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Abstract 

In the recent years, deep learning has gained huge fame in solving problems from various 

fields including medical image analysis. This thesis proposes a deep convolutional neural network 

based pipeline for the diagnosis of Alzheimer’s disease and its stages using magnetic resonance 

imaging (MRI) scans. Alzheimer’s disease causes permanent damage to the brain cells associated 

with memory and thinking skills. The diagnosis of Alzheimer’s in elderly people is quite difficult 

and requires a highly discriminative feature representation for classification due to similar brain 

patterns and pixel intensities. Deep learning techniques are capable of learning such 

representations from data. In this thesis, a 4-way classifier is implemented to classify Alzheimer’s 

(AD), mild cognitive impairment (MCI), late mild cognitive impairment (LMCI) and healthy 

persons. Experiments are performed using ADNI dataset on a high performance graphical 

processing unit based system and new state-of-the-art results are obtained for multiclass 

classification of the disease. Results are examined for two state-of-the-art models i.e. googLeNet 

and ResNet-152. An optimized and dedicated model is also proposed which is based on 

incorporating residual learning in shallow networks. Experiments are performed in three phases 

with both learning from scratch and fine-tuning techniques. The acquired results outperformed 

other techniques for both binary and multiclass classification. The proposed technique results in a 

prediction accuracy of 99.9% by using proposed optimized model, which is a significant increase 

in accuracy as compared to the previous studies and clearly reveals the effectiveness of the 

proposed method. 

Key Words: Alzheimer's disease; mild cognitive impairment; deep learning; structural MRI; 

multi-class classification, ResNet, GoogleNet, residual learning, ADNI 
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Chapter 1 
 

Introduction 
 

Human brain is the most central and the complex organ in its formation as well as 

functioning. It is the central processing unit of human body. Each action of a person, simplest or 

complex, is ruled by the signals and messages which are received and sent by his brain. Besides, 

it is also responsible for providing the memory bank which can store thoughts and memories of 

one’s life. Different parts of brain are responsible for different activities. The study of 

neurosciences is thus crucial for dealing with neurological diseases and other issues. As we can 

understand the importance of memory in our life, in the same way we can imagine the disaster of 

a term “memory loss”.  

1.1 Problem Statement 

Dementia is a generic medical term which is used for the condition in which mental activity 

is declining [1] and daily life activities of a patient are becoming disturbed and difficult. There are 

several types of dementia including permanent and temporary dementia. Number of reasons are 

behind for causing the situation like accidents, nervous breakdown or natural aging process. These 

causes are accompanied with structural changes and damages to brain tissues. Most commonly 

known form of dementia which is caused by increasing age is Alzheimer’s disease (AD). 

Alzheimer’s is a chronic and neurodegenerative disease associated with elder people and accounts 

for about 60 to 80 percent dementia cases [2]. Detailed overview of AD is presented later in this 

chapter. The diagnosis of such a disease is crucial and demands a treatment ahead of time. Owning 

to complex formation of brain, natural or trauma-caused degeneration of brain tissues becomes 

hard to detect and understand. In case of AD, the overall size of brain reduces as compared to 

healthy brain. Thus, a skillful and expert system with high accuracy is required to diagnose the 

diseased condition. 
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1.2 Motivation 

 Recent advances of deep learning and artificial intelligence (AI) in solving problems from 

medical field became a motivation for this proposed research work. Future is now being considered 

to be associated with deep learning and its applications. The finest research groups from all over 

the world have launched dedicated AI based projects and research centers in every domain 

including medical, healthcare, robotics, online marketing, advance farming, lifestyle, data science, 

automatic vehicles and so on. A group of Stanford researchers, recently developed a deep learning 

based algorithm to diagnose 14 type of cardiac rhythm abnormalities with accuracy of an expert 

cardiologist [3]. Similarly, number of researches are available which efficiently diagnose breast 

cancer, prostate cancer, skin cancer and various tumors by applying deep learning. Research group 

from University of Michigan Medicine developed an imaging technique which detects a brain 

tumor with about 90% accuracy and still faster than the existing laboratory method (takes 

minimum 30 to 40 minutes). According to team, their technique takes only 3 minutes to detect the 

tumor [4]. Such researches inspire us to seek solution to our problem of accurately diagnosing AD 

using deep learning. 

1.3 Overview of Alzheimer’s disease 

 Alzheimer’s disease (AD) is an irreversible and progressive neurological disease. It is 

considered as most common form of dementia. It starts with a little fail to recall things or  recent 

events but it worsens overtime and may lead to total loss of memory as well as ability to perform 

simple tasks e.g. conversation, properly responding to stimulus and self care. In advance stage of 

disease, the patient is completely dependent on others. The rate of progression of disease varies 

from person to person owing to underlying reasons and state. Alzheimer's is the sixth leading cause 

of death in the United States [5]. Since 2000, mortality rate due to AD has been increased by 89% 

[5]. According to Alzheimer’s Association, in 2017, AD will cost about $259 billion to the nation 

[5]. Moreover, in case of AD patient, care giving responsibilities and family set-up also face 

challenges. Although, the disease is commonly being seen in elderly people (age > 65) but it may 

occur in younger age as well. It may be genetic or a result of any mishap or trauma. Thus the 

specific cause of AD is not attributed but old age increases the chances of getting into the disease. 

The progression of disease cannot be stopped by any medicine or treatment, however, it may get 
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slow down temporarily.  

Alzheimer’s disease accompanies with numerous structural changes of brain. Before 

moving towards the details of these changes, let us have an idea about the structure of brain. There 

are three main parts of brain; cerebrum, cerebellum and brain stem. Cerebrum covers the largest 

area and makes the top frontal portion of brain. It is associated with memory formation, movement 

of body, logical thinking. Cerebellum is associated with body coordination and balance. Brain 

stem connects brain to spinal cord and controls the automatic processes of body.  

Cerebrum, being the major part, constitutes 85% of the weight of brain. It mainly contains 

cerebral cortex which is divided into two hemispheres. Cortex is the outer surface of cerebrum 

having wrinkled form. Different regions of cortex control memory, senses, voluntary activities and 

thinking process. Hippocampus and ventricles are also present in cerebrum. Hippocampus is 

responsible for handling short term and spatial memory. Cerebrospinal fluid (CSF) is produced in 

ventricles of brain. Tissue level anatomy of cerebrum consists of Grey matter (GM) and White 

matter (WM). Grey matter is formed of numerous cell bodies of neurons and white matter consists 

of networks of axons and dendrites. Almost 86 billion neurons are present in human grey matter 

[6]. 

 

Figure 1.1 - Structure of Human Brain 
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 In Alzheimer’s case, cell body of neurons highly reduces with the death of neurons. Tissue 

matter both GM and WM degenerates and is damaged by protein formed plaques and tangles. Thus 

size of brain cortex greatly shrinks in AD. Hippocampus also shrinks up and hence AD patients 

show orientation and short term memory concerns. Brain ventricles get enlarged and CSF chemical 

composition also changes. Plaques and tangles destroys the cellular connectivity and signaling 

system. Early difficulties in performing tasks like reading, thinking eventually lead to memory loss 

and inability to cope with life. Timely diagnosis of disease thus play a vital role and several 

methods are being used including clinical and imaging techniques. 

  

Figure 1.2 - Pictorial view of Normal brain vs Alzheimer’s Brain (severe degeneration in AD case) 

 

Clinical methods of diagnosing Alzheimer’s are mainly based on several psychiatric 

assessments which are in the form of questionnaires. These assessments give an idea about 

cognitive functioning of brain and provide a number to compare against a scale. Mini-mental state 

examination (MMSE) is the most popular and measures on the scale of 30 where 30 is considered 

normal and lower values indicate dementia. The questions asked are related to daily life tasks and 

scored according to patient’s ability to cope with them. Clinical dementia rating (CDR). 

Neuropsychiatric inventory questionnaire (NPI-Q), global deterioration rate (GDR), functional 

assessment questionnaire (FAQ) are other such assessments and are included as a part of patient’s 

history in formation of standard ADNI [7] dataset. However, modern methods of diagnosing 

dementia do not rely solely on these assessments and take into account details of information from 

neuroimaging and biological measures. 
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 Most of the researches, nowadays, are based on Magnetic Resonance Imaging (MRI) and 

Positron Emission Tomography (PET) scans, mostly complemented with Cerebrospinal fluid 

analysis (CSF). Cerebrospinal fluid surrounds the brain and spinal cord and acts as a cushion 

providing the basic protection to central nervous system. This fluid is produced in the ventricles 

of brain. CSF analysis provides the detailed chemical composition of the fluid. It is considered to 

be the most accurate bio-marker in diagnosing AD as compared to other fluid bio-markers. AD 

condition is detected by the presence of senile plaques (composed of a protein Aβ) and a high 

concentration of tau protein [8]. However, the process of collecting CSF from patient is invasive 

often combined with a pain as well as difficulty of reproducibility of results and storage of 

collection limits its use as compared to imaging methods.  

