
 

 

APPLICATION OF DATA DUPLICATE DETECTION 

AND FUSION TO IMPROVE DATA QUALITY 

 

 

 

 

Author 

FATEH-UR-REHMAN 

00000172057 

MS-16(CSE) 

 

Supervisor 

DR. MUHAMMAD ABBAS 

 

 

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

OCTOBER, 2018 



 

 

APPLICATION OF DATA DUPLICATE DETECTION 

AND FUSION TO IMPROVE DATA QUALITY 

 

 

Author 

FATEH UR REHMAN 

00000172057 

MS-16(CSE) 

 

 

A thesis submitted in partial fulfilment of the requirements for the 

degree of MS Computer Software Engineering 

 

 

Thesis Supervisor 

DR. MUHAMMAD ABBAS 

 

Thesis Supervisor’s 

Signature: _______________________________________________ 

 

 

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING 

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING 

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY 

ISLAMABAD 

OCTOBER, 2018



 

 

 

AND THEY CAN’T ENCOMPASS ANYTHING FROM HIS 

KNOWLEDGE, BUT TO EXTEND HE WILLS [2:255]



i 

DECLARATION 

I certify that this research work titled “Application of Data Duplicate Detection and Fusion to 

Improve Data Quality” is my own work. The work has not been presented elsewhere for 

assessment. The material that has been used from other sources it has been properly 

acknowledged/referred. 

 

 

FATEH UR REHMAN 

00000172057 

MS-16(CSE) 

  



ii 

LANGUAGE CORRECTNESS CERTIFICATE 

This thesis has been read by an English expert and is free of typing, syntax, semantic, 

grammatical and spelling mistakes. The thesis is also according to the format given by the 

university.  

 

 

_________________________ 

FATEH UR REHMAN 

00000172057 

MS-16(CSE) 

 

 

________________________ 

DR. MUHAMMAD ABBAS 

  



iii 

COPYRIGHT STATEMENT 

Copyright in the text of this thesis rests with the student author. Copies (by any process) either 

in full or of extracts, may be made online in accordance with instructions given by the author 

and lodged in the Library of NUST College of E&ME. Details may be obtained by the 

Librarian. This page must form part of any such copies made. Further copies (by any process) 

may not be made without the permission (in writing) of the author. 

The ownership of any intellectual property rights which may be described in this thesis is vested 

in NUST College of E&ME, subject to any prior agreement to the contrary, and may not be 

made available for use by third parties without the written permission of the College of E&ME, 

which will prescribe the terms and conditions of any such agreement. 

Further information on the conditions under which disclosures and exploitation may take place 

is available from the Library of NUST College of E&ME, Rawalpindi. 

  



iv 

ACKNOWLEDGEMENTS 

First of all, I am extremely thankful to Almighty Allah for giving me courage and strength to 

complete this challenging task and to compete with the international research community. I am 

also grateful to my family members, especially my parents, brother and sisters who have 

encouraged and supported me through their prayers that have always been with me.  

I am highly obliged to Dr Muhammad Abbas for his valued suggestions and uninterrupted 

guidance throughout my research work. I am highly thankful to the committee members for 

their support and help throughout the research work.  

I am also grateful to all of my instructors who have been overseeing me throughout my 

coursework and have contributed to my knowledge. Their guidance, training and knowledge 

helped me a lot to carry out this research work.  

 

 

FATEH UR REHMAN 

  



v 

 

 

 

 

 

To my parents, sisters, brother and teachers those fabulous support 

and assistance led me to this magnificent achievement 

  



vi 

ABSTRACT 

In the current digital era, data generation sources are producing abundant data volumes related 

to each field of life. Volumes of data are expanding every second because sources of data 

creation are also expanding. Machines (i.e. sensors, devices) and humans (i.e. filled forms, 

saved data) are the main sources of data created in this digital era. Machines record each and 

every relevant event in their recording medium by combining the recorded inputs. 

Occasionally, machines receive only a few inputs and save them by keeping the missing input 

values as null. Sometimes an identical event is logged twice as duplicate data by the single or 

multiple machines in the same recording medium. Duplicate data and missing values issues are 

also found in human-generated data mostly due to human error. Missing values and duplicates 

affect the quality of data and biases the data mining results. An efficient Data Cleansing System 

(DCS) is developed during the research to improve the quality of data by filling the missing 

values and removing the duplicate records from the dataset. Similarity-based (SimFiller) and 

duplicate detection based (DuDeFiller) missing values filling algorithms are developed and 

integrated into the system to fill the missing values of a record by taking the missing value 

replacement from its most similar or duplicate record. Duplicate detection based data fusion 

algorithm (DuDeFuse) is also developed and integrated into the system to merge the duplicate 

records based on the maximum similarity of the attribute’s value or the maximum occurrence 

of the attribute’s value. Two data sets from the UCI machine learning repository are cleaned 

through the system to improve their data quality. The selected datasets are also cleaned through 

the five others exiting missing values filling algorithms for the purpose of comparison. Five 

classifiers including “Naive Bayes”, “Decision Tree”, “Random Forest”, “Deep Learning”, and 

“Logistic Regression” are selected to check the classification accuracy and The f-measure of 

the cleaned datasets. Average classification accuracy of both datasets is increased up to 3.00% 

after cleansing the datasets with the developed system. The f-measure of the datasets is also 

increased up to 3.26% after cleansing them with the developed system as compared to the data 

cleansing performed with the other algorithms. The developed system can be extended to 

resolve the other inconsistencies in the datasets and can also be evaluated for the other datasets. 

Keywords: Data preprocessing, Data analysis, Data engineering, Data cleansing, Duplicate 

detection, Duplicates, Missing values, Null values. 
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1. Chapter 1 

INTRODUCTION 

This chapter introduces the research work carried out and presented in this thesis. It also 

describes the problem statement, proposed solution for the recognized problem and the 

motivational factors to carry out this research. 

1.1. Overview  

During this current digital era, manual files systems are replaced with the computers, 

machines and database servers and other than the recording of data within the recording 

medium, automatic machines (sensing and recording devices) are also producing data volumes 

related to each field of life. A number of data generation sources are growing on a daily basis 

and continuously multiplying the data volumes.  

Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are the key 

sources of data created in this digital era. Digital systems administrators are authorizing devices 

to record each and every minute and relevant instance in their storage medium. Data generation 

sources attempt to record each and every instance of received data without checking its quality 

with respect to completeness and duplication.  

A record in the database is created by combining the values of different attributes from 

similar or different sources. Sometimes, machines receive only a few inputs and save them by 

keeping the missing input values as null. Occasionally, an identical event is logged twice as 

duplicate data by the single or multiple machines in the same recording medium. Duplicate 

data and missing values issues are caused due to machine error like sensor error and these 

issues also exist in human-generated data mostly due to human error, typo errors or other input 

device related errors. 

Data anomalies are divided into two categories i.e. systematic inconsistencies and non-

systematic inconsistencies [1-3]. Systematic irregularities or non-random inconsistencies have 

some common error pattern and caused due to device error or device limitation to record 

specific types of incidents. Non-systematic irregularities or random inconsistencies are 

occurred at a certain time only due to some rare event. Systematic and non-systematic problems 

cause irregularities of missing values and duplicate record.  
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Missing values and duplicate record issues are also produced if two or more datasets are 

merged to create a single dataset. Data irregularity problems are found in all of the data sets 

belonging to every domain of life including customer associated databases, commercial 

information databases, countrywide census databases, patient illness databases, virus 

databases, campaign management datasets, nationwide security databases and bibliography 

datasets. 

Missing values and duplicate data issues severely upset the quality of data and create 

problems for successful data mining process. The dataset inconsistencies lead to unreliable and 

biases data mining results [1] and these irregularities particularly affect the process of 

supervised learning [4].  Therefore, missing values and duplicates records need to be cleaned 

prior to making decisions, predictive analysis and forecasting.  

Most of the researchers focus to fill the missing values with any non-null, valid and suitable 

replacement value [5, 6]. Duplicate cleansing is a process of duplicate record detection and 

merging. Duplicate detection discovers groups of records which belong to the same real-world 

entity [7]. Once duplicate records are detected, they need to be merged to form a single updated 

record. This new record will replace all its duplicates. Consequently, a clean dataset is achieved 

for any further processing. 

Manually fixing the dataset inconsistencies is completely unmanageable due to the size of 

the dataset and because of the complications connected with inconsistencies. Data 

preprocessing techniques [8, 9] were introduced to fix the irregularities of the datasets, 

including missing values and duplicate records, by filling missing values with their appropriate 

substitutes and by eliminating or replacing the duplicate records. 

Several techniques were suggested by the data researchers to fix the irregularities of the 

datasets including removal of the null and duplicate values records. Every proposed technique 

was either devised for a particular dataset or developed and tested for a specific classifier. 

Duplicate detection based data cleansing is also one of the methods used to fix the data 

inconsistencies and is based on duplicate record discovery. Newcombe et al. [10] primarily 

considered duplicate detection for data cleansing and researchers later worked on similar 

concepts with different names like data cleansing, record reconciliation, object identification, 

entity resolution, field matching, merge purge,  and data matching. 
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Java code library of all eminent duplicate detection algorithms is also developed by 

researchers with the name of Duplicate Detection Toolkit (DuDe) [7]. The architecture of the 

Duplicate Detection Toolkit (DuDe) is shown in Fig. 1 which explains the functionality of 

DuDe and indicates that DuDe extracts inconsistent data from the data source, considers it as 

input, preprocesses it, applies partitioning algorithm on it, compares partitions, post processes 

it and generate an output of cleaned data.  

 

Fig. 1. The Architecture of the Duplicate Detection Toolkit 

This research is emphasized to solve the two types of dataset irregularities including filling 

the missing values with the proper substitute and cleansing and fusing the duplicates.  

1.2. Motivation  

In this digital era, data quality problems including the irregularities of missing values and 

duplicate data are increasing due to the increase in heterogeneous data generation sources [4, 

11]. Data preprocessing algorithms are least improved as compared to the improvements 

carried out in other data science fields. Most of the data scientists are concentrating to improve 

the correctness of data mining operators and algorithms.  

Data mining operators generate the data mining results from the given input data without 

considering the quality of input data and it causes the unfairness in data mining results [2, 3]. 

Duplicate Detection Toolkit (DuDe) [7] was developed by researchers containing a wide range 

of duplicate detection algorithms. An opportunity was found to extend the DuDe toolkit for 

filling the missing values and solving the duplicate data problems. 

1.3. Problem Statement  

Data quality problems are increasing on daily basis due to the increase in data generation 

sources. There are only a few solutions available to fix the data inconsistencies related to 

missing values and to fuse the duplicate data. Moreover, the previously developed solutions 
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were developed and tested for a specific dataset or operator. This research is intended to build 

a proficient and innovative technique to improve the quality of any dataset by filling the 

missing values through suitable substitution and by eliminating the duplicate records from the 

dataset without disturbing the diversity and classification accuracy of the entire dataset. 

1.4. Proposed Solution  

A data quality improvement system, named as Data Cleansing System (DCS), is developed 

during this research to fill the missing or null values of a dataset and to merge the duplicate 

records of the dataset. The developed system is based on duplicate detection mechanism which 

extracts the duplicate records in the form of pairs named as duplicate pairs. These duplicate 

pairs have some similarities (duplication) among them and this similarity is greater than the 

similarity of duplicate records. The extracted duplicate pairs are utilized to take the duplicate 

merging decisions by the system. Moreover, the developed system also utilizes these duplicates 

pairs to fill the missing values within the pairs.  

1.5. Publication  

Following research article has been produced by this research:  

 SimFiller: Similarity-Based Missing Values Filling Algorithm, Fateh R. et al. (2018), 

Published by IEEE in 13th ICDIM 2018 of Berlin, Germany. 

1.6. Organization of the thesis  

This chapter introduces the problem and the work carried out and presented in this thesis. 

It defines the problem statement, proposed solution for the recognized problem and the 

motivational factors to carry out this research. 

Chapter 2 is related to literature review which discusses the literature of data cleansing and 

preprocessing related to missing values and duplicate cleansing. This chapter is divided into 

two parts to explain the existing solutions of two different anomalies of datasets. The first part 

deals with the literature review to extract the algorithms and tools related to filling the missing 

values. The second part deals with the review of the literature to discover the tools and 

algorithms associated with the cleansing of duplicate records. 
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Chapter 3 discusses the solution developed as a result of research on data quality issues. 

The developed system named Data Cleansing System (DCS) attempts to solve the dataset 

quality problems for missing and duplicate values are presented in this chapter. The developed 

system is based on duplicate detection mechanism during which record having some 

similarities (duplication) with each other are extracted in the form of pairs named as duplicate 

pairs. 

Chapter 4 comprises the description of experiments setup used to get the results for the 

proposed algorithms in the research. The setup was created to validate the duplicate detection 

results, missing values filling results and duplicate fusion results for the correctness and 

endorsement of the contribution made by this research in the body of knowledge. 

Experiments are conducted after completing the evaluation setup and the achieved results 

are presented and discussed in Chapter 5. This chapter comprises the duplicate detection 

results, missing values filling results and duplicate fusion results of experiments carried out for 

the proposed system. Results show the correctness and validation of the contribution made by 

the research in the body of knowledge.  

Chapter 6 discusses the outcomes and the impact of the proposed study and concludes the 

overall benefit and result from this study. This chapter also defines the future directions and 

advises the prospect research from the presented idea in the earlier chapters.  
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2. Chapter 2 

LITERATURE REVIEW 

This chapter is related to the review of the literature and discusses the existing work on 

data cleansing and preprocessing to fix the issues of data inconsistencies. Missing values 

replacement algorithms and duplicate records removal algorithms presented by previous 

researchers are also discussed in this chapter. 

2.1. Considered Data Inconsistencies 

The dataset inconsistencies are of different types causing the quality problems for data. 

This research considers two important dataset inconsistencies given below: 

 Missing Values 

 Duplicate Records 

 This research discusses the existing approaches presented by previous researchers to deal 

with the dataset inconsistencies given above. This research also discusses the problems in 

existing approaches and tries to resolve the above-mentioned inconsistencies in a better and 

efficient way without affecting the dataset variability.  

The literature review is divided into two parts to explain the existing solutions of two 

different anomalies of datasets. The first part deals with the literature review to extract the 

algorithms and tools related to filling the missing values. The second part deals with the review 

of the literature to discover the tools and algorithms associated with the detection and cleansing 

of duplicate records. 

2.2. Missing Values 

This section deals with the techniques for filling the missing values of records in a dataset. 

Missing values are produced due to the machine and human error caused during the generation 

of the dataset. Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are 

the key sources of data created in this digital era. Digital systems administrators are authorizing 

devices to record each and every minute and relevant instance in their storage medium. Data 
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generation sources attempt to record each and every instance of received data without checking 

its quality with respect to completeness.  

Missing values severely upset the quality of data and create problems for successful data 

mining process. The dataset inconsistencies lead to unreliable data mining results [1] and these 

irregularities particularly affect the process of supervised learning [4, 12].  Therefore, missing 

values need to be cleaned prior to decisions making, predictive analysis and forecasting. Most of 

the researchers focus to fill the missing values with any non-null, valid and suitable replacement 

value [5, 6].  

2.3. Types of Missing Values 

Dataset missing values are classified into two different types based on the similarities and 

the differences among them. Systematic and non-systematic problems cause irregularities of 

missing values.  

Two different types of missing values are given below: 

 Systematic Irregularities 

 Non-Systematic Irregularities 

1) Systematic Irregularities 

 These irregularities are also named as non-random inconsistencies because these 

irregularities cover the missing values those are caused due to systematic or non-random 

error. Systematic irregularities or non-random inconsistencies have some common error 

pattern and caused due to device error or device limitation to record specific types of 

incidents [1-3].  

2) Non-Systematic Irregularities 

These irregularities are also named as random inconsistencies because these 

irregularities cover the missing values those are caused due to non-systematic or random 

error. Non-systematic irregularities or random inconsistencies are occurred at a certain time 

only due to some rare or special event which happens occasionally [1-3]. 
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2.4. Missing Values Filling Techniques 

Data scientists proposed their techniques to treat the missing and null values of the 

datasets. These methods are classified into different categories based on the operations 

performed during them.  

Categorization of the proposed techniques are given below:  

 Ignore, Delete, Discard 

 Single Imputation (SI) 

 Multiple Imputations (MI) 

 Machine Learning (ML) 

1) Ignore, Delete, Discard 

The simpler method (for dealing with the missing values) is to delete, discard or ignore 

records containing the missing values while performing any data analysis on inconsistent 

data [13-15]. Records deletion can negatively influence the process of data mining because 

there is a chance to delete the records containing the most important data [16].  

It is not a suitable method when datasets containing missing values due to systematic 

or non-random error and have a large number of records with missing values. Bulk removal 

of records can completely eliminate the specific class label from the process of data analysis 

and can adversely affect the data mining results [12].  

This is an appropriate method when datasets containing missing values due to random 

or non-systematic error and have less number of records with missing values. It is a more 

beneficial choice to delete a small number of records containing the majority of its 

attributes having null value [13]. 

2) Single Imputations (SI) 

This method specifies a particular value as a replacement of all missing values within 

a dataset. A single replacement value can be defined for all the missing values of all 

attributes (one value for all dataset) or multiple replacements can be defined for all the 

missing values of each attribute (one value for each attribute) [17]. Both types of single 
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value replacement (database level or attributes level) are performed on a single copy of the 

input dataset under consideration [2, 17]. 

This technique disturbs the diversity of a dataset and biases the accuracy of a classifier 

when the analysis is performed on it because single value replacement either on database 

level or on attribute level is neither an appropriate replacement nor a suitable representation 

of all the existing values of an attribute [6, 17, 18]. 

i. Mean 

This technique specifies an average or means value as a replacement of all missing 

values within a dataset. A single mean value is calculated for each attribute of the 

dataset and in this way multiple replacements are defined for the missing values of each 

attribute (single average value for each attribute) [5, 6].  

