

An approach to Verify Compliance of Requirement

Template Using Natural Language

Author

Ahmed Hasnat Safder

NUST201464547MCEME35414F

Supervisor

Dr. Usman Akram

 DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD

April 2018

ii

An approach to Verify Compliance of Requirement Template Using
Natural Language

Author

Ahmed Hasnat Safder

NUST20146454MCEME35414F

A Thesis submitted for the fulfillment of requirements for degree of

MS Computer Software Engineering

Thesis Supervisor

Dr. Usman Akram

Thesis Supervisor’s Signature: - ________________________________

DEPARTMENT OF COMPUTER ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

April, 2018

i

Declaration

I certify that this research work titled “An approach to Verify Compliance of Requirement
Template Using Natural Language” is my own work. The work has not been presented
elsewhere for assessment. The material that has been used from other sources it has
been properly acknowledged / referred.

Signature of Student

Ahmed Hasnat Safder

NUST20146454MCEME35414F

ii

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax,

semantic, grammatical and spelling mistakes. Thesis is also according to format

given by university.

Signature of Student

Ahmed Hasnat Safder

NUST ID

Supervisor Signature

Dr. Usman Akram

iii

Copyright Statement

 Copyright in text of this thesis rests with the student author. Copies (by any
process) either in full, or of extracts, may be made only in accordance with
instructions given by the author and lodged in the Library of NUST College
of E&ME. Details may be obtained by the Librarian. This page must form
part of any such copies made. Further copies (by any process) may not be
made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described
in this thesis is vested in NUST College of E&ME, subject to any prior
agreement to the contrary, and may not be made available for use by third
parties without the written permission of the College of E&ME, which will
prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and
exploitation may take place is available from the Library of NUST College of
E&ME, Rawalpindi.

iv

Acknowledgments

I am extremely thankful to Allah Almighty for guidance in this work, without
Allah’s help I would never have been able to complete my work. Indeed, none be
worthy of praise but Allah Subhana-Watala.

I would also like to thank my parents whose enormous help and love has enabled
me to reach this point. I would also like to thank them for being the biggest
positive influence on my life.

I am extremely grateful to my siblings, who have always helped and encouraged
to challenge myself against bigger goals and objectives.

I am especially thankful to Dr. Usman Akram whose enormous dedication and
broad knowledge was one of the biggest factor for me during my research phase.
He serving as my supervisor provided a huge deal of motivation for me in each
step of my research thesis.

I am also thankful to friends and colleagues for their step by step support and
encouragement throughout this process.

v

Dedicated to my siblings who have helped and supported me like one of
their own child throughout my life. I would never have made this far in

life without you love and guidance. I am truly indebted to you all.

vi

Table of Contents

Declaration …………………………………………………………………………………………………..………… i
Language Correction Certificate ………………………………………………………………………….…... ii
Copyright Statement ……………………………………………………………………………………….…….. iii
Acknowledgements ………………………………………………………………………………………….…… iv

List of figures ………….………………………………………………………………………………… ix
List of Tables ………….………….………………………………………………………………………. x

Abstract ………………..………………………………………………………………………………………….…… 1
Chapter 1 - Introduction …………………………………………………………………………………….…… 2

 1.1 Objectives ……………………..……………………………………………………………………….….. 4
 1.2 Motivation ……………………..…………………………………………………………………..….….. 5
 1.3 Structure of Document ………………………………………………………………………..….….. 7

Chapter 2 - Software Requirements and its templates ..……………………………….… 9
 2.1 Challenges in software requirement specification …………………………………….…. 11
 2.2 Different methods for requirements development techniques …………………….. 11

 2.2.1 Natural Language …………………………………………………………….….….. 11

2.2.2 Non Textual Approaches ………………………………………………….….….. 12

2.3 Template based Requirement Engineering …………..………….…………...….. 13

2.3.1 Rupps Template ……………..……………………………………………….….….. 14

2.3.2 EARS Template …..…………..……………………………………………….….….. 15

Chapter 3 – The Literature Review ……………………………………………………………….. 17

 3.1 NLP based approaches …………………………………………………………..……….…. 17

 3.2 Machine Learning based approaches …………………………………………….…... 19

 3.3 Other approaches including feature based and rule based ………..….…... 21

 3.4 Conclusion ………………………………………………………………………………..….…... 24

Chapter 4 – The Proposed Approach …………………………………………………………….. 25

 4.1 The NLP pipeline ………….………………………………………………………..……….…. 26

 4.1.1 The Tokenizer …………………………………………………………………….…... 26

4.1.2 The Sentence Splitter …..…………………………………………………….…... 26

4.1.3 The POS Tagger …………...…………………………………………………….…... 27

4.1.4 The Named Entity Recognizer …………………………………………….…... 27

4.1.5 The Text Chunker ………..…………………………………………………….…... 27

4.2 Pattern matching in Requirement document ………….......…………….…...... 27

4.3 Expressing the template as BNF grammar …………………………………………… 29

vii

 4.3.1 Gazetteers ………..………………………………………………………………..…... 30

 4.3.2 System Response ………………………………………………………………..…... 30

 4.4 Conformance Checking Steps ……………….………………………………………….. 30

4.4.1 Mark Starting Word ……..…………………………………………………….…... 32

4.4.2 Mark modal verb phrase …..………………….…………………………….…... 32

4.4.3 Mark Anchor segment …………...……….………………………………….…... 32

4.4.4 Mark Valid Sentence …………………………….…………………………….…... 32

4.4.5 Mark condition segment ………..…….…………………………………….…... 32

4.4.6 Mark Conditional syntax …………………………………………………….…... 32

4.4.7 Mark Conformant Segment …..………….….…………………………….…... 33

4.4.8 Mark additional details …………...………..……………………………….…... 33

4.4.9 Mark Conditional details ……..……………….…………………………….…... 33

4.4.10 Mark template conformance...…….…………………………………….…... 33

4.4.11 Mark Requirement type …....……………….…………………………….…... 33

4.4.12 Mark non-conformant reason ………………………………………………… 33

 4.5 Identifying and warn about Complex Phrases ………………………………….. 34

Chapter 5 – Evaluation …………………..…………………………………………………………….. 37

5.1 The research questions ………………………………………………………………….… 37

5.2 The selected case studies ..…………………………………………………………….… 38

5.2.1 Case-A …………………………………..………….….…………………………….…... 39

5.2.2 Case-B …………………………..………...………..……………………………….…... 39

5.2.3 Case-C …………………………….…………………….…………………………….…... 39

5.2.4 Case-D…………………………………....…….…………………………………….…... 39

5.3 Data Collection Process …..……………….…………………………………………….… 40

5.3.1 Phase-1 ……………………………………………………………………………………. 40

5.3.2 Phase-2 ……………………………………………………………………………………. 40

5.4 Analysis Process …..………………………………………………………………………..… 42

5.4.1 Different NLP pipeline configurations ………………………………………. 42

5.4.2 Metrics for Accuracy…………………………………………………………………. 43

5.5 Results …………….…..………………………………………………………………………..… 44

5.5.1 Manual Inspection of Requirements ……..…………………………………. 44

5.5.2 Accuracy Results and Execution Time ……..…………………….…………. 46

5.6 Discussion on results and answers to our research questions …….…..… 47

Chapter - 6 – Conclusion and Future Work …………..……………………………………..… 50

viii

References ……………………………………………………………………………………………………. 51

ix

List of Figures

 Figure 1. Overview of NL requirement conformance steps …..…….………………….. 4
 Figure 2. NLP Pipeline for conformance checking …..………………….……….………….. 7
 Figure 3. Overview of Requirement engineering and its core steps ….…………... 10
 Figure 4. Sentence architecture according to Rupp’s template …..………….…….. 14
 Figure 5. Sentence architecture according to EARS template …..…………………… 15
 Figure 6. Sentence chunks for a sample requirement …...……………………………... 25
 Figure 7. Parse Tree for a sample requirement …..………………………………..………. 25
 Figure 8. Showing a JAPE script to mark named entities …..………………………….. 28
 Figure 9. BNF grammar for Rupps Template ..…..………………………………………….. 29
 Figure 10. BNF grammar for EARS template …………………..…………………………….. 29
 Figure 11. Pipeline for template conformance …..…………………………..……………. 31
 Figure 12. Annotations generated on example requirements …..………………….. 34
 Figure 13. Steps for manual template conformance …..………………………………... 41

x

List of Tables

Table 1. Potentially ambiguous annotations …………………………………………………. 35
Table 2. Case Studies used for evaluation ……………………….……………………………. 39
Table 3. NLP configuration steps and their different combinations ……………….. 42
Table 4. The confusion matrix for our classes ……………….………………………………. 43
Table 5. Statistic for manual inspection of requirements ……………………..………. 45
Table 6. Percentage of reasons for non-conformance in requirements …………. 46
Table 7. Accuracy of best NLP pipeline configuration for each case study …..…. 47
Table 8. The number of false negatives and false positives …………………………... 48

1

Abstract

Requirement Engineering is the process to elicit stakeholder requirements and

developing them in to an agreed requirement document. Requirements should

serve as the basis and guideline for all the software development lifecycle. Top

Level system requirements are typically written in Natural Language (NL) by

individuals who are not requirement experts. During Software Development,

problems in these requirements can create unnecessary risks that can impact

schedule and cost. Requirement Templates address these issues by providing

structural rules that increase the precision of natural language requirements.

