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Abstract

Cost and quality of a product are prime drivers in manufacturing. It is important to

optimize these variables for maximum benefit. It is to be noted that higher quality means

a product which has lesser errors and thus more close to ideal product. The quality

of product is associated with precision of manufacturing system but such machines are

expensive. Therefore, a method of machine selection is devised based on tolerance range.

Dimensional and geometrical tolerances are applied for manufacturing a quality product.

In this work, a two part assembly is taken as a case study example. Tolerances are applied

at three different conditions i.e. Least material condition (LMC), Maximum material

condition (MMC) and Regardless of feature size (RFS). Then tolerance stack-up analysis

is performed for all three conditions separately. The resulted minimum and maximum

values for allowable variation range is compared which gives us an optimized method to

design the product for manufacturing.It is followed by the torsor linkage model for case

study parts in which effect of Geometric tolerances on part precision and selection of

machine to manufacture the part is analyzed. Standard tolerance classes have been used

to define the parts under study. Part geometry is defined in terms of form, orientation

and position which are sufficient to quantify the possible variations which might cause

errors. Angle components of torsors for parallelism and perpendicularity constraints are

controlled and evaluated at several standard deviations. The results are in compliance

to proposed idea that a less precise machine can produce high quality product within a

specific tolerance range.
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Chapter 1

Introduction

Geometric Dimensioning and Tolerancing is a quite recent field in terms of research.

During the whole life cycle of a product, proper GD&T application means optimization,

referring to cost effectiveness and enhanced quality. With the current growth rate and

evolution of high tech merchandises, the need of GD&T is more than ever. Whenever a

product is designed, the design engineer assigns certain nominal dimensions to the sep-

arate components and their assembly. Upon manufacturing, the geometric variations in

these components might be inevitable but these variations can greatly be reduced to an

acceptable limit. Tolerance analysis is one of the methods to ensure high grade of prod-

uct by giving controlled freedom to the technician working on job floor operating with

machines. Throughout the years engineers and manufacturers have been looking out for

methods to make their manufacturing processes more efficient and manufacturing tech-

niques more advanced. Geometric Dimensioning and Tolerancing (GD&T) is essential to

interpret the engineering drawings. With the help of product tolerancing, cost of produc-

tion can be decreased by reducing the gap between engineering design for performance

and manufacturing. Therefore, most of the automotive industries, consumer packaging

and aviation businesses seek to gain in competitive benefit by using tolerance analysis

methods. In this work, the approach of using small displacement torsors to model the

variations in a specific part is explained. Torsors represent the parameters which might

cause errors between Real and Theoretical Surface.
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Chapter 1. Introduction

1.1 Aim and Goal

Now-a-days when any country’s economic growth and development depends on its ad-

vancement of industrial expertise, the use of correct and better manufacturing methods

is far more increasing than ever. When a part is manufactured, its dimensional accuracy

and precision are closely monitored for optimized performance. Manufacturing requires a

design process and drawing is first step in it. To start with, one has to have the under-

standing of engineering drawing and the ASME standard that is followed by practitioners

all over the world.

1.1.1 Engineering Drawing

An engineering drawing can be defined as a technical document which helps to outline the

design specifications of the part to be manufactured. This graphical language is universal

and helps to communicate and share ideas between professional people living in any part

of the world. It bridges the gap between the design or engineer and the person working

on the job floor [Thomas E, 1953]. Thus engineering drawing is the most crucial phase

of manufacturing. It is necessary to get the drawings interpreted properly without any

errors. All engineering drawings are made using ASME standard for GD&T.

1.1.2 ASME Standard for GD&T

ASME (Y14.5-2009) standard for GD&T is a document containing set of rules, symbols,

conventions and definitions used for defining a product’s engineering drawing. With

the help of this document the manufacturing design procedure is validated. Therefore

GD&T is an exact language for manufacturing and industrial engineers who work with

drawings of engineering parts. Moreover, it is internationally recognized and interpreted.

It helps to define the drawing in such a way that it reduces any doubts and eliminates the

probability of any controversy or assumptions during manufacturing design and inspection

processes [Y14.5-2009, 2009].
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Chapter 1. Introduction

The domain of tolerancing plays a lead role to manufacture a quality product

within cost limitation. The effects of tolerance on an entity can be controlled by scruti-

nizing types of tolerances and its application.This study is related to the manufacturing

technology and innovation needs of national industry. The capability of designing, man-

ufacturing and then verifying the product,specially the high precision parts will make

the country self sufficient in manufacturing and production enterprise. These high preci-

sion parts are required for making intricate performing parts of automobiles, the defense

technology like missiles, tanks and other war fare equipment.As the reliance of all in-

dustries like automotive, aviation,consumer packaging, electronics, heavy machinery and

medical devices on tolerance analysis increases, many of them seek to gain a competitive

advantage.

1.2 Proposition

There are many advantages of Geometric dimensioning and tolerancing in product and

manufacturing systems design, since by improving the life cycle time of a product. More-

over the improvement of quality has a positive effect on the production. The profitability

also increases by decreasing the rejected parts ratio. So, one can say that profitability

is directly affected by precision of a manufacturing machine. The more precise the ma-

chine, less will be the errors in product and it will remain within the specified tolerance

limits. But a high precision machine will cost more than its counter part with lower

precision. Here a decision is to be made about the selection of machine based on its preci-

sion, flexibility and cost, for manufacturing a certain product with some tolerance linked

to it. Tolerances can be geometric and dimensional. The work in this thesis proposes

that torsors linked to a workpiece can be manipulated to an extent so that a rather less

precise machine may produce a higher quality part thus saving cost of manufacturing.

The geometric tolerances defined for a product can be indirectly controlled by keeping

torsor components within limits. There are boundary conditions defined in GD&T which

can effect tolerance range of product. This affect of boundary conditions on dimensional

tolerances is studied for a simple assembly case of parts.

3



Chapter 1. Introduction

Introduction 

Literature 
Review 

Methodology 

Results 

Conclusion 
and Future 
Perspective 

Figure 1.1. Disposition of thesis report

1.3 Thesis Disposition

This thesis report consists of five main sections. The first chapter is of introduction

which includes the aim and goal along with proposition. The second chapter will give

the reader detailed background and state of the art in the subject under discussion. It

includes definition, types and effects of tolerance. Then a few tolerance analysis techniques

like Stack-up analysis, Worst case analysis, statistical analysis are given. The difference

between ideal and non-ideal features is explained followed state of art in torsors. Chapter

3 is about methodology of proposed work. It describes the tolerance constraints in terms

of torsors, boundary conditions and the case-study of assembly of two parts. The results

of the case study are shown in chapter 4. Results conform with the proposed solution.

The conclusion, future prospects and possible research directions are provided in chapter

5 which is the last chapter.

4



Chapter 1. Introduction

1.4 Summary

This chapter communicated problem statement, aim and goal, proposition and thesis

organization. The next section presents literature review to make proposition and solution

of this study comprehensible. All related definitions and terms have been explained

thoroughly.

5



Chapter 2

Literature Review

In this chapter, a foundation is made for the reader to grasp the required knowledge

of the research on GD&T based on literature review. In the beginning, the basics of

Geometric Dimensioning and Tolerancing is explained with its importance in engineering

drawing. Then, tolerance is discussed in accordance to its effects, types and control meth-

ods. Different tolerance analysis techniques are presented. Since final product consists

of separate parts and their assembly. Error is generated at every step of manufacturing

process, therefore, for the product to remain within tolerance limits, the tolerancing must

be controlled at both separate parts and assembly level.

2.1 Geometric Tolerance

Tolerance can be defined as a variation of physical dimension with respect to the ideal

dimension that is required. Actually whenever a product is designed for manufacturing,

a certain allowance is given to keep variations within the limit. No two products pro-

duced are ever exact or perfect in terms of their dimensions. So the given tolerance helps

to keep dimensional variation in control. Tolerancing is a very wide domain in which

manufacturing specifications can only be matched with customer needs if tolerance speci-

fication is performed correctly. Product design, assembly process, machine capability etc

are all included in the network of tolerancing. In the figure 2.1 ’Tolerance specification’

acts as a bridge linking customer needs and production equipment. A balance has to be
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maintained between process and product in terms of its design, analysis and verification.

If functionality of a part is complex, the product design will automatically be complex.

So tolerance specification will be less flexible. Manufacturing cost will rise with tight

limits of tolerance specification. Thus making its assembly and inspection process not

only complicated but expensive. The customer needs of complex functionality product,

impacts the choice of production equipment.

Tolerance 
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SIMULATION 
Geometric Behavior 
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Functional 
Analysis 

Process 
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Figure 2.1. Tolerancing and its domains [François Villeneuve, 2010]

2.1.1 Effects of Tolerance on a Product at design and manufac-

turing level

Part tolerances are fundamental at both engineering design and manufacturing stage.

