

APPLICATION OF DATA DUPLICATE DETECTION

AND FUSION TO IMPROVE DATA QUALITY

Author

FATEH-UR-REHMAN

00000172057

MS-16(CSE)

Supervisor

DR. MUHAMMAD ABBAS

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

OCTOBER, 2018

APPLICATION OF DATA DUPLICATE DETECTION

AND FUSION TO IMPROVE DATA QUALITY

Author

FATEH UR REHMAN

00000172057

MS-16(CSE)

A thesis submitted in partial fulfilment of the requirements for the

degree of MS Computer Software Engineering

Thesis Supervisor

DR. MUHAMMAD ABBAS

Thesis Supervisor’s

Signature: ___

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

OCTOBER, 2018

AND THEY CAN’T ENCOMPASS ANYTHING FROM HIS

KNOWLEDGE, BUT TO EXTEND HE WILLS [2:255]

i

DECLARATION

I certify that this research work titled “Application of Data Duplicate Detection and Fusion to

Improve Data Quality” is my own work. The work has not been presented elsewhere for

assessment. The material that has been used from other sources it has been properly

acknowledged/referred.

FATEH UR REHMAN

00000172057

MS-16(CSE)

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. The thesis is also according to the format given by the

university.

FATEH UR REHMAN

00000172057

MS-16(CSE)

DR. MUHAMMAD ABBAS

iii

COPYRIGHT STATEMENT

Copyright in the text of this thesis rests with the student author. Copies (by any process) either

in full or of extracts, may be made online in accordance with instructions given by the author

and lodged in the Library of NUST College of E&ME. Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any process)

may not be made without the permission (in writing) of the author.

The ownership of any intellectual property rights which may be described in this thesis is vested

in NUST College of E&ME, subject to any prior agreement to the contrary, and may not be

made available for use by third parties without the written permission of the College of E&ME,

which will prescribe the terms and conditions of any such agreement.

Further information on the conditions under which disclosures and exploitation may take place

is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

First of all, I am extremely thankful to Almighty Allah for giving me courage and strength to

complete this challenging task and to compete with the international research community. I am

also grateful to my family members, especially my parents, brother and sisters who have

encouraged and supported me through their prayers that have always been with me.

I am highly obliged to Dr Muhammad Abbas for his valued suggestions and uninterrupted

guidance throughout my research work. I am highly thankful to the committee members for

their support and help throughout the research work.

I am also grateful to all of my instructors who have been overseeing me throughout my

coursework and have contributed to my knowledge. Their guidance, training and knowledge

helped me a lot to carry out this research work.

FATEH UR REHMAN

v

To my parents, sisters, brother and teachers those fabulous support

and assistance led me to this magnificent achievement

vi

ABSTRACT

In the current digital era, data generation sources are producing abundant data volumes related

to each field of life. Volumes of data are expanding every second because sources of data

creation are also expanding. Machines (i.e. sensors, devices) and humans (i.e. filled forms,

saved data) are the main sources of data created in this digital era. Machines record each and

every relevant event in their recording medium by combining the recorded inputs.

Occasionally, machines receive only a few inputs and save them by keeping the missing input

values as null. Sometimes an identical event is logged twice as duplicate data by the single or

multiple machines in the same recording medium. Duplicate data and missing values issues are

also found in human-generated data mostly due to human error. Missing values and duplicates

affect the quality of data and biases the data mining results. An efficient Data Cleansing System

(DCS) is developed during the research to improve the quality of data by filling the missing

values and removing the duplicate records from the dataset. Similarity-based (SimFiller) and

duplicate detection based (DuDeFiller) missing values filling algorithms are developed and

integrated into the system to fill the missing values of a record by taking the missing value

replacement from its most similar or duplicate record. Duplicate detection based data fusion

algorithm (DuDeFuse) is also developed and integrated into the system to merge the duplicate

records based on the maximum similarity of the attribute’s value or the maximum occurrence

of the attribute’s value. Two data sets from the UCI machine learning repository are cleaned

through the system to improve their data quality. The selected datasets are also cleaned through

the five others exiting missing values filling algorithms for the purpose of comparison. Five

classifiers including “Naive Bayes”, “Decision Tree”, “Random Forest”, “Deep Learning”, and

“Logistic Regression” are selected to check the classification accuracy and The f-measure of

the cleaned datasets. Average classification accuracy of both datasets is increased up to 3.00%

after cleansing the datasets with the developed system. The f-measure of the datasets is also

increased up to 3.26% after cleansing them with the developed system as compared to the data

cleansing performed with the other algorithms. The developed system can be extended to

resolve the other inconsistencies in the datasets and can also be evaluated for the other datasets.

Keywords: Data preprocessing, Data analysis, Data engineering, Data cleansing, Duplicate

detection, Duplicates, Missing values, Null values.

vii

TABLE OF CONTENTS

Chapter 1 .. 1

INTRODUCTION ... 1

1.1. Overview ... 1

1.2. Motivation ... 3

1.3. Problem Statement .. 3

1.4. Proposed Solution ... 4

1.5. Publication ... 4

1.6. Organization of the thesis .. 4

Chapter 2 .. 6

LITERATURE REVIEW .. 6

2.1. Considered Data Inconsistencies ... 6

2.2. Missing Values .. 6

2.3. Types of Missing Values ... 7

1) Systematic Irregularities .. 7

2) Non-Systematic Irregularities .. 7

2.4. Missing Values Filling Techniques ... 8

1) Ignore, Delete, Discard .. 8

2) Single Imputations (SI) .. 8

3) Multiple Imputations (MI) ... 11

4) Machine Learning (ML) .. 11

2.5. Review of Missing Values Filling Techniques ... 13

2.6. Duplicate Records ... 19

2.7. Categories of Duplicate Data .. 19

1) Deliberate Duplicates .. 19

2) Unintended Duplicates .. 20

2.8. Duplicate Records Detection Techniques ... 21

1) Naive Duplicate Detection ... 21

2) Duplicate Count SNM ... 21

3) Sorted Neighborhood Method ... 22

4) Lego ... 22

5) GSwoosh .. 22

6) RSwoosh .. 22

7) Naive Blocking .. 22

viii

8) Similarity Comparison Algorithms ... 23

2.9. Duplicate Records Fixing Techniques .. 23

1) Delete, Discard Duplicate Records .. 23

2) Duplicate Records Fusion .. 24

3) Voting-Based Duplicate Fusion: ... 25

2.10. Review of Duplicate Cleansing Techniques .. 26

Chapter 3 .. 30

PROPOSED APPROACH ... 30

3.1. Development Process .. 30

3.2. Data Cleansing System (DCS) .. 30

3.3. Data Cleansing System (DCS) Architecture ... 31

3.4. Flow Chart of Data Cleansing System (DCS) ... 31

3.5. Sub-Systems of Data Cleansing System (DCS) .. 34

3.6. Pre-Processing Subsystem (PPS) .. 34

3.7. PPS Flowchart ... 35

3.8. Duplicate Detection Subsystem (DDS) ... 37

3.9. DDS Flowchart (First Iteration) .. 37

3.10. DDS Flowchart (Second Iteration) .. 39

3.11. DDS Algorithms .. 40

1) Duplicate Pairs Generation .. 41

2) Similarities Calculation ... 42

3.12. Duplicate Fusion Subsystem (DFS) .. 42

3.13. DFS Flowchart (First Iteration) ... 43

3.14. DFS Flowchart (Second Iteration) ... 45

3.15. DFS Fusion Options .. 46

1) Merge & Fill .. 46

2) Maximum Similarity Sum ... 47

3) Maximum Occurrences .. 47

3.16. DFS Algorithms ... 47

3.17. SimFiller .. 48

3.18. Execution of SimFiller... 48

1) Consider 1st missing value i.e. T2A2 to fill it with SimFiller 49

2) Next, consider 2nd missing value i.e. T4A4 to fill it with SimFiller 51

3.19. DuDeFiller ... 52

3.20. Execution of DuDeFiller ... 54

ix

3.21. DuDeFuse .. 59

3.22. Post-Operation Subsystem (POS) .. 60

3.23. POS Flowchart ... 62

3.24. Operation of Data Cleansing System ... 64

1) Import and Preprocess (Pre-Processing Subsystem) / (PPS) 64

2) Find Duplicates (Duplicate Detection Subsystem) / (DDS) 67

3) Fill Missing Values (Duplicate Fusion Subsystem) / (DFS) 71

4) Fuse Duplicates (Duplicate Fusion Subsystem) / (DFS) 75

Chapter 4 .. 80

EXPERIMENTAL SETUP FOR VALIDATION ... 80

4.1. Duplicate Detection (Validation) .. 80

4.2. Duplicate Fusion (Validation) ... 81

1) SimFiller .. 82

2) DuDeFiller / DuDeFuse ... 82

Chapter 5 .. 84

RESULTS AND EVALUATION.. 84

5.1. Results ... 84

5.2. SimFiller Classification Results for Audiology Dataset ... 85

1) Decision Tree ... 85

2) Naive Bayes ... 86

3) Deep Learning ... 87

4) Random Forest ... 88

5.3. DuDeFiller Classification Results for Audiology Dataset .. 89

1) Decision Tree ... 90

2) Naive Bayes ... 91

3) Deep Learning ... 92

4) Random Forest ... 93

5.4. DuDeFiller Classification Results for Dresses Attribute Sales Dataset (DASD) 94

1) Decision Tree ... 95

2) Naive Bayes ... 96

3) Deep Learning ... 97

4) Random Forest ... 98

5) Logistic Regression ... 99

5.5. DuDeFiller F-measure Results for Dresses Attribute Sales Dataset (DASD) 100

1) Decision Tree ... 101

x

2) Naive Bayes ... 102

3) Deep Learning ... 103

4) Random Forest ... 104

5) Logistic Regression ... 105

5.6. Evaluation of Results .. 106

5.7. Evaluation of Classification Accuracy Results (SimFiller for Audiology) 107

1) Classification Accuracy Improvement of Decision Tree 107

2) Classification Accuracy Improvement of Naive Bayes 107

3) Classification Accuracy Improvement of Deep Learning 107

4) Classification Accuracy Improvement of Random Forest 108

5.8. Evaluation of Classification Accuracy Results (DuDeFiller for Audiology) 108

1) Classification Accuracy Improvement of Decision Tree 108

2) Classification Accuracy Improvement of Naive Bayes 109

3) Classification Accuracy Improvement of Deep Learning 109

4) Classification Accuracy Improvement of Random Forest 109

5.9. Evaluation of Classification Accuracy Results (DuDeFiller for DASD) 109

1) Classification Accuracy Improvement of Decision Tree 110

2) Classification Accuracy Improvement of Naive Bayes 110

3) Classification Accuracy Improvement of Deep Learning 110

4) Classification Accuracy Improvement of Random Forest 110

5) Classification Accuracy Improvement of Logistic Regression 111

5.10. Evaluation of F-measure Results (DuDeFiller for DASD) 111

1) F-measure Improvement of Decision Tree .. 111

2) F-measure Improvement of Naive Bayes .. 111

3) F-measure Improvement of Deep Learning ... 112

4) F-measure Improvement of Random Forest .. 112

5) F-measure Improvement of Logistic Regression ... 112

Chapter 6 .. 113

CONCLUSION AND FUTURE WORK .. 113

6.1. Conclusion ... 113

6.2. Contributions to the Data Science Body of Knowledge ... 115

6.3. Future Work .. 115

REFERENCES .. 116

xi

TABLE OF FIGURES

Fig. 1. The Architecture of the Duplicate Detection Toolkit ... 3

Fig. 2. High-Level Architecture of Data Cleansing System .. 32

Fig. 3. Flowchart of Data Cleansing System ... 33

Fig. 4. Modules of Data Cleansing System.. 34

Fig. 5. Input File Upload and File Pre-Processing ... 35

Fig. 6. Input File Upload and File Pre-Processing Flowchart ... 36

Fig. 7. Link of File Pre-Processing and Duplicate Detection .. 37

Fig. 8. Duplicate Detection with User Input and Rules ... 37

Fig. 9. Duplicate Detection Subsystem (First Iteration) Flowchart ... 38

Fig. 10. Duplicate Detection Subsystem (Second Iteration) Flowchart 39

Fig. 11. Duplicate Fusion with User Input and Rules .. 43

Fig. 12. Duplicate Fusion Subsystem (First Iteration) Flowchart .. 44

Fig. 13. Duplicate Fusion Subsystem (Second Iteration) Flowchart 45

Fig. 14. Post-Operation Subsystem (POS) ... 62

Fig. 15. Post-Operation Subsystem (POS) Flowchart ... 63

Fig. 16. Data Cleansing System (Screen) .. 64

Fig. 17. CSV Separator Selection (PPS) .. 65

Fig. 18. Select and Upload File (PPS) ... 65

Fig. 19. Instructions to Select Attributes (PPS) ... 66

Fig. 20. Attributes Selection (PPS) .. 66

Fig. 21. Selected Attributes (PPS) ... 67

Fig. 22. Selected Attributes (DDS) .. 67

Fig. 23. Duplicate Detection Subsystem .. 68

Fig. 24. Similarity Threshold Selection (DDS) ... 68

Fig. 25. Dataset Identifier Selection (DDS) ... 69

Fig. 26. Duplicate Detection Algorithm Selection (DDS) ... 69

Fig. 27. Similarity Calculation Algorithm Selection (DDS) ... 69

Fig. 28. DDS Processing .. 70

Fig. 29. DDS Processing Completed ... 70

Fig. 30. Selected Attributes (DFS - MV) ... 71

Fig. 31. Duplicate Fusion Subsystem for Missing Values (DFS-MV) 71

Fig. 32. Similarity Threshold Selection (DFS-MV) .. 72

Fig. 33. Dataset Identifier Selection (DFS-MV) .. 72

Fig. 34. Missing Value Representation Selection (DFS-MV) ... 73

Fig. 35. Duplicate Detection Algorithm Selection (DFS-MV) .. 73

Fig. 36. Similarity Calculation Algorithm Selection (DFS-MV) .. 73

Fig. 37. DFS-MV Processing ... 74

Fig. 38. DFS-MV Processing Completed .. 74

Fig. 39. Selected Attributes (DFS) ... 75

Fig. 40. Duplicate Fusion Subsystem (DFS) ... 76

Fig. 41. Similarity Threshold Selection (DFS) .. 76

Fig. 42. Dataset Identifier Selection (DFS) ... 77

Fig. 43. Missing Value Representation Selection (DFS) ... 77

Fig. 44. Duplicate Detection Algorithm Selection (DFS).. 77

file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943292
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943295
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943298
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943299
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943301
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943302
file:///E:/DUDE2018git/Git%20Docs/Thesis/Thesis%20Drafts/Draft/Fateh%20Thesis%20Final%20Draft%20v2.docx%23_Toc527943304

xii

Fig. 45. Similarity Calculation Algorithm Selection (DFS) .. 78

Fig. 46. Duplicate Fusion Algorithm Selection (DFS) .. 78

Fig. 47. DFS Processing... 78

Fig. 48. Closing DFS Processing ... 79

Fig. 49. DFS Processing Completed .. 79

Fig. 50. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller) 86

Fig. 51. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller) 87

Fig. 52. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller) 88

Fig. 53. The accuracy of “Random Forest” for Audiology Dataset (SimFiller) 89

Fig. 54. The accuracy of the “Decision Tree” for Audiology Dataset (DuDeFiller) 90

Fig. 55. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller) 91

Fig. 56. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller) 92

Fig. 57. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller) 93

Fig. 58. The accuracy of the “Decision Tree” for DASD (DuDeFiller) 95

Fig. 59. The accuracy of “Naive Bayes” for DASD (DuDeFiller) .. 96

Fig. 60. The accuracy of “Deep Learning” for DASD (DuDeFiller) 97

Fig. 61. The accuracy of “Random Forest” for DASD (DuDeFiller) 98

Fig. 62. The accuracy of “Random Forest” for DASD (DuDeFiller) 99

Fig. 63. The f-measure of “Decision Tree” for DASD (DuDeFiller) 101

Fig. 64. The f-measure of “Naive Bayes” for DASD (DuDeFiller) 102

Fig. 65. The f-measure of “Deep Learning” for DASD (DuDeFiller) 103

Fig. 66. The f-measure of “Random Forest” for DASD (DuDeFiller) 104

Fig. 67. The f-measure of “Logistic Regression” for DASD (DuDeFiller) 105

xiii

 LIST OF TABLES

Table 1. Sample Dataset (SimFiller) .. 49

Table 2. Updated Sample Dataset (SimFiller) After Filling T2A2 ... 50

Table 3. Updated Sample Dataset (SimFiller) After Filling T4A4 ... 51

Table 4. Updated Sample Dataset (SimFiller) After Filling All Missing Values 52

Table 5. Sample Dataset (DuDeFiller)... 54

Table 6. Updated Sample Dataset (DuDeFiller) After Processing of D1 56

Table 7. Updated Sample Dataset (DuDeFiller) After Processing of D4 57

Table 8. Updated Sample Dataset (DuDeFiller) After Processing of D5 58

Table 9. Updated Sample Dataset (DuDeFiller) After Processing of D6 59

Table 10. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller) 85

Table 11. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller) 86

Table 12. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller) 87

Table 13. The accuracy of “Random Forest” for Audiology Dataset (SimFiller) 88

Table 14. The accuracy of the “Decision Tree” for Audiology Dataset (DuDeFiller) 90

Table 15. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller) 91

Table 16. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller) 92

Table 17. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller) 93

Table 18. The accuracy of the “Decision Tree” for DASD (DuDeFiller) 95

Table 19. The accuracy of “Naive Bayes” for DASD (DuDeFiller) 96

Table 20. The accuracy of “Deep Learning” for DASD (DuDeFiller) 97

Table 21. The accuracy of “Random Forest” for DASD (DuDeFiller) 98

Table 22. The accuracy of “Random Forest” for DASD (DuDeFiller) 99

Table 23. The f-measure of “Decision Tree” for DASD (DuDeFiller) 101

Table 24. The f-measure of “Naive Bayes” for DASD (DuDeFiller) 102

Table 25. The f-measure of “Deep Learning” for DASD (DuDeFiller) 103

Table 26. The f-measure of “Random Forest” for DASD (DuDeFiller) 104

Table 27. The f-measure of “Logistic Regression” for DASD (DuDeFiller) 105

xiv

LIST OF ABBREVIATIONS

CSV file Comma Separated Values file

DASD Dresses Attribute Sales Dataset

DCS Duplicate Cleansing System

DCSNM Duplicate Count SNM

DDS Duplicate Detection Subsystem

DFS Duplicate Fusion Subsystem

DFS-MV Duplicate Fusion Subsystem for Missing Values

DuDe Duplicate Detection Toolkit

DuDeFiller Duplicate Detection based missing values Filling algorithm

DuDeFuse Duplicate Detection based data Fusion algorithm

K-NN K-Nearest Neighbors

MI Multiple Imputations

ML Machine Learning

POS Post-Operation Subsystem

PPS Pre-Processing Subsystem

RM RapidMiner Studio

RMVO Replace Missing Value Operator

SI Single Imputations

SimFiller Similarity-based missing values Filling algorithm

SIP Solo Iterative Process

SNM Sorted Neighborhood Method

xv

RESEARCH CONTRIBUTION / PUBLICATION

Following research articles has been produced by this research:

 SimFiller: Similarity-Based Missing Values Filling Algorithm, Fateh R. et al. (2018),

Published by IEEE in 13th ICDIM 2018 of Berlin, Germany.