When applying these templates, it is necessary to verify that these requirements

are indeed documented according to the template. Manual inspections for this

purpose is time consuming and usually take multiple cycles to complete. In this

paper we develop an automated approach to conform requirements to two well-

known templates in requirement engineering community. Further we attempt to

categorize individual requirements by using guidelines of the two mentioned

requirement templates.

Key Words: Natural Language Processing, Requirement Templates, Text

Chunking.

2

Chapter 1: Introduction

Requirements engineering is the process of defining and documenting

stakeholder requirements and needs. Requirements are specified in such a way

that they can serve as the basis for all other system development activities. Finally

they are developed into detailed and agreed requirement documents [1]. Natural

Language (NL) is arguably the most common method to specify these

requirement. NL is easier to understand by all group of stakeholders as it requires

little to no training. Despite these advantages unconstrained use of NL can be

unsuitable for requirements definition for a number of reasons [2].

Words or phrases in NL sentences can be ambiguous meaning they can refer to

multiple meanings. Vagueness or lack of precision is another major issue with NL.

Compound requirements can contain complex subclasses or several interrelated

statement which may lead to increase in complexity. There may be missing

requirements, particularly to handle unwanted behaviors. Duplication or

repetition of requirements is another concern with NL sentences. Wordiness (use

of unnecessary number of words) is also common, especially when requirement

are written by individuals who are not NL experts. Testability is another problem,

requirements are difficult to be proven true or false when the system is

implemented.

There are also other problems with the requirements, such as conflicting

requirements and lack of tractability links. However these problems are not just

unique to NL requirement document.

There have been several proposed approaches to replace the Natural Language

for requirements. Most of these alternate methodologies are notation based,

such as Petri Nets [3] and Z specification [4]. Notation based approaches remove

some of core issues with using Natural Language such as ambiguity and

testability. However they present several drawbacks of their own.

Use of these non-textual approaches require a process of complex translation

from source requirements which can include further errors. Furthermore they

result in language barrier between developers and stakeholders. There is also

training overhead which is associated with introduction of such notations.

3

There are a lot of books on requirement engineering. There are also numerous

literature on techniques of writing requirements. These include two well-known

research papers “Writing Good Requirements” [9, 10] that focus on best practices

for well-formed requirements and attributes that requirement document must

include.

There always has been a growing need to apply a set of structures for high level

natural languages based stakeholder requirements. The goal of these sets is to

reduce the complexity of requirements and simplify their understanding to all

stakeholders group. Many approaches were proposed to present these set of

rules including Event Condition English[11], Specified Technical English [12] and

Attempto Controlled English [13]. The goal of these approaches was to

standardize a requirements document in order to reduce problems associated

with Natural Language.

Requirement templates were introduced to provide a syntax to write requirement

statements. This procedure is much more effective than using analytical methods.

Construction of requirements statements according to set of rules and syntax can

results in avoiding mistakes from the very beginning to software development

lifecycle. It also helps in usage of similar structure for each requirement. During

development of system, requirements generally are translated and formalized

into objected-Oriented models and processes. Using predefined syntax for

requirements can also greatly assists in these translations which are otherwise

difficult with using NL.

When applying requirement templates, it is important to verify the correctness of

requirements that they are written in accordance to templates. This process if

done manually can be time and resource consuming, especially in cases where

requirements are constantly changed. To overcome this problem we propose an

automated method to verify requirements to templates. Our solution will

implement automated checkers for two well reputed requirement templates.

Furthermore we will characterize each valid requirement to the type it

represents.

4

Figure 1. Overview of NL requirement conformance steps

1.1 Objectives

The domain of Natural Language Processing deals with an efficient and

automated analysis of both in speech and written format of natural language.

Natural language can be processed to several levels, ranging from analysis of each

word to processing a document containing several sentences.

Since Natural Language is the most common way to describe and list a set of user

requirements, it is especially useful since all stakeholders have a common

understanding of natural language as compared to other approaches. Recent

advancements in natural language processing in the domain of requirement

engineering have enabled us to develop structured requirement documents.

5

The core objective is to develop a methodology that utilizes Natural Language

Processing to enlist requirements that are not overly complex and ambiguous.

The introduction of requirements templates in the field of requirement

engineering have allowed us to write a well-structured requirement document.

In our study of literature review, we discovered that Natural Language Processing

techniques can applied to conform a requirement to the specified template. So

this research thesis is concerned with how these techniques can be applied to

conform requirement statements to templates in most robust environments. Our

objectives are to

 Analyzing natural language against other approaches to enlist requirements

in a document.

 Understand benefits of natural language to facilitate all stakeholder

concerns.

 To analyze requirement templates and their benefits in developing un-

ambiguous requirements.

 Analyzing artificial intelligence based approach to conform requirements to

templates using Natural Language Processing.

 Define a robust approach to validate requirement templates.

 Implementation of the defined approach on various case studies.

 To evaluate the accuracy of the approach against human manual

conformance.

We emphasize that our main aim of our research is not completely eliminate

human analysts, rather assist manual checking especially in most robust

environments where requirement changes are expected.

1.2 Motivation

Requirement templates provide an efficient in elicitation of well-formed and

unambiguous requirement documents. They are especially in development of

safety critical systems where complex and ambiguous requirements can cause a

great security risk. Several safety critical projects such as SAREMAN [14] and

OPENCROSS [15] recommend the use of an accurate and precise requirement

document.

6

There is an increasing support for requirement templates in commercial

requirements [16]. Naturally there is a need for quality assurance activities

surrounding these templates, one such example is the RQA tool [17] that provide

functionality for verifying the use of these templates.

The effectiveness of such tools require building of a glossary terms. One

important issue with dependence of glossary is wasted effort in glossary

construction stage since all the terms in glossary are not needed in the actual

conformance steps. To overcome this problem we identify and define the glossary

terms only when requirements have reached an advance stage and are thus less

likely to change [18]. One major drawback with such approach is that glossary is

not ready for the start of template conformance stages. Also it is likely that

glossaries may not be complete in the development stage [19] and as a result may

not provide a full coverage for all the desired terms. Implication of these factors

suggest that those tools for automated conformance of requirement templates

that heavily rely on glossary may not be fully effective and reliable.

This thesis is motived by the need to develop an automated solution that provide

features for conformance without the need of glossary. As a result in this thesis

we make the following contributions.

 We propose an automated of requirement template conformance using

Natural Language Processing (NLP), the distinguishing feature of our

approach is eliminating the reliance on glossary terms.

 We will use text chunking for our goal, in which chunks (segments) of texts

are identified. Our approach will not perform a detailed analysis on these

chunks internal structure and relationships [20]. These chunks largely

composed of verb phrases (VP) and noun phrases (NP) allow us to work on

abstraction level over natural language.

 We further provide NLP parsing as text chunking is not sufficient to

determine template conformance, especially in cases where requirements

phrases contain complex noun phrases that include verb phrases.

 We evaluate our approach by using four cases studies. Two of these case

studies have requirements according to RUPS template, while the other

two are written using EARS template.

7

 The results from our case studies will show that our approach provides

effective approach for requirement template conformance even for

complex requirements and where glossary is undefined.

 We provide a tool for automated conformance, with features for both

RUPPS and EARS, as well identifying requirement types according to the

two mentioned requirement templates.

Figure 2. NLP Pipeline for conformance checking

1.3 Structure of Document

The rest of thesis has been organized as follow.

 Chapter 2 – Software Requirements and its templates: In this chapter we

will provide a detailed analysis on system requirements and its different

types. Furthermore we will explain why it is beneficial to use natural

8

language to document requirements over other techniques. This chapter

will explain the need for requirement templates and explain their working

 Chapter 3 – The literature review: This chapter will provide some related

work in context of requirement, requirement templates and their

automated conformance.

 Chapter 4 – The proposed approach: In this chapter we will provide the

detailed approach of our methodology including problems relating to

previous approach and how we plan to improve those approaches.

 Chapter 5 – Evaluation: In chapter 5 we will implement our proposed

approach on four case studies of real world, and explain the results and

evaluation of our approach against those case studies.

 Chapter 6 – Conclusion and future work: In this chapter we explain

conclusion based on our thesis and future work in this area.

9

Chapter 2: Software Requirements and its
templates

Software requirements is the field of software engineering that establishes the

need of stakeholder that is to be solved using a software system. The IEEE

standard glossary of software engineering terminology [21] defines a requirement

as following

 A condition or capability needed by a user to solve a problem or achieve an

objective.

 A condition or capability that must be met or possessed by a system or

system component to satisfy a contract, standard, specification, or other

formally imposed document.

 A documented representation of a condition or capability as in 1 or 2.

The activities relating to software requirements can be broken down to 4 phases

namely elicitation, analysis, specification and management.

10

Figure 3. Overview of Requirement engineering and its core steps

1. Elicitation: The process of discovery and gathering of requirements from

stakeholders and other sources (such as similar systems) is called

requirement elicitation. The common techniques for elicitation are

interviews, joint application designs (JAD) sessions, focus groups and

document analysis etc.

2. Analysis: The next step is of analysis in which we seek a richer and more

precise understanding of requirements. These include needs of

requirements, identifying conflicting requirements, analyzing, documenting

and validating software requirements.

3. Specification: This step involves representation of requirements in a well-

organized fashion. This is most commonly achieved by making a software

requirement specification document (SRS), in which we list down the

function requirements, non-functional requirements, use cases, user stories

etc.

11

4. Management: In requirements management we deal with changes in

requirements during the development of project. The main goal is to

ensure development of correct software system with minimum effect on

current system.