 MRI and PET techniques are non-invasive and provide potential information about the 

brain anatomy and activity. MRI technique uses strong magnetic field and radio waves to generate 

anatomical scans. It provides tissue level structural details of the brain. Hence, it is termed as 

structural MRI (sMRI), shown in figure 1.2 on left. One variant of this technique is functional MRI 

(fMRI) shown in middle of figure 1.2, which examines the activity of brain in conjunction with 

the blood flow. The flow of blood increases in the brain region associated with activity performed 

by a person. PET (right in figure 1.2) also examines on similar principle of blood flow. It is a 

nuclear functional imaging technique and detects the metabolic process occurring in the brain. It 

is very useful in studying the brain activity in case of dementia when structural changes are very 

little to be distinguished. But it is limited to detect small changes or activity owing to its fast 

radioactive decaying. Both functional MRI and PET provide colorful interpretation of brain 

activity. Nevertheless, most of the neuroscience researches are based on CSF, MRI, PET and 

fusion of these modalities. 

                                    

Figure 1.3 - Structural MRI scan (left), Functional MRI scan (middle), PET scan (right) 
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1.4 Mild Cognitive Impairment  

Mild cognitive impairment (MCI) is a brain syndrome which may occur as a transitional 

phase from normal age decline towards severe forms of dementia. It is also considered as 

prodromal stage of Alzheimer’s if it exhibits symptoms of memory decline. The symptoms of MCI 

are difficult to be distinguished from the normal aging process of brain and it hardly interferes 

with the daily life of a person. It may remain stable in some cases for years and thus termed as 

non-converting MCI (ncMCI). But about 8% to 15% MCI patients are annually converting to 

dementia condition [9]. Hence, it implies the necessity of diagnosing MCI in its early form and 

demands the awareness among people to possibly treat or avoid severe conditions i.e. Alzheimer’s. 

MCI requires careful judgement from the clinician due to its unnoticeable yet important to consider 

nature and after effects. Structural changes are also minor to be differentiated from normal without 

being an expert.  

1.5 Deep Learning 

 Today’s modern age dreams about machine that have intelligence, which can think, act and 

decide like human. The field of machine learning deals with making machines that can learn and 

intelligent enough to decide and perform action accordingly. This induced intelligence is termed 

as artificial intelligence (AI). Traditional pattern recognition and machine learning methods are 

dependent on the algorithms which can extract useful features from the data. Those features are 

then fed to a machine learning algorithm to make decision e.g. classify as diseased or healthy. The 

prediction performance is highly dependent on the learnt features. The AI system based on these 

algorithms is actually based on the extracted features or representations provided for the decision. 

The system remains unaware of the actual data and conditions. For better feature extraction, better 

algorithms are needed which come up with more complexity as well as other factors. The solution 

for this problem is a learning approach which can learn useful representations automatically and 

directly from the data. This approach is called Representation Learning [10].  

Deep learning is one of the representation learning methods. It is based on artificial neural 

networks and also termed as hierarchical learning [11]. It is a fresh specialization field of machine 

learning and an approach to achieve high quality artificial intelligence. The term hierarchical 
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clearly tells us that learning is achieved by moving through the layers of hidden neurons from 

simple learning representations and moving towards more complex ones. Another important aspect 

of deep learning is the depth of the network. Each layer represents processing of data to get one 

level of features. Deeper networks are able to learn very complex representations from data.  

Different types of deep learning architectures have been introduced. Research is still active 

in the field for more and better solution. Deep convolutional neural networks, deep belief networks, 

deep polynomial networks and recurrent neural networks are some of the introduced architectures. 

Deep learning has gained huge fame in solving problems of computer vision, natural language 

processing, medical diagnostics, audio processing and much more. The proposed work is based on 

convolutional neural networks (CNN) and chapter 3 will provide its detail insight. 

1.6 Brief Concept of Proposed Methodology 

 Section 1.2 gives the main idea that the proposed method will take brain information or 

scan like MRI and pass it through some deep learnings based system to classify the image into one 

of the four classes i.e. AD, MCI, later stage of MCI (LMCI) and normal cognitive (NC). Hence, 

the proposed framework will be a 4-way classifier for diagnosing AD and two stages of MCI and 

normal. Detailed methodology is discussed in chapter 3. 

1.7 Outline of Thesis 

 The remaining thesis is structured as follows: chapter 2 gives detail literature review on the 

topic and chapter 3 presents the proposed method in detail. Chapter 4 discusses the experiments 

and obtained results. Chapter 5 concludes the thesis and discusses the outcomes and future work. 
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Chapter 2  

 

Literature Review 
 

Diagnosis and classification of Alzheimer’s disease remained an active research topic in 

clinical as well as scientific research groups. This research is extensive and includes methods 

which use information from various neuroimaging techniques and biological measures, fusion of 

different information modalities, setting up bio-markers for diagnosis and moves towards complex 

machine learning systems for higher accuracy. This chapter gives literature summary of different 

methods of diagnosis and their success in regard of the purpose.  

 Traditional image processing techniques are based on extracting distinctive features from 

data. These techniques move from using single modality towards combining various modalities. 

MRI bio-markers for AD includes hippocampal volume, cortical thickness and grey matter density. 

Vos et al. [12] believed that combining anatomical measures obtained from MRI would give better 

diagnosis. They calculated cortical thickness, area, curvature, grey mater (GM) density, subcortical 

volumes and shape of hippocampus. They took 21 AD patients and 21 healthy. Their work 

analyzed results using these values as single feature as well as combined features and predicted 

presence of AD using an elastic net logistic regression method. Their findings demonstrated that 

combined anatomical measures improved the classification of AD from healthy controls. They 

achieved an area under the curve (AUC) value of 0.98 by using combination of all the measures. 

The work of Sorensen et al. [13] is also based on MRI markers. They obtained results for three 

datasets; ADNI, AIBL and CADDementia challenge test dataset. Two types of data was taken 

from ADNI; standard MRI set with 504 samples and ADNI HHP set which consisted of 40 

manually segmented hippocampus regions. Training set was combined ADNI and AIBL set. 

Testing accuracy was evaluated on CADDementia test set. The features used are hippocampal 

shape, texture, volume and cortical thickness. After obtaining features, Z-score transformation was 

applied to each group according to age. Three way classification was performed using linear 

discriminant analysis (LDA). They attained the classification accuracy of 63% and AUC of 78.8% 
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for test set. For ADNI + AIBL, they achieved 62% accuracy for both using full feature 

representation and selected best 10 features. 

 Liu et al. [14], recently, proposed a novel method and combined MRI markers based on 

both ROI and interregional or edge features. They extracted six features i.e. gray matter volume, 

cortical thickness, surface area of cortex, cortical curvature, folding index, subcortical 

volume (SV) for both ROI and edge regions. Thus, they got two sets of features having six each. 

They used feature ranking approach i.e. MKBoost to select and combine features and examine 

classification performance of each subset. The best performance set gave the required optimal set. 

They also investigated performance by separately using ROI and edge features with weighted multi 

kernel learning approach followed by a SVM classifier. Results were obtained for binary 

classification for four different obtained optimal set of features. Best accuracies achieved for AD 

vs NC were 92.6, 93.5% and 95.2% by using ROI only, edge features only and combined features 

respectively. Respective AUC measures were 94.2%, 96.3% and 97.5%. The proposed method 

gave 86.35% accuracy for MCI vs NC. The proposed method proved powerful for exploiting single 

modality features. 

 Previtali et al. [15] extracted features using recently introduced oriented FAST and rotated 

BRIEF techniques from MRI scans. They also incorporated information about the location of 

disease and its distribution with in brain. All of the mentioned combined gave outstanding results. 

ADNI and OASIS dataset for four classes were used and only central slice was selected for the 

proposed study. Data augmentation was performed by flipping the slice horizontally as well as 

vertically. Images from both datasets were merged together for training set and test sets were 

evaluated separately. Feature vector was constructed using image descriptor, histogram, cantor 

hash, combination of histogram and cantor hash and class label. Classification was performed 

using SVM by WEKA. Results were obtained by varying number of features and number of pixels 

in the grid cell. For both datasets, best results for four way classification were acquired at lowest 

grid size of about 46 pixels. 98% accuracy was achieved for ADNI AND 77% for OASIS. For 

three way classification, 100% accuracy was achieved for ADNI by using maximum number of 

features and 0.002% grid cell density and 85.4% for the other set. For AD vs NC, 100% achieved 

for ADNI and 97% for OASIS. Results were also examined by varying selection of features. Best 
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results were given by selecting combined histogram and cantor hash features. Achieved binary 

diagnosis accuracy was 99.6 and multi-class accuracy was 98% for ADNI.   

 Kloppel et al. [16] presented a unique work and investigated the robustness of MRI scans 

for Alzheimer’s diagnosis. They formed four dataset groups with MRI scans from different centers 

(datasets) and with different age means. Three groups were based for AD vs NC classification. 

Fourth group was made to examine distinguishing ability of MRI for different diseased groups i.e 

AD vs frontotemporal lobar degeneration (FTLD). They extracted grey matter from scans and 

calculated kernel matrix followed by linear SVM classifier. For whole GM image, they obtained 

96.4% accuracy for the case where training was performed on group 1 data and group 2 was used 

as test set. 87.5% accuracy was achieved the other way round. 95.6% accuracy was achieved for 

combined data of group 1 and 2. 89.2% accuracy was achieved for discriminating AD and FTLD 

samples. For ROI based GM images, 71.4% and 70% was obtained for alternate train and test sets 

with group 1 and 2.  94.1% was achieved on combined data set.  