The requirements of performance of a product suggests the level of tolerance values at

design stage and for the manufacturing stage. Tolerance values are chosen keeping cost,

assemblability and type of process to be used for manufacturing [Chase K W, 1997] Fig

2.2. Tolerance value influences performance of part. If a product is designed for high

performance and quality finish, then there will be tight limits of tolerance selected and the

cost of manufacturing of a product will dramatically increase. Because high performance

products would require intricate and difficult manufacturing process. Also the assembly

process becomes more strenuous because the tolerance limits are tight.
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PART 
TOLERANCES 

Cost 

Process 
Selection 

Assemblability 

Performance 

At Engineering 
Design Level 

At Manufacturing Level 

Figure 2.2. Effects of Tolerance at Design and Manufacturing level [Dantan J Y, 2012]

2.1.2 Types of Geometric Tolerance

There are 6 classes of geometric tolerances used in Geometric Dimensioning and toler-

ancing (GD&T ASME Y14.5). These classes explain the deviation limits for size, form,

profile, orientation, location and run-out. In the orientation, we consider parallelism,

perpendicularity and angularity. For location of a feature, we consider the position and

concentricity(table 2.1) [Y14.5-2009, 2009]. These classes of tolerance are differentiated

on basis of features of an entity which are discussed in section ??. There are certain char-

acteristics for specific types of tolerance and they are characterized by their respective

symbols on the engineering drawing of a product. Dimensional tolerance is linear but

combining geometric tolerance classes with dimensional tolerance regulate the shape of

product within tighter bounds.

2.2 Tolerance Analysis Techniques

Tolerance analysis is a key feature of inspection process which includes tolerance verifica-

tion. The next few topics are related to different methods in literature used for tolerance

analysis. Each method has its own pros and cons according to ease to solution.
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Table 2.1. Classes of Tolerance [Y14.5-2009, 2009]

Application Types of Tolerance Characteristic Symbol

INDIVIDUAL FEATURES Form

Straightness –

Flatness

Circularity ©
Cylindericity

RELATED FEATURES Profile
Profile of a line a

Profile of a
surface

RELATED FEATURES

Orientation

Angularity ∠

Perpendicularity ⊥
Parallelism ‖

Location

Position ⊕
Concentricity }

Symmetry ≡

Runout
Circular Runout ↗

Total runout

2.2.1 Tolerance Stack-up Analysis

Tolerance analysis includes the procedures to find out the accumulated variations in the

parts which may be separate or assembled together to form an assembly of mechanical

systems. Tolerance analysis can be performed by stack-up analysis. It helps the engineers

to evaluate and analyze the effect of geometric dimensioning and tolerancing of each prod-

uct in assembly. In any mechanical stack-up, the total effect of accumulative variations

and other dimensions is calculated. Tolerance stack-up analysis assist the engineers by:

• Providing the link of dimensions of features of a part

• Giving a way to calculate product/parts assembly tolerances as a whole

• Serving as a comparison tool for several proposals

• Helping to make engineering drawings, whole and comprehensive
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2.2.2 Statistical Tolerance Analysis

Statistical tolerance analysis utilizes principles of statistics for assignment of tolerance.

Statistical approach is flexible for tolerance allocation purpose. It gives designer to relax

the tolerance range, although the product remains within quality conformance [Srinivasan,

1999]. In statistical tolerance analysis, extreme values are not important. Instead, a

distribution of tolerance variation is studied. Root Sum Squared (RSS) is one type of

statistical tolerance analysis method. A product is composed of more than one individual

part component. [Parkinson, 1991] In RSS method, square root of the squares of individual

component tolerance values is summed up to predict the tolerance of product assembly

as shown in equation 2.1.

Toleranceassembly =
∑√

Tolerance2components (2.1)

Mostly, researchers have taken statistical approach towards tolerance analysis be-

cause of its applicability. Some have done experimental study using this approach.

Barakallah et al have experimentally validated a statistical model of tolerance analy-

sis. Three phases of manufacturing milling process plan are used for case study. The

statistical model finds deviation torsor of machining set up. Total variance of machined

and nominal surfaces of 50 parts is calculated to evaluate the process capability of experi-

mental set-up. It is found that the difference in simulated values and experimental values

of geometric tolerance variance is very small [Barkallah M, 2012]. Machine tool vibra-

tions of a turning operation is reduced by doing statistical tolerance analysis resulting in

a regression model. Dimensional accuracy of machined parts is improved by finding the

optimum cutting conditions and identifying prime parameters affecting accuracy of ma-

chine tool [Rahman M A, 2014]. A study is done in which Form deviations are integrated

with orientation deviations in statistical tolerance analysis of parts. It suggested that

the functional requirements change with respect to type of deviations considered during

analysis [M Chahbouni, 2014].

Statistical tolerance analysis is frequently applied in automotive, robotics and aero-

nautical manufacturing industry. In these fields, Tolerance analysis followed by tolerance
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adjustment is very important. CAD/CAM softwares along with process capability indices

assist in tolerance analysis of any product. One of the initial computer aided tolerance

control systems can be found in work of Ahluwalia et al using CAD/CAM in tolerance

stacking [Ahluwalia R S, 1984]. However most of the CAD/CAM softwares have lim-

itations while dealing with dimensional and geometric tolerances. The research group

lead by Wilma Polini have devised a method to do tolerance analysis by a seven step

model based on a tolerance measuring e-tool. They did tolerance analysis on the sur-

faces of an aeronautical assembly parts which are made of composite materials i.e carbon

fiber [Polini, 2011b]. Guzman et al inferred that statistical tolerance analysis based on

ANOVA and process capability indexes improves the stability of manufacturing process.

But results of such analysis is dependent on soundness of previous tolerance values data of

a company [Luis Garćıa Guzmán, 2003]. Yang et al demonstrated prominence of tolerance

analysis at design stages of a planar mechanism with five revolute joints. They solved a

Robotic mechanism using kinematics and statistical tolerance analysis. The result pro-

vided maximum and minimum values of Link deviations plus values of joint clearance

deviation [J X Yang, 2011].

For 3D manufacturing modeling simulation, a comparison between two approaches

of small displacement torsor (SDT) and CAM integration shows that both perspectives

give same result. However, the selection of approach depends on different advantages.

These advantages are as per criteria of tolerance analysis, tolerance synthesis, accuracy,

automation, virtual metrology and process plan management [Stephane Tichadou, 2005].

There is another statistical method called ”Monte-Carlo” which is non-linear model

utilized for the tolerance analysis. In work of Huiwen yan et al Monte Carlo statistical

tolerance analysis is performed. The validity of this Statistical model is checked by finding

the Upper and Lower limits of tolerance deviation in a nominal dimension of a top column

assembly [Huiwen Yan, 2015]. Stuppy et al also applied Monte-Carlo statistical model

simulation on a crank-shaft mechanism for tolerance analysis of a moving system. Elastic

deformations and joint clearance are included in it. The results of this study are visualized

in MATLAB with a Graphical User Interface (GUI) [J Stuppy, 2010].

For review of other tolerance analysis methods, a detailed study on tolerance anal-

ysis methods which are Direct Linearization Method (DLM), unified jacobian torsor, T-
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maps and matrix model is presented by [Hua Chen, 2014].

2.2.3 Worst Case Analysis

Worst Case Analysis (WCA)is one of the techniques used for tolerance analysis. In WCA

stack-up tolerance analysis extreme limits of dimensions and tolerances are taken into

account instead of statistical distribution. Although WCA is computationally inexpensive

but the manufacturing cost increases greatly due to the tight limits. However, there is an

advantage that maximum manufactured parts will be assembled. In Worst Case, all the

individual tolerance values of components are added to give the total tolerance of whole

assembly, shown in equation 2.2

Toleranceassembly =
∑

Tolerancecomponents (2.2)

Sahani et al presented an automated graphical method to calculate the tolerances

of parts using Worst Case (WC) and Root Sum Square method (RSS) which is statistical

approach. This algorithm can be utilized for tolerance analysis. But there is one limi-

tation that it can not deal with more than one type of tolerance simultaneously [Sahani

A K, 2013]. Manufacturing cost factor is also important. The cost of manufacturing is re-

duced by optimizing the orientation tolerance i.e angularity, by finding out minimum and

maximum clearance for parts assembly. Later on the tolerances can be reassigned as per

functionality [A K Sahani, 2014]. Similarly Mansuy et al have improved the algorithm for

calculation of coefficients related to functional tolerances in worst case tolerance analysis.

The results of this new algorithm is tested by optimizing the cost function for manufac-

turing of parts under consideration [Mathieu Mansuy, 2011]. Besides Worst case (WC)

and Root Sum Square (RSS) method, there are other statistical models like Modified RSS

(Root sum square), Estimated Mean Shift (EMS) and Spott’s Model which can also be

used for tolerance analysis. These models are more efficient than worst case model. In the

work done by Dinesh Shringi et al,coherence of these unconventional Tolerance analysis

models is verified by application of cost function analysis for a bearing shaft produced

using eight manufacturing operations [Dinesh Shringi, 2013].

12



Chapter 2. Literature Review

2.2.4 Process Stability

Process stability is defined by the variability of processes. In manufacturing, the stable

process is the one with least variation from mean of specified target variable. Figure

2.4 show an unstable process. In unstable process,there is a large variation from target,

thus making it out of control process. Whereas in figure 2.3, a stable process can be

seen. Here,the variation from target is almost zero. So it is a well-controlled process.