2.1 Challenges in software requirement specification

One of the major problem in software development lifecycle is considered to be

requirement specification [22]. The main hurdle is the fact that ambiguous,

inconsistent and incomplete requirements can lead to incorrect features of

software and thus project failures. The main cause of the problem is that

Practitioners have a poor understanding of requirements.

Another challenge when listing requirements is that organizations tend to think

their maturity level in Information Technology and Requirements Engineering is

fairly high. As a result it is not deemed necessary to give users and stakeholder’s

further education and training methods about techniques used in Requirement

Engineering [23].

2.2 Different methods for requirements development techniques

To solve problems discussed earlier many techniques for development and

documentation of requirements have been devised. The most obvious technique

is to use natural language (NL).

2.2.1 Natural Language

The most common technique of defining and documenting requirements is by use

of some natural language, such as English. It is a common knowledge that around

72% of software requirement specification are captured using some natural

language [24]. The main reason for such high percentage is the fact that a

significant number of stakeholders have little to no knowledge of programming

and software techniques. So organizations instead of providing training and

education of techniques to enlist requirement use natural language which is

generally understood by all stakeholders.

Natural language has its own drawbacks, some of the important drawbacks are

12

 Natural language can be ambiguous, some words and sentences can

be understood as different meanings, which will result in incorrect

features in developed software system.

 Requirements written in natural language are most unsuited among

all techniques when it comes to dynamic translation of requirement

in to object oriented specification format.

 Compound requirements can contain complex subclasses or several

interrelated statements which may lead to increase in complexity.

 There may be missing requirements, particularly to handle unwanted

behaviors.

 Duplication or repetition of requirements is another major issue with

NL sentences.

 Wordiness (use of unnecessary number of words) is also common,

especially when requirement are written by individuals who are not

NL experts.

 Testability is another problem, requirements are difficult to be

proven true or false when the system is implemented.

2.2.2 Non Textual Approaches

There are also other problems with the requirements, such as conflicting

requirements and lack of tractability links. However these problems are not just

unique to NL requirement document.

To overcome these problems associated with the NL, there are many notation

based approaches for requirement specifications. Formal notifications include

Petri Nets [25] and Z specification [26], Graphical notations such as Unified

Modelling Language (UML) [27] and System Modelling language (SysML) [28].

Other non NL approaches include pseudo-code, Table Driven Requirement [29]

and Scenario Based Approaches [30].

Some of these techniques claim universal applicability to all system levels. UML

and SysML are graph based notations to describe complete functionality of

systems, where different views can be created based on user needs. Scenario

based Approaches can be different for different system Levels, however they not

13

necessarily work for integrated systems. Using non-textual approaches like

notation and scenario based requirement engineering can be beneficial in terms

avoiding ambiguity and other common problems faced when using Natural

Language. However they have their own drawbacks, some of which are listed

below.

 Non-textual approaches require a process of complex translation

from source requirements which can include further errors.

 Furthermore they result in language barrier between developers and

stakeholders.

 There is also training overhead which is associated with introduction

of such notations.

As a result of these important issues, practitioners generally discourage use of

non-textual approaches. However there is a general consequences to use natural

language for requirement engineering with some defined principles and structure.

2.3 Template based requirement engineering

It was hypothesized that by applying a certain set of a requirement structure will

result in a practical and effective method to write high level stakeholder

requirements. These small sets must be simplified to reduce complexity. A vast

amount of work was performed in this area of constrained natural language.

These work included Event Condition English [31], which proposed that event

should signal the trigger of rule and condition cause the specified system action.

Other works in this area include Specified Technical English [32] and Attempto

Controlled English [33].

The purpose of last two approaches is to make technical texts which are easy to

understand by all users. They proposed to a generalized and controlled

vocabulary which is sufficient to write all technical sentences. In addition to this

general vocabulary, these approaches permits the unrestricted use of words that

are technical names and technical verbs. In general the work is mainly concerned

with requirement syntax. Although steps are taken to improve the sematic part of

requirement engineering in Natural Language, but there is no claim made to cover

all levels of system.

14

In Requirement templates also known as boilerplates provide an efficient tool for

reducing ambiguity, complex structures and inconsistency in NL requirements.

They are principally concerned with requirement syntax and are most suited to

definition of high-level stakeholder requirements. A template organizes the

syntactic structure of requirements statement to into a number of predefined

slots. As a result requirement become analyzable and thus are easy to

automatically verifiable.

In requirement engineering literature several templates are proposed. While our

approach can be edited to cover majority of those templates, in this thesis we are

using two well-known requirement templates namely Rupps (proposed by Chris

Rupps) and EARS (Easy Approach to Requirement Syntax). Our choice to select

these two templates as the center of our research is motivated by extensive use

of these two in industry [34] [35] [36]. Furthermore there are vast amount of

guidelines for these templates, which provide several advantages for training and

utilizing of templates in varying environments.

2.3.1 Rupps Template

Fig. 4 shows the steps for Rupps template. The template contains six slots: (1) first

slot specifies an optional slot that is only needed if the requirement contains a

precondition; (2) the name of the system (3) a modal (will/shall/should) to specify

the importance of the requirement; (4) the process slot which can accept three

different forms. These forms are based on manner in which functionality is to be

applied during development; (5) the object for which functionality is required; (6)

optional details appear at the end of requirement sentence and provide detail

about the object.

Figure 4: Sentence architecture according to Rupp’s template.

15

The Rupps template shown in Fig. 4 distinguishes three types of processing

functionality

 Autonomous Requirements, states functionalities which are independent

from user interaction. These are captured using the “<process”> form.

 User Interaction Requirements, states functionalities that the system

provides to user. These are captured using “PROVIDE <whom?> WITH THE

ABILITY TO <process>”.

 Interface Requirements, states functionalities the system performs in

response to trigger events from other systems. These are captured using

“BE ABLE TO <process>”.

2.3.2 EARS Template

The EARS template is made of four slots and shown fig. 5: (1) an optional

condition at the beginning; (2) the name of system; (3) a modal (only SHALL is

accepted in EARS template); (4) the system response.

Figure 5: Sentence architecture according to EARS template.

EARS template uses five alternate structures of first slot to distinguish

requirement types.

 Ubiquitous requirements, are always active and have no pre-condition.

 Event Driven requirements, are initiated by a trigger event and always

begin with WHEN.

 State Driven requirements, are active for a definitive state and begin with

WHILE.

 Optional Feature, are fulfilled when certain optional features are present

and begin with Where.

16

 Unwanted behavior requirements, these requirements are used to handle

unwanted behaviors including error conditions, failures, faults,

disturbances and other undesired events. Use the “If” and “then”

keywords.

Observing these two templates, we come to conclusion that, EARS template

offers more advanced features for specifying conditions on requirements. In

contrast the RUPPS template enforces more structure than EARS when it comes

to non-conditional parts of requirement statement.

17

Chapter 3: The literature review

The selected papers for literature review represent processing on natural

language requirements. The selected papers are divided into three categories

representing the type of dominant approach or technique they follow. The three

approaches are NLP based approaches, Machine learning based approaches and

other approaches which include feature based and rule based.

3.1 NLP based approaches

The NLP based approaches for process natural language requirement documents

are usually sub-divided to two NLP categories of Syntax and Semantics. For

syntax-based approach well know techniques are Lemmatization, POS tagging,

stemming etc. For semantic based approaches some of the most common

techniques are Word sense disambiguation, Named entity recognition etc. In

most of research papers a combination of more than one technique is usually

adapted. Following are the papers where the dominant technique for processing

is NLP based.

3.1.1 Change Impact Analysis for Natural Language Requirements: An NLP

Approach

In this paper [37], the authors propose an NLP based approach to analyze the

impact of a change in requirements. The proposed approach automatically

detects the phrase structure of requirements. An argument is made that

capturing conditions which result in change of requirement is important when

analyzing the impact of changes. The proposed process starts with text chunking

of requirement, then extraction of Noun and Verb Phrase tokens, this is followed

by applying similarity measures where authors use Levenshtein measures for

syntactic similarity and Path measures for semantic similarity measures. The

evaluation and testing were performed on 14 scenarios from two separate

industrial case studies. The results showed correct detection of 99% of impacted

requirements.

3.1.2 Can Clone Detection Support Quality Assessments of Requirements

Specifications

18

In this paper [38], the authors propose a methodology to identify and reduce the

redundancy that arises from cloning (copy & paste) during requirement

specification process. Their methodology to detect cloning is a three steps

process: Input and Preprocessing in which text is split into single words from

which whitespace and punctuation is discarded, followed by stemming (reducing

words to its stems) using the Porter Stemming algorithm; Detection in which

token-based approach is used to construct a suffix tree in which, those branches

that reach at least two leaves correspond to a clone and are reported; Post-

processing in which all overlapping clone groups are removed and rest are

reported as a report. The proposed methodology is applied to 28 requirement

specifications with the results show precision of up-to 99% for each alphabet,

which letter ‘U’ with the lowest precision of 85%.

3.1.3 Documenting requirements specifications using natural language

requirements boilerplates by Noraini Ibrahim and Wan M. N. Wan Kadir

In this paper [39], the authors present impact and benefits of using predefined

boilerplates or templates to requirement specifications. The study was motivated

by the need to find a better way of eliciting requirement from the novice

stakeholders point of view and understanding. The templates were divided into

the broad category of requirements, namely functional and non-functional. The

evaluation was performed on an industrial health care application case study, the

Meidnet System. The results indicated that boilerplates resulted in a reduced

impact of unclear requirements that affect other artifacts and hence minimize the

risk of volatility issues. Furthermore, the cost and impact of requirements was

also greatly reduced.