Huang et al. [17] claimed that early diagnosis of Alzheimer’s was crucial and hence, 

focused their work on mild cognitive impairment and its prediction for conversion to AD in later 

stages. They examined longitudinal changes in brain cortex from MRI over time for MCI patients 

and performed hierarchical classification for cMCI vs ncMCI. Longitudinal changes became 

noticeable with time if disease was converting to severe dementia. Data was obtained from ADNI 

for different time stamps; six months to up to 3 years. Thus total 574 MRI volumes were used. 

Voxel selection was performed in first step followed by hierarchical classifier. Three logical 

regression classifiers were learnt in stack performing voxel level learning then spatial level and 

finally image level learning followed by classification. The best accuracy achieved was 79.4% for 

predicting conversion to Alzheimer’s disease. 

 References [18, 19] dealt with incorporating multi-modal features. Most of the features are 

derived from sMRI, PET scans and CSF analysis. Zhang et al. [18] extracted features from MRI 

and PET scan using the standard atlas templates. Linear kernel matrices were then calculated for 

selected features. Kernel matrix was also obtained CSF features. Three kernels are combined by 

using kernel combination method. SVM classification was performed on the combined kernel. 

Diagnosis was performed as AD vs NC and MCI vs NC. 93.2% and76.4% accuracy was achieved 
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for both respectively by using multimodal data. The team also examined results for single modality 

and obtained 86.2% accuracy for AD vs NC for structural MRI images. By using only imaging 

data, MRI combined with PET gave 90.6 % classification accuracy. Tong et al. [19] claimed that 

multi-modal information is not necessarily linearly related to each other. Therefore, they used non-

linear graph fusion method instead of linear kernel combination. They used four type of features 

from for different modalities; volume from MRI scans, tissue intensities from PET scans, CSF 

measures and genetic information. Similarity graphs were constructed for each of these feature 

and then combined non-linearly to form a unified graph for classification. Binary and three way 

classification was performed using random forest approach. The proposed method obtained 60.2% 

multiclass accuracy and 72.9% AUC measure. 91.8% accuracy was achieved for AD vs NC 

classification. They also compared results for using single vs multimodality data. However, the 

best results were obtained for fusing all the four modalities together. 

The work discussed so far is dependent on complex feature extraction and selection 

algorithms. Further discussion is based on deep learning based approaches for Alzheimer’s 

diseases diagnosis. Siqi Liu [20] and his team carried out number of experiments with various 

techniques. They incorporated stacked autoencoders (SAE) for learning representations from the 

data. An autoencoder is an artificial neural network with multiple hidden layers. It can learn useful 

encodings from the data. The output of an autocoder is a sparse representation of the input data. 

Liu et al. [20] trained the stacked autoencoder network on ADNI sMRI data. Total 83 ROI regions 

were extracted from scans and passed for training and then applied softmax regression on top of 

the network as classifier. They also investigated results for single and multi-kernel SVM 

classification. They classified four classes (AD, ncMCI, cMCI, NC) by one-vs-all strategy. They 

obtained for 87.7% accuracy for binary classification and average accuracy of 47.7% for 

multiclass. These results were slightly higher than for the other two classifiers. However, they 

broadly extended this work in [21]. PET data was also now included. In the first step, ROI was 

extracted from grey matter images of MRI and PET scans. The extracted information from both 

modalities was used to train a SAE network. To avoid noise from other modality, zero masking 

strategy was used. Fine-tuning was performed after putting softmax classifier on top with respect 

to classifier loss. This work reached about 91.4% accuracy for AD/NC, 82% FOR MCI/NC and 

53.7% for four classes as one-vs-all. 
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 In another work by Liu et al. [22], representations were learnt from data in multiple phases. 

First phase of SAE network learnt features from neuroimaging data i.e. MRI and PET. Second 

phase fine-tuned the pre-learnt features by incorporating clinical data. MMSE data of patients was 

used to optimize these features. Linear regression was used to estimate the MMSE features. The 

trained linear regression layer was put on top instead of softmax classifier. The acquired results 

demonstrated the usefulness of proposed method over simple SAE and multi-kernel SVM 

classifiers. The multiphase method achieved 90% accuracy on binary and 59% on three class 

dataset. 

 Another deep learning based feature learning approach is deep polynomial networks 

(DPN). Polynomial networks as named indicate predicts the class based on underlying trained 

polynomial learning. First layer of the network is a linear layer which processes data and send that 

to higher order layers in a feed forward fashion. DPN provides complex representation of the input 

data which are useful for class distinction. Shi et al. [23] used stacked polynomial network 

architecture for their work where one whole polynomial network was put on top of the other. They 

developed series of results using single as well multi-modal data. For multimodal network, MRI 

and PET data was passed through separate set of DPNs. Features learnt in first stage were 

combined and passed to the final stage of SDPN. The output is then fed to the linear or SVM 

classifier. Results were obtained for different sets of binary classifications. For AD vs NC, they 

obtained 93% and 94% for single MRI and PET modality respectively using proposed SDPN with 

linear classifier. Multimodal accuracy achieved is 96.93% with SVM classifier, results were 

95.4%, 95.1% and 97% for MRI only, PET only and multimodal respectively. For MCI vs NC, 

87.2% and 86.9% accuracy was achieved for proposed multimodal approach with SVM and linear 

classifier respectively. They also obtained results for ncMCI vs cMCI. Four way multiclass 

classification was performed for AD vs cMCI vs ncMCI vs AD. Proposed approach achiecved 

about 57% accuracy for multi classification with SVM classifier. The proposed method proved to 

be very effective for AD vs NC as compared to multiclass classification. 

 In [24, 25], Suk et al. claimed that latent features and non-linear patterns were present in 

the brain lesions. They extracted those features using stacked autoencoder networks. The extracted 

MRI, PET and CSF features were fed to SAE to learn and tune latent features in semi-supervised 

manner. Latent features were used combined with low level features like GM regions. At the next 
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stage, feature selection was performed and MMSE scores from clinical history was also 

incorporated. After learning sparse representation for each modality, kernel matrices were obtained 

and fused together and passed through SVM classifier. Results were obtained for multiple binary 

pairs through extensive experimentation. For AD vs NC, proposed method gave 98.8% accuracy 

and 90.7% for MCI vs NC. Prediction accuracy of 83% was achieved for MCI vs AD and MCI 

converters vs non-converters. 

 References [26, 27] implemented hierarchical classifier for Alzheimer’s and MCI 

diagnosis. However, Suk et al [26] used multimodal features and Liu et al. [27] used MRI features 

only. Suk et al. [] divided images into numerous patches and performed feature learning through 

deep restricted Boltzmann machine (DBM). Separate feature learning pipelines were used for MRI 

and PET images. Classifier was designed in hierarchical fashion in which patch level learning was 

performed in first stage followed by image level learning. Final classification stage contained 

ensemble of weighted SVM classifier. On patch level stage, lower layers learnt features from each 

modality separately and concatenated at the top layers. Patch level learning was combined to train 

bigger patches and finally image level classifier. Reference [27] achieved 90% and 85.3% for AD 

vs NC and MCI vs NC respectively. However, by multimodal fusion, [26] obtained 95.35% and 

85.67% respectively. Prediction accuracy of 75.9% was achieved for MCI vs AD and MCI 

converters vs non-converters. 

 In the recent work, Suk and his team [28] used sparse multi-task learning (MTL) for feature 

selection and classifier learning. Features were concatenated from MRI, PET and CSF analysis. 

These were passed through deep multi-task learning module. The idea behind was that through 

recursive application of multi-task learning, only useful features were selected from the high 

dimensional feature vector and uninformative data was discarded. At the same time, regression 

coefficients which represented optimal feature selection were used as weights for subsequent 

iteration of learning. Thus, proposed method was termed as weighted sparse MTL. Results were 

examined for both binary and multiclass diagnosis. Fusion of three modalities with proposed 

method gave 95.09%, 78.77% and 73.04% for AD vs NC, MCI vs NC and stable MCI vs 

progressive MCI respectively. The proposed method achieved 62.93% for 3-way and 53.7% for 4-

way classification. As most of the studies are based on MRI data, Suk also investigated results for 

only MRI with proposed technique. The dataset included total 805 subjects. Achieved results were 
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90.27%, 70.86%, 73.93%, 57.74% and 47.83% for three binary, three way and four way 

classification respectively.  

 Gupta et al [29] was the first to use the concept of convolution for neuroimaging data 

classification. They obtained feature bases in first step and convolved those bases with test images 

to get the required results. First step was performed using SAE network for two types of bases; 

natural image and MRI bases. They used 10,000 patches of natural images and ten times more for 

MRI data obtained from ADNI. Training images and patches were passed through SAE for 100 

learning bases vectors which could distinguish MRI markers. No preprocessing was performed on 

MRI data. Each of the 100 bases were convolved with test MRI scan followed by sigmoid 

activation function. The size of feature vector obtained after pooling was still 61200 for each MRI 

scan. The feature vector was then passed through the feed forward neural network having logistic 

units for classification. For binary classification, 94.74% and 93.8% for AD vs NC using natural 

and MRI bases respectively. For MCI vs NC, 86.3% and 83.3% respectively. Their method 

obtained 85% accuracy for three way classification using natural images. MRI bases gave 78% 

performance for multi-classification. 