 DuDeFiller: Duplicate detection based missing values filling algorithm, Fateh R. et al.

(2018) submitted in Journal.

1

1. Chapter 1

INTRODUCTION

This chapter introduces the research work carried out and presented in this thesis. It also

describes the problem statement, proposed solution for the recognized problem and the

motivational factors to carry out this research.

1.1. Overview

During this current digital era, manual files systems are replaced with the computers,

machines and database servers and other than the recording of data within the recording

medium, automatic machines (sensing and recording devices) are also producing data volumes

related to each field of life. A number of data generation sources are growing on a daily basis

and continuously multiplying the data volumes.

Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are the key

sources of data created in this digital era. Digital systems administrators are authorizing devices

to record each and every minute and relevant instance in their storage medium. Data generation

sources attempt to record each and every instance of received data without checking its quality

with respect to completeness and duplication.

A record in the database is created by combining the values of different attributes from

similar or different sources. Sometimes, machines receive only a few inputs and save them by

keeping the missing input values as null. Occasionally, an identical event is logged twice as

duplicate data by the single or multiple machines in the same recording medium. Duplicate

data and missing values issues are caused due to machine error like sensor error and these

issues also exist in human-generated data mostly due to human error, typo errors or other input

device related errors.

Data anomalies are divided into two categories i.e. systematic inconsistencies and non-

systematic inconsistencies [1-3]. Systematic irregularities or non-random inconsistencies have

some common error pattern and caused due to device error or device limitation to record

specific types of incidents. Non-systematic irregularities or random inconsistencies are

occurred at a certain time only due to some rare event. Systematic and non-systematic problems

cause irregularities of missing values and duplicate record.

2

Missing values and duplicate record issues are also produced if two or more datasets are

merged to create a single dataset. Data irregularity problems are found in all of the data sets

belonging to every domain of life including customer associated databases, commercial

information databases, countrywide census databases, patient illness databases, virus

databases, campaign management datasets, nationwide security databases and bibliography

datasets.

Missing values and duplicate data issues severely upset the quality of data and create

problems for successful data mining process. The dataset inconsistencies lead to unreliable and

biases data mining results [1] and these irregularities particularly affect the process of

supervised learning [4]. Therefore, missing values and duplicates records need to be cleaned

prior to making decisions, predictive analysis and forecasting.

Most of the researchers focus to fill the missing values with any non-null, valid and suitable

replacement value [5, 6]. Duplicate cleansing is a process of duplicate record detection and

merging. Duplicate detection discovers groups of records which belong to the same real-world

entity [7]. Once duplicate records are detected, they need to be merged to form a single updated

record. This new record will replace all its duplicates. Consequently, a clean dataset is achieved

for any further processing.

Manually fixing the dataset inconsistencies is completely unmanageable due to the size of

the dataset and because of the complications connected with inconsistencies. Data

preprocessing techniques [8, 9] were introduced to fix the irregularities of the datasets,

including missing values and duplicate records, by filling missing values with their appropriate

substitutes and by eliminating or replacing the duplicate records.

Several techniques were suggested by the data researchers to fix the irregularities of the

datasets including removal of the null and duplicate values records. Every proposed technique

was either devised for a particular dataset or developed and tested for a specific classifier.

Duplicate detection based data cleansing is also one of the methods used to fix the data

inconsistencies and is based on duplicate record discovery. Newcombe et al. [10] primarily

considered duplicate detection for data cleansing and researchers later worked on similar

concepts with different names like data cleansing, record reconciliation, object identification,

entity resolution, field matching, merge purge, and data matching.

3

Java code library of all eminent duplicate detection algorithms is also developed by

researchers with the name of Duplicate Detection Toolkit (DuDe) [7]. The architecture of the

Duplicate Detection Toolkit (DuDe) is shown in Fig. 1 which explains the functionality of

DuDe and indicates that DuDe extracts inconsistent data from the data source, considers it as

input, preprocesses it, applies partitioning algorithm on it, compares partitions, post processes

it and generate an output of cleaned data.

Fig. 1. The Architecture of the Duplicate Detection Toolkit

This research is emphasized to solve the two types of dataset irregularities including filling

the missing values with the proper substitute and cleansing and fusing the duplicates.

1.2. Motivation

In this digital era, data quality problems including the irregularities of missing values and

duplicate data are increasing due to the increase in heterogeneous data generation sources [4,

11]. Data preprocessing algorithms are least improved as compared to the improvements

carried out in other data science fields. Most of the data scientists are concentrating to improve

the correctness of data mining operators and algorithms.

Data mining operators generate the data mining results from the given input data without

considering the quality of input data and it causes the unfairness in data mining results [2, 3].

Duplicate Detection Toolkit (DuDe) [7] was developed by researchers containing a wide range

of duplicate detection algorithms. An opportunity was found to extend the DuDe toolkit for

filling the missing values and solving the duplicate data problems.

1.3. Problem Statement

Data quality problems are increasing on daily basis due to the increase in data generation

sources. There are only a few solutions available to fix the data inconsistencies related to

missing values and to fuse the duplicate data. Moreover, the previously developed solutions

4

were developed and tested for a specific dataset or operator. This research is intended to build

a proficient and innovative technique to improve the quality of any dataset by filling the

missing values through suitable substitution and by eliminating the duplicate records from the

dataset without disturbing the diversity and classification accuracy of the entire dataset.

1.4. Proposed Solution

A data quality improvement system, named as Data Cleansing System (DCS), is developed

during this research to fill the missing or null values of a dataset and to merge the duplicate

records of the dataset. The developed system is based on duplicate detection mechanism which

extracts the duplicate records in the form of pairs named as duplicate pairs. These duplicate

pairs have some similarities (duplication) among them and this similarity is greater than the

similarity of duplicate records. The extracted duplicate pairs are utilized to take the duplicate

merging decisions by the system. Moreover, the developed system also utilizes these duplicates

pairs to fill the missing values within the pairs.

1.5. Publication

Following research article has been produced by this research:

 SimFiller: Similarity-Based Missing Values Filling Algorithm, Fateh R. et al. (2018),

Published by IEEE in 13th ICDIM 2018 of Berlin, Germany.

1.6. Organization of the thesis

This chapter introduces the problem and the work carried out and presented in this thesis.

It defines the problem statement, proposed solution for the recognized problem and the

motivational factors to carry out this research.

Chapter 2 is related to literature review which discusses the literature of data cleansing and

preprocessing related to missing values and duplicate cleansing. This chapter is divided into

two parts to explain the existing solutions of two different anomalies of datasets. The first part

deals with the literature review to extract the algorithms and tools related to filling the missing

values. The second part deals with the review of the literature to discover the tools and

algorithms associated with the cleansing of duplicate records.

5

Chapter 3 discusses the solution developed as a result of research on data quality issues.

The developed system named Data Cleansing System (DCS) attempts to solve the dataset

quality problems for missing and duplicate values are presented in this chapter. The developed

system is based on duplicate detection mechanism during which record having some

similarities (duplication) with each other are extracted in the form of pairs named as duplicate

pairs.

Chapter 4 comprises the description of experiments setup used to get the results for the

proposed algorithms in the research. The setup was created to validate the duplicate detection

results, missing values filling results and duplicate fusion results for the correctness and

endorsement of the contribution made by this research in the body of knowledge.

Experiments are conducted after completing the evaluation setup and the achieved results

are presented and discussed in Chapter 5. This chapter comprises the duplicate detection

results, missing values filling results and duplicate fusion results of experiments carried out for

the proposed system. Results show the correctness and validation of the contribution made by

the research in the body of knowledge.

Chapter 6 discusses the outcomes and the impact of the proposed study and concludes the

overall benefit and result from this study. This chapter also defines the future directions and

advises the prospect research from the presented idea in the earlier chapters.

6

2. Chapter 2

LITERATURE REVIEW

This chapter is related to the review of the literature and discusses the existing work on

data cleansing and preprocessing to fix the issues of data inconsistencies. Missing values

replacement algorithms and duplicate records removal algorithms presented by previous

researchers are also discussed in this chapter.

2.1. Considered Data Inconsistencies

The dataset inconsistencies are of different types causing the quality problems for data.

This research considers two important dataset inconsistencies given below:

 Missing Values

 Duplicate Records

 This research discusses the existing approaches presented by previous researchers to deal

with the dataset inconsistencies given above. This research also discusses the problems in

existing approaches and tries to resolve the above-mentioned inconsistencies in a better and

efficient way without affecting the dataset variability.

The literature review is divided into two parts to explain the existing solutions of two

different anomalies of datasets. The first part deals with the literature review to extract the

algorithms and tools related to filling the missing values. The second part deals with the review

of the literature to discover the tools and algorithms associated with the detection and cleansing

of duplicate records.

2.2. Missing Values

This section deals with the techniques for filling the missing values of records in a dataset.

Missing values are produced due to the machine and human error caused during the generation

of the dataset. Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are

the key sources of data created in this digital era. Digital systems administrators are authorizing

devices to record each and every minute and relevant instance in their storage medium. Data

7

generation sources attempt to record each and every instance of received data without checking

its quality with respect to completeness.

Missing values severely upset the quality of data and create problems for successful data

mining process. The dataset inconsistencies lead to unreliable data mining results [1] and these

irregularities particularly affect the process of supervised learning [4, 12]. Therefore, missing

values need to be cleaned prior to decisions making, predictive analysis and forecasting. Most of

the researchers focus to fill the missing values with any non-null, valid and suitable replacement

value [5, 6].

2.3. Types of Missing Values

Dataset missing values are classified into two different types based on the similarities and

the differences among them. Systematic and non-systematic problems cause irregularities of

missing values.

Two different types of missing values are given below:

 Systematic Irregularities

 Non-Systematic Irregularities

1) Systematic Irregularities

 These irregularities are also named as non-random inconsistencies because these

irregularities cover the missing values those are caused due to systematic or non-random

error. Systematic irregularities or non-random inconsistencies have some common error

pattern and caused due to device error or device limitation to record specific types of

incidents [1-3].

2) Non-Systematic Irregularities

These irregularities are also named as random inconsistencies because these

irregularities cover the missing values those are caused due to non-systematic or random

error. Non-systematic irregularities or random inconsistencies are occurred at a certain time

only due to some rare or special event which happens occasionally [1-3].

8

2.4. Missing Values Filling Techniques

Data scientists proposed their techniques to treat the missing and null values of the

datasets. These methods are classified into different categories based on the operations

performed during them.

Categorization of the proposed techniques are given below:

 Ignore, Delete, Discard

 Single Imputation (SI)

 Multiple Imputations (MI)

 Machine Learning (ML)

1) Ignore, Delete, Discard

The simpler method (for dealing with the missing values) is to delete, discard or ignore

records containing the missing values while performing any data analysis on inconsistent

data [13-15]. Records deletion can negatively influence the process of data mining because

there is a chance to delete the records containing the most important data [16].

It is not a suitable method when datasets containing missing values due to systematic

or non-random error and have a large number of records with missing values. Bulk removal

of records can completely eliminate the specific class label from the process of data analysis

and can adversely affect the data mining results [12].

This is an appropriate method when datasets containing missing values due to random

or non-systematic error and have less number of records with missing values. It is a more

beneficial choice to delete a small number of records containing the majority of its

attributes having null value [13].

2) Single Imputations (SI)

This method specifies a particular value as a replacement of all missing values within

a dataset. A single replacement value can be defined for all the missing values of all

attributes (one value for all dataset) or multiple replacements can be defined for all the

missing values of each attribute (one value for each attribute) [17]. Both types of single

9

value replacement (database level or attributes level) are performed on a single copy of the

input dataset under consideration [2, 17].

This technique disturbs the diversity of a dataset and biases the accuracy of a classifier

when the analysis is performed on it because single value replacement either on database

level or on attribute level is neither an appropriate replacement nor a suitable representation

of all the existing values of an attribute [6, 17, 18].

i. Mean

This technique specifies an average or means value as a replacement of all missing

values within a dataset. A single mean value is calculated for each attribute of the

dataset and in this way multiple replacements are defined for the missing values of each

attribute (single average value for each attribute) [5, 6].

This method considers the attributes independence which is not suitable for each

and every dataset. It also disturbs the variability of a dataset and biases the accuracy of

classifiers when data analysis is performed. A single value for all the missing values

can’t indicate the variability of the dataset and can affect the classification accuracy

[12, 17, 19].

ii. Hot and Cold Deck

This method selects the replacement value within the completed records and

replaces it against the missing values of the considered dataset. Multiple values are

defined as replacement of the missing values by creating the multiple clusters. One

value from each cluster is selected for the records within that cluster. Hot deck and cold

deck are two variations of this methodology for filling the missing values based on the

selection of completed values as replacements [6, 17, 18].

Hot deck fills the missing value by getting the relevant replacement from the same

single dataset which means replacing and replaced records are found on the same

dataset [6, 17]. Cold deck fills the missing value by getting the relevant replacement

from the different dataset which means replacing and replaced records are found on the

different dataset [18].

10

This technique disturbs the diversity of a dataset and biases the accuracy of a

classifier when the analysis is performed on it because randomly selected single value

replacement either from the same dataset or from the different dataset is neither an

appropriate replacement nor a suitable representation of all the existing values of an

attribute [2, 17].

iii. Most Likely

This methodology considers each attribute (one by one) and calculates their missing

values’ replacements from the non-null values. Maximum occurred non-null attribute’s

value is selected as replacement of missing values for that attribute [5, 6, 19].

Missing value replacement can also be selected by calculating the probability of

each value. This is one variation of this method in which the missing value is calculated

from the subset of data having the same class label [5, 6].

This method considers the independence of attributes which is not suitable for each

and every dataset. It also disturbs the variability of a dataset and biases the accuracy of

classifiers when data mining is performed. A single value either for the complete dataset

or for a specific subset of data can affect the variety of dataset and can disturb the

classification accuracy [12, 17, 19].

iv. Not Applicable

This is a special method to treat the missing and null values of the dataset by

substituting them with a predefined tag similar to “Not Applicable”, “N/A”,

“Undefined” or “Not Available” [4]. This method is only suitable to recognize the

missing values within a dataset and shows an adverse effect on the accuracy of the

dataset. It is a suitable methodology when some dataset can’t be filled for its missing

values since some values remain not applicable in some instances and applicable for

some instances[6].

This method is not suitable for each and every dataset and disturbs the variability

of a dataset and biases the accuracy of classifier when data mining is performed. A

single value for all the missing values can’t indicate the variability of example and can

affect the classification accuracy of the dataset [17, 19].