This method considers the attributes independence which is not suitable for each 

and every dataset. It also disturbs the variability of a dataset and biases the accuracy of 

classifiers when data analysis is performed. A single value for all the missing values 

can’t indicate the variability of the dataset and can affect the classification accuracy 

[12, 17, 19]. 

ii. Hot and Cold Deck 

This method selects the replacement value within the completed records and 

replaces it against the missing values of the considered dataset. Multiple values are 

defined as replacement of the missing values by creating the multiple clusters. One 

value from each cluster is selected for the records within that cluster. Hot deck and cold 

deck are two variations of this methodology for filling the missing values based on the 

selection of completed values as replacements  [6, 17, 18].  

Hot deck fills the missing value by getting the relevant replacement from the same 

single dataset which means replacing and replaced records are found on the same 

dataset [6, 17]. Cold deck fills the missing value by getting the relevant replacement 

from the different dataset which means replacing and replaced records are found on the 

different dataset [18]. 
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This technique disturbs the diversity of a dataset and biases the accuracy of a 

classifier when the analysis is performed on it because randomly selected single value 

replacement either from the same dataset or from the different dataset is neither an 

appropriate replacement nor a suitable representation of all the existing values of an 

attribute [2, 17]. 

iii. Most Likely 

This methodology considers each attribute (one by one) and calculates their missing 

values’ replacements from the non-null values. Maximum occurred non-null attribute’s 

value is selected as replacement of missing values for that attribute [5, 6, 19].  

Missing value replacement can also be selected by calculating the probability of 

each value. This is one variation of this method in which the missing value is calculated 

from the subset of data having the same class label [5, 6].  

This method considers the independence of attributes which is not suitable for each 

and every dataset. It also disturbs the variability of a dataset and biases the accuracy of 

classifiers when data mining is performed. A single value either for the complete dataset 

or for a specific subset of data can affect the variety of dataset and can disturb the 

classification accuracy [12, 17, 19].  

iv. Not Applicable 

This is a special method to treat the missing and null values of the dataset by 

substituting them with a predefined tag similar to “Not Applicable”, “N/A”, 

“Undefined” or “Not Available” [4]. This method is only suitable to recognize the 

missing values within a dataset and shows an adverse effect on the accuracy of the 

dataset. It is a suitable methodology when some dataset can’t be filled for its missing 

values since some values remain not applicable in some instances and applicable for 

some instances[6].  

This method is not suitable for each and every dataset and disturbs the variability 

of a dataset and biases the accuracy of classifier when data mining is performed. A 

single value for all the missing values can’t indicate the variability of example and can 

affect the classification accuracy of the dataset [17, 19]. 
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3) Multiple Imputations (MI) 

This is an arithmetical method which calculates the several replacements for missing 

values and accordingly creates several copies of a dataset filled with the respected 

replacement values. Total x number of database copies are created for x number of 

arithmetically calculated replacements for missing values. Each copy of dataset is passed 

through the numerical investigation, arithmetical examination and “Exception 

Maximization” calculates the value of probable replacement similar to the Bayesian method 

and final missing value replacement is selected [17, 18]. 

This process reflects the individuality of attributes which is not appropriate for all types 

of datasets. It also disturbs the variability of a dataset and biases the accuracy of classifiers 

when data analysis is performed. Specific values either from the complete dataset or from 

a specific subset of data can affect the variety of dataset and can disturb the classification 

accuracy [17, 19]. 

4) Machine Learning (ML) 

Different machine learning techniques are presented by investigators to fill the missing 

values of the dataset with an appropriate substitute. Researchers presented methods to fill 

the missing values by creating the subsets of dataset like subgroups having a similar class 

label or clusters of similar records [13, 15]. This methodology considers a missing value 

record as test data and trains the model to find the missing value attribute as class label. 

Machine learning techniques used for the substituting of missing values are given below: 

 “Association Rules” based missing value filling algorithm is grounded on 

“Association Rules Mining” [20] for the substitution of missing values [9, 21, 22]. 

This technique is not suitable because it decreases the dataset diversity by filling 

single value for each missing item so each missing value can’t be filled with the 

single rule. Moreover, the creation of a unique rule is not possible for each instance 

of missing value [9, 17, 18]. 

 

 “Clustering” based missing value filling algorithm is built on the “Clustering” 

approach [23] which fills the final missing values by substituting them with the 

replacement from the respective elements of the cluster [4, 24-27]. This is not a 

suitable approach for maintaining the dataset diversity during the missing values 
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filling by taking a single value from the whole cluster assuming that it will represent 

the cluster [17, 18]. 

 

 “SVM Regression” based missing value filling algorithm is built on the “Support 

Vector Machines (SVM)” [28] Regression model to fill the missing values from the 

already known values [14, 25, 29]. This technique has associated issues of incorrect 

missing values replacements because randomly selected single value from multiple 

values of a group or sub-group can’t exactly substitute the missing value [17, 18]. 

 

 “Neural Networks” based missing value filling algorithm is built using “Artificial 

Neural Network” [30] algorithm to find the best suitable substitute for each missing 

value in the dataset [18, 31, 32]. It finds the exact replacement value by learning the 

data for each missing value one by one. There is a big issue associated with this 

technique that it requires a lot of computation power which is nearly impossible if 

the dataset has a large number of records having missing values [18]. 

 

 “K-NN” based missing value filling algorithm is built using “K-Nearest 

Neighbours” algorithm [33] and during this algorithm nearest neighbour of the 

missing value is searched and missing data is filled from the nearest neighbour [18, 

34-38]. This technique is not suitable for large datasets because the blind 

comparison of each and every record with other records is not possible especially 

for the dataset having a large number of missing values [34]. 

 

 “Decision Tree” based missing value handling algorithm is built using the 

“Decision Tree” algorithm [39] but this technique is just limited to the handling of 

missing values. It is useful during the learning in a decision tree and not filling the 

missing values for the use with other classification algorithms. Moreover, this 

missing values handling mechanism is only checked for the decision tree not for the 

other classification algorithms [13, 18, 40, 41]. 

 

 “Naive Bayes” based missing value handling algorithm is built using the “Naive 

Bayes” classifier [42]. This technique calculates the replacement of missing value 

from the complete data using the probability of replacement value. It considers the 
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attributes independence for the selection of missing value replacement and was 

tested for the dataset having the independence of attributes [11, 15, 18, 43-45]. 

These techniques have associated issues of incorrect missing values replacements 

because randomly selected single value from multiple values of a group or sub-group can’t 

exactly substitute the missing value [17, 18]. Moreover, the proposed algorithms were 

either tested for specific machine learning operators or developed for specific datasets like 

“Naive Bayes” based missing values filing algorithm was developed for “Naive Bayes” 

classifier and was tested for the dataset having the independence of attributes [11, 15, 18]. 

The correctness of machine learning based on missing values filling algorithms is 

directly dependent on the selection of appropriate replacement values. A single value for 

all the missing values disturbs the variability of a dataset and biases the accuracy of the 

classifier and can’t indicate the variability of example and can affect the classification 

accuracy of dataset [2, 17-19]. 

Another limitation associated with the machine learning based on missing values filling 

algorithms is the complexity of calculations for a single value substitution. Filling the 

multiple values of multiple records require a lot of calculations and need a lot of resources 

for this calculation which is nearly impossible when data has missing values due to 

systemic error  [18]. 

2.5. Review of Missing Values Filling Techniques 

Techniques Details Problems 

Ignore, 

Delete, 

Discard 

The simpler method (for dealing 

with the missing values) is to delete, 

discard or ignore records containing 

the missing values while performing 

any data analysis on inconsistent 

data [13-15]. 

Records deletion can negatively 

influence the process of data mining 

because there is a chance to delete 

the records containing the most 

important data [16]. 
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Techniques Details Problems 

Single 

Imputations 

(SI) 

This method specifies a particular 

value as a replacement of all missing 

values within a dataset. A single 

replacement value can be defined for 

all the missing values of all attributes 

(one value for all dataset) or multiple 

replacements can be defined for all 

the missing values of each attribute 

(one value for each attribute) [17]. 

This technique disturbs the 

diversity of a dataset and biases the 

accuracy of a classifier because 

single value replacement either on 

database level or on attribute level 

is neither an appropriate 

replacement nor a suitable 

representation of all the existing 

values of an attribute [6, 17, 18]. 

Mean  

(Type of SI) 

This technique specifies an average 

or means value as a replacement of 

all missing values within a dataset. A 

single mean value is calculated for 

each attribute of the dataset and in 

this way multiple replacements are 

defined for the missing values of 

each attribute (single average value 

for each attribute) [5, 6]. 

This method considers the attributes 

independence which is not suitable 

for each and every dataset. It also 

disturbs the variability of a because 

a single value for all the missing 

values can’t indicate the variability 

of the dataset and can affect the 

classification accuracy [12, 17, 19]. 

Hot Deck  

(Type of SI) 

Hot deck fills the missing value by 

getting the relevant replacement 

from the same single dataset which 

means replacing and replaced 

records are found on the same 

dataset [6, 17]. 

This technique disturbs the 

diversity of a dataset and biases the 

accuracy of a classifier because 

randomly selected single 

replacement value from the same 

dataset is not an appropriate 

replacement of all the existing 

values of an attribute [2, 17]. 
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Techniques Details Problems 

Cold Deck  

(Type of SI) 

Cold deck fills the missing value by 

getting the relevant replacement 

from the different dataset which 

means replacing and replaced 

records are found on the different 

dataset [18]. 

 

This technique disturbs the 

diversity of a dataset and biases the 

accuracy of a classifier because 

randomly selected single 

replacement value from the 

different dataset is not a suitable 

representation of all the existing 

values of an attribute [2, 17]. 

Most Likely  

(Type of SI) 

This methodology considers each 

attribute (one by one) and calculates 

their missing values’ replacements 

from the non-null values. Maximum 

occurred non-null attribute’s value is 

selected as replacement of missing 

values for that attribute [5, 6, 19]. 

This method considers the 

independence of attributes which is 

not suitable for each and every 

dataset. It also disturbs the 

variability of a dataset and biases 

the accuracy of classifiers when 

data mining is performed. A single 

value either for the complete dataset 

or for a specific subset of data can 

affect the variety of dataset and can 

disturb the classification accuracy 

[12, 17, 19]. 

Not 

Applicable  

(Type of SI) 

This is a special method to treat the 

missing and null values of the dataset 

by substituting them with a 

predefined tag similar to “Not 

Applicable”, “N/A”, “Undefined” or 

“Not Available” [4]. It is a suitable 

methodology when some dataset 

can’t be filled for its missing values 

This method is not suitable for each 

and every dataset and disturbs the 

variability of a dataset and biases 

the accuracy of classifier when data 

mining is performed. A single value 

for all the missing values can’t 

indicate the variability of example 
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Techniques Details Problems 

since some values remain not 

applicable in some instances and 

applicable for some instances[6]. 

and can affect the classification 

accuracy of the dataset [17, 19]. 

Multiple 

Imputations 

(MI) 

Total x number of database copies 

are created for x number of 

arithmetically calculated 

replacements for missing values. 

Each copy of dataset is passed 

through the numerical investigation, 

arithmetical examination and 

“Exception Maximization” 

calculates the value of probable 

replacement similar to the Bayesian 

method and final missing value 

replacement is selected [17, 18]. 

This process reflects the 

individuality of attributes which is 

not appropriate for all types of 

datasets. It also disturbs the 

variability of a dataset and biases 

the accuracy of classifiers when 

data analysis is performed. Specific 

values either from the complete 

dataset or from a specific subset of 

data can affect the variety of dataset 

and can disturb the classification 

accuracy [17, 19]. 

Machine 

Learning 

(ML) 

Researchers presented methods to fill 

the missing values by creating the 

subsets of dataset like subgroups 

having a similar class label or 

clusters of similar records [13, 15]. 

This methodology considers a 

missing value record as test data and 

trains the model to find the missing 

value attribute as class label. 

A limitation associated with the 

machine learning based on missing 

values filling algorithms is the 

complexity of calculations for a 

single value substitution. Filling the 

multiple values of multiple records 

require a lot of calculations and 

need a lot of resources for this 

calculation which is nearly 

impossible when data has missing 

values due to systemic error  [18]. 
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Techniques Details Problems 

Association 

Rules  

(Type of ML) 

“Association Rules” based missing 

value filling algorithm is grounded 

on “Association Rules Mining” [20] 

for the substitution of missing values 

[9, 21, 22]. 

Creation of unique rule is not 

possible for each instance of 

missing value [9, 17, 18] 

Clustering  

(Type of ML) 

“Clustering” based missing value 

filling algorithm is built on the 

“Clustering” approach [23] which 

fills the final missing values by 

substituting them with the 

replacement from the respective 

elements of the cluster [4, 24-27]. 

This is not a suitable approach for 

maintaining the dataset diversity 

during the missing values filling by 

taking a single value from the whole 

cluster assuming that it will 

represent the cluster [17, 18]. 

SVM 

Regression  

(Type of ML) 

“SVM Regression” based missing 

value filling algorithm is built on the 

“Support Vector Machines (SVM)” 

[28] Regression model to fill the 

missing values from the already 

known values [14, 25, 29]. 

This technique has associated issues 

of incorrect missing values 

replacements because randomly 

selected single value from multiple 

values of a group or sub-group can’t 

exactly substitute the missing value 

[17, 18]. 

Neural 

Networks 

(Type of ML) 

“Neural Networks” based missing 

value filling algorithm is built using 

“Artificial Neural Network” [30] 

algorithm to find the best suitable 

substitute for each missing value in 

the dataset [18, 31, 32]. 

There is a big issue associated with 

this technique that it requires a lot of 

computation power which is nearly 

impossible if the dataset has a large 

number of records having missing 

values [18]. 
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Techniques Details Problems 

K-Nearest 

Neighbors 

(Type of ML) 

“K-NN” based missing value filling 

algorithm is built using “K-Nearest 

Neighbors” algorithm [33] and 

during this algorithm nearest 

neighbour of the missing value is 

searched and missing data is filled 

from the nearest neighbour [18, 34-

38]. 

This technique is not suitable for 

large datasets because the blind 

comparison of each and every 

record with other records is not 

possible especially for the dataset 

having a large number of missing 

values [34]. 

Decision Tree  

(Type of ML) 

“Decision Tree” based missing value 

handling algorithm is built using the 

“Decision Tree” algorithm [39] but 

this technique is just limited to the 

handling of missing values.  

It is useful during the learning in a 

decision tree and not filling the 

missing values for the use with 

other classification algorithms. 

Moreover, this missing values 

handling mechanism is only 

checked for the decision tree not for 

the other classification algorithms 

[13, 18, 40, 41]. 

Naive Bayes  

(Type of ML) 

“Naive Bayes” based missing value 

handling algorithm is built using the 

“Naive Bayes” classifier [42]. This 

technique calculates the replacement 

of missing value from the complete 

data using the probability of 

replacement value. 

It considers the attributes 

independence for the selection of 

missing value replacement and was 

tested for the dataset having the 

independence of attributes [11, 15, 

18, 43-45]  
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2.6. Duplicate Records 

The second part discovers the tools and algorithms associated with the detection and 

cleansing of duplicate records from the datasets. Duplicate data affect the quality of data and 

create problems for successful data mining process. The dataset inconsistencies lead to 

unreliable and biases data mining results [1] and these data irregularities particularly affect the 

process of supervised learning [4].  Therefore, duplicates records need to be cleaned prior to 

making decisions, predictive analysis and forecasting. Duplicate cleansing is a process of 

duplicate record detection and merging. Duplicate detection discovers groups of records which 

belong to the same real-world entity [7, 46]. Duplicate fusion is one of the duplicate cleansing 

process developed to clean the duplicate records from the datasets  [46-48]. 

Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are the key 

sources of data created in this digital era. Digital systems administrators are authorizing devices 

to record each and every minute and relevant instance in their storage medium. A record in the 

database is created by combining the values of different attributes from similar or different 

sources. Sometimes, machines receive an identical or parallel event which is logged twice as 

duplicate data by single or multiple machines in the same recording medium.  

2.7. Categories of Duplicate Data 

Duplicate data issues are caused due to machine error like sensor error and these issues 

also exist in human-generated data mostly due to human error, typo errors or other input device 

related errors. This research divides the data duplication issues into two main categories based 

on the reasoning behind duplicate data as given below: 

 Deliberate Duplicates 

 Unintended Duplicates 

1) Deliberate Duplicates 

Sometimes, duplicate readings or records are generated intentionally just to create a 

more valid and trustworthy end result from the recordings of sensors or recording sources. 

Sensors or recording mediums are paced in parallel to create a more useful output from the 

recorded data. Deliberate duplication is carried out either to record a similar event or to 

record the different overlapping events [49-52].  
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Decisions on the given input within the critical systems can’t be based on a single 

source of input so multiple parallel sensors or input sources are placed to record the same 

event from the environment which leads to deliberate duplication [49, 52].  

In critical systems, a single sensor can’t be dependable to create a complete picture 

before taking any decisions on the input, therefore, parallel sensors are placed to record the 

duplicate input from the same event happening in the environment. Robots take the decision 

to perform an action based on the several inputs received from the multiple sources about 

the happening of a single event [50, 51].  

In some systems, a single sensor can’t record each and every aspect of a single event, 

therefore, overlapping sensors are installed to create a complete picture before taking any 

decisions on the input. Overlapping recording sources such as sensors placed in the body 

of automatic car receive overlapping inputs to take the decisions related to taking a turn or 

applying breaks [49, 52, 53].   

Online search results are created by finding and placing the identical results together 

just to give the range of available options to the user. This is also an example of deliberate 

duplication and it is useful to collect similar records which increase the chances to get 

valuable search results [54]. 

2) Unintended Duplicates 

Sometimes, duplicate readings or records are generated unintentionally by the sensors 

or recording sources when the similar event is recorded twice by the similar or identical 

sensor. These duplicates are not necessarily the exactly identical of each other but represent 

the same entity or the event which is recorded twice by the system [7]. These duplicates 

are caused due to machine error like sensor error or other input device related errors.  

These anomalies are divided into two categories i.e. systematic irregularities or the non-

random inconsistencies and non-systematic irregularities or the random inconsistencies [1-

3]. Systematic irregularities or non-random inconsistencies have some common error 

pattern and caused due to device error or device limitation to record specific types of 

incidents. Non-systematic irregularities or random inconsistencies are occurred at a certain 

time only due to some rare event.  
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Systematic and non-systematic problems cause the irregularities of unintended 

duplicate record because duplicate records are generated during rewriting attempts for the 

events failed to be recorded [55, 56]. 