  Payan et al. [30] used 3D convolution approach using structural MRI volumes. Most of the 

other works used 2D slices of axial MRI scan. Payan and his team used complete MRI volume 

information from all the axes i.e. axial, coronal and sagittal. They compared results for 2D vs 3D 

convolution method. First step was same as previously mentioned work and extracted bases using 

SAE network. 150 bases or filters were then applied in convolutional neural network. First stage 

performed 3D convolutions followed by huge size reduction from 64×91×75 to 12×18×15. Next 

stage was fully connected layer consisted of 800 hidden neurons and softmax classifier was the 

final output stage. Weights were trained using gradient descent with mini batch approach. Similar 

experimental setup was developed for 2D convolution technique. Results obtained with 3D 

convolutions outperformed the other method and showed superiority in capturing more 

information from the MRI scan. The method obtained 95.3% for AD vs NC, 92.11% for MCI vs 

NC and 89.5% for three way classification. 

 Hosseini et al [31] expanded the concept of 3D convolution and proposed a CNN based 

classification framework which was based on features learnt from a 3D convolutional autoencoder 
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(CAE). This work is quite comprehensive and examines various aspects of deep learning. The 

main CNN network consisted of three convolutional layers followed by various fully connected 

layers and a classifier layer. Rectified linear activations were applied with max-pooling layers. For 

the three convolutional layers, pre-learnt bases were obtained by using 3D-CAE. Features were 

learnt for axial and sagittal axes of ADNI MRI data. Convolutional autoencoder allowed weight 

sharing and thus computationally less expensive then fill connections. First layer of a CAE was 

convolutional layer which extracted four types of features maps from structural scan; brain size, 

ventricle size, cortical thickness and hippocampus size. Feature maps from convolution layer were 

fed to decoding layer and reconstructed 3D image was obtained at the output of CAE. The feature 

on CAE was performed on CADDemantia set and tops layers were fine-tuned for target ADNI 

MRI set. Implementation was performed using Theano framework on GPU based systems. The 

proposed method proved very effective especially for multiclass classification and obtained 

highest accuracy compared to previous techniques. 99.3% accuracy was achieved for AD vs NC, 

94.2% for MCI vs NC and 95.7% for (AD + MCI) vs NC. For distinguishing AD vs MCI vs NC, 

94.8% accuracy was achieved. The proposed 3D CNN method is evidently very powerful. 

  Further discussion is based on the methods which are totally based on deep convolution 

neural network and where no pre-learnt SAE stage is present. In a recent work, Korolev et al [32] 

proposed a 3D convolution neural network model VoxCNN inspired by VGG network. They 

examined results for plain form of the model as well as residual form. In residual architecture, 

identity connections were added to the network. Results were obtained for six binary 

classifications. Only 231 images obtained from ADNI for four classes were used for the 

experiments. Proposed method achieved 79% for plain network and 80% with residual counterpart 

for AD vs NC. For early MCI vs NC, accuracies were 54% and 56% and for late MCI vs NC, 63% 

and 61% respectively for plain and residual network. 

Sarraf et al. [33] applied famous LeNet and GoogleNet models for AD classification. They 

used two datasets, one with resting state functional MRI and other one with structural MRI scans. 

It is the first work dealing with fMRI data for neuroimaging diagnosis. Careful preprocessing with 

various smoothing filters was applied on structural images. Four sets of sMRI data were prepared 

with different level of smoothing and total 62,335 images were obtained. The data were converted 

to LMDB format before passing to the CNN network. For fMRI data, 100% accuracy was achieved 
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using GoogLeNet and 99.9% with LeNet. However, for structural scans accuracy ranged from 97 

to 98.7% using Lenet for different smoothing levels. For GoogLeNet, 84 to 98.8% was achieved. 

However, obtained results were lower when balanced dataset was used and accuracy ranged from 

95.7 to 97.8% using LeNet. The unbalanced set was highly biased towards AD with ratio 5:1. 

Apart from slice classification, subject level classification was also performed. For all the slices 

belonging to a specific subject, classifier prediction was noted and majority voted class was assign 

to the subject. 100% accuracy rate was achieved with spatial smoothing the sMRI images using 

both models. The team showed more dedication towards functional MRI and suggested that the 

strict preprocessing was required by the method. However, this work highly shows the potential 

of incorporating deep CNN models for neuroimaging classification. 

 

 The literature discussed above shows good results for binary classification specifically for 

discriminating Alzheimer’s from normal. Moreover, most of the results were developed in separate 

setup for each classification. In this thesis, focus is put on improving multiclass diagnosis of the 

disease in single experimental setup and model learning. 

 

 

 

 

 

 

Technique Modality AD vs NC (%) MCI vs NC (%) Multiclass (%) 

Sorensen et al. [13] MRI - - 63.0 

Lui et al. [14] MRI 95.24 86.35 - 

TABLE 2.1 - 

SUMMARY OF LITERATURE REVIEW 
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Previtali et al. [15] MRI 100 100 98 

Kloppel et al. [16] MRI 95.6 - - 

Zhang et al. [18] MRI + PET +CSF 93.2 76.4 - 

Tong et al. [19] 
MRI + PET + CSF + 

genetics 
91.8 79.5 60.2 

Altaf et al. [34] MRI + clinical 94.6 -  

Liu et al [20] MRI +PET 87.7 76.9 47.42 

Liu et al. [21] MRI +PET 91.4 82.1 53.79 

Liu et al [22] MRI + PET + clinical 90.11 - 59.19 

Shi et al. [23] MRI + PET 97.13 87.24 57.00 

Suk et al.  [24] 
MRI + PET + CSF + 

Clinical 
95.9 85 - 

Suk et al.  [25] 
MRI + PET + CSF + 

Clinical 
98.8 90.7 - 

Technique Modality AD vs NC (%) MCI vs NC (%) Multiclass (%) 

Suk et al.  [26] MRI + PET 95.35 85.67 - 

Liu et al. [27] MRI 92 85.3 - 

Suk et al.  [28] MRI + PET +CSF  95.09 78.77 
62.93 

53.77 (4-way) 



28 
 

Suk et al.  [28] MRI 90.27 70.86 
57.74  

47.83 (4-way) 

Gupta et al. [29] MRI 94.7 93.8 85 

Payan et al. [30] MRI 95.39 92.11 89.47 

Hosseini et al. [31] MRI 99.3 94.2 94.8 

Korolev et al. [32] MRI 80 63 - 

Sarraf et al.[33] rs-fMRI 100 - - 

Sarraf et al. [33] MRI 98.8 - - 
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Chapter 3 
 
 

Convolutional Neural Networks (CNN) 
 

  

 Convolutional neural networks (CNN) or ConvNets are same as simple artificial neural 

networks having hidden neurons and output class scores but CNN contain single or multiple 

convolution layers instead of simple matrix multiplication. It is assumed that input of a convNet 

is an image or 2D data which permits us to use it as image processing tool. ConvNets have gain 

huge fame in number of applications. It was first introduced by LeCun et al. [35] in 1989 for hand 

written digit recognition. The presented network is famous as LeNet. LeNet has five layers with 

two convolution layers. However, the concept of deeper network was not established at that time. 

With the rise of high end computing systems, graphics processing units, optimization algorithms 

and efficient backpropagation algorithm, deeper networks came into being with millions of 

learning parameters. In 2012, AlexNet [36] introduced for ImageNet recognition challenge got 

tremendous prominence and after then deep learning applications found their place everywhere. 

  Convolutional networks are inspired by human visual cortex [37]. It learns features in 

hierarchical manner starting with simple points, then lines and edges and finally objects. 

Convolution is a linear operation and it supports sparse connections and parameter sharing. Each 

convolution works on its receptive field and produces response when input matches with the 

applied kernel. As compared to end to end connection, convolution operation works on the local 

patch of the input according to size of the filter. In this way, it also achieves the property of shift 

invariance. Single set of parameters is shared across the all feature maps of one convolution layer. 

Next section will discuss the important modules of CNN and their working in detail. 

3.1 Building Blocks of CNN  

 Basic CNN architecture has following building blocks: 
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Figure 3.1 – Example of a Convolutional neural network with basic blocks (adapted from [60]) 
 

3.1.1 Convolution Layer 

It is the basic layer and characterized by number of inputs, number of output maps, kernel 

size, stride size and padding value. When the kernel is convolved with the input, feature 

maps are generated. When convolution is performed, size of the input decreases. Stride 

value tells the step size to kernel while performing the operation. Convolution layer can 

also be used for dimensionality reduction by using kernel size 1 × 1 and strides greater than 

one. It simply discards the pixels according to stride value while keeping the other as such. 