11

3) Multiple Imputations (MI)

This is an arithmetical method which calculates the several replacements for missing

values and accordingly creates several copies of a dataset filled with the respected

replacement values. Total x number of database copies are created for x number of

arithmetically calculated replacements for missing values. Each copy of dataset is passed

through the numerical investigation, arithmetical examination and “Exception

Maximization” calculates the value of probable replacement similar to the Bayesian method

and final missing value replacement is selected [17, 18].

This process reflects the individuality of attributes which is not appropriate for all types

of datasets. It also disturbs the variability of a dataset and biases the accuracy of classifiers

when data analysis is performed. Specific values either from the complete dataset or from

a specific subset of data can affect the variety of dataset and can disturb the classification

accuracy [17, 19].

4) Machine Learning (ML)

Different machine learning techniques are presented by investigators to fill the missing

values of the dataset with an appropriate substitute. Researchers presented methods to fill

the missing values by creating the subsets of dataset like subgroups having a similar class

label or clusters of similar records [13, 15]. This methodology considers a missing value

record as test data and trains the model to find the missing value attribute as class label.

Machine learning techniques used for the substituting of missing values are given below:

 “Association Rules” based missing value filling algorithm is grounded on

“Association Rules Mining” [20] for the substitution of missing values [9, 21, 22].

This technique is not suitable because it decreases the dataset diversity by filling

single value for each missing item so each missing value can’t be filled with the

single rule. Moreover, the creation of a unique rule is not possible for each instance

of missing value [9, 17, 18].

 “Clustering” based missing value filling algorithm is built on the “Clustering”

approach [23] which fills the final missing values by substituting them with the

replacement from the respective elements of the cluster [4, 24-27]. This is not a

suitable approach for maintaining the dataset diversity during the missing values

12

filling by taking a single value from the whole cluster assuming that it will represent

the cluster [17, 18].

 “SVM Regression” based missing value filling algorithm is built on the “Support

Vector Machines (SVM)” [28] Regression model to fill the missing values from the

already known values [14, 25, 29]. This technique has associated issues of incorrect

missing values replacements because randomly selected single value from multiple

values of a group or sub-group can’t exactly substitute the missing value [17, 18].

 “Neural Networks” based missing value filling algorithm is built using “Artificial

Neural Network” [30] algorithm to find the best suitable substitute for each missing

value in the dataset [18, 31, 32]. It finds the exact replacement value by learning the

data for each missing value one by one. There is a big issue associated with this

technique that it requires a lot of computation power which is nearly impossible if

the dataset has a large number of records having missing values [18].

 “K-NN” based missing value filling algorithm is built using “K-Nearest

Neighbours” algorithm [33] and during this algorithm nearest neighbour of the

missing value is searched and missing data is filled from the nearest neighbour [18,

34-38]. This technique is not suitable for large datasets because the blind

comparison of each and every record with other records is not possible especially

for the dataset having a large number of missing values [34].

 “Decision Tree” based missing value handling algorithm is built using the

“Decision Tree” algorithm [39] but this technique is just limited to the handling of

missing values. It is useful during the learning in a decision tree and not filling the

missing values for the use with other classification algorithms. Moreover, this

missing values handling mechanism is only checked for the decision tree not for the

other classification algorithms [13, 18, 40, 41].

 “Naive Bayes” based missing value handling algorithm is built using the “Naive

Bayes” classifier [42]. This technique calculates the replacement of missing value

from the complete data using the probability of replacement value. It considers the

13

attributes independence for the selection of missing value replacement and was

tested for the dataset having the independence of attributes [11, 15, 18, 43-45].

These techniques have associated issues of incorrect missing values replacements

because randomly selected single value from multiple values of a group or sub-group can’t

exactly substitute the missing value [17, 18]. Moreover, the proposed algorithms were

either tested for specific machine learning operators or developed for specific datasets like

“Naive Bayes” based missing values filing algorithm was developed for “Naive Bayes”

classifier and was tested for the dataset having the independence of attributes [11, 15, 18].

The correctness of machine learning based on missing values filling algorithms is

directly dependent on the selection of appropriate replacement values. A single value for

all the missing values disturbs the variability of a dataset and biases the accuracy of the

classifier and can’t indicate the variability of example and can affect the classification

accuracy of dataset [2, 17-19].

Another limitation associated with the machine learning based on missing values filling

algorithms is the complexity of calculations for a single value substitution. Filling the

multiple values of multiple records require a lot of calculations and need a lot of resources

for this calculation which is nearly impossible when data has missing values due to

systemic error [18].

2.5. Review of Missing Values Filling Techniques

Techniques Details Problems

Ignore,

Delete,

Discard

The simpler method (for dealing

with the missing values) is to delete,

discard or ignore records containing

the missing values while performing

any data analysis on inconsistent

data [13-15].

Records deletion can negatively

influence the process of data mining

because there is a chance to delete

the records containing the most

important data [16].

14

Techniques Details Problems

Single

Imputations

(SI)

This method specifies a particular

value as a replacement of all missing

values within a dataset. A single

replacement value can be defined for

all the missing values of all attributes

(one value for all dataset) or multiple

replacements can be defined for all

the missing values of each attribute

(one value for each attribute) [17].

This technique disturbs the

diversity of a dataset and biases the

accuracy of a classifier because

single value replacement either on

database level or on attribute level

is neither an appropriate

replacement nor a suitable

representation of all the existing

values of an attribute [6, 17, 18].

Mean

(Type of SI)

This technique specifies an average

or means value as a replacement of

all missing values within a dataset. A

single mean value is calculated for

each attribute of the dataset and in

this way multiple replacements are

defined for the missing values of

each attribute (single average value

for each attribute) [5, 6].

This method considers the attributes

independence which is not suitable

for each and every dataset. It also

disturbs the variability of a because

a single value for all the missing

values can’t indicate the variability

of the dataset and can affect the

classification accuracy [12, 17, 19].

Hot Deck

(Type of SI)

Hot deck fills the missing value by

getting the relevant replacement

from the same single dataset which

means replacing and replaced

records are found on the same

dataset [6, 17].

This technique disturbs the

diversity of a dataset and biases the

accuracy of a classifier because

randomly selected single

replacement value from the same

dataset is not an appropriate

replacement of all the existing

values of an attribute [2, 17].

15

Techniques Details Problems

Cold Deck

(Type of SI)

Cold deck fills the missing value by

getting the relevant replacement

from the different dataset which

means replacing and replaced

records are found on the different

dataset [18].

This technique disturbs the

diversity of a dataset and biases the

accuracy of a classifier because

randomly selected single

replacement value from the

different dataset is not a suitable

representation of all the existing

values of an attribute [2, 17].

Most Likely

(Type of SI)

This methodology considers each

attribute (one by one) and calculates

their missing values’ replacements

from the non-null values. Maximum

occurred non-null attribute’s value is

selected as replacement of missing

values for that attribute [5, 6, 19].

This method considers the

independence of attributes which is

not suitable for each and every

dataset. It also disturbs the

variability of a dataset and biases

the accuracy of classifiers when

data mining is performed. A single

value either for the complete dataset

or for a specific subset of data can

affect the variety of dataset and can

disturb the classification accuracy

[12, 17, 19].

Not

Applicable

(Type of SI)

This is a special method to treat the

missing and null values of the dataset

by substituting them with a

predefined tag similar to “Not

Applicable”, “N/A”, “Undefined” or

“Not Available” [4]. It is a suitable

methodology when some dataset

can’t be filled for its missing values

This method is not suitable for each

and every dataset and disturbs the

variability of a dataset and biases

the accuracy of classifier when data

mining is performed. A single value

for all the missing values can’t

indicate the variability of example

16

Techniques Details Problems

since some values remain not

applicable in some instances and

applicable for some instances[6].

and can affect the classification

accuracy of the dataset [17, 19].

Multiple

Imputations

(MI)

Total x number of database copies

are created for x number of

arithmetically calculated

replacements for missing values.

Each copy of dataset is passed

through the numerical investigation,

arithmetical examination and

“Exception Maximization”

calculates the value of probable

replacement similar to the Bayesian

method and final missing value

replacement is selected [17, 18].

This process reflects the

individuality of attributes which is

not appropriate for all types of

datasets. It also disturbs the

variability of a dataset and biases

the accuracy of classifiers when

data analysis is performed. Specific

values either from the complete

dataset or from a specific subset of

data can affect the variety of dataset

and can disturb the classification

accuracy [17, 19].

Machine

Learning

(ML)

Researchers presented methods to fill

the missing values by creating the

subsets of dataset like subgroups

having a similar class label or

clusters of similar records [13, 15].

This methodology considers a

missing value record as test data and

trains the model to find the missing

value attribute as class label.

A limitation associated with the

machine learning based on missing

values filling algorithms is the

complexity of calculations for a

single value substitution. Filling the

multiple values of multiple records

require a lot of calculations and

need a lot of resources for this

calculation which is nearly

impossible when data has missing

values due to systemic error [18].

17

Techniques Details Problems

Association

Rules

(Type of ML)

“Association Rules” based missing

value filling algorithm is grounded

on “Association Rules Mining” [20]

for the substitution of missing values

[9, 21, 22].

Creation of unique rule is not

possible for each instance of

missing value [9, 17, 18]

Clustering

(Type of ML)

“Clustering” based missing value

filling algorithm is built on the

“Clustering” approach [23] which

fills the final missing values by

substituting them with the

replacement from the respective

elements of the cluster [4, 24-27].

This is not a suitable approach for

maintaining the dataset diversity

during the missing values filling by

taking a single value from the whole

cluster assuming that it will

represent the cluster [17, 18].

SVM

Regression

(Type of ML)

“SVM Regression” based missing

value filling algorithm is built on the

“Support Vector Machines (SVM)”

[28] Regression model to fill the

missing values from the already

known values [14, 25, 29].

This technique has associated issues

of incorrect missing values

replacements because randomly

selected single value from multiple

values of a group or sub-group can’t

exactly substitute the missing value

[17, 18].

Neural

Networks

(Type of ML)

“Neural Networks” based missing

value filling algorithm is built using

“Artificial Neural Network” [30]

algorithm to find the best suitable

substitute for each missing value in

the dataset [18, 31, 32].

There is a big issue associated with

this technique that it requires a lot of

computation power which is nearly

impossible if the dataset has a large

number of records having missing

values [18].

18

Techniques Details Problems

K-Nearest

Neighbors

(Type of ML)

“K-NN” based missing value filling

algorithm is built using “K-Nearest

Neighbors” algorithm [33] and

during this algorithm nearest

neighbour of the missing value is

searched and missing data is filled

from the nearest neighbour [18, 34-

38].

This technique is not suitable for

large datasets because the blind

comparison of each and every

record with other records is not

possible especially for the dataset

having a large number of missing

values [34].

Decision Tree

(Type of ML)

“Decision Tree” based missing value

handling algorithm is built using the

“Decision Tree” algorithm [39] but

this technique is just limited to the

handling of missing values.

It is useful during the learning in a

decision tree and not filling the

missing values for the use with

other classification algorithms.

Moreover, this missing values

handling mechanism is only

checked for the decision tree not for

the other classification algorithms

[13, 18, 40, 41].

Naive Bayes

(Type of ML)

“Naive Bayes” based missing value

handling algorithm is built using the

“Naive Bayes” classifier [42]. This

technique calculates the replacement

of missing value from the complete

data using the probability of

replacement value.

It considers the attributes

independence for the selection of

missing value replacement and was

tested for the dataset having the

independence of attributes [11, 15,

18, 43-45]

19

2.6. Duplicate Records

The second part discovers the tools and algorithms associated with the detection and

cleansing of duplicate records from the datasets. Duplicate data affect the quality of data and

create problems for successful data mining process. The dataset inconsistencies lead to

unreliable and biases data mining results [1] and these data irregularities particularly affect the

process of supervised learning [4]. Therefore, duplicates records need to be cleaned prior to

making decisions, predictive analysis and forecasting. Duplicate cleansing is a process of

duplicate record detection and merging. Duplicate detection discovers groups of records which

belong to the same real-world entity [7, 46]. Duplicate fusion is one of the duplicate cleansing

process developed to clean the duplicate records from the datasets [46-48].

Machines (i.e. sensors, devices) and humans (i.e. filled forms, saved data) are the key

sources of data created in this digital era. Digital systems administrators are authorizing devices

to record each and every minute and relevant instance in their storage medium. A record in the

database is created by combining the values of different attributes from similar or different

sources. Sometimes, machines receive an identical or parallel event which is logged twice as

duplicate data by single or multiple machines in the same recording medium.

2.7. Categories of Duplicate Data

Duplicate data issues are caused due to machine error like sensor error and these issues

also exist in human-generated data mostly due to human error, typo errors or other input device

related errors. This research divides the data duplication issues into two main categories based

on the reasoning behind duplicate data as given below:

 Deliberate Duplicates

 Unintended Duplicates

1) Deliberate Duplicates

Sometimes, duplicate readings or records are generated intentionally just to create a

more valid and trustworthy end result from the recordings of sensors or recording sources.

Sensors or recording mediums are paced in parallel to create a more useful output from the

recorded data. Deliberate duplication is carried out either to record a similar event or to

record the different overlapping events [49-52].

20

Decisions on the given input within the critical systems can’t be based on a single

source of input so multiple parallel sensors or input sources are placed to record the same

event from the environment which leads to deliberate duplication [49, 52].

In critical systems, a single sensor can’t be dependable to create a complete picture

before taking any decisions on the input, therefore, parallel sensors are placed to record the

duplicate input from the same event happening in the environment. Robots take the decision

to perform an action based on the several inputs received from the multiple sources about

the happening of a single event [50, 51].

In some systems, a single sensor can’t record each and every aspect of a single event,

therefore, overlapping sensors are installed to create a complete picture before taking any

decisions on the input. Overlapping recording sources such as sensors placed in the body

of automatic car receive overlapping inputs to take the decisions related to taking a turn or

applying breaks [49, 52, 53].

Online search results are created by finding and placing the identical results together

just to give the range of available options to the user. This is also an example of deliberate

duplication and it is useful to collect similar records which increase the chances to get

valuable search results [54].

2) Unintended Duplicates

Sometimes, duplicate readings or records are generated unintentionally by the sensors

or recording sources when the similar event is recorded twice by the similar or identical

sensor. These duplicates are not necessarily the exactly identical of each other but represent

the same entity or the event which is recorded twice by the system [7]. These duplicates

are caused due to machine error like sensor error or other input device related errors.

These anomalies are divided into two categories i.e. systematic irregularities or the non-

random inconsistencies and non-systematic irregularities or the random inconsistencies [1-

3]. Systematic irregularities or non-random inconsistencies have some common error

pattern and caused due to device error or device limitation to record specific types of

incidents. Non-systematic irregularities or random inconsistencies are occurred at a certain

time only due to some rare event.

21

Systematic and non-systematic problems cause the irregularities of unintended

duplicate record because duplicate records are generated during rewriting attempts for the

events failed to be recorded [55, 56].

2.8. Duplicate Records Detection Techniques

Duplicate detection discovers groups of similar records which belong to the same real-

world entity [7, 46] from the given input data. Duplicates records detection techniques are

built on different duplicate records detection algorithms. Some of the famous duplicate records

detection algorithms studied in this research are given below:

 “Naive Duplicate Detection” [7, 57]

 “Duplicate Count SNM” [7, 58]

 “Sorted Neighborhood Method” [7, 59]

 “Lego” [7, 60, 61]

 “GSwoosh” [7, 62]

 “RSwoosh” [7, 63]

 “Naive Blocking” [7, 64]

1) Naive Duplicate Detection

Naïve Duplicate Detection is a duplicate detection algorithm which imposes the Naive

method of examination each likely duplicate pair. This algorithm limits the duplicate pairs

with a logical way because a record can’t be a duplicate pair with itself and can be a

duplicate pair with another record just once means no [n,m] exists, if [m,n] is previously

generated [7, 57].

2) Duplicate Count SNM

Duplicate Count SNM is a duplicate detection algorithm which imposes the Sorted

Neighborhood Method based on Adaptive Window Size which means duplicate records

window could be adaptive in terms of numbers of records taking part in that window. Sorted

Neighborhood Method based on Adaptive Window Size was originally presented by Oliver

Wonneberg [7, 58].

22

3) Sorted Neighborhood Method

Duplicate Count SNM is a simple duplicate detection algorithm which imposes the

Sorted Neighborhood Method for the duplicate records detection. It allows the system to

sort the records according to similarity to avoid multiple executions on the input day to find

the duplicate pairs from the sorted neighbours [7, 59].

4) Lego

Lego is a duplicate detection algorithm which imposes the approach of iterative

blocking. Duplicates blocks are generated iteratively and duplicate records are spread to

the different blocks to get the more duplicate pairs. Due to iterative nature, this process is

repeated until duplicates are found in each previous iteration. This process is based on

“Entity Resolution with Iterative Blocking” by “Steven Euijong Whang”, “David

Menestrina”, “Georgia Koutrika”, “Martin Theobald” and “Hector Garcia-Molina” [7, 60,

61].