Nonetheless, sole stability does not produce a well working process. Process capability

along with Process stability form a good working process. If a system is incapable of

meeting up to the specified requirements, then its stability is of no use.

Total Variation 

Time 

Target 

Figure 2.3. A Stable Process [Westin, 2010]

2.2.5 Process Capability

Process capability in manufacturing is defined as ability of any manufacturing process to

achieve the required performance. It is a quantitative measure to show whether a process

will attain the defined quality specifications. In modern manufacturing, Process capability

is computed to evaluate Process control on a manufacturing system. [B. Ramirez, 2006]

There are limits of a control variable in process capability analysis. A process should lie
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Total Variation 

Time 

Target 

Figure 2.4. An Unstable Process [Westin, 2010]

within the upper and lower limits of process control. If the process is within limits, it is

capable of meeting specification. If it is going out of limits, then process will not meet

the specifications. It is shown in figure 2.5.

Time 

Lower Specified Limit 
Upper Specified Limit 

In control and capable of meeting 
specifications  

In control but not capable of 
meeting specifications  

Figure 2.5. Process Capability [Westin, 2010]

2.3 Features and their Application in Manufacturing

The tolerances are bound with the shape,size and appearance of a product. Any product

design is explained by its features. As the number and types of features in a single part
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increases, the complexity is intensified. The drawing of work piece shows dimensions

of features which are perfect. But the features of manufactured work-piece are never

100 percent conformed to ideal drawing dimensions. The disparity between the two is

error. So ideal and non-ideal features have to be understood. Geometric features are

characteristics of any part by which its shape and functionality might be defined. It can

be a point, a line, a certain volume, surface or axis etc. [Bernard, 2004].

2.3.1 Link of Geometric Features with Nominal Model and Skin

Model of a Part

The ’Skin Model’ is model of a part which has defects in it. It shows the interface of part

with its environment. Whereas a ’Nominal Model’ is perfect in shape without any defects.

Now the Tolerance is dimensional condition on geometric features of a part. It establishes

quantitative bounds on dimensions of features. Type of manufacturing operations give

respective shape and features to a part. Therefore, geometric features of a skin model

can be defined by operations. Refer figure 2.6 [Ballu A., 2001].

A SPECIFICATION 

Condition 

Characteristic 

Dimension 

Geometric 
Features 

SKIN Model 

Is a 

On a 

Defined by 

Expressed by 

Identified from the 

Operations 

by 

Figure 2.6. Link of Geometric features & Skin Model [François Villeneuve, 2010]
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2.3.2 Ideal Feature and non-ideal Features

Ideal features are the features which are flawless and perfect. It can be the plane surface

of any nominal model or any tolerance zone. Ideal features are the perfect features

without any variations from the set nominal values. Ideal features are expressed in a

’Nominal Model’ of a part. Non-ideal features are actual real features of a part after it is

manufactured. Of-course the non-ideal features are real features or skin model which vary

in dimensions from the ideal or nominal features. The non-ideal features are expressed in

a ’Skin Model’ [François Villeneuve, 2010]. It is for us to find out the variations between

the ideal and nominal features and methods to keep these variations minimum.

2.3.3 Error between Ideal and Non-ideal Features

A part which is defined by one or more features can have errors in its skin model, due to

deviation from dimensions assigned in its nominal model. These errors can be calculated

and then minimized by measuring maximum distance, minimum distance, square root

of squares of distance or by other functions. An example in figure 2.8 shows maximum

distance between a line segment and a straight line. These distances can be positive or

negative and are called ’Signed Distances’. Refer Figure2.7.

+ - 

Figure 2.7. Signed Distance of a point from a straight line in a plane [François Villeneuve, 2010]
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Figure 2.8. Maximum difference between an ideal and real feature of line [François Villeneuve, 2010]

2.4 Boundary Conditions

The applicable geometric tolerance of any feature can be controlled by its size, where

boundary conditions i.e Least Material Condition (LMC), Maximum Material Condition

(MMC) and Regardless of Feature Size (RFS) are applied [Y14.5-2009, 2009]. Limits of

tolerance depending upon the type of features is varied by applying boundary conditions.

2.4.1 Least Material Condition(LMC)

Least Material Condition also known as LMC, is a boundary condition in which least

material exists in a certain tolerance range provided by the designer.

For simplicity:

If it is a hole or internal feature: LMC = Largest hole size (least material in part)

If it is a pin or external feature: LMC = Smallest size of the pin

2.4.2 Maximum Material Condition (MMC)

Maximum Material Condition also known as MMC, is a boundary condition in which

maximum material exists in the tolerance value range assigned by the designer.

When you have a feature that GD&T is called on:

If it is a hole or internal feature: MMC = smallest hole size
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If it is a pin or external feature: MMC = largest size of the pin

2.4.3 Regardless of Feature Size (RFS)

Regardless of Feature Size is abbreviated by RFS, which means the tolerance value of a

geometric characteristic does not change because of feature size. It will remain the same.

RFS condition has minimum total tolerance range.

2.5 Torsors

Bourdet et al were the pioneers of introducing the concept of torsor in tolerance analysis.

With a simple example of two mating parts forming a prismatic link, they also showed ap-

plicability of gap torsor, deviation torsor and variation torsor in detail [Bourdet P, 1995].

Torsors have an advantage over previous models. They can easily handle tri-dimensional

tolerance variations as compared to computational limitations of one dimensional toler-

ance analysis models [Bourdet P, 1996]. Torsors is a mathematical expression that shows

the relative variation between real geometry and associated geometry of an element. Its

advantage is that variations in angles and displacements can easily be viewed. The torsor

is defined by equation 2.3 and its visual interpretation is shown in figure 2.9

Real Surface 

Associated Plane  

Nominal Plane 

Figure 2.9. Torsor [François Villeneuve, 2010]
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T =


u α

v β

w γ

 (2.3)

Where,

T= torsor

u,v,w= translations in x,y,z axis respectively

α,β,γ= rotations in x,y,z axis respectively

In literature, Small Displacement Torsor (SDT) model has been applied on machining

tools, fixture assembly set-up, workpiece machining surfaces and machining set-ups for

tolerance analysis purpose. Calibration of machine tools is done using SDT. Small dis-

placement torsors (SDT) which is easier to manipulate for purpose of tolerance analysis

because its provides linear system of equations [Frayssinet H, 2004]. Six parameters of

small displacement torsor can be reduced for cone, cylinder or any other symmetrically

shaped part with the help of axi-symmetric deviation and clearance domains, thus mak-

ing tolerance analysis and tolerance synthesis effortless [Max Giordano, 2007]. Tolerance

analysis of workpiece fixture assembly using SDT is performed by J N Asante. His fixture

assembly study includes work piece, locators, clamping and machining errors. Small dis-

placement torsor parameters are used to design the analytical model of workpiece. The

comparison shows a very minor difference between the results of analytical and experi-

mental data thus verifying its effectiveness [Asante, 2009]. Machining process reliability

is evaluated by modeling machining surfaces variations in work of Laifa et al. They for-

mulated a model by combining small displacement torsor and functional constraints. The

inequality constraints are generated in the end which shows tolerance limits set by de-

signer. This analysis model is yet to be validated by experiment [Laifa M, 2014]. Refer

to figure 2.10 to see the proper framework for modeling of 3D functional tolerances using

SDT done by Laifa et al. They modeled geometrical tolerances of orientation and position

using SDT.

There is a study which shows that SDT improves the reliability of tolerance analy-

sis results. Wang et al conducted a tolerance analysis simulation on thin walled C-section

composite beam before and after pre-loading. The outcome of study showed better re-
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Parallelism: Plan / plan surface 

Parallelism: Plan surface / Line 

Perpendicularity: Plan surface / 
Plan 

Perpendicularity: Line / Plan 
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Coaxiality 
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hole/three plans 

Modeling of geometrical 
specifications of Orientation  

Modeling of geometrical 
specifications of Position  

Parallelism, Perpendicularity, 
Coaxiality, Location constraint 

Case study 

Figure 2.10. Modeling of 3D functional Tolerances by SDT [Laifa M, 2014]

sults with less variation in tolerance when SDT is used. [Hua Wang, 2016] A model that

combines Jacobian with Torsors is known as Jacobian Torsor theory. In their work, Zuo

et al implemented Jacobian Torsor theory for a 3-2-1 fixture layout of experimental ma-

chining set-up. The limits of tolerance are defined by the functional requirement of work

piece. Error sources and its propagation is studied in terms of machining feature devia-

tions. Then comparison of results for nominal,actual and predicted features is done using

MATLAB [Zuo X, 2013].

2.5.1 Types of Torsors

There are different types of torsors according to the features on which they are defined.

First is error torsor, which is simply the difference between associated and nominal surface.

A Defect torsor represents the positioning error between two surfaces of same work piece.