2.8. Duplicate Records Detection Techniques 

Duplicate detection discovers groups of similar records which belong to the same real-

world entity [7, 46] from the given input data.  Duplicates records detection techniques are 

built on different duplicate records detection algorithms. Some of the famous duplicate records 

detection algorithms studied in this research are given below:  

 “Naive Duplicate Detection” [7, 57] 

 “Duplicate Count SNM” [7, 58] 

 “Sorted Neighborhood Method” [7, 59] 

 “Lego” [7, 60, 61] 

 “GSwoosh” [7, 62] 

 “RSwoosh” [7, 63] 

 “Naive Blocking” [7, 64] 

1) Naive Duplicate Detection 

Naïve Duplicate Detection is a duplicate detection algorithm which imposes the Naive 

method of examination each likely duplicate pair. This algorithm limits the duplicate pairs 

with a logical way because a record can’t be a duplicate pair with itself and can be a 

duplicate pair with another record just once means no [n,m] exists, if [m,n] is previously 

generated [7, 57]. 

2) Duplicate Count SNM 

Duplicate Count SNM is a duplicate detection algorithm which imposes the Sorted 

Neighborhood Method based on Adaptive Window Size which means duplicate records 

window could be adaptive in terms of numbers of records taking part in that window. Sorted 

Neighborhood Method based on Adaptive Window Size was originally presented by Oliver 

Wonneberg [7, 58]. 
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3) Sorted Neighborhood Method 

Duplicate Count SNM is a simple duplicate detection algorithm which imposes the 

Sorted Neighborhood Method for the duplicate records detection. It allows the system to 

sort the records according to similarity to avoid multiple executions on the input day to find 

the duplicate pairs from the sorted neighbours [7, 59].  

4) Lego 

Lego is a duplicate detection algorithm which imposes the approach of iterative 

blocking. Duplicates blocks are generated iteratively and duplicate records are spread to 

the different blocks to get the more duplicate pairs. Due to iterative nature, this process is 

repeated until duplicates are found in each previous iteration. This process is based on 

“Entity Resolution with Iterative Blocking” by “Steven Euijong Whang”, “David 

Menestrina”, “Georgia Koutrika”, “Martin Theobald” and “Hector Garcia-Molina” [7, 60, 

61]. 

5) GSwoosh 

GSwoosh is a duplicate detection algorithm which imposes the approach of “Swoosh: 

a generic approach for entity resolution.” Similarity Function is integrated with this 

approach to enable it to utilize the Cross Product Strategy  [7, 62]. This algorithm is also 

used for duplicate fusion tasks. 

6) RSwoosh 

RSwoosh is a duplicate detection algorithm which imposes the approach of “Swoosh: 

a generic approach for entity resolution.” Similarity Function is integrated with this 

approach to enable it to utilize the Cross Product Strategy Additionally, RSwoosh considers 

the attributes of “idempotence”, “commutativity”, “associativity” and “representativity” [7, 

63]. 

7) Naive Blocking 

Naïve Blocking Algorithm is a duplicate detection algorithm which imposes the Naive 

blocking method of examination each likely duplicate pair. This algorithm limits the 



23 

duplicate pairs with a logical way using Sorting Key for the Sorted Blocks and this sorting 

key is generated uniquely for each block [7, 64]. 

8) Similarity Comparison Algorithms 

Different algorithms used for the calculation of similarities of the generated duplicate 

pairs. Similarities of all possible pairs are calculated with the algorithms given below: 

 “Levenshtein Distance Function” [7, 65] 

 “Euclidean Distance Function” [7, 66] 

 “Jaro Winkler Function” [7, 67] 

 “Jaccard Similarity Function” [7, 68] 

 “Cosine Similarity Function” [7, 69] 

 “Block Distance Function” [7, 70] 

 “Dice Coefficient Function” [7, 71] 

2.9. Duplicate Records Fixing Techniques 

Duplicate records in a dataset lead to unreliable and biases data mining results [1] and 

particularly affect the process of supervised learning [4]. Therefore, duplicates records need to 

be cleaned prior to making decisions, predictive analysis and forecasting from any input data. 

Manually fixing the dataset inconsistencies is completely unmanageable due to the size of the 

dataset and because of the complications connected with inconsistencies. Data preprocessing 

techniques [8, 9] were introduced to fix the irregularities of the datasets by eliminating or 

replacing the duplicate records. Following are the two main approaches to fix the issues related 

to duplicate records in a dataset: 

 Delete, Discard Duplicate Records 

 Duplicate Records Fusion 

1) Delete, Discard Duplicate Records 

The simplest method for dealing the duplicate records of a dataset during which records 

containing the similar values are deleted or discarded from the dataset create the clean 
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dataset. Most commonly records having most erroneous values are discarded to leave and 

more stable dataset behind [50, 51]. This duplicate removal method is more suitable for the 

unintended duplicates generated due to some error. 

This technique has different variations based on the selection mechanism to discard or 

delete an item: 

 Keep the record having the latest or oldest data [72-74]: 

o In this technique, the record having the latest or oldest data from the 

duplicate records group is kept in the cleansed dataset and remaining 

duplicate records are removed from the dataset. These decisions are taken 

based on the date of record creation or modification [72-74]. 

 Keep the record having least null values and discard others [2, 14, 72, 75]: 

o In this technique, the record having not null values from the duplicate 

records group is kept in the cleansed dataset and remaining duplicate records 

are removed from the dataset [2, 14, 72, 75]. 

 Keep the record having less erroneous values and discard others [2, 14, 72] 

o In this technique, the record having less erroneous values from the duplicate 

records group is kept in the cleansed dataset and remaining duplicate records 

are removed from the dataset [2, 14, 72]. 

Deleting duplicates is preferred when the dataset contains exact duplicate records with 

greatest similarity value. This technique is not suitable for the dataset containing duplicate 

records with low similarity value because in such datasets a single record can’t represent 

all discarded records and during the records discarding important information could be lost. 

A single value for all the missing values can’t indicate the variability of the dataset and can 

affect the classification accuracy [12, 17, 19].  

2) Duplicate Records Fusion 

Duplicate fusion is one of the duplicate cleansing process developed to clean duplicate 

records from the datasets  [46-48, 75]. During the data fusion, duplicate records are merged 

to create a new and more accurate and useful record as a result. Duplicate fusion technique 
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not only resolves the unintended duplicates issue but also helps to merge the deliberately 

created duplicates from the parallel sensors setup [49-52, 76, 77]. This technique is widely 

used for the fusion of multiple inputs received from the multiple sensors installed to record 

a similar event [50, 78].  

Decisions on the given input within the critical systems can’t be based on a single 

source of input so multiple parallel sensors or input sources are placed to record the same 

event from the environment which leads to deliberate duplication [49, 52]. Multiple inputs 

from the multi-sensor environment are merged to create a single and more useful record to 

take the decisions in the critical system [49, 51, 52, 77].  

In some systems, a single sensor can’t record each and every aspect of a single event, 

therefore, overlapping sensors are installed to create a complete picture before taking any 

decisions on the input. Overlapping recording sources such as sensors placed in the body 

of automatic car receive overlapping inputs to take the decisions related to taking a turn or 

applying breaks [49, 52, 53]. Partial inputs from the multi-sensor environment are merged 

to create a single and more useful record to take the decisions about the events and to predict 

the future events and consequences [49, 51, 52, 77].  

3) Voting-Based Duplicate Fusion: 

Majority of the researches focus on voting based duplicate fusion technique to merge 

the duplicate records in the dataset. Multiple records representing the same real-world 

entity are merged in duplicate fusion to create more accurate representation on record. 

Voting technique consider the is attributes values as a candidate for vote and records with 

similar to this are considered as a vote in its favour, finally merging is done by picking the 

values with maximum votes as a proof of value validity [50, 73, 78-82]. 

i. Accuracy-Based Voting 

Accuracy based voting technique consider the accuracy of the source from 

where records were taken, means the previous accuracy of sensors is considered as 

a voting mechanism [80, 81]. The voting number is equal to the accuracy of each 

attribute and is named as naive accuracy similar to “Naive Bayes” where 

consideration of attributes independence is a basic principle [80, 81, 83, 84]. Other 

than accuracy precision, f-measure or recall could also be used for this voting 
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method [84]. This technique has the limitation of getting the accuracy before filling 

missing values and this technique becomes less useful in case of absence of 

accuracy value. 

ii. Similarity-Based Voting 

Cosine similarity among records is calculated to and each record vote for other 

records equal to its similarity and at the end voting decide the reliability of any 

record. All records within all duplicate groups are passed through this mechanism 

and final record is created from each duplicate group after voting [81, 83]. This 

technique has one limitation of neglecting a number of occurrences because more 

occurrences could be overlapped with a value. It neglects the data mining principle 

of “wisdom of the crowd” [85, 86] in terms of occurrences by replacing the value 

having more occurrences with possibly some erroneous value. 

iii. Weightage-Based Majority Voting 

Some researchers suggested adding a weight to vote which means multiple 

weights criteria decide the final items from voting. Weightage could be based on 

similarity or accuracy or the trustworthiness and at the end, voting decides the final 

output from the fusion operation [54, 83, 87]. It neglects the data mining principle 

of “wisdom of the crowd” [85, 86] in terms of occurrences by replacing the value 

having more occurrences with possibly some erroneous value. 

2.10. Review of Duplicate Cleansing Techniques 

Techniques Details Problems 

Keep the 

record having 

the latest value 

(Keep one, 

discard others) 

The record having the latest data from 

the duplicate records group is kept in the 

cleansed dataset and remaining 

duplicate records are removed from the 

dataset. These decisions are taken based 

on the date of record creation or 

modification [72-74]. Deleting 

This technique is not suitable 

for the dataset containing 

duplicate records with low 

similarity value because in 

such datasets a single record 

can’t represent all discarded 

records and during the records 
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Techniques Details Problems 

duplicates is preferred when the dataset 

contains exact duplicate records with 

greatest similarity value. 

discarding important 

information could be lost [12, 

17, 19]. 

Keep the 

record having 

the oldest 

value 

(Keep one, 

discard others) 

In this technique, the record having the 

oldest data from the duplicate records 

group is kept in the cleansed dataset and 

remaining duplicate records are 

removed from the dataset. These 

decisions are taken based on the date of 

record creation or modification [72-74]. 

Deleting duplicates is preferred when 

the dataset contains exact duplicate 

records with greatest similarity value. 

This technique is not suitable 

for the dataset containing 

duplicate records with low 

similarity value because in 

such datasets a single record 

can’t represent all discarded 

records and during the records 

discarding important 

information could be lost [12, 

17, 19]. 

Keep the 

record having 

least null 

values and 

discard others 

(Keep one, 

discard others) 

The record having not null values from 

the duplicate records group is kept in the 

cleansed dataset and remaining 

duplicate records are removed from the 

dataset [2, 14, 72, 75] 

A single value from the 

containing duplicate records 

with low similarity value for 

all the missing values can’t 

indicate the variability of the 

dataset and can affect the 

classification accuracy [12, 17, 

19]. 

Keep the 

record having 

less erroneous 

values and 

discard others 

In this technique, the record having less 

erroneous values from the duplicate 

records group is kept in the cleansed 

dataset and remaining duplicate records 

are removed from the dataset [2, 14, 72] 

A single value from the 

containing duplicate records 

with low similarity value for 

all the missing values can’t 

indicate the variability of the 

dataset and can affect the 
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Techniques Details Problems 

(Keep one, 

discard others) 

classification accuracy [12, 17, 

19]. 

Accuracy-

Based Voting 

(Fusion) 

Accuracy based voting technique 

consider the accuracy of the source from 

where records were taken, means the 

previous accuracy of sensors is 

considered as a voting mechanism [80, 

81]. The voting number is equal to the 

accuracy of each attribute and is named 

as naive accuracy similar to “Naive 

Bayes” where consideration of 

attributes independence is a basic 

principle [80, 81, 83, 84]. Other than 

accuracy precision, f-measure or recall 

could also be used for this voting 

method [84]. 

This technique has the 

limitation of getting the 

accuracy before filling missing 

values and this technique 

becomes less useful in case of 

absence of accuracy value. 

Similarity-

Based Voting 

(Fusion) 

Cosine similarity among records is 

calculated to and each record vote for 

other records equal to its similarity and 

at the end voting decide the reliability of 

any record. All records within all 

duplicate groups are passed through this 

mechanism and final record is created 

from each duplicate group after voting 

[81, 83] 

It neglects the data mining 

principle of “wisdom of the 

crowd” [85, 86] in terms of 

occurrences by replacing the 

value having more occurrences 

with possibly some erroneous 

value. 

Weightage-

Based 

Some researchers suggested adding a 

weight to vote which means multiple 

It neglects the data mining 

principle of “wisdom of the 
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Techniques Details Problems 

Majority 

Voting 

(Fusion) 

weights criteria decide the final items 

from voting. Weightage could be based 

on similarity or accuracy or the 

trustworthiness and at the end, voting 

decides the final output from the fusion 

operation [54, 83, 87] 

crowd” [85, 86] in terms of 

occurrences by replacing the 

value having more occurrences 

with possibly some erroneous 

value. 
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3. Chapter 3 

PROPOSED APPROACH 

This chapter discusses the solution developed as a result of research on data quality issues. 

The developed system named Data Cleansing System (DCS) attempts to solve the dataset 

quality problems for missing and duplicate values are presented in this chapter. The developed 

system is based on duplicate detection mechanism during which record having some 

similarities (duplication) with each other are extracted in the form of pairs named as duplicate 

pairs. 

3.1. Development Process 

An iterative agile methodology named Solo Iterative Process (SIP) [88, 89] is followed to 

develop the Data Cleansing System (DCS). During the development process, the complete 

system is divided into four main subsystems based on the independence of functionalities. Each 

subsystem is further divided into smaller modules and tasks based on the sub-functionalities. 

Division of functionalities and sub-functionalities was performed to make the work more 

manageable and agile. 

Data Cleansing System (DCS) is developed in two iterations to reduce the gaps in the 

software development process [90, 91]. During the first iteration, basic functionalities are 

implemented to create a preliminary end to end system. During the second iteration, advanced 

functionalities are added to the system by extending the existing developed functionalities. 

Process flow details of each submodule with respect to iteration are discussed in the next 

sections. 

3.2. Data Cleansing System (DCS) 

A data quality improvement system, named as Data Cleansing System (DCS), is 

developed during this research to fill the missing or null values of a dataset and to merge the 

duplicate records of the dataset. The developed system is based on duplicate detection 

mechanism during which record having some similarities (duplication) with each other are 

extracted in the form of pairs named as duplicate pairs. The extracted duplicate pairs are utilized 

to take the duplicate merging decisions by the system. Moreover, the developed system also 

utilizes these duplicates pairs to fill the missing values within the pairs.  
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Java programing language is used to build the Data Cleansing System (DCS) by extending 

the Duplicate Detection Toolkit (DuDe) [7]. The developed system takes the low-quality data 

as input, processes it, fills its missing values, removes its duplicates and generates the cleaned 

output data with improved quality.  

3.3. Data Cleansing System (DCS) Architecture 

The high-level architecture of Data Cleansing System is given below in Fig. 2. The 

developed system named Data Cleansing System (DCS) attempts to solve the dataset quality 

problems for missing and duplicate values are presented in this chapter.  

The developed system detects the duplicates of records from the dataset during which 

record having some similarities (duplication) with each other are extracted in the form of pairs 

named as duplicate pairs. A threshold is defined within the system by the system administrator 

to limit the similarity comparison which decreases the duration of execution time.  

 The raw dataset file is given as input to the system which is sent to the subsystem 

of Pre-Processing to extract and select the attributes from the dataset.  

 The data is extracted for the selected attributes which are then passed to the 

Duplicate Detection subsystem to extract the duplicate pairs from the dataset.  

 The extracted duplicate pairs are then passed to the Duplicate Fusion subsystem to 

fuse the duplicates into a single record.  

 The fused duplicates are then passed to the Post-Operation subsystem to create the 

cleaned copy of input dataset by adding attribute names and non-duplicate data in 

it. 

3.4. Flow Chart of Data Cleansing System (DCS) 

Flowchart representing the sequence of the processes carried out by Data Cleansing System 

is given in Fig. 3. After processing of data in one subsystem, it moves to the next subsystem 

for further processing and this process ends with writing the cleaned data in the output file. The 

output of one subsystem is provided as the input to the next subsystem. Upon some 

unsuccessful operation or exception, subsystem exists to the start. 
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Fig. 2. High-Level Architecture of Data Cleansing System 



33 

 

F
ig

. 
3
. 

F
lo

w
ch

ar
t 

o
f 

D
at

a 
C

le
an

si
n
g
 S

y
st

em
 



34 

3.5. Sub-Systems of Data Cleansing System (DCS) 

The higher level architecture of Data Cleansing System (DCS) is divided into four main 

subsystems based on the division of functionalities as shown in Fig. 4.  

Four subsystems of DCS are: 

 Pre-Processing Subsystem (PPS) 

 Duplicate Detection Subsystem (DDS) 

 Duplicate Fusion Subsystem (DFS) 

 Post-Operation Subsystem (POS) 

 

Fig. 4. Modules of Data Cleansing System 

3.6. Pre-Processing Subsystem (PPS) 

Pre-Processing Subsystem deals with the preliminary activities executed on the input file 

before performing any data cleansing task on it. PPS is further divided into four main modules 

as shown in Fig. 5. A user interface is created with an option to select and load the CSV file in 

the subsystem. After successful loading, the subsystem reads the input dataset from CSV file, 

extracts the list of attributes from it. The subsystem then asks the user to select the required 

attributes from the list of attributes and the selected attributes are used to extract the required 

data from the dataset which is returned to the main system for further processing. 



35 

 

Fig. 5. Input File Upload and File Pre-Processing 

3.7. PPS Flowchart 

The sequence of steps performed by the developed Pre-Processing Subsystem is shown in 

Fig. 6. PPS is developed completely in a single iteration because it is just related to file loading 

and preprocessing functionality.  