5) GSwoosh

GSwoosh is a duplicate detection algorithm which imposes the approach of “Swoosh:

a generic approach for entity resolution.” Similarity Function is integrated with this

approach to enable it to utilize the Cross Product Strategy [7, 62]. This algorithm is also

used for duplicate fusion tasks.

6) RSwoosh

RSwoosh is a duplicate detection algorithm which imposes the approach of “Swoosh:

a generic approach for entity resolution.” Similarity Function is integrated with this

approach to enable it to utilize the Cross Product Strategy Additionally, RSwoosh considers

the attributes of “idempotence”, “commutativity”, “associativity” and “representativity” [7,

63].

7) Naive Blocking

Naïve Blocking Algorithm is a duplicate detection algorithm which imposes the Naive

blocking method of examination each likely duplicate pair. This algorithm limits the

23

duplicate pairs with a logical way using Sorting Key for the Sorted Blocks and this sorting

key is generated uniquely for each block [7, 64].

8) Similarity Comparison Algorithms

Different algorithms used for the calculation of similarities of the generated duplicate

pairs. Similarities of all possible pairs are calculated with the algorithms given below:

 “Levenshtein Distance Function” [7, 65]

 “Euclidean Distance Function” [7, 66]

 “Jaro Winkler Function” [7, 67]

 “Jaccard Similarity Function” [7, 68]

 “Cosine Similarity Function” [7, 69]

 “Block Distance Function” [7, 70]

 “Dice Coefficient Function” [7, 71]

2.9. Duplicate Records Fixing Techniques

Duplicate records in a dataset lead to unreliable and biases data mining results [1] and

particularly affect the process of supervised learning [4]. Therefore, duplicates records need to

be cleaned prior to making decisions, predictive analysis and forecasting from any input data.

Manually fixing the dataset inconsistencies is completely unmanageable due to the size of the

dataset and because of the complications connected with inconsistencies. Data preprocessing

techniques [8, 9] were introduced to fix the irregularities of the datasets by eliminating or

replacing the duplicate records. Following are the two main approaches to fix the issues related

to duplicate records in a dataset:

 Delete, Discard Duplicate Records

 Duplicate Records Fusion

1) Delete, Discard Duplicate Records

The simplest method for dealing the duplicate records of a dataset during which records

containing the similar values are deleted or discarded from the dataset create the clean

24

dataset. Most commonly records having most erroneous values are discarded to leave and

more stable dataset behind [50, 51]. This duplicate removal method is more suitable for the

unintended duplicates generated due to some error.

This technique has different variations based on the selection mechanism to discard or

delete an item:

 Keep the record having the latest or oldest data [72-74]:

o In this technique, the record having the latest or oldest data from the

duplicate records group is kept in the cleansed dataset and remaining

duplicate records are removed from the dataset. These decisions are taken

based on the date of record creation or modification [72-74].

 Keep the record having least null values and discard others [2, 14, 72, 75]:

o In this technique, the record having not null values from the duplicate

records group is kept in the cleansed dataset and remaining duplicate records

are removed from the dataset [2, 14, 72, 75].

 Keep the record having less erroneous values and discard others [2, 14, 72]

o In this technique, the record having less erroneous values from the duplicate

records group is kept in the cleansed dataset and remaining duplicate records

are removed from the dataset [2, 14, 72].

Deleting duplicates is preferred when the dataset contains exact duplicate records with

greatest similarity value. This technique is not suitable for the dataset containing duplicate

records with low similarity value because in such datasets a single record can’t represent

all discarded records and during the records discarding important information could be lost.

A single value for all the missing values can’t indicate the variability of the dataset and can

affect the classification accuracy [12, 17, 19].

2) Duplicate Records Fusion

Duplicate fusion is one of the duplicate cleansing process developed to clean duplicate

records from the datasets [46-48, 75]. During the data fusion, duplicate records are merged

to create a new and more accurate and useful record as a result. Duplicate fusion technique

25

not only resolves the unintended duplicates issue but also helps to merge the deliberately

created duplicates from the parallel sensors setup [49-52, 76, 77]. This technique is widely

used for the fusion of multiple inputs received from the multiple sensors installed to record

a similar event [50, 78].

Decisions on the given input within the critical systems can’t be based on a single

source of input so multiple parallel sensors or input sources are placed to record the same

event from the environment which leads to deliberate duplication [49, 52]. Multiple inputs

from the multi-sensor environment are merged to create a single and more useful record to

take the decisions in the critical system [49, 51, 52, 77].

In some systems, a single sensor can’t record each and every aspect of a single event,

therefore, overlapping sensors are installed to create a complete picture before taking any

decisions on the input. Overlapping recording sources such as sensors placed in the body

of automatic car receive overlapping inputs to take the decisions related to taking a turn or

applying breaks [49, 52, 53]. Partial inputs from the multi-sensor environment are merged

to create a single and more useful record to take the decisions about the events and to predict

the future events and consequences [49, 51, 52, 77].

3) Voting-Based Duplicate Fusion:

Majority of the researches focus on voting based duplicate fusion technique to merge

the duplicate records in the dataset. Multiple records representing the same real-world

entity are merged in duplicate fusion to create more accurate representation on record.

Voting technique consider the is attributes values as a candidate for vote and records with

similar to this are considered as a vote in its favour, finally merging is done by picking the

values with maximum votes as a proof of value validity [50, 73, 78-82].

i. Accuracy-Based Voting

Accuracy based voting technique consider the accuracy of the source from

where records were taken, means the previous accuracy of sensors is considered as

a voting mechanism [80, 81]. The voting number is equal to the accuracy of each

attribute and is named as naive accuracy similar to “Naive Bayes” where

consideration of attributes independence is a basic principle [80, 81, 83, 84]. Other

than accuracy precision, f-measure or recall could also be used for this voting

26

method [84]. This technique has the limitation of getting the accuracy before filling

missing values and this technique becomes less useful in case of absence of

accuracy value.

ii. Similarity-Based Voting

Cosine similarity among records is calculated to and each record vote for other

records equal to its similarity and at the end voting decide the reliability of any

record. All records within all duplicate groups are passed through this mechanism

and final record is created from each duplicate group after voting [81, 83]. This

technique has one limitation of neglecting a number of occurrences because more

occurrences could be overlapped with a value. It neglects the data mining principle

of “wisdom of the crowd” [85, 86] in terms of occurrences by replacing the value

having more occurrences with possibly some erroneous value.

iii. Weightage-Based Majority Voting

Some researchers suggested adding a weight to vote which means multiple

weights criteria decide the final items from voting. Weightage could be based on

similarity or accuracy or the trustworthiness and at the end, voting decides the final

output from the fusion operation [54, 83, 87]. It neglects the data mining principle

of “wisdom of the crowd” [85, 86] in terms of occurrences by replacing the value

having more occurrences with possibly some erroneous value.

2.10. Review of Duplicate Cleansing Techniques

Techniques Details Problems

Keep the

record having

the latest value

(Keep one,

discard others)

The record having the latest data from

the duplicate records group is kept in the

cleansed dataset and remaining

duplicate records are removed from the

dataset. These decisions are taken based

on the date of record creation or

modification [72-74]. Deleting

This technique is not suitable

for the dataset containing

duplicate records with low

similarity value because in

such datasets a single record

can’t represent all discarded

records and during the records

27

Techniques Details Problems

duplicates is preferred when the dataset

contains exact duplicate records with

greatest similarity value.

discarding important

information could be lost [12,

17, 19].

Keep the

record having

the oldest

value

(Keep one,

discard others)

In this technique, the record having the

oldest data from the duplicate records

group is kept in the cleansed dataset and

remaining duplicate records are

removed from the dataset. These

decisions are taken based on the date of

record creation or modification [72-74].

Deleting duplicates is preferred when

the dataset contains exact duplicate

records with greatest similarity value.

This technique is not suitable

for the dataset containing

duplicate records with low

similarity value because in

such datasets a single record

can’t represent all discarded

records and during the records

discarding important

information could be lost [12,

17, 19].

Keep the

record having

least null

values and

discard others

(Keep one,

discard others)

The record having not null values from

the duplicate records group is kept in the

cleansed dataset and remaining

duplicate records are removed from the

dataset [2, 14, 72, 75]

A single value from the

containing duplicate records

with low similarity value for

all the missing values can’t

indicate the variability of the

dataset and can affect the

classification accuracy [12, 17,

19].

Keep the

record having

less erroneous

values and

discard others

In this technique, the record having less

erroneous values from the duplicate

records group is kept in the cleansed

dataset and remaining duplicate records

are removed from the dataset [2, 14, 72]

A single value from the

containing duplicate records

with low similarity value for

all the missing values can’t

indicate the variability of the

dataset and can affect the

28

Techniques Details Problems

(Keep one,

discard others)

classification accuracy [12, 17,

19].

Accuracy-

Based Voting

(Fusion)

Accuracy based voting technique

consider the accuracy of the source from

where records were taken, means the

previous accuracy of sensors is

considered as a voting mechanism [80,

81]. The voting number is equal to the

accuracy of each attribute and is named

as naive accuracy similar to “Naive

Bayes” where consideration of

attributes independence is a basic

principle [80, 81, 83, 84]. Other than

accuracy precision, f-measure or recall

could also be used for this voting

method [84].

This technique has the

limitation of getting the

accuracy before filling missing

values and this technique

becomes less useful in case of

absence of accuracy value.

Similarity-

Based Voting

(Fusion)

Cosine similarity among records is

calculated to and each record vote for

other records equal to its similarity and

at the end voting decide the reliability of

any record. All records within all

duplicate groups are passed through this

mechanism and final record is created

from each duplicate group after voting

[81, 83]

It neglects the data mining

principle of “wisdom of the

crowd” [85, 86] in terms of

occurrences by replacing the

value having more occurrences

with possibly some erroneous

value.

Weightage-

Based

Some researchers suggested adding a

weight to vote which means multiple

It neglects the data mining

principle of “wisdom of the

29

Techniques Details Problems

Majority

Voting

(Fusion)

weights criteria decide the final items

from voting. Weightage could be based

on similarity or accuracy or the

trustworthiness and at the end, voting

decides the final output from the fusion

operation [54, 83, 87]

crowd” [85, 86] in terms of

occurrences by replacing the

value having more occurrences

with possibly some erroneous

value.

30

3. Chapter 3

PROPOSED APPROACH

This chapter discusses the solution developed as a result of research on data quality issues.

The developed system named Data Cleansing System (DCS) attempts to solve the dataset

quality problems for missing and duplicate values are presented in this chapter. The developed

system is based on duplicate detection mechanism during which record having some

similarities (duplication) with each other are extracted in the form of pairs named as duplicate

pairs.

3.1. Development Process

An iterative agile methodology named Solo Iterative Process (SIP) [88, 89] is followed to

develop the Data Cleansing System (DCS). During the development process, the complete

system is divided into four main subsystems based on the independence of functionalities. Each

subsystem is further divided into smaller modules and tasks based on the sub-functionalities.

Division of functionalities and sub-functionalities was performed to make the work more

manageable and agile.

Data Cleansing System (DCS) is developed in two iterations to reduce the gaps in the

software development process [90, 91]. During the first iteration, basic functionalities are

implemented to create a preliminary end to end system. During the second iteration, advanced

functionalities are added to the system by extending the existing developed functionalities.

Process flow details of each submodule with respect to iteration are discussed in the next

sections.

3.2. Data Cleansing System (DCS)

A data quality improvement system, named as Data Cleansing System (DCS), is

developed during this research to fill the missing or null values of a dataset and to merge the

duplicate records of the dataset. The developed system is based on duplicate detection

mechanism during which record having some similarities (duplication) with each other are

extracted in the form of pairs named as duplicate pairs. The extracted duplicate pairs are utilized

to take the duplicate merging decisions by the system. Moreover, the developed system also

utilizes these duplicates pairs to fill the missing values within the pairs.

31

Java programing language is used to build the Data Cleansing System (DCS) by extending

the Duplicate Detection Toolkit (DuDe) [7]. The developed system takes the low-quality data

as input, processes it, fills its missing values, removes its duplicates and generates the cleaned

output data with improved quality.

3.3. Data Cleansing System (DCS) Architecture

The high-level architecture of Data Cleansing System is given below in Fig. 2. The

developed system named Data Cleansing System (DCS) attempts to solve the dataset quality

problems for missing and duplicate values are presented in this chapter.

The developed system detects the duplicates of records from the dataset during which

record having some similarities (duplication) with each other are extracted in the form of pairs

named as duplicate pairs. A threshold is defined within the system by the system administrator

to limit the similarity comparison which decreases the duration of execution time.

 The raw dataset file is given as input to the system which is sent to the subsystem

of Pre-Processing to extract and select the attributes from the dataset.

 The data is extracted for the selected attributes which are then passed to the

Duplicate Detection subsystem to extract the duplicate pairs from the dataset.

 The extracted duplicate pairs are then passed to the Duplicate Fusion subsystem to

fuse the duplicates into a single record.

 The fused duplicates are then passed to the Post-Operation subsystem to create the

cleaned copy of input dataset by adding attribute names and non-duplicate data in

it.

3.4. Flow Chart of Data Cleansing System (DCS)

Flowchart representing the sequence of the processes carried out by Data Cleansing System

is given in Fig. 3. After processing of data in one subsystem, it moves to the next subsystem

for further processing and this process ends with writing the cleaned data in the output file. The

output of one subsystem is provided as the input to the next subsystem. Upon some

unsuccessful operation or exception, subsystem exists to the start.

32

Fig. 2. High-Level Architecture of Data Cleansing System

33

F
ig

.
3
.

F
lo

w
ch

ar
t

o
f

D
at

a
C

le
an

si
n
g
 S

y
st

em

34

3.5. Sub-Systems of Data Cleansing System (DCS)

The higher level architecture of Data Cleansing System (DCS) is divided into four main

subsystems based on the division of functionalities as shown in Fig. 4.

Four subsystems of DCS are:

 Pre-Processing Subsystem (PPS)

 Duplicate Detection Subsystem (DDS)

 Duplicate Fusion Subsystem (DFS)

 Post-Operation Subsystem (POS)

Fig. 4. Modules of Data Cleansing System

3.6. Pre-Processing Subsystem (PPS)

Pre-Processing Subsystem deals with the preliminary activities executed on the input file

before performing any data cleansing task on it. PPS is further divided into four main modules

as shown in Fig. 5. A user interface is created with an option to select and load the CSV file in

the subsystem. After successful loading, the subsystem reads the input dataset from CSV file,

extracts the list of attributes from it. The subsystem then asks the user to select the required

attributes from the list of attributes and the selected attributes are used to extract the required

data from the dataset which is returned to the main system for further processing.

35

Fig. 5. Input File Upload and File Pre-Processing

3.7. PPS Flowchart

The sequence of steps performed by the developed Pre-Processing Subsystem is shown in

Fig. 6. PPS is developed completely in a single iteration because it is just related to file loading

and preprocessing functionality.

Details of the steps performed by the developed Pre-Processing Subsystem are given

below:

 The developed PPS asks the user to select and upload the raw dataset CSV file into the

subsystem.

 The user selects and uploads the file.

 PPS reads the file.

 PPS extracts the attribute list from a file.

 PPS reads data for all the extracted attributes of the file.

 PPS returns the extracted data and the attributes list to the Data Cleansing System for

further processing and exists.

36

F
ig

.
6
.

In
p
u
t

F
il

e
U

p
lo

ad
 a

n
d
 F

il
e

P
re

-P
ro

ce
ss

in
g
 F

lo
w

ch
ar

t

37

3.8. Duplicate Detection Subsystem (DDS)

After the successful preprocessing, extracted data and the attributes list is passed to the

duplicate detection module to find duplicates from it as shown in Fig. 7.

Fig. 7. Link of File Pre-Processing and Duplicate Detection

Duplicate Detection Subsystem (DDS) is further divided into four main modules as shown in

Fig. 8. In the first module, the user is asked to set the similarity threshold after successful data

extraction then records pairs are generated and their similarity is calculated. If pairs similarity

exceeds the similarity threshold, pairs are saved for the later processing.

Fig. 8. Duplicate Detection with User Input and Rules

3.9. DDS Flowchart (First Iteration)

Fig. 9 shows the flow of a developed Duplicate Detection Subsystem during the first

iteration which starts by picking the algorithm for duplicate detection and generates possible

duplicate pairs after comparing records of the given dataset.

38

These duplicate pairs are selected one by one and their similarity is calculated and

compared with the similarity threshold defined in the system. During the comparison, duplicate

pairs exceeding the similarity threshold are declared as confirmed duplicate pairs and are stored

for further processing.

F
ig

.
9
.
D

u
p
li

ca
te

 D
et

ec
ti

o
n
 S

u
b
sy

st
em

 (
F

ir
st

 I
te

ra
ti

o
n

)
F

lo
w

ch
ar

t

39

3.10. DDS Flowchart (Second Iteration)

F
ig

.
1
0
.
D

u
p
li

ca
te

 D
et

ec
ti

o
n
 S

u
b
sy

st
em

 (
S

ec
o
n
d
 I

te
ra

ti
o
n
)

F
lo

w
ch

ar
t

40

During the second iteration, the Duplicate Detection Subsystem is extended to get the user

input for decisions related to duplicate detection.

