values are 

approaching to each other. This is because that the convergence of the linear system is more fast 

as compare to dynamic. 

In this regard, if we closely observe the EKF graph it seemed to be diverge but it is not 

the case. Non-linear system often converges very slowly.  

We can see in the tables above 6.1 and 6.2 the last right column shows the difference 

between the EKF and the KF. 

similarly results and the graphs for the Y and Z axis are given below. 
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6.2 Y Axis Displacement In mm 

Y AXIS 

DISPLACEMENT 

IN MM 

KF ESTIMATED 

DISPLACEMENT 

Y AXIS IN MM 

EKF 

ESTIMATED 

DISPLACEMENT 

Y AXIS IN MM 

DELTA-

DISPLACEMENT 

IN MM 

(KF-EKF) 

18 17.06594751 18.10247113 1.03652362 

17.25 19.39456264 18.06662284 1.3279398 

21.99 21.87891905 18.52350628 3.355412768 

21.67 23.63119371 18.85958449 4.771609219 

23.6 24.79422686 19.32973683 5.464490027 

23.66 25.94705293 19.57857598 6.36847695 

22.41 26.04534904 19.87027111 6.17507793 

22.66 26.09602574 20.11576162 5.98026412 

22.66 26.04355358 20.3377896 5.705763982 

22.13 25.86652256 20.51574806 5.350774492 

21.69 25.42576408 20.70368205 4.722082032 

20.04 24.3321471 20.8960874 3.436059703 

25.49 24.1200354 21.28529546 2.834739939 

22.33 23.13915264 21.56366273 1.575489908 

24.33 23.5688437 21.73857636 1.830267346 

23.44 23.37950045 21.88941558 1.490084865 

Table 6-3: Displacement with difference in y direction for KF and EKF (Estimation) 
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Y AXIS 

DISPLACEMENT 

IN MM 

KF PREDICTED 

DISPLACEMENT 

Y AXIS IN MM 

EKF 

PREDICTED 

DISPLACEMENT 

Y AXIS IN MM 

DELTA-

DISPLACEMENT 

IN MM 

(KF-EKF) 

18 19.74577406 16.91438202 2.831392043 

17.25 22.33727174 16.24361371 6.093658032 

21.99 24.86722515 16.88581102 7.98141413 

21.67 26.51941468 17.29745498 9.221959696 

23.6 27.29839826 17.61531017 9.683088086 

23.66 28.4495694 18.05052812 10.39904128 

22.41 28.15032501 18.28998256 9.860342453 

22.66 27.93747433 18.56125975 9.376214572 

22.66 27.67051586 18.79212954 8.878386323 

22.13 27.34161611 19.00036324 8.341252866 

21.69 26.65372443 19.16805244 7.485671981 

20.04 25.10968218 19.34338092 5.766301262 

25.49 24.3673311 19.52305971 4.844271396 

22.33 22.90397175 19.88067463 3.023297112 

24.33 23.59214073 20.14428394 3.447856788 

23.44 23.30123064 20.31097748 2.990253164 

Table6-4: Displacement with difference in y direction for KF and EKF (Predicted) 

 

 

 

 

Figure 6.2: Estimated/ Predicted Values graph for KF and EKF displacement (mm) in Y axis 
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6.3 Z Axis Displacement In mm 

Similarly, the table for the displacement in z direction is given below  

Z AXIS 

DISPLACEMENT 

IN MM 

KF 

ESTIMATED 

DISPLACEMENT 

Z AXIS IN MM 

EKF 

ESTIMATED 

DISPLACEMENT 

Z AXIS IN MM 

DELTA-

DISPLACEMENT 

IN MM 

(KF-EKF) 

6.64 7.656647286 6.662372391 0.994274895 

7.94 8.407740269 7.253413704 1.154326565 

5.76 8.53801743 6.783024108 1.754993322 

5.94 8.252059918 6.506688433 1.745371485 

2.73 7.154775423 6.059426798 1.095348625 

8.88 7.150047062 5.779709201 1.370337861 

3.47 6.014217068 5.57916604 0.435051028 

4.51 5.261281677 5.402446426 0.141164749 

4.51 4.648463641 5.247264538 0.598800897 

4.85 4.214553007 5.13987644 0.925323433 

2.92 3.508458122 5.032188203 1.523730082 

-0.62 2.2215288 4.934795527 2.713266728 

-4.04 0.706559151 4.55702484 3.850465689 

-4.67 -0.671945395 4.322644783 4.994590178 

3.39 0.066562935 4.184621816 4.11805888 

2.89 -0.223628008 4.08224941 4.305877418 

Table 6-5: Displacement with difference in z direction for KF and EKF (Estimated) 
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Z AXIS 