3.1.4 Rapid Requirements Checks with Requirements Smells: Two Case Studies

In this paper [40], they propose an approach to detect issues in requirements

based on defected phrases which this paper labels as bad smells. They apply a

four-step NLP based light weight technique for instant checks as soon as the

requirement is written down. These four steps include Parsing of requirements

statements; Annotation in which POS tagging, Morphological Analysis and

Lemmatization is performed; Smell identification the algorithm for find defected

phrases; Presentation of findings with explanations. They applied the approach on

two cases studies with a total of 336 requirements and 53 use cases that are

19

taken from 9 specifications. The results when discussed with industry experts

concluded that the approach can be used to detect relevant defects in

requirements. Since it cannot find all the possible defects, thus is most suited as

valuable input for requirement reviewers.

3.1.5 Natural Language Requirements Specification Analysis Using Part-of-

Speech Tagging

In this research [41], the author proposed a methodology to first perform a

grammatical analysis on software requirements and then transform those

sentences into formal models. The motivation for this paper is that natural

language provides advantage for requirement documentation since they are

easily understandable to all stakeholder types, however they are prone to

ambiguousness and inconsistency. On the other hand, the formal models provide

better requirement specification in terms of lower ambiguity and consistency but

are not easily understandable to some groups of stakeholders, especially the non-

technical ones. For formal models this paper uses the Concern-Aware

Requirement Engineering (CARE). The five steps for above mentioned conversions

are; (1) Breaking each requirement sentence to its composing words; (2) part of

speech (POS) tagging, where each word is defined according to its English corpus;

(3) Sentence pattern matching, where each sentence is classified into its

grammatical elements; (4) Match each sentence from step 3 to CARE sentence

pattern; (5) Creation of CARE scenario formats (formal models). The resulting

formal models can further be converted into object-oriented models.

3.2 Machine Learning based approaches

Machine learning based coupled with NLP in requirement documents is

predominantly used to identify ambiguities inside the document based on

previous metrices. It’s also used to classify or categorize individual requirements

to a particular set of requirements. Some of the most commonly machine learning

techniques in NLP are Decision Trees and KNN classifiers.

3.2.1 Identifying Nocuous Ambiguities in Natural Language Requirements

In this paper [42], the authors present a technique to automatically alert the

writers of requirements to a presence of potentially dangerous ambiguities. The

authors start the paper by defining ambiguity in Requirement Engineering and

20

presenting different type of ambiguities including acknowledged vs

unacknowledged ambiguity. This paper suggests the idea to use a morphological

analysis draw conclusions from three methods. First the Weighted method of

interpretation in which unacknowledged type of ambiguity is given high weight

since its more likely to cause nocuous ambiguity in requirement document;

secondly using a flexible method for thresholds to classify nocuous and innocuous

ambiguity; In the third method authors suggest an approach to deal only with

unacknowledged ambiguity can be extremely effective and efficient. For

execution and testing the authors suggest the use of a machine learning approach

to attain external linguistic data for requirement ambiguities. The results show

that morphological heuristics can be more effective for reading ambiguities and

suggesting cut of points.

3.2.2 Analyzing Anaphoric ambiguity in NLP

In this research [43], the authors present an automated system for identifying

potential harmful ambiguities in requirements that result from anaphoric

ambiguities. The anaphoric ambiguity arises when the readers of requirement

document may disagree on how pronouns should be interpreted. This paper

provides a machine learning based classifier, with a given wide range of

requirement documents a set of anaphoric ambiguities are extracted and

associated human judgement were collected based on interpretation of

individuals. The classifier hence was trained based on both predetermined

heuristics and collected human judgements. This developed tool is used to

highlight both actual and potential ambiguities in a requirement. Results from this

paper show that the classifier achieves a high recall and precision which varies

with respect to change in threshold for ambiguity.

3.2.3 Hidden in Plain Sight: Automatically Identifying Security Requirements

from Natural Language Artifacts

In this research [44] the authors present a machine learning approach to identify

security related requirements in a document. The developed tool takes inputs of

natural language document and attempts to identify security related sentences

and classify them on the basis of security objectives. The tool is composed of four

steps; (1) Pre-Process Artifacts where a document is processed to identify

requirement sentences and titles; (2) Classify for security objectives, here using a

21

KNN classifier a sentence is classified to having one or more security objectives;

(3) Select context specific Templates where tool identifies the associated template

to requirement having security objectives (e.g. accountability) and possible action

based associated with it; (4) Generate requirement sentences, in this step

sentences are modified to reflect a security related requirement e.g. introduction

of explicitness to a sentence. For the evaluation almost 11K sentences were

classified and with 46% of those sentences having security objectives. Of those

identified to possess a security objective 22% were found to explicitly security

related while the other 72% had security implications associated with them. The

two metrics for testing are; (1) Precision where the tool classified 82% of security

objectives of all requirements; (2) Recall where of all security objectives 79% were

correctly classified.

3.2.4 Non-functional Requirements to Architectural Concerns: ML and NLP at

Crossroads

In this paper [45] the authors present a machine learning based approach to

automatically detect architectural aspects (e.g. Presentation aspect, data aspect,

development aspect etc.) and quality attributes of non-functional requirements

(NFRs). Firstly, all the non-functional requirements are converted to plain text.

Then using Support vector machine, each NFR is related to an architectural

pattern and quality attribute using knowledge base of previous data. To further

facilitate the approach the authors used NFR2AC toolset. The execution was

performed on an automotive case study, even though the knowledge base was

built from a diverse domain of case studies. The results indicate that around 80%

of NFRs were accurately matched to its correct architectural pattern. It is the

author’s belief that the accuracy of results will be significantly improved by using

either a larger or matching domain knowledge base.

3.3 Other approaches including feature based and rule based

Feature and rule-based approaches in NLP for requirement specification are

mostly used to check the quality of requirements against certain features or pre-

defined rules. To pre-process documents for feature extraction, mostly the

conventional NLP techniques like POS tagging and parsing etc. are used.

3.3.1 Natural Language Requirements Quality Analysis Based on Business

Domain Models

22

In this research [46] the authors presented an approach for quality analysis of

natural language requirement using ontology-based domain. Authors also make

use of domain guided parsing for requirements mapping. The type of quality

analysis discussed in this paper are divided into two groups; (1) Comprehension

enablers including Fit-gap view, Dependency view and Clustering view; (2)

Violation Detection including Missing attributes detection, Missing business rules

identification, under specified entity identification, Undefined entities,

Unspecified wrong business rule identification, unspecified case identification and

identifying conflicting requirements. The methodology proposed is a two-step

process; (1) Matching terms to domain elements using Jaccard Similarity; (2)

Matching requirements using Domain guided parsing, a graph-based approach

using calculated chunkers. For testing and execution, a dynamic of 38

requirements document was used. The results showed that a precision of 0.84

was achieved for quality-based violations in these requirements.

3.3.2 A Rule-Based Natural Language Technique for Requirements Discovery and

Classification in Open-Source Software Development Projects

In this paper [47] the authors follow a rule-based approach to discover and

subsequently classify open source requirements. The main problem for open

source requirements is that they are informal and found in forums, comments,

requests and emails. Manual Analysis for these mediums is not possible or

feasible and can be error prone. The proposed approach has 6 levels for

classification. The first 5 levels are not necessarily interlinked but provide

necessary detail for level 6 to qualify a potential requirement. These 6 levels are;

(1) Tokenization which defines basic element of text included in all types of

communication; (2) Parts of speech (POS) tagging; (3) Qualification which

identifies an expression which might indicate a requirement; (4) Entities which

identifies three basic requirement elements (Subject(Actor), Action(Verb) and

Object); (5) Requirement discover parts of text which may be identified as a

requirement; (6) Classification on text identified in previous 5 levels for

classification of type of requirement. This paper uses 23 quality metrices for

requirements as defined by McCall. Evaluation were performed on more than 20

open source forums. And results were divided into two categories of requirement

and annotation types. The precision, recall and F-measure for requirements were

23

0.94, 0.64 and 0.76 respectively, while same metrices for annotation types were

0.58, 0.70 and 0.46.

3.3.3 Entity Disambiguation in Natural Language Text Requirements

In this research [48] the two authors proposed a solution for terminological

disambiguates problems in requirement specification. The main cause of the

problem is term-aliasing where multiple terms may refer to same entity. The

paper discusses two types of aliasing; (1) Syntactic aliasing which includes

introduced-aliasing and abbreviation; (2) Semantic variance includes

multidimensional features like location, statistics and linguistics. The main

approach consists of 12 steps; (1) Requirement Labelling in which we label each

requirement; (2) POS Tagging; (3) Entity Term Extraction; (4) Corpus Generation

which collects all terms in a requirement; (5) Misspelling Identification using

Levenstein distance; (6) Abbreviation Identification finding short forms and

acronyms; (7) Explicit Aliasing identifying entity term pairs; (8) Generation of

Latent Semantic Model; (9) Similarity Computation; (10) Generating Alias Clusters;

(11) User Generated alias building; (12) Alias Search. The results of study indicate

a Precision, Recall and F-Measure of 0.86, 0.46 and 0.60 respectively.

3.3.4 Semi-automatic Checklist Quality Assessment of Natural Language

requirements for Space Applications

In this paper [49] the authors propose a methodology for detecting problems with

requirement specification. The underlying case study is related to a space

application where authors argue that defects are potentially fatal. A checklist is

used for quality assessment of the SRS document. The methodology uses a

feature-based approach to verify 22 questions in an SRS document. The 22

questions are divided into four categories; (1) Trackability has 5 questions, where

it is verified that all requirements are traced to at least a system or an interface;

(2) Incompleteness has 4 questions, where indications of incompleteness is

detected e.g. terms like ‘To be defined (TBD)’ or ‘To be Confirmed (TBC)’; (3)

Incorrectness has 10 questions to find terms like ‘might’ or ‘in preference’; (4)

Consistency has been assigned 3 questions where attempt to detect conflicting

information is made.