Following options are added to the subsystem:

 Option to get similarity threshold for duplicate records comparison

 Option to get user input to select the attributes for duplicate detection

 Option to get user input to select the algorithm from the list of available algorithms

specific to generate duplicate pairs

 Option to select the algorithm for calculating the similarity value of the generated

duplicate pair

Duplicate Detection Subsystem is extended in such a way that lack of user input for

duplicate detection decisions is not affecting the flow and subsystem is working by taking

default actions to find duplicates as shown in the Fig. 10.

3.11. DDS Algorithms

Different algorithms for duplicate detection are studied from literature and the most

discussed algorithms among researchers include Naive Duplicate Detection, Sorted

Neighborhood Method, Naive Blocking Algorithm, Duplicate Count SNM (DCSNM) and

DCS++. Duplicate Detection toolkit (DuDe) was developed as an open source platform which

provided the Java source code implementation of the duplicate detection algorithms.

Java code of one of the algorithms named Naive Duplicate Detection [57] is integrated by

taking it from the DuDe toolkit [7] because DuDe is open source toolkit. Java code given by

the DuDe is also widely studied before integration to check for any anomalies and then it is

extended further for the integration in the subsystem under development.

Correctness, accuracy and algorithmic efficiency of the code given by DuDe is widely

studied by international researchers and they found it a trustable toolkit of Java source code for

Duplicate Detection algorithms.

The Naive Duplicate Detection algorithm [57] is implemented initially and its results as

detected duplicate pairs are validated with the DuDe and with the available literature. A variety

41

of duplicate detection algorithms express that a single duplicate detection algorithm is not

suitable for all the scenarios and datasets which is also validated by many of the researchers in

data cleansing community.

Moreover, the user should be able to select the desirable algorithm on runtime as per the

need and based on the type of dataset given as input. Therefore, Architecture of Duplicate

Detection is extended to support this need during the second iteration which still supports the

default implementation.

There are two types of algorithms integrated into Duplication Detection Subsystem for the

two different types of tasks performed by these algorithms:

1. Duplicate Pairs Generation

2. Similarities Calculation

1) Duplicate Pairs Generation

This category includes the algorithms used for the generation of duplicate pairs by

comparing each record as a whole with the other records in the dataset. All possible pairs

of each record are created with the algorithms given below:

 “Naive Duplicate Detection” [7, 57]

 “Duplicate Count SNM” [7, 58]

 “Sorted Neighborhood Method” [7, 59]

 “Lego” [7, 60, 61]

 “GSwoosh” [7, 62]

 “RSwoosh” [7, 63]

 “Naive Blocking” [7, 64]

The user is able to select any of the above duplicate detection algorithms at runtime to

generate the duplicate pairs from the input data.

42

2) Similarities Calculation

This category includes the algorithms used for the calculation of similarities of the

generated duplicate pairs. Similarities of all possible pairs are calculated with the

algorithms given below:

 “Levenshtein Distance Function” [7, 65]

 “Euclidean Distance Function” [7, 66]

 “Jaro Winkler Function” [7, 67]

 “Jaccard Similarity Function” [7, 68]

 “Cosine Similarity Function” [7, 69]

 “Block Distance Function” [7, 70]

 “Dice Coefficient Function” [7, 71]

The user is able to select any of the above algorithms at runtime for the calculation of

similarities of the generated duplicate pairs.

Architecture and flow of Duplicate Detection Subsystem are made generic to support any

future algorithm added to the subsystem either related to pair generation or related to pairs

similarity calculation.

3.12. Duplicate Fusion Subsystem (DFS)

In Duplicate Fusion Subsystem (DFS), extracted duplicate pairs are further analyzed to

merge them into a single record. Duplicate fusion is one of the duplicate cleansing process

developed to clean duplicate records from the datasets [46-48, 75]. During the data fusion,

duplicate records are merged to create a new and more accurate and useful record as a result.

Duplicate fusion technique not only resolves the unintended duplicates issue but also helps

to merge the deliberately created duplicates from the parallel sensors setup [49-52, 76, 77].

This technique is widely used for the fusion of multiple inputs received from the multiple

sensors installed to record a similar event [50, 78].

43

The high-level architecture of the Duplicate Fusion is additionally divided into four

modules as shown in Fig. 11.

Fig. 11. Duplicate Fusion with User Input and Rules

Once fusion operations are calculated, subsystem prompts to get the user input related to

merging procedures those are defined in the subsystem. When a user input is received for the

fusion procedures, duplicate fusion is performed by merging the duplicate records and the

dataset is updated. If no input is received default fusion operations are performed from the

subsystem configuration.

3.13. DFS Flowchart (First Iteration)

Fig. 12 depicts the process of Duplicate Fusion Subsystem which is developed during the

first iteration of DFS. Subsystem takes duplicate pairs as input, reads and selects each duplicate

pair one by one and extracts the first record of duplicate pair. DFS then selects the all attributes

one by one from the selected record and analyzes their value.

After the analysis, attribute’s value is, its similarity value and occurrence are initialized and

stored for that record if not already stored. Otherwise, the similarity value of the pair is added

to the stored similarity of the record and the occurrence is incremented for that record if the

attribute’s value is already stored for that record. This process is repeated until all the duplicate

pairs are processed and their respective replacements are calculated.

44

F
ig

.
1
2
.
D

u
p
li

ca
te

 F
u
si

o
n
 S

u
b
sy

st
em

 (
F

ir
st

 I
te

ra
ti

o
n
)

F
lo

w
ch

ar
t

45

3.14. DFS Flowchart (Second Iteration)

F
ig

.
1
3
.
D

u
p
li

ca
te

 F
u
si

o
n
 S

u
b
sy

st
em

 (
S

ec
o
n
d
 I

te
ra

ti
o
n
)

F
lo

w
ch

ar
t

46

Duplicate Fusion Subsystem (DFS) is further extended during the second iteration to get

the user input related to the newly developed fusion options as shown in Fig. 13. The newly

developed fusion options are based on the fusion operations calculated during the first iteration.

After the selection of fusion options, all records are selected one by one and data cleansing is

performed according to the values saved for each attribute of the selected record.

Duplicate Fusion Subsystem (DFS) performs one of the below three operations on the input

duplicate pairs to perform the data cleansing as per the given user input. Runtime selection of

one of these options is given to the user and the default option is executed on the system if

nothing received from the user.

Duplicate Fusion Subsystem (DFS) supports the following three types of data fusion

options:

1. Merge & Fill

2. Maximum Similarity Sum

3. Maximum Occurrences

3.15. DFS Fusion Options

The developed Duplicate Fusion Subsystem (DFS) provides three different types of

duplicate fusion operations based on the calculations of fusion operations. These operations are

carried out on the duplicate records those were detected during the first DFS iteration.

Duplicate fusion operations implemented in the DFS are explained below with complete

details.

1) Merge & Fill

This option of Duplicate Fusion Subsystem (DFS) supports the merging of highest

similar duplicate record pairs just to fill the missing values of the records’ attributes. During

the merging and filling process, missing values of the records are filled and nothing is

deleted from the dataset.

It is a useful technique for data preprocessing to fix the inconsistencies in the dataset

related to missing values. It also improves the quality of the data after filling all possible

missing values of a dataset.

47

2) Maximum Similarity Sum

This option of Duplicate Fusion Subsystem (DFS) supports the merging of duplicate

record pairs by taking the value from the attributes having the highest similarity. It

calculates the sum of similarity of all the values of an attribute from all relevant duplicate

pairs. Records similar to each other participate in this process (duplicate pairs group) and

create a new record by getting the values of highest accumulative similarity from each

duplicate pair group.

3) Maximum Occurrences

This option of Duplicate Fusion Subsystem (DFS) supports the merging of duplicate

record pairs by taking the value from the attributes having the highest number of

occurrences. It calculates occurrences of all values of an attribute from all relevant

duplicate pairs. Records similar to each other participate in this process (duplicate pairs

group) and creates a new record by getting the values of highest occurrence from each

duplicate pair group.

3.16. DFS Algorithms

Following three duplicate fusion algorithms are developed for the merging of duplicates

and filling of missing values. These three options are integrated into the Duplicate Fusion

Subsystem (DFS).

 SimFiller

o Similarity-based missing values filling algorithm is developed to fill the

missing values of any dataset.

 DuDeFiller

o Duplicate detection based missing values filling algorithm is also developed

to fill the missing values of any dataset.

 DuDeFuse

o Duplicate detection and fusion algorithm are developed to fuse the duplicate

values of any dataset.

48

3.17. SimFiller

SimFiller is similarity-based missing values filling algorithm which runs independently on

its own to fill the missing values of a dataset because it is developed during the first iteration.

This algorithm directly accepts the input dataset after Pre-Processing Subsystem (PPS),

produces the pairs of similar records, filters them based on similarity threshold, check each pair

to verify that at least one record’s attribute contains a null value then fills the missing values

within each pair by taking the relevant not null value.

SimFiller technique is useful for data preprocessing to fix the inconsistencies in the dataset

related to missing values. Quality of the dataset is increased after passing it from this data

cleansing option.

Data passes through flowing steps during the cleansing with the SimFiller algorithm:

 Step1: Create pairs of similar data

 Step2: Select each pair and allocate it calculated a similarity value

 Step3: Save each pair having at least one non-null attribute’s value

 Step4: Select a pair of highest similarity for each attribute’s null value after matching

pairs with similarity threshold and with each other.

 Step5: Replace all null values of attributes within a selected pair

3.18. Execution of SimFiller

SimFiller supports the merging of highest similar record pairs just to fill the missing values

of the records’ attributes. During the merging missing values of the records are filled and

nothing is deleted from the dataset. This technique is useful for data preprocessing to fix the

inconsistencies in the dataset related to missing values. Quality of the dataset is increased after

passing it from this data cleansing option.

This algorithm takes the input dataset and passes it through the five steps process and

generates the cleaned output dataset. Sample dataset containing missing values is considered

to fill the missing values using this algorithm as shown in Table 1.

49

Similarity threshold is fixed at 0.75 for this sample execution and demonstrates that all the

records having a similarity greater than 0.75 would be considered for filling the missing values

of the sample dataset.

 Considered sample dataset contains ten records (tuples) represented as T1 … T10 and five

attributes represented as A1… A5. After the execution of the first step of the algorithm on the

sample dataset, similar pairs are generated and represented as Sm = (Tn, To). Where m

represents the number allocated to each record pair and n and o represent the record number

i.e. T1 … T10

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 * T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 * T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 * * T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 1. Sample Dataset (SimFiller)

1) Consider 1st missing value i.e. T2A2 to fill it with SimFiller

 Step1: Create pairs of similar data

o Four pairs are created for T2:

 S1(T2, T4)

 S2(T2, T6)

 S3(T2, T9)

 S4(T2, T10)

 Step2: Select each pair and allocate it calculated a similarity value

o S1(T2, T4) = 0.82

o S2(T2, T6) = 0.84

50

o S3(T2, T9) = 0.80

o S4(T2, T10) = 0.75

 Step3: Save each pair having at least one non-null attribute’s value

o S2(T2, T6) omitted because T6A2 is null.

o Remaining pairs:

 S1(T2, T4) = 0.82

 S3(T2, T9) = 0.80

 S4(T2, T10) = 0.75

 Step4: Select a pair of highest similarity for each attribute’s null value after matching

pairs with similarity threshold and with each other

o S3(T2, T9) omitted because the similarity of S1(T2, T4) > S3(T2, T9)

o S4(T2, T10) is also omitted because the similarity of S1(T2, T4) > S4(T2, T10)

o Remaining pairs:

 S1(T2, T4) = 0.82

 Step5: Replace all null values of attributes within a selected pair

o T2A2 = T4A2

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T4A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 * T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 * * T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 2. Updated Sample Dataset (SimFiller) After Filling T2A2

Updated sample dataset (SimFiller) after filling T2A2 is shown in Table 2 where T2A2 is

replaced with T4A2 to fill the missing value of T2A2.

51

2) Next, consider 2nd missing value i.e. T4A4 to fill it with SimFiller

 Step1: Create pairs of similar data

o Two pairs are created for T4

 S1(T4, T5)

 S2(T4, T7)

 Step2: Select each pair and allocate it calculated a similarity value

o S1(T4, T5) = 0.92

o S2(T4, T7) = 0.87

 Step3: Save each pair having at least one non-null attribute’s value

o No pair omitted

o Remaining pairs:

 S1(T4, T5) = 0.92

 S2(T4, T7) = 0.87

 Step4: Select a pair of highest similarity for each attribute’s null value after

matching pairs with similarity threshold and with each other

o S2(T4, T7) omitted because the similarity of S1(T4, T5) > S2(T4, T7)

o Remaining pairs:

 S1(T4, T5) = 0.92

 Step5: Replace all null values of attributes within a selected pair

o There is only one value in pair i.e. T4A4 so replacing its value

 T4A4 = T5A4

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T4 A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 T5A4 T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 * * T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 3. Updated Sample Dataset (SimFiller) After Filling T4A4

52

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T4A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 T5A4 T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T9A2 T9A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 T5A3 T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 4. Updated Sample Dataset (SimFiller) After Filling All Missing Values

Remaining missing values are filled with the same mechanism of SimFiller. Following

missing values are filled during the execution of SimFiller:

 T2A2 = T4A2

 T4A4 = T5A4

 T6A2 = T9A2

 T6A3 = T9A3

 T8A3 = T5A3

Updated sample dataset (SimFiller), after filling all possible missing values based on similarity

pairs, is shown in Table 4.

3.19. DuDeFiller

DuDeFiller algorithm is an extended form of a SimFiller algorithm which accepts input

from the Duplicate Detection Subsystem (DDS) as duplicate record pairs and processes them

to fill the missing values of records within pairs. DuDeFiller is duplicate detection based

missing values filling algorithm which filters the input duplicate pairs based on similarity

threshold, check each pair to verify that at least one record’s attribute contains a null value and

fills the missing values within each pair.

53

This algorithm supports the merging of highest similar duplicate record pairs just to fill the

missing values of the records’ attributes. During the merging missing values of the records are

filled and nothing is deleted from the dataset. This technique is useful for data preprocessing

to fix the inconsistencies in the dataset related to missing values. Quality of the dataset is

increased after passing it from this data cleansing option.

DuDeFiller algorithm fills the missing values of the records and saves the similarity of all

duplicate pairs for future calculations. Merge & Fill options developed during the second

iteration of Duplicate Fusion Subsystem (DFS) is based on this algorithm. Step-1 to Step-8 are

executed on the generated duplicate pairs to fill the missing values of the input dataset. The

process continues until are duplicate records are processed and their missing values are filled.

The cleaned data is sent back to the Data Cleansing System (DCS) as an output of the Duplicate

Fusion Subsystem (DFS) for further processing.

Input duplicate records pass through flowing steps during the DuDeFiller algorithm:

54

3.20. Execution of DuDeFiller

DuDeFiller takes the input dataset and passes it through the eight steps process and

generates the cleaned output dataset. Sample dataset containing missing values is considered

to fill the missing values using this algorithm as shown in Table 5.

Similarity threshold is fixed at 0.75 for this sample execution and demonstrates that all the

records having a similarity greater than 0.75 would be considered for filling the missing values

of the sample dataset.

This algorithm supports the merging of duplicate record pairs based on duplicate detection

to fill the missing values of the records’ attributes. During the merging missing values of the

records are filled and nothing is deleted from the dataset.

This technique is useful for data preprocessing to fix the inconsistencies in the dataset

related to missing values. Quality of the dataset is increased and the accuracy of the dataset is

enhanced after passing the dataset from this data cleansing algorithm.

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 * T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 * T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T6A2 T6A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 5. Sample Dataset (DuDeFiller)

Considered sample dataset contains ten records (tuples) represented as T1 … T10 and five

attributes represented as A1… A5.

55

After the execution of the Duplicate Detection Subsystem (DDS) on the sample dataset,

duplicate pairs are generated and represented as Dm = (Tn, To). Where m represents the number

allocated to each record pair and n and o represent the record number i.e. T1 … T10

Dataset shown in Table 5 is given as input to the Pre-Processing Subsystem (PPS) which

is passed to the Duplicate Detection Subsystem (DDS) after the required preprocessing on it.

Duplicate Detection Subsystem (DDS) executes the duplicate detection algorithms on the

preprocessed input dataset and generates the duplicate records pairs given below:

 D1(T1, T2)

 D2(T1, T3)

 D3(T2, T4)

 D4(T2, T5)

 D5(T3, T4)

 D6(T8, T9)

The calculated similarity of each duplicate pair received from the Duplicate Detection

Subsystem (DDS) is assigned to each duplicate pair and is given as input to the DuDeFiller

algorithm for filling the missing values of the dataset.