In figure 2.11 error torsor and defect torsor are interpreted on a work-piece P . The real

surfaces of workpiece are Pi and Pj. So the Error torsors are TPi,P and TPj,P , a difference

between nominal and real features of same work piece. Defect torsor is the difference

between two defect torsors that is TPi,P j Deviation torsor is similar to defect torsor and

represents the deviation of difference in position between two surfaces of the same work

piece. Gap Torsor exists between the gaps of two joints. It defines the positioning error
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Error Torsor 

Defect Torsor 

Figure 2.11. Torsors defined in a work piece [François Villeneuve, 2010]

between two surfaces of two different solids. Figure 2.12 has two parts in it, PartA and

PartB . The actual surface of part A is Asi and of part B is Bsj. Gap torsor between

part A and B is TAsi/Bsj
.

Part B 

Part A 

Nominal Surface : Sj 

Gap torsor: T (Asi/Bsj) 

Actual Surface:  Asi 

Deviation torsor: E (Bsj/B) 

Actual Surface: Bsj 

Deviation torsor: E (Asi/A) 

Actual Surface: Si 

Part torsor: D(B/R) 

Part torsor: D(A/R) 

R 

Figure 2.12. Interaction of different torsors of a joint [François Villeneuve, 2010]
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2.5.2 Relative and Absolute Deviation Torsor

Deviation torsors of surfaces is categorized into two types that are Relative deviation

torsor and Absolute deviation torsor. Relative torsor is a torsor defined by between two

different surfaces of a part relative to each other. Here the real surface is compared with

the theoretical relative position. Given the equation:

EAB = EB − EA (2.4)

where, EB, EA are two torsors

Absolute torsor compares the deviations of the surfaces with respect to Nominal location.

For example EA and EB. The torsor EAB is the relative torsor. Error torsor is absolute

deviation torsor,whereas defect torsor or gap torsor are relative deviation torsors according

to definition.

2.5.3 Classes of invariance

Table 2.2. Classes of invariance [François Villeneuve, 2010]

Invariance Classes Degree of Invariance Examples

Complex None Ellipsoid

Prismatic
A translation along one
direction

Two parallel
Cylinders

Revolute
A rotation around a
straight line

Circle cone Torus

Helical

A rotation around a
straight line combined with
translation parallel to this
line

Helical surface

Cylindrical

A rotation around a
straight line and a
translation parallel to this
line

Cylinder

Planar

A rotation around a
straight line and two
translations perpendicular
to this line

Plane

Spherical
Three rotations around a
point

Sphere
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Torsor has six components, u, v, w, α, β, γ. It is always easier to work with less vari-

ables. Also the computation cost decreases. So, some of these components in a torsor may

be selected as zero. There are seven classes of invariance with different degrees of invari-

ance. Invariance means that there will be no effect in overall geometry by displacement

in a certain direction. All ideal features can be classified (refer to table 2.2) according

to their degree of invariance. [Clement A., 1991] For example, three rotations around a

point are three degrees of invariance for a sphere. This means,a torsor describing sphere

will have only 3 effective components i.e u, v, w. The rotations α, β, γ are redundant.

2.6 Scope of the Thesis

A table 2.3 is given below which comprehensively shows the work done by different re-

searchers based on investigation technique and class of tolerance. Most of the researchers

have used tolerance analysis methods which can be deterministic or statistical. It is easier

for the reader to quickly refer to this table for an overview of state of the art. This thesis

covers tolerance analysis using statistical and deterministic approach. Both geometric and

dimensional tolerances are taken into account while seeing its combined effect on product

in terms of manufacturing flexibility and precision. The methodology uses GD&T, torsors

and boundary conditions at the same time.

Key: (for table 2.3)

TS= Tolerance Synthesis; TA= Tolerance Analysis

ST= Stochastic; DT=Deterministic

DIM= Dimensional Tolerance; GEO= Geometric Tolerance

Table 2.3. Comparison of existing work done by different researchers

Researchers
Type of

investiga-
tion

Tech-
nique
used

Class of
tolerance

Application

Luis Garćıa
Guzmán et
al. (2003)

TA ST DIM

Tolerance adjustment to predict
variations for design of stamping
parts and welded assemblies
production process [Luis
Garćıa Guzmán, 2003].

Frayssinet H.
Et al. (2004)

TA DET DIM
Calibration of machine tools is
explored using
SDT [Frayssinet H, 2004].
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J N Asante
(2009)

TA DET DIM
Tolerance analysis on work-piece
fixture assembly using SDT is
done [Asante, 2009].

M. Kamali
Nejad et al.
(2009)

TA DET GEO

Geometrical deviations are
calculated by developing an
algorithm for a model of
manufactured part in a
multistage machining process
and optimization of that
algorithm is done using GA and
SQP [M Kamali Nejad, 2009].

J. Stuppy et
al. (2010)

TA ST DIM
Monte-carlo method is used for
analysis of a moving mechanism
of crankshaft [J Stuppy, 2010].

J. X. Yang et
al. (2011)

TA ST DIM

5R planar mechanism is solved
for tolerance analysis using link
dimensions and joint
clearance [J X Yang, 2011].

Mathieu
Mansuy et al.
(2011)

TA; TS DET GEO
A new algorithm for worst case
analysis of stack-up assemblies is
applied [Mathieu Mansuy, 2011].

Wilma Polini
(2011)

TA ST GEO

Different tolerance analysis
techniques for a simple case
study are compared [Polini,
2011a].

M. Barkallah
et al. (2012)

TA ST GEO

Experimental study is done
using numerical method to
analyze milling process plan
errors [Barkallah M, 2012].

Xiao et al.
(2013)

TA DET DIM

Jacobian-torsor theory is
utilized for depiction of error
propagation in machining
process [Zuo X, 2013].

P. Beaucaire
et al. (2013)

TA ST DIM

Co-axial connector case study is
taken as over constrained
mechanism with gaps and
tolerance analysis is done using
Monte-Carlo and probability
methods [P Beaucairea, 2013].

Yann Ledoux
et al. (2013)

TA ST DIM

A probabilistic approach of
tolerance analysis which
combines dimensional and
architectural specifications is
applied on a turbine
model [Yann Ledoux, 2013].
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Elena
Luminiţa
Olteanu et
al.(2013)

TA DET DIM

Determined position and
kinematics (Force & Moment) of
a cutting tool in drilling
process [Elena
Luminiţa Olteanu, 2013].

A K Sahani
et al. (2014)

TA DET DIM

Tolerance Stack-up analysis and
cost allocation is done on a
dovetail assembly considering
geometric constraint of
angularity [A K Sahani, 2014].

M. Laifa
(2014)

TA DET GEO

3D tolerancing in machining
process is done by combining
functional requirements with
SDT [Laifa M, 2014].

M.
Chahbouni et
al. (2014)

TA ST GEO

Effect of form deviations on
statistical tolerance analysis of
parts is studied [M Chahbouni,
2014].

M. A.
Rehman et
al. (2014)

TA ST DIM

Machine tool vibrations in a
turning process using SDT is
investigated [Rahman M A,
2014].

Hai Li et
al.(2014)

TA DET GEO

Deviation propagation thoery is
used to do tolerance analysis at
a mechanical assembly
application of turbo generator
stator core lamination at design
phase.

Huiwen Yan
et al. (2015)

TA ST DIM

Monte-carlo technique is applied
on a top column assembly model
for tolerance
analysis [Huiwen Yan, 2015].

Hua Wang et
al. (2016)

TA ST GEO

Small Displacement torsor
model is applied on tolerance
analysis simulation of C-section
composite beam. [Hua Wang,
2016].

Proposed in
this thesis

TA
DET +

ST
GEO +

DIM

The combined effect of
geometric and dimensional
tolerances is seen on a case
study parts using GD&T,
torsors and boundary
conditions. Their effect is
measured in terms of flexibility
and precision of manufacturing
systems.
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2.7 Overview

In this chapter, literature review was presented to form the background base knowledge for

comprehension of this thesis. The meaning and definitions of tolerance, features,boundary

conditions was presented. Also, the work done by researchers in tolerance analysis, torsors

along with type of technique used in their study is briefed. In latter subsection, scope

of this study is given. The next chapters follow up methodology implemented on a case

study, closing with results, conclusion and future perspective.
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Chapter 3

Case Study (Part I): Application of

Boundary Conditions on

Dimensional Tolerance

This chapter inscribes application of boundary conditions on dimensional tolerance for

a case study consisting of two parts. The case study is taken to visualize the tolerance

range for gap produced by assembling.

3.1 Application of Boundary Conditions on Dimen-

sional Tolerance- A Case Study

Tolerance is defined as the allowable variation in the dimensions of any feature, surface,

angles or axis. It specifies the safety limits of a product within which a machine might de-

viate from its nominal or ideal dimension. Thus less tolerance would mean more precision

at the expense of higher cost. Tolerance gives the range for deviation between non-ideal

(real) and ideal (theoretical) surfaces of features. Only dimensional tolerance is considered

for this case study. At design stage, parts are assigned different tolerance values on the

engineering drawing. Overall effect of tolerancing is vital to calculate when one or more

parts are assembled to form a mechanism. The functional requirements of any assembly
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Z 

X 

Y R
Part PC Part PH 

Torsor Model: Parts of case study 

Figure 3.1. Case Study Parts PC and PH

is assessed by tolerance stack-up analysis. It shows the gaps and the interaction of parts

in the assembly, thus determining the quality of manufactured parts. Stack up analysis

can be done graphically and variations can be calculated using worst case analysis.

