Conversion of Existing Bubble Cap Column to Packed Bed Column

By				
Hassan Nadeem	Regn. No. NUST201201946BSCME99113F			
Ali Qayum	Regn. No. NUST201306132BSCME99113F			
Syed Minhas Mehmood	Regn. No. NUST201305838BSCME99113F			

School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST)

2017

Conversion of existing Bubble Cap Column to Packed Bed Column

Hassan Nadeem	Regn. No. NUST201201946BSCME99113F
Ali Qayum	Regn. No. NUST201306132BSCME99113F
Syed Minhas Mehmood	Regn. No. NUST201305838BSCME99113F

This report is submitted as a FYP thesis in partial fulfillment of the requirement for the degree of

(BE in Chemical Engineering)

Industrial Supervisor:

Amjad Latif

Supervisor:

Dr. Arshad Hussain

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology June, 2017

Certificate

This is to certify that work in this thesis has been carried out by **Mr. Hassan Nadeem, Mr. Ali Qayum and Mr. Syed Minhas Mehmood and** completed under my supervision in School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Supervisor:

Dr. Arshad Hussain Department of Chemical Engineering School of Chemical & Materials Engineering, National University of Sciences and Technology, Islamabad

Industrial Supervisor:

Engr. Amjad Latif ICI Soda Ash

Submitted through:

HoD:	Dean:
Department of Chemical Engineering	Department of Chemical Engineering
School of Chemical & Materials	School of Chemical & Materials
Engineering,	Engineering,
National University of Sciences and	National University of Sciences and
Technology, Islamabad	Technology, Islamabad

DEDICATION

ТО

OUR PARENTS

without whom none of this would have been possible and for their support throughout our lives

AND TEACHERS

for inspiring us and supporting us throughout the entirety of the project

ACKNOWLEDGEMENT

It is a pleasure and a deep sense of indebtedness that we acknowledge the valuable help of our respected supervisor who have enriched the text by his generous contribution and patronage. We express our cordial gratitude to our supervisor **Prof. Dr. Arshad Hussain** for his encouragement, patience guidance, enthusiastic support, constructive suggestions and ever helping supervision.

We are thankful to our Industrial Supervisor **Engr. Amjad Latif**, Deputy Executive Engineering (Process), ICI Pakistan for being an ideal mentor and inspiring us and being there for us in each and every problem we encountered during our project.

We are also thankful to the **ICI Pakistan** for reducing student-Industry gap, giving us Industrial exposure and giving us chance to apply our knowledge and learning in practical industry problems and situations.

Last but not least, we would like to especially thank **our family, our parents** for supporting us, motivating us and encouraging us throughout our lives.

Author

This page is left intentionally blank.

Nomenclature

- *Cp* Specific heat capacity at constant pressure
- Cv Specific heat capacity at constant volume
- *P* Pressure
- *P* Power
- *T* Temperature
- *v* volumetric flowrate
- *n* Number of moles
- *R* Universal gas constant
- ρ Mass density
- z Gas compressibility factor
- *M* Relative molecular mass
- *H* Enthalpy
- *H* Head
- *m* mass flowrate
- *Q* Heat flow
- Δ change in
- *d* Diameter
- A Area
- *π* pi
- Re Reynolds number
- μ Viscosity
- *Pr* Prandtl number
- *k* Thermal conductivity
- Nu Nusselt number
- *Jh* Chilton and Colburn factor
- *h* Heat transfer coefficient
- U Overall heat transfer coefficient
- *l* Length
- *G* Mass velocity

- *f* Fanning friction factor
- g Gravitational constant
- ΔFp Pressure drop factor
- *γ* Specific gravity
- *Cd* Drag force coefficient
- *u* Velocity
- *NLL* Normal liquid level
- *t* time
- *Q* Fluid flowrate
- *H* Height
- *G* Flowrate of gas
- *L* Flowrate of liquid

Abstract

ICI Soda Ash is the major producer of Soda Ash in the country and the absorption of ammonia into the brine is one of the major processes for the manufacturing of Soda Ash. The company is using Absorber with single Bubble Cap Trays, which is an obsolete technology and has is being eventually replaced with several other different packing in chemical industries around the world.

This project is based on the feasibility analysis and conversion of the bubble cap trays to packed bed column. After literature review, consideration of current industrial practices and consultation with both supervisors (industrial and project) and calculated the performance of the process on the existing parameters. The simulation of the process is also done on the existing parameters and the design and costing of packed bed column and a comparison is drawn within different packing. After performing the proposed modification, it has been concluded that by using packed bed column not only the efficiency can be increased but space, which the column occupies, can also be saved. This conversion helps to minimize losses and improve the unit's yield.

Contents

Chapter-11
Introduction1
1.1. Background
1.2. History of ICI 1
1.3. Solvay's Process 1
1.4. Project/Study Objective
1.5. Organization of remainder of the study 3
Chapter-24
Literature Review
2.1. Absorber:
2.2. Physical Absorption:
2.3. Problems in the Absorber:
2.3.1. Flooding:
2.3.2. Weeping:
2.3.3. Channeling:
2.4. Process Description
2.5. Process Flow Diagram
2.6. Absorber Column
2.6.1. PURPOSE
2.6.2 PARTS OF ABSORBER COLUMN
Chapter-411
Instrumentation and Process Control11
4.1. Parameters Recordings:
4.2. Control Loops 11
4.2.1. Emergency Brine Flow Control11
4.2.2 Purified Brine Flow Control11
4.3. The Control System 12
4.4. The Heat Exchanger Control12
4.5. The Centrifugal Pump Control13
4.6. Distiller Gas Compressor Control14
10.7. The Absorber Control Loop15
Chapter-5
Equipment Description16

5.1. Tower washer and After washer	16
5.2. Absorber Vacuum Washer	17
5.3. Proper Absorber	17
5.4. Preliminary Absorber	17
5.5. OPERATING PARAMETERS:	18
5.5.1. Pressure	18
5.5.2. Temperature	18
5.5.3. Liquor Tests	18
5.6. Special Precautions	19
5.7. Common Problems and Troubleshooting	20
Chapter-6	24
Material & Energy Balance	24
6.1. Material Balance	24
6.1.1. Overall Material Balance	24
6.2. ENERGY BALANCE	26
6.2.1. STREAM ENTHALPIES	27
6.2.2. Heat rejected, cooling flow rates and compositions	31
6.2.3. Stream enthalpy for cooling [Heat Rejection]	33
6.2.4. Heat Generation (Absorption)	34
6.2.5. Overall Energy Balance	35
Chapter-7	36
Modelling and Simulation	36
Chapter-8	53
Design and Costing	53
8.1. Absorber Design	53
8.1.1. Design Velocity	55
8.1.2. HETP	56
8.1.3. Actual Height	58
8.2. Plate Heat Exchanger	60
8.2.1. Assumptions	60
8.2.2. For Liquid Out:	61
8.2.3. Water	66
8.2.4. Product Stream	67
8.2.5. LMTD	68
8.2.6. Actual Heat Duties	69

8.3. Compressor
8.4. Pump Design
8.5. Costing
8.5.1. Absorber
8.5.2. Plate Heat Exchanger
8.5.3. Pump
8.5.4. Duty Cost
8.5.5. Pump operating cost
8.5.6 Compressor operating cost
8.5.7. Purchase Cost Equipment
8.5.8. Physical Plant Cost
8.5.9. Fixed Capital
8.5.10. Variable Costs
8.5.11. Fixed Cost
8.5.12. Unit Analysis90
Chapter-9
HAZOP Analysis
Conclusion
References

List of Tables

Lists of Figures

Figure 1 Solvay's Process	3
Figure 2 Absorber Column for Ammoniation of Brine (Aspen Plus)	8
Figure 3 The Heat Exchanger Control Loop	
Figure 4 Centrifugal Pump Control	. 13
Figure 5 Compressor Control System	. 14
Figure 6 Absorber Control System	. 15
Figure 7 Heat Capacity of Brine Solutions	. 27
Figure 8 Initial Components	. 32
Figure 9 Liquid In Compositions	. 38
Figure 10 Liquid In Compositions 2	. 39
Figure 11 Absorber Proper Column 1	. 40
Figure 12 Absorber Proper Column 2	. 41
Figure 13 Absorber Proper Packing	. 42
Figure 14 Absorber Proper Packing 2	. 43
Figure 15 Heat Exchanger (Aspen Plus) 1	. 44
Figure 16 Heat Exchanger (Aspen Plus) 2	. 45
Figure 17 Gas Stream In	. 46
Figure 18 Compressor (Aspen Plus)	. 47
Figure 19 Preliminary Absorber (Aspen Plus) 1	. 48
Figure 20 Preliminary Absorber (Aspen Plus) 2	. 49
Figure 21 Strong Liquor Stream	. 50
Figure 22 Gas Intermediate (Aspen Plus)	. 51
Figure 23 Gas Out Stream	. 52
Figure 24 Superficial Velocity Corelation Curve (NPTEL Chemical Engineering Design I	
Figure 25 Vapor Liquid Equilibrium of Ammonia Saline System (Nakazawa 1984)	
Figure 26 Plate Heat Exchanger	
Figure 27 Inside view of a Plate Heat Exchanger	
Figure 28 Chevron Angle Correlations for Plate Heat Exchangers (D.Q Kern)	
Figure 29 Pump Selection Chart (Coulson & Richardson's Vol. 6)	
Figure 30 Figure 26- Pipe Friction Factor versus Reynolds Number and Relative Roughne	
rigure 30 rigure 20- ripe riteton ractor versus Reynolds runnber and Relative Rougine	
Figure 31 Pump Efficiency Curve (Richard & Coulson Vol.6)	
Figure 32 Vessel Cost Curve (Coulson & Richardson's Vol. 6)	
Figure 33 Area to Cost Correlation for Plate Heat Exchangers (Heat Transfer Engineering	
Hewitt & Pugh)	
	. 02

Chapter-1

Introduction

1.1. Background

ICI Soda Ash is one of the biggest Soda Ash producing Industry in Pakistan with a yield of 250 tons/day. The vitality prerequisites of the plant are met by their own steam control plants which are as of now being kept running on the coal imported from South Africa. Absorption is one of the main unit operations involved in the Solvay's process for Soda Ash Manufacturing. Brine purification plant is sent to the absorbers for ammoniation. The purpose of the absorber is to absorb ammonia into the brine in the desired amount to produce ammoniated brine before its reaction with carbon dioxide in carbonating towers.

1.2. History of ICI

The company, ICI (Imperial Chemical Industries) Pakistan Limited, is a well-known Chemical Manufacturing Industry with its headquarters in Karachi. The company was founded back in 1952 and has four major businesses; Soda, Polyester, Life sciences and Chemicals. The project mentioned in this thesis is being done on one of the sections of the Soda Ash Industry, which is ICI's Soda Ash Plant located in Khewera, Pakistan. It is one of the largest Soda Ash production plant in the country with over 250 tons/day. Light and dense Soda Ash is produced on the plant through Solvay's process. There are several coal burning boilers present at the plant in order to meet the energy requirements for the processes.

1.3. Solvay's Process

The process is widely used to manufacture Calcium Carbonate and this is also known as Ammonia-Soda Ash process. The raw materials used in this process are brine, limestone and ammonia. The overall equation of the process is as following:

Step 1

$$2NaCl + CaCO_3 \rightarrow Na_2CO_3 + CaCl_2$$

The total process is described in four different steps. During the first step the carbon dioxide passes through the concentrated solution of sodium chloride and ammonia. In the Industry, this step is done by passing brine over the two towers. In the first tower the ammonia gas is dissolved in the brine and carbon dioxide bubbling through the ammoniated brine forms sodium bicarbonate precipitates in the second tower. This is presented in the reaction below:

Step 2

$$NaCl + CO_2NH_3 + H2O \rightarrow NaHCO_3 + NH_4Cl$$

The ammonia, thought of as a catalyst, is regenerated in later step and is very little consumed for the process. When the limestone is heated, also known as calcination reaction, the carbon dioxide is produced at 950-1050 $^{\circ}$ C.

Step 3

$$CaCO_3 \rightarrow CO_2 + CaO$$

During step 3, the sodium bicarbonate produced in step 1 after being filtered out of chloride solution is reacted with Calcium Oxide produced in step 2. This is presented in the following reaction:

Step 4

$$2 NH_4 Cl + CaO \rightarrow 2 NH_3 + CaCl_2 + H_2O$$

The Carbon dioxide produced is recycled so that it can be used in step 1. The process should have minimal loses of ammonia so that it may be used over and over again. Case salt, limestone and thermal energy are the major inputs of this process and Calcium chloride is the major by product. Calcium chloride is currently not being used at the plant and several beds are buried throughout the plant. There are several coil boilers present which meets the energy requirements of the plant.

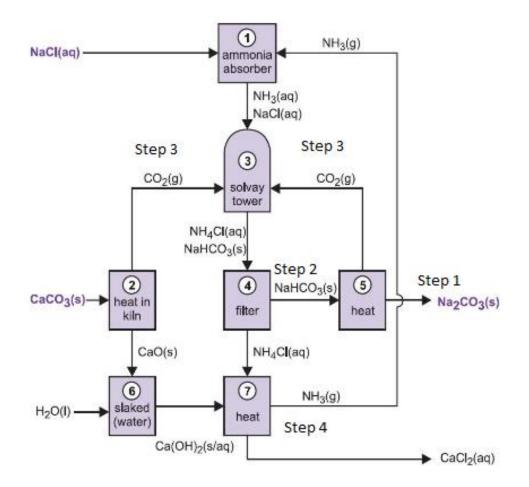


Figure 1 Solvay's Process

1.4. Project/Study Objective

The purpose of this project was to propose different packing of the absorber in order to increase the absorption of ammonia gas into the brine. ICI Soda Ash is using bubble cap packing since 1940 and the technology has become obsolete and by changing bubble cap column to packed bed column the absorption of ammonia can increase and hence increase the efficiency of overall system which in turn will increase the yield of the Soda Ash produce. Just by changing the packing of the column overall economics can be increased.

1.5. Organization of remainder of the study

The authors of this thesis have done their best in arranging each and every detail in the process outlined. It is trusted that the substance of this report is adequate for anybody hoping to actualize this procedure on a modern scale.

Chapter-2

Literature Review

2.1. Absorber:

In the Absorber, the vent gases are dissolved in the counter current way. The vast majority of NH_3 is dissolved, while other is expelled with fumes gasses. In ingestion significant mass exchange happens from gas stage to fluid stage. The following are the primary reasons for absorption:

- To separate undesirable compound from the system
- To prepare a valuable compound
- To separate a compound for economic purposes

2.2. Physical Absorption:

In physical absorption, the significant mass exchange occurs from the gas stage to the fluid stage exclusively by the diffusion and physical absorption.

The following are the two main types of absorbers present:

- Packed Absorbers segment
- Plate Absorbers segment

The following is the comparison between packed and plate absorber:

- The plate absorbers are utilized for vast fluid and gas stream rates.
- Whereas the packed absorbers are utilized for little width, in light of the fact that for small measurements plates are hard to introduce and clean.
- The productivity of plates segments are anything but difficult to foresee than in the case of packed absorbers.
- Plate absorbers are anything but difficult to work in light of the fact that in the packed one it is troublesome to keep up fluid conveyance over the packing.
- Cooling can be effortlessly controlled in the plate sections with the use of cooling jackets.
- In the plate sections, it is simpler to expel the side-streams.

- For fluid containing suspended solids, plate absorbers are normally utilized. Since they are all the more effortlessly to clean then the pressed sections. For small measurements, fluid having suspended particles, pressed segments are utilized. The packing is supplanted when they are fouled.
- For destructive fluids in the packed ones are less expensive than the plate ones.
- Packed absorbers have vast fluid hold up than the plate segments. Fluid holdup is essential to study when fluid is dangerous or combustible.
- For frothing frameworks, packed ones should be utilized.
- Pressure drop per packing is brought down in the packed one than in the equal plate column.