24

3.4 Conclusion

The majority of researches for processing on Natural Language Requirements are

either NLP based or rely on some core NLP techniques like POS tagging, parsing

and tokenization etc. In majority of the research papers, a common observation

can be made that none of the researcher claim 100% results on processing, rather

rely on practitioners to use the developed tools and techniques to assist them.

The practitioners and document writers can use these tools to check quality of

requirements or extract meaningful information from requirements. They can

also use some tools to convert natural language requirements to more technical

representation e.g. object-oriented flows etc. All papers claim natural language to

be most widely acknowledged source of requirement documentation which is

acceptable and understandable to all stakeholders.

25

Chapter 4: The proposed approach

Our main NLP approach for automated verification of requirement templates is

text chunking. In general text chunking is the process of decomposition of a

sentence into smaller, non-overlapping segments know as chunks of a sentence

[50]. The two main chuncks of sentence are noun phrases and verb phrases. Fig. 6

shows a requirement statement, followed by a segments of text chunking of the

statement, while Fig. 7 shows its parse. A noun phrase is the chunk which can be

object or subject of a verb and a verb phrase is the chunk that contains verb with

an associated adverb or modal.

Figure6. Sentence chunks for a sample requirement

Figure 7. Parse Tree for a sample requirement

26

A segment generated by text chunking differs from segments in parse tree

generated by a natural language parsing library which can have arbitrary depth.

Stanford parser is one most well-known parsing library [51]. In NLP when a parse

tree is not required we can use text chunking for it can provide two important

advantages [52].

 First the text chunking is computationally less expensive, having a

complexity of O(n) as compared to O(n3) for parsing, where n denotes the

length of the sentence. This makes text chunking more scalable than

parsing which is extremely important consideration when we deal with

large requirement documents.

 The second advantage that text chunking offers is robustness [53]. Hence it

can offer results in majority of cases where parsing may fail e.g. when we

face unfamiliar input. This is another important consideration because

more technical requirement documents can deviate from common texts.

4.1 The NLP pipeline

As a result of considerations described in above segment, we conclude that text

chunking is better suited to our approach than Parsing. Our approach will thus

utilize these chunks of texts to validate a requirement statement. To prepare a

requirement document to perform text chunking, the document passes through

several phases. We call these phases our NLP pipeline. The basic flow of NLP

pipeline is already described in Fig. 2. Next, we will explain each major part or

phase of this pipeline.

4.1.1 The Tokenizer

In first phase we break the input document into a list of tokens. A token can be a

word, symbol or a number. For our implementation we are going to use OpenNLP

Tokenizer [55].

4.1.2 The Sentence Splitter

After Tokenizer, the next phase is to divide each requirement statement into an

individual sentence. Marking Sentence is important since we are essentially

marking a valid or invalid requirement sentence. For our approach we will use

both ANNIE sentence splitter [54] and OpenNLP sentence splitter [55].

27

4.1.3 The POS Tagger

The next step is POS (part of speech) tagger. This tags each token to a part of

speech which includes Nouns, Verbs, Adverbs and Adjectives among others. Most

POS taggers use a Penn Tree-Bank tag set [56]. For our approach we are using

OPEN POS Tagger [55] and Stanford POS Tagger [57].

4.1.4 The Named Entity Recognizer

After POS tagger the next step is to identify named entities e.g. Locations, Persons

and Organizations. This step helps us identify individual elements such as system

name etc. In terms of requirement document, we can also include component

names and domain keywords.

4.1.5 The Text Chunker

The final step in our approach is the text chunker. As described earlier the most

important is chunking of noun phrases and verb phrases. We will handle both

noun and verb phrases in a separate modules. We can also use glossary for Noun

phrases in named entity recognition to minimize errors of NLP chunker.

These steps can be applied in different order as well. E.g. we can use both phases

of POS tagging and named entity recognition before the step of sentence splitting.

4.2 Pattern matching in Requirement document

Once a pipeline is processed we will use annotations for tokens, parts of speech,

named entity recognition, sentences, verb phrases and noun phrases. Next task is

to represent template. We will use BNF (backus naur form) for representation.

This will enable us to write rules for pattern matching over requirement

statements. For this we will use JAPE (Java Annotation Pattern Engine) which is a

regular expression based pattern matching language. It’s available as a part of

GATE (General Architecture for text engineering) NLP workbench.

Each JAPE script has a set of phases and each phase has a set of rules. In Fig. 8, we

show phase “NamedEntities” which has a single rule “NamedEntity” to mark

28

named entities.

Figure 8. Showing a JAPE script to mark named entities.

In Jape each rule consists of a LHS (left hand side) and RHS (right hand side) which

are separate by ‘->’. The LHS of a rule represent the annotation pattern to be

matched and RHS defines the action to be taken on the specified LHS annotation

pattern. As displayed in fig. 8 the RHS can also contain Java code to manipulate

annotations.

When multiple rules match on a segment, JAPE provides options for controlling

the results of annotations. These options are following

 Brill: This option marks that for a given text region when multiple rules are

matched then all rules are fired. Brill is especially useful to detect

ambiguities in a requirement sentence, if more than one ambiguities are

present then all ambiguities will be annotated.

 First: This marks that when more than one matching rules are present for a

segment, the first shortest rule is fired. This is used as an example to detect

29

a sentence, where we need to detect a sequence of tokens followed by a

full stop to mark a sentence.

 Appelt: This option specifies when multiple rules are present the long

possible segment of document rule is fired. This is useful to mark

paragraphs in a document.

4.3 Expressing the template as BNF grammar

In figs. 9 and 10 we show how BNF grammar is constructed for Rupp’s and EARS

template respectively.

Figure 9. BNF grammar for Rupps Template

Figure 10. BNF grammar for EARS template

30

In both Rupp’s and EARS a requirement can start with an optional condition,

where Rupp’s template does not provide syntax for that pre condition,

recommending only use of following phases.

 For logical conditions use IF.

 For temporal conditions use AFTER, AS SOON AS and AS LONG AS.

EARS in contrast differentiates the optional conditions in a requirement. Also

using recursion to mark complex requirement, where more than one pre-

condition is marked.

We can use a hard rule to enforce the end of conditional segment to always end

with a comma. This maybe too constraining because using commas can be forgot

or may depend on a person’s individual choice of punctuation. We can use

heuristics to avoid reliance on use of comma to identify the conditional segment

in a requirement statement. For example we can use an NP system name

followed by modal such as SHALL to identify a conditional part.

4.3.1 Gazetteers

Both Rupps and EARS have template specific keywords, these may include modals

(e.g. SHALL, SHOULD, WILL) or conditional keywords (e.g. WHEN, IF) etc. We

group them in a separate list of keywords. These lists are called gazetteers in

Natural language Processing [58]. These help our automated tools to be generic

for both templates thus decoupling them from template specific keywords.

4.3.2 System Response

For system response in EARS and optional details in Rupps, we accept any

sequence of token. One condition for these tokens is that they must not contain a

subordinate conjunction (such as after, unless, before etc.). The reasoning behind

this logic is that any subordinate conjunction may enforce an additional condition

on requirement and both Rups and EARS state that all conditions must be defined

at the beginning of the requirement rather than at the end.

4.4 Conformance Checking Steps

31

Template conformance starts with text chunking shown in fig. 2. It identifies

tokens, sentences, parts of speech, named entities, noun phrases and verb

phrases. After that another text processing pipeline is executed. The overview of

this pipeline is show in fig. 11. Again JAPE is used to write rules and scripts for this

pipeline. Below we explain each step of this second pipeline followed by a sample

JAPE script to mark requirement type.

Figure 11. Pipeline for template conformance

32

4.4.1 Mark starting word

First step is to mark the first word of the requirement sentence. This word may

start a condition segment or anchor segment. In fig. 11 we mark this step as mark

start.

4.4.2 Mark modal verb phrase

Mark the sequence of a modal followed by a VP (e.g. SHALL PROVIDE). A

requirement sentence normally has only one modal, if more than one modal is

found in a sentence we generate a warning. The resulting annotation from this

step is represented as Modal_VP in fig. 11.

4.4.3 Mark Anchor segment

The first system_name is that is followed by Modal_VP in step 2. The absence of a

system_name that does not preceded the modal results in error generation. In

Fig. 12, the requirement 3 doesn’t contain an anchor tags. Normally an anchor

segment is at the start of the statement or preceded by the condition segment.

4.4.4 Mark Valid Sentence

In this we mark a sentence valid or un-valid based on condition that it must

contain an anchor tag at the beginning of a sentence or immediately followed by

the condition segment. Sentence not having an anchor or don’t meet some

additional constraint are marked invalid. In example shown in fig. 12 Req-1 and

Req-2 are valid sentences but Req-3 is an invalid sentence.

4.4.5 Mark condition segment

Here we mark the optional condition in the valid sentences. The condition

segment is all the text from the beginning of the sentence to the anchor segment.

Since the structure for conditions in both Rupps and EARS are not same, the

scripts written in JAPE for this step are different.

4.4.6 Mark Conditional syntax

This step is exclusive to EARS template since it defines a certain syntax for

conditions of requirement. For example conditional keyword IF is followed by an

33

optional precondition, trigger and keyword THEN .Later on we will mark

requirement type for EARS based on condition keyword used.