3.1.2 Activation Layer or ReLU  

Activation layer generates element-wise activation maps according to a threshold 

or function. This layer has similar task as the firing function for neurons. Once the product 

of inputs and weights is obtained, activation function looks into values and decides to 

propagate output signal accordingly. Traditional networks were greatly based on sigmoid 

activation function. But modern convNets are using Rectified Linear units (ReLU) for 

activation as it offers faster convergence and easy to implement. If the value is lower than 

zero, it is set to zero and remains unchanged otherwise.  It computes f(x) = max (0, x). 

Other variants of activation functions are also available and depends on choice or hit and 

trial selection. 
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3.1.3 Pool Layer  

Pooling operation reduces the size of feature maps and simultaneously connects 

local features to global features. It is applied on the local patch of input and performs down 

sampling according pooling operation type. Max pooling is most commonly used. It looks 

for the maximum value in the window and returns it in the downsized map. It is used in 

between the network after ReLU layers. Average pooling is another type of pooling which 

replaces the window elements with the average value of all the values in the window. This 

pooling is usually used at the end of network before fully connected layers.  

3.1.4 Fully Connected (FC) Layer 

One or more fully connected layers are put on top of the convolutional layers. As 

the name indicate, FC layers are same as simple multi-layer perceptron with each node 

connecting to every other node in the next layer. FC layers have dense connections and 

thus requires more parameters. These layers are used to convert the features into vectorized 

class scores.  

3.1.5 Batch Normalization Layer 

In the modern networks, a batch normalization layer id frequently used. It is 

introduced by Loffe et al. [38] and deals with parameter initialization problem. Bad 

initialization can lead to wrong results as well as waste of time. However, batch 

normalization technique force each weight of neuron follow the unit Gaussian distribution. 

This layer is repeated in the network and updates weights by using batches of data. This is 

useful as well as differentiable, hence, included as an independent layer. 

3.2 Overview of ImageNet Models 

  ImageNet [39] is a large scale visual recognition challenge which is held annually. 

About 1.2 million images from 1000 different classes forms the giant ImageNet dataset. It 

challenges on different tasks including classification, detection and localization. After the success 

of AlexNet in 2012 for classification, numerous applications are using ImageNet models or their 

variants. ImageNet models are briefly discussed below.   
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Figure 3.2 – AlexNet architecture (reprinted from [36]) 

 

3.2.1 AlexNet 

It was introduced by Alex Krizhevsky and his team and obtained first position in 

classification challenge [36]. Error rate for AlexNet was significantly lower than the runner 

up. It is simple 8 layered sequential model and hence, most of the new researches are still 

using this model for simplicity. It used three FC layers and combined the model with the 

replica of it. It has about 60 million learning parameters. Figure 3.2 shows the AlexNet 

architecture. 

3.2.2 ZF-Net 

This model is named after its presenters Matthew Zeiler and Rob Fergus. It is 

winner of ImageNet 2013 challenge. It is similar to AlexNet and is a kind of its variant 

with better selection of hyperparameters. This model achieved 11.2% error rate as 

compared to 15.4% for AlexNet [40]. 

3.2.3 VGG-Net 

This model is the runner up of ImageNet 2014 challenge but still has lower error 

rate than the previous two models. It is also most widely used specially when considering 

the visual inputs. Simonyan et al. [41] presented the homogeneous network with using only 

one fixed size of filters. They introduced 11, 16 and 19 layered sequential VGG nets. Due 

to fixed smaller kernel size in the lower layers, number of parameters are very large and 

about 140 million. Thus, this model is computationally expensive. However, it supports 

the fact that the depth is critical factor to deal with the built-in hierarchy of visual data. 
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3.2.4 GoogLeNet 

It is 22-layered model introduced in 2015 by Google team and was the winner of 

ILSVRC-2014 [42]. It is the first architecture that differs from traditional CNN 

architectures i.e., stacking more layers on top sequentially. It is kind of network in network 

topology considering width more than increasing depth. This model takes care of the 

computational budget, while allowing processing in depth as well as width. Increasing 

depth on one hand may produce better results but on other hand it also 

increases learnable parameters and chances of overfitting in case of small labeled data 

available. Uniqueness of this network lies in its “Inception module”, formed based on 

Hebbian principle and multiscale processing as shown in figure 3.3. The idea behind this 

module is considering maximum information coming from the input patch. Different sizes 

of filter extract information on fine scale as well as cover large scale, whereas max-pool 

and 1×1 convolution layers reduce dimensionality. The information is aggregated and 

passed to the next layer. Overall, the model take control over the number of learnable 

parameters and has 12 times fewer parameters than AlexNet [42]. 

 

Figure 3.3 – Inception module for GoogLeNet (reprinted from [42]) 
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3.2.5 ResNet 

Residual Network (ResNet) was developed by Kaiming et al. [43] and was winner 

of ILSVRC-2015. The architecture included a central concept of shortcut 

or skip connections which are added as bypass to convolutional layers of regular feed-

forward network; making the block a residual block as shown in figure 3.4. The main idea 

is that at each step instead of learning features from a function F(x), the features are learnt 

from F(x) plus original x which makes optimization easier and makes the model to 

converge faster. For normal feed-forward networks, the prediction accuracy decreases as 

the depth of network increases. Many factors are responsible for such results including 

vanishing gradient problem, saturation, size of training data and over-fitting. Residual 

learning allows network depth to become as deep as more than thousand layers. During 

backward pass, skip connections make flow of gradient easy and solve vanishing gradient 

problem. A ResNet with 152 layers is 8 times deeper than VGG network but still have 

lower computational complexity [43]. 

 

 

 

  

Figure 3.4 – Residual learning block (reprinted from [43]) 
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Chapter 4 

 
Methodology 

 
After getting insight from previous chapters, this chapter presents the comprehensive 

methodology of the proposed work. It also discusses about the dataset used and experimental set-

up for the research. The proposed method is based on single modality data i.e. structural MRI. 

Extensive experimentation has been performed using variety of models.  

The proposed classification framework consists of two main stages; preprocessing and network 

training using deep convolutional neural networks (CNN). Block diagram is shown in figure 4.1 

and details are discussed in the subsequent subsections. 

4.1 Data Preprocessing 

  MRI scans are provided in the form of 3D Nifti volumes containing complete brain scan 

from three axes; axial, sagittal and coronal. Most of the studies are based on using axial scans only 

as it provides complete cortical region picture. However, some of the hippocampal region 

information is also visible through sagittal scans. This work also uses axial scans for investigation. 

Preprocessing is performed on whole 3D volume. At first, skull stripping and tissue segmentation 

is performed. Grey matter (GM) and white matter (WM) tissues are segmented out using SPM8 

[44] tool. Spatial normalization and bias correction is applied on extracted GM scans. Modulation 

or warping is performed in final step to check for any discrepancy introduced by normalization 

step. However, as compared to [33], no spatial smoothing filters are applied in any step. Grey 

matter volumes are then converted to 2D JPEG images as this work incorporated 2D convolutions 

only. Slicing is performed using Python Nibabel package. For each axial scan, about 160 slices are 

obtained separated by 1mm distance. These slices are visually checked for any distortions. Slices 

from start and end which contain no related information are discarded from the dataset. Thus, about 

60 to 75 useful slices are  
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obtained from one MRI scan. Each slice image has 121 × 145 dimensions which is resized to 256 

× 256 before passing to network. 

4.2 Network Learning 

 As mentioned in the previous chapter, network training is based on deep convolutional 

neural networks. Three architectures are the focus of this work; GoogLeNet, ResNet-152 and the 

proposed model. Next section will describe the proposed model. Detail experimental set-up with 

dataset information is given in section 4.4 and 4.5. Figure 4.2 shows the sample images for AD 

class. Grey matter images for each class are very similar and hence, high level distinctive features 

are needed for detection. It is anticipated that deep CNN will extract desired latent features from 

these MRI images.  

                   

Figure 4.2 – Grey matter (GM) slices for AD class after pre-processing 

  

Figure 4.1 – Block Diagram of proposed 4-way classification framework 
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4.3 Proposed Model 

 Aim of the proposed model is to provide optimized model for the AD diagnosis problem. 

The proposed model is inspired by the power of residual learning. It investigates the effect of 

residual learning in shallow networks.  Residual learning was introduced originally to increase the 

depth of the network [43]. The proposed architecture is developed on the idea to find shallow 

solution comparable to AlexNet [36] but simultaneously taking advantage of residual learning. 

References [45, 46, 47, 48, 49] are based on residual learning and discussed its strength in variety 

of ways. According to Veit et al. [47], a residual network is not just a single network. It contains 

multiple paths for gradient flow. It works in the form of ensembles of shallow networks. Thus, the 

proposed model is motivated to incorporate residual learning with smaller depth.  

Figure 4.3 shows the proposed model. It has total 25 independent modules and 8 weight 

layers with about ~4 million parameters. Batch normalization is performed after each spatial 

convolution. As compared to AlexNet, only one fully connected layer is used with 512 neurons 

instead of 4096. Three residual blocks are used with identity connections. Dimensionality is 

reduced at each shortcut but no extra parameter is introduced. Before the final FC layer, average 

pooling layer is used instead of max pooling and no dropout layer is used. Number of features 

maps increases as 64, 128, 256 and 512. Down sampling is performed in first convolution layer of 

residual block with stride of 2. Input size is reduced from 256 × 256 to 14 × 14. Number of weight 

layers and size of input is comparable to AlexNet. 