2.3. Problems in the Absorber:

2.3.1. Flooding:

As the gas reaches the maximum velocity in the column at that point it is said to be flooded. During this phenomenon the gas gives high resistance to the liquid, which is coming from the top of the column, and thus little mass transfer from gas phase to liquid phase. High pressure of the gas damages the tray, so actual velocity of the gas should be fifty percent of the flooding velocity to have effective mass transfer from the gas to the liquid phase.

2.3.2. Weeping:

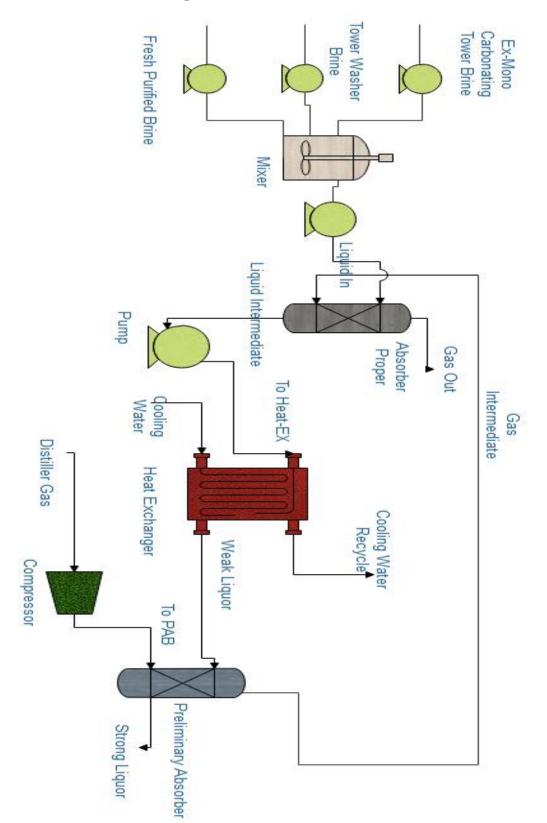
It is the phenomenon during which the liquid drops down the holes of the tray column. The tray is unable to hold the liquid on the trays and liquid falls down the tray. It often occurs in the tray column.

2.3.3. Channeling:

In the packed columns the liquid that is coming from the top makes some pathways and leave few areas of packing dry, due to the low liquid flow rates. Due to this phenomenon, there is very low amount of heat and mass transfer. So the fluids are evenly distributed throughout the packing in order avoid channeling.

2.4. Process Description

After the brine is being purified, it is pumped from the reservoir to top most compartment of the tower washer section of the absorber. At the top of the tower washer, there is after washer where the cold purified water is used to scrub the final traces of salt and ammonia that rises up the column. The brine is branched of Absorber Vacuum Washer (AVW), absorber proper and Mono-Carbonating Tower washer (MCT), before entering the tower washer. Within the tower washer the brine flows down the column due to gravity and maintains the certain bubbling depth of brine in each compartment. The waste gases coming out of the carbonating tower enters in the tower washer through the gas compartment. The liquor droplets carried over with these gases from the towers are separated out in the gas compartment and then drained into the CVL stocks through "Tower Washer runoff main."


The gases rising up through the bubble cap are absorbed within the brine coming down. The brine that is coming down absorbs ammonia and the remaining gases vent to the atmosphere through a knock-out box. The exit gas temperature is maintained by regulating the flow of the brine.

As the absorption process is exothermic and as it comes in contact with the hot gases within the tower, the brine leaving the tower washer becomes hot. In order to carry out further absorption, the brine needs to be cooled down and for this purpose it is passed through the plate heat exchangers.

The vacuum pull is applied in order to pull the distiller gases, which are being fed to the gas compartment, in the 3 compartments of AVW on the top of the absorber proper. As the brine absorbs ammonia the heat is generated. The ammoniated brine known as weak liquor coming out of the absorber is cooled down by passing through the plate heat exchangers. After the weak liquor is pumped back to the preliminary absorber (PAB), further absorption again causes the temperature to rise. This liquor known as strong liquor is further sent to the stock tanks and is known as VAT Liquor.

The column consists of tower washer, AVW, absorber proper and PAB and this is known as Absorber Column. From AVW to tower washer there is no passage of gases and tower washer is a separate column placed at the top of the absorber. The operation of absorber is chemically simple as it is an operation of temperature, pressure and vacuum controls. The absorber operation depends upon the gas supply from distillers and any upsetting in the distiller will directly affect the absorber working and vice versa.

2.5. Process Flow Diagram

7

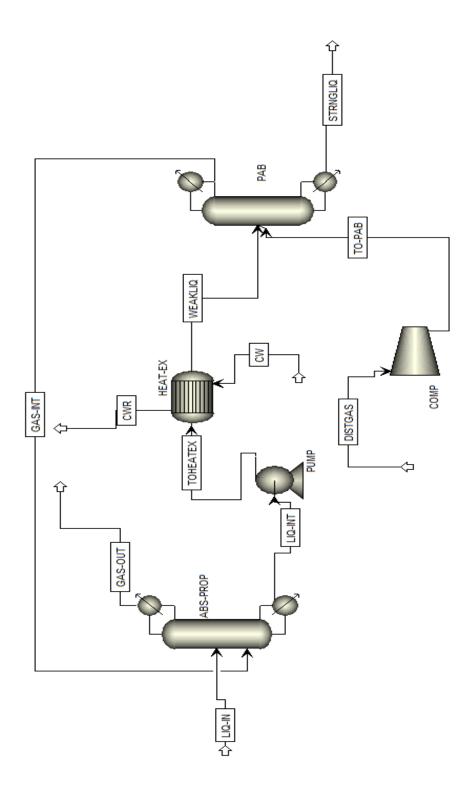


Figure 2 Absorber Column for Ammoniation of Brine (Aspen Plus)

2.6. Absorber Column

2.6.1. PURPOSE

The purpose of the absorber is to absorb ammonia into brine in the desired amount to produce ammoniated brine, before its treatment with carbon dioxide in carbonating towers. As carbon dioxide is sparingly soluble in brine, ammonia is first dissolved in brine.

2.6.2 PARTS OF ABSORBER COLUMN

- After Washer (AW).
- Tower Washer (TW).
- Absorber Vacuum Washer (AVW).
- Proper Absorber.
- Preliminary Absorber (PAb.).
- Plate Heat Exchanger (PHE).
- Re-ammoniator.
- Vat. Liquor Stock tanks.

The absorber column is about 78ft. high and it consists of 20 compartments, each 6ft. in diameter. Each compartment is fitted with a single bubble cap and over flow boxes.

The carbonating towers waste gas rises up the bubble cap and makes contact with the brine on the plate and then passes through the gas riser to the above plates.

Brine flows across the plate in the zig zag path through the over flows and on to the plates below. A weir plate at the entrance of the overflows maintains the liquid level over the plate.

The column is divided into two main sections with 10 compartments each, and the main sections are as following:

- Tower Washer for the absorption of carbonating tower waste gas
- Proper Absorber for the absorption of distiller gas

Further division according to compartments is as:

After Washer	 1 compartment
Tower Washer	 9 compartment
Absorber Vacuum Washer	 3 compartment
Proper Absorber	 5 compartment
Preliminary Absorber	 2 compartment

Chapter-4

Instrumentation and Process Control

4.1. Parameters Recordings:

Following are the recordings for the control parameters:

- Total purified brine flow, Tower washer brine flow and totalizer
- Tower washer brine leaving and entering temperature
- Tower washer temperature and Absorber top temperature
- Weak Liquor leaving and entering temperature
- Strong liquor leaving PAB temperature
- Distiller gases entering PAB temperature
- Ammonia Injection

4.2. Control Loops

4.2.1. Emergency Brine Flow Control

After the tower washer brine is cooled enters from the top compartment of Absorber Proper and on the other hand Caisse Cooler gases, which are usually ammonia with small amount of carbon dioxide, enters from the bottom. In the absorber section, majority of the ammoniation is carried out. This reaction being exothermic raises the temperature of the liquor; this could also mean inadequacy of brine flow for the reaction with gases. Therefore, an emergency brine flow to this section is provided which is linked with third compartment temperature, so that brine flow may be increased whenever temperature of weak liquor increases from set limit.

However, the loop is not being used as it resulted in operational difficulties.

4.2.2 Purified Brine Flow Control

Gases ex-carbonating towers are washed in the Tower Washer by means of purified brine. Any change in TW pressure has an impact on the performance of Carbonating Towers. Sharp changes in TW pressure cause rapid change in the rate of drawing, which in turn causes problems in magma handling and reduced conversion. A control scheme comprising of differential temperature of tower washer exit gas (vent) to purified brine and inlet gas pressure with some compensation, as designed to regulate the purified flow to the tower.

4.3. The Control System

In order to make provisions for adequate safety, as well as for the efficient handling and automation of the project, a control system needs to be in place. As the conditions of the process are quite dynamic, there are a lot of deviations in several parameters. Therefore, a fast acting control system will not only ensure safety but also smooth operations in the plant. It will counter the possible deviations to keep process variables within acceptable limits. The diagram below shows the overall design of the control system, and what follows is an up-close look at how controllers are placed around each of the process equipment.

4.4. The Heat Exchanger Control FF

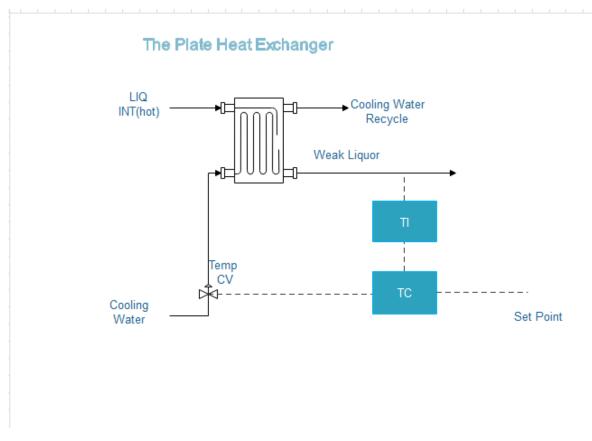


Figure 3 The Heat Exchanger Control Loop

- A plate heat exchanger is fitted with temperature control loop.
- The controlled variable is the temperature of the "Weak Liquor".

• The manipulated variable is the flowrate of "Cooling Water" stream.

4.5. The Centrifugal Pump Control

- The pump is fitted with a flow control loop.
- The Controlled variable is discharge flow rate i.e. flow rate TO HEAT EX.
- The manipulated variable is the flow rate of LIQ INT.

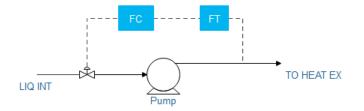


Figure 4 Centrifugal Pump Control

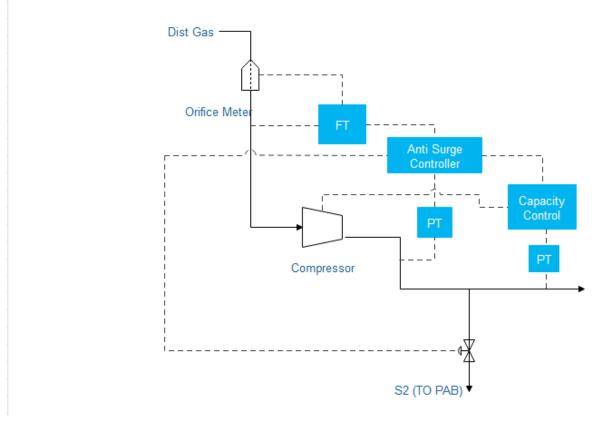


Figure 5 Compressor Control System

- The compressor is fitted with capacity and antisurge control loops.
- For antisurge control loop, the controlled variable is the surge tendency of the compressor.
- The manipulated variable is the flowrate of the 'TO PAB' stream
- For the capacity control loop the controlled variable is the input flowrate to the compressor.

10.7. The Absorber Control Loop

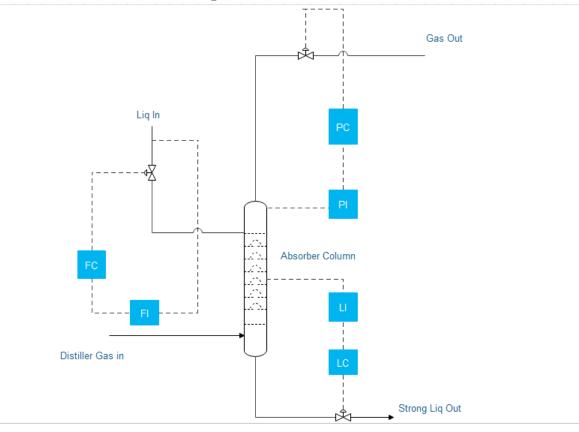


Figure 6 Absorber Control System

- The absorber column is fitted with pressure, level and flow control loops.
- For the level control loop, the controlled variable is the absorber fluid level
- The manipulated variable is the flowrate of the 'Strong Liq Out' stream
- For the pressure control loop the controlled variable is the absorber pressure
- The manipulated variable is the 'Gas Out' flowrate
- For the flow control loop the controlled variable is the flowrate of gas into the vessel

The manipulated variable is the 'Liq In 'flowrate.

Chapter-5

Equipment Description

The operation of absorber depends upon the control of temperatures, pressure and vacuum. It also depends upon the gas supply from distillers and carbonating towers, any abnormality in there operation will in turn effect the absorbers operation and vice versa.

5.1. Tower washer and After washer

Upper portion of the absorber is called Tower washer. Its purpose is to recover the ammonia from the waste gases of the carbonating towers. The topmost compartment of this portion is called After Washer. Purified water is used to wash (scrub) the final traces of ammonia. The reason for using water in this compartment is to avoid deposition of salt in the exit gas main, which would occur if brine were used and also to protect the environment from ammonia. Ammonia tester measures ammonia loss in exit gas.

Purified brine is pumped and sprayed in the tower washer i.e., in the second compartment from top. The purified brine main line before entering the tower washer is branched off to supply a certain portion of brine to absorber vacuum washer and a small line to the sealing of TLC pump.

The waste gases from the carbonating towers enter the gas compartment of the tower washer, where the liquor droplets carried over by the waste gases from towers separates out and is drained into the CVL line through Tower Washer run-off line. The gases travel up the column through bubble cap plates and are finally wasted to atmosphere. The brine as it travels down absorbs ammonia and some carbon dioxide from the waste gases of the carbonating towers. The brine leaving the tower washer becomes hot, because it comes in contact with the hot gases from the tower and also due to the absorption of ammonia. Therefore it is necessary to cool the brine before it is sent to absorber. The brine leaving is called Tower Washer Brine, which is then passed through PHE and is cooled by cooling water.

5.2. Absorber Vacuum Washer

Absorber vacuum washer is fed with purified brine, which was branched off from the main header, to scrub ammonia from the gases coming from the proper absorber. The gases leaving the absorber vacuum washer are strong gases having carbon dioxide concentration of 90-92%. Vacuum is applied by means of vacuum engine (absorber vacuum engine) to the top most compartment of absorber vacuum washer, which sucks the gases from the absorber and delivers into FMC with other gases.

5.3. Proper Absorber

Tower Washer Brine after being cooled enters the proper absorber top. Here it absorbs ammonia from the distiller gases; as reaction is exothermic and the gases coming from distiller are hot the temperature of the liquor rises. This partly ammoniated brine leaving from the proper absorber proper bottom is called Weak Liquor is cooled in PHE and fed back to the preliminary absorber.

5.4. Preliminary Absorber

Weak Liquor after being cooled is fed to the first compartment of preliminary absorber, where further ammoniation takes place the temperature rise and the liquor leaving from the second compartment of preliminary absorber is called Strong Liquor, which is then sent to the Vat Liquor stock tanks. This ammoniated brine from stocks is called Vat Liquor. From the storage, Vat. Liquor is pumped to Mono carbonating Tower after cooling where it is partially carbonated with kiln gas and enters the reammoniator for the final pickup of ammonia concentration to the desired extent.