 D1(T1, T2) = 0.85

 D2(T1, T3) = 0.80

 D3(T2, T4) = 0.65

 D4(T2, T5) = 0.87

 D5(T3, T4) = 0.86

 D6(T8, T9) = 0.80

All duplicate pairs are processed by DuDeFiller algorithm from the Step-1 to Step-8 and

missing values of the dataset are filled from the pair having highest similarity.

Execution of DuDeFiller for D1

 Step-1: Selected pair D1(T1, T2)

 Step-2: 0.85 > 0.75 (passed)

 Step-3: Selected attributes of T1 and T2

56

 Step-4: Assigned mutual similarity for all attributes of T1 and T2 = 0 as not already

saved

 Step-5: Attribute A2 for T2 is null (passed)

 Step-6: (T2A2 similarity) 0 >! 0.85 (Pair similarity)

 Step-7: T2A2 = T1A2

 Step-8: T2A2 similarity = 0.85

Sample dataset is updated after the execution of DuDeFiller for the pair D1 as shown in Table

6 where null value T2A2 is filled with T1A2.

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T1A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 * T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T6A2 T6A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 6. Updated Sample Dataset (DuDeFiller) After Processing of D1

Execution of DuDeFiller for D2

 Step-1: Selected pair D2(T1, T3)

 Step-2: 0.80 > 0.75 (passed)

 Step-3: Selected attributes of T1 and T3

 Step-4: Assigned mutual similarity for all attributes of T1 and T3 = 0 as not already

saved

 Step-5: None of the attributes is null for T1 and T3 (failed)

DuDeFiller algorithm exists from Step-5 for D2 as none of the attributes for T1 and T3 has a

null value and sample dataset is not updated.

57

Execution of DuDeFiller for D3

 Step-1: Selected pair D3(T2, T4)

 Step-2: 0.65 > 0.75 (failed)

DuDeFiller algorithm exits from Step-2 for D3 as pair similarity is less than the similarity

threshold and sample dataset is not updated.

Execution of DuDeFiller for D4

 Step-1: Selected pair D4(T2, T5)

 Step-2: 0.87 > 0.75 (passed)

 Step-3: Selected attributes of T2 and T5

 Step-4: Assigned mutual similarity for all attributes of T5 = 0 but not for and T2 as it is

already saved as T2A2 similarity = 0.85

 Step-5: Attribute A2 for T2 is initially null (passed)

 Step-6: (T2A2 similarity) 0.85 >! 0.87 (Pair similarity)

 Step-7: T2A2 = T5A2 (again updated)

 Step-8: T2A2 similarity = 0.87 (again updated)

Sample dataset is again updated after the execution of DuDeFiller for the pair D4 as shown

in Table 7 where T2A2 is filled with T5A2.

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T5A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 * T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T6A2 T6A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 7. Updated Sample Dataset (DuDeFiller) After Processing of D4

58

Execution of DuDeFiller for D5

 Step-1: Selected pair D5(T3, T4)

 Step-2: 0.86 > 0.75 (passed)

 Step-3: Selected attributes of T3 and T4

 Step-4: Assigned mutual similarity for all attributes of T3 and T4 = 0 as not already

saved

 Step-5: Attribute A4 for T4 is null (passed)

 Step-6: (T4A4 similarity) 0 >! 0.86 (Pair similarity)

 Step-7: T4A4 = T3A4

 Step-8: T4A4 similarity = 0.86

Sample dataset is again updated after the execution of DuDeFiller for the pair D5 as shown

in Table 8 where null value T4A4 is filled with T3A4.

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T5A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 T3A4 T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T6A2 T6A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 * T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 8. Updated Sample Dataset (DuDeFiller) After Processing of D5

Execution of DuDeFiller for D6

 Step-1: Selected pair D6(T8, T9)

 Step-2: 0.80 > 0.75 (passed)

 Step-3: Selected attributes of T8 and T9

59

 Step-4: Assigned mutual similarity for all attributes of T8 and T9 = 0 as not already

saved

 Step-5: Attribute A3 for T8 is null (passed)

 Step-6: (T8A3 similarity) 0 >! 0.80 (Pair similarity)

 Step-7: T8A3 = T9A3

 Step-8: T8A3 similarity = 0.80

Sample dataset is again updated after the execution of DuDeFiller for the pair D6 as shown

in Table 9 where null value T8A3 is filled with T9A3.

 A1 A2 A3 A4 A5

T1 T1A1 T1A2 T1A3 T1A4 T1A5

T2 T2A1 T5A2 T2A3 T2A4 T2A5

T3 T3A1 T3A2 T3A3 T3A4 T3A5

T4 T4A1 T4A2 T4A3 T3A4 T4A5

T5 T5A1 T5A2 T5A3 T5A4 T5A5

T6 T6A1 T6A2 T6A3 T6A4 T6A5

T7 T7A1 T7A2 T7A3 T7A4 T7A5

T8 T8A1 T8A2 T9A3 T8A4 T8A5

T9 T9A1 T9A2 T9A3 T9A4 T9A5

T10 T10A1 T10A2 T10A3 T10A4 T10A5

Table 9. Updated Sample Dataset (DuDeFiller) After Processing of D6

DuDeFiller algorithm exists after the execution of the last duplicate pair and tries to fill all

the missing values found in the input duplicate pairs.

3.21. DuDeFuse

DuDeFuse is duplicate detection and fusion algorithm which accepts input from the

Duplicate Detection Subsystem as duplicate record pairs. DuDeFuse calculates the similarity

and occurrence of each possible value of an attribute for each of the records within the duplicate

pair. This algorithm extracts each record’s every attribute’s value having maximum similarity

sum and the value of having maximum occurrence.

60

Input duplicate records pass through flowing steps during the DuDeFuse algorithm:

Duplicate merging is implemented based on the input provided by the user for the duplicate

fusion options. This algorithm supports the Maximum Similarity Sum and Maximum

Occurrences options of the duplicate fusion to merge the duplicate records.

3.22. Post-Operation Subsystem (POS)

Post-Operation Subsystem (POS) deals with the activities executed to create the output file

after performing a cleansing task on it during the Duplicate Fusion Subsystem (DFS). DCS

passes the output of the Data Fusion Subsystem (DFS) to the Post-Operation Subsystem (POS)

in the form of fused duplicates which is further processed and written to the file for the user.

61

Post-Operation Subsystem (POS) is further divided into the following four main modules

as shown in Fig. 14.

 Create an output file

o Create a CSV file (having .csv extension) with a proper name derived from

the input file and this file is created in a similar directory from where the

data was imported.

 Write Attributes names

o Attributes names those were extracted from the input file in the Pre-

Processing Subsystem are written in the output file according to the CSV

format.

 Write Fused/Cleaned records

o Fused or Cleaned records those were received from the Duplicate Fusion

Subsystem based on the selected user operation are written one by one into

the output file according to the CSV format.

 Open-File

o After writing the file in the system directory it is opened for the user.

The output file is created by the POS to store the output of the whole process carried out

from the Pre-Processing Subsystem (PPS) to the Post-Operation Subsystem (POS) and it

contains the following information:

 Attributes header

 Cleaned records after performing one of the below operations

o Filling missing values

o Fusing duplicate records

Data Cleansing System (DCS) is developed in two iterations by applying Solo Iterative

Process (SIP). During the first iteration, basic functionalities are implemented to create a

preliminary end to end system. During the second iteration, advanced functionalities are added

62

to the system by extending the existing developed functionalities. Process flow details of each

submodule with respect to iteration are discussed in the next sections.

Fig. 14. Post-Operation Subsystem (POS)

3.23. POS Flowchart

The sequence of steps performed by the developed Post-Operation Subsystem (POS) is

shown in Fig. 15. POS is developed completely in the single iteration because it is just related

to file writing and post-processing functionality.

Details of the steps performed by the developed subsystem are given below:

 Create an output file

 Read cleaned data

 Check no of cleaned records

 Write attributes if no of cleaned records > 0

 Select each cleaned record one by one

 Write each selected cleaned record to the created file

 Save the output file

 Open the output file after writing all cleaned records

63

F
ig

.
1
5
.
P

o
st

-O
p
er

at
io

n
 S

u
b
sy

st
em

 (
P

O
S

)
F

lo
w

ch
ar

t

64

3.24. Operation of Data Cleansing System

A data quality improvement system, named as Data Cleansing System (DCS) is based on

duplicate detection mechanism during which record having some similarities (duplication) with

each other are extracted in the form of pairs named as duplicate pairs. The extracted duplicate

pairs are utilized to take the duplicate merging decisions by the system. Moreover, this system

also utilizes these duplicates pairs to fill the missing values within the pairs. Data Cleansing

System (DCS) provides the following four major functions related to data cleansing:

 Import and Preprocess (Pre-Processing Subsystem) / (PPS)

 Find Duplicates (Duplicate Detection Subsystem) / (DDS)

 Fill Missing Values (Duplicate Fusion Subsystem) / (DFS)

 Fuse Duplicates (Duplicate Fusion Subsystem) / (DFS)

Following are the instructions for the user to efficiently operate the DCS.

1) Import and Preprocess (Pre-Processing Subsystem) / (PPS)

Pre-Processing Subsystem deals with the preliminary activities executed on the input

file before performing any data cleansing task on it. Following user interface is created with

“Import and Preprocess (PPS)” button, as shown in Fig. 16, to select and load the CSV file

in the subsystem.

Fig. 16. Data Cleansing System (Screen)

65

CSV separator selection is customized so that user can select the dataset’s CSV

separator either “,” or “;” as shown in Fig, 17.

Fig. 17. CSV Separator Selection (PPS)

On clicking the “Import and Preprocess (PPS)” button, PPS asks the user to select and

upload the raw dataset CSV file into the subsystem as shown in Fig. 18.

Fig. 18. Select and Upload File (PPS)

The user selects and uploads the file. After successful loading, PPS reads the input

dataset from CSV file, extracts the attribute list from it and reads data for all the extracted

attributes of the file.

PPS shows the instructions to the users which attributes are recommended to select and

which are not recommended to select as shown in Fig. 19.

66

Fig. 19. Instructions to Select Attributes (PPS)

The subsystem asks the user to select the required attributes from the extracted list of

attributes. Initially, all attributes are selected by the subsystem as shown in Fig. 20.

Fig. 20. Attributes Selection (PPS)

The selected attributes are used to extract the required data from the dataset which is

returned to the main system for further processing. PPS enables the “Find Duplicates

(DDS)” button, “Fill Missing Values (DFS)” button and “Fuse Duplicates (DFS)” button

67

after successful selection of attributes. It also loads the selected attributes in the selected

attributes box given in Fig. 21.

Fig. 21. Selected Attributes (PPS)

2) Find Duplicates (Duplicate Detection Subsystem) / (DDS)

After clicking the “Find Duplicates (DDS)” button on the screen shown in Fig. 22, the

system takes the user to the Duplicate Detection Subsystem.

Fig. 22. Selected Attributes (DDS)

68

Duplicate Detection Subsystem asks the user to pick the algorithm for duplicate

detection and generates possible duplicate pairs after comparing records of the given

dataset. Duplicate Detection Subsystem (DDS) interface is shown in Fig. 23.

Fig. 23. Duplicate Detection Subsystem

Similarity threshold selection is customized so that user can select the appropriate

threshold from the options shown in Fig. 24.

Fig. 24. Similarity Threshold Selection (DDS)

69

Dataset identifier is customized so that user can select the appropriate identifier from

the list of attributes extracted from the imported data as shown in Fig. 25.

Fig. 25. Dataset Identifier Selection (DDS)

Duplicate detection algorithm selection is customized so that the user can select the

appropriate duplicate detection algorithm from the options shown in Fig. 26.

Fig. 26. Duplicate Detection Algorithm Selection (DDS)

Similarity calculation algorithm selection is customized so that the user can select the

appropriate similarity calculation algorithm from the options given in the Fig.27.

Fig. 27. Similarity Calculation Algorithm Selection (DDS)

After clicking the “Find Duplicates (DDS)” button, the subsystem starts finding the

duplicate records from the input dataset as shown in Fig. 28.

70

Fig. 28. DDS Processing

A success message is displayed after finding and writing the duplicate records from the

input data set to the output file as shown in Fig. 29 and “Open Generated File (DDS)”

button is also enabled to open the generated output file of duplicate records.

Fig. 29. DDS Processing Completed

71

3) Fill Missing Values (Duplicate Fusion Subsystem) / (DFS)

After clicking the “Fill Missing Values (DFS)” button on the screen shown in Fig. 30,

the system takes the user to the DFS for Missing Values (DFS-MV).

Fig. 30. Selected Attributes (DFS - MV)

Duplicate Fusion Subsystem for Missing Values (DFS-MV) supports the merging of

highest similar duplicate record pairs just to fill the missing values of the records’ attributes

and nothing is deleted from the dataset. DFS-MV interface is shown in Fig. 31.

Fig. 31. Duplicate Fusion Subsystem for Missing Values (DFS-MV)

72

Similarity threshold selection is customized for the Duplicate Fusion Subsystem for

Missing Values (DFS-MV) so that user can select the appropriate threshold from the

options given in Fig. 32.

Fig. 32. Similarity Threshold Selection (DFS-MV)

Dataset identifier is customized for the Duplicate Fusion Subsystem for Missing Values

(DFS-MV) so that user can select the appropriate identifier from the list of attributes

extracted from the imported data as shown in Fig. 33.

Fig. 33. Dataset Identifier Selection (DFS-MV)

Missing value representation selection is customized for the Duplicate Fusion

Subsystem for Missing Values (DFS-MV) so that user can select the “?” or “null” as the

missing value representation according to the input data as shown in Fig. 34.

73

Fig. 34. Missing Value Representation Selection (DFS-MV)

Duplicate detection algorithm selection is customized for the Duplicate Fusion

Subsystem for Missing Values (DFS-MV) so that user can select the appropriate duplicate

detection algorithm from the options given in Fig. 35.

Fig. 35. Duplicate Detection Algorithm Selection (DFS-MV)

Similarity calculation algorithm selection is customized for the Duplicate Fusion

Subsystem for Missing Values (DFS-MV) so that user can select the appropriate similarity

calculation algorithm from the options given in Fig. 36.

Fig. 36. Similarity Calculation Algorithm Selection (DFS-MV)

After clicking the “Fill Missing Values (DFS)” button, subsystem starts filling the

missing values of the input dataset by merging of highest similar duplicate record pairs just

to fill the missing values of the records’ attributes and nothing is deleted from the dataset

as shown in the Fig. 37.

74

Fig. 37. DFS-MV Processing

A success message is displayed after filling the missing values and writing the cleaned

records of the input data set to the output file as shown in Fig. 38. “Open Generated File

(DFS)” button is also enabled to open and show the generated output file with the

information of cleaned records.

Fig. 38. DFS-MV Processing Completed

75

4) Fuse Duplicates (Duplicate Fusion Subsystem) / (DFS)

After clicking the “Fuse Duplicates (DFS)” on the following screen, the system takes

the user to the Fuse Duplicate Values (Duplicate Fusion Subsystem):

Fig. 39. Selected Attributes (DFS)

Fuse Duplicate Values (DFS) extracts duplicate pairs, analyzes them to merge them

into a single record. During the data fusion, duplicate records are merged to create a new

and more accurate and useful record as a result. Duplicate fusion technique not only

resolves the unintended duplicates issue but also helps to merge the deliberately created

duplicates from the parallel sensors setup. This technique is widely used for the fusion of

multiple inputs received from the multiple sensors installed to record a similar event.

Duplicate Fusion Subsystem (DFS) enabled fusion options are based on the fusion

operations calculated during the first iteration. After the selection of fusion options, all

records are selected one by one and data cleansing is performed according to the values

saved for each attribute of the selected record. Duplicate Fusion Subsystem (DFS) supports

the “Maximum Similarity Sum” and “Maximum Occurrences” data fusion options.

Runtime selection of one of these options is given to the user and the default option is

executed on the system if nothing received from the user.

Fuse Duplicate Values interface given in Fig. 40 is shown for the user after clicking the

“Fuse Duplicates (DFS)” button on the DCS screen is shown after preprocessing.

76

Fig. 40. Duplicate Fusion Subsystem (DFS)

Similarity threshold selection is customized for the Duplicate Fusion Subsystem (DFS)

so that user can select the appropriate threshold from the options given in Fig. 41.

Fig. 41. Similarity Threshold Selection (DFS)

Dataset identifier is customized for the Duplicate Fusion Subsystem (DFS) so that user

can select the appropriate identifier from the list of attributes as shown in Fig. 42. These

attributes are extracted from the input dataset during the preprocessing step.

77

Fig. 42. Dataset Identifier Selection (DFS)

Missing value representation selection is customized for the Duplicate Fusion

Subsystem (DFS) so that user can select the “?” or “null” as the missing value

representation according to the input data as shown in Fig. 43.

Fig. 43. Missing Value Representation Selection (DFS)

Duplicate detection algorithm selection is customized for the Duplicate Fusion

Subsystem (DFS) so that user can select the appropriate duplicate detection algorithm from

the options given in Fig. 44.