4.4 ADNI Dataset 

  The MRI dataset used in the experiment is developed and provided by Alzheimer’s disease 

Neuroimaging Initiative (ADNI) [7, 50]. ADNI study started in 2004 and aims at early diagnosis 

of AD, improving clinical trial experience with better use of biomarkers. Another objective is to 

share the neuroimaging data with the medical and engineering researchers to improve health-care 

sector. 
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INPUT

Max pool, 3x3

3 à 64, 7x7

Batch Normalization

ReLU

64 à 128, 3x3

Batch Normalization

ReLU

128 à 128, 3x3

Batch Normalization

ReLU

128 à 256, 3x3

Batch Normalization

ReLU

256 à 256, 3x3

Batch Normalization

ReLU

256 à 512, 3x3

Batch Normalization

ReLU

512 à 512, 3x3

Batch Normalization

ReLU

Average Pooling, 7x7

FC, 512 x 4  

Figure 4.3 – Proposed shallow model with residual learning. Three residual blocks and total 8 weight layers are 

used, ~ 4M parameters 
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  The selected set of MRI scans is acquired from 3T scanners and belong to ADNI1 phase. 

To provide good quality imaging data, all MRI scans are T1 weighted and have undergone 

gradwarping, intensity correction and gradient scaling. Complete 3T data has been used for 

efficient comparison studies. A subject is scanned at different point of times in different visits i.e., 

baseline, after one, two and three years. Each such scan is considered as a separate subject in this 

work. The dataset consists of 33 AD, 22 LMCI, 49 MCI patients and 45 healthy controls which 

makes a total 355 MRI volumes. The demographic information of the dataset used in proposed 

work is presented in table 4.1. 

Diagnosis 

Group 

No. of 

Subjects 

Sex 

Age NPIQ Mean FAQ Mean 

M F 

AD 33 11 22 74 ± 8.3 3.33 10.8 

LMCI 22 15 7 73 ± 7.4 1.85 3.4 

MCI 49 30 19 75 ± 8.2 1.87 4.97 

NC 45 18 27 75 ± 3.7 0.57 0.125 

   

  Three datasets are prepared for experimentation. Binary set consists of all diseased classes 

combined as AD and other class is normal. Second set consists of unbalanced multiclass data. 

Third dataset consists of balanced multiclass data. Balanced data is prepared for classification by 

using data augmentation for the class which has smaller number of images to get balanced with 

other classes. Augmentation is done by simply flipping the image along horizontal axis. This 

operation is valid because of the left and right symmetry of brain regions. The distribution of data 

for each set is given in table 4.2. 

 

 

TABLE 4.1 

DEMOGRAPIC INFORMATION OF DATASET  



40 
 

 

 

4.5  Experimental Setup 
 

4.5.1 TORCH7 and GPU 

Several dedicated deep learning frameworks are available for implementation 

including Caffe, Theano, Tensorflow, MXNet, Kearas and Torch. Torch7 [51, 52] 

framework is used in the implementation of proposed pipeline in this thesis. It is popular 

among deep learning research groups like Google and Facebook research. It has CUDA 

bindings for GPU acceleration in the form of the package, cuDNN. It has interfaces for C, 

C++ and Lua programming languages. The proposed framework is implemented on single 

NVIDIA GeForce GTX TITAN X GPU. It is one of the most powerful and high speed 

GPUs available with 12 GB RAM and underlying Maxwell architecture. It has 3072 cores 

and compute capability value of 5.2.  

4.5.2 Optimization Algorithm 

In machine learning, the term optimization is quite frequent and associated with the 

learning process. When the inputs are passed through the network and loss is calculated. 

This loss is back propagated through the network along with gradients. Then optimization 

algorithm looks into the information and updates the network parameters in order to 

minimize the loss function. Optimization gives back the best set of parameters / weights 

that give minimum loss. Optim package for Torch7 has numerous optimization algorithms 

Dataset Classes Total 

Binary 17765 AD 9018 NC 26784 

Unbalanced 

Multiclass 
4753 AD 5823 MCI 6574 MCI 7518 NC 24668 

Balanced Multiclass 9506 each  38024 

TABLE 4.2 

DISTRIBUTION OF DATASET  
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available. This work uses the most common one i.e. stochastic gradient descent (SGD) 

optimization for the purpose.  After each backward pass, SGD calculates the gradients of 

parameters with respect to each layer’s input and update the parameters accordingly. Pure 

stochastic gradient descent means that weights are updated after each single input sample. 

However, in case of a GPU and huge datasets available, the term SGD is used for mini-

batch gradient descent interchangeably. Inputs are passed through the network in the form 

of small batches and optimization is performed after one complete batch. Batch size is 

selected according to memory needs and available hardware resources. The most common 

parameter of SGD algorithm is learning rate (LR). Learning rate is the value of step taken 

to update the parameters. 

4.5.3 Training and Testing 

Networks are trained on data for 55 epochs with each epoch consisting of 1000 

batches. Batch size used is 32 for all models except ResNet-152 model which used batch 

size of 16 due to memory constraints. Training is performed on complete global image and 

no runtime crops or patches are used. All experiments are performed by splitting data into 

25% as test and 75% as train data. 10% data from train set is used as validation set. Xavier 

initialization of weights is adopted to speed up the training of deeper networks as 

GoogLeNet and ResNet-152 take sufficient time to converge if training starts random 

weights. It assigns initial weights by drawing them from Gaussian distribution and assumes 

that the variance of the network is unity. Testing is performed in the similar batch by batch 

pattern. Loss is calculated using cross entropy criterion function. It is combination of log-

softmax function with negative log likelihood (NLL) criterion. Log-softmax gives the log 

of normalized probability for each class based on output scores. 

4.5.4 Training Strategies 

Usually it is considered that deep learning only works for large datasets. It is a kind 

of myth and not true. For large or medium sized data, networks are typically trained with 

scratch random initial weights and slowly move towards the optimal set of parameters. 

However, luckily for small sets, we can use transfer learning approach. By this approach, 

we can learn or train the model on large dataset and then fine-tune those weights on the 
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desired dataset. It is done by chopping off the top FC layer or layers, replacing with new 

layers and tweaking the weights with lower learning rate accordingly. 

4.5.5 Phases of Experiments 

 Experiments are performed in three phases as follows: 

1. Binary Classification 

2. Multiclass Classification with scratch training 

a. With unbalanced dataset 

b. With balanced dataset 

3. Multiclass Classification with transfer learning approach 

Next chapter will discuss all experiments, obtained results for all models and comparisons in detail. 
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Chapter 5 
 

Experiments and Results 
 

5.1 Experimental Analysis 

 As mentioned in the previous chapter, preliminary experiments are performed before main 

investigation. It included comparing outcomes for balanced data versus unbalanced data, 

preprocessed data vs raw data and checking the effect of selection of MRI slices. For this purpose, 

ResNet-50 model is used and results are studied for binary classification only. The choice of model 

is made for its moderate number of layers, neither deep nor shallow. The consequences of analysis 

are later applied to main experiments. 

5.1.1 All Slices versus Cerebrum Slices 

 This experiment investigates the performance for slice selection. Manual selection or 

marking of slices is time consuming as well as not precise. On the other hand, not all slices have 

informative patches of brain. The result of this investigation reveals that selection of slices affects 

training time. Batch processing time increases with all slices which indicates difficulty in learning 

representation. It clearly shows that non-informative patches create hindrance in learning. 

 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 
Time (hours) E/ES/BS Data Stats 

All slices 99.9 88.9 14 

55/1000/32 

Tr = 17813, Te = 4000 

Total = 21813 

Selected 

Slices 
100 88 11 

Tr = 11188, Te = 2654 

 Total = 13842 

TABLE 5.1 

PERFORMANCE COMPARISON FOR SELECTION OF SLICES  
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5.1.2 Balanced data versus Un-balanced data 

 The amount and distribution of data greatly affects the classification performance. The bias 

of data also disturbs class performances. Accuracy decreases and gets fluctuated as the balanced 

distribution of data changes. The result of the experiment clearly proves it and 7.5% gain in 

accuracy is achieved by using balanced data for training. 

 
Training 

Accuracy (%) 

Testing 

Accuracy (%) 
Time (hours) E/ES/BS Data Stats 

Unbalanced 100 88 11 

55/1000/32 

Tr = 11188, Te = 2654  

Total = 21813 

Balanced 100 95.5 10 
Tr = 16595, Te = 2000  

Total = 18595 

 

5.2 Binary Classification 

 In the first phase of main experiments, binary classification is performed upon five 

different models. These models are trained from scratch. Scratch training starts with random initial 

weights. Total 26784 images are used with 17765 images of diseased class. Diseased class is a 

combined group of AD, MCI and LMCI. Results are also obtained for VGG network. Results are 

provided in the table 5.3 and figure 5.1.  Proposed method achieved the best classification accuracy 

of 99.18%, GoogLeNet 99.08% and ResNet-152 showed slightly lower accuracy of 98.6%. 