4.4.7 Mark Conformant Segment

The conformant segment is a valid sentence requirement until the additional

details segment. Like conformant segment the rules for this also vary in the two

templates. Thus the scripts will also be different for the two defined templates.

4.4.8 Mark additional details

Additional details are optional in both templates. This step is only valid for

sentences that contain a conformant segment. Every token after conformant

segment is considered a part of additional details. In EARS this segment is also

called system response.

4.4.9 Mark Conditional details

As described earlier that both templates force to define conditions in start of a

requirement sentence. In this step we check for details which contain conditions,

most notable the subordinate conjunction. If found we trigger non-conformance.

We normally use gazetteers to define conditional keywords that must not be

present in the detail of requirement.

4.4.10 Mark template conformance

All requirement with a valid sentence, a conformant segment and non-presence

of conditional details are marked as Template_Conformant. Any requirement

without this segment will be marked Template_Non_Conformant. In the example

of fig 12, req-1 and req-2 conform to templates while req-3 is marked as non-

conforming requirement.

4.4.11 Mark Requirement type

As shown earlier for Rupps we have three requirement types while for EARS we

have six. In this segment we mark the requirement types of a valid requirement

based on presence of keywords and their sequence described earlier.

4.4.12 Mark non-conformant reason

34

All those requirements which do not conform are assigned a reason for the non-

conformant. We trigger the first reason found for non-conformant. For example a

reason lack of anchor segment may or may not have a conditional detail segment.

Figure 12. Annotations generated on example requirements

4.5 Identifying and warn about Complex Phrases

Apart from template conformance, we also provide cautions and warning by

detecting complex and vague segments in a sentence. NLP can be used to detect

these segments. In Table 1. we list the potential ambiguous annotations that

represent the presence of these segments. The identification of these segments

will also provide help to requirement practitioners and will thus lead to writing of

clean and unambiguous statements.

35

Annotation Example Potential reason for caution
Caution_And The M&C shall provide user with

the ability to remotely monitor
and control via SNMPv3.

The conjunction ‘and’ provides
many problem such as multiple
condition to be fulfilled.

Caution_Or The M&C shall visually
distinguish between planned
unavailability or M&C detected
only outage.

The conjunction ‘or’ may suggest
use of an ‘inclusive or’ or an
‘exclusive or’.

Caution_Quantifier The M&C component supplier
shall deliver all licenses required
to operator the M&C
component.

Terms such as ‘all’ that are used for
quantification can lead to
ambiguousness in a requirement.

Caution_Plural_
Noun

The M&C components shall be
designed to allow a 24/7 without
interruption during routine
operations with changing
operator personnel.

The use of plural nouns can lead to
ambiguousness.

Caution_Pronoun The M&C components shall be
implemented in a way that they
can be deployed on both PMOC
and BMOC.

Can lead to referential
ambiguousness.

Caution_Complex_
Sentence

The M&C shall support the
modification of any of its
configuration parameters upon
request.

Complex sentence such as the one
which contains both quantifiers and
pronouns, can imply multiple
meanings.

Caution_
VagueTerms

The M&C shall periodically poll
the DBMS for the availability of
LEO orbit S/C files.

Vague terms such as periodically or
acceptable should be avoided in a
requirement sentence.

Caution_
PassiveVoice

The M&C shall be developed
under TechCom's ISO 9001
quality management system.

Use of passive voice can lead to
confusion for developers and thus
must be avoided.

Caution_Adverb_
in_Verb

The M&C shall provide user with
the ability to remotely monitor
and control via SNMPv3.

Using adverbs in a verb phrase is
discouraged.

Caution_Adjective_
FollowedBy_
Conjunction

The M&C shall visually
distinguish between planned
unavailability or M&C detected
only outage.

If adjective is followed by two
nouns then it’s ambiguous since it
may apply to only first or both
nouns.

Table 1. Potentially ambiguous annotations, their examples and possible reasons.

In this section we presented our approach to template conformance including

pipeline to identify conformance, requirement types and possible reasons for

36

failure to comply. We also presented a list ambiguous terms that may help

requirement practitioners to avoid problematic statements. In the next section

we will apply our approach on case studies for both Rupps and EARS template and

attempt to verify our results.

37

Chapter 5: Evaluation

For evaluation we are going to consider four case studies. For selection of our

case studies we addressed many considerations. Most important consideration

was coverage of industry domains that are different from each other. Also these

case studies present real life scenarios. Furthermore the number of requirements

in each study is realistic and enough to evaluate our methodology.

In the remainder of this chapter we will discuss, the research questions and

criteria, design, execution and results we attain from the execution.

5.1 The research questions

We have several consideration in our case studies which must be handled for our

evaluation purpose. Following are the research questions to handle these

considerations.

Research Question – 1: What are ideal configurations for our Pipeline?

There are several different libraries and implementations for each stage of our

NLP pipeline. Our goal is to identify a combination that produces best results for

our goal based on several metrics for assessing the accuracy of results. These

metric include F-measure, precision and recall.

Research Question – 2: Measure the effectiveness for non-confrontment defects

and reasons?

As described in chapter 4, our goal is not only to identify the requirement

conformance but also to provide reasoning for why a requirement is deemed non-

conforming to the respective template. This will assist the practitioners to not

only identify non-conforming requirements, but also to improve those

requirements according to the template.

Research Question – 3: Is the accuracy of our approach compromised by the lack

of glossary?

38

As described earlier, the process of collecting glossary terms can be time

consuming. Furthermore, most of these terms are unused within a given case

study. In this research question we attempt to identify whether lack of glossary

terms in our approach will affect our accuracy.

Research Question – 4: How scalable is our approach?

In real life environment, the number of requirements can be hundreds and

sometimes thousands. In this question we attempt to explore whether our

approach can conform requirements in a reasonable time.

Research Question – 5: How Flexible is our approach?

In real life, the requirements are written by different practitioners and for

different domains. For our case studies we have different domains, in this

question we will explore whether our approach is consistent in all domains.

Research Question – 6: Is our approach equally effective across different

requirement templates?

We are exploring two requirement templates for our research, in this research

question we explore whether our approach is equally effective for both

templates.

In coming sections, we will attempt to answer these questions based on the

results from case studies, and provide guidelines and insight for practitioners.

5.2 The selected case studies

In this section we will introduce our selected case studies. In the table 2, we

provide the basic information about our case studies, including description,

domain, conformant template and the number of requirements in each case

study.

39

Table 2. Case Studies used for evaluation

5.2.1 Case-A

Case-A [59] contains requirements for a software that concerns about a satellite

ground station. These requirements are written by specialists in the satellite

industry. The selected requirement template is Rupps and contains a total of 380

requirements.

5.2.2 Case-B

This case study explores a tool for managing safety evidence and information for

embedded systems. This case study is developed under a European project

named OPENCOSS. The requirements written are in accordance to Rupps

template and contain a total of 110 statements.

5.2.3 Case-C

Case-C is the transformation of Case-A to EARS template. In further sections we

will explore the details of this transformation.

5.2.4 Case-D

In Case-D we explore safety requirements for nuclear facilities [60]. These

requirements are written by requirement experts with nuclear safety engineers. A

total of 890 requirements statement represent the full system, and are developed

under EARS template.

40

5.3 Data Collection Process

The collection of data for our research was a two phase process.

1. Identify requirement statement and glossary terms in a requirement

document.

2. Inspect the documents from the first phase and separate the

conformant and non-conformant requirements.

In phase-1 we identified that the glossary was not used in Case-D. The

requirements in Case-A were rephrased in Case-C using EARS and glossary from

Case-A was reused. In phase-2 all the case studies were analyzed after the

completion of Phase-1. Below we describe these two phases.

5.3.1 Phase-1

The requirements from Case-A and Case-B were extracted. Case-C Requirements

were extracted using transformation of Case-A. This transformation process

included 3 steps

1. All non-conformant were written without being rephrased.

2. All those requirements which did not contain a conditional segment

were marked as ubiquitous type under EARS template.

3. All the conditional requirements were mapped to the different

requirement types in EARS template.

For Case-C it is important to consider that since non-conformant requirements

were not rephrased, hence some requirements that are non-conforming in Rupps

may be deemed as conformant in EARS template. For Case-D requirements were

written with advanced training in EARS template.

In Case-A and Case-B the glossary terms are provided, with two important

consideration for collecting them.

1. We only need to identify glossary terms as compared to define them.

2. When in doubt whether a term may be included or excluded from

glossary, we should favor inclusion.

These two considerations are important for our 3rd Research Question where we

monitor the effect of using glossary terms. As described earlier Case-3 has same

glossary terms as Case-A. For Case-D we do not have any glossary terms.

41

5.3.2 Phase-2

In Phase-2 we perform a manual conformance inspection of requirements from

Phase-1. This will help us to calculate the accuracy of our tool by comparing

results of automated conformance to manual conformance. In Fig. 13 we enlist

the steps and considerations for this manual inspection.

Figure 13. Steps for manual template conformance.

42

While applying these steps for manual inspection, one important consideration

was whether the team who wrote the requirements would like use only atomic

nouns or they would also use complex noun phrases in noun phrase slots. During

our manual inspection we observed that all four case studies were adapting

complex noun phrases as well atomic nouns in noun phrase slots.

5.4 Analysis Process

The analysis phase is going to utilize different configurations for each module of

our NLP pipeline. We will attempt to answer our first Research Question about

how each configuration is effective for our requirements and furthermore which

combination of configurations gives the most accurate results in a meaningful

amount of execution time.