The gases from the distiller containing ammonia and carbon dioxide are first cooled in Caisse Cooler. The main line carrying the gases from the Caisse Cooler branches off to re-ammoniator before entering the preliminary absorber. A valve (chain) on the main line between preliminary absorber and the point from where the line branches off diverts the gases to re-ammoniator and unused gases from reammoniator are carried through a line which then joins the distiller gases main line before entering the gas compartment below preliminary absorber (also called preliminary absorber gas compartment). At this point make up ammonia line from tankers is also added to the distiller gases main line. In the gas compartment, condensate from distiller gas main, which is strong ammonia solution is collected and drained into the Vat. Liquor stock tanks through a line called PAB run-off.

5.5. OPERATING PARAMETERS:

5.5.1. Pressure

Absorber Vacuum at Control Valve	7.5 ± 1 in. Hg
Absorber Top	5.5 ± 1 in. Hg
Absorber Bottom	2.5 ± 1 in. Hg
Preliminary Absorber	0.0 <u>+</u> 0.5 in. Hg
Tower washer	7.0 <u>+</u> 1 in Hg

5.5.2. Temperature

Absorber Top	35 – 45 C
Tower Washer Brine Leaving	35 – 45 C
Tower Washer Brine Entering Absorber	35-40 C
Weak liquor Entering PAB.	35-40 C
Strong Liquor Leaving PAB	65 – 68 C
Gases Entering PAB	>60 C
Vat. Liquor to MCT	$34-40\ C$
Gases Ex - RTT	$45-50\ C$

5.5.3. Liquor Tests

Tower Washer Brine Direct Test	16	_	22	mls N/20 ml
Absorber Vacuum Washer Direct test	3	_	4	mls N/20 ml
Absorber Direct Test	35	—	45	mls N/20 ml
Vat. Liquor Direct Test	98	_	100	mls N/20 ml

5.6. Special Precautions

Tower Washer

- Turbid brine is not fed
- TW bottom pressure should not rise normal working pressure varies between 5
- 7 in.Hg., depending upon flow rate of brine
- There should be no interruption of water supply to topmost compartment (AW
- Gas compartment is properly drained.

Absorber Vacuum Washer

- Vacuum applied should be such that there is 1in.Hg. Pressure on the heater top and slight vacuum on PAB.
- Keep a watch on the vacuum difference i.e., vacuum readings of AVE or top of AVW, absorber top, absorber bottom and PAB. These readings are very important as they help in detecting the obstruction in any section of the absorber.
- Keep sufficient brine flow to the AVW so that the direct test is controlled.
- Flush the AVW with purified water once per shift. Flushing of water should be strictly controlled to avoid unnecessary dilution of brine in the absorber.

Proper Absorber and PAB:

- Vacuum control.
- Absorber top temperature should be controlled between 40 45 C
- Weak liquor temperature of 69 C. gives the desired test in liquor and should be controlled between 68 70 C
- Weak liquor should be cooled to 38 40 C. before feeding it to PAB.
- Strong liquor leaving temperature should be controlled between 68 70 C. at 69
 C. it gives the desired test.
- Control the temperatures of liquor leaving absorber and PAB by adjusting the flow of brine.
- Steam the vent system regularly.

- Make sure that the PAB lute is in proper working order.

5.7. Common Problems and Troubleshooting

Probable Causes	Remedial Solutions
Obstruction in tower waste gases inlet	Steam the main thoroughly
Obstruction in tower washer exit gases main	Increase the flow of purified water in the after washer
Obstruction in tower washer brine outlet	Check TWB pumps running load, check
	sieves and clean/change if clogged

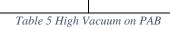
Table 1High Pressure in Tower Washer

Probable Causes	Remedial Solutions
Partial blockage in TW/WL sieves	Change-over or clean the sieves
Inefficient working in TWB or WL	Check operating loads and put the stand
pumps	by pump on duty
Obstruction in AVW compartments	Carryout thorough steaming
Obstruction in vacuum main from AVW to AVE	Carryout steaming
Air ingression due to drawing/sucking of lute	Check the absorber vacuum lute and refill if empty

Table 2 Gradual and Steady rise in Pressure

Probable Causes	Remedial Solutions
Chocking of necks/vents	Regular steaming of vents
Blockage/channeling in vent washers	Steam/Flush the vent washers

Table 3 Pressure in Liquor Stocks


Probable Causes	Remedial Solutions
Greater amount of gases going to PAB	Notch up the AVE to match the gases
	being fed to the PAB
inefficient Absorber Vacuum Engine	If the vacuum doesn't increase with the
	above action, change the engine
Choking of Absorber Vacuum Washer	The vacuum gradient in the AVE,
compartments	absorber top, absorber bottom and PAB
	will be abnormal. The vacuum at the top
	and bottom drops. Flushing and steaming
	of AVW and Absorber top will ease the
	situation
Liquor holding in the Proper Absorber	The pump tripping will cause reduction
	in the quantity of distiller gases being
	generated and hence vacuum on the PAB
	will be observed even with the same set
	of AVE. Get the tripped pump started as
	soon as possible, meanwhile reduce the
	vacuum to avoid holding of liquor.

Holding	of	liquor	in	the	PAB	Blockage in the PAB runoff. Can be
compartm	ents					removed by knocking and through steaming
						waanuna on DAD

Table 4 High Pressure on PAB

Probable Causes	Remedial Solutions
Choking/scaling up of distiller gas main	Blockage in the drains of caisse cooler
to PAB	gas or condensate compartment will
	result in excessive pressure on the
	distiller column due to gas holding. PAB
	will come under vacuum. The system
	will normalize only after the drains are
	cleared.
	T
Obstruction in Caisse Cooler gas or	Liquor quantity in the caisse cooler
condensate drain or Caisse Cooler tube	condensate compartment will increase
leakage	according to the nature of the leakage of
	caisse cooler tube. Bursting of the tube
	will result in building in liquor in the
	condensate compartment and holding of
	distiller gases. The set of caisse cooler
	boxes with leaking tubes has to be
	isolated as soon as possible to overcome
	the problem
Tripping of feeder liquor pump	The pump tripping will cause reduction
	in the quantity of distiller gases being
	generated and hence vacuum on the PAB

will be observed even with the same set
of AVE. Get the tripped pump started as
soon as possible, meanwhile reduce the
vacuum to avoid holding of liquor.

Probable Causes	Remedial Solutions
Absorber high top	-Check absorber vacuum
	-Check steam leakage in AVW absorber,
	ammonia injection main and optimize
	use of steam in distillers
	-Check WL entering temperature and
	acid/manual clean the PHE.

Table 6 Temperature Related Up-Setting

Chapter-6

Material & Energy Balance

6.1. Material Balance

The Equipment Used

These are the following equipment used:

- Absorber
- Plate Heat Exchanger
- Pumps
- Compressor

6.1.1. Overall Material Balance

Liquid In

- Total Liquid In: 80977.6 kg[/]hr
- $NH_3 = 825.6 \text{ kg/hr}$
- NaCl = 20640 kg/hr
- $H_2O = 59512 \text{ kg/hr}$

Liquid Out

- Total Liquid Out = 85348 kg/hr
- $NH_3 = 9000 \text{ kg/hr}$
- NaCl = 20640 kg/hr
- $H_2O = 55680 \text{ kg/hr}$
- $C0_2 = 28 kg/hr$

Gas In

- Total Gas In = 52500 kg/hr
- $NH_3 = 9074.4 \text{ kg/hr}$
- $CO_2 = 14700 \text{ kg/hr}$
- $H_2O = 27995.4 \text{ kg/hr}$

• Inert = 730.2 kg/hr

CO₂ Balance

Mass In = Mass Out

(0.21)(70000) = y + 28

y = 14672 kg/hr

NH₃ Balance

$$Mass In = Mass Out$$

825.6 + x = 9000 + 900

x = 9074.4 kg/hr

*Assume NH₃ loss = 900 - 825.6 = 74.4 kg/hr

Water Balance

Mass In = Mass Out

59512 + 27995.4 = 55680 + z

z = 31827.4 kg/hr

Provided that G_{out} is 90% CO₂ on dry basis (wt%)

14672/0.9 = 16302 kg/hr

 $CO_2 + NH_3 + I = 16302$

I = 16302 -14672 - 900 = **730.2 kg/hr**

 $G_{out} = 16302.2 \text{ kg/hr}$

Water = 31827.4 kg/hr

Total = **48129.6 kg/hr**

Total Material Balance

$$Mass In = Mass Out$$

80977.6 + 52500 = 48157.6 + 85320

133477.6 kg/hr = 133477.6 kg/hr

6.2. ENERGY BALANCE

Reference Temperature = $25 \text{ }^{\circ}\text{C}$

$$Cp = A + BT + CT^2 + DT^3 + E/T^2$$

NH₃

Cp (25 °C) = 35.5 J/k.mol (g)

 $Cp (33 \circ C) = 83 J/k.mol$ (1)

Cp (70 °C) = 88.5 J/kmol (l)

 $Cp (60 \circ C) = 36.7 \text{ J/k.mol} (g)$

Cp (out) = 26.5 J/k.mol (g)

Water

75.3 J/k.mol (l) (NIST)

36.5 J/k.mol (g) (NIST)

<u>CO</u>₂

At 60 °C = 38.7 J/k.mol

At 25 °C = 37.12 J/k.mol

NaCl (aq)

Cp = 71.9 J/k.mol

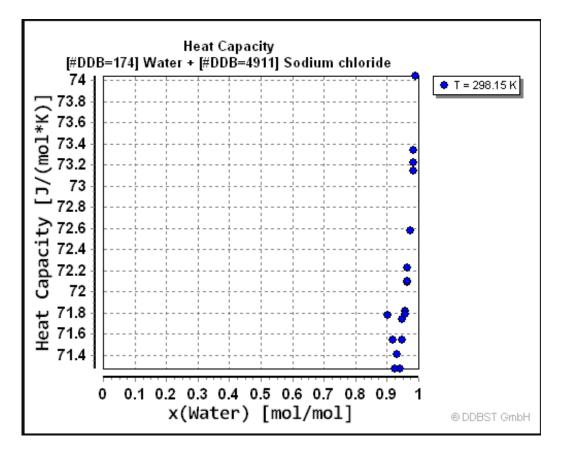


Figure 7 Heat Capacity of Brine Solutions

6.2.1. STREAM ENTHALPIES

Liquid In

- $NH_3 = 48.56 \text{ kmol/hr}$
- NaCl = 352.8 kmol/hr
- $H_2O = 3306.2 \text{ kmol/hr}$
- **Total** = 3707.56 kmol/hr

 $\mathbf{Cp_{mix}} = (48.56/3707.56) \times (83) + (352.8/3707.56) \times (71.9) + (3306.2/3707.56) \times (75.3)$

Cp_{mix} = 75 KJ/k.mol

$$Q = mCp_{mix}\Delta T$$

Q: Enthalpy of stream (KJ/hr)

m: Molar Flow Rate (KMol/hr)

Cpmix: Heat Capacity of Mixture(KJ/k.mol)

 ΔT : Temperature Difference (°C)

 $Q = (3707.56) \times (75) \times (33 - 25)$

Q = 2226829.3 KJ/hr

Liquid Out

 $NH_3 = 529.4 \text{ k.mol/hr}$

NaCl = 352.8 k.mol/hr

 $H_2O = 3093.3 \text{ k.mol/hr}$

 $CO_2 = 0.636 \text{ k.mol/hr}$

Total = 3976.1 k.mol/hr

 $Cp_{mix} = (529.4/3976.1) \times (88.5) + (352.8/3976.1) \times (71.9) + (3093/3976.1) \times (75.3) + (0.636/3796.1) \times (38.7)$

Cp_{mix} = **76.7 KJ/k.mol**

$$Q = mCp_{mix}\Delta T$$

Q: Enthalpy of stream (KJ/hr)

m: Molar Flow Rate (KMol/hr)

Cpmix: Heat Capacity of Mixture(KJ/k.mol)

 ΔT : Temperature Difference (°C)

 $Q = 3976.1 (76.7) \times (70 - 25)$

Q = 13731558 KJ/hr

Gas In

 $NH_3 = 533.8 \text{ k.mol/hr}$

 $H_2O = 1555.4 \text{ k.mol/hr}$

 $CO_2 = 334.1 \text{ k.mol/hr}$

Inert = 21.56 k.mol/hr

Total = 2444.6 k.mol/hr

 $Cp_{mix} = (533.8/2444.6) \times (36.7) + (334.1/2444.6) \times (38.7) + (1555.4/2444.6) \times (36.5) + (21.56/2444.6) \times (30)$

Cp_{mix} = 36.8 KJ/k.mol

$$Q = mCp_{mix}\Delta T$$

Q: Enthalpy of stream (KJ/hr)

m: Molar Flow Rate (KMol/hr)

Cp_{mix:} Heat Capacity of Mixture (KJ/k.mol)

 ΔT : Temperature Difference (°C)

 $Q = 2444.6 \times (36.8) \times (60 - 25)$

Q = 31475339 KJ/hr

Gas Out

* Gas Out Temperature =58 °C

 $NH_3 = 52.9 \text{ k.mol/hr}$

 $H_2O = 1768 \text{ k.mol/hr}$

 $CO_2 = 333.45 \text{ k.mol/hr}$

Inert = 21.56 k.mol/hr

Total = 2175.91 k.mol/hr

 $Cp_{mix} = (333.45/2175.9) \times (387) + (21.56/2175.91) \times (30) + (52.9/2175.91) \times (36.5) + (1768/2175.91) \times (36.5)$

Cp_{mix} = 36.8 KJ/k.mol

$$Q = mCp_{mix}\Delta T$$

Q: Enthalpy of stream (KJ/hr)

m: Molar Flow Rate (KMol/hr)

Cp_{mix:} Heat Capacity of Mixture(KJ/k.mol)

 ΔT : Temperature Difference (°C)

 $Q = 36.8 \times (2175.91) \times (58 - 25)$

Q = 2640467 KJ/hr

6.2.2. Heat rejected, cooling flow rates and compositions

Solute Free Basis

$$G_s = G [1 - y]$$

G: Gas Flow rate Kmol/hr

Gs: Solute Free Gas Flow Rate Kmol/hr

y: molar fraction

 $G_s = 2444.6 [1 - 0.218]$

G_s = 1910.8 k.mol/hr

 $\mathbf{L}_s = L[1-x]$

L: Liquid Flow rate Kmol/hr

Ls: Solute Free Liquid Flow Rate Kmol/hr

x: molar fraction

 $L_s = 3707.56[1 - 0.0131]$

 $L_s = 3659 \text{ k.mol/hr}$

$$Y_{N+1} = \frac{y}{1-y}$$

 $Y_{N\!+\!1\,:}$ Ammonia Free Fraction in Gas In

y: Ammonia Fraction in Gas In

 $Y_{N+1} = 0.279$

$$X_0 = \frac{x}{1 - x}$$

 $X_{0:}$ Ammonia Free Fraction in Liquid In

x: Ammonia Fraction in Liquid In

 $X_0 = 0.0133$

$$G_s[Y_N + 1 - Y_i] = L_s[X_i - X_0]$$

 $0.279 - Y_i = [36.59 \times (0.1255 - .0133)]/[2444.6]$

 $Y_i = 0.111$ $X_i = 0.1255$

 $X_{\rm N} = 0.133/(1 - 0.133)$

$X_N = 0.1536$

Stage = 8

[0.1536 - 0.133]/10 = 0.014

i = 8

 $X_8 = [0.0133 + 8 (0.014)]$

 $X_8 = 0.1255$

 $G_i = 463.6 \text{ (NH}_3)$ 334.1 (CO₂) 1555.14 (H₂O) 21.56 (Inert)

Total = 2374.4 kmol/hr

6.2.3. Stream enthalpy for cooling [Heat Rejection]

 $Cp_{mix} = (459.2/3905.9) \times (88.5) + (352.8/3905.9) \times (71.9) + (3093.8/3905.9) \times (75.3) + (0.636/3905.9) \times (38.7)$

Cp_{mix} =76.7 KJ/k.mol

 $Q = m C p_{mix} \Delta T$

Q: Enthalpy of stream (KJ/hr)

m: Molar Flow Rate (KMol/hr)

Cpmix: Heat Capacity of Mixture(KJ/k.mol)

 ΔT : Temperature Difference (°C)

 $Q = (76.5) \times (3905.9) \times (70 - 40)$

Q = 10159245 KJ/hr

6.2.4. Heat Generation (Absorption)

Reaction:

$$NaCl.H_2O + NH_3 \rightarrow NaCl.NH_4OH$$

 $\Delta H_{sol} = 44085 \text{ KJ/k.mol}$

(Dortmund Data Bank)

 $NH_3 Out - NH_3 In$

= 480 Kmol/hr

 $\Delta H_{sol} = (480) \times (44085)$

 $\Delta H_{sol} = 21197000 \text{ KJ/hr}$

6.2.5. Overall Energy Balance

Energy In

Liquid In = 22.27×10^5 KJ/hr

Gas In = 31.48×10^5 KJ/hr

Total = 53.74×10^5 KJ/hr

Generation

212×10⁵ KJ/hr

Energy Out

Liquid Out = 137.3×10^5 KJ/hr

Gas Out = 26.4×10^5 KJ/hr

Total = 163.7×10^5 KJ/hr

Intermediate Cooling

101.6×10⁵ KJ/hr

Energy In + Generation = Energy Out + Intermediate Cooling + Miscellaneous Losses by Radiation

 $(53.74+212) \times 10^5 = (264+137.7+101.6+x) \times 10^5$

 $x = 0.41 \times 10^5$ KJ/hr *Heat Loses from column to surrounding by radiation

Chapter-7

Modelling and Simulation

The program was simulated by using given data of Bubble Cap Tray column on Apsen Hysys and Apsen Plus V8.8. Aspen Plus V8.8 is the up-to-date version of this extensively used process optimization software. With a bunch of brand-new novelties in modeling, V8.8 guarantees an enhanced user experience, latest property data, and a much precise modeling.