Details of the steps performed by the developed Pre-Processing Subsystem are given 

below: 

 The developed PPS asks the user to select and upload the raw dataset CSV file into the 

subsystem.  

 The user selects and uploads the file. 

 PPS reads the file. 

 PPS extracts the attribute list from a file. 

 PPS reads data for all the extracted attributes of the file. 

 PPS returns the extracted data and the attributes list to the Data Cleansing System for 

further processing and exists. 
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3.8. Duplicate Detection Subsystem (DDS) 

After the successful preprocessing, extracted data and the attributes list is passed to the 

duplicate detection module to find duplicates from it as shown in Fig. 7. 

 

Fig. 7. Link of File Pre-Processing and Duplicate Detection 

Duplicate Detection Subsystem (DDS) is further divided into four main modules as shown in 

Fig. 8. In the first module, the user is asked to set the similarity threshold after successful data 

extraction then records pairs are generated and their similarity is calculated. If pairs similarity 

exceeds the similarity threshold, pairs are saved for the later processing. 

 

Fig. 8. Duplicate Detection with User Input and Rules 

3.9. DDS Flowchart (First Iteration) 

Fig. 9 shows the flow of a developed Duplicate Detection Subsystem during the first 

iteration which starts by picking the algorithm for duplicate detection and generates possible 

duplicate pairs after comparing records of the given dataset.  
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These duplicate pairs are selected one by one and their similarity is calculated and 

compared with the similarity threshold defined in the system. During the comparison, duplicate 

pairs exceeding the similarity threshold are declared as confirmed duplicate pairs and are stored 

for further processing. 
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3.10. DDS Flowchart (Second Iteration) 
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During the second iteration, the Duplicate Detection Subsystem is extended to get the user 

input for decisions related to duplicate detection.  

Following options are added to the subsystem: 

 Option to get similarity threshold for duplicate records comparison 

 Option to get user input to select the attributes for duplicate detection 

 Option to get user input to select the algorithm from the list of available algorithms 

specific to generate duplicate pairs 

 Option to select the algorithm for calculating the similarity value of the generated 

duplicate pair 

Duplicate Detection Subsystem is extended in such a way that lack of user input for 

duplicate detection decisions is not affecting the flow and subsystem is working by taking 

default actions to find duplicates as shown in the Fig. 10. 

3.11. DDS Algorithms 

Different algorithms for duplicate detection are studied from literature and the most 

discussed algorithms among researchers include Naive Duplicate Detection, Sorted 

Neighborhood Method, Naive Blocking Algorithm, Duplicate Count SNM (DCSNM) and 

DCS++.  Duplicate Detection toolkit (DuDe) was developed as an open source platform which 

provided the Java source code implementation of the duplicate detection algorithms.  

Java code of one of the algorithms named Naive Duplicate Detection [57] is integrated by 

taking it from the DuDe toolkit [7] because DuDe is open source toolkit. Java code given by 

the DuDe is also widely studied before integration to check for any anomalies and then it is 

extended further for the integration in the subsystem under development.  

Correctness, accuracy and algorithmic efficiency of the code given by DuDe is widely 

studied by international researchers and they found it a trustable toolkit of Java source code for 

Duplicate Detection algorithms. 

The Naive Duplicate Detection algorithm [57] is implemented initially and its results as 

detected duplicate pairs are validated with the DuDe and with the available literature. A variety 
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of duplicate detection algorithms express that a single duplicate detection algorithm is not 

suitable for all the scenarios and datasets which is also validated by many of the researchers in 

data cleansing community.  

Moreover, the user should be able to select the desirable algorithm on runtime as per the 

need and based on the type of dataset given as input. Therefore, Architecture of Duplicate 

Detection is extended to support this need during the second iteration which still supports the 

default implementation. 

There are two types of algorithms integrated into Duplication Detection Subsystem for the 

two different types of tasks performed by these algorithms: 

1. Duplicate Pairs Generation  

2. Similarities Calculation 

1) Duplicate Pairs Generation 

This category includes the algorithms used for the generation of duplicate pairs by 

comparing each record as a whole with the other records in the dataset. All possible pairs 

of each record are created with the algorithms given below: 

 “Naive Duplicate Detection” [7, 57] 

 “Duplicate Count SNM” [7, 58] 

 “Sorted Neighborhood Method” [7, 59] 

 “Lego” [7, 60, 61] 

 “GSwoosh” [7, 62] 

 “RSwoosh” [7, 63] 

 “Naive Blocking” [7, 64] 

The user is able to select any of the above duplicate detection algorithms at runtime to 

generate the duplicate pairs from the input data.  
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2) Similarities Calculation 

This category includes the algorithms used for the calculation of similarities of the 

generated duplicate pairs. Similarities of all possible pairs are calculated with the 

algorithms given below: 

 “Levenshtein Distance Function” [7, 65] 

 “Euclidean Distance Function” [7, 66] 

 “Jaro Winkler Function” [7, 67] 

 “Jaccard Similarity Function” [7, 68] 

 “Cosine Similarity Function” [7, 69] 

 “Block Distance Function” [7, 70] 

 “Dice Coefficient Function” [7, 71] 

The user is able to select any of the above algorithms at runtime for the calculation of 

similarities of the generated duplicate pairs.  

Architecture and flow of Duplicate Detection Subsystem are made generic to support any 

future algorithm added to the subsystem either related to pair generation or related to pairs 

similarity calculation.  

3.12. Duplicate Fusion Subsystem (DFS) 

In Duplicate Fusion Subsystem (DFS), extracted duplicate pairs are further analyzed to 

merge them into a single record. Duplicate fusion is one of the duplicate cleansing process 

developed to clean duplicate records from the datasets  [46-48, 75]. During the data fusion, 

duplicate records are merged to create a new and more accurate and useful record as a result.  

Duplicate fusion technique not only resolves the unintended duplicates issue but also helps 

to merge the deliberately created duplicates from the parallel sensors setup [49-52, 76, 77]. 

This technique is widely used for the fusion of multiple inputs received from the multiple 

sensors installed to record a similar event [50, 78].  
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The high-level architecture of the Duplicate Fusion is additionally divided into four 

modules as shown in Fig. 11.  

 

Fig. 11. Duplicate Fusion with User Input and Rules 

Once fusion operations are calculated, subsystem prompts to get the user input related to 

merging procedures those are defined in the subsystem. When a user input is received for the 

fusion procedures, duplicate fusion is performed by merging the duplicate records and the 

dataset is updated. If no input is received default fusion operations are performed from the 

subsystem configuration. 

3.13. DFS Flowchart (First Iteration) 

Fig. 12 depicts the process of Duplicate Fusion Subsystem which is developed during the 

first iteration of DFS. Subsystem takes duplicate pairs as input, reads and selects each duplicate 

pair one by one and extracts the first record of duplicate pair. DFS then selects the all attributes 

one by one from the selected record and analyzes their value.  

After the analysis, attribute’s value is, its similarity value and occurrence are initialized and 

stored for that record if not already stored. Otherwise, the similarity value of the pair is added 

to the stored similarity of the record and the occurrence is incremented for that record if the 

attribute’s value is already stored for that record. This process is repeated until all the duplicate 

pairs are processed and their respective replacements are calculated.  
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3.14. DFS Flowchart (Second Iteration) 
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Duplicate Fusion Subsystem (DFS) is further extended during the second iteration to get 

the user input related to the newly developed fusion options as shown in Fig. 13. The newly 

developed fusion options are based on the fusion operations calculated during the first iteration. 

After the selection of fusion options, all records are selected one by one and data cleansing is 

performed according to the values saved for each attribute of the selected record.  

Duplicate Fusion Subsystem (DFS) performs one of the below three operations on the input 

duplicate pairs to perform the data cleansing as per the given user input. Runtime selection of 

one of these options is given to the user and the default option is executed on the system if 

nothing received from the user. 

Duplicate Fusion Subsystem (DFS) supports the following three types of data fusion 

options: 

1. Merge & Fill 

2. Maximum Similarity Sum 

3. Maximum Occurrences 

3.15. DFS Fusion Options 

The developed Duplicate Fusion Subsystem (DFS) provides three different types of 

duplicate fusion operations based on the calculations of fusion operations. These operations are 

carried out on the duplicate records those were detected during the first DFS iteration. 

Duplicate fusion operations implemented in the DFS are explained below with complete 

details. 

1) Merge & Fill 

This option of Duplicate Fusion Subsystem (DFS) supports the merging of highest 

similar duplicate record pairs just to fill the missing values of the records’ attributes. During 

the merging and filling process, missing values of the records are filled and nothing is 

deleted from the dataset.  

It is a useful technique for data preprocessing to fix the inconsistencies in the dataset 

related to missing values. It also improves the quality of the data after filling all possible 

missing values of a dataset. 
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2) Maximum Similarity Sum  

This option of Duplicate Fusion Subsystem (DFS) supports the merging of duplicate 

record pairs by taking the value from the attributes having the highest similarity. It 

calculates the sum of similarity of all the values of an attribute from all relevant duplicate 

pairs. Records similar to each other participate in this process (duplicate pairs group) and 

create a new record by getting the values of highest accumulative similarity from each 

duplicate pair group. 

3) Maximum Occurrences 

This option of Duplicate Fusion Subsystem (DFS) supports the merging of duplicate 

record pairs by taking the value from the attributes having the highest number of 

occurrences. It calculates occurrences of all values of an attribute from all relevant 

duplicate pairs. Records similar to each other participate in this process (duplicate pairs 

group) and creates a new record by getting the values of highest occurrence from each 

duplicate pair group. 

3.16. DFS Algorithms 

Following three duplicate fusion algorithms are developed for the merging of duplicates 

and filling of missing values. These three options are integrated into the Duplicate Fusion 

Subsystem (DFS). 

 SimFiller 

o Similarity-based missing values filling algorithm is developed to fill the 

missing values of any dataset. 

 DuDeFiller 

o Duplicate detection based missing values filling algorithm is also developed 

to fill the missing values of any dataset. 

 DuDeFuse 

o Duplicate detection and fusion algorithm are developed to fuse the duplicate 

values of any dataset. 
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3.17. SimFiller  

SimFiller is similarity-based missing values filling algorithm which runs independently on 

its own to fill the missing values of a dataset because it is developed during the first iteration.  

This algorithm directly accepts the input dataset after Pre-Processing Subsystem (PPS), 

produces the pairs of similar records, filters them based on similarity threshold, check each pair 

to verify that at least one record’s attribute contains a null value then fills the missing values 

within each pair by taking the relevant not null value.  

SimFiller technique is useful for data preprocessing to fix the inconsistencies in the dataset 

related to missing values. Quality of the dataset is increased after passing it from this data 

cleansing option. 

Data passes through flowing steps during the cleansing with the SimFiller algorithm: 

 Step1: Create pairs of similar data 

 Step2: Select each pair and allocate it calculated a similarity value 

 Step3: Save each pair having at least one non-null attribute’s value 

 Step4: Select a pair of highest similarity for each attribute’s null value after matching 

pairs with similarity threshold and with each other.   

 Step5: Replace all null values of attributes within a selected pair 

3.18. Execution of SimFiller 

SimFiller supports the merging of highest similar record pairs just to fill the missing values 

of the records’ attributes. During the merging missing values of the records are filled and 

nothing is deleted from the dataset. This technique is useful for data preprocessing to fix the 

inconsistencies in the dataset related to missing values. Quality of the dataset is increased after 

passing it from this data cleansing option. 

This algorithm takes the input dataset and passes it through the five steps process and 

generates the cleaned output dataset. Sample dataset containing missing values is considered 

to fill the missing values using this algorithm as shown in Table 1.  
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Similarity threshold is fixed at 0.75 for this sample execution and demonstrates that all the 

records having a similarity greater than 0.75 would be considered for filling the missing values 

of the sample dataset. 

 Considered sample dataset contains ten records (tuples) represented as T1 … T10 and five 

attributes represented as A1… A5. After the execution of the first step of the algorithm on the 

sample dataset, similar pairs are generated and represented as Sm = (Tn, To). Where m 

represents the number allocated to each record pair and n and o represent the record number 

i.e. T1 … T10 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 * T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 * T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 * * T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 1. Sample Dataset (SimFiller) 

1) Consider 1st missing value i.e. T2A2 to fill it with SimFiller 

 Step1: Create pairs of similar data 

o Four pairs are created for T2: 

 S1(T2, T4) 

 S2(T2, T6) 

 S3(T2, T9) 

 S4(T2, T10) 

 Step2: Select each pair and allocate it calculated a similarity value 

o S1(T2, T4) = 0.82 

o S2(T2, T6) = 0.84 
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o S3(T2, T9) = 0.80 

o S4(T2, T10) = 0.75 

 Step3: Save each pair having at least one non-null attribute’s value 

o S2(T2, T6) omitted because T6A2 is null.  

o Remaining pairs:  

 S1(T2, T4) = 0.82 

 S3(T2, T9) = 0.80 

 S4(T2, T10) = 0.75 

 Step4: Select a pair of highest similarity for each attribute’s null value after matching 

pairs with similarity threshold and with each other 

o S3(T2, T9) omitted because the similarity of S1(T2, T4) > S3(T2, T9) 

o S4(T2, T10) is also omitted because the similarity of S1(T2, T4) > S4(T2, T10) 

o Remaining pairs: 

 S1(T2, T4) = 0.82 

 Step5: Replace all null values of attributes within a selected pair 

o T2A2 = T4A2 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T4A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 * T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 * * T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 2. Updated Sample Dataset (SimFiller) After Filling T2A2 

Updated sample dataset (SimFiller) after filling T2A2 is shown in Table 2 where T2A2 is 

replaced with T4A2 to fill the missing value of T2A2. 
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2) Next, consider 2nd missing value i.e. T4A4 to fill it with SimFiller 

 Step1: Create pairs of similar data 

o Two pairs are created for T4 

 S1(T4, T5) 

 S2(T4, T7) 

 Step2: Select each pair and allocate it calculated a similarity value 

o S1(T4, T5) = 0.92 

o  S2(T4, T7) = 0.87 

 Step3: Save each pair having at least one non-null attribute’s value 

o No pair omitted 

o Remaining pairs:  

 S1(T4, T5) = 0.92 

 S2(T4, T7) = 0.87 

 Step4: Select a pair of highest similarity for each attribute’s null value after 

matching pairs with similarity threshold and with each other 

o S2(T4, T7) omitted because the similarity of S1(T4, T5) > S2(T4, T7) 

o Remaining pairs: 

 S1(T4, T5) = 0.92 

 Step5: Replace all null values of attributes within a selected pair 

o There is only one value in pair i.e. T4A4 so replacing its value 

 T4A4 = T5A4 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T4 A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 T5A4 T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 * * T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 3. Updated Sample Dataset (SimFiller) After Filling T4A4 
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 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T4A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 T5A4 T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T9A2 T9A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 T5A3 T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 4. Updated Sample Dataset (SimFiller) After Filling All Missing Values 

Remaining missing values are filled with the same mechanism of SimFiller. Following 

missing values are filled during the execution of SimFiller: 

 T2A2 = T4A2 

 T4A4 = T5A4 

 T6A2 = T9A2 

 T6A3 = T9A3 

 T8A3 = T5A3 

Updated sample dataset (SimFiller), after filling all possible missing values based on similarity 

pairs, is shown in Table 4. 

3.19. DuDeFiller 

DuDeFiller algorithm is an extended form of a SimFiller algorithm which accepts input 

from the Duplicate Detection Subsystem (DDS) as duplicate record pairs and processes them 

to fill the missing values of records within pairs. DuDeFiller is duplicate detection based 

missing values filling algorithm which filters the input duplicate pairs based on similarity 

threshold, check each pair to verify that at least one record’s attribute contains a null value and 

fills the missing values within each pair.  
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This algorithm supports the merging of highest similar duplicate record pairs just to fill the 

missing values of the records’ attributes. During the merging missing values of the records are 

filled and nothing is deleted from the dataset. This technique is useful for data preprocessing 

to fix the inconsistencies in the dataset related to missing values. Quality of the dataset is 

increased after passing it from this data cleansing option. 

DuDeFiller algorithm fills the missing values of the records and saves the similarity of all 

duplicate pairs for future calculations. Merge & Fill options developed during the second 

iteration of Duplicate Fusion Subsystem (DFS) is based on this algorithm. Step-1 to Step-8 are 

executed on the generated duplicate pairs to fill the missing values of the input dataset. The 

process continues until are duplicate records are processed and their missing values are filled. 

The cleaned data is sent back to the Data Cleansing System (DCS) as an output of the Duplicate 

Fusion Subsystem (DFS) for further processing. 

Input duplicate records pass through flowing steps during the DuDeFiller algorithm:  
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3.20. Execution of DuDeFiller 

DuDeFiller takes the input dataset and passes it through the eight steps process and 

generates the cleaned output dataset. Sample dataset containing missing values is considered 

to fill the missing values using this algorithm as shown in Table 5.  

Similarity threshold is fixed at 0.75 for this sample execution and demonstrates that all the 

records having a similarity greater than 0.75 would be considered for filling the missing values 

of the sample dataset. 

This algorithm supports the merging of duplicate record pairs based on duplicate detection 

to fill the missing values of the records’ attributes. During the merging missing values of the 

records are filled and nothing is deleted from the dataset.  

This technique is useful for data preprocessing to fix the inconsistencies in the dataset 

related to missing values. Quality of the dataset is increased and the accuracy of the dataset is 

enhanced after passing the dataset from this data cleansing algorithm. 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 * T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 * T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T6A2 T6A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 5. Sample Dataset (DuDeFiller) 

Considered sample dataset contains ten records (tuples) represented as T1 … T10 and five 

attributes represented as A1… A5.  
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After the execution of the Duplicate Detection Subsystem (DDS) on the sample dataset, 

duplicate pairs are generated and represented as Dm = (Tn, To). Where m represents the number 

allocated to each record pair and n and o represent the record number i.e. T1 … T10 

Dataset shown in Table 5 is given as input to the Pre-Processing Subsystem (PPS) which 

is passed to the Duplicate Detection Subsystem (DDS) after the required preprocessing on it. 