Fig. 44. Duplicate Detection Algorithm Selection (DFS)

Similarity calculation algorithm selection is customized for the Duplicate Fusion

Subsystem (DFS) so that user can select the appropriate similarity calculation algorithm

from the options given in Fig. 45.

78

Fig. 45. Similarity Calculation Algorithm Selection (DFS)

Duplicate fusion algorithm selection is customized for the Duplicate Fusion Subsystem

(DFS) so that user can select the suitable algorithm from the options given in Fig. 46.

Fig. 46. Duplicate Fusion Algorithm Selection (DFS)

After clicking the “Fuse Duplicates (DFS)” button, the subsystem starts fusing the

missing values of the input dataset as shown in Fig. 47.

Fig. 47. DFS Processing

If the user clicks the close button during the processing of DFS, the message is

displayed asking the user to wait for the processing as shown in Fig. 48.

79

Fig. 48. Closing DFS Processing

A success message is displayed after fusing the duplicate values and writing the cleaned

records of the input data set to the output file as shown in Fig. 49. “Open Generated File

(DFS)” button is enabled to open the generated output file with the cleaned records.

Fig. 49. DFS Processing Completed

80

4. Chapter 4

EXPERIMENTAL SETUP FOR VALIDATION

This chapter comprises the description of experiments setup used to get the results for the

proposed algorithms in the research. The setup was created to validate the duplicate detection

results, missing values filling results and duplicate fusion results for the correctness and

endorsement of the contribution made by this research in the body of knowledge.

Data Cleansing System (DCS) is built on “Duplicate Detection toolkit (DuDe)” [7] and this

toolkit contains the collection of duplicate detection algorithms written in Java programming

language. DuDe was developed and tested by German data scientists over a period of time and

continuous improvements were made to improve its quality. The quality and the open source

license of this DuDe kit attracted us to get the benefits from it.

This work from this base point of “Duplicate Detection toolkit (DuDe)” [7] because it was

already developed and tested for its performance and as per software engineering principle, the

already done work was reused and reinvention of the wheel [92] was avoided. As per the

“Quality in, quality out” [93] principle, the developed system is of high quality because the

base and the input for the building block is of high quality.

4.1. Duplicate Detection (Validation)

Duplicate Detection Subsystem (DDS) integrates the “Duplicate Detection toolkit (DuDe)”

[7] to find the duplicates from the given input data. Data Cleansing System (DCS) takes the

data as input and preprocess it through the Pre-Processing Subsystem (PPS). DCS then gives

this preprocessed data to DDS as input and duplicates are generated.

To verify the process of Duplicate Detection Subsystem, similar datasets were selected

those were selected by the DuDe kit and following two algorithms were selected for the testing

purpose:

1. “Naive Duplicate Detection” [7, 57]

2. “Levenshtein Distance Function” [7, 65]

81

4.2. Duplicate Fusion (Validation)

Duplicate fusion technique not only resolves the unintended duplicates issue but also helps

to merge the deliberately created duplicates from the parallel sensors setup [49-52, 76, 77].

This technique is widely used for the fusion of multiple inputs received from the multiple

sensors installed to record a similar event [50, 78].

Literature of data science tells that the improvements in the dataset quality, owing to

effective data cleansing, can be measured with the classification accuracy. Classification

accuracy is measured before and after the data cleansing process and increase in the

classification accuracy states the effectiveness of the data cleansing process. Considering this

verification technique, different data cleansing techniques are chosen to check their

effectiveness with the help of classification accuracy improvements.

“Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are chosen from the

“UCI machine learning repository” [94] to test different data cleansing techniques and compare

them with the proposed techniques. RapidMiner Studio [5], a well-known data mining tool, is

selected to check the different data cleansing techniques. RapidMiner is developed in Java

language and has extensive usage in the data science industry and scientific community.

RapidMiner’s Replace Missing Value Operator (RM-RMVO) [5] is selected to fill the missing

values of the dataset.

Duplicate Fusion Subsystem (DFS) performs one of the below three operations on the input

duplicate pairs to perform the data cleansing as per the given user input. Runtime selection of

one of these options is given to the user and the default option is executed on the system if

nothing received from the user. Duplicate Fusion Subsystem (DFS) supports the following

three types of data fusion options:

 Merge & Fill (SimFiller, DuDeFiller)

 Maximum Similarity Sum (DuDeFuse)

 Maximum Occurrences (DuDeFuse)

SimFiller and DuDeFiller algorithms were selected from the developed algorithms to test

the DCS for validation. Algorithm selection is customized and both DuDeFiller and DuDeFuse

algorithms work in the DCS.

82

1) SimFiller

SimFiller is similarity-based missing values filling algorithm which runs independently

on its own to fill the missing values of a dataset. This algorithm directly accepts the input

dataset after Pre-Processing Subsystem (PPS), produces the pairs of similar records, filters

them based on similarity threshold, check each pair to verify that at least one record’s

attribute contains a null value then fills the missing values within each pair by taking the

relevant not null value.

SimFiller’s technique is useful for data preprocessing to fix the inconsistencies in the

dataset related to missing values. Quality of the dataset is increased after passing it from this

data cleansing option and to verify this statement “Audiology” [94] dataset is chosen from

the “UCI machine learning repository” [94]. This dataset comprises 26 testing and 200

training records and has 71 attributes including and class label and identifier.

Replicas of “Audiology” dataset are generated filled for the missing values using a

specific value, zero value, maximum value, minimum value, the average value with the

RapidMiner Studio [5] Replace Missing Value Operator (RMVO) and one replica is created

after filing missing values with the SimFiller algorithm. Classification accuracy results of

“Decision Tree”, “Naive Bayes”, “Deep Learning” and “Random Forest” are generated from

each replica of “Audiology” dataset.

2) DuDeFiller / DuDeFuse

“Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are selected

from the “UCI machine learning repository” [94] to test the DuDeFiller/DuDeFuse

algorithm. “Audiology” [94] dataset comprises 26 testing and 200 training records and have

71 attributes including and class label and identifier. “Dresses Attribute Sales” (DASD)

[95] dataset contains 11 attributes excluding class label and identifier and 501 records.

RapidMiner Studio [5], a well-known data mining tool, is selected to check the different

data cleansing techniques. RapidMiner is developed in Java language and has extensive

usage in the data science industry and scientific community. RapidMiner’s Replace Missing

Value Operator (RM-RMVO) [5] options of specific value replacements, zero value

replacements, maximum value replacements, minimum value replacements and the average

value replacements are selected to fill the missing values of the dataset.

83

Replicas of “Audiology” [94] and “Dresses Attribute Sales” (DASD) [95] datasets are

generated filled for the missing values using a specific value, zero value, maximum value,

minimum value, the average value with the RapidMiner Studio [5] Replace Missing Value

Operator (RMVO) and one replica is created after filing missing values with SimFiller

algorithm. Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep

Learning” and “Random Forest” are generated from each replica of “Audiology” dataset.

10 folds’ cross validation based stratified sampling [96] is used to avoid the biases of

dataset towards a specific class label in the classification results. Cross validation [96] splits

the dataset into x number of divisions and considers x-1 divisions for training and 1 division

for testing in an iterative way until each division is used one time for testing. The accuracy

of the dataset is logged during each iteration and complete accuracy is obtainable as average

and as accuracy range from least to an extreme value.

Some data scientists state that the accuracy can never be the suitable measurement to

verify the efficiency of any classifier because it overlooks the attention of false negative

and false positive cases. These considerations false negative and false positive cases are

made by the f-measure [97] which defines the correctness of classifier for a binomial class

label dataset. “Dresses Attribute Sales dataset” (DASD) [95] has a binomial class label,

therefore, f-measure of this dataset is also calculated to check the improvements in the

classification correctness.

84

5. Chapter 5

RESULTS AND EVALUATION

Experiments are conducted after completing the evaluation setup and the achieved results

are presented and discussed in this chapter. This chapter comprises the duplicate detection

results, missing values filling results and duplicate fusion results of experiments carried out for

the proposed system. Results show the correctness and validation of the contribution made by

the research in the body of knowledge.

5.1. Results

Following four experimental results are discussed in this chapter for the algorithm proposed

by this research in the previous chapters.

 SimFiller Classification Results for “Audiology” Dataset

o Classification accuracy results of Decision Tree, “Naive Bayes”, “Deep

Learning” and “Random Forest” for the “Audiology” dataset filled with the

SimFiller algorithm is presented in this section.

 DuDeFiller Classification Results for “Audiology” Dataset

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep

Learning” and “Random Forest” for the “Audiology” dataset filled with the

DuDeFiller algorithm is presented in this section.

 DuDeFiller Classification Results for “Dresses Attribute Sales Dataset” (DASD)

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep

Learning”, “Random Forest” and “Logistic Regression” for the “Dresses

Attribute Sales dataset” (DASD) filled with the DuDeFiller algorithm is

presented in this section.

 DuDeFiller F-measure Results for “Dresses Attribute Sales Dataset” (DASD)

o Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep

Learning”, “Random Forest” and “Logistic Regression” for the “Dresses

Attribute Sales dataset” (DASD) filled with the DuDeFiller algorithm is

presented in this section.

85

5.2. SimFiller Classification Results for Audiology Dataset

Classification accuracy results of following classifiers for the “Audiology” dataset filled

with six different algorithms are presented in this section:

 Decision Tree

 Naive Bayes

 Deep Learning

 Random Forest

Six algorithms used for missing values replacements are Average, Minimum, Maximum,

Zero, Specific Value and SimFiller.

1) Decision Tree

Classification accuracy of the “Decision Tree” classifier for “Audiology” dataset, filled

for missing values with six different algorithms, is shown in Table 10 and Fig. 50.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 15.38% for Average as a replacement, 76.92% for Minimum as a replacement,

76.92% for Maximum as a replacement, 76.92% for Zero as a replacement, 15.38% for

Specific Value as a replacement and 84.62% for replacement with the SimFiller algorithm.

 Classification Accuracy Classification Error

Average 15.38% 84.62%

Minimum 76.92% 23.08%

Maximum 76.92% 23.08%

Zero 76.92% 23.08%

Value 15.38% 84.62%

SimFiller 84.62% 15.38%

Table 10. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller)

86

Fig. 50. The accuracy of the “Decision Tree” for Audiology Dataset (SimFiller)

2) Naive Bayes

Classification accuracy of the “Naive Bayes” classifier for “Audiology” dataset, filled

for missing values with six different algorithms, is shown in Table 11 and Fig. 51.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 61.54% for Average as a replacement, 69.23% for Minimum as a replacement,

69.23% for Maximum as a replacement, 69.23% for Zero as a replacement, 65.38% for

Specific Value as a replacement and 80.77% for replacement with the SimFiller algorithm.

 Classification Accuracy Classification Error

Average 61.54% 38.46%

Minimum 69.23% 30.77%

Maximum 69.23% 30.77%

Zero 69.23% 30.77%

Value 65.38% 34.62%

SimFiller 80.77% 19.23%

Table 11. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller)

87

Fig. 51. The accuracy of “Naive Bayes” for Audiology Dataset (SimFiller)

3) Deep Learning

Classification accuracy of the “Deep Learning” classifier for “Audiology” dataset,

filled for missing values with six different algorithms, is shown in Table 12 and Fig. 52.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 76.92% for Average as a replacement, 73.08% for Minimum as a replacement,

73.08% for Maximum as a replacement, 73.08% for Zero as a replacement, 61.54% for

Specific Value as a replacement and 88.46% for replacement with the SimFiller algorithm.

 Classification Accuracy Classification Error

Average 76.92% 23.08%

Minimum 73.08% 26.92%

Maximum 73.08% 26.92%

Zero 73.08% 26.92%

Value 61.54% 38.46%

SimFiller 88.46% 11.54%

Table 12. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller)

88

Fig. 52. The accuracy of “Deep Learning” for Audiology Dataset (SimFiller)

4) Random Forest

Classification accuracy of the “Random Forest” classifier for “Audiology” dataset,

filled for missing values with six different algorithms, is shown in Table 13 and Fig. 53.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 53.85% for Average as a replacement, 50.00% for Minimum as a replacement,

50.00% for Maximum as a replacement, 50.00% for Zero as a replacement, 50.00% for

Specific Value as a replacement and 61.54% for replacement with the SimFiller algorithm.

 Classification Accuracy Classification Error

Average 53.85% 46.15%

Minimum 50.00% 50.00%

Maximum 50.00% 50.00%

Zero 50.00% 50.00%

Value 50.00% 50.00%

SimFiller 61.54% 38.46%

Table 13. The accuracy of “Random Forest” for Audiology Dataset (SimFiller)

89

Fig. 53. The accuracy of “Random Forest” for Audiology Dataset (SimFiller)

5.3. DuDeFiller Classification Results for Audiology Dataset

To test the DuDeFiller for the Audiology dataset, the classification accuracy of the

following classifiers for the “Audiology” dataset is calculated. Multiple copies of Audiology

dataset are created those were filled with six different missing values filling algorithms:

 Decision Tree

 Naive Bayes

 Deep Learning

 Random Forest

Six algorithms used for missing values replacements are:

 Average

 Minimum

 Maximum

 Zero

 Specific Value

 DuDeFiller

90

1) Decision Tree

Classification accuracy of the “Decision Tree” classifier for “Audiology” dataset, filled

for missing values with six different algorithms, is shown in Table 14 and Fig. 54.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 67.26% for Average as a replacement, 68.14% for Minimum as a replacement,

68.14% for Maximum as a replacement, 68.14% for Zero as a replacement, 68.14% for

Specific Value as a replacement and 69.03% for replacement with the DuDeFiller

algorithm.

 Classification Accuracy Classification Error

Average
67.41% +/- 21.99%

(micro average: 67.26%)

32.59% +/- 21.99%

(micro average: 32.74%)

Minimum
68.28% +/- 22.23%

(micro average: 68.14%)

31.72% +/- 22.23%

(micro average: 31.86%)

Maximum
68.28% +/- 22.23%

(micro average: 68.14%)

31.72% +/- 22.23%

(micro average: 31.86%)

Zero
68.28% +/- 22.23%

(micro average: 68.14%)

31.72% +/- 22.23%

(micro average: 31.86%)

Value
68.28% +/- 22.23%

(micro average: 68.14%)

31.72% +/- 22.23%

(micro average: 31.86%)

DuDeFiller
69.17% +/- 22.65%

(micro average: 69.03%)

30.83% +/- 22.65%

(micro average: 30.97%)

Table 14. The accuracy of the “Decision Tree” for Audiology Dataset (DuDeFiller)

Fig. 54. The accuracy of the “Decision Tree” for Audiology Dataset (DuDeFiller)

91

2) Naive Bayes

Classification accuracy of the “Naive Bayes” classifier for “Audiology” dataset, filled

for missing values with six different algorithms, is shown in Table 15 and Fig. 55.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 80.97% for Average as a replacement, 80.97% for Minimum as a replacement,

80.97% for Maximum as a replacement, 80.97% for Zero as a replacement, 80.53% for

Specific Value as a replacement and 80.97% for replacement with the DuDeFiller

algorithm.

 Classification Accuracy Classification Error

Average
80.93% +/- 6.68%

(micro average: 80.97%)

19.07% +/- 6.68%

(micro average: 19.03%)

Minimum
80.95% +/- 6.36%

(micro average: 80.97%)

19.05% +/- 6.08%

(micro average: 19.03%)

Maximum
80.95% +/- 6.36%

(micro average: 80.97%)

19.05% +/- 6.08%

(micro average: 19.03%)

Zero
80.95% +/- 6.36%

(micro average: 80.97%)

19.05% +/- 6.08%

(micro average: 19.03%)

Value
80.49% +/- 6.11%

(micro average: 80.53%)

19.51% +/- 6.11%

(micro average: 19.47%)

DuDeFiller
81.01% +/- 5.78%

(micro average: 80.97%)

18.99% +/- 5.78%

(micro average: 19.03%)

Table 15. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller)

Fig. 55. The accuracy of “Naive Bayes” for Audiology Dataset (DuDeFiller)

92

3) Deep Learning

Classification accuracy of the “Deep Learning” classifier for “Audiology” dataset,

filled for missing values with six different algorithms, is shown in Table 16 and Fig. 56.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 74.34% for Average as a replacement, 70.80% for Minimum as a replacement,

70.80% for Maximum as a replacement, 70.80% for Zero as a replacement, 73.45% for

Specific Value as a replacement and 74.78% for replacement with the DuDeFiller

algorithm.