The simulation was done for same throughputs for Packed bed absorption column.

Initially	these	compo	onents	were	S	electo	ed	W	vith	H	I_2S		as	In	ert.	
Input Changed Check Status	🔊 Energy Analysis	Simulation	Properties	 Polymers Methods Chemistry 	UNIFAC Groups	 Pseudocomponents Component Attributes 	Petro Characterization		Molecular Structure	Setup Components	All Items	Properties <	Clipboard Units N	Unit Sets	Home View	 ≥ ⇒ ⇒
					Find Elec Wizard User Defined	+ HYDRO-01 Conventional	AMMON-01 Conventional	CARBU-UT Conventional WATER Conventional	ent ID	Select components	Selection Petroleum Nonconventional	Components - Specifications × +	avigate Structure	onents & Customize	mize Resources	
					ined Reorder Review	HYDROGEN-SULFIDE	AMMONIA	WATER			Enterprise Database Information		Tools Data Source Run Mode	B DECHEMA		FYP.apwz - Aspen
						St	H3N	02H	Alias	_			Run 🕞 Summary	Run Reset Control		FYP.apwz - Aspen Plus V8.8 - aspenONE
Go to PC sertings to activitie 100% ●	Activate Windows												Analysis	Binary A Residue Curves		
ENG 5/22/2017															2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	

Simulation of Packed bed absorber Column

Figure 8 Initial Components

Liquid In Stream

Liq in stream is the mixture of Ex-Mono carbonating tower brine, Tower Washer Brine and Fresh Brine.

Costing: Sim Changed Check Status	Energy Analysis	Safety Analysis	Properties	Stream Results (Custom)	 Input Results EO Variables 		Charge Dearlie (Contemp)	GASINT	o CWR	Streams	Simulation <	% Cut METCBAR No Pacopy * Unit Sets Next Paste Units Next	File Home Economics	A E A A A A A A A A A A A A A A A A A A
iatus P I I I I I I I I I I I I I	() ()	Volume flow reference temperature	Solvent	Total flow basis Mole Total flow rate 3708 km	Pressure 24 kPa Vapor fraction		Temperature	Specifications	STRNGLIQ (MATERIAL) - Stream Results (Custom) ×	USD USD/Year on O	Economics A Sim Changed Capital Cost Utility Cost	Run Step Stop Reset Control Reconcile Run Step Stop Reset Control Reconcile	Dynamics Equation Oriented View	
	Total 1		 HYDRO-01 		a ▼ SODIU-01 0.175	 Component Value 	Pressure Composition Mole-Frac	ions EO Options Costing Information	i) × CLQIN (MATERIAL) - Stream Results (Custom) × Main Flowsheet ×	MW % of Actual O off	Energy Available Energy Savings	Model Summary Input Stream Analysis* 2 Heat Exchanger Stream Summary History Sensitivity & Azeotrope Search Utility Costs Report Z Stream Fit Distillation Synthesis Summary Summary Analysis	Customize Resources	FYP.apwz - Aspen Plus V8.8 - aspenONE
 100% \$201 	Activate Windows Go to PC settings to activat						Particle Size Distribution	Component Attributes	eet × ABSPROP (RadFrac) × B2 (Pump) × LIQIN (MATERIAL) ×	0 0	EDR Exchanger Feasibility Unknown OK At Risk	nger 🌮 Pressure Relief earch 🎘 PRD Rating Synthesis 🛺 Flare System Safety Analysis	Search aspenONE Exchange	penONE

Figure 9 Liquid In Compositions

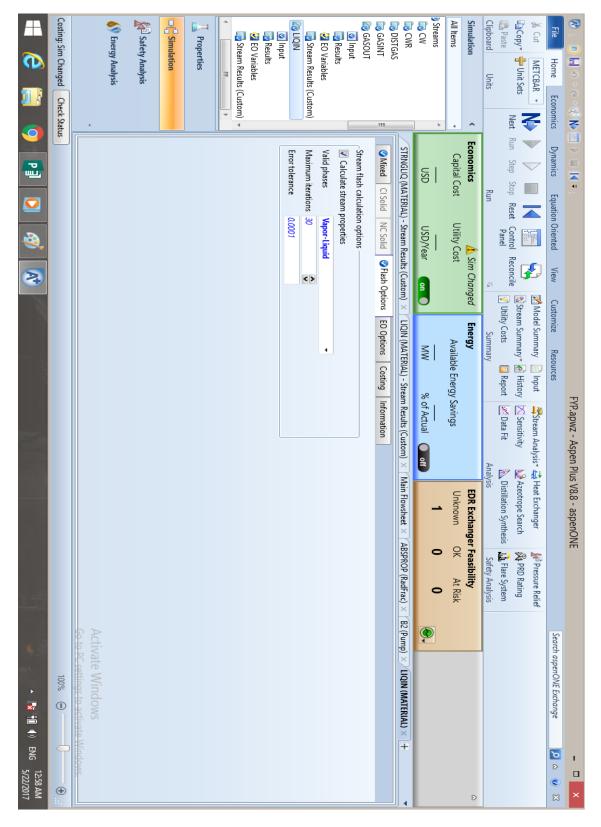


Figure 10 Liquid In Compositions 2

Absorber Proper

Absorber Proper is first absorption column. It is basically the combination of two columns, absorber vacuum washer and proper absorber.

	Costing: Sim Changed Check Status	Energy Analysis	🔊 Safety Analysis		🔏 Properties		Dynamics	 Convergence 	Rate-Based Modeling	Sizing and Rating	Configuration	Specifications	Blocks	Stream Results (Custom)	FO Variables	Input	All Items 🔹	Simulation <	Clipboard Units	K Cut METCBAR ▼ Arrow Paste Arrow Paste Next	File Home Economics	14 A A
P] () () () () () () () () () () () () () (Free water reflux ratio		4	Operating specifications	Convergence	Valid phases	Reboiler	Condenser	Number of stages	Setup options Calculation type	Configuration Streams Pressure	STRNGLIQ (MATERIAL) - Stream Results (Custor	USD USD/Year on O	Capital Cost Utility Cost	Economics 🔥 Sim Changed	Run	Image: Number of the state Image: Number of the state <td< td=""><td>Dynamics Equation Oriented View</td><td></td></td<>	Dynamics Equation Oriented View	
				0 Feed Basis	 Mole 15 kmol/hr 	Mole 🔻 4467 kmol/hr		Standard	Vapor-Liquid	Kettle	Partial-Vapor 🔹	8 Stage Wizard	Equilibrium	Condenser SReboiler 3-Phase Information	STRNGLIQ (MATERIAL) - Stream Results (Custom) × LIQIN (MATERIAL) - Stream Results (Custom) × Main Flowsheet × ABSPROP (RadFrac) ×	MW % of Actual O off	Available Energy Savings		mary Ar	Model Summary Input Stream Analysis* 🖨 Heat Exchanger Stream Summary* History Sensitivity Azeotrope Searc Utility Costs Report Z Data Fit Distillation Synth	Customize Resources	FYP.apwz - Aspen Plus V8.8 - aspenONE
	100%	Activate Windows Go to PC settings to act				•									Main Flowsheet × ABSPROP (RadFrac) × B2 (Pump) × LIQIN (MATERIAL) × +	1 0 0	Unknown OK At Risk	EDR Exchanger Feasibility		h A Pressure Relief	Search aspenONE Exchange	us V8.8 - aspenONE
<mark>*</mark> ₹ ¶ ¶ (1) ENG 12:58 AM 5/22/2017	⊖ •	dows													MATERIAL) × +			Ð		Composition 4	change 👂 a 🕢 🕱	1 0 ×

Figure 11 Absorber Proper Column 1

••••••••••••••••••••••••••••••••••••••	Costing: Sim Changed Check Status	Energy Analysis	🔊 Safety Analysis	 🚡 Properties	* 	 Dynamics 	Analysis	Rate-Based Modeling	 Sizing and Rating 	Specifications	Blocks	NEAKLIQ	Stream Results (Custom)	Results	STRNGLIQ	All Items 🔹	Simulation <	Clipboard Units	K Cut METCBAR ▼ M=TCBAR ▼ M=TCBAR ▼ Mext Mext	File Home Economics	📰 🐴 🚵 - Ə - G 💾 📵 ا 🚷
				Column pressure drop	Stage pressure drop b	Pressure drop for rest of column (optional)	Condenser pressure drop 2nd stage pressure.	Stage 2 pressure b	Stage 2 pressure (optional)	23.5	Top stage / Condenser pressure	Ton / Bottom	Configuration Streams Pressure	🖉 STRNGLIQ (MATERIAL) - Stream Results (Custom) 🗙	USD USD/Year on •	Capital Cost Utility Cost	Economics 💧 Sim Changed	Run	Image: Non-Step Stop Reset Control Reconcile Str Panel Year Year Year Year Year Year	Dynamics Equation Oriented View Cust	
				bar 🔹	bar 🔹	Enter a number between 0 and 1e+10	pressure.	bar 🔹		k₽a			Condenser Reboiler 3-Phase Information	LIQIN (MATERIAL) - Stream Results (Custom) × Main Flowsheet × ABSPROP (RadFrac) × B2 (Pump) × LIQIN (MATERIAL) × +	MW % of Actual O off	Available Energy Savings	Energy	Þ	Model Summary Input Stream Analysis* Heat Exchanger Stream Summary History Sensitivity Azeotrope Searce Utility Costs Report Zonata Fit Distillation Synt	Customize Resources	FYP.apwz - Aspen Plus V8.8 - aspenONE
*		Activ: Ge to P												Flowsheet X ABSPROP (RadFrac) X B2 (Pump)	1 0 0 () ()	Unknown OK At Risk	EDR Exchanger Feasibility		Heat Exchanger Image: Pressure Relief Image: Azeotrope Search Image: PRD Rating Image: Distillation Synthesis Image: Pressure Relief	Search v	.8 - aspenONE
→ 📑 👘 🕪 ENG 12:59 AM		Activate Windows Go to PC settings to activate Windows												× LIQIN (MATERIAL) × +			Ð	Plot	ture Composition =	Search aspenONE Exchange 👂 🔉	I

Figure 12 Absorber Proper Column 2

Absorber Proper Packing Characteristics

Absorber Proper has been changed to a Packed bed column with following packing characteristics

	Results Available Check Status	A Provinsi K. Anara	Safety Analysis	 Properties		EO Modeling	Dynamics	 Analysis Convergence 	Rate-Based Modeling	Packing Rating	Packing Sizing	Tray Rating	Sizing and Rating Trav Sizing	Configuration	ABSPROP	All Items •	Simulation <	Clipboard Units	Paste Unit Sets Next	K Cut METCBAR ▼	File Home Economics	N 2000 C 10 10 0 10 10
		Activate Windows Go to PC settings to activate Wind			Section packed height S.39 meter ▼	◎ Height equivalent to a theoretical plate (HETP) 1.524 meter	Packed height	Material CERAMIC Packing factor 310 1/m	Vendor RASCHIG Dimension 35-MM Update parameters	Packing characteristics	Starting stage 2 🔶 Ending stage 6 🔶 Type RASCHIG 🔹	Packing section	Specifications Design Pdrop Stichlmair Results Profiles	GASOUT (MATERIAL) - Stream Results (Custom) × ABSPROP Sizing and Rating Packing Sizing - 1 × GASINT (MATERIAL) - Stream Results (Custom) × Control Panel × +	USD USD/Year ON MW % of Actual Onf 1 0 0	Capital Cost Utility Cost Available Energy Savings Unknown OK At Risk	Economics A Sim Changed Energy EDR Exchanger Feasibility	nary Analysis	Run Step Stop Reset Control Ru Panel	Stream Analysis" 🐳 Heat Exchanger 🕼 Pressure Relief	Dynamics Equation Oriented View Customize Resources	← ○ 代 No 回 ト = N = FYP.apwz - Aspen Plus V8.8 - aspenONE -
10:19 AM 5/22/2017	⊕ :	2000												4			⊳				ہ 0 2	□ ×

Figure 13 Absorber Proper Packing

	Costing: Sim Changed Check Status	Energy Analysis	Safety Analysis	Simulation	Packing Rating	▲ Image Packing Sizing	Tray Rating	ng	 Specifications Configuration 	Blocks	<table-cell> EO Variables 🔶</table-cell>	Simulation < All Items •	Clipboard Units		File Home Economics	N (N
	5				Stichlmair constants 48 8 2	Stichlmair, Bravo, Fair pressure drop/flood/holdup model	Void fraction 0.8	Sucrimar Surface area 20 sqcm/cc •	Specifications Design Pdrop Stichlmair Results Profiles	ABSPROP Sizing and Rating Packing Sizing - 1 × CASINT (MATERIAL) - Stream Results (Custom) × Contro	USD USD/Year on MW % of Actual off	Economics A. Sim Changed Energy Energy I Capital Cost Utility Cost Available Energy Savings I	Run 🖾 Summany Analysis	Image: Section 2 Image: Section 2 <th>Dynamics Equation Oriented View Customize Resources</th> <th>Image: Weight of the state of the</th>	Dynamics Equation Oriented View Customize Resources	Image: Weight of the state of the
→ 😽 📲 🕪 ENG 10:14 AM 5/22/2017		Activate Windows Go to PC settings to activate Windows								Control Panel × WEAKLIQ (MATERIAL) - Stream Results (Custom) × + =	1 0 0	EDR Exchanger Feasibility Unknown OK At Risk	ysis Plot	hesis Lare System	Search aspenONE Exchange 🚺 🛆 🕐 🛙	8.8 - aspenONE – C

Figure 14 Absorber Proper Packing 2

Heat Exchanger

A plate heat exchanger is placed through which weak liquor obtained from the bottom stream of Absorber proper passes. This weak liquor is at high temperature due to exothermic absorption process. Heat exchanger is placed to reduce it to optimum temperature of 42°