Duplicate Detection Subsystem (DDS) executes the duplicate detection algorithms on the 

preprocessed input dataset and generates the duplicate records pairs given below: 

 D1(T1, T2)  

 D2(T1, T3)  

 D3(T2, T4)  

 D4(T2, T5)  

 D5(T3, T4)  

 D6(T8, T9)  

The calculated similarity of each duplicate pair received from the Duplicate Detection 

Subsystem (DDS) is assigned to each duplicate pair and is given as input to the DuDeFiller 

algorithm for filling the missing values of the dataset. 

 D1(T1, T2) = 0.85 

 D2(T1, T3) = 0.80 

 D3(T2, T4) = 0.65 

 D4(T2, T5) = 0.87 

 D5(T3, T4) = 0.86 

 D6(T8, T9) = 0.80 

All duplicate pairs are processed by DuDeFiller algorithm from the Step-1 to Step-8 and 

missing values of the dataset are filled from the pair having highest similarity.  

Execution of DuDeFiller for D1 

 Step-1: Selected pair D1(T1, T2) 

 Step-2: 0.85 > 0.75 (passed) 

 Step-3: Selected attributes of T1 and T2 
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 Step-4: Assigned mutual similarity for all attributes of T1 and T2 = 0 as not already 

saved 

 Step-5: Attribute A2 for T2 is null (passed) 

 Step-6: (T2A2 similarity) 0 >! 0.85 (Pair similarity) 

 Step-7: T2A2 = T1A2 

 Step-8: T2A2 similarity = 0.85 

Sample dataset is updated after the execution of DuDeFiller for the pair D1 as shown in Table 

6 where null value T2A2 is filled with T1A2. 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T1A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 * T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T6A2 T6A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 6. Updated Sample Dataset (DuDeFiller) After Processing of D1 

Execution of DuDeFiller for D2 

 Step-1: Selected pair D2(T1, T3) 

 Step-2: 0.80 > 0.75 (passed) 

 Step-3: Selected attributes of T1 and T3 

 Step-4: Assigned mutual similarity for all attributes of T1 and T3 = 0 as not already 

saved 

 Step-5: None of the attributes is null for T1 and T3 (failed) 

DuDeFiller algorithm exists from Step-5 for D2 as none of the attributes for T1 and T3 has a 

null value and sample dataset is not updated.  
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Execution of DuDeFiller for D3 

 Step-1: Selected pair D3(T2, T4) 

 Step-2: 0.65 > 0.75 (failed) 

DuDeFiller algorithm exits from Step-2 for D3 as pair similarity is less than the similarity 

threshold and sample dataset is not updated.  

Execution of DuDeFiller for D4 

 Step-1: Selected pair D4(T2, T5) 

 Step-2: 0.87 > 0.75 (passed) 

 Step-3: Selected attributes of T2 and T5 

 Step-4: Assigned mutual similarity for all attributes of T5 = 0 but not for and T2 as it is 

already saved as T2A2 similarity = 0.85 

 Step-5: Attribute A2 for T2 is initially null (passed) 

 Step-6: (T2A2 similarity) 0.85 >! 0.87 (Pair similarity) 

 Step-7: T2A2 = T5A2 (again updated) 

 Step-8: T2A2 similarity = 0.87 (again updated) 

Sample dataset is again updated after the execution of DuDeFiller for the pair D4 as shown 

in Table 7 where T2A2 is filled with T5A2. 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T5A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 * T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T6A2 T6A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 7. Updated Sample Dataset (DuDeFiller) After Processing of D4 
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Execution of DuDeFiller for D5 

 Step-1: Selected pair D5(T3, T4) 

 Step-2: 0.86 > 0.75 (passed) 

 Step-3: Selected attributes of T3 and T4 

 Step-4: Assigned mutual similarity for all attributes of T3 and T4 = 0 as not already 

saved 

 Step-5: Attribute A4 for T4 is null (passed) 

 Step-6: (T4A4 similarity) 0 >! 0.86 (Pair similarity) 

 Step-7: T4A4 = T3A4 

 Step-8: T4A4 similarity = 0.86 

Sample dataset is again updated after the execution of DuDeFiller for the pair D5 as shown 

in Table 8 where null value T4A4 is filled with T3A4. 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T5A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 T3A4 T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T6A2 T6A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 * T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 8. Updated Sample Dataset (DuDeFiller) After Processing of D5 

Execution of DuDeFiller for D6 

 Step-1: Selected pair D6(T8, T9) 

 Step-2: 0.80 > 0.75 (passed) 

 Step-3: Selected attributes of T8 and T9 
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 Step-4: Assigned mutual similarity for all attributes of T8 and T9 = 0 as not already 

saved 

 Step-5: Attribute A3 for T8 is null (passed) 

 Step-6: (T8A3 similarity) 0 >! 0.80 (Pair similarity) 

 Step-7: T8A3 = T9A3 

 Step-8: T8A3 similarity = 0.80 

Sample dataset is again updated after the execution of DuDeFiller for the pair D6 as shown 

in Table 9 where null value T8A3 is filled with T9A3. 

 A1 A2 A3 A4 A5 

T1 T1A1 T1A2 T1A3 T1A4 T1A5 

T2 T2A1 T5A2 T2A3 T2A4 T2A5 

T3 T3A1 T3A2 T3A3 T3A4 T3A5 

T4 T4A1 T4A2 T4A3 T3A4 T4A5 

T5 T5A1 T5A2 T5A3 T5A4 T5A5 

T6 T6A1 T6A2 T6A3 T6A4 T6A5 

T7 T7A1 T7A2 T7A3 T7A4 T7A5 

T8 T8A1 T8A2 T9A3 T8A4 T8A5 

T9 T9A1 T9A2 T9A3 T9A4 T9A5 

T10 T10A1 T10A2 T10A3 T10A4 T10A5 

Table 9. Updated Sample Dataset (DuDeFiller) After Processing of D6 

DuDeFiller algorithm exists after the execution of the last duplicate pair and tries to fill all 

the missing values found in the input duplicate pairs. 

3.21. DuDeFuse 

DuDeFuse is duplicate detection and fusion algorithm which accepts input from the 

Duplicate Detection Subsystem as duplicate record pairs. DuDeFuse calculates the similarity 

and occurrence of each possible value of an attribute for each of the records within the duplicate 

pair. This algorithm extracts each record’s every attribute’s value having maximum similarity 

sum and the value of having maximum occurrence.  
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Input duplicate records pass through flowing steps during the DuDeFuse algorithm:  

   

Duplicate merging is implemented based on the input provided by the user for the duplicate 

fusion options. This algorithm supports the Maximum Similarity Sum and Maximum 

Occurrences options of the duplicate fusion to merge the duplicate records. 

3.22. Post-Operation Subsystem (POS) 

Post-Operation Subsystem (POS) deals with the activities executed to create the output file 

after performing a cleansing task on it during the Duplicate Fusion Subsystem (DFS). DCS 

passes the output of the Data Fusion Subsystem (DFS) to the Post-Operation Subsystem (POS) 

in the form of fused duplicates which is further processed and written to the file for the user.  
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Post-Operation Subsystem (POS) is further divided into the following four main modules 

as shown in Fig. 14.  

 Create an output file 

o Create a CSV file (having .csv extension) with a proper name derived from 

the input file and this file is created in a similar directory from where the 

data was imported. 

 Write Attributes names  

o Attributes names those were extracted from the input file in the Pre-

Processing Subsystem are written in the output file according to the CSV 

format. 

 Write Fused/Cleaned records 

o Fused or Cleaned records those were received from the Duplicate Fusion 

Subsystem based on the selected user operation are written one by one into 

the output file according to the CSV format. 

 Open-File 

o After writing the file in the system directory it is opened for the user. 

The output file is created by the POS to store the output of the whole process carried out 

from the Pre-Processing Subsystem (PPS) to the Post-Operation Subsystem (POS) and it 

contains the following information: 

 Attributes header  

 Cleaned records after performing one of the below operations 

o Filling missing values 

o Fusing duplicate records  

Data Cleansing System (DCS) is developed in two iterations by applying Solo Iterative 

Process (SIP). During the first iteration, basic functionalities are implemented to create a 

preliminary end to end system. During the second iteration, advanced functionalities are added 
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to the system by extending the existing developed functionalities. Process flow details of each 

submodule with respect to iteration are discussed in the next sections. 

 

Fig. 14. Post-Operation Subsystem (POS) 

3.23. POS Flowchart 

The sequence of steps performed by the developed Post-Operation Subsystem (POS) is 

shown in Fig. 15. POS is developed completely in the single iteration because it is just related 

to file writing and post-processing functionality.  

Details of the steps performed by the developed subsystem are given below: 

 Create an output file 

 Read cleaned data 

 Check no of cleaned records 

 Write attributes if no of cleaned records > 0 

 Select each cleaned record one by one  

 Write each selected cleaned record to the created file 

 Save the output file 

 Open the output file after writing all cleaned records 
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3.24. Operation of Data Cleansing System 

A data quality improvement system, named as Data Cleansing System (DCS) is based on 

duplicate detection mechanism during which record having some similarities (duplication) with 

each other are extracted in the form of pairs named as duplicate pairs. The extracted duplicate 

pairs are utilized to take the duplicate merging decisions by the system. Moreover, this system 

also utilizes these duplicates pairs to fill the missing values within the pairs. Data Cleansing 

System (DCS) provides the following four major functions related to data cleansing: 

 Import and Preprocess (Pre-Processing Subsystem) / (PPS) 

 Find Duplicates (Duplicate Detection Subsystem) / (DDS) 

 Fill Missing Values (Duplicate Fusion Subsystem) / (DFS) 

 Fuse Duplicates (Duplicate Fusion Subsystem) / (DFS) 

Following are the instructions for the user to efficiently operate the DCS. 

1) Import and Preprocess (Pre-Processing Subsystem) / (PPS) 

Pre-Processing Subsystem deals with the preliminary activities executed on the input 

file before performing any data cleansing task on it. Following user interface is created with 

“Import and Preprocess (PPS)” button, as shown in Fig. 16, to select and load the CSV file 

in the subsystem.  

 

Fig. 16. Data Cleansing System (Screen) 
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CSV separator selection is customized so that user can select the dataset’s CSV 

separator either “,” or “;” as shown in Fig, 17. 

 

Fig. 17. CSV Separator Selection (PPS) 

On clicking the “Import and Preprocess (PPS)” button, PPS asks the user to select and 

upload the raw dataset CSV file into the subsystem as shown in Fig. 18. 

 

Fig. 18. Select and Upload File (PPS) 

The user selects and uploads the file. After successful loading, PPS reads the input 

dataset from CSV file, extracts the attribute list from it and reads data for all the extracted 

attributes of the file.  

PPS shows the instructions to the users which attributes are recommended to select and 

which are not recommended to select as shown in Fig. 19. 
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Fig. 19. Instructions to Select Attributes (PPS)  

The subsystem asks the user to select the required attributes from the extracted list of 

attributes. Initially, all attributes are selected by the subsystem as shown in Fig. 20.  

 

Fig. 20. Attributes Selection (PPS) 

The selected attributes are used to extract the required data from the dataset which is 

returned to the main system for further processing. PPS enables the “Find Duplicates 

(DDS)” button, “Fill Missing Values (DFS)” button and “Fuse Duplicates (DFS)” button 
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after successful selection of attributes. It also loads the selected attributes in the selected 

attributes box given in Fig. 21. 

 

Fig. 21. Selected Attributes (PPS) 

2) Find Duplicates (Duplicate Detection Subsystem) / (DDS) 

After clicking the “Find Duplicates (DDS)” button on the screen shown in Fig. 22, the 

system takes the user to the Duplicate Detection Subsystem. 

 

Fig. 22. Selected Attributes (DDS) 
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Duplicate Detection Subsystem asks the user to pick the algorithm for duplicate 

detection and generates possible duplicate pairs after comparing records of the given 

dataset. Duplicate Detection Subsystem (DDS) interface is shown in Fig. 23. 

 

Fig. 23. Duplicate Detection Subsystem 

Similarity threshold selection is customized so that user can select the appropriate 

threshold from the options shown in Fig. 24. 

 

Fig. 24. Similarity Threshold Selection (DDS) 
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Dataset identifier is customized so that user can select the appropriate identifier from 

the list of attributes extracted from the imported data as shown in Fig. 25. 

 

Fig. 25. Dataset Identifier Selection (DDS) 

Duplicate detection algorithm selection is customized so that the user can select the 

appropriate duplicate detection algorithm from the options shown in Fig. 26. 

 

Fig. 26. Duplicate Detection Algorithm Selection (DDS) 

Similarity calculation algorithm selection is customized so that the user can select the 

appropriate similarity calculation algorithm from the options given in the Fig.27. 

 

Fig. 27. Similarity Calculation Algorithm Selection (DDS) 

After clicking the “Find Duplicates (DDS)” button, the subsystem starts finding the 

duplicate records from the input dataset as shown in Fig. 28. 
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Fig. 28. DDS Processing 

A success message is displayed after finding and writing the duplicate records from the 

input data set to the output file as shown in Fig. 29 and “Open Generated File (DDS)” 

button is also enabled to open the generated output file of duplicate records. 

 

Fig. 29. DDS Processing Completed 
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3) Fill Missing Values (Duplicate Fusion Subsystem) / (DFS) 

After clicking the “Fill Missing Values (DFS)” button on the screen shown in Fig. 30, 

the system takes the user to the DFS for Missing Values (DFS-MV). 

 
Fig. 30. Selected Attributes (DFS - MV) 

Duplicate Fusion Subsystem for Missing Values (DFS-MV) supports the merging of 

highest similar duplicate record pairs just to fill the missing values of the records’ attributes 

and nothing is deleted from the dataset. DFS-MV interface is shown in Fig. 31. 

 
Fig. 31. Duplicate Fusion Subsystem for Missing Values (DFS-MV) 
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Similarity threshold selection is customized for the Duplicate Fusion Subsystem for 

Missing Values (DFS-MV) so that user can select the appropriate threshold from the 

options given in Fig. 32. 

 

Fig. 32. Similarity Threshold Selection (DFS-MV) 

Dataset identifier is customized for the Duplicate Fusion Subsystem for Missing Values 

(DFS-MV) so that user can select the appropriate identifier from the list of attributes 

extracted from the imported data as shown in Fig. 33. 

 

Fig. 33. Dataset Identifier Selection (DFS-MV) 

Missing value representation selection is customized for the Duplicate Fusion 

Subsystem for Missing Values (DFS-MV) so that user can select the “?” or “null” as the 

missing value representation according to the input data as shown in Fig. 34. 
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Fig. 34. Missing Value Representation Selection (DFS-MV) 

Duplicate detection algorithm selection is customized for the Duplicate Fusion 

Subsystem for Missing Values (DFS-MV) so that user can select the appropriate duplicate 

detection algorithm from the options given in Fig. 35. 

 

Fig. 35. Duplicate Detection Algorithm Selection (DFS-MV) 

Similarity calculation algorithm selection is customized for the Duplicate Fusion 

Subsystem for Missing Values (DFS-MV) so that user can select the appropriate similarity 

calculation algorithm from the options given in Fig. 36. 

 

Fig. 36. Similarity Calculation Algorithm Selection (DFS-MV) 

After clicking the “Fill Missing Values (DFS)” button, subsystem starts filling the 

missing values of the input dataset by merging of highest similar duplicate record pairs just 

to fill the missing values of the records’ attributes and nothing is deleted from the dataset 

as shown in the Fig. 37.  
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Fig. 37. DFS-MV Processing 

A success message is displayed after filling the missing values and writing the cleaned 

records of the input data set to the output file as shown in Fig. 38. “Open Generated File 

(DFS)” button is also enabled to open and show the generated output file with the 

information of cleaned records. 

 

Fig. 38. DFS-MV Processing Completed 
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4) Fuse Duplicates (Duplicate Fusion Subsystem) / (DFS) 

After clicking the “Fuse Duplicates (DFS)” on the following screen, the system takes 

the user to the Fuse Duplicate Values (Duplicate Fusion Subsystem): 

 

Fig. 39. Selected Attributes (DFS) 

Fuse Duplicate Values (DFS) extracts duplicate pairs, analyzes them to merge them 

into a single record. During the data fusion, duplicate records are merged to create a new 

and more accurate and useful record as a result. Duplicate fusion technique not only 

resolves the unintended duplicates issue but also helps to merge the deliberately created 

duplicates from the parallel sensors setup. This technique is widely used for the fusion of 

multiple inputs received from the multiple sensors installed to record a similar event. 

Duplicate Fusion Subsystem (DFS) enabled fusion options are based on the fusion 

operations calculated during the first iteration. After the selection of fusion options, all 

records are selected one by one and data cleansing is performed according to the values 

saved for each attribute of the selected record. Duplicate Fusion Subsystem (DFS) supports 

the “Maximum Similarity Sum” and “Maximum Occurrences” data fusion options. 

Runtime selection of one of these options is given to the user and the default option is 

executed on the system if nothing received from the user.  

Fuse Duplicate Values interface given in Fig. 40 is shown for the user after clicking the 

“Fuse Duplicates (DFS)” button on the DCS screen is shown after preprocessing. 
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Fig. 40. Duplicate Fusion Subsystem (DFS) 

Similarity threshold selection is customized for the Duplicate Fusion Subsystem (DFS) 

so that user can select the appropriate threshold from the options given in Fig. 41. 

 

Fig. 41. Similarity Threshold Selection (DFS) 

Dataset identifier is customized for the Duplicate Fusion Subsystem (DFS) so that user 

can select the appropriate identifier from the list of attributes as shown in Fig. 42. These 

attributes are extracted from the input dataset during the preprocessing step. 
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Fig. 42. Dataset Identifier Selection (DFS) 

Missing value representation selection is customized for the Duplicate Fusion 

Subsystem (DFS) so that user can select the “?” or “null” as the missing value 

representation according to the input data as shown in Fig. 43. 

 

Fig. 43. Missing Value Representation Selection (DFS) 

Duplicate detection algorithm selection is customized for the Duplicate Fusion 

Subsystem (DFS) so that user can select the appropriate duplicate detection algorithm from 

the options given in Fig. 44. 