DISPLACEMENT 

IN MM 

KF 

PREDICTED 

DISPLACEMENT 

Z AXIS IN MM 

EKF 

PREDICTED 

DISPLACEMENT 

Z AXIS IN MM 

DELTA-

DISPLACEMENT 

IN MM 

(KF-EKF) 

6.64 8.57544496 5.325629612 3.249815348 

7.94 9.416669101 6.214285714 3.202383387 

5.76 9.562579521 5.741041529 3.821537992 

5.94 9.242307108 5.395796636 3.846510472 

2.73 8.013348474 5.171348906 2.841999567 

8.88 8.008052709 4.820901206 3.187151503 

3.47 6.735923117 4.594470731 2.141452386 

4.51 5.892635478 4.43321493 1.459420548 

4.51 5.206279278 4.292331016 0.913948262 

4.85 4.720299368 4.168601006 0.551698362 

2.92 3.929473096 4.082107971 0.152634875 

-0.62 2.488112256 3.996649057 1.508536801 

-4.04 0.791346249 3.919080913 3.127734663 

-4.67 -0.752578843 3.626680315 4.379259157 

3.39 0.074550487 3.436870994 3.362320506 

2.89 -0.250463369 3.324779826 3.575243196 

Table 6-6: Displacement with difference in z direction for KF and EKF (Predicted) 

 

 

 

 

Figure 6.3: Estimated/Predicted Values graph for KF and EKF in Z axis displacement (mm) 
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6.4 X Axis Rotation In degrees 

Here now we will insert the values coming from the gyroscope and these values will be 

estimated via EKF. It is because of the fact that the angles calculation involves the non-linearity 

that’s why we go for the EKF estimation. The tables will give us a better idea about estimation. 

 

 

Sensor 

X AXIS 

ROTATION 

IN DEG 

EKF 

ESTIMATED X 

AXIS 

ROTATION IN 

DEG 

EKF 

PREDICTED X 

AXIS 

ROTATION IN 

DEG 

DELTA-

DISPLACEMENT 

IN DEG 

(EKF EST-

Sen) 

3.55 3.314545253 3.290734535 0.235454747 

3.36 3.303346525 3.250992063 0.056653475 

3.37 3.296852044 3.277499818 0.073147956 

3.3 3.28183923 3.270901316 0.01816077 

3.26 3.273559192 3.256289342 0.013559192 

3.37 3.270707967 3.247852375 0.099292033 

3.34 3.267310044 3.244844254 0.072689956 

3.37 3.266492783 3.241491377 0.103507217 

3.4 3.266208091 3.240595263 0.133791909 

3.48 3.26801486 3.240295219 0.21198514 

3.25 3.257100079 3.242018487 0.007100079 

3.35 3.252295348 3.231611017 0.097704652 

3.25 3.247498076 3.226642366 0.002501924 

3.34 3.244811431 3.221882921 0.095188569 

3.33 3.24206037 3.219147804 0.08793963 

3.31 3.239524951 3.216420706 0.070475049 

Table 6-7: Angular Displacement with difference in x direction for EKF (Estimated/Predicted) 
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6.5 Y Axis Rotation In degrees 

Y AXIS 

ROTATION IN 

DEG 

EKF 

ESTIMATED Y 

AXIS 

ROTATION IN 

DEG 

EKF 

PREDICTED Y 

AXIS 

ROTATION IN 

DEG 

DELTA-

DISPLACEMEN

T IN DEG 

0.87 0.967845373 0.907243483 0.097845373 

1.1 0.994129543 0.953115265 0.105870457 

1.08 1.006368245 0.92827421 0.073631755 

1.17 1.031815265 0.940149802 0.138184735 

1.24 1.048138648 0.96352059 0.191861352 

1.12 1.055182041 0.979060313 0.064817959 

1.14 1.063093756 0.98593202 0.076906244 

1.11 1.066918763 0.993299095 0.043081237 

1.08 1.069603549 0.99700118 0.010396451 

0.99 1.068351886 0.999545847 0.078351886 

1.33 1.088395082 0.9984987 0.241604918 

1.12 1.097208417 1.016567267 0.022791583 

1.21 1.106901986 1.025153868 0.103098014 

1.15 1.112967478 1.034185857 0.037032522 

1.22 1.119858737 1.039967566 0.100141263 

1.2 1.126043913 1.046382269 0.073956087 

Table 6-8: Angular Displacement with difference in y direction for EKF (Estimated/Predicted) 