	Cost		\$	Þ	200	<u>.</u>]			~	A	Sim	Clip	& Cut	File	8
\sim	Costing: Sim Changed Check Status		\land Energy Analysis	burney sum	Safety Analysis	- Simulation	rroperues			Cold HCurves	Hot HC unves	Geometry	EDR Browser	EDR Options	Ontions	먹	🚰 Summary	Stream Results (Custom)	Profiles	EO Modeling	All Items	Simulation	Clipboard	rp 1	le Home	- D H 5
11	Inged Ch		alysis	erefer	alveie	1			ш	uves		Y	vser	SUO			~	esults (Cust		eling			Units	METCBAR 🔹		~ e) ~ (5
0	eck Status	4							-	4]	om)		Þ		^		Next F	Economics	< 🖂 🐴 🖉
P			Minimum	Constant UA	Exchanger area	Value	Specification	Fychanger	Calculation mode Design	O Plate	O Air Cooled	Thermosyphon	🔘 Kettle Reboiler	🔘 Shell & Tube	O Detailed	Shortcut	Model fidelity	Specifications	STRNGLIQ (US	Capital Cost	Economics		Run Step S	Dynamics	=)) III (
		Size Exchanger	Minimum temperature approach	A	area			coerification	node De		e.	syphon	eboiler	Tube			ţ		MATERIAL)		òst		Run	Stop Reset	Equation	-
		anger	approach				Hot stream outlet temperature		ŝ						🔘 Tube	🔘 Shell	Hot fluid	Streams LMTD	STRNGLIQ (MATERIAL) - Stream Results (Custom) $~\times~$	USD/Year	Utility Cost			Control F Panel	Equation Oriented	
A		Specify Geometry	1			42	temperatu								be		E.		ults (Custom	2	**	\land Sim Changed	E٦.	Reconcile	View	
9		cometry	0	cal	sqm	c	5						O Mu	Mu (Cocurrent	O Cou	Shortcu	sure Drop		0		ed Energy	S	Model Summary Stream Summary '	Customize	
		Results		cal/sec-K									Multipass, shells in series 1	Multipass, calculate number of shells	urrent	Countercurrent	Shortcut flow direction	Pressure Drop OU Methods Film Coefficients	I (MATERIAL	MW	Available	rgy	Summary	nary nary▼	Resources	
			-	▼ Re		•	•						in series	ate number			tion	ds Film C	.) - Stream R	% of	Available Energy Savings				œ	FYP.
254				Reconcile										of shells				oefficients	LIQIN (MATERIAL) - Stream Results (Custom) $ imes $	% of Actual	rings			Stream Ana		apwz - As
																		Utilities		9			Analysis	ilysis™ 🚅 H № Az Di		pen Plus V
																		Information	Main Flowsheet ×	-	Unknown	EDR Exchanger Feasibility		Stream Analysis* 🛁 Heat Exchanger Sensitivity		FYP.apwz - Aspen Plus V8.8 - aspenONE
																				0	0K	nger Feas		:h hesis		NONE
																			LIQIN (MATERIAL) × B1 (HeatX)	•	At Risk	ibility	Safety Analysis	Pressure Relief		
		Ge.																	B1 (Heat	۲			Plot		Sec	
- 1 4 111	10	Activate Windows Go to PC settings to act																	+ × (X				7		Search aspenONE Exchange	
*	100% 😑	/indows																							NE Exchange	
📶 🌗 Eng		5 ivate Wing																								
IG 1:03 AM 5/22/2017	÷	dows.															•								2 2 2	
7	i																					Ø			⊠	

Figure 15 Heat Exchanger (Aspen Plus) 1

	Costing: Sim Changed Check Status	4	🔊 Energy Analysis	🔊 Safety Analysis	Generation	🔏 Properties	Cold HCurves	TQ Curves	Geometry	 EDR Browser 	Options	Setup	S1 Summary	Stream Results (Custom)	Stream Results	EO Modeling Results	All Items	Simulation <	Clipboard Units	Copy Paste Unit Sets Next	🔏 Cut METCBAR 🔻	File Home Economics	■ N = < = 4 M Ab < 0 < 0 H 0 = 8
		Activate Windows Go to PC settings to activate						Always calculate pressure drop correlation parameter	Flow-dependent correlation Pressure drop correlation parameter	Calculated from geometry	Outlet pressure 30 kPa ▼	Hot side pressure options	Side Hot side	Specifications Streams LMTD Pressure Drop UMethods Film Coefficients Utilities Information	🗸 STRNGLIQ (MATERIAL) - Stream Results (Custom) 🗙 🏱 LIQIN (MATERIAL) - Stream Results (Custom) 🛪 🏱 Main Flowsheet 🛪 🏱 LIQIN (MATERIAL) 🗙 🖥 (HeatX) 🗙 +	USD USD/Year on MW % of Actual O off 1 0 0	Capital Cost Utility Cost Available Energy Savings Unknown OK At Risk	Economics 🛆 Sim Changed Energy EDR Exchanger Feasibility	Summary Analysis	≞ o ∟ Re	<u>هر</u>	Dynamics Equation Oriented View Customize Resources Search aspenONE Exchange	FYP.apwz - Aspen Plus V8.8 - aspenONE
ENG 1:03 AM 5/22/2017	• • •	Windows.													4			Ð				2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	і □ ×

Figure 16 Heat Exchanger (Aspen Plus) 2

Distiller Gas Stream

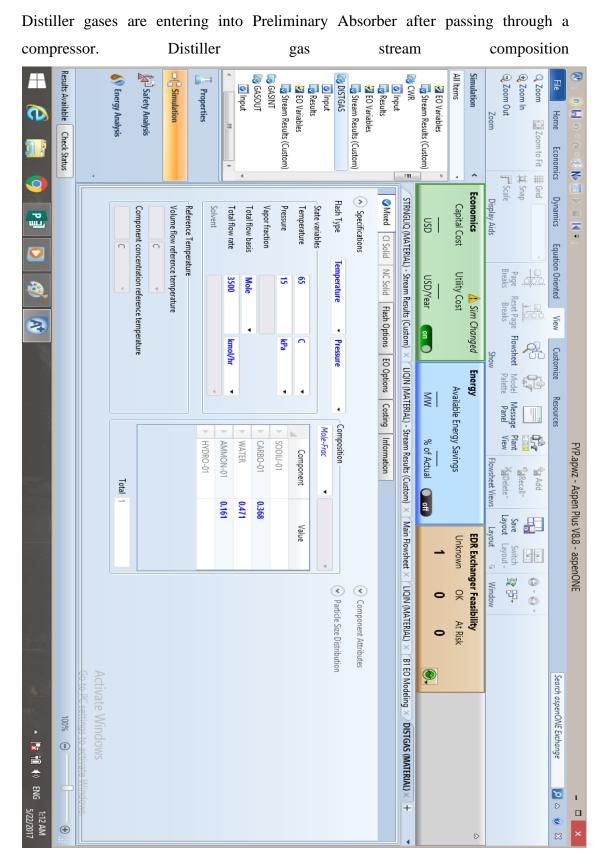


Figure 17 Gas Stream In

Compressor

A centrifugal compressor is used to pump distiller gas to Preliminary absorber at required pressure.

	Results Available Check Status	Energy Analysis	Simulation	Properties		leling	 Dynamic Block Options 	 Performance Curves User Subroutine 	Setup	Summary B3	Stream Results	EO Modeling Recults	 User Subroutine Block Options 	All Items	Simulation <	Q Zoom In Q Zoom In Q Zoom Out Zoom	File Home Economics	🔨 🖓 - Ə - Ə 💾 😐 - 🐼
			Efficiencies Isentropic Polytropic Mechanical	Use performance curves to determine discharge conditions	Power required		Discharge pressure Z5 KPa V	Outlet specification	Type Polytropic using ASME method	Model Compressor	Specifications Calculation Options Power Loss Convergence Integration Parameters Utility Information	🖉 DISTGAS (MATERIAL) - Input 🛛 🕆 STRNGLIQ (MATERIAL) - Stream Results (Custom) 🔺 🕆 LIQIN (MATERIAL) - Stream Results (Custom) 🗙	USD USD/Year on MW % of Actual O off	Cost Utility Cost	Economics A Sim Changed Energy	## Grid Image: Construction of the section of the s	Dynamics Equation Oriented View Customize Resources	r co o de No 📰 Do 📰 I de a spenONE FYP.apwz - Aspen Plus V8.8 - aspenONE
→ 🔭 🗓 (I) ENG 5/22/2017		Activate Windows Go to PC settings to activate Windows									/ Information	L) - Stream Results (Custom) × Main Flowsheet × LIQIN (MATERIAL) × B3 (Compr) × + ×	1 0 0	Unknown OK At Risk	EDR Exchanger Feasibility	Layout G Window	Search aspenONE Exchange 🛛 🔉 🛆 🔞 🔀	IS V8.8 - ASPENONE

Figure 18 Compressor (Aspen Plus)

Preliminary Absorber

Weak liquor enters from the top and compressed distiller gases enter from the bottom. Maximum absorption takes place in this column.

	Required Input Complete Check Status	🔊 Energy Analysis	🔊 Safety Analysis			A Properties	+ III +	Dynamics	Convergence	 Analysis 	Rate-Raced Modeling	Contiguration		A RAB		▼ ▼	ABSPROP	Blocks	EO Variables	All Items	Simulation <	Clipboard Units	Paste Volt Sets Next		File Home Economics	N 22 - 2 - 6 H 0 - 2
	tatus			Name Pseudo Stream Stage Type	Pseudo streams	GASINT 1 Vapor	STRNGLIQ 3 Liquid	Name Stage Phase	Product streams			S2 3 Above-Stage	► WEAKLIQ 1 Above-Stage	Name Stage	Feed streams	Configuration Streams Pressure Condenser	PAB (RadFrac) × DISTGAS (MATERIAL) - Resu	USD USD/Year on O	1,263,500 0	Capital Cost Utility Cost	Economics A Sim Changed	Run	Run Step Stop Reset Control Reconcile Panel		Dynamics Equation Oriented View	○ - 使 ● 回 ● 目 ■ =
				Internal Phase Reboiler Phase Reboiler Conditions		Mole kr	Mole kr	ase Basis Flow	-			-Stage	Stage	Convention		Condenser Reboiler 3-Phase Information	ults 🗙 🕆 GASOUT (MATERIAL) - Results 🗙 🕆 Co			Available Energy Savings	ged Energy	nary	Utility Costs I Report		Customize Resources	minhas 1 -fyp.aj
				er Pumparound Pumparound ID Conditions		kmol/hr	kmol/hr	Units Flow Ratio	-							Information	ontrol Panel × B1 (HeatX) × B2 (Pu	9	1 0	Unknown OK	EDR Exchanger Feasibility	Analysis	☑ Azeotrope search ▶ Distillation Synthesis	alysis - 🚓 Heat Exchanger		minhas 1 -fyp.apwz - Aspen Plus V8.8 - aspenONE
- IN -	100% 😑 –	Activate Windows Ge to PC settings to act		Flow Units		Feed basis	Feed basis	Feed Specs									PAB (RadFrac) × CDISTGAS (MATERIAL) - Results × GASOUT (MATERIAL) - Results × Control Panel × B1 (HeatX) × B2 (Pump) × Results Summary - Run Status × Main Flowsheet × +		0	At Risk	asibility	Safety Analysis	La Flare System	Pressure Relief	Search aspenONE Exchange	NE
"∎ (4)) ENG 1:24 AM 5/22/2017	•••••••••••••••••••••••••••••••••••••••	S Tivate Windows															n Flowsheet × + ▼				Ð				7e 🔽 a 🖉 🕱	і — ×

Figure 19 Preliminary Absorber (Aspen Plus) 1

	Results Available Check Status		🔊 Energy Analysis	Safety Analysis	H ₀ Simulation		Properties		Dynamics	Convergence	Analysis	Sizing and Rating	Configuration	Specifications	PAB	B 2	B1	Stream Results (Custom)	Profiles Stream Results	All Items	Simulation <	Clipboard Units	Copy Copy Copy		🖇 🖓
	gi un ermin			Winduct Ac		Document1 - Word (Product Activation Failed)	Reflux ratio 🔹 Mu	Distillate rate 🔹 Mu	Operating specifications	Convergence Sto	Valid phases	Reboiler	Condenser To	Number of stages 3	Pe	Setup options	Configuration Streams Pressure	Control Panel X PAB (RadFrac) X Main Flowsheet X	USD USD/Year on	Capital Cost Utility Cost	Economics A Sim Changed	Run	Run Step Stop Reset Control Reconcile	d View	
ALL AND A						Feed Basis	Mole Z0 	Mole Mole		Standard	Vapor-Liquid	Kettle	Total	Stage Wizard	Equilibrium		Condenser CReboiler 3-Phase Information	sheet $ imes$ $ sigma$ GASOUT (MATERIAL) - Stream Results (Custom) $ imes$	MW % of Actual O off	Available Energy Savings	2d Energy	mary A	Woulder Summary Imput System Analysis Arrest Exchanges Stream Summary History Sensitivity & Azeotrope Searc Utility Costs Report & Distillation Syntl	ources	FYP.apwz - Aspen Plus V8.8 - aspenONE
							4	•										n) $ imes$ $ simes$ ABSPROP Sizing and Rating Packing Sizing - 1 $ imes$	1 0 0	Unknown OK At Risk	EDR Exchanger Feasibility		h 🖗 PRD Rating		ıs V8.8 - aspenONE
→ 🔭 🕄 🕼 🕪 ENG 10:38 AM	100% 😑 🕕 🕀	Activate Windows Ge to PC settings to activate Windows																g-1×++			Ð	Plot	Temperature Composition =	Search aspenONE Exchange	1

Figure 20 Preliminary Absorber (Aspen Plus) 2

Strong Liquor

After absorption in Preliminary absorber Liq out is obtained which is called strong Liquor.

# ()) ()) ()) ())	Results Available Check Status		4	🔊 Energy Analysis	M ²¹ Safety Analysis			A Properties		ABSPROP	Blocks	Stream Results (Custom)	Results	o Input	WEAKLIQ	Results		STRNGIO	Results (Custom)	All Items v	Simulation <	Zoom	ut	Zoom In	File Home Economics	※ ↓ 0 H 0 · ○ · ○ N 回
			Volume Flow	Mass Flow	Mole Flow	HYDRO-01	AMMON-01	WATER	CARBO-01	SODIU-01	Component Mole Flow	Phase:	Substream: MIXED	To	From		Default	STRNGLIQ (MATERIAL) -	dsn 	Capital Cost		Display Aids		# Grid Q	Dynamics	
%			L/MIN	KG/HR	KMOL/HR	KMOL/HR	KMOL/HR	KMOL/HR	KMOL/HR	KMOL/HR	OW					Units	_	STRNGLIQ (MATERIAL) - Stream Results (Custom) ×	USD/Year on O	Utility Cost	🗥 Sim Changed	Show	Page Reset Page Flowsheet Breaks Breaks	。 読品 ~ 余わ	Equation Oriented View Cust	
		-	1024.48	74603.4	2741	0	385.397	1721.72	1.59659	632.285		Liquid			PAB	STRNGLIQ •		Control Panel × WEAKLI	MW %c	Available Energy Savings	Energy	W	et Model Message Plant Palette Panel View	€ []] []	Customize Resources	FY
																•		WEAKLIQ (MATERIAL) - Stream Results (Custom) ×	% of Actual off	avings		Flowsheet Views La	*Delete*	Add		FYP.apwz - Aspen Plus V8.8 - aspenONE
																			-1	Unknown OK	nge	Layout 🕞 Window	Save Switch			8.8 - aspenONE
- 1	105% 😑	Go to PC settings to activate	Activate Windows															Results Summary - Streams (Custom) $ imes$ PAB (RadFrac) $ imes$	0	At Risk	sility				Search aspenONE Exchange	
³⁾ ENG 1:35 AM 5/22/2017	● .::	a Windows	4										111			•		+			Ð				د <mark>م</mark> ۵ (۲) ۵ (۲)	і □ ×

Figure 21 Strong Liquor Stream

Gas Intermediate

Gas stream obtained from the Preliminary absorber then moves upward towards Absorber Proper, this stream is called intermediate gas stream.