A two part assembly (see figure 3.1) consisting of part cylinder (PC) and part hole

(PH) is taken for experimentation. The detailed dimensions of the part PC and Part PH

are shown in figure 3.3 and 3.2 respectively. Part PH has external features and part PC

has internal features.

In this work, we have used an assembly of two simple parts for the purpose of

evaluating tolerance analysis at worst case, when different Material Boundary Conditions

are applied. The 2-dimensional viewed parts cylinder (PC) and part hole (PH) are as-

sembled in the hole together as shown in figure 3.4 Part PC has a square base with a

cylindrical feature of varying diameter. In this part, four references are selected. Refer-

ence A is picked on the bottom surface of square base. Reference B is the axis of cylinder.

References C and D are upper surfaces of cylinder and square base respectively. Other

part PH has a hole in center. Both dimensional and geometric tolerances are applied on

these parts. The goal is to analyze the consequences of Boundary conditions on gaps,

when these two parts are assembled. These two parts are simplified versions of a complex

manufactured assembly for easier evaluation of tolerance analysis. The designer specifies

tolerance range for the parts. One part with different boundary conditions (Least Ma-

terial condition: LMC,Maximum Material Condition: MMC, Regardless of Feature Size:
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50    0.1 + 
- 

10    0.2 + 
- 

A 

Part  Hole (PH):Internal feature 

F E 

 M   0.1 

  L    0.1 

  0.1 

Figure 3.2. Stack up analysis of Part PH

10    0.2 + 
- 

20    0.1 + 
- 
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- 
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Part with cylinder (PC): External feature 
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 M   0.1 
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Figure 3.3. Stack up analysis of Part PC
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10    0.2 + 
- 

20    0.1 20    0.1 
+ 
- 

+ 
- 

10    0.2 + 
- 

C=EF-GH 

Assembly of both parts (PH) & (PC): 

L R 

Figure 3.4. Stack up analysis of Parts assembly

RFS) provides fluctuating tolerance limits.

To evaluate the effects of LMC, MMC and RFS boundary conditions on the over-

all assembly of a product, manual computation of maximum and minimum values are

obtained by tolerance stack-up analysis. The detailed stack-up GD&T drawing of both

parts and their assembly is provided separately in figures 3.2, 3.3 and 3.4. Control Feature

Frame (i) represents first case of RFS while (ii) represents case the second case of MMC

and (iii) represents the tolerance LMC,which is the third case. Here on parts PH and

PC location tolerance of 0.1 is applied on dimensional tolerances. Our aim is to analyze

the maximum and minimum value of A, B and gap ‘C’ at variable Boundary Conditions.

Fist we calculate values of A, B, C1 and C2 at RFS condition and later we will assume

boundary conditions to be MMC & LMC. Gap C1 exists when EF > GH while in case

GH > EF , gap C2 is visible (figure 3.4).
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3.2 Tolerance Stack up Results

Now that the case study parts and their GD&T conditions have been explained, tolerance

stack up analysis is enacted. Stack-up is applied on all three dimensions A,B and C gap.

The result is in form of maximum and minimum values of these dimensions.

3.2.1 Application of RFS condition

We begin with application of RFS condition on parts PH and PC followed by stack-up

analysis of its assembly. Stack-up tolerance analysis of part PH gives maximum and

minimum value of ‘A’ dimension (fig. 3.2). Part PC provides the values of ‘B’ dimension

(fig. 3.3) and we obtain total deviation of tolerance limits for assembly as ‘C’ in terms

of gaps (fig. 3.4). When RFS is applied, geometrical tolerance is added as such in the

dimensional tolerance. Hence we get range of ‘B’ as following:

B − [(10± 0.2) + (±0.1)]–5− [(20± 0.1) + (±0.1)]− 5− [(20± 0.1) + (±0.1)] = 0

B = 60± 0.7

BMAX = 60.7 (3.1)

BMIN = 59.3 (3.2)

The stack-up analysis of part PH is performed and limits are obtained by applying

RFS on dimensional tolerance of 50. The maximum and minimum values for ‘A’ are:

A− [(50± 0.1) + (±0.1)]− (10± 0.2)] = 0

A = 60± 0.4

AMAX = 60.4 (3.3)

AMIN = 59.6 (3.4)
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When parts are assembled, gaps are likely to appear. So it is important to recognize

the location of gap and the amount of error produced by that gap. The value of ‘C’ is

the gap in assembly of part PC and PH. The magnitude & location of the assembly gap

(C1 & C2) can be found out by the values of EF & GH. Maximum values of C1 & C2 at

RFS condition for the assembly (fig. 3.4) are observed:

C1MAX = EFMAX−GHMIN = [(50+0.1)+(0.1)]−[(20−0.1)+(−0.1)]+5+[(20−0.1)+(−0.1)+5]

EFMAX −GHMIN = 50.2–49.6

C1MAX = 0.6 (3.5)

C2MAX = EFMIN−GHMAX = [(50−0.1)+(−0.1)]−[(20+0.1)+(+0.1)]+5+[(20+0.1)+(+0.1)+5]

EFMIN −GHMAX = 49.8–50.4

C2MAX = −0.2 (3.6)

3.2.2 Application of MMC condition

The tolerance analysis for part PC is implemented at Maximum Material Condition. In

MMC, geometrical tolerances are chosen carefully by calculating the virtual and resultant

conditions for given feature. The limits for ‘B’ in case of MMC are given as:

B − [(10 + 0.2) + (0.1)]–5− [(20 + 0.1) + (0.1)]–5− [(20 + 0.1) + (0.1)] = 0

BMAX = 60 + 0.7

BMAX = 60.7 (3.7)

B − [(9.8)− (0.5)]–5− [(19.9)− (0.3)]–5− [(19.9)− (0.3)] = 0

BMIN = 59.6− 1.1

BMIN = 58.5 (3.8)
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Similarly the maximum and minimum values of ‘A’ for the part PH can be calculated by:

A− [(50 + 0.1) + (0.1)]− (10 + 0.2)] = 0

AMAX = 60 + 0.4

AMAX = 60.4 (3.9)

A− [(50− 0.1)− (0.3)]− (10− 0.2)] = 0

AMIN = 59.7− 0.3

AMIN = 59.4 (3.10)

We determine the maximum value of gap ‘C1 and C2’ for assembly of part PH and PC

at Maximum Material Condition:

C1MAX = EFMAX−GHMIN = [(50+0.1)+(0.1)]− [(19.9)−(0.3)]+5− [(19.9)−(0.3)+5]

EFMAX −GHMIN = 50.2–49.2

C2MAX = EFMIN−GHMAX = [(50−0.1)−(0.3)]−[(20+0.1)+(0.1)]+5+[(20+0.1)+(0.1)+5]

EFMIN −GHMAX = 49.6–50.4

C1MAX = 1.0 (3.11)

C2MAX = −0.8 (3.12)

3.2.3 Application of LMC condition

Now limit values of ‘B’ for the part PC are calculated for Least Material Condition being

applied on dimensional tolerance of 10, 20 and 20 units respectively (see fig. 3.3). The

resultant and virtual condition for LMC provides geometrical tolerance values used in

tolerance stack-up analysis:

B − [(10.2) + (0.5)]–5− [(20.1) + (0.3)]− 5− [(20.1) + (0.3)] = 0
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BMAX = 60.4 + 1.1

BMAX = 61.5 (3.13)

B − [(9.8)− (0.1)]–5− [(19.9)− (0.1)]–5− [(19.9)− (0.1)] = 0

BMIN = 59.6− 0.3

BMIN = 59.3 (3.14)

By applying LMC on the part PH which is an internal feature, we get maximum

and minimum values of ‘A’ by tolerance stack-up:

A− [(50 + 0.1) + (0.3)]− (10 + 0.2) = 0

AMAX = 60.6 (3.15)

A− [(50− 0.1)− (0.1)]− (10− 0.2) = 0

AMIN = 59.6 (3.16)

By finding out maximum and minimum values for assembly with the help of tol-

erance stack-up analysis at LMC, the gap magnitude of ‘C1 & C2’ is given:

C1MAX = EFMAX−GHMIN = [(50+0.1)+(0.3)]− [(19.9)−(0.1)]+5+[(19.9)−(0.1)+5]

EFMAX −GHMIN = 50.4–49.6

C1MAX = 0.8 (3.17)

C2MAX = EFMIN−GHMAX = [(50−0.1)−(0.1)]− [(20.1)+(0.3)]+5+[(20.1)+(0.3)+5]

EFMIN −GHMAX = 49.8–50.8

C2MAX = −1.0 (3.18)
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Table 3.1. Results of Maximum and Minimum values of Tolerance Stack-up Analysis

RFS MMC LMC

AMAX 60.4 60.4 60.6

AMIN 59.6 59.4 59.6

BMAX 60.7 60.7 61.5

BMIN 59.3 58.5 59.3

C1MAX 0.6 0.1 0.8

C2MAX -0.2 -0.8 -1.0

Table 3.2. Range (R), Mean (µ) and Standard Deviation (σ) of features/dimensions measured
according to RFS, MMC &LMC

Feature

Boundary Condition

RFS MMC LMC

R µ σ R µ σ R µ σ

A 0.8 60 0.133 0.1 59.9 0.167 1.0 60.2 0.167

B 1.4 60 0.233 2.2 59.6 0.367 1.7 60.4 0.367

C 0.8 0.2 0.133 1.8 0.1 0.3 1.8 -0.1 0.3

3.2.4 Allowable Tolerance Variation Range

The results are shown in table 3.1. By analyzing this table, it can be noted that when RFS

is used for separate parts, the range between maximum and minimum limits of ‘A’ is 0.8

units whereas for same parts the range increases by 0.2 units at MMC and LMC boundary

conditions. This range for ‘B’ between maximum and minimum values of tolerance stack-

up analysis increases by 0.8 units when MMC or LMC is applied. Moreover, last two

columns of table show the gap in assembly represented by ‘C’. At RFS, gap of 0.6 units in

assembly appears on left side represented by C1 (shown in fig.3.4). The value of C2 shows

the maximum gap that can appear on right side (fig. 3.4) when parts are assembled.