5.4.1 Different NLP pipeline configurations

For our NLP pipeline we need to choose a specific implementation for each step.

Our NLP tool GATE allows us several different mature libraries for each step. This

will help us experiment with different implementations. Also using a single NLP

tool (GATE) allows us to access the most accurate combination of configurations,

without having to consider the compatibility issues across different tools.

Our approach mainly focuses on the 5th and 6th step of NLP pipeline i.e. text

chunking. However these steps rely on annotations produced by earlier steps (1-

4). Hence we should not only experiment with different configurations of step 5

and 6, but also for four earlier steps. In table 3. we list down each step with

number of different alternatives for the implementation of that step.

43

Table 3. NLP configuration steps and their different combinations

Many of the implementations involve machine learning. GATE allows us train data

for English, hence we are going rely on that for machine learning purpose [61]

As described earlier the steps 5 and 6 are basis for conformance testing. For step

5 we have a choice whether to include the glossary terms or not. For Case 1, 2, 3

glossary is available hence, we are going to implement all these steps with and

without glossary for all configurations for these case studies. The total different

configurations for first 3 case studies 2 x (2 x 2 x 3 x 2 x 3 x2) = 288. Four Case-4

since the glossary is unavailable so the total steps are half as much as the first 3

i.e. 144.

5.4.2 Metrics for Accuracy

The two main metrics for measuring our accuracy are precision and recall. These

two metrics are most widely used metrics. One such example for their use is in

information retrieval [62]. In information retrieval we measure the accuracy of

classification of objects into classes.

For our case studies we need two such class: (1) The template conformance class

and (2) the template non-conformant class.

In table 4. we represent the confusion matrix for our classes which represent the

possible errors an automated checker can make.

44

Table 4. The confusion matrix for our classes

Precision is a metric for quality (low number of False Positives. The formula to

define precision is

Precision = True Positive (TP) / (True Positives (TP) + False Positives (FP))

The second main metrics is Recall, it represents coverage of the solution (low

number of False Negatives). The formula to define recall is

Recall = True Positive (TP) / (True Positives (TP) + False Negatives (FN))

In majority of classifications (including ours), the increase in Precision results in a

decrease of Recall [63]. To solve this problem we will use a third metric F-measure

[62] for accounting both Precision and Recall in measuring accuracy. This metric

calculates the weighted harmonic mean of Precision and Recall. The weights allow

us to emphasize more on either Precision or Recall in a given approach. In our

research Recall is easier to calculate since we can rule a lesser amount of False

Positives than consider a larger amount of False Negatives. As a result we will

emphasize more on Precision when assigning weights to our F-measure formula.

So our F-measure formula will be defined as

F-measure = 3 x Precision + Recall / (2 x Precision + Recall)

Other metrics or weights can been used, the important factor when using other

formula of F-measure is to assign more emphasis on Precision as compared to

Recall.

5.5 Results

In this section we will provide results from manual inspection and compare them

with our suggestion for NLP pipeline configuration that we deem best based on

our analysis.

5.5.1 Manual Inspection of Requirements

45

In table 5. we provide statistics about manual inspection for conformance on case

studies. These statistics include the number of requirement that are correct, the

number of requirements that do not conform to their respective template,

glossary terms used for the case study and the type of requirement as defined by

the template.

As mentioned previously the Case-C of our case study is extracted from Case-A.

An observation can be made that in Case-C most of requirements fall in category

of ubiquitous category. As described earlier since it is the simplest type of EARS

requirement, hence majority of Rupps requirement fall in this category during our

conversion. Furthermore the reason for high conformance rate in Case-C is also

the manual conversion of requirements from Case-A and some requirements that

are considered non-conformant in Rupps are valid according to EARS template.

Table 5. Statistic for manual inspection of requirements

In table 6. we list the reasons for non-conformance during manual inspection on

requirement. A common observation can be made that most common issues for

Rupps template is missing or misplaced objects, while the for EARS template the

most common mistake is the misplaced condition. These two factor account for

46

more than 75% of the total mistakes. The other minor issues include incorrect

modals in verb phrases, presence of more than one object in the requirement,

incorrect or unknown conditional keyword within the scope of the template,

minor deviations from the template structure and incorrect or ill-formed sentence

structure. Also misplaced object issue is only specific to the Rupps model as EARS

provides no such restriction on the requirement statement.

In the section 5.5.2 we will provide accuracy results based on our manual

inspection shown in table 6.

Table 6. Percentage of reasons for non-conformance in requirements

5.5.2 Accuracy Results and Execution Time

47

The NLP Pipeline Configuration mentioned earlier was applied on all four cases.

For each configuration we calculate the accuracy based on F-measure. In table 7.

we show the most accurate NLP configurations for each case study with statistics

show precision, recall, F-measure, execution time and correctly identified types.

Table 7. Showing accuracy of best NLP pipeline configuration for each case study

These experiments were conducted on fairly average computation power of Intel

Core i-5 and 4 GB of RAM. In Case-A and Case-C there are 23 outliers in precision.

One of the common reason in majority of these outliers is the use of MUNPEX

noun phrase chunker used alongside OpenNLP Tokenizer, where in some cases

MUNPEX NP chunker was misled by the Tokenizer to identify system name slot.

In Case-B and Case-C there are no outliers, but F-measure is negatively affected

by lower precision. The core reason for this the lower number of non-conformant

requirements as shown in table 5. So even a small number of FP (False Positive)

can have a significant impact on our precision and subsequently our F-measure.

5.6 Discussion on results and answers to our research questions

For our RQ-1, where we sought to find out the most accurate NLP pipeline

configuration. In table 7. we show the most accurate configuration for each case

study. We have different configuration for each case study due to the fact that

requirements can be new or unknown to the tool. Thus we only recommend use

of certain modules for each phase, but not a specific NLP module for each phase.

To recommend a general NLP pipeline we can monitor the impact of a particular

module on all pipelines e.g. which module causes the most amount of variation

across the pipeline configuration. However such analysis is beyond the scope of

this research.

48

In RQ-2, we question about effectiveness of non-conformant defects and correctly

identifying reason for a requirement to be deemed as non-conformant. To

calculate this we need two measure from our confusion metrics, false positive

and false negative.

Table 8. The number of false negatives and false positives based on accuracy level in table 7

In table 8. we show the number of false negatives and the number of based on

accuracy levels in table 7. The number of false negatives is low in percentage and

absolute numbers. In total the number of false positives in each Case-A are 8/137,

for Case-B 1/12, for Case-C 8/83 and 6/33 for Case-D.

As evident form table 8, the number of false negatives are also negligible, 12/320

for Case-A, for Case-B 0/110, for Case-C 2/380 and for Case-D 1/890. Ideally we

would like to eliminate the number of false negatives and false positives from our

results, however this not practically achievable. But our approach tends to

minimize their occurrence to negligible. As a result we increase our chances to

correctly identify the cause of non-conformant, which can be extremely useful for

practitioners writing requirements.

In RQ-3, we question about the lack of glossary terms in our approach. As evident

from table 7, the inclusion of glossary terms have no effect on accuracy of our

results. Hence our approach can achieve high results without glossary terms.

In RQ-4, we question about the scalability of our approach. The main aspect of

scalability in our context is that our approach should be able to cover even a large

set of requirement statements in a reasonable amount of time. As shown in table

7. the execution time in all approaches is fairly reasonable. Furthermore our

49

execution time is improved by the lack of indexing through glossary terms for

each requirement.

In RQ-5, we question about the flexibility of our solution. In our research we have

covered two major requirement templates with minor differences in execution

steps. Our approach can further be extended to work with other Natural language

templates for requirement engineering.

In RQ-6, we question about our approach for different requirement templates. As

evident from table 7, the results of our accuracy were similar for both EARS and

Rupps template, the deviation from a perfect F-measure was irrespective of the

template used for requirement conformance.

50

Chapter 6: Conclusion and Future work

In this research we presented an automated technique for requirement template

conformance. The dominant NLP technique utilized by us was text-chunking. We

used well-known requirement templates for conformance checking; Rupps and

EARS. The implementation was performed on four case studies. We evaluated our

approach with combination of several NLP libraries with and without presence of

a glossary terms, with the goal of finding the most optimal approach, both in

terms of accuracy and execution performance.

For Future work, we would like to develop an automated analysis technique of

templates for consistency checking in requirements. Furthermore, we would like

to automatically correct the non-conformant requirements with minor deviations

without losing the true functionality those requirements represent. Also providing

suggestions to the practitioners to assist them correct the requirement

themselves.

51

References

[1] Requirements Engineering Fundamentals, Principles, and Techniques

http://www.springer.com/gp/book/9783642125775)

[2] Alistair Marvin, Philip Wilkinson and Adrian Harwood “Easy approach to

requirements syntax (EARS)”

[3] Peterson, J. “Petri Nets”, ACM Computing Surveys 9 (1977), 223- 252.

[4] Woodcock, J. and Davies, J., “Using Z-Specification, Refinement and Proof”,

Prentice Hall, 1996.

[5] Object Management Group, UML Resource Page, http://www.uml.org/

[6] Holt, J., “UML for Systems Engineering: Watching The Wheels” (2nd edition),

IEE, 2004.

[7] Alexander, I.F. & Beus-Dukic, L., “Discovering Requirements”, John Wiley,

2009.

[8] Alexander, I.F. & Maiden, N.A.M. (eds), “Scenarios, Stories, Use Cases: Through

the Systems Development Life-Cycle” Wiley, 2004.