 

Fig. 44. Duplicate Detection Algorithm Selection (DFS) 

Similarity calculation algorithm selection is customized for the Duplicate Fusion 

Subsystem (DFS) so that user can select the appropriate similarity calculation algorithm 

from the options given in Fig. 45. 
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Fig. 45. Similarity Calculation Algorithm Selection (DFS) 

Duplicate fusion algorithm selection is customized for the Duplicate Fusion Subsystem 

(DFS) so that user can select the suitable algorithm from the options given in Fig. 46. 

 

Fig. 46. Duplicate Fusion Algorithm Selection (DFS) 

After clicking the “Fuse Duplicates (DFS)” button, the subsystem starts fusing the 

missing values of the input dataset as shown in Fig. 47. 

 

Fig. 47. DFS Processing 

If the user clicks the close button during the processing of DFS, the message is 

displayed asking the user to wait for the processing as shown in Fig. 48. 
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Fig. 48. Closing DFS Processing 

A success message is displayed after fusing the duplicate values and writing the cleaned 

records of the input data set to the output file as shown in Fig. 49. “Open Generated File 

(DFS)” button is enabled to open the generated output file with the cleaned records. 

 

Fig. 49. DFS Processing Completed  
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4. Chapter 4 

EXPERIMENTAL SETUP FOR VALIDATION 

This chapter comprises the description of experiments setup used to get the results for the 

proposed algorithms in the research. The setup was created to validate the duplicate detection 

results, missing values filling results and duplicate fusion results for the correctness and 

endorsement of the contribution made by this research in the body of knowledge. 

Data Cleansing System (DCS) is built on “Duplicate Detection toolkit (DuDe)” [7] and this 

toolkit contains the collection of duplicate detection algorithms written in Java programming 

language. DuDe was developed and tested by German data scientists over a period of time and 

continuous improvements were made to improve its quality. The quality and the open source 

license of this DuDe kit attracted us to get the benefits from it.  

This work from this base point of “Duplicate Detection toolkit (DuDe)” [7] because it was 

already developed and tested for its performance and as per software engineering principle, the 

already done work was reused and reinvention of the wheel [92] was avoided. As per the 

“Quality in, quality out” [93] principle, the developed system is of high quality because the 

base and the input for the building block is of high quality. 

4.1. Duplicate Detection (Validation) 

Duplicate Detection Subsystem (DDS) integrates the “Duplicate Detection toolkit (DuDe)” 

[7] to find the duplicates from the given input data. Data Cleansing System (DCS) takes the 

data as input and preprocess it through the Pre-Processing Subsystem (PPS). DCS then gives 

this preprocessed data to DDS as input and duplicates are generated. 

To verify the process of Duplicate Detection Subsystem, similar datasets were selected 

those were selected by the DuDe kit and following two algorithms were selected for the testing 

purpose: 

1. “Naive Duplicate Detection” [7, 57] 

2. “Levenshtein Distance Function” [7, 65] 

 



81 

4.2. Duplicate Fusion (Validation) 

Duplicate fusion technique not only resolves the unintended duplicates issue but also helps 

to merge the deliberately created duplicates from the parallel sensors setup [49-52, 76, 77]. 

This technique is widely used for the fusion of multiple inputs received from the multiple 

sensors installed to record a similar event [50, 78]. 

Literature of data science tells that the improvements in the dataset quality, owing to 

effective data cleansing, can be measured with the classification accuracy. Classification 

accuracy is measured before and after the data cleansing process and increase in the 

classification accuracy states the effectiveness of the data cleansing process. Considering this 

verification technique, different data cleansing techniques are chosen to check their 

effectiveness with the help of classification accuracy improvements.  

“Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are chosen from the 

“UCI machine learning repository” [94] to test different data cleansing techniques and compare 

them with the proposed techniques. RapidMiner Studio [5], a well-known data mining tool, is 

selected to check the different data cleansing techniques. RapidMiner is developed in Java 

language and has extensive usage in the data science industry and scientific community. 

RapidMiner’s Replace Missing Value Operator (RM-RMVO) [5] is selected to fill the missing 

values of the dataset. 

Duplicate Fusion Subsystem (DFS) performs one of the below three operations on the input 

duplicate pairs to perform the data cleansing as per the given user input. Runtime selection of 

one of these options is given to the user and the default option is executed on the system if 

nothing received from the user. Duplicate Fusion Subsystem (DFS) supports the following 

three types of data fusion options: 

 Merge & Fill (SimFiller, DuDeFiller) 

 Maximum Similarity Sum (DuDeFuse) 

 Maximum Occurrences (DuDeFuse) 

SimFiller and DuDeFiller algorithms were selected from the developed algorithms to test 

the DCS for validation. Algorithm selection is customized and both DuDeFiller and DuDeFuse 

algorithms work in the DCS. 
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1) SimFiller 

SimFiller is similarity-based missing values filling algorithm which runs independently 

on its own to fill the missing values of a dataset. This algorithm directly accepts the input 

dataset after Pre-Processing Subsystem (PPS), produces the pairs of similar records, filters 

them based on similarity threshold, check each pair to verify that at least one record’s 

attribute contains a null value then fills the missing values within each pair by taking the 

relevant not null value.  

SimFiller’s technique is useful for data preprocessing to fix the inconsistencies in the 

dataset related to missing values. Quality of the dataset is increased after passing it from this 

data cleansing option and to verify this statement “Audiology” [94] dataset is chosen from 

the “UCI machine learning repository” [94]. This dataset comprises 26 testing and 200 

training records and has 71 attributes including and class label and identifier.  

Replicas of “Audiology” dataset are generated filled for the missing values using a 

specific value, zero value, maximum value, minimum value, the average value with the 

RapidMiner Studio [5] Replace Missing Value Operator (RMVO) and one replica is created 

after filing missing values with the SimFiller algorithm. Classification accuracy results of 

“Decision Tree”, “Naive Bayes”, “Deep Learning” and “Random Forest” are generated from 

each replica of “Audiology” dataset. 

2) DuDeFiller / DuDeFuse 

“Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are selected 

from the “UCI machine learning repository” [94] to test the DuDeFiller/DuDeFuse 

algorithm. “Audiology” [94] dataset comprises 26 testing and 200 training records and have 

71 attributes including and class label and identifier. “Dresses Attribute Sales” (DASD) 

[95] dataset contains 11 attributes excluding class label and identifier and 501 records.  

RapidMiner Studio [5], a well-known data mining tool, is selected to check the different 

data cleansing techniques. RapidMiner is developed in Java language and has extensive 

usage in the data science industry and scientific community. RapidMiner’s Replace Missing 

Value Operator (RM-RMVO) [5] options of specific value replacements, zero value 

replacements, maximum value replacements, minimum value replacements and the average 

value replacements are selected to fill the missing values of the dataset.  
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Replicas of “Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are 

generated filled for the missing values using a specific value, zero value, maximum value, 

minimum value, the average value with the RapidMiner Studio [5] Replace Missing Value 

Operator (RMVO) and one replica is created after filing missing values with SimFiller 

algorithm. Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep 

Learning” and “Random Forest” are generated from each replica of “Audiology” dataset. 

10 folds’ cross validation based stratified sampling [96] is used to avoid the biases of 

dataset towards a specific class label in the classification results. Cross validation [96] splits 

the dataset into x number of divisions and considers x-1 divisions for training and 1 division 

for testing in an iterative way until each division is used one time for testing. The accuracy 

of the dataset is logged during each iteration and complete accuracy is obtainable as average 

and as accuracy range from least to an extreme value. 

Some data scientists state that the accuracy can never be the suitable measurement to 

verify the efficiency of any classifier because it overlooks the attention of false negative 

and false positive cases. These considerations false negative and false positive cases are 

made by the f-measure [97] which defines the correctness of classifier for a binomial class 

label dataset. “Dresses Attribute Sales dataset” (DASD) [95] has a binomial class label, 

therefore, f-measure of this dataset is also calculated to check the improvements in the 

classification correctness. 
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5. Chapter 5 

RESULTS AND EVALUATION 

Experiments are conducted after completing the evaluation setup and the achieved results 

are presented and discussed in this chapter. This chapter comprises the duplicate detection 

results, missing values filling results and duplicate fusion results of experiments carried out for 

the proposed system. Results show the correctness and validation of the contribution made by 

the research in the body of knowledge.  

5.1. Results 

Following four experimental results are discussed in this chapter for the algorithm proposed 

by this research in the previous chapters. 

 SimFiller Classification Results for “Audiology” Dataset 

o Classification accuracy results of Decision Tree, “Naive Bayes”, “Deep 

Learning” and “Random Forest” for the “Audiology” dataset filled with the 

SimFiller algorithm is presented in this section. 

 DuDeFiller Classification Results for “Audiology” Dataset 

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep 

Learning” and “Random Forest” for the “Audiology” dataset filled with the 

DuDeFiller algorithm is presented in this section. 

 DuDeFiller Classification Results for “Dresses Attribute Sales Dataset” (DASD)  

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep 

Learning”, “Random Forest” and “Logistic Regression” for the “Dresses 

Attribute Sales dataset” (DASD) filled with the DuDeFiller algorithm is 

presented in this section. 

 DuDeFiller F-measure Results for “Dresses Attribute Sales Dataset” (DASD) 

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep 

Learning”, “Random Forest” and “Logistic Regression” for the “Dresses 

Attribute Sales dataset” (DASD) filled with the DuDeFiller algorithm is 

presented in this section. 
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5.2. SimFiller Classification Results for Audiology Dataset 

Classification accuracy results of following classifiers for the “Audiology” dataset filled 

with six different algorithms are presented in this section: 

 Decision Tree 

 Naive Bayes 

 Deep Learning 

 Random Forest 

Six algorithms used for missing values replacements are Average, Minimum, Maximum, 

Zero, Specific Value and SimFiller. 

1) Decision Tree 

Classification accuracy of the “Decision Tree” classifier for “Audiology” dataset, filled 

for missing values with six different algorithms, is shown in Table 10 and Fig. 50. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 15.38% for Average as a replacement, 76.92% for Minimum as a replacement, 

76.92% for Maximum as a replacement, 76.92% for Zero as a replacement, 15.38% for 

Specific Value as a replacement and 84.62% for replacement with the SimFiller algorithm. 

 Classification Accuracy Classification Error 

Average 15.38% 84.62% 

Minimum 76.92% 23.08% 

Maximum 76.92% 23.08% 

Zero 76.92% 23.08% 

Value 15.38% 84.62% 

SimFiller 84.62% 15.38% 

Table 10. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller) 
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Fig. 50. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller) 

2) Naive Bayes 

Classification accuracy of the “Naive Bayes” classifier for “Audiology” dataset, filled 

for missing values with six different algorithms, is shown in Table 11 and Fig. 51. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 61.54% for Average as a replacement, 69.23% for Minimum as a replacement, 

69.23% for Maximum as a replacement, 69.23% for Zero as a replacement, 65.38% for 

Specific Value as a replacement and 80.77% for replacement with the SimFiller algorithm. 

 Classification Accuracy Classification Error 

Average 61.54% 38.46% 

Minimum 69.23% 30.77% 

Maximum 69.23% 30.77% 

Zero 69.23% 30.77% 

Value 65.38% 34.62% 

SimFiller 80.77% 19.23% 

Table 11. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller) 
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Fig. 51. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller) 

3) Deep Learning 

Classification accuracy of the “Deep Learning” classifier for “Audiology” dataset, 

filled for missing values with six different algorithms, is shown in Table 12 and Fig. 52. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 76.92% for Average as a replacement, 73.08% for Minimum as a replacement, 

73.08% for Maximum as a replacement, 73.08% for Zero as a replacement, 61.54% for 

Specific Value as a replacement and 88.46% for replacement with the SimFiller algorithm. 

 Classification Accuracy Classification Error 

Average 76.92% 23.08% 

Minimum 73.08% 26.92% 

Maximum 73.08% 26.92% 

Zero 73.08% 26.92% 

Value 61.54% 38.46% 

SimFiller 88.46% 11.54% 

Table 12. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller) 
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Fig. 52. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller) 

4) Random Forest 

Classification accuracy of the “Random Forest” classifier for “Audiology” dataset, 

filled for missing values with six different algorithms, is shown in Table 13 and Fig. 53. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 53.85% for Average as a replacement, 50.00% for Minimum as a replacement, 

50.00% for Maximum as a replacement, 50.00% for Zero as a replacement, 50.00% for 

Specific Value as a replacement and 61.54% for replacement with the SimFiller algorithm. 

 Classification Accuracy Classification Error 

Average 53.85% 46.15% 

Minimum 50.00% 50.00% 

Maximum 50.00% 50.00% 

Zero 50.00% 50.00% 

Value 50.00% 50.00% 

SimFiller 61.54% 38.46% 

Table 13. The accuracy of “Random Forest” for Audiology Dataset (SimFiller) 
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Fig. 53. The accuracy of “Random Forest” for Audiology Dataset (SimFiller) 

5.3. DuDeFiller Classification Results for Audiology Dataset 

To test the DuDeFiller for the Audiology dataset, the classification accuracy of the 

following classifiers for the “Audiology” dataset is calculated. Multiple copies of Audiology 

dataset are created those were filled with six different missing values filling algorithms: 

 Decision Tree 

 Naive Bayes 

 Deep Learning 

 Random Forest 

Six algorithms used for missing values replacements are: 

 Average 

 Minimum 

 Maximum 

 Zero 

 Specific Value 

 DuDeFiller 
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1) Decision Tree 

Classification accuracy of the “Decision Tree” classifier for “Audiology” dataset, filled 

for missing values with six different algorithms, is shown in Table 14 and Fig. 54. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 67.26% for Average as a replacement, 68.14% for Minimum as a replacement, 

68.14% for Maximum as a replacement, 68.14% for Zero as a replacement, 68.14% for 

Specific Value as a replacement and 69.03% for replacement with the DuDeFiller 

algorithm. 

 Classification Accuracy Classification Error 

Average 
67.41% +/- 21.99% 

(micro average: 67.26%) 

32.59% +/- 21.99% 

(micro average: 32.74%) 

Minimum 
68.28% +/- 22.23% 

(micro average: 68.14%) 

31.72% +/- 22.23% 

(micro average: 31.86%) 

Maximum 
68.28% +/- 22.23% 

(micro average: 68.14%) 

31.72% +/- 22.23% 

(micro average: 31.86%) 

Zero 
68.28% +/- 22.23% 

(micro average: 68.14%) 

31.72% +/- 22.23% 

(micro average: 31.86%) 

Value 
68.28% +/- 22.23% 

(micro average: 68.14%) 

31.72% +/- 22.23% 

(micro average: 31.86%) 

DuDeFiller 
69.17% +/- 22.65% 

(micro average: 69.03%) 

30.83% +/- 22.65% 

(micro average: 30.97%) 

Table 14. The accuracy of the “Decision Tree” for Audiology Dataset (DuDeFiller) 

 

Fig. 54. The accuracy of the “Decision Tree”  for Audiology Dataset (DuDeFiller) 



91 

2) Naive Bayes 

Classification accuracy of the “Naive Bayes” classifier for “Audiology” dataset, filled 

for missing values with six different algorithms, is shown in Table 15 and Fig. 55. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 80.97% for Average as a replacement, 80.97% for Minimum as a replacement, 

80.97% for Maximum as a replacement, 80.97% for Zero as a replacement, 80.53% for 

Specific Value as a replacement and 80.97% for replacement with the DuDeFiller 

algorithm. 

 Classification Accuracy Classification Error 

Average 
80.93% +/- 6.68% 

(micro average: 80.97%) 

19.07% +/- 6.68% 

(micro average: 19.03%) 

Minimum 
80.95% +/- 6.36% 

(micro average: 80.97%) 

19.05% +/- 6.08% 

(micro average: 19.03%) 

Maximum 
80.95% +/- 6.36% 

(micro average: 80.97%) 

19.05% +/- 6.08% 

(micro average: 19.03%) 

Zero 
80.95% +/- 6.36% 

(micro average: 80.97%) 

19.05% +/- 6.08% 

(micro average: 19.03%) 

Value 
80.49% +/- 6.11% 

(micro average: 80.53%) 

19.51% +/- 6.11% 

(micro average: 19.47%) 

DuDeFiller 
81.01% +/- 5.78% 

(micro average: 80.97%) 

18.99% +/- 5.78% 

(micro average: 19.03%) 

Table 15. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller) 

 

Fig. 55. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller) 
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3) Deep Learning 

Classification accuracy of the “Deep Learning” classifier for “Audiology” dataset, 

filled for missing values with six different algorithms, is shown in Table 16 and Fig. 56. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 74.34% for Average as a replacement, 70.80% for Minimum as a replacement, 

70.80% for Maximum as a replacement, 70.80% for Zero as a replacement, 73.45% for 

Specific Value as a replacement and 74.78% for replacement with the DuDeFiller 

algorithm. 

 Classification Accuracy Classification Error 

Average 
74.27% +/- 7.59% 

(micro average: 74.34%) 

25.73% +/- 7.59% 

(micro average: 25.66%) 

Minimum 
70.75% +/- 7.04% 

(micro average: 70.80%) 

29.25% +/- 7.04% 

(micro average: 29.20%) 

Maximum 
70.75% +/- 7.04% 

(micro average: 70.80%) 

29.25% +/- 7.04% 

(micro average: 29.20%) 

Zero 
70.75% +/- 7.04% 

(micro average: 70.80%) 

29.25% +/- 7.04% 

(micro average: 29.20%) 

Value 
73.42% +/- 6.93% 

(micro average: 73.45%) 

26.58% +/- 6.93% 

(micro average: 26.55%) 

DuDeFiller 
74.76% +/- 4.48% 

(micro average: 74.78%) 

25.24% +/- 4.48% 

(micro average: 25.22%) 

Table 16. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller) 

 

Fig. 56. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller) 
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4) Random Forest 

Classification accuracy of the “Random Forest” classifier for “Audiology” dataset, 

filled for missing values with six different algorithms, is shown in Table 17 and Fig. 57. 