6.6 Z Axis Rotation In degrees 

Z AXIS ROTATION IN 

DEG 

EKF ESTIMATED Z 

AXIS ROTATION IN 

DEG 

EKF PREDICTED Z 

AXIS ROTATION IN 

DEG 

DELTA-

DISPLACEMENT IN 

DEG 

0.4 0.330347364 0.260848507 0.069652636 

0.29 0.306354122 0.214814815 0.016354122 

0.3 0.295849801 0.243772934 0.004150199 

0.13 0.271187312 0.235079321 0.141187312 

0.46 0.257587477 0.215880472 0.202412523 

0.17 0.252759727 0.20479429 0.082759727 

0.23 0.24706407 0.200730676 0.01706407 

0.24 0.245619366 0.196233274 0.005619366 

0.14 0.24503261 0.194974224 0.10503261 

-0.04 0.247866998 0.194485848 0.287866998 

-0.19 0.229612208 0.196644856 0.419612208 

-0.24 0.221485397 0.182714842 0.461485397 

0.16 0.21346064 0.175997056 0.05346064 

-0.05 0.208888097 0.169625502 0.258888097 

-0.02 0.204209788 0.16590517 0.224209788 

0.04 0.199910563 0.162195025 0.159910563 

Table 6-9: Angular Displacement with difference in z direction for EKF (Estimated/Predicted) 
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In these tables DELTA on the right most shows the error between EKF estimation and the 

original values coming from the sensors. The detail view of the following can be presented in the 

graph for better visualization.  

 

  

 

Figure 6.4: Estimated/Predicted Values graph for EKF in X,Y and Z angles 
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6.7 Comparison Table 

The comparison table is an important table where it shows the pothole metrology like volume 

and perimeter. It also compares the volume and perimeter calculated after the KF and EKF 

estimation. When image was corrected the volume and perimeter was calculated. Original values 

in the table shows that it has been calculated with human hands and foot rule.   

Similarly, table shows that which techniques is more accurate in terms of error. The more the 

error less it will be the better technique.  

Org 
Vol 

Org 
Peri 

Mrd 
Vol 

Mrd Peri Vol Cal 
After KF Est 

Vol Cal After 
EKF Est 

Peri Cal 
After KF 

Est 

Peri Cal 
After EKF Est 

Error in 
Vol 

Mrd—KF 
est 

Error in 
Peri 

Mrd—KF 
est 

Error in 
Vol 

Mrd—EKF 
est 

Error in Peri 
Mrd—EKF 

est 

150 64.58 158.15 66.3935 144.8 148.35 64.7003 64.836113 13.35 1.6932 9.8 1.5573165 
150 64.58 158.35 68.3921 143.55 148.5 64 66.372457 14.8 4.3921 9.85 2.0196429 
150 64.58 157.55 66.9544 141.3 147.65 64.2309 65.625964 16.25 2.7235 9.9 1.3284635 
150 64.58 161.2 67.9964 144.85 148.05 64.4327 66.097364 16.35 3.5637 13.15 1.8996364 
150 64.58 166.75 67.9881 142.8 148.25 62.7374 62.654029 23.95 5.2507 18.5 5.3338706 
150 64.58 157.95 66.6382 142.5 148 64.2028 63.139722 15.45 2.4354 9.95 3.4984784 
150 64.58 162.25 67.3154 141.95 148 62.3881 63.359144 20.3 4.9273 14.25 3.9563856 
150 64.58 158 67.6768 142.45 148.1 64.0313 65.165559 15.55 3.6455 9.9 2.5114406 
150 64.58 166.65 69.2282 143.2 147.35 63.8797 66.117383 23.45 5.3485 19.3 3.1104165 
150 64.58 171.95 69.7169 143.35 147.6 62.4178 62.09877 28.6 7.2991 24.35 7.6188302 
150 64.58 162.5 67.537 142.15 147.5 63.9012 64.63974 20.35 3.6358 15 2.8979726 
150 64.58 161.15 67.5247 142.85 147.9 58.8056 65.61432 18.3 8.7191 13.25 1.9097725 
150 64.58 165.35 67.2206 141.35 147.8 59.6887 65.674 24 7.5319 17.55 1.5466 
150 64.58 168.6 65.8068 141.85 148.15 64.0899 65.1319 26.75 1.7169 20.45 0.6749 
150 64.58 159.8 68.4894 141.95 148.05 63.7197 65.009 17.85 4.7697 11.75 3.4804 
150 64.58 164.74 68.410 142.05 148.25 63.3495 65.1334 22.6944 5.09156 16.494 3.30766 