Similarly at MMC and LMC gap value on both sides of assembly increases.

Thus, we can conclude that intelligent use of GD&T will result in intelligent varia-

tion range. Assuming that the manufacturing process follows a normal distribution, Mean

and Standard Deviation of A, B and C can be calculated as shown in table 2 and the

plots are shown in fig. 3.5, fig.3.6 and fig.3.7.

The plot shows accuracy and precision required to manufacture the same feature if

worker follows MMC, LMC and RFS. Thinner curve shows more precision required for the

manufacturing process while the Mean shows accuracy/bias of the manufacturing process.
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59.6 59.8 60.0 60.2 60.4 60.6

MMC
RFS

LMC

Dimension A

Figure 3.5. Normal Distribution of dimension ’A’

Less bias means the product is close to required dimension. Table 3.1 and fig. 3.5 to 3.7

refers that geometric conditions greatly affect the total tolerance of a part. Therefore,

boundary conditions must be applied according to the requirement and capability of a

machine. This same stack-up analysis can be expanded for more complex assemblies. The

selection of boundary conditions may vary depending upon functional requirements of the

product.

3.3 Synthesis

This chapter extensively illustrated the proposed methodology. A case study was ex-

plained with all of its parameters. Then, effect of boundary conditions on dimensional

tolerance range is seen for the case study. The results of boundary condition normal dis-

tribution graphs are found to be useful when choosing a certain manufacturing machine

with required precision. The upcoming chapter is second part of same case study work-

pieces. However, in next section geometric constraints on tolerance are applied instead of

dimensional tolerance.
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59.0 60.0 60.5 61.0 61.5

MMC
RFS
LMC

59.5 

Dimension B

Figure 3.6. Normal Distribution of dimension ’B’

-1.0 -0.5 0.5 1.0

LMC
MMC
RFS

Gap 'C'

Figure 3.7. Normal Distribution of gap ’C’
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Chapter 4

Case Study (Part II): Application of

Geometric constraints using Torsors

Torsors and geometric constraints are implemented for the same case study parts to see the

effectiveness of proposed model. This second constituent of case study is the application of

geometric constraints using small displacement torsors on parts. Assembly of parts with

least geometric error is functional requirement. Figure 4.1 has two parts being assembled

using a gripper. The parts are same i.e part PC and part PH. First of all, the torsors

linkage graph is presented to view effects of geometric errors throughout the assembly.

Then equations linking tolerance with torsor parameters is applied with orientation and

location constraints.

4.1 Geometric Characteristics and Assembly Model

Geometric tolerance includes orientation tolerances and location tolerance as seen in

table2.1. Geometric tolerancing widens tolerance range in terms of inner and outer bound-

aries of a feature. When simple tolerance of 0.2 is applied on the diameter of 10, total

tolerance range is from 9.8-10.2. By incorporating location tolerance on the same feature,

boundaries range increases with inner boundary of 9.5 and outer boundary value of 10.5.
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Figure 4.2. Geometric Characteristics of two parts Assembly

 

 

 

  

Z 

X 

Y R

Gripper 

Part PC 

Part PH 

G Part torsor 
G surface torsor 

PH Part torsor 
PH surface 

PC Part torsor 
PC surface torsor 

Figure 4.1. Assembly of parts

Figure 4.2 shows the geometric characteristics of assembly. Geometric character-

istics are defined on the features of assembly parts. These features are numbered as 0, 1,

2 & 3. Feature ‘0’ and feature ‘1’ is plane. Feature ‘2’ is an axis. Feature ‘3’ is also a

plane. From ‘0-1’ parallelism constraint is applied. ‘1-2’ is a perpendicularity constraint

and from ‘2-3’ only displacement of a torsor is considered for simplification.
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TS2/H 

TS1/C 

Functional Requirement 

Figure 4.3. Torsor Model Linkage Graph

A torsor model linkage graph is shown in fig.4.3. Part PC is placed on the base

platform and the gripper holds part PH to assemble on top of part PC. Reference frame

has been named ‘R’ and gripper is ‘G’. Part PC and part PH are represented by ‘C’ and

‘H’ respectively. The torsor linkage chain is given by:

TG/R + TH/G + TC/H + TR/C = 0 (4.1)

Coming up next in this chapter are equations showing parallelism constraint (0-1) and

perpendicularity constraint (1-2) in figure 4.2. Initially torsors of respective surfaces are

calculated then the difference between two torsors is found. The difference gives the defect

torsor. In the final equation,variables x, y and z represent the dimensions of parts, where

x=y=50mm and z=60mm.
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4.1.1 Parallelism Constraint

Parallelism tolerance is the range or limit subjected on a feature, on basis of parallelity.

It comes under one of geometric constraints. In figure 4.4, the visualization of parallelism

is given. There are three features which are datum, theoretical and real. Real features

vary from the theoretical ones. However, this variation is kept within limits by applying

parallelism constraint.

Datum 
(Lower ideal 
surface)  

Real features  

Theoretical 
features  

Tolerance range for 
parallelism (upper top 
surface) 

Figure 4.4. Parallelism constraint

Let us consider the following surfaces to define paralellism constraint: E1 is datum

surface, E2 is Real surface and R is Reference (work-piece). Displacement of a point ‘A’

of E1 with respect to E2 is given by ’DA’ in following equation:

DA = DO + AO ∧ Ω (4.2)

Where,

’AO’ is Vector representing distance of point A from origin ‘O’ in 3D space

’DO’ is Displacement vector representing distance from origin ‘O’ in 3D space

Ω is rotation matrix

∧ represents cross product

The datum feature is a plane and toleranced feature is also a plane. To find the torsor

between two plane feature in terms of parallelism,we calculate the defect torsor of datum

feature with reference and defect torsor of real feature with reference of work-piece (fig .

4.5):
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0.1 A 

ZR 

YR 

XR 

Figure 4.5. Parallelism constraint applied on part

TE1,R =


αE1,R 0

βE1,R 0

0 WE1,R



TE2,R =


αE2,R 0

βE2,R 0

0 WE2,R


The gap torsor of datum feature with real feature becomes:

TE1,E2 = TE1,R − TE2,R =


αE1,R 0

βE1,R 0

0 WE1,R

−

αE2,R 0

βE2,R 0

0 WE2,R



TE1,E2 =


αE1,R − αE2,R 0

βE1,R − βE2,R 0

0 WE1,R −WE2,R

 (4.3)

For finding the displacement of any point A on datum feature E1 w.r.t real feature E2,
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putting eq.4.3 in eq.4.2:

DA =


0

0

0

 +


x

y

z

 ∧

αE1,R − αE2,R

βE1,R − βE2,R

0

 (4.4)

Only rotation is taken into account because orientation depends only on rotation of angles.

DA =


−z(βE1,R − βE2,R)

−z(αE1,R − αE2,R)

x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

 (4.5)

For small displacements consideration, rotation matrix (K) is used [Butt, 2012]:

K =


1 −α γ

α 1 −β

−γ β 1

 (4.6)

K =


1 0 0

0 1 0

0 0 1

 (4.7)

To consider the displacement of every single point of datum feature w.r.t real

feature, dot product of DA is taken with the normal of datum plane:

D̄.n̄D =


−z(βE1,R − βE2,R)

−z(αE1,R − αE2,R)

x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

.


0

0

1


D̄.n̄D = 0 + 0 + x(βE1,R − βE2,R)− y(αE1,R − αE2,)

D̄.n̄D = x(βE1,R − βE2,R)− y(αE1,R − αE2,R) (4.8)

D̄.n̄D is in fact the tolerance of parallelism constraint. From equation 4.8, it is deduced

that parallelism of any feature is controlled by angle α along y axis and angle β along x
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axis.

4.1.2 Perpendicularity Constraint

Orientation of a workpiece also involves perpendicularity constraint besides parallelism.

Visualization of perpendicularity constraint applied on the axis of a part is seen in figure

4.6. The red is real part and variation of its axis from ideal part axis is regulated by

perpendicularity constraint.