	Results Available Check Status	Volume Flow L/MIN 750.875	Energy Analysis Mass Flow KG/HR 61564.8	Mole Flow KMOL/HR 1500	HYDRO-01 KMOL/HR 0	-G Simulation AMMON-01 KMOL/HR 178.321	A Properties WATER KMOL/HR 3.66105	KESUITS SODIU-01 KMOL/HR 31.6143	Component Mole Flow	GASOUT Liquid	Coverand Beruhr (Curtom)	Results To ABSPROP	Glinput From PAB	Contract Custom Units GASINT	C Imput Default Default	GASINT (MATERIAL) - Stream Results (Custom) × Control Panel ×	GO Variables G	Capital Cost Utility Cost Available Energy Savings	< Economics A Cim Chanced Energy	om Display Aids Show Flowsheet Views	ut Page Reset Page Flowsheet Model Message Plant Annound	Q Zoom Zoom to Fit # Gid -	File Home Economics Dynamics Equation Oriented View Customize Resources	
															-	WEAKLIQ (MATERIAL) - Stream Results (Custom) × Results Summary - Streams (Custom)		Unknown	EDD Evokanner Engliste	Flowsheet Views	View Deleter 1	Add Bacally	œ	
→ 🎼 🕆 🕄 🕼 🕪 ENG 1:47 AM 5/22/2017	105% 🕘 🗍 🕀	Activate Windows									111					Streams (Custom) $ imes$ [PAB (RadFrac) $ imes$] Main Flowsheet $ imes$	۲	^					Search aspenONE Exchange 👂 🔉 🙆 🗴	

Figure 22 Gas Intermediate (Aspen Plus)

Gas Out Stream

Gas out stream obtained from Preliminary absorber is final stream that is vent to atmosphere.

	Results Available Check Status	4	🔊 Energy Analysis	M ⁻¹ Safety Analysis		Contraction	Properties		Input	LIOINT	EO Variables	Results	N LIQIN	Results Stream Results (Custom)	Input	GASOUT	EO Variables		Simulation <	Zoom	ut	Coom Doom to Fit	File Home Economics	
		Mass Flow	Mole Flow	HYDRO-01	AMMON-01	WATER	CARBO-01	SODIU-01	Component Mole Flow	Phase:	Substream: MIXED	To	From		Default	GASOUT (MATERIAL)	dsn 	Capital Cost	Economics	Display Aids	Scale	III Snap)ynamics	
<u>.</u>		KG/HR	KMOL/HR	KMOL/HR	01 KMOL/HR	KMOL/HR	KMOL/HR	KMOL/HR	ole Flow		Ē			U	-	GASOUT (MATERIAL) - Stream Results (Custom) ×	USD/Year on •	Utility Cost	🔥 Sim Changed		Page Reset Page Flowsheet Breaks Breaks		ew	
		114074		0	8 519.239	2644.74	1286.4	16.6148		Vapor			ABSPROP	Units GASOUT	_	K GASINT (MATERIAL) - St	MW	Available Energy Savings	d Energy		Model Message Palette Panel		Resources	
		-				-							Ģ	•	-	ream Results (Custom) 🗙 🎽	% of Actual off	gy Savings		Flowsheet Views		"⊟ Add "⊒Recall*		FYP.apwz - Aspen Plus V8.8 - aspenONE
																GASINT (MATERIAL) - Stream Results (Custom) × Control Panel × WEAKLIQ (MATERIAL) - St		\cap	anger Feasibi	Layout 🖙 Window	Save Switch Etayout - Eayout Layout -	× ×		ıs V8.8 - aspenONE
	115% 🕒	Go to PC settings to activa														ERIAL) - Stream Results (Custom) 🗙 🕂	0	At Risk					Search aspenONE Exchange	
(∳) ENG 1:49 AM 5/22/2017																4			δ				ک م ۲	і □ ×

Figure 23 Gas Out Stream

Chapter-8

Design and Costing

8.1. Absorber Design

Stream	Flow (kmol/hr)	Density (kg/m3)
Gas In	3444.6	0.75
Liquid In	3707.56	1140
Gas Out	3175.91	0.75
Liquid Out	3976.1	1190

Table 7 Absorber Flow Rates

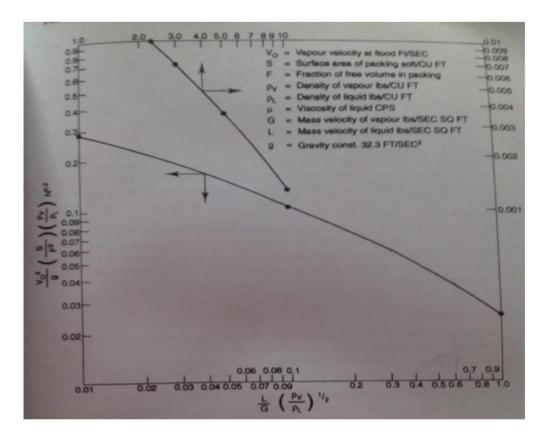
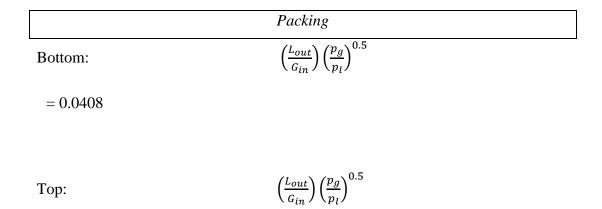



Figure 24 Superficial Velocity Correlation Curve (NPTEL Chemical Engineering Design II)

Superficial Gas Flow Velocity

=0.0432

Choose 0.0432 [Greater value]

From graph read off corresponding Y axis value,

$$\left(\frac{v_f^2}{g}\right) \left(\frac{s}{F^3}\right) \left(\frac{p_v}{p_l}\right) u^{0.2} = 0.18$$

$$v_f^{2} = \left[\frac{0.18 \times g \times F^{3} \times p_l}{s \times p_v \times u^{0.2}}\right]$$

- V_f: Superficial Gas Velocity (ft/s)
- g: gravitational constant 32.3 ft/s²
- F: Free Volume Factor
- $P_{l:}$ Liquid Density (kg/m³)
- $P_{v:}$ Gas Density (kg/m³)
- *u* : Liquid Viscosity (Centipoise)

Туре	Ceramic Pall Ring
Size (inches)	3
Free Volume	80%
Surface Area (ft^2/ft^3)	20

Table 8 Packing Data

u: 1.68cp (NIST)

 $P_{l:}$ 1140 kg/m³

 $P_{v}: 75 \text{ kg/m}^{3}$

 $V_{f} = 14.25 \text{ ft/s}$

8.1.1. Design Velocity

To find tower C.A, operate below flooding

 $V_{design} = 0.8 v_f$

 $V_{design} = 0.8(14.25)$

 $V_{design} = 11.4 \text{ ft/s} = 3.47 \text{ m/s}$

 $Area = \frac{[volumetric flow rate]}{[design velocity]}$

Area = [7.6/3.47]

 $Area = 2.19 m^2$

$$Diameter = \left[\frac{4A}{3.142}\right]^{0.5}$$

Diameter = **1.67m**

8.1.2. HETP

 $HETP(ft) = 1.5D_p + 0.5$

 $D_p = packing dia$

HETP(ft) = 1.5(3) + 0.5

HETP(ft) = 5 ft

HETP(m) = 1.524 m

Deg. C.	Deg. C.	mm.	Obeg. C.	Θ/T Exp.	Θ/T Cale.
		Concentration:	12.1 per cent Mol	al	
0.0 10.2 19.9 30.0 40.3 50.0	273.1 283.3 293.0 303.1 313.4 292.1	15.45 45.90 89.40 159.76 268.28 409.47	$ 195.50 \\ 204.90 \\ 212.52 \\ 220.33 \\ 220.06 $	0.690 0.698 0.703 0.704	0.707
50.0 60.0 70.0 81.0 91.0	323.1 333.1 343.1 354.1 364.1	409.47 622.43 889.48 1280.40 1777.00	229.08 235.35 242.27 250.69 259.04	0.710 0.707 0.707 0.708 0.709	0.707

TABLE 1 EXPERIMENTAL DATA. TOTAL PRESSURES

Figure 25 Vapor Liquid Equilibrium of Ammonia Saline System (Nakazawa 1984)

 $P_{sat} = Vapor pressure of NH_3 in Brine at 60°C & 12.3\% molality$

 $P_{sat} = 622 \text{ mmHg}$

 $P_{sat} = 0.818atm$

Total Pressure = 2.5 atm

 Y_i = Liquid phase activity coefficient for NH₃ in brine

$$Y_i = \frac{[Actual Vapor Pressure]}{[Roults law Vapor Pressure]}$$

$$Y_i = [0.818] / [0.133(14.4)]$$

 $Y_i = 0.4266$

$$K_i = \frac{Y_i P_{sat}}{P}$$

 $K_i = 0.139$

$$A = \frac{L}{KV}$$

$$A = 13.14$$

$$N_{sp} = \left(\frac{A}{1-A}\right) \ln\left[\frac{mx_{in} - y_{out}}{\left(\left(1 - \frac{1}{A}\right)\left(1 - \frac{mx_{in} - y_{out}}{mx_{in} - y_{in}}\right)\right]}\right]$$

 $x_{in} = 0.013$

m=Ki= 0.139

 $x_{out} = 0.133$ $y_{in} = 0.218$ $y_{out} = 0.0243$

 $N_{sp} = 3$ stages

In the absence of coordination parameters Cornell's Method cannot be used but a decent approximation can be made.

 $HETP = H_{og}$

$$z = H_{og} \times N_{og}$$

z = 1.524*3

z = 4.527 m

8.1.3. Actual Height

Vatavuk & Neveil Method

Total Height (ft) = 2 + z + 25% (Dia of Packed Bed)

Total Height (ft) = 17.6 ft

Total Height (m) = 5.39 m

8.1.4 Pressure Drop Calculations

Using Equation:

	$\frac{\Delta P}{L} = \frac{150\mu}{L}$	$\frac{(1-\varepsilon)^2 u_o}{\epsilon^3 d_p^2} + \frac{1}{\epsilon^3}$	$\frac{75(1-\varepsilon)pu_o^2}{\epsilon^3 d_p}$
L= Height (m)		L=4.532 m	
ε = Bed	voidage	ε= 0.8	
D _p = Packing Diame	ter (m)	$D_p = 0.0762$	m
p = Gas phase densit	y (kgm ⁻³)	<i>p</i> = 75 kgm	-3
u_o = Superficial velo	city (m/s)	<i>u_o</i> =4.34 m/	s
μ = kinematic viscos	ity (Pa.s	s) $\mu = 1.68 \ge 1$	0 ⁻³ Pa.s
ΔP = Pressure drop in	n column (Pa) $\Delta P = 57.5 \text{ k}$	Pa

Absorber Specification Sheet		
Туре	Packed Bed	
Packing	3 inch Ceramic Pall Ring	
Diameter	1.67 m	
Height	5.39 m	
Packed Height	4.532 m	
Absorbent	Brine	

Table 9 Absorber Specification Sheet

8.2. Plate Heat Exchanger

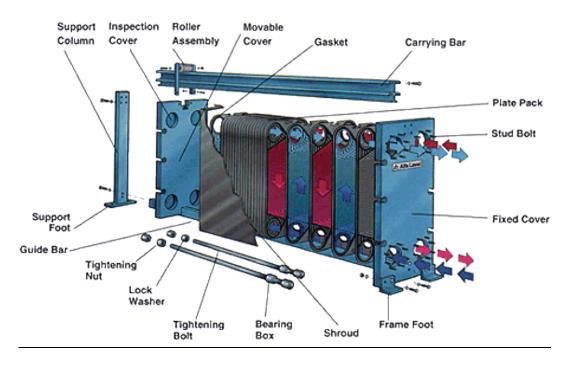


Figure 26 Plate Heat Exchanger

8.2.1. Assumptions

- All the physical properties are constant at standard pressure (1 atm)
- There is negligible heat loss
- The change in kinetic and potential energy is also negligible
- The operating conditions of the exchanger are steady-state
- The fluid streams have no phase change
- The thermal resistances through the wall are distributed uniformly
- The velocity and temperature are also uniform at each side
- The heat transfer area on each side is also taken uniform
- The mass flow rates, cold and hot, are same

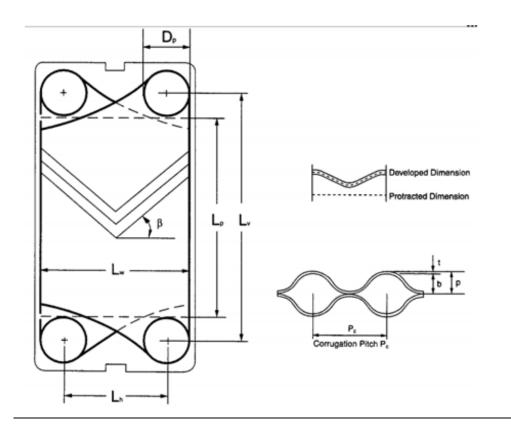


Figure 27 Inside view of a Plate Heat Exchanger

8.2.2. For Liquid Out:

T_{hi}	: inlet hot stream temperature	^{0}C
T_{ho}	: outlet hot stream temperature	⁰ C
T _{ci}	: inlet cold stream temperature	⁰ C
T _{co}	: outlet cold stream temperature	⁰ C
m _c	: cold stream mass flow rate	kg/s
m_h	: hot stream mass flow rate	kg/s
Gc	: The cold channel mass velocity	kg/m ² s
G_h	: The hot channel mass velocity	kg/m ² s
C_h	: steam heat capacity	J/kg.K

C _c	: ipa-water mixture heat capacity	J/kg.K
Qc	: Amount of heat transfer under clean condition	W
Q_{f}	: Amount of heat transfer under fouled condition	W
U_{f}	: Fouled overall heat transfer coefficient	W/m ² K
Uc	: overall heat transfer coefficient	W/m ² K
A _e	Actual effective area	m^2
A_1	: Single plate efective area	m^2
A_{1p}	: Single plate projected area	m ²
N_t	: total number of plates	
Ne	: The effective number of plates	
N_p	: Number of passes	
Ncp	: the total number of channels per pass	
Lv	: Vertical distance	m
L_h	: Horizontal distance	m
t	: Plate thickness	m
L _c	: Plate pack length	m
$L_{\rm w}$: Effective channel width	m
р	: The plate pitch	m
b	: the mean channel spacing	m
D_h	: The hydraulic diameter of the channel	m
Ø	: The enlargement factor	
β	: Chevron angle	0
$\mu_{\rm h}$: viscocity of hot fluid	N.s/m ²
μ_{c}	: viscocity of cold fluid	N.s/m ²

Pr	: prandalt number
----	-------------------

- Re : reynolds number
- Nu : nusselt number

h_c	: convective heat transfer coefficient on clod fluid	W.m ² /K
$\mathbf{h}_{\mathbf{h}}$: convective heat transfer coefficient on hot fluid	W.m ² /K
R _{fh}	: fouling factor for hot fluid	m ² .K/W
R_{fc}	: fouling factor for cold fluid	m ² .K/W
\mathbf{k}_{w}	: thermal conductivity of the plate material	W/m.K

Specification Data

- $A_c: 100 \text{ m}^2$
- $L_v\colon 1.45m$
- $L_h: 0.35m$
- t: 0.8mm
- $L_c: 0.40m$
- L_w : 0.70m
- $\Phi: 1.5$
- β:45
- $N_p:1$

Chevron	Heat Transfer			Pressure Loss		
Angle (degree)	Reynolds Number	<i>C</i> ,	п	Reynolds Number	к,	m
≤ 30	≤ 10	0.718	0.349	< 10	50.000	1.000
	> 10	0.348	0.663	10-100	19.400	0.589
				> 100	2.990	0.183
45	< 10	0.718	0.349	< 15	47.000	1.000
	10-100	0.400	0.598	15-300	18.290	0.652
	> 100	0.300	0.663	> 300	1.441	0.206
	< 20	0.630	0.333	< 20	34.000	1.000
50	20-300	0.291	0.591	20-300	11.250	0.631
	> 300	0.130	0.732	> 300	0.772	0.161
	- 20	0.562	0.326	< 40	24.000	1.000
60	< 20 20-400	0.306	0.529	40-400	3.240	0.457
	> 400	0.108	0.703	> 40	0.760	0.215
	1724 - 21 - 21	0.562	0.326	50	24.000	1.000
≥ 65	< 20	0.331	0.503	50-500	2.800	0.451
	20-500 > 500	0.087	0.718	> 500	0.639	0.213