Classification accuracies of all six missing value replacement algorithms, on “Audiology” 

dataset, are 71.68% for Average as a replacement, 73.01% for Minimum as a replacement, 

73.01% for Maximum as a replacement, 73.01% for Zero as a replacement, 73.01% for 

Specific Value as a replacement and 75.22% for replacement with the DuDeFiller 

algorithm. 

 Classification Accuracy Classification Error 

Average 
71.66% +/- 5.72% 

(micro average: 71.68%) 

28.34% +/- 5.72% 

(micro average: 28.32%) 

Minimum 
72.98% +/- 6.24% 

(micro average: 73.01%) 

27.02% +/- 6.24% 

(micro average: 26.99%) 

Maximum 
72.98% +/- 6.24% 

(micro average: 73.01%) 

27.02% +/- 6.24% 

(micro average: 26.99%) 

Zero 
72.98% +/- 6.24% 

(micro average: 73.01%) 

27.02% +/- 6.24% 

(micro average: 26.99%) 

Value 
72.98% +/- 6.24% 

(micro average: 73.01%) 

27.02% +/- 6.24% 

(micro average: 26.99%) 

DuDeFiller 
75.26% +/- 4.31% 

(micro average: 75.22%) 

24.74% +/- 4.31% 

(micro average: 24.78%) 

Table 17. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller) 

 

Fig. 57. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller) 
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5.4. DuDeFiller Classification Results for Dresses Attribute Sales Dataset (DASD) 

DuDeFiller is tested for the classification accuracy results of following classifiers for the 

“Dresses Attribute Sales dataset” (DASD). Six copies of DASD filled with six different 

algorithms are presented in this section: 

 Decision Tree 

 Naive Bayes 

 Deep Learning 

 Random Forest 

 Logistic Regression 

Six algorithms used for creating the six copies of “Dresses Attribute Sales Dataset” 

(DASD) with missing values replacements are: 

 Average 

o DASD missing values are filled with the average value replacements after 

calculating the average value for each attribute’s missing value. 

 Minimum 

o DASD missing values are filled with the minimum value replacements after 

calculating the minimum value for each attribute’s missing value.  

 Maximum 

o A maximum value is calculated from the completed data and is placed for 

all the missing values of that attribute in DASD. 

 Zero 

o Zero is placed for all the missing values of the DASD. 

 Specific Value 

o Specific Value is defined for the DASD and is placed for all the missing 

values. 

 DuDeFiller 

o The developed duplicate detection based missing value filling algorithm 

calculates the missing value of DASD.  
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1) Decision Tree 

Classification accuracy of the “Decision Tree” classifier for “Dresses Attribute Sales 

Dataset” (DASD), filled for missing values with six different algorithms, is shown in Table 

18 and Fig. 58. Classification accuracies of all six missing value replacement algorithms, 

on DASD, are 58.00% for Average as a replacement, 58.00% for Minimum as a 

replacement, 58.00% for Maximum as a replacement, 58.00% for Zero as a replacement, 

58.00% for Specific Value as a replacement and 58.20% for replacement with the 

DuDeFiller algorithm. 

 Classification Accuracy Classification Error 

Average 
58.00% +/- 0.00% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Minimum 
58.00% +/- 0.00% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Maximum 
58.00% +/- 0.00% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Zero 
58.00% +/- 0.00% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Value 
58.00% +/- 0.00% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

DuDeFiller 
58.20% +/- 0.6% 

(micro average: 58.20%) 

41.80% +/- 0.60% 

(micro average: 41.80%) 

Table 18. The accuracy of the “Decision Tree” for DASD (DuDeFiller) 

 

Fig. 58. The accuracy of the “Decision Tree” for DASD (DuDeFiller) 



96 

2) Naive Bayes 

Classification accuracy of the “Naive Bayes” classifier for “Dresses Attribute Sales 

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table 

19 and Fig. 59. Classification accuracies of all six missing value replacement algorithms, 

on DASD, are 58.20% for Average as a replacement, 58.20% for Minimum as a 

replacement, 58.20% for Maximum as a replacement, 58.20% for Zero as a replacement, 

58.20% for Specific Value as a replacement and 61.20% for replacement with the 

DuDeFiller algorithm. 

 Classification Accuracy Classification Error 

Average 
58.20% +/- 8.92% 

(micro average: 58.20%) 

41.80% +/- 8.92% 

(micro average: 41.80%) 

Minimum 
58.20% +/- 8.92% 

(micro average: 58.20%) 

41.80% +/- 8.92% 

(micro average: 41.80%) 

Maximum 
58.20% +/- 8.92% 

(micro average: 58.20%) 

41.80% +/- 8.92% 

(micro average: 41.80%) 

Zero 
58.20% +/- 8.92% 

(micro average: 58.20%) 

41.80% +/- 8.92% 

(micro average: 41.80%) 

Value 
58.20% +/- 8.92% 

(micro average: 58.20%) 

41.80% +/- 8.92% 

(micro average: 41.80%) 

DuDeFiller 
61.20% +/- 7.17% 

(micro average: 61.20%) 

38.80% +/- 7.17% 

(micro average: 38.80%) 

Table 19. The accuracy of “Naive Bayes” for DASD (DuDeFiller) 

 

Fig. 59. The accuracy of “Naive Bayes” for DASD (DuDeFiller) 
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3) Deep Learning 

Classification accuracy of the “Deep Learning” classifier for “Dresses Attribute Sales 

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table 

20 and Fig. 60. Classification accuracies of all six missing value replacement algorithms, 

on DASD, are 60.20% for Average as a replacement, 60.20% for Minimum as a 

replacement, 60.20% for Maximum as a replacement, 60.20% for Zero as a replacement, 

61.40% for Specific Value as a replacement and 63.80% for replacement with the 

DuDeFiller algorithm. 

 Classification Accuracy Classification Error 

Average 
60.20% +/- 6.66% 

(micro average: 60.20%) 

39.80% +/- 6.66% 

(micro average: 39.80%) 

Minimum 
60.20% +/- 6.66% 

(micro average: 60.20%) 

39.80% +/- 6.66% 

(micro average: 39.80%) 

Maximum 
60.20% +/- 6.66% 

(micro average: 60.20%) 

39.80% +/- 6.66% 

(micro average: 39.80%) 

Zero 
60.20% +/- 6.66% 

(micro average: 60.20%) 

39.80% +/- 6.66% 

(micro average: 39.80%) 

Value 
61.40% +/- 8.49% 

(micro average: 61.40%) 

38.60% +/- 8.49% 

(micro average: 38.60%) 

DuDeFiller 
63.80% +/- 5.83% 

(micro average: 63.80%) 

36.20% +/- 5.83% 

(micro average: 36.20%) 

Table 20. The accuracy of “Deep Learning” for DASD (DuDeFiller) 

 

Fig. 60. The accuracy of “Deep Learning” for DASD (DuDeFiller) 
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4) Random Forest 

Classification accuracy of the “Random Forest” classifier for “Dresses Attribute Sales 

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table 

21 and Fig. 61. Classification accuracies of all six missing value replacement algorithms, 

on DASD, are 58.00% for Average as a replacement, 58.00% for Minimum as a 

replacement, 58.00% for Maximum as a replacement, 58.00% for Zero as a replacement, 

58.00% for Specific Value as a replacement and 58.20% for replacement with the 

DuDeFiller algorithm. 

 Classification Accuracy Classification Error 

Average 
58.00% +/- 0.0% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Minimum 
58.00% +/- 0.0% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Maximum 
58.00% +/- 0.0% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Zero 
58.00% +/- 0.0% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

Value 
58.00% +/- 0.0% 

(micro average: 58.00%) 

42.00% +/- 0.00% 

(micro average: 42.00%) 

DuDeFiller 
58.20% +/- 0.6% 

(micro average: 58.20%) 

41.80% +/- 0.60% 

(micro average: 41.80%) 

Table 21. The accuracy of “Random Forest” for DASD (DuDeFiller) 

 

Fig. 61. The accuracy of “Random Forest” for DASD (DuDeFiller) 
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5) Logistic Regression 

Classification accuracy of the “Logistic Regression” classifier for “Dresses Attribute 

Sales dataset” (DASD), filled for missing values with six different algorithms, is shown in 

Table 22 and Fig. 62. Classification accuracies of all six missing value replacement 

algorithms, on DASD, are 56.40% for Average as a replacement, 56.40% for Minimum as 

a replacement, 56.40% for Maximum as a replacement, 56.40% for Zero as a replacement, 

56.40% for Specific Value as a replacement and 57.60% for replacement with the 

DuDeFiller algorithm. 

 Classification Accuracy Classification Error 

Average 
56.40% +/- 7.26% 

(micro average: 56.40%) 

43.60% +/- 7.26% 

(micro average: 43.60%) 

Minimum 
56.40% +/- 7.26% 

(micro average: 56.40%) 

43.60% +/- 7.26% 

(micro average: 43.60%) 

Maximum 
56.40% +/- 7.26% 

(micro average: 56.40%) 

43.60% +/- 7.26% 

(micro average: 43.60%) 

Zero 
56.40% +/- 7.26% 

(micro average: 56.40%) 

43.60% +/- 7.26% 

(micro average: 43.60%) 

Value 
56.40% +/- 7.26% 

(micro average: 56.40%) 

43.60% +/- 7.26% 

(micro average: 43.60%) 

DuDeFiller 
57.60% +/- 7.14% 

(micro average: 57.60%) 

42.40% +/- 7.14% 

(micro average: 42.40%) 

Table 22. The accuracy of “Random Forest” for DASD (DuDeFiller) 

 

Fig. 62. The accuracy of “Random Forest” for DASD (DuDeFiller) 
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5.5. DuDeFiller F-measure Results for Dresses Attribute Sales Dataset (DASD) 

Six algorithms used for missing values replacements are: 

 Average 

o DASD missing values are filled with the average value replacements after 

calculating the average value for each attribute’s missing value. 

 Minimum 

o DASD missing values are filled with the minimum value replacements after 

calculating the minimum value for each attribute’s missing value.  

 Maximum 

o A maximum value is calculated from the completed data and is placed for 

all the missing values of that attribute in DASD. 

 Zero 

o Zero is placed for all the missing values of the DASD. 

 Specific Value 

o Specific Value is defined for the DASD and is placed for all the missing 

values. 

 DuDeFiller 

o The developed duplicate detection based missing value filling algorithm 

calculates the missing value of DASD. 

Six copies of “Dresses Attribute Sales Dataset” (DASD) are created by filling its missing 

values with the six algorithms shown above. F-measure results of following classifiers for the 

DASD is presented in this section: 

 Decision Tree 

 Naive Bayes 

 Deep Learning 

 Random Forest 

 Logistic Regression 
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1) Decision Tree 

The f-measure of the “Decision Tree” classifier for “Dresses Attribute Sales Dataset” 

(DASD), filled for missing values with six different algorithms, is shown in Table 23 and 

Fig. 63. The f-measure of all six missing value replacement algorithms, on DASD, are 

73.42% for Average as a replacement, 73.42% for Minimum as a replacement, 73.42% for 

Maximum as a replacement, 73.42% for Zero as a replacement, 73.42% for Specific Value 

as a replacement and 73.58% for replacement with the DuDeFiller algorithm. 

 F-measure 

Average 
73.42% +/- 0.0% 

(micro average: 73.42%) (positive class: 0) 

Minimum 
73.42% +/- 0.0% 

(micro average: 73.42%) (positive class: 0) 

Maximum 
73.42% +/- 0.0% 

(micro average: 73.42%) (positive class: 0) 

Zero 
73.42% +/- 0.0% 

(micro average: 73.42%) (positive class: 0) 

Value 
73.42% +/- 0.0% 

(micro average: 73.42%) (positive class: 0) 

DuDeFiller 
73.58% +/- 0.47% 

(micro average: 73.58%) (positive class: 0) 

Table 23. The f-measure of “Decision Tree” for DASD (DuDeFiller) 

 

Fig. 63. The f-measure of “Decision Tree” for DASD (DuDeFiller) 
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2) Naive Bayes 

The f-measure of the “Naive Bayes” classifier for “Dresses Attribute Sales Dataset” 

(DASD), filled for missing values with six different algorithms, is shown in Table 24 and 

Fig. 64. The f-measure of all six missing value replacement algorithms, on DASD, are 

66.24% for Average as a replacement, 66.24% for Minimum as a replacement, 66.24% for 

Maximum as a replacement, 66.24% for Zero as a replacement, 66.24% for Specific Value 

as a replacement and 69.50% for replacement with the DuDeFiller algorithm. 

 F-measure 

Average 
65.79% +/- 8.95% 

(micro average: 66.24%) (positive class: 0) 

Minimum 
65.79% +/- 8.95% 

(micro average: 66.24%) (positive class: 0) 

Maximum 
65.79% +/- 8.95% 

(micro average: 66.24%) (positive class: 0) 

Zero 
65.79% +/- 8.95% 

(micro average: 66.24%) (positive class: 0) 

Value 
65.79% +/- 8.95% 

(micro average: 66.24%) (positive class: 0) 

DuDeFiller 
69.49% +/- 5.65% 

(micro average: 69.50%) (positive class: 0) 

Table 24. The f-measure of “Naive Bayes” for DASD (DuDeFiller) 

 

Fig. 64. The f-measure of “Naive Bayes” for DASD (DuDeFiller) 
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3) Deep Learning 

The f-measure of the “Deep Learning” classifier for “Dresses Attribute Sales Dataset” 

(DASD), filled for missing values with six different algorithms, is shown in Table 25 and 

Fig. 65. The f-measure of all six missing value replacement algorithms, on DASD, are 

67.85% for Average as a replacement, 67.85% for Minimum as a replacement, 67.85% for 

Maximum as a replacement, 67.85% for Zero as a replacement, 69.98% for Specific Value 

as a replacement and 71.13% for replacement with the DuDeFiller algorithm. 

 F-measure 

Average 
67.37% +/- 7.00% 

(micro average: 67.85%) (positive class: 0) 

Minimum 
67.37% +/- 7.00% 

(micro average: 67.85%) (positive class: 0) 

Maximum 
67.37% +/- 7.00% 

(micro average: 67.85%) (positive class: 0) 

Zero 
67.37% +/- 7.00% 

(micro average: 67.85%) (positive class: 0) 

Value 
69.83% +/- 7.16% 

(micro average: 69.98%) (positive class: 0) 

DuDeFiller 
71.14% +/- 4.30% 

(micro average: 71.13%) (positive class: 0) 

Table 25. The f-measure of “Deep Learning” for DASD (DuDeFiller) 

 

Fig. 65. The f-measure of “Deep Learning” for DASD (DuDeFiller) 
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4) Random Forest 

The f-measure of the “Random Forest” classifier for “Dresses Attribute Sales Dataset” 

(DASD), filled for missing values with six different algorithms, is shown in Table 26 and 

Fig. 66. The f-measure of all six missing value replacement algorithms, on DASD, are 

73.42% for Average as a replacement, 73.42% for Minimum as a replacement, 73.42% for 

Maximum as a replacement, 73.42% for Zero as a replacement, 73.42% for Specific Value 

as a replacement and 73.58% for replacement with the DuDeFiller algorithm. 

 F-measure 

Average 
73.42% +/- 0.00% 

(micro average: 73.42%) (positive class: 0) 

Minimum 
73.42% +/- 0.00% 

(micro average: 73.42%) (positive class: 0) 

Maximum 
73.42% +/- 0.00% 

(micro average: 73.42%) (positive class: 0) 

Zero 
73.42% +/- 0.00% 

(micro average: 73.42%) (positive class: 0) 

Value 
73.42% +/- 0.00% 

(micro average: 73.42%) (positive class: 0) 

DuDeFiller 
73.58% +/- 0.47% 

(micro average: 73.58%) (positive class: 0) 

Table 26. The f-measure of “Random Forest” for DASD (DuDeFiller) 

 

Fig. 66. The f-measure of “Random Forest” for DASD (DuDeFiller) 
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5) Logistic Regression 

The f-measure of the “Logistic Regression” classifier for “Dresses Attribute Sales 

Dataset” (DASD), filled for missing values with six different algorithms, is shown in Table 

27 and in Fig. 67. The f-measure of all six missing value replacement algorithms, on DASD, 

are 63.55% for Average as a replacement, 63.55% for Minimum as a replacement, 63.55% 

for Maximum as a replacement, 63.55% for Zero as a replacement, 63.55% for Specific 

Value as a replacement and 64.55% for replacement with the DuDeFiller algorithm. 

 F-measure 

Average 
63.34% +/- 6.91% 

(micro average: 63.55%) (positive class: 0) 

Minimum 
63.34% +/- 6.91% 

(micro average: 63.55%) (positive class: 0) 

Maximum 
63.34% +/- 6.91% 

(micro average: 63.55%) (positive class: 0) 

Zero 
63.34% +/- 6.91% 

(micro average: 63.55%) (positive class: 0) 

Value 
63.34% +/- 6.91% 

(micro average: 63.55%) (positive class: 0) 

DuDeFiller 
64.32% +/- 7.01% 

(micro average: 64.55%) (positive class: 0) 

Table 27. The f-measure of “Logistic Regression” for DASD (DuDeFiller) 

 

Fig. 67. The f-measure of “Logistic Regression” for DASD (DuDeFiller) 
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5.6. Evaluation of Results 

Data Cleansing System (DCS) is assembled on “Duplicate Detection toolkit (DuDe)” [7] 

and this toolkit comprises the pool of duplicate detection procedures written in Java 

programming language. DuDe was established and verified by German data scientists over a 

period of time and constant perfections were made to advance its quality. The quality and the 

open source license of this DuDe kit fascinated us to get the assistance from it.  

This work was started from the base point of DuDe kit because it was previously established 

and verified for its performance and as per software engineering principle, previously done 

work was reused and reinventing the wheel was avoided [92]. As per the “Quality in, quality 

out” [93] principle, the developed system is of high quality because the base and the input for 

the building block is of high quality. 

Results of classification accuracy and f-measure are discussed in this section. These results 

are generated for the “Audiology” and “Dresses Attribute Sales” datasets filled for missing 

values with the proposed SimFiller and DuDeFiller algorithms along with other five missing 

values replacement algorithms. Experiments are conducted on the DuDeFiller algorithm for 

the duplicate fusion options because DuDeFuse and DuDeFiller are created on the similar 

mechanism so correctness of DuDeFiller also proves the correctness of the DuDeFuse 

algorithm. Duplicate fusion technique not only resolves the unintended duplicates issue but 

also helps to merge the deliberately created duplicates from the parallel sensors setup [49-52, 

76, 77]. This technique is widely used for the fusion of multiple inputs received from the 

multiple sensors installed to record a similar event [50, 78]. 