Datum (lower 
ideal surface) 

Real features  
Theoretical 
features  

Tolerance range for 
perpendicularity (upper 
top surface)  

Figure 4.6. Perpendicularity constraint

Previously in parallelism constraint, both datum and real features were planes.

But in this perpendicularity constraint Datum feature is a plane and toleranced feature

is an axis. So we find the torsor between a plane and axis in terms of perpendicularity.

It is to be noted that this perpendicularity constraint forms a tolerance zone in shape of

a circle. The axis feature of part must remain within the boundaries of circle diameter

(which is tolerance range)to be acceptable. First we calculate the defect torsor of datum

feature with reference and defect torsor of real feature with reference of work-piece for

perpendicularity constraint:
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ZR 

YR 

XR 

0.1 A 

A 

Figure 4.7. Perpendicularity constraint applied on part

TE1,R =


φE1,R 0

ψE1,R 0

0 WE1,R



TE2,R =


φE2,R UE2,R

ψE2,R VE2,R

0 0


The gap torsor of datum feature with real feature becomes:

TE1,E2 = TE1,R − TE2,R =


φE1,R 0

ψE1,R 0

0 WE1,R

−

φE2,R UE2,R

ψE2,R VE2,R

0 0



TE1,E2 =


φE1,R − φE2,R 0

ψE1,R − ψE2,R 0

0 0

 (4.9)

For finding the displacement of any point A on datum feature E1 w.r.t real feature E2,
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putting eq.4.9 in eq.4.2:

DA =


0

0

0

 +


0

0

z

 ∧

φE1,R − φE2,R 0

ψE1,R − ψE2,R 0

0 0

 (4.10)

Again,only rotation is taken into account because perpendicularity effects orientation of

a part which depends only on rotation of angles.

DA =


−z(ψE1,R − ψE2,R)

z(φE1,R − φE2,R)

0

 (4.11)

The tolerance zone generated is shown in figure 4.8 where 0.1 mm geometric tolerance

X 

-Y 

-X 

Y 

0.1 

Point out of 
tolerance 
range  

Figure 4.8. Tolerance range for Perpendicularity constraint

range is defined by distinctive circle diameter in black color. The real feature in red color

is within the tolerance zone. If distance on x-axis and y-axis are dealt separately then

a risk of point going out of tolerance limits arises. As in figure 4.8 two points in green

color are taken at extremes of x and y axis. Despite the fact that both point are within

tolerance range individually but the overall toleranced feature is out of limits. Since
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perpendicularity constraint generates a tolerance zone in shape of a circle, so we use the

equation of circle to see effects of angles on tolerance:

‖D̄‖ =
√

(−z(ψE1,R − ψE2,R))2 + (z(φE1,R − φE2,R))2 = tolerance/2

(−z(ψE1,R − ψE2,R))2 + (z(φE1,R − φE2,R))2 = (tolerance/2)2 (4.12)

The equation 4.12 infers that perpendicularity tolerance of part is controlled by angle φ

and angle ψ along z axis dimension only.

4.1.3 Location Constraint

Finally the defect torsor of datum feature with reference and defect torsor of real feature

with reference of workpiece is determined for the location constraint:

A 

C 

ZR 

YR 

XR 

0.1 

B 

A B C 

Figure 4.9. Location constraint

TE1,R =


αE1,R 0

βE1,R 0

0 WE1,R



TE2,R =


αE2,R 0

βE2,R 0

0 WE2,R


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The gap torsor of datum feature with real feature becomes:

TE1,E2 = TE1,R − TE2,R =


αE1,R 0

βE1,R 0

0 WE1,R

−

αE2,R 0

βE2,R 0

0 WE2,R



TE1,E2 =


αE1,R − αE2,R 0

βE1,R − βE2,R 0

0 WE1,R −WE2,R

 (4.13)

For finding the displacement of any point A on datum feature E1 w.r.t real feature E2,

putting eq.4.13 in eq.4.2:

DA =


0

0

WE1,R −WE2,R

 +


x

y

z

 ∧

αE1,R − αE2,R

βE1,R − βE2,R

0

 (4.14)

Both displacement and rotation is taken into account for the location constraint.

DA =


0

0

WE1,R −WE2,R

 +


−z(βE1,R − βE2,R)

−z(αE1,R − αE2,R)

x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

 (4.15)

DA =


0

0

WE1,R −WE2,R + x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

 (4.16)

For small displacements, rotation matrix (K) is used from equation 4.6. To consider the

displacement of every single point of datum feature w.r.t real feature, dot product of DA

is taken with the normal of datum plane (see fig.4.9):

D̄.n̄D =


0

0

WE1,R −WE2,R + x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

 .

γ

−β

1


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D̄.n̄D = 0 + 0 +WE1,R −WE2,R + x(βE1,R − βE2,R)− y(αE1,R − αE2,R)

D̄.n̄D =WE1,R −WE2,R + x(βE1,R − βE2,R)− y(αE1,R − αE2,R) (4.17)

The equation 4.17 enumerates that geometric tolerance of location constraint is effected

by angle β is x axis, angleα in y axis and w displacement parameter of torsor.

4.2 Flowcharts of proposed approach

The strategy to use the proposed methodology and get application based results is pro-

vided in flowcharts 4.11 and 4.10. Flowchart 4.10 exhibits the path to determine accept-

ability of parts established on application of boundary conditions. In the beginning total

maximum and minimum linear dimensional tolerances are calculated for boundary condi-

tions. These maximum and minimum values of tolerances are used to generate probability

density plots. At this level, acceptable precision range is compared to Probability density

graphs. Last step is to decide whether parts are within specified requirements or rejected.

Start

End

Apply one  boundary condition: 
LMC or MMC or RFS 

Is Accuracy 
and Precision 

acceptable 

Apply Dimensional 
Tolerances for  

separate parts and 
their assembly 

Calculate mean, range and 
standard deviation 

Generate Probability 
Density functions 

Input Linear 
dimensions ‘A’ & 

‘B’ of parts PH and 
PC 

Vary the 
tolerance Range 

Assemble parts PH 
& PC and input 

Gap dimension ‘C’ 

Product accepted 

Yes 

No 

Change Boundary 
condition 

Can Boundary 
condition be  

changed? 

No 

Yes 

Figure 4.10. Deterministic approach flow chart
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The second portion of case study where torsors are used to determine geometrical

tolerance range for product is suggested in flowchart 4.11. The program begins with in-

serting x,y and z linear dimensions of work-piece in constraint equations of parallelism

and perpendicularity. Angles for constraints are generated for varying standard devia-

tions. It is followed by normal distribution graphs for resulted geometrical tolerances. In

the end tolerance limits are checked. If they are within limits specified by designer then

product is satisfactory. If the tolerance limits are not within specified range then, either

a higher precision machine should be used or the geometric tolerance should be relaxed a

little bit.

Start

End

Apply orientation  and 
position constraints 

Is overall 
Tolerance 

within limits? 

Input Data of 
varying angles 

Calculate mean, range and 
standard deviation 

Generate Probability 
Density functions 

Input X,Y,Z 
dimensions of 

part 

Input new 
Tolerance range 

Set geometrical 
Tolerance limits 

Calculate Process 
Capability Indices 

Product is acceptable 

Improve process 
capability of 

manufacturing set-up 

Yes 

No 

Figure 4.11. Flow chart for Torsors and geometrical tolerances
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4.3 Flexibility and Precision of Manufacturing Sys-

tems

Statistical analysis of tolerance is most important for manufacturing field because parts

are manufactured in hundreds to thousands in number. In statistics, Normal distribution

is widely used. It is also known as a Bell curve or Gaussian curve. There are seven

features of normal distributions due to which tolerance results are analyzed using this

distribution.

1. Normal distributions are symmetric around their mean.

2. The mean, median, and mode of a normal distribution are equal.

3. The area under the normal curve is equal to 1.0.

4. Normal distributions are denser in the center and less dense in the tails.

5. Normal distributions are defined by two parameters, the mean (µ) and the standard

deviation (σ).

6. 68% of the area of a normal distribution is within one standard deviation of the mean.

7. Approximately 95.45% of the area of a normal distribution is within two standard

deviations of the mean and 6 sigma covers 99.99994% of area.

One sigma for manufactured parts means that 68.27% parts are within tolerance range

and six sigma would increase accepted parts up to 99.99994%. This standard deviation

can only be increased if parts are manufactured on a high precision machine. So the cost

of process will increase with the standard deviation. A precise manufacturing system

has less flexibility in terms of tolerance values. The results for this study comply with

proposed idea that a less precise machine is able to produce a high quality part thus saving

cost. These results are obtained by running a program on MATLAB. This MATLAB

program gave the varying range of geometric tolerances for different angle values followed

by tolerance ranges for parts production.
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4.4 Input Data

Input data for the MATLAB program are the angle components of torsor in constraint

equations. The two equations of parallelism and perpendicularity constraints are as fol-

lows:

Tolparallelism = x(βE1,R − βE2,R)− y(αE1,R − αE2,R) (4.18)

Tolperpendicularity = 2 ∗
√

(−z(ψE1,R − ψE2,R))2 + (z(φE1,R − φE2,R))2 (4.19)

At first values of α, β, φ and ψ angles for both constraints are generated separately for

parts. The number of parts is 1000. These values are initiated at three different standard

deviations i.e 1σ, 2σ and 3σ. Then they are put in above equations 4.18 and 4.19 to

obtain tolerance values range for parallelism and perpendicularity constraints.