Figure 28 Chevron Angle Correlations for Plate Heat Exchangers (D.Q Kern)

Projected Plate Area

$$L_p = L_v - L_w + L_H$$

$$L_p = 1.17m$$

$$A_p = L_p \times L_w$$

 $A_p = 0.819m^2$

Single Plate Heat Transfer Area

$$A_{sp} = \Phi \times A_p$$
$$A_{sp} = 1.2285 \text{ m}^2$$

$$N_{eff} = \frac{A_e}{A_{sp}}$$

 $N_{eff} = 81.4$ plates

Total Plates = $2 + N_{eff} = 83.4$

Plate Pitch

$$P = \frac{L_c}{N_{Total}}$$

P = 0.40/83.4

 $P = 4.914 \times 10^{-3} m$

Mean Channel Flow Gap

b = p - t

 $b = 4.114 \times 10^{-3} m$

One Channel Flow Area

$$A_{ch} = b \times L_w$$

 $A_{ch} = 2.89 \times 10^{-3} m^2$

Channel Hydraulics

 $D_h = \frac{2b}{\phi}$ $D_h = 5.49 \times 10^{-3} \text{m}$ $N_{cp} = \frac{[N_t - 1]}{2N_p}$

 $N_{cp} = 41.2$

 $Q_{\rm H} = (3976.1)(76.7)(70-40)$

$$Q_{\rm H} = 91.5 \times 10^5 \, {\rm KJ/hr}$$

$$Q_{cp} = mCp\Delta T$$

$$91.5 \times 10^5 = m(4.814)(55-25)$$

m = 20.25 kg/s

Mass Flow Rate per Channel

$$m_{ch} = \frac{m_w}{N_{cp}}$$

 $m_{ch}\!=20.25/41.2$

 $m_{ch} = 0.49 \text{ kg/s}$

$$G_{ch} = \frac{m_{ch}}{A_{ch}}$$

 $G_{ch} = 169 \text{ kg/m}^2/\text{s}$

 $G_{cc}\,{=}\,G_{ch}\,{=}\,169\;kg/m^2s$

8.2.3. Water

$$C_p = 4.18 \text{ KJ/kg.K}$$

 $\mu = 8.4 \times 10^{-4} \text{ Pa.s}$

k = 0611 W/m.k

Pr = 5.748

$$K_{f water} = 0.0000069 \text{ m}^2.\text{K/W}$$

 $C_p = 3.57 \text{ KJ/kg.K}$ K = 0.650 W/m.K $\mu = 1.68 \times 10^{-3} \text{ Pa.s}$ $P_r = 9.2$ m = 85348 kg/hr

n = 0.66

$$R_{ch} = G_{ch} * \frac{D_h}{u_{product}}$$

 $\mathbf{R_{ch}} = 551.58$ (hot fluid)

$$R_{ec} = G_{ch} \times \frac{D_h}{u_w}$$

 $R_{ec} = 1103.5$ (cold fluid)

$$H_{hot} = (\frac{k_{hot}}{D_h})(c_h)(R_{eh})(Pr^{1/3})$$

 $H_{hot} = 4440 \text{ W/m}^2.\text{K}$

$$H_{cold} = (\frac{k_{cold}}{D_h})(c_h)(R_{eh})(Pr^{1/3})$$

 $H_{cold} = 5755 \text{ W/m}^2.\text{K}$

$$U_c = \frac{1}{\left[\left(\frac{1}{H_{cold}}\right) + \left(\frac{1}{H_{hot}}\right) + \left(\frac{1}{k_w}\right)\right]}$$

 $U_c = 2234.8 \text{ W/m}^2.\text{K}$

Uf (Fouled Overall Heat transfer coefficient)

$$U_{f} = \frac{1}{\left[\left(\frac{1}{U_{c}}\right) + \left(R_{f water}\right) + \left(R_{product}\right)\right]}$$

 $U_{\rm f} = 2168 \ {\rm W/m^2.K}$

8.2.5. LMTD

$$\Delta T_2 = T_{H out} - T_{c in}$$

 $\Delta T_2 \!=\! 40 - 25 = 15$

$$\Delta T_1 = T_{H in} - T_{out}$$

 $\Delta T_1 = 70-55=15$

LMTD = 15

8.2.6. Actual Heat Duties

Clean Surface

$$Q_c = U_c \times A_e \times LMTD$$

 $Q_c=3.35{\times}10^6 W$

Fouled Surface

 $Q_f = 2168 \times 100 \times 15$

 $Q_f = 3.25 \times 10^6 \, W$

Required Heat

$Q_{\rm H} = 2.54 \times 10^6 \, {\rm W}$

 $Q_c = 2.54 \times 10^6 \, W$

Fouled surface duty is greater than requirement. Hence design is feasible

Heat Exchanger Specification Sheet		
Туре	Plate Type	
Effective Area	100m ²	
Number of plates	84	
Mass Flow Per Channel	0.49 kg/s	
Hot side Fluid	Ammoniated Brine	
Cold side Fluid	Cooling Water	
Heat Duty Required	91.5 kJ/hr	
Heat Exchanger Duty	$3.25 \times 10^6 \mathrm{W}$	

Table 10 Heat Exchanger Specification Sheet

8.3. Compressor

Power to compress Gasin

 ΔP required for Gas Flow = 6 inch Hg

Account for pressure loss in column : (0.1 atm/ meter column height)

 $= 0.1 \times 4.572 = 0.457$ atm

 $P_2 = 1 {+} 6(0.0334) + 0.457$

 $P_2 = 1.658 \text{ atm}$

T=333K M:2444.6 kmol/hr

Compound	Molar Fraction
NH ₃	0.218
CO ₂	0.137
H ₂ O	0.636
Ι	0.0087

Table 11 Gas in Compositions

Compound	Critical Temperature
NH ₃	405.5K
CO ₂	304.2K
H2O	647K

Table 12 Component Critical Temperatures

Compound	Critical Pressure
NH ₃	111.3 atm
CO ₂	72.9 atm
H2O	218 atm

Table 13 Component Critical Pressures

 $\underline{T_{c mix}}$:

 $X_{NH3}T_{c\,NH_3} + x_{CO_2}T_{c\,CO_2} + x_{H_2O}T_{c\,H_2O}$

= 541 K

<u>P_{c mix :</u>}</u>

 $X_{NH3}P_{C NH_3} + x_{CO_2}P_{C CO_2} + x_{H_2O}P_{C H_2O}$

= 172.9 atm

Flow rate = $70000 \text{ m}^3/\text{hr} = 19.4 \text{ m}^3/\text{s}$

From figure:

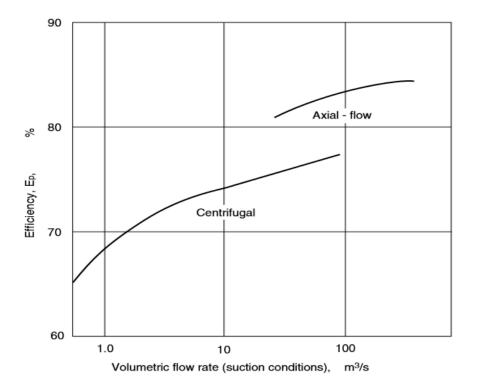


Table 14 Compressor Efficiency Curve (Coulson & Richardson's Vol. 6)

Ep = 0.74

For triatomic gas (NH₃, H₂O, CO₂)

y = 1.33

$$m = \frac{\gamma - 1}{\gamma E_p}$$

 $m = (1.33 - 1)/(1.33 \times 0.74)$

m = 0.338

$$\left(\frac{T_2}{T_1}\right) = \left(\frac{P_2}{P_1}\right)^m$$

 $T_1 = 280K$

 $T_{r\,(mean)} = 0.567$

 $P_{r (mean)} = 0.0077$

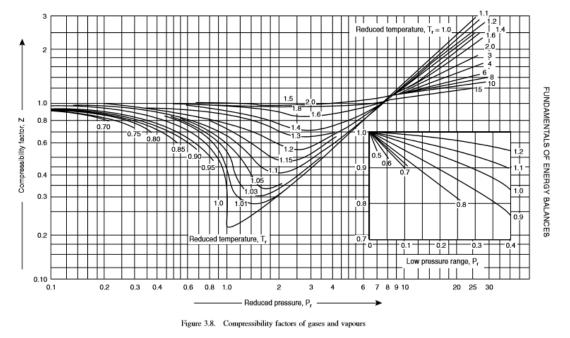


Table 15 Compressibility Chart (Coulson & Richardson's Vol. 6)

From Graph : **z** = **0.94**

$$n = \frac{1}{1-m}$$

n = 1.51

$$W_p = \left[\frac{RT}{n} - 1\right] \cdot n \cdot \left[\frac{\left(\frac{P_2}{P_1}\right)(n-1)}{n} - 1\right]$$

Compressor Specification Sheet		
Туре	Centrifugal	
Polytrophic Efficiency	74%	
Cp/Cv	1.33	
Compressibility Factor	0.94	
Compressibility Ratio	1.658	
Power	1.14 MW	

Table 16 Compressor Specification Sheet

 $W_p = 1240 \text{ KJ/kmol}$

Actual Work = 1240/0.74 = 1676.7 KJ/kmol

$$Power = \left[\frac{Actual Work}{3600}\right] \times [Molar flow rate]$$

Power = 1138.6 KW

Power = 1.14 MW

8.4. Pump Design

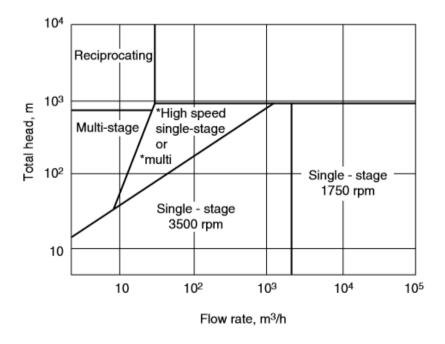
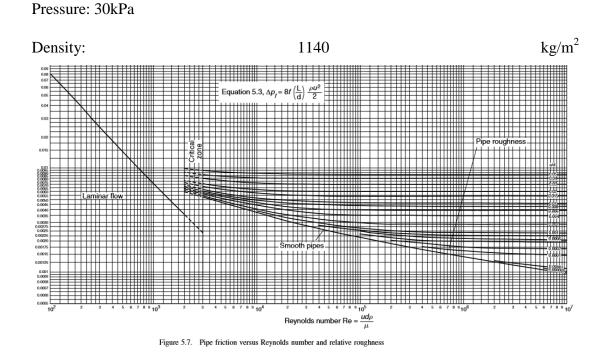



Figure 29 Pump Selection Chart (Coulson & Richardson's Vol. 6)

Liquid In: 3707.56 kmol/hr

Figure 30 Figure 26- Pipe Friction Factor versus Reynolds Number and Relative Roughness

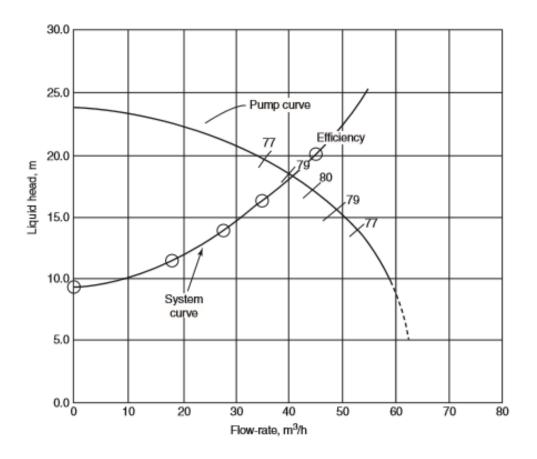


Figure 31 Pump Efficiency Curve (Richard & Coulson Vol.6)

Assume $D_i = 6$ = 0.1524m

$$A = (\frac{\pi}{4}) D_i^2$$

=0.01824m

 $F = 69m^3/hr$

 $V_L = 1.05 \text{m/s}$

 $u = 1.68 \times 10^{-3}$ Pa.s

 $R_e = [(1140)(1.05)(0.1524)]/[1.68 \times 10^{-3}]$

 $R_e = 108585$

Roughness

Comm. Steel Pipe = 0.046

$$Relative \ roughness \ = \ \left(\frac{absolute \ roughness}{D_i}\right)$$

Relative roughness = 3.02×10^{-4}

From friction factor chart

f = 0.00215

Pipe length = 30m (assume)

Equivalent Length

2 elbow: 15(0.1524)

1 gate valve (3/4): 40(0.1524)

1 gate valve (FO): 7.5(0.1524)

E` = 9.525m

Total Length = 39.525m

$$\Delta P_f = 8f\left(\frac{L}{D_i}\right)\left(\frac{p_v^2}{2}\right)$$

 $\Delta P_{f} = 3.135 \text{ kPa}$

Total Head = 9m

Total Energy Needed

$$g\Delta z + \frac{\Delta P}{p} - \frac{\Delta P_f}{p} - W = 0$$

$$9.81(6) + (30 \times 10^3)/(1140) + (2 \times 10^3)/(1140) = W$$

W = 88J/kg

Power =
$$W.\frac{m}{n}$$

n = **0.71**

Power = 2.78 kW

Pump Characterization

Single Stage = 3500rpm

$$N_s = \frac{NQ^{0.5}}{(gh)^{0.75}}$$

 $N_{s} = 0.28$

Manufacturer Specification speed

 $= N_s \times 1.73 \times 10^4$

= 4850

Impeller Classification

Mixed Flow Impeller

Range = 1500~7000

<u>NPSH</u>available

Assume pipeline height from TW = 2.5m

Vapor pressure of brine ~ Vapor pressure of lean/water

@60°C = 18.9kPa

$$NPSH = \frac{P}{pg} + \Delta z - \frac{P_f}{pg} - \frac{P_v}{pg}$$

NPSH = 9.7m

 $NPSH_{available} > NPSH_{required}$

Pump Specification Sheet	
Туре	Centrifugal
Centrifugal Type	3500 RPM Single Stage
Impeller	Mixed Flow Type
Manufacturer (Dimensionless) Specification Speed	4850
NPSH Available	9.7m
NPSH Required	9.0m
Power	2.78 KW

Table 17 Pump Specification Sheet

8.5. Costing

Methodology

CAPCOST for Chemical Engineering Process Plant was used to determine costs for equipment for which accurate estimations were not available. In the case of this project, CAPCOST was used to determine the purchase cost for compressor and pumps.

For the Absorber Column, the cost of packing was estimated for 2017 using CEPCI Cost indices. Similarly, the correlations for vessel erection were used to estimate Column Costs.

For Plate Heat Exchangers, Heat Transfer Engineering, (Hewitt & Pugh) provided the Area to Cost Correlations that enabled costing to be done. Base price from 2007 was extrapolated to 2017 using CEPCI Indices

Once the Purchase Cost of Equipment was calculated, the Lang Factorial Method (Coulson & Richardson's Vol. 6) was used to calculate Physical Plant Cost, Fixed Cost, Working Capital, eventually and the Total Investment Cost.

Since the project is based on a sub-unit of the plant, the payback period could not be calculated. However, the yearly operating cost was calculated and the total investment to Operating Cost Ratio was considered.