Although, training accuracies are nearly 100% for all the models. Lower performance of ResNet-

152 is due to over fitting and relatively smaller amount training data as compared to large number 

of layers and parameters. 

  

TABLE 5.2 

PERFORMANCE COMPARISON FOR BALANCED AND UNBALANCED DATA  
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Model Training Accuracy (%) Testing Accuracy (%) Data Stats 

GoogLeNet 100 99.08 

total 26784 slices 

9018 NC 

17765 AD 

VGG-11 99.5 98.3 

RseNet-50 99.98 98.9 

ResNet-152 99.95 98.6 

Proposed 99.98 99.18 

 

 

 

 

Figure 5.1- Performance of proposed method for Binary Classification 

 

5.2.1 Comparison with Literature on Binary Classification 

Detail comparison of proposed method with other method is shown in table 5.4. All of the 

selected literature uses ADNI dataset. Results clearly shows that the proposed method outperforms 

other techniques for binary classification. Hosseini et al. [31] achieved the best accuracy for binary 

classification i.e. 99.3% and our method obtained 99.18% using proposed model and  

99.08

98.3

98.9

98.6

99.18

97.8

98

98.2

98.4

98.6

98.8

99

99.2

99.4

GoogleNet VGG-11 RseNet-50 ResNet-152 Proposed

TABLE 5.3 

PERFORMANCE OF PROPOSED FRAMEWORK FOR BINARY CLASSIFICATION 
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99.08% using GoogleNet. But the proposed method is much convenient than the competing work 

as no pre-learnt bases or features are required in the proposed CNN method. Figure 5.3 also shows 

the accuracy comparison. However, main investigation of this thesis is multi classification. 

  

Approach Technique Modalities Accuracy (%) 

Lui et al. [21] SAE-Zeromask MRI +PET 91.4 

Shi et al. [23] SDPN MRI +PET 96.93 

Lui et al. [22] MPFR MRI + PET + Clinical 90.11 

Tong et al. [19] NGF MRI + PET +CSF 83 

Suk et al. [28] DW-S2 MTL MRI + PET + CSF 95.9 

Gupta et al. [29] SAE MRI 

94.7 with natural image 

bases, 

93.8 with MRI bases 

Payan et al. [30] SAE-CNN MRI 95.39 

Zhang et al. [18] 
Kernel combination with 

SVM classifier 
MRI + PET + CSF 93.2 

Korolev et al. [32] Vox CNN MRI 79 

Sarraf et al. [33] GoogLeNet MRI 98.84 

Hosseni et al. [31] DSA- 3D CNN MRI 95.7 

Proposed 

GoogLeNet MRI 99.08 

VGG-11 MRI 98.3 

ResNet-50 MRI 98.9 

ResNet-152 MRI 98.6 

Proposed MRI 99.18 

TABLE 5.4 

DETAILED PERFORMANCE COMPARISON OF PROPOSED FRAMEWORK WITH OTHER TECHNIQUES 

FOR BINARY CLASSIFICATION (AD / NC) 
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Figure 5.2 – Accuracy curves for testing Binary Classification (trained and tested for 55 epochs) 

 

 

Figure 5.3- Accuracy Comparison for Binary Classification with other methods 
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5.3 Multi-class Classification 

 Four way classification with scratch training is performed in second phase of experiments. 

Results are obtained here for both unbalanced and balanced dataset and are presented in the 

following subsections. 

5.3.1 Training from Scratch with Unbalanced Data 

 This experiment included total 24668 images with 4753 AD, 5823 LMCI, 6574 MCI and 

7518 NC images. Maximum accuracy of 97.2% is achieved by the proposed model. All the three 

models performed well for unbalanced dataset but showed difference in training and testing 

accuracy. This shows that models are facing over fitting and thus unable to generalize well on 

testing data. However, the distribution of data affects the performance of the proposed framework. 

 Model Training Accuracy (%) Testing Accuracy (%) Data Stats 

GoogLeNet 100 96 total 24668 images; 

4753 AD, 5823 LMCI, 

6574 MCI and 7518 

normal 

ResNet-152 99.95 95.7 

Proposed 99.98 97.2 

5.3.2 Training from Scratch with Balanced Data 

 Table 5.6 shown below presents the results of 4-way classification with balanced data. 

Each class has 9506 samples and total 38024 images are used in this experiment. The acquired 

results are higher as compared to results for unbalanced data. The element of difference in training 

and testing accuracies is also reduced.  

 

TABLE 5.5 

PERFORMANCE OF PROPOSED FRAMEWORK FOR MULTICLASS CLASSIFICATION WITH  

TRAINING FROM SCRATCH ON UNBALANCED DATASET 
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Model Training Accuracy (%) Testing Accuracy (%) Data Stats 

GoogLeNet 99.95 98.88 

Total 38024 

9506 each 

ResNet-152 99.94 98.14 

Proposed 99.98 98.01 

 

 

 

Figure 5.4 - Performance of proposed method for Multiclass Classification 

96
95.7

97.2

98.88

98.14 98.01

99.7
99.9

93

94

95

96

97
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99

100

101

Unbalanced
GoogLeNet

Unbalanced
ResNet-152

Unbalanced
Proposed

model

Balanced
GoogLeNet

Balanced
ResNet-152

Balanced
Proposed

model

Fine-tuned
Resnet-152

Fine-tuned
Proposed

TABLE 5.6 

PERFORMANCE OF PROPOSED FRAMEWORK FOR MULTICLASS CLASSIFICATION WITH  

TRAINING FROM SCRATCH ON BALANCED DATASET 
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Figure 5.5 – Accuracy curves for testing Multiclass classification with Balanced data 
 (trained and tested for 55 epochs) 

 

 

 

 

 

 
Figure 5.6 – Accuracy curves for testing Multiclass classification with Unbalanced data 

 (trained and tested for 55 epochs) 
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5.4 Multiclass Classification using Transfer Learning Approach 

 Transfer learning is useful in case of small dataset. It suggests to train a model on one 

dataset and tune that model on the desired dataset for training and testing. In all of the above 

mentioned experiments, ResNet-152 showed slightly lower performance as compared to other 

models. This model is significantly deeper than other models and thus requires large amount of 

data as well as more learning information from the input data. However, the amount of dataset 

used in this work is quite moderate but still very small as compared to huge ImageNet dataset. 

Transfer learning approach is applied in the third phase of experiments. The models trained on 

binary dataset are used to fine-tune multiclass models for ResNet-152 and the proposed model. 

The obtained results are incredible and reach to 99.9% accuracy of diagnosis using the proposed 

model.  Table 5.7 shows the results and figure 5.4 shows performance for all multiclass 

experiments. 

 

Model Training Accuracy (%) Testing Accuracy (%) Data Stats 

ResNet-152 99.98 99.7 Total 38024 

9506 each Proposed 99.94 99.94 

 

Transfer learning also helps in training and learning process. Accuracy and loss curves for 

both scratch training and fine-tuning are shown in figure 5.6 below. Training from scratch passes 

through numerous ups and downs before reaching convergence. But training through fine-tuning 

process is relatively smooth and shows faster convergence. It is evident from the curves that 

transfer learning is useful our problem and effective for dealing medical imaging related problems. 

TABLE 5.7 

PERFORMANCE OF PROPOSED FRAMEWORK FOR MULTICLASS CLASSIFICATION WITH  

TRANSFER LEARNING APPROACH 
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Figure 5.7 - Accuracy and Loss curves for Scratch training (above) and Transfer Learning approach 
(below) 

5.5 Comparison with Literature in Multiclass Classification 

 Table 5.8 presents the detailed comparison of the proposed framework with literature. In 

most of the works, multiclass classification is performed as pairs of binary classification i.e. 

AD/NC, MCI/NC and AD/MCI. Those results are not considered here. The considered results 

mostly came from three way classifiers (AD/MCI/NC). References [21, 23] have performed four 

way classification with two types of MCI i.e. converting (cMCI) and non-converting (ncMCI), 

depending upon whether MCI condition would turn to AD or remain in safe state.  Figure 5.7 

shows the accuracy comparison graph. Results of the proposed CNN based framework clearly 

outperforms all other techniques with significant increase in accuracy. The proposed framework 

is convenient, depends on single modality data and features are learnt directly from raw data 

without any pre-trained bases.    
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Figure 5.8 - Accuracy Comparison for Multiclass Classification with other literature 

 

5.6 Class-wise Performance 

In this section, class-wise performance is discussed. In most of the medical diagnosis work, 

class-wise performance is evaluated in terms of sensitivity (SEN), specificity (SPE) and positive 

predictive value (PPV) for each class. Sensitivity tells us the probability of the predicted test class 

to be the specific class for which evaluation is performed. Similarly, specificity gives probability 

of how well the negative class is rejected. PPV is the ratio of true predictions to the total predictions 

made for the specified class. The class-specific performance for each tested model is presented in 

the table 5.9 below. All of the values for specificity, sensitivity and PPV are greater than 90% 

which demonstrates that all of the classes are differentiated with high accuracies. 
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Approach Technique Modalities Classification Accuracy (%) 

Lui et al. [21] SAE-Zeromask MRI +PET 
4 way 

(AD/cMCI/ncMCI/NC) 
53.8 

Shi et al. [23] SDPN MRI +PET 
4 way 

(AD/cMCI/ncMCI/NC) 
57 

Lui et al. [22] 
MPFR 

 

MRI + PET + 

Clinical 
3 way (AD/MCI/NC) 59.19 

Tong et al. [19] NGF 
MRI + PET + 

CSF 
3 way 60.2 

Sorensen et al. 