[9] Hooks, I., “Writing Good Requirements”, Proceedings of Third International

Symposium of INCOSE Volume 2, INCOSE, 1993.

[10] Wiegers, K., “Writing Good Requirements”, Software Development Magazine,

May 1999.

[11] Dittrich, K. R., Gatziu, S. and Geppert, A., “The Active Database Management

System Manifesto: A Rulebase of ADBMS Features.”, Lecture Notes in Computer

Science 985, Springer, 1995, pages 3-20.

 [12] “ASD Simplified Technical English: Specification ASD-STE100. International

specification for the preparation of maintenance documentation in a controlled

language”, Simplified Technical English Maintenance Group (STEMG), 2005.

http://www.springer.com/gp/book/9783642125775

52

[13] Fuchs, N. E., Kaljurand, K. and Schneider, G., "Attempto Controlled English

Meets the Challenges of Knowledge Representation, Reasoning, Interoperability

and User Interfaces", FLAIRS, 2006.

[14] The SAREMAN Project: Controlled natural language requirements in the

design and analysis of safety critical I&C systems. [Online]. Available:

http://www2.vtt.fi/inf/julkaisut/ muut/2014/VTT-R-01067-14.pdf, 2014.

[15] OPENCOSS: Open Platform for EvolutioNary Certification Of Safety-critical

Systems. [Online]. Available: http://www. opencoss-project.eu, 2012

[16] J. Carrillo-de-Gea, J. Nicolas, J. F. Aleman, A. Toval, C. Ebert, and

A. Vizcaıno, “Requirements engineering tools: Capabilities, survey

and assessment,” Inform. Softw. Technol., vol. 54, no. 10,

pp. 1142–1157, 2012.

[17] RQA: The Requirements Quality Analyzer Tool. [Online]. Available:

http://www.reusecompany.com/rqa, 2012.

[18] C. Arora, M. Sabetzadeh, L. Briand, and F. Zimmer, “Requirement

boilerplates: Transition from manually-enforced to automatically verifiable

natural language patterns,” in Proc. 4th Int. Workshop Requirements Patterns,

2014, pp. 1–8.

[19] X. Zou, R. Settimi, and J. Cleland-Huang, “Improving automated requirements

trace retrieval: a study of term-based enhancement methods,” Empirical Softw.

Eng., vol. 15, no. 2, pp. 119–146, 2010.

[20] D. Jurafsky and J. Martin, Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics, and Speech

Recognition, 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2000.

[21] IEEE Computer Society (1990). "IEEE Standard Glossary of Software

Engineering Terminology". IEEE Standard.

53

[22] “Specifying Translatable Software Requirements Using Constrained Natural

Language”by Agung Fatwanto

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=6295244

[23] “Challenges in Requirements Engineering” by Janis A. Bubenko jr

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=512557

[24] Mich Luisa , Franch Mariangela , Inverardi Pierluigi, Market research for

requirements analysis using linguistic tools, Requirements Engineering, v.9 n. 1,

p.40-56, February 2004

[25] Peterson, J. “Petri Nets”, ACM Computing Surveys 9 (1977), 223- 252.

[26] Woodcock, J. and Davies, J., “Using Z-Specification, Refinement and Proof”,

Prentice Hall, 1996.

[27] Object Management Group, UML Resource Page, http://www.uml.org/

[28] Holt, J., “UML for Systems Engineering: Watching The Wheels” (2nd edition),

IEE, 2004.

[29] Alexander, I.F. & Beus-Dukic, L., “Discovering Requirements”, John Wiley,

2009.

[30] Alexander, I.F. & Maiden, N.A.M. (eds), “Scenarios, Stories, Use Cases:

Through the Systems Development Life-Cycle” Wiley, 2004.

[31] Dittrich, K. R., Gatziu, S. and Geppert, A., “The Active Database Management

System Manifesto: A Rulebase of ADBMS Features.”, Lecture Notes in Computer

Science 985, Springer, 1995, pages 3-20.

 [32] “ASD Simplified Technical English: Specification ASD-STE100. International

specification for the preparation of maintenance documentation in a controlled

language”, Simplified Technical English Maintenance Group (STEMG), 2005.

[33] Fuchs, N. E., Kaljurand, K. and Schneider, G., "Attempto Controlled English

Meets the Challenges of Knowledge Representation, Reasoning, Interoperability

and User Interfaces", FLAIRS, 2006.

[34] C. Rupp and die SOPHISTen, Requirements-Engineering undManagement:

professionelle, iterative Anforderungsanalyse fur die € Praxis, Hanser Verlag,

Munchen, D-81631, pp. 225–251, 2009.

54

[35] S. Gregory, “Easy EARS: Rapid application of the easy approach to

requirements syntax,” in Proc. 19th IEEE Int. Requirements Eng. Conf., 2011, pp.

1–2.

[36] J. Terzakis, “Reducing requirements defect density by using mentoring to

supplement training,” Int. J. Adv. Intell. Syst., vol. 6, no. 1-2, pp. 102–111, 2013.

[37] Change impact analysis for Natural Language requirements: An NLP

approach, http://ieeexplore.ieee.org/document/7320403

[38] Can Clone Detection Support Quality Assessments of Requirements

Specifications, https://dl.acm.org/citation.cfm?id=1810308

[39] Documenting requirements specifications using natural language

requirements boilerplates, http://ieeexplore.ieee.org/document/6985983

[40] Rapid requirements checks with requirements smells: two case studies,

https://dl.acm.org/citation.cfm?id=2593817

[41] Natural Language Requirements Specification Analysis Using Part-of-Speech

Tagging, http://ieeexplore.ieee.org/document/6767215

[42] Identifying Nocuous Ambiguities in Natural Language Requirements,

http://ieeexplore.ieee.org/document/1704049/

[43] Analysing anaphoric ambiguity in natural language requirements,

https://link.springer.com/article/10.1007/s00766-011-0119-y

[44] Hidden in plain sight: Automatically identifying security requirements from

natural language artifacts, http://ieeexplore.ieee.org/document/6912260/

[45] Non-functional Requirements to Architectural Concerns: ML and NLP at

Crossroads, http://ieeexplore.ieee.org/document/4668138

[46] Natural language requirements quality analysis based on business domain

models, http://ieeexplore.ieee.org/document/6693132

[47] A Rule-Based Natural Language Technique for Requirements Discovery and

Classification in Open-Source Software Development Projects,

http://ieeexplore.ieee.org/abstract/document/5719011

55

[48] Entity Disambiguation in Natural Language Text Requirements,

http://ieeexplore.ieee.org/document/6805412/

[49] Semi-Automatic Checklist Quality Assessment of Natural Language

Requirements for Space Applications,

http://ieeexplore.ieee.org/document/7781844/

[50] D. Jurafsky and J. Martin, Speech and Language Processing: An Introduction

to Natural Language Processing, Computational Linguistics,and Speech

recognition, 1st ed. Englewood Cliffs, NJ, USA: Prentice-Hall, 2000.

[51] The Stanford Parser: A statistical parser.

Online].Available:http://nlp.stanford.edu/software/lex-parser.shtml, 2014.

[52] S. Bird, E. Klein, and E. Loper, Natural Language Processing with Python,

O’Reilly, Sebastopol, CA 95472, 2009.

[53] M. Song, I. Song, and K. Lee, “Automatic extraction for creating a lexical

repository of abbreviations in the biomedical literature,” in Proc. 8th Int. Conf.

[54] GATE ANNIE: A Nearly-New Information Extraction System. [Online].

Available: http://gate.ac.uk/sale/tao/splitch6.html, 2014.

[55] Apache OpenNLP. [Online]. Available: http://opennlp.apache. org, 2013.

[56] M. P. Marcus, M. A. Marcinkiewicz, and B. Santorini, “Building a large

annotated corpus of English: The Penn Treebank,” Comput. Linguistics, vol. 19, no.

2, pp. 313–330, 1993.

[57] Stanford Log-linear Part-Of-Speech Tagger. [Online]. Available:

http://nlp.stanford.edu/software/tagger.shtml, 2003.

[58] H. Cunningham, D. Maynard, K. Bontcheva , V. Tablan, C. Ursu, M. Dimitrov,

M. Dowman, and N. Aswani. (2014). Developing Language Processing

Components with GATE Version 8 (a User Guide). [Online]. Available:

http://gate.ac.uk/sale/tao/tao.pdf

[59] C. Arora, M. Sabetzadeh, L. Briand, F. Zimmer, and R. Gnaga, “Automatic

checking of conformance to requirement boilerplates via text chunking: An

industrial case study,” in Proc. 7th ACM/ IEEE Int. Symp. Empirical Softw. Eng.

Meas., 2013, pp. 35–44.

http://opennlp.apache/

56

[60] List of regulatory guides on nuclear safety (YVL). [Online]. Available:

http://plus.edilex.fi/stuklex/en/lainsaadanto/ luettelo/ydinvoimalaitoso hjeet/,

2013.

[61] H. Cunningham, D. Maynard, K. Bontcheva , V. Tablan, C. Ursu, M. Dimitrov,

M. Dowman, and N. Aswani. (2014). Developing Language Processing

Components with GATE Version 8 (a User Guide). [Online]. Available:

http://gate.ac.uk/sale/tao/tao.pdf

[62] M. McGill and G. Salton, Introduction to Modern Information Retrieval, New

York, NY, USA: McGraw-Hill, 1983.

[63] M. K. Buckland and F. C. Gey, “The relationship between recall and

precision,” J. Am. Soc. Inf. Sci., vol. 45, no. 1, pp. 12–19, 1994.