Year	CEPCI Index Value
2004 (basis)	444.2
2017	570

Table 18 CEPCI Cost Index

8.5.1. Absorber

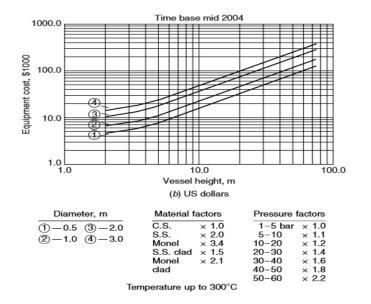


Figure 32 Vessel Cost Curve (Coulson & Richardson's Vol. 6)

Purchase cost (2004) = (48000)(2)(1.1)

Purchase cost (2004) =\$ 105600

Purchase cost (2017) = 105600 * (570/444.2)

Purchase cost (2017) = \$135,500

Packing = $400/m^3$

Volume of Packing = $[(\pi/4)(2.67)^2(4.537)]$

Volume of Packing = 25.4 m^3

Purchase cost [2004] = 25.4(400)

Purchase cost [2004] = \$10,161

Purchase cost [2017] = \$13,040

Redistributor Cost = \$2000

Total Cost = \$150,540

8.5.2. Plate Heat Exchanger

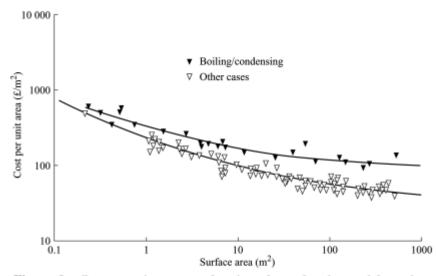


Figure 3 Cost per unit area as a function of area for plate-and-frame heat exchangers [4].

Figure 33 Area to Cost Correlation for Plate Heat Exchangers (Heat Transfer Engineering, Hewitt & Pugh)

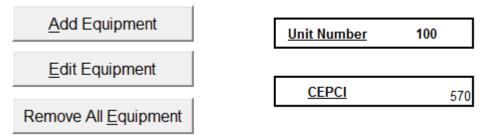
Exchange cost per unit area from the curve

 $\pm 100/m^2 (2007)$

=100/PPP(2007)

= \$142.5/m²

[2007]

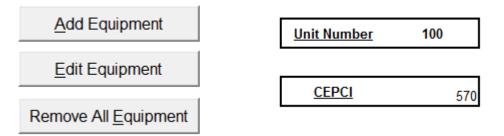

CPI: 525.4

[2017]

142.5(570/525.4)(100)

=\$15,500

Compressor Cost



Equipment Selection		×
Capc	Ost Cost Estimation Software	
Equipment type	Elenders Centrifuges Compressors Conveyors Crystallizers Drives Dryers Dust Collectors Evaporators Fans Filters Fired Heaters Heat Exchangers Mixers Pumps Reactors Screens Storage Tanks Towers Turbines Vessels User Defined	ei

Edit Equipment	×
	quipment Name C-101
Shaft Power	
Base Cost \$ 44 Bare Module Cost \$ 1,2	
Remove Equipment Edit Equipm	Close

CAPCOST : \$442,000 [2017]

8.5.3. Pump

Equipment Selection		×
Capc	OST Cost Estimation Software	
Equipment type	Elenders Centrifuges Compressors Conveyors Crystallizers Drives Drives Dust Collectors Evaporators Fans Filters Fired Heaters Heat Exchangers Mixers Pumps Reactors Screens Storage Tanks Towers Turbines Vessels User Defined	el

31	Edit Equipment	\times
	Equipment Type Equipment Name Bienders Equipment Name Compressors Onveyors Conveyors Drives Drives Drives Dryers Dust Collectors Evaporators Image: Composition	
	Pump Type Centrifugal Shaft Power 2.78 kilowatts Discharge Pressure 0.35 barg Construction material Stainless Steel Number of Spares 1 Base Cost \$ 7,970	_
	Bare Module Cost \$ 39,600 Remove Equipment	

CAPCOST : \$8000 [2017] (Spare 1)

8.5.4. Duty Cost

Cooling water for PHE

Duty: 2.54×10⁶W

Cooling Water: 20.25 kg/s

Assume working hours of 8400/p.a

Cooling water = 20.25(3600)(8400)

Cooling water = 6.12×10^8 kg/year

Cooling water cost =\$0.1/ton

Cooling water cost = \$61,200 p.a

8.5.5. Pump operating cost

Power: 2.78W

Yearly usage : 23,352 KWH

Electricity Price : \$0.1/KWH [NEPRA]

Electricity Price = \$2340 p.a

8.5.6 Compressor operating cost

\$20,000

8.5.7. Purchase Cost Equipment

EQUIPMENT	\$	\$
Absorber	150,540	
Compressor	442,000	
PHE	15,500	
Pump	8000	
PCE		616,040

Table 19 PCE

8.5.8. Physical Plant Cost

PCE		616,040
F ₁	0.4	
F ₂	0.7	
F ₃	0.2	
F ₄	0.1	
F _{total}	1.4[1+1.4][616,040]	
РРС		1,478,496

Table 20 PPC 1

Factor	Value
F1-Equiment Erection	0.45
F2-Piping	0.45
F3-Instrumentation	0.15
F4-Electrical	0.1
F5-Buildings	0.1
F6-Utilities	0.45
F7-Storages	0.2
F8-Site Development	0.05
F9-Ancillary Buildings	0.2
Total	3.15

Since the project classifies as a minor extension, storage, site development is omitted. Utilities are cost separated separately.

РРС		147,849,6
F ₁₀	0.3	
F ₁₁	0.05	
F ₁₂	0.1	1
F _{total}	0.45	[1+0.45][1478496]
Fixed Capital		2,143,820

8.5.9. Fixed Capital

Table 22 Fixed Capital

Factor	Value
F10-Design and Engineering	0.25
F11-Contractor's fee	0.05
F12-Contingency	0.1
Total	1.40

Table 23 Fixed Capital

Working Capital 16.6% of Fixed Capital: \$356,180

Total investment for startup = **\$2,500,000**

Cost of Major Equipment (\$)		
Compressor	442000	
Plate Heat Exchanger	15500	
Packed Bed Absorber	150540	
Pump	8000	

Table 24 Cost of Major Equipment

8.5.10. Variable Costs

Raw Materials

NH₃ Price: \$100/t

Brine : \$13/t

NH₃ (5 % make up stream) : **\$381,108 p.a**

Brine:

13x 69x8400

\$7,534,800 p.a

Utilities

Cooling Water: \$61,200

Pump: \$2340

Compressor: \$20000 p.a

Miscellaneous Material: \$10,800

T.V.C: \$7,999,448

8.5.11. Fixed Cost

Maintenance: \$107,191

Labor: \$50,000

Unit Overheads: \$10,000

Capital Charges(7%): 175,000

T.F.C: \$350,000

Annual Operating Cost: \$8,349,448

8.5.12. Unit Analysis

[Operating Cost]/[Investment] = 3.33

From an economic stand point, the change from tray to packed column is feasible as it is smaller than the yearly operating cost by a factor of 3.33.

Chapter-9

HAZOP Analysis

NO	NODE 1 – The Ammoniated Brine Absorber										
ID	Guide Word	Deviation	Causes	Consequences	Safeguards	Actions					
A	Level	High	 Reduced Gas In Temperature Reduced Gas In Pressure Increased Water Flow Level Controller Malfunction 	 Liquid Entrainmen t in Gas Out 	Level Recorder and Controller	 Adjust Level Control Valve to drain the separator Adjust T &P Upstream 					
В	Level	No/Low	 Increase in temperature of the Gas in Increase in the pressure of the Gas in Level controller malfunction Leakage/ damage to the separator vessel 	 Gas entrainmen t in the Liquid Out Damage to the pump due to cavitation. Absorber running over capacity resulting in 	Level recorder and controller	 Adjust the level controller to retain liquid in the separator. Adjust the temperature and pressure controllers upstream 91 					

				gas				
				_				
0	The second se	TT' 1	D 1 1 1	slippage				D 10
C	Temperatu	High	Process deviation	• Increase in	•	Temperatur	•	Rectify
	re		upstream	gas out		e		Temperatur
				flow		Controller		e Control
				• Decrease		Upstream		upstream
				in Liquid				
				out and				
				water out				
				flow				
D	Temperatu	Low	Process deviation	• Decrease	•	Temperatur	•	Rectify
	re		upstream	in gas out		e		Temperatur
				flow		Controller		e Control
				• Increase in		Upstream		upstream
				Liquid out				
				and water				
				out flow				
Е	Pressure	High	Process upset	Decrease	•	Pressure	•	Adjust the
			upstream	in gas out		Recorder		pressure
			• Pressure	flow		and		control
			recorder and	• Increase in		Controller		valve
			controller	water out	•	Pressure	•	Rectify
			malfunction	and Liquid		safety		Control
				out flow		valve		System
				• Increased				
				risk of				
				vessel				
				rupture				
F	Pressure	Low	Process upset	• Increase in	•	Pressure	•	Adjust the
			upstream	gas out		recorder		pressure
			• Pressure	flow		and		control
			recorder and	• Decrease		controller		valve

	controller	in Liquid	• Pressure	• Rectify
	malfunction	out and	safety	Control
		water out	valve	System
		flow		
		• Increase		
		risk of		
		Vessel		
		collapsing.		

Node 2- Plate Heat Exchanger											
ID	Guide	Deviati	Ca	nuses	Co	onsequences	Sa	feguard	Ac	ction	
	Word	on									
А	Flow	High	•	Upset Process	•	Reduction	•	Flow	•	Adjust the	
				Flow		in		transmi		flow	
				Conditions		Temperatur		tter and		controller to	
				Upstream		e		controll		maintain the	
						Difference		er		flowrate	
						for the gas	•	Bypass	•	In case of	
					•	Increased				uncontrollab	
						cooling				le flow, open	
						water				bypass	
						requiremen					
						ts					
В	Flow	Low/N	•	Upset in	•	Increase in	•	Flow	•	Adjust the	
		0		process		ΔT of the		transmi		flow	
				conditions		gas		tter and		controller to	
				upstream		Overcooled		controll		maintain the	
			•	Blockage in		gas can		er		flowrate	
				process flow		disrupt the	•	Bypass	•	In case of	
				lines		function of		to flare		very low	
						the		stack		flow, turn on	
						separator	•	Shut off		bypass	
								valve			
С	Pressu	High		• Process	•	Increase in	•	Pressur	•	Adjust the	
	re			upset		ΔT for the		e		pressure	
				upstream		gas		Record		control valve	
				• Pressure	•	Increased		er and	•	Rectify	
				recorder		cooling		Control		Control	
				and		water		ler	•	Bypass a	
				controller		requiremen				fraction of	
				malfunctio		ts				the incoming	
				n	•	Increased				flow to the	
						risk of				flare stack to	

						vessel or				luce the
						pipe rupture			pre	essure
D	Pressu	Low	•	Process upset	•	Decrease	•	Pressur	•	Adjust
	re			upstream		in ΔT for		e		the
			•	Pressure		the gas		Record		pressure
				recorder and	•	Increased		er and		control
				controller	-	chances of		Control		valve
				malfunction		back flow		ler	•	Rectify
						generation				the
						within the				control
						system,			•	If the
						5				pressure
										is too
										low,
										bypass
										the
										stream in
										its
										entirety
Е	Tempe	High	•	Process upset	•	Increase in	•	Temper	•	Adjust
	rature			upstream		ΔT for heat		ature		the
			•	Temperature		exchanger		Record		temperat
				controller	•	Increase in		er and		ure
				failure		cooling		controll		control
						water		er		valve
						requiremen			•	Rectify
						t				the issue
					•	Risk of				with the
						damage to				Tempera
						heat				ture
						exchanger				Control
						plates				System

F	Tempe rature	Low	•	Process upset	•	Low temperatur	•	Temper ature	•	Adjust the
				upstream		e gas can		Record		temperat
			•	Temperatu		disrupt the		er and		ure
				re		function of		controll		control
				controller		the		er		valve
				failure		separator			•	Rectify
										the issue
										with the
										Tempera
										ture
										Control
										System

Conclusion

The study in to the "Conversion of Bubble Cap Tray Column to Packed Bed Column for the Ammoniation of Brine" makes some interesting observations. With the developments in industrial design, recent years have seen rapid developments in the design of packed bed and packing, thus leading to an ever-increasing replacement of tray columns. Likewise, packed columns generally have greater efficiency due to greater area of contact as opposed to Tray Columns. Packed columns also have a lesser pressure drop (0.1-0.5 mbar/ stage) as opposed to Tray Columns (7mbar/ stage).

According to the design, the packed bed has a smaller diameter (1.67 m) and height (5.39 m) than the current bubble cap tray column (1.83 m and 7.8 m). These specifications hold for producing the same amount of ammoniated brine as is being produced by bubble cap tray column. In addition, intermediate cooling has been incorporated to limit the rise in temperature and maintain absorption.

In addition, the trouble shooting of the Absorber has been studied along with a reasonably detailed HAZOP Analysis. The economic analysis dictates that a total investment of \$2,500,000 would be needed. The project was based on the Absorber, and since ammoniated brine is only an intermediate product the economic feasibility was done as a ratio of operating cost to the total investment needed. With the total annual operating cost coming around to be \$8,349,448, this ratio stands at 3.33

Before deciding whether the packed bed column is a more feasible option, certain factors must be considered. Packings are generally more expensive than trays. Also, Tray Columns are much better at dirty service than packed ones. In this case, scaling would be a bigger problem in packed bed because the entire column packing must be cleaned. In a tray column, trays can be individually cleaned by operators via entrance in the side of towers.

Another factor that needs to be considered is the robustness and flexibility of the separation process needed. A packing column is ideal for a separation process that does not require much flexibility in operation. A tray column is better for more flexible and robust operation.

Overall, study shows that it is economically convenient to change the current bubble cap tray column to a packed bed. However, it needs to be ascertained if it is practically convenient to do so keeping in mind the advantages and disadvantages of each kind.

References

[1] Coulson, Richardsons, Chemical Engineering Design 2005.

[2] Jones, D. S. J. Elements of Chemical Process Engineering. Chichester: John Wiley & Son, 1996.

[3] Branan, Carl. Rules of Thumb for Chemical Engineers: A Manual of Quick,

Accurate Solutions to Everyday Process Engineering Problems. Amsterdam:

Elsevier, 2005.

[4] Geoff F. Hewitt & Simon J. Pugh (2007) Approximate Design and Costing Methods for Heat Exchangers, Heat Transfer Engineering, 28:2, 76-86, DOI: 10.1080/01457630601023229

[5] NAKAZAW, AKEO, SATO, Vapor-Liquid Equilibrium of Dilute Ammonia-Saline Water System (1984)

[6] Trays vs. Packing. (2017). Bre.com. Retrieved 22 May 2017, from <u>https://www.bre.com/Blog/Trays-vs-Packing.aspx</u>

[7] Perry, R. H., and D. W. Green, Eds., "Mass Transfer and Gas Absorption,"Chapter 14, in "Perry's Chemical Engineers' Handbook," 6th ed., McGraw-Hill, New York (1984).

[8] Survey and Assessment on Available Measurements on Thermodynamic Properties of the Mixture of Water and Ammonia (1997). Retrieved 22 May 2017, from https://www.nist.gov/sites/default/files/documents/srd/jpcrd536.pdf

[9] Nptel. "PROCESS DESIGN OF MASS TRANSFER COLUMN: DESIGN OF

DISTILLATION AND ABSORPTION COLUMN." Page 1 of 30NPTEL -

Chemical Engineering – Chemical Engineering Design - II Lecture 1:

Introduction (n.d.): n. pag. NPTEL Chemical Engineering. Web. 1 Feb. 2016.

http://nptel.ac.in/courses/103103027/pdf/mod7.pdf

[10] Aydin, Moler, Saputra, Plate Type Heat Exchanger Design. Retrieved 22 May 2017, from https://www.slideshare.net/ervaldi/plate-type-heat-exchanger-design-62443113

[11] Kern, "Process heat transfer", McGraw Hill, 1950

[12] Kakaç. S. (Sadik). Heat Exchangers : selection, rating. and thermal design /Sadik Kakaç, Hongtan Liu.-. 2nd ed

[13] Mc Cabe, Smith. Unit Operations of Chemical Engineering, 5th Edition, 1982