4.5 Output Data

The output is in the form of normal distribution curves. These curves are generated

for different values of standard deviation of input data. A normal distribution curve for

6σ can be seen in figure 4.12. Upper and lower specification limits are defined on the

curve and within this 6σ limits, 99.99994% parts are defect free. Only 0.3ppm defects per

million are present in 6σ curve. The percentage of defect free parts for 1σ is 68.27%, for

2σ it is 95.45%, for 3σ its 99.73%. The comprehensive values of angles and tolerances for

the applied geometric constraints is given in Table 4.1. Units for angles α, β (symbols of

angles for parallelism) and φ, ψ (symbols of angles for perpendicularity) are in radians

(rad) and the tolerance (Tol) is in millimeters (mm). From the table, it is evident that as

standard deviation varies from 1σ to 3σ, tolerance range is contracted.
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Lower Specification Limit Upper Specification Limit Mean (µ) 

0 -6σ 6σ 3σ -3σ 

99.99994%  
Defect free parts 

99.73%  
Defect free parts 

95.45%  
Defect free parts 

-2σ 2σ 

Figure 4.12. Normal Distribution Curve for 6σ

Table 4.1. Results

Standard Deviation
Constraint Type Angles (rad); Tol(mm)

1σ 2σ 3σ

αMax 0.0037 0.0016 0.0012

βMax 0.008 0.0017 0.0012

αMin -0.0032 -0.0016 -9.7791exp−4
Parallelism

βMin -0.0031 -0.0015 -0.0011

TolMax 0.2902 0.1303 0.0911
Parallelism

TolMin -0.2716 -0.1252 -0.0836

φMax 0.0030 0.0018 0.0011

ψMax 0.0040 0.0017 9.6109exp−4

φMin -0.0034 -0.0015 -9.4968exp−4
Perpendicularity

ψMin -0.0036 -0.0016 -0.0011

TolMax 0.1108 0.0490 0.0286
Perpendicularity

TolMin 8.8483exp−4 4.652exp−4 4.3443exp−4

Figure 4.13, 4.14 and 4.15 shows normal distribution of parallelism tolerance for

1σ,2σ and 3σ respectively. Further on Figure 4.16, 4.17 and 4.18 shows normal distribution

of perpendicularity tolerance for 1σ, 2σ, and 3σ respectively. The specified or design
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parallelism tolerance in case study was 0.1mm. In graph 4.13, only 682.7 parts out

of 1000 are defect free. From table 4.1 maximum value of tolerance comes out to be

0.2902mm and minimum value is -0.2716mm. Graph 4.14 shows that 950 parts are within

parallelism geometric tolerance limit with maximum value 0.1303mm and minimum value

of -0.1252mm.
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Figure 4.13. Normal Distribution of Parallelism Tolerance when σ = 1
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Figure 4.14. Normal Distribution of Parallelism Tolerance when σ = 2
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Normal distribution in graph 4.15 is for tolerance range at 3σ standard deviation.

Range of geometric tolerance is in between -0.0836mm to 0.0911mm. It is most precise

tolerance range.
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Figure 4.15. Normal Distribution of Parallelism Tolerance when σ = 3

Figure 4.16 is normal distribution of perpendicularity constraint tolerance values

for 1000 parts at 1σ. The maximum value of tolerance is 0.1108mm and minimum value is

0.0008483mm. This tolerance range changes for 2σ, from 0.0004652mm to 0.0490mm, refer

to graph 4.17. For standard deviation of 3σ minimum tolerance value is 0.00043443mm

and maximum is 0.0286mm. In figure 4.18, only 2.7 parts out of 1000 may deviate from

perpendicularity constraint. The perpendicularity tolerance of 0.1mm specification is

observed even by just improving precision from 1σ to 2σ. It is seen that the tolerance

range values for perpendicularity constraint in figure 4.16, 4.17 and 4.18 are positive values

only. This is due to the constraint equation of perpendicularity 4.19 in which x and y

axis values are considered simultaneously.
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Figure 4.16. Normal Distribution of Perpendicularity Tolerance when σ = 1
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Figure 4.17. Normal Distribution of Perpendicularity Tolerance when σ = 2
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Figure 4.18. Normal Distribution of Perpendicularity Tolerance when σ = 3

If dot product of normal vector is implemented in one of the axis directions either

x-axis or y-axis with equation 4.11,then the tolerance in those specified axis direction can

be obtained. The normal distribution of tolerance values of perpendicularity constraint

in x-axis direction are shown in figure 4.19,4.20 and 4.21 for standard deviation of 1σ, 2σ

and 3σ respectively. Similarly, the graphs 4.22,4.23 and 4.24 show normal distribution of

tolerance values of perpendicularity constraint in y-axis direction for standard deviation

of 1σ, 2σ and 3σ respectively. The precision of machines required to produce parts with

tolerance constraint range at 3σ is higher than that to manufacture parts at 1σ. However,

the flexibility (in terms of tolerance limits) of machines at 1σ is definitely higher than the

other. Consider a case where a manufacturer has 3 machines available on job floor with

1σ,2σ and 3σ precision. He gets the order to manufacture a part with 0.1(mm) geometric

tolerance constraints of parallelism and perpendicularity. The cost of manufacturing by

using 3σ precision machine is double than the 2σ precision machine. But it is observed

that even 2σ machine can produce product within design parameters. Then feasible option

is to work with 2σ machine yet getting favorable results.
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Figure 4.19. Normal Distribution of Perpendicularity Tolerance (on x-axis) when σ = 1
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Figure 4.20. Normal Distribution of Perpendicularity Tolerance (on x-axis) when σ = 2
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Figure 4.21. Normal Distribution of Perpendicularity Tolerance (on x-axis) when σ = 3
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Figure 4.22. Normal Distribution of Perpendicularity Tolerance (on y-axis) when σ = 1

59



Chapter 4. Case Study (Part II): Application of Geometric constraints using Torsors

−0.08 −0.06 −0.04 −0.02 0 0.02 0.04 0.06 0.08 0.1
0

10

20

30

40

50

60

70

80

90
NORMAL DISTRIBUTION (At Standard Deviation = 2σ) 

Tolerance (mm) in y−axis for perpendicularity constraint

N
um

be
r 

of
 P

ar
ts

Figure 4.23. Normal Distribution of Perpendicularity Tolerance (on y-axis) when σ = 2

−0.06 −0.04 −0.02 0 0.02 0.04 0.06
0

10

20

30

40

50

60

70

80

90

100
NORMAL DISTRIBUTION (At Standard Deviation = 3σ)

Tolerance (mm) in y−axis for perpendicularity constraint

N
um

be
r 

of
 P

ar
ts

Figure 4.24. Normal Distribution of Perpendicularity Tolerance (on y-axis) when σ = 3
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Figure 4.25 shows a graphical comparison of Parallelism Tolerance and Standard

Deviation. The lines in green and blue shows maximum and minimum tolerance data

points and red line shows the mean or average tolerance values. The limit of 0.1(mm)

tolerance is shown by dotted lines. All tolerance values converge towards the mean value

of tolerance as standard deviation increases. From 1σ to 2σ, convergence is very rapid. It

infers that as the precision of machine increases, the tolerance limits get tighter. However,

a manufacturer might use a machine with 2.2 σ precision instead of 3σ to save cost of

manufacturing.
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Figure 4.25. Comparison of Parallelism tolerance (mm) values with standard deviation (σ)

4.6 Synopsis

In this section of case study, geometric constraints parallelism, perpendicularity and loca-

tion equations in terms of tolerance are found. Flowcharts provide application of proposed

approach. The results in form of graphs are given in the end which present outcomes and
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their interpretation. The outcomes of whole study and its interpretation for useful ap-

plication in manufacturing field was also explained. It includes the input and output

variables chosen for the simulation purpose in MATLAB program for simulation. The

next chapter is the concluding chapter of this thesis. It discusses conclusion of study as

a whole, its limitations and future perspectives.
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Chapter 5

Conclusion and Perspective

The topic of this thesis falls under the subject of geometric tolerances and precision

manufacturing. GD&T helps to upgrade the quality of product. But this higher quality

raises the manufacturing cost. This study proposes a method to control tolerances of

product by keeping within cost limits. The literature review shows the gap for research.

Both dimensional and geometric tolerances are taken into account. Boundary conditions

and torsors are combined with these tolerances to see acceptable tolerance range varying

as per availability of different precision manufacturing machines.

There are certain limitations of this work. The type of tolerances selected in case

study are only orientation tolerances. It might be possible that other classes of tolerances

are taken into account for further research. At methodology stage, errors between the

gripper and baseplate is assumed zero for simplification. Other techniques may be used

for the tolerance analysis of constraints. In future work, the program algorithm can

be enhanced with increase in applied types of tolerances. Experimental set up may be

designed and tested for the validation of proposed methodology.
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