The algorithms suggested in this study generates the replacement of missing and duplicate 

values by considering all the attributes of the record as a whole. Exiting replacement algorithms 

for missing values (average, minimum and maximum) independently select a single attribute 

and generate the replacement of missing value similar to the mechanism adopted by the “Naive 

Bayes” classifier. Considering this similarity, there is a chance to get the biases classification 

accuracy results of “Naive Bayes” classifier for the replicas filled with the existing (average, 

minimum and maximum) algorithms. Results show that the proposed algorithms improve the 

classification accuracy of selected classifiers including the classification accuracy of “Naive 

Bayes” classifier. 
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The approach used in the developed system is more rational and appropriate for several 

areas of life like in medicine field a patient medical history is matched with other patients as a 

whole and no medication is given to the similar patient in case of partial or non-match scenario. 

5.7. Evaluation of Classification Accuracy Results (SimFiller for Audiology) 

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning” and 

“Random Forest” are evaluated in this section.  These results are generated for the replicas of 

“Audiology” dataset filled for the missing values using a specific value, zero value, maximum 

value, minimum value, the average value and SimFiller algorithms. Classification accuracy 

improvement details of the selected classifiers are given in the section below: 

1) Classification Accuracy Improvement of Decision Tree 

Highest classification accuracy of Decision Tree is recorded for the SimFiller algorithm 

as 84.62% which is 7.70% higher with respect to the accuracy of other selected missing 

values filling algorithms. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 15.38% for Average as a replacement, 76.92% for 

Minimum as a replacement, 76.92% for Maximum as a replacement, 76.92% for Zero as a 

replacement, 15.38% for Specific Value as a replacement and 84.62% for replacement with 

the SimFiller algorithm as shown in Table 10 and Fig. 16. 

2) Classification Accuracy Improvement of Naive Bayes 

Highest classification accuracy of Naive Bayes is recorded for the SimFiller algorithm 

as 80.77% which is 11.54% higher with respect to the accuracy of other selected missing 

values filling algorithms. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 61.54% for Average as a replacement, 69.23% for 

Minimum as a replacement, 69.23% for Maximum as a replacement, 69.23% for Zero as a 

replacement, 65.38% for Specific Value as a replacement and 80.77% for replacement with 

the SimFiller algorithm as shown in Table 11 and Fig. 51. 

3) Classification Accuracy Improvement of Deep Learning 

Highest classification accuracy of Deep Learning is recorded for the SimFiller 

algorithm as 88.46% which is 11.54% higher with respect to the accuracy of other selected 

missing values filling algorithms. Classification accuracies of all six missing value 



108 

replacement algorithms, on “Audiology” dataset, are 76.92% for Average as a replacement, 

73.08% for Minimum as a replacement, 73.08% for Maximum as a replacement, 73.08% 

for Zero as a replacement, 61.54% for Specific Value as a replacement and 88.46% for 

replacement with the SimFiller algorithm as shown in Table 12 and Fig. 52. 

4) Classification Accuracy Improvement of Random Forest 

Highest classification accuracy of Random Forest is recorded for the SimFiller 

algorithm as 61.54% which is 7.69% higher with respect to the accuracy of other selected 

missing values filling algorithms. Classification accuracies of all six missing value 

replacement algorithms, on “Audiology” dataset, are 53.85% for Average as a replacement, 

50.00% for Minimum as a replacement, 50.00% for Maximum as a replacement, 50.00% 

for Zero as a replacement, 50.00% for Specific Value as a replacement and 61.54% for 

replacement with the SimFiller algorithm as shown in Table 13 and Fig. 53. 

5.8. Evaluation of Classification Accuracy Results (DuDeFiller for Audiology) 

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning” and 

“Random Forest” are evaluated in this section.  These results are generated for the replicas of 

“Audiology” dataset filled for the missing values using a specific value, zero value, maximum 

value, minimum value, the average value and DuDeFiller algorithms. Verification of the results 

is performed using the “using stratified sampling based on 10 folds’ cross validation”. 

Classification accuracy improvement details of the selected classifiers are given in the section 

below: 

1) Classification Accuracy Improvement of Decision Tree 

Highest classification accuracy of Decision Tree is recorded for the DuDeFiller 

algorithm as 69.03%. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 67.26% for Average as a replacement, 68.14% for 

Minimum as a replacement, 68.14% for Maximum as a replacement, 68.14% for Zero as a 

replacement, 68.14% for Specific Value as a replacement and 69.03% for replacement with 

the DuDeFiller algorithm as shown in Table 14 and Fig. 54. 
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2) Classification Accuracy Improvement of Naive Bayes 

Highest classification accuracy of Naive Bayes is recorded including for the DuDeFiller 

algorithm as 80.97%. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 80.97% for Average as a replacement, 80.97% for 

Minimum as a replacement, 80.97% for Maximum as a replacement, 80.97% for Zero as a 

replacement, 80.53% for Specific Value as a replacement and 80.97% for replacement with 

the DuDeFiller algorithm as shown in Table 15 and Fig. 55. 

3) Classification Accuracy Improvement of Deep Learning 

Highest classification accuracy of Deep Learning is recorded for the DuDeFiller 

algorithm as 74.78%. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 74.34% for Average as a replacement, 70.80% for 

Minimum as a replacement, 70.80% for Maximum as a replacement, 70.80% for Zero as a 

replacement, 73.45% for Specific Value as a replacement and 74.78% for replacement with 

the DuDeFiller algorithm as shown in Table 16 and Fig. 56. 

4) Classification Accuracy Improvement of Random Forest 

Highest classification accuracy of Random Forest is recorded for the DuDeFiller 

algorithm as 75.22%. Classification accuracies of all six missing value replacement 

algorithms, on “Audiology” dataset, are 71.68% for Average as a replacement, 73.01% for 

Minimum as a replacement, 73.01% for Maximum as a replacement, 73.01% for Zero as a 

replacement, 73.01% for Specific Value as a replacement and 75.22% for replacement with 

the DuDeFiller algorithm as shown in Table 17 and Fig. 57.  

5.9. Evaluation of Classification Accuracy Results (DuDeFiller for DASD) 

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning”, 

“Random Forest” and “Logistic Regression” are evaluated in this section.  These results are 

generated for the replicas of “Dresses Attribute Sales Dataset” (DASD) filled for the missing 

values using a specific value, zero value, maximum value, minimum value, the average value 

and DuDeFiller algorithms. Verification of the results is performed using the “using stratified 

sampling based on 10 folds’ cross validation”. Classification accuracy improvement details of 

the selected classifiers are given in the section below: 
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1) Classification Accuracy Improvement of Decision Tree 

Highest classification accuracy of Decision Tree is recorded for the DuDeFiller 

algorithm as 58.20%. Classification accuracies of all six missing value replacement 

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.00% for Average as 

replacement, 58.00% for Minimum as replacement, 58.00% for Maximum as replacement, 

58.00% for Zero as replacement, 58.00% for Specific Value as replacement and 58.20% 

for replacement with DuDeFiller algorithm as shown in Table 18 and Fig. 58. 

2) Classification Accuracy Improvement of Naive Bayes 

Highest classification accuracy of Naive Bayes is recorded for the DuDeFiller 

algorithm as 61.20%. Classification accuracies of all six missing value replacement 

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.20% for Average as 

replacement, 58.20% for Minimum as replacement, 58.20% for Maximum as replacement, 

58.20% for Zero as replacement, 58.20% for Specific Value as replacement and 61.20% 

for replacement with DuDeFiller algorithm as shown in Table 19 and Fig. 59. 

3) Classification Accuracy Improvement of Deep Learning 

Highest classification accuracy of Deep Learning is recorded for the DuDeFiller 

algorithm as 63.80%. Classification accuracies of all six missing value replacement 

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 60.20% for Average as a 

replacement, 60.20% for Minimum as a replacement, 60.20% for Maximum as a 

replacement, 60.20% for Zero as a replacement, 61.40% for Specific Value as a 

replacement and 63.80% for replacement with the DuDeFiller algorithm as shown in Table 

20 and Fig. 60. 

4) Classification Accuracy Improvement of Random Forest 

Highest classification accuracy of Random Forest is recorded for the DuDeFiller 

algorithm as 75.22%. Classification accuracies of all six missing value replacement 

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.00% for Average as 

replacement, 58.00% for Minimum as replacement, 58.00% for Maximum as replacement, 

58.00% for Zero as replacement, 58.00% for Specific Value as replacement and 58.20% 

for replacement with DuDeFiller algorithm as shown in Table 21 and Fig. 61. 
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5) Classification Accuracy Improvement of Logistic Regression 

Highest classification accuracy of Logistic Regression is recorded for the DuDeFiller 

algorithm as 75.22%. Classification accuracies of all six missing value replacement 

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 56.40% for Average as 

replacement, 56.40% for Minimum as replacement, 56.40% for Maximum as replacement, 

56.40% for Zero as replacement, 56.40% for Specific Value as replacement and 57.60% 

for replacement with DuDeFiller algorithm as shown in Table 22 and Fig. 62. 

5.10. Evaluation of F-measure Results (DuDeFiller for DASD) 

F-measure results “Decision Tree”, “Naive Bayes”, “Deep Learning”, “Random Forest” 

and “Logistic Regression” are evaluated in this section.  These results are generated for the 

replicas of “Dresses Attribute Sales Dataset” (DASD) filled for the missing values using a 

specific value, zero value, maximum value, minimum value, the average value and DuDeFiller 

algorithms. Verification of the results is performed using the “using stratified sampling based 

on 10 folds’ cross validation. F-measure improvement details of the selected classifiers are 

given in the section below: 

1) F-measure Improvement of Decision Tree 

Highest f-measure of Decision Tree is recorded for the DuDeFiller algorithm as 

73.58%. The f-measure of all six missing value replacement algorithms, on “Dresses 

Attribute Sales Dataset” (DASD), are 73.42% for Average as replacement, 73.42% for 

Minimum as replacement, 73.42% for Maximum as replacement, 73.42% for Zero as 

replacement, 73.42% for Specific Value as replacement and 73.58% for replacement with 

DuDeFiller algorithm as shown in Table 23 and Fig. 63. 

2) F-measure Improvement of Naive Bayes 

Highest f-measure of Naive Bayes is recorded for the DuDeFiller algorithm as 69.50%. 

The f-measure of all six missing value replacement algorithms, on “Dresses Attribute Sales 

Dataset” (DASD), are 66.24% for Average as replacement, 66.24% for Minimum as 

replacement, 66.24% for Maximum as replacement, 66.24% for Zero as replacement, 

66.24% for Specific Value as replacement and 69.50% for replacement with DuDeFiller 

algorithm as shown in Table 24 and Fig. 64. 
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3) F-measure Improvement of Deep Learning 

Highest f-measure of Deep Learning is recorded for the DuDeFiller algorithm as 

71.13%. The f-measure of all six missing value replacement algorithms, on “Dresses 

Attribute Sales Dataset” (DASD), are 67.85% for Average as replacement, 67.85% for 

Minimum as replacement, 67.85% for Maximum as replacement, 67.85% for Zero as 

replacement, 69.98% for Specific Value as replacement and 71.13% for replacement with 

DuDeFiller algorithm as shown in Table 25 and Fig. 65. 

4) F-measure Improvement of Random Forest 

Highest f-measure of Random Forest is recorded for the DuDeFiller algorithm as 

73.58%. The f-measure of all six missing value replacement algorithms, on “Dresses 

Attribute Sales Dataset” (DASD), are 73.42% for Average as replacement, 73.42% for 

Minimum as replacement, 73.42% for Maximum as replacement, 73.42% for Zero as 

replacement, 73.42% for Specific Value as replacement and 73.58% for replacement with 

DuDeFiller algorithm as shown in Table 26 and Fig. 66. 

5) F-measure Improvement of Logistic Regression 

Highest f-measure of Logistic Regression is recorded for the DuDeFiller algorithm as 

64.55%. The f-measure of all six missing value replacement algorithms, on “Dresses 

Attribute Sales Dataset” (DASD), are 63.55% for Average as replacement, 63.55% for 

Minimum as replacement, 63.55% for Maximum as replacement, 63.55% for Zero as 

replacement, 63.55% for Specific Value as replacement and 64.55% for replacement with 

DuDeFiller algorithm as shown in Table 27 and in the Fig. 67. 



113 

6. Chapter 6 

CONCLUSION AND FUTURE WORK 

This chapter discusses the outcomes and the impact of the proposed study and concludes 

the overall benefit and result from this study. This chapter also defines the future directions 

and advises the prospect research from the presented idea in the earlier chapters. 

6.1. Conclusion 

Sensors, devices and human-generated data volumes encompass data irregularities 

containing missing and duplicate records. Volumes of data are expanding every second because 

sources of data creation are also expanding. Computerized data cleansing is performed by 

filling the missing value and merging the duplicate records because manual fixation of data 

irregularities is not possible due to massive volumes of data. Automatic cleansing methods 

recover the quality of the dataset before applying any data mining process on it to extract some 

useful information.  

This research develops an efficient duplicate data detection based cleansing system named 

Data Cleansing System (DCS) to fix the inconsistencies of any dataset. Data Cleansing System 

(DCS) has four subsystems named as Pre-Processing Subsystem (PPS), Duplicate Detection 

Subsystem (DDS), Duplicate Fusion Subsystem (DFS) and Post-Operation Subsystem (POS).  

Pre-Processing Subsystem deals with the preliminary activities executed on the input file 

before performing any data cleansing task on it. PPS is further divided into four main modules. 

A user interface is created with an option to select and load the CSV file in the subsystem. 

After successful loading, the subsystem reads the input dataset from CSV file, extracts the list 

of attributes from it. The subsystem then asks the user to select the required attributes from the 

list of attributes and the selected attributes are used to extract the required data from the dataset 

which is returned to the main system for further processing. 

After the successful preprocessing, extracted data and the attributes list is passed to the 

Duplicate Detection Subsystem (DDS) to find duplicates from it. Duplicate Detection 

Subsystem (DDS) is further divided into four main modules. In the first module, the user is 

asked to set the similarity threshold after successful data extraction then records pairs are 
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generated and their similarity is calculated. If pairs similarity exceeds the similarity threshold, 

pairs are saved for the later processing. 

In Duplicate Fusion Subsystem (DFS), extracted duplicate pairs are further analyzed to 

merge them into a single record. Duplicate fusion is one of the duplicate cleansing process 

developed to clean the duplicate records from the datasets. During the data fusion, duplicate 

records are merged to create a new and more accurate and useful record as a result. Duplicate 

fusion technique not only resolves the unintended duplicates issue but also helps to merge the 

deliberately created duplicates from the parallel sensors setup. This technique is widely used 

for the fusion of multiple inputs received from the multiple sensors installed to record a similar 

event. 

Post-Operation Subsystem (POS) deals with the activities executed to create the output file 

after performing a cleansing task on it during the Duplicate Fusion Subsystem (DFS). DCS 

passes the output of the Data Fusion Subsystem (DFS) to the Post-Operation Subsystem (POS) 

in the form of fused duplicates which is further processed and written to the file for the user. 

The raw dataset file is given as input to the system which is sent to the Pre-Processing 

Subsystem (PPS) to extract and select the attributes from the dataset. The data is extracted for 

the selected attributes which are then passed to the Duplicate Detection Subsystem (DDS) to 

extract the duplicate pairs from the dataset. The extracted duplicate pairs are then passed to the 

Duplicate Fusion Subsystem (DFS) to fuse the duplicates into a single record. The fused 

duplicates are then passed to the Post-Operation Subsystem (POS) to create the cleaned copy 

of input dataset by adding attribute names and non-duplicate data in it. 

Three new algorithms named SimFiller, DuDeFiller and DuDeFuse are also introduced for 

the Duplicate Fusion Subsystem (DFS). SimFiller is similarity-based missing values algorithm 

which clears the missing value of one record by getting the value of the attribute from the most 

similar record. DuDeFiller is duplicate detection based missing values algorithm which clears 

the missing value of one record by getting the value of the attribute from its duplicate record.  

DuDeFuse is duplicate detection and fusion algorithm which accepts input from the 

Duplicate Detection Subsystem as duplicate record pairs. DuDeFuse calculates the similarity 

and occurrence of each possible value of an attribute for each of the records within the duplicate 

pair under consideration. 
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Experimentations accomplished during this research attested that Data Cleansing System 

(DCS) is a significant, effective and suitable system to fix the inconsistencies of any dataset. 

Datasets fixed for the inconsistencies with the system conveys upmost f-measure and accuracy 

for all the selected datasets within all other selected data cleansing methods.  

The approach used in the developed system is more rational and appropriate for several 

areas of life like in medicine field a patient medical history is matched with other patients as a 

whole and no medication is given to the similar patient in case of partial or non-match scenario.  

6.2. Contributions to the Data Science Body of Knowledge 

A fully customized data cleansing system is developed by this research which is a huge 

addition to the data science body of knowledge. Following contributions are also added by this 

research work: 

 Two efficient and robust similarity-based and duplicate detection based missing values 

filling algorithms are added to the data science body of knowledge those fill the 

dataset’s missing values more efficiently than the existing algorithms. 

 A proficient and robust duplicate detection based data fusion algorithm is added to the 

data science body of knowledge which fills the dataset’s missing values more 

efficiently than the existing algorithms. 

6.3. Future Work 

Similarity threshold was set to a particular value for the tests accomplished during this 

research and it is also observed that accuracy is also changed by changing the value of the 

similarity threshold. Finding the similarity threshold and its relationship with the accuracy of 

each dataset are out of the scope of this research but considered as strong future direction for 

this research. work.  

Data Cleansing System (DCS) can also be extended in terms of its subsystems to add a new 

subsystem or in terms of algorithms to add new algorithms in existing subsystems to resolve 

the other irregularities of datasets including outliers of the datasets. 
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