[13] 
Combined biomarkers MRI 3 way 62.7 

Suk et al. [28] DW-S2 MTL 
MRI + PET + 

CSF 
3way 62.93 

Gupta et al. [29] SAE MRI 3 way 

85 with natural 

image bases, 

78.2 with MRI 

bases 

Payan et al. [30] SAE-CNN MRI 3 way 

89.4 with 3D 

convolution 

85.53 with 2D 

convolution 

Hosseni et al. 

[31] 
DSA- 3D CNN MRI 3 way 94.8 

Proposed 

GoogLeNet 

(Unbalanced) 

MRI 
4 way 

(AD/MCI/LMCI/NC) 

96 

Proposed 

(Unbalanced) 
97.2 

ResNet-152 

(Unbalanced) 
95.7 

GoogLeNet 98.88 

Proposed 98.01 

ResNet-152 98.14 

Proposed 

(fine-tuned) 
99.9 

ResNet-152 

(fine-tuned) 
99.7 

 

TABLE 5.8 

DETAILED PERFORMANCE COMPARISON OF PROPOSED FRAMEWORK WITH OTHER TECHNIQUES 

FOR MULTICLASS CLASSIFICATION (AD / LMCI / MCI / NC) 
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Models 

AD LMCI MCI NC ACC 

SPE SEN PPV SPE SEN PPV SPE SEN PPV SPE SEN PPV (%) 

GoogLeNet 

(Unbalanced) 
0.99 0.94 0.98 0.99 0.95 0.99 0.98 0.97 0.94 0.98 0.99 0.95 96 

Proposed 

(Unbalanced) 
0.99 0.94 0.99 0.99 0.96 0.99 0.98 0.97 0.95 0.97 0.99 0.93 97.2 

ResNet-152 

(Unbalanced) 
0.99 0.91 0.98 0.99 0.94 0.97 0.97 0.97 0.93 0.97 0.99 0.93 95.7 

GoogLeNet 0.99 0.97 0.97 0.99 0.99 0.99 0.99 0.97 0.98 0.98 0.96 0.97 98.88 

Proposed 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.96 0.99 0.97 0.97 0.93 98.01 

ResNet-152 0.99 0.97 0.98 0.99 0.99 0.99 0.99 0.97 0.99 0.98 0.97 0.95 98.14 

Fine-tuned 

Proposed 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 99.9 

Fine-tuned 

ResNet-152 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 99.7 

 

  The comparison of class-wise performance for AD, MCI and NC classes is presented in 

table 5.10. References [29, 31] showed good sensitivity for AD class as compared to other two 

classes. Lower sensitivity of normal class is not acceptable as it signifies that most of the normal 

cases are predicted as diseased class. Similarly, lower PPV for diseased class shows the same 

situation that only a small portion of the predicted samples actually belong to that class. Table 5.10 

clearly shows that the proposed method is equally improving the performance for all of the classes 

and significantly higher than other methods. 

TABLE 5.9 

DETAILED CLASS-SPECIFIC PERFORMANCE OF PROPOSED FRAMEWORK FOR DIFFERENT MODELS 
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 AD LMCI MCI NC 

AD 2274 0 0 26 

LMCI 0 2300 0 0 

MCI 0 1 2288 11 

NC 5 0 3 2292 

Models 

AD MCI NC 

SPE SEN PPV SPE SEN PPV SPE SEN PPV 

Lui et al. [22] - - 0.61 - - 0.61 - - 0.49 

Sorensen et al. [13] - 0.4 - - 0.57 - - 0.79 - 

Gupta et al. [29] 0.91 0.95 - 0.92 0.74 - 0.91 0.87 - 

Hosseini et al. [31] - 1 1 - 0.80 0.60 - 0.47 0.70 

GoogLeNet 0.99 0.97 0.97 0.99 0.97 0.98 0.98 0.96 97.6 

Proposed 0.99 0.97 0.98 0.99 0.96 0.99 0.97 0.97 93.94 

ResNet-152 0.99 0.97 0.98 0.99 0.97 0.99 0.98 0.97 95.4 

Fine-tuned 

Proposed 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

Fine-tuned 

ResNet-152 
0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99 

TABLE 5.10 

CLASS-SPECIFIC PERFORMANCE COMPARISON OF PROPOSED FRAMEWORK WITH 

 OTHER METHODS  

TABLE 5.11 

CONFUSION MATRIX FOR MULTICLASS CLASSIFICATION (SCRATCH) WITH PROPOSED MODEL 



57 
 

 

 

5.7 Comparison of Architectural Details of Models 

 This sections discusses the architectural details of all the models used in this work. The 

proposed model is an optimized solution for the presented problem in terms of performance and 

computational complexity. Table 5.13 shows the comparison for training time, number of 

parameters and performance. VGG nets is not considered as ResNet-152 is already 8 times less 

complex than VGG nets [43]. Although this work is based on deeper networks but AlexNet is 

considered to compare with the smaller number of layers of the proposed model.   

Model 
No. of Weight 

Layers 
Training Time 

No. of 

Parameters 

Minimum 

batch size / 

GPU 

Accuracy (%) 

AlexNet 8 7 hours 
~56 M 

(56442244) 
32 99 

GoogLeNet 22 2 days 
~17 M 

(17359144) 
32 98.88 

ResNet-152 152 2 days 
~58 M 

(58152004) 
16 98.14 

Proposed 8 7 hours 
~4 M  

(4833860) 
64 99 

 

 AD LMCI MCI NC 

AD 2297 0 3 0 

LMCI 0 2300 0 0 

MCI 1 0 2298 1 

NC 0 0 0 2300 

TABLE 5.12 

CONFUSION MATRIX FOR MULTICLASS CLASSIFICATION (FINE-TUNING) WITH PROPOSED MODEL 

TABLE 5.13 

COMPARISON OF IMAGENET MODELS WITH PROPOSED MODEL 
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 Comparison clearly reveals that proposed model is offering an optimized solution to us in 

terms of time as well as computational complexity. The proposed design has 11 times lesser 

parameters than AlexNet and supports larger batch size for processing. Training is significantly 

faster than deeper models with better results. The discussed results demonstrates the power of 

residual learning and convolutional neural networks for dealing with neuroimaging detection and 

diagnosis problems.  
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Chapter 6 

 

Conclusion 
 

In this thesis, we presented a convolutional network based framework for classifying 

structural MRI images to diagnose Alzheimer’s disease, its prodromal stages MCI and LMCI and 

normal controls. Experimental data was obtained from ADNI and total 355 volumes from 149 

subjects were used. MRI scans were first preprocessed to get GM images which were then passed 

to CNN network. Networks were trained and tested using deep GoogLeNet, ResNet and proposed 

optimized model. The proposed model incorporated residual learning in shallow networks. The 

model is optimized in terms of performance as well as learnable parameters. The proposed model 

has 11 times fewer parameters as compared to famous AlexNet model.  

Experiments were performed in three phases. Binary classification was performed in the 

first phase which classified AD+MCI+LMCI vs NC. The results obtained were comparable to 

other available literature but convenient in terms single modality data and easy training. 

 Second phase of experiments dealt with multiclass classification by training the network 

from scratch. Results were obtained for both balanced and unbalanced dataset. All the acquired 

results outperformed the other methods for both cases. However, accuracies were slightly low for 

unbalanced dataset which showed that learning process depends on the amount and distribution of 

data. Maximum achieved accuracy is 98.88% using GoogLeNet and 98.14% using ResNet-152 

and 98.01% using proposed model. However, complexity and training time of proposed model 

was significantly lower than deeper models. 

 Transfer learning approach was applied in the third phase. The models trained on binary 

dataset were tuned on multiclass data. This technique proved to very effective and gave 99.9% 

accurate diagnosis using proposed models and 99.7% for ResNet-152 model.  

Overall, results for all the experiments outperformed other methods of literature in regard 

of multiclass classification. Significant increase in classification accuracy is achieved by using 



60 
 

deep convolutional neural networks. As compared to most of the previous works, pre-trained 

feature learning is not required anymore and still the network can accurately predict the classes. 

Class specific performance gain is also achieved improving performance for all classes in terms of 

sensitivity, specificity and positive predictive value.  Hence, it demonstrates the potential of 

incorporating deep convolutional network models for learning distinctive features from 

neuroimaging data and has high-level of implications for medical as well as neuro image 

processing. 

 Future recommendations include clinical trial of the proposed method to investigate and 

improve the shortfalls. Also, investigating the effects of combining data from different imaging 

modalities or combining clinical data with imaging data in the cases where structural data are 

limited. It is also recommended to explore and incorporate 3D convolutions in networks to get rid 

of the process of creating and selecting 2D slices and directly pass 3D MRI volumes for processing. 

It also recommends to develop a generalized model which can analyze structural MRI images for 

various structural biomarkers related to different brain diseases in single setup.  
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