Table 6-10: Volume & Perimeter calculations after KF and EKF Estimation with errors 

 

In the table above the values in the right most 4 columns show that the KF and EKF 

significantly reduce the error. Here to notice that the EKF is more robust because as compare with 

the KF error reduction it significantly reduces the error. Which means that it estimates the batter. 
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Comparison table for 6 Rig potholes shapes 

Name Org 
Vol 

Org 
Peri 

Avg Mrd 
Vol 

Avg 
Mrd 
Peri 

Avg Vol 
Cal After 

KF Est 

Avg Peri 
Cal After 

KF Est 

Avg Vol Cal 
After EKF 

Est 

Avg Peri 
Cal After 
EKF Est 

Avg 
Error in 

Vol 
Mrd—
KF est 

Avg 
Error 

in Peri 
Mrd—
KF est 

Avg 
Error in 

Vol 
Mrd—
EKF est 

Avg 
Error 

in Peri 
Mrd—
EKF est 

Hemisphere 150 62 162.559 67.70 144.8 63.16 147.968 64.791 17.759 4.54 14.591 2.909 
Cone 403 81 408.24 86.566 395.272 83.64 399.9783 80.885 12.967 2.926 8.261 5.681 
Prism 545 72 536.44 76.85 538.88 77.556 541.2 70.851 2.44 0.706 4.76 5.99 
Pyramid 340 63 332.54 69.44 335.231 58.66 338.85 61.442 2.691 10.78 6.31 7.998 

Cylinder 950 95 956.751 101.22 942.985 98.808 947.840 96.445 13.766 2.412 8.911 4.775 

Cube 780 83 787.22 87.56 783.660 85.56 779.24 81.465 3.56 2 7.98 6.095 

Table 6-11: Volume & Perimeter calculations after KF and EKF Estimation with errors for Hemisphere, Cone and 

Prism 

 

 

Name Avg Error in Vol 
Original—KF est 

Avg Error in Peri 
Original—KF est 

Avg Error in Vol 
Original—EKF est 

Avg Error in Peri 
Original—EKF est 

Hemisphere 5.2 1.16 2.014 2.791 

Cone 7.728 2.64 3.0217 0.115 

Prism 6.12 5.556 3.8 1.149 

Pyramid 4.769 4.34 1.15 1.558 

Cylinder 7.015 3.808 2.16 1.44 

Cube 3.66 2.56 0.76 1.535 

Table 6-12: Average Error table between original and KF, EKF estimated values 
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Now here are the pictures that has been taken and stabilized 

 

 

 

  

Figure 6.5: Original, Rotated, Translated, Correction and Difference image 

of Hemisphere 

 

Figure 6.6: Original, Rotated, Translated, Correction and Difference image of Prism 
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Here the red and cyan shows the difference between the original and corrected image. That 

how these images were corrected according to the use of KF and EKF 

  

Figure 6.7: Original, Rotated, Translated, Correction and Difference 

image of Cone 
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CHAPTER 7: CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

Extended Kalman filter with Affine transformation is used in the proposed technique to 

stabilize the images. This is because of to find the exact metrology of the pothole. Which 

include volume and perimeter. These two will able us to calculate an accurate amount of filling 

material. The proposed technique indicates promising outcomes for adjustment of 3D pothole 

pictures the fault in displacement and angle estimations because of precariousness of pictures 

is impressively diminish. 

The stability in images gives the power to accurately calculate the material required for the 

filling of potholes. This enormously reduce the cost, material and time for surveyors and 

engineers. 

7.2 Future Work 

The real-time implementation of different affine effects which involves shearing, scaling. 

The proposed technique is also implemented on Kinect 1 and Kinect 2, conference and Journal 

paper writing will be covered up. The proposed technique can also be studied under Unscented 

Kalman in future.  

In addition to this, potholes will be filled with different liquid and then try to find its 

metrology. It will give us improved idea about the calculation of material for potholes. 
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