 Classification Accuracy Classification Error

Average
74.27% +/- 7.59%

(micro average: 74.34%)

25.73% +/- 7.59%

(micro average: 25.66%)

Minimum
70.75% +/- 7.04%

(micro average: 70.80%)

29.25% +/- 7.04%

(micro average: 29.20%)

Maximum
70.75% +/- 7.04%

(micro average: 70.80%)

29.25% +/- 7.04%

(micro average: 29.20%)

Zero
70.75% +/- 7.04%

(micro average: 70.80%)

29.25% +/- 7.04%

(micro average: 29.20%)

Value
73.42% +/- 6.93%

(micro average: 73.45%)

26.58% +/- 6.93%

(micro average: 26.55%)

DuDeFiller
74.76% +/- 4.48%

(micro average: 74.78%)

25.24% +/- 4.48%

(micro average: 25.22%)

Table 16. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller)

Fig. 56. The accuracy of “Deep Learning” for Audiology Dataset (DuDeFiller)

93

4) Random Forest

Classification accuracy of the “Random Forest” classifier for “Audiology” dataset,

filled for missing values with six different algorithms, is shown in Table 17 and Fig. 57.

Classification accuracies of all six missing value replacement algorithms, on “Audiology”

dataset, are 71.68% for Average as a replacement, 73.01% for Minimum as a replacement,

73.01% for Maximum as a replacement, 73.01% for Zero as a replacement, 73.01% for

Specific Value as a replacement and 75.22% for replacement with the DuDeFiller

algorithm.

 Classification Accuracy Classification Error

Average
71.66% +/- 5.72%

(micro average: 71.68%)

28.34% +/- 5.72%

(micro average: 28.32%)

Minimum
72.98% +/- 6.24%

(micro average: 73.01%)

27.02% +/- 6.24%

(micro average: 26.99%)

Maximum
72.98% +/- 6.24%

(micro average: 73.01%)

27.02% +/- 6.24%

(micro average: 26.99%)

Zero
72.98% +/- 6.24%

(micro average: 73.01%)

27.02% +/- 6.24%

(micro average: 26.99%)

Value
72.98% +/- 6.24%

(micro average: 73.01%)

27.02% +/- 6.24%

(micro average: 26.99%)

DuDeFiller
75.26% +/- 4.31%

(micro average: 75.22%)

24.74% +/- 4.31%

(micro average: 24.78%)

Table 17. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller)

Fig. 57. The accuracy of “Random Forest” for Audiology Dataset (DuDeFiller)

94

5.4. DuDeFiller Classification Results for Dresses Attribute Sales Dataset (DASD)

DuDeFiller is tested for the classification accuracy results of following classifiers for the

“Dresses Attribute Sales dataset” (DASD). Six copies of DASD filled with six different

algorithms are presented in this section:

 Decision Tree

 Naive Bayes

 Deep Learning

 Random Forest

 Logistic Regression

Six algorithms used for creating the six copies of “Dresses Attribute Sales Dataset”

(DASD) with missing values replacements are:

 Average

o DASD missing values are filled with the average value replacements after

calculating the average value for each attribute’s missing value.

 Minimum

o DASD missing values are filled with the minimum value replacements after

calculating the minimum value for each attribute’s missing value.

 Maximum

o A maximum value is calculated from the completed data and is placed for

all the missing values of that attribute in DASD.

 Zero

o Zero is placed for all the missing values of the DASD.

 Specific Value

o Specific Value is defined for the DASD and is placed for all the missing

values.

 DuDeFiller

o The developed duplicate detection based missing value filling algorithm

calculates the missing value of DASD.

95

1) Decision Tree

Classification accuracy of the “Decision Tree” classifier for “Dresses Attribute Sales

Dataset” (DASD), filled for missing values with six different algorithms, is shown in Table

18 and Fig. 58. Classification accuracies of all six missing value replacement algorithms,

on DASD, are 58.00% for Average as a replacement, 58.00% for Minimum as a

replacement, 58.00% for Maximum as a replacement, 58.00% for Zero as a replacement,

58.00% for Specific Value as a replacement and 58.20% for replacement with the

DuDeFiller algorithm.

 Classification Accuracy Classification Error

Average
58.00% +/- 0.00%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Minimum
58.00% +/- 0.00%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Maximum
58.00% +/- 0.00%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Zero
58.00% +/- 0.00%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Value
58.00% +/- 0.00%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

DuDeFiller
58.20% +/- 0.6%

(micro average: 58.20%)

41.80% +/- 0.60%

(micro average: 41.80%)

Table 18. The accuracy of the “Decision Tree” for DASD (DuDeFiller)

Fig. 58. The accuracy of the “Decision Tree” for DASD (DuDeFiller)

96

2) Naive Bayes

Classification accuracy of the “Naive Bayes” classifier for “Dresses Attribute Sales

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table

19 and Fig. 59. Classification accuracies of all six missing value replacement algorithms,

on DASD, are 58.20% for Average as a replacement, 58.20% for Minimum as a

replacement, 58.20% for Maximum as a replacement, 58.20% for Zero as a replacement,

58.20% for Specific Value as a replacement and 61.20% for replacement with the

DuDeFiller algorithm.

 Classification Accuracy Classification Error

Average
58.20% +/- 8.92%

(micro average: 58.20%)

41.80% +/- 8.92%

(micro average: 41.80%)

Minimum
58.20% +/- 8.92%

(micro average: 58.20%)

41.80% +/- 8.92%

(micro average: 41.80%)

Maximum
58.20% +/- 8.92%

(micro average: 58.20%)

41.80% +/- 8.92%

(micro average: 41.80%)

Zero
58.20% +/- 8.92%

(micro average: 58.20%)

41.80% +/- 8.92%

(micro average: 41.80%)

Value
58.20% +/- 8.92%

(micro average: 58.20%)

41.80% +/- 8.92%

(micro average: 41.80%)

DuDeFiller
61.20% +/- 7.17%

(micro average: 61.20%)

38.80% +/- 7.17%

(micro average: 38.80%)

Table 19. The accuracy of “Naive Bayes” for DASD (DuDeFiller)

Fig. 59. The accuracy of “Naive Bayes” for DASD (DuDeFiller)

97

3) Deep Learning

Classification accuracy of the “Deep Learning” classifier for “Dresses Attribute Sales

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table

20 and Fig. 60. Classification accuracies of all six missing value replacement algorithms,

on DASD, are 60.20% for Average as a replacement, 60.20% for Minimum as a

replacement, 60.20% for Maximum as a replacement, 60.20% for Zero as a replacement,

61.40% for Specific Value as a replacement and 63.80% for replacement with the

DuDeFiller algorithm.

 Classification Accuracy Classification Error

Average
60.20% +/- 6.66%

(micro average: 60.20%)

39.80% +/- 6.66%

(micro average: 39.80%)

Minimum
60.20% +/- 6.66%

(micro average: 60.20%)

39.80% +/- 6.66%

(micro average: 39.80%)

Maximum
60.20% +/- 6.66%

(micro average: 60.20%)

39.80% +/- 6.66%

(micro average: 39.80%)

Zero
60.20% +/- 6.66%

(micro average: 60.20%)

39.80% +/- 6.66%

(micro average: 39.80%)

Value
61.40% +/- 8.49%

(micro average: 61.40%)

38.60% +/- 8.49%

(micro average: 38.60%)

DuDeFiller
63.80% +/- 5.83%

(micro average: 63.80%)

36.20% +/- 5.83%

(micro average: 36.20%)

Table 20. The accuracy of “Deep Learning” for DASD (DuDeFiller)

Fig. 60. The accuracy of “Deep Learning” for DASD (DuDeFiller)

98

4) Random Forest

Classification accuracy of the “Random Forest” classifier for “Dresses Attribute Sales

dataset” (DASD), filled for missing values with six different algorithms, is shown in Table

21 and Fig. 61. Classification accuracies of all six missing value replacement algorithms,

on DASD, are 58.00% for Average as a replacement, 58.00% for Minimum as a

replacement, 58.00% for Maximum as a replacement, 58.00% for Zero as a replacement,

58.00% for Specific Value as a replacement and 58.20% for replacement with the

DuDeFiller algorithm.

 Classification Accuracy Classification Error

Average
58.00% +/- 0.0%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Minimum
58.00% +/- 0.0%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Maximum
58.00% +/- 0.0%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Zero
58.00% +/- 0.0%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

Value
58.00% +/- 0.0%

(micro average: 58.00%)

42.00% +/- 0.00%

(micro average: 42.00%)

DuDeFiller
58.20% +/- 0.6%

(micro average: 58.20%)

41.80% +/- 0.60%

(micro average: 41.80%)

Table 21. The accuracy of “Random Forest” for DASD (DuDeFiller)

Fig. 61. The accuracy of “Random Forest” for DASD (DuDeFiller)

99

5) Logistic Regression

Classification accuracy of the “Logistic Regression” classifier for “Dresses Attribute

Sales dataset” (DASD), filled for missing values with six different algorithms, is shown in

Table 22 and Fig. 62. Classification accuracies of all six missing value replacement

algorithms, on DASD, are 56.40% for Average as a replacement, 56.40% for Minimum as

a replacement, 56.40% for Maximum as a replacement, 56.40% for Zero as a replacement,

56.40% for Specific Value as a replacement and 57.60% for replacement with the

DuDeFiller algorithm.

 Classification Accuracy Classification Error

Average
56.40% +/- 7.26%

(micro average: 56.40%)

43.60% +/- 7.26%

(micro average: 43.60%)

Minimum
56.40% +/- 7.26%

(micro average: 56.40%)

43.60% +/- 7.26%

(micro average: 43.60%)

Maximum
56.40% +/- 7.26%

(micro average: 56.40%)

43.60% +/- 7.26%

(micro average: 43.60%)

Zero
56.40% +/- 7.26%

(micro average: 56.40%)

43.60% +/- 7.26%

(micro average: 43.60%)

Value
56.40% +/- 7.26%

(micro average: 56.40%)

43.60% +/- 7.26%

(micro average: 43.60%)

DuDeFiller
57.60% +/- 7.14%

(micro average: 57.60%)

42.40% +/- 7.14%

(micro average: 42.40%)

Table 22. The accuracy of “Random Forest” for DASD (DuDeFiller)

Fig. 62. The accuracy of “Random Forest” for DASD (DuDeFiller)

100

5.5. DuDeFiller F-measure Results for Dresses Attribute Sales Dataset (DASD)

Six algorithms used for missing values replacements are:

 Average

o DASD missing values are filled with the average value replacements after

calculating the average value for each attribute’s missing value.

 Minimum

o DASD missing values are filled with the minimum value replacements after

calculating the minimum value for each attribute’s missing value.

 Maximum

o A maximum value is calculated from the completed data and is placed for

all the missing values of that attribute in DASD.

 Zero

o Zero is placed for all the missing values of the DASD.

 Specific Value

o Specific Value is defined for the DASD and is placed for all the missing

values.

 DuDeFiller

o The developed duplicate detection based missing value filling algorithm

calculates the missing value of DASD.

Six copies of “Dresses Attribute Sales Dataset” (DASD) are created by filling its missing

values with the six algorithms shown above. F-measure results of following classifiers for the

DASD is presented in this section:

 Decision Tree

 Naive Bayes

 Deep Learning

 Random Forest

 Logistic Regression

101

1) Decision Tree

The f-measure of the “Decision Tree” classifier for “Dresses Attribute Sales Dataset”

(DASD), filled for missing values with six different algorithms, is shown in Table 23 and

Fig. 63. The f-measure of all six missing value replacement algorithms, on DASD, are

73.42% for Average as a replacement, 73.42% for Minimum as a replacement, 73.42% for

Maximum as a replacement, 73.42% for Zero as a replacement, 73.42% for Specific Value

as a replacement and 73.58% for replacement with the DuDeFiller algorithm.

 F-measure

Average
73.42% +/- 0.0%

(micro average: 73.42%) (positive class: 0)

Minimum
73.42% +/- 0.0%

(micro average: 73.42%) (positive class: 0)

Maximum
73.42% +/- 0.0%

(micro average: 73.42%) (positive class: 0)

Zero
73.42% +/- 0.0%

(micro average: 73.42%) (positive class: 0)

Value
73.42% +/- 0.0%

(micro average: 73.42%) (positive class: 0)

DuDeFiller
73.58% +/- 0.47%

(micro average: 73.58%) (positive class: 0)

Table 23. The f-measure of “Decision Tree” for DASD (DuDeFiller)

Fig. 63. The f-measure of “Decision Tree” for DASD (DuDeFiller)

102

2) Naive Bayes

The f-measure of the “Naive Bayes” classifier for “Dresses Attribute Sales Dataset”

(DASD), filled for missing values with six different algorithms, is shown in Table 24 and

Fig. 64. The f-measure of all six missing value replacement algorithms, on DASD, are

66.24% for Average as a replacement, 66.24% for Minimum as a replacement, 66.24% for

Maximum as a replacement, 66.24% for Zero as a replacement, 66.24% for Specific Value

as a replacement and 69.50% for replacement with the DuDeFiller algorithm.

 F-measure

Average
65.79% +/- 8.95%

(micro average: 66.24%) (positive class: 0)

Minimum
65.79% +/- 8.95%

(micro average: 66.24%) (positive class: 0)

Maximum
65.79% +/- 8.95%

(micro average: 66.24%) (positive class: 0)

Zero
65.79% +/- 8.95%

(micro average: 66.24%) (positive class: 0)

Value
65.79% +/- 8.95%

(micro average: 66.24%) (positive class: 0)

DuDeFiller
69.49% +/- 5.65%

(micro average: 69.50%) (positive class: 0)

Table 24. The f-measure of “Naive Bayes” for DASD (DuDeFiller)

Fig. 64. The f-measure of “Naive Bayes” for DASD (DuDeFiller)

103

3) Deep Learning

The f-measure of the “Deep Learning” classifier for “Dresses Attribute Sales Dataset”

(DASD), filled for missing values with six different algorithms, is shown in Table 25 and

Fig. 65. The f-measure of all six missing value replacement algorithms, on DASD, are

67.85% for Average as a replacement, 67.85% for Minimum as a replacement, 67.85% for

Maximum as a replacement, 67.85% for Zero as a replacement, 69.98% for Specific Value

as a replacement and 71.13% for replacement with the DuDeFiller algorithm.

 F-measure

Average
67.37% +/- 7.00%

(micro average: 67.85%) (positive class: 0)

Minimum
67.37% +/- 7.00%

(micro average: 67.85%) (positive class: 0)

Maximum
67.37% +/- 7.00%

(micro average: 67.85%) (positive class: 0)

Zero
67.37% +/- 7.00%

(micro average: 67.85%) (positive class: 0)

Value
69.83% +/- 7.16%

(micro average: 69.98%) (positive class: 0)

DuDeFiller
71.14% +/- 4.30%

(micro average: 71.13%) (positive class: 0)

Table 25. The f-measure of “Deep Learning” for DASD (DuDeFiller)

Fig. 65. The f-measure of “Deep Learning” for DASD (DuDeFiller)

104

4) Random Forest

The f-measure of the “Random Forest” classifier for “Dresses Attribute Sales Dataset”

(DASD), filled for missing values with six different algorithms, is shown in Table 26 and

Fig. 66. The f-measure of all six missing value replacement algorithms, on DASD, are

73.42% for Average as a replacement, 73.42% for Minimum as a replacement, 73.42% for

Maximum as a replacement, 73.42% for Zero as a replacement, 73.42% for Specific Value

as a replacement and 73.58% for replacement with the DuDeFiller algorithm.

 F-measure

Average
73.42% +/- 0.00%

(micro average: 73.42%) (positive class: 0)

Minimum
73.42% +/- 0.00%

(micro average: 73.42%) (positive class: 0)

Maximum
73.42% +/- 0.00%

(micro average: 73.42%) (positive class: 0)

Zero
73.42% +/- 0.00%

(micro average: 73.42%) (positive class: 0)

Value
73.42% +/- 0.00%

(micro average: 73.42%) (positive class: 0)

DuDeFiller
73.58% +/- 0.47%

(micro average: 73.58%) (positive class: 0)

Table 26. The f-measure of “Random Forest” for DASD (DuDeFiller)

Fig. 66. The f-measure of “Random Forest” for DASD (DuDeFiller)

105

5) Logistic Regression

The f-measure of the “Logistic Regression” classifier for “Dresses Attribute Sales

Dataset” (DASD), filled for missing values with six different algorithms, is shown in Table

27 and in Fig. 67. The f-measure of all six missing value replacement algorithms, on DASD,

are 63.55% for Average as a replacement, 63.55% for Minimum as a replacement, 63.55%

for Maximum as a replacement, 63.55% for Zero as a replacement, 63.55% for Specific

Value as a replacement and 64.55% for replacement with the DuDeFiller algorithm.

 F-measure

Average
63.34% +/- 6.91%

(micro average: 63.55%) (positive class: 0)

Minimum
63.34% +/- 6.91%

(micro average: 63.55%) (positive class: 0)

Maximum
63.34% +/- 6.91%

(micro average: 63.55%) (positive class: 0)

Zero
63.34% +/- 6.91%

(micro average: 63.55%) (positive class: 0)

Value
63.34% +/- 6.91%

(micro average: 63.55%) (positive class: 0)

DuDeFiller
64.32% +/- 7.01%

(micro average: 64.55%) (positive class: 0)

Table 27. The f-measure of “Logistic Regression” for DASD (DuDeFiller)

Fig. 67. The f-measure of “Logistic Regression” for DASD (DuDeFiller)

106

5.6. Evaluation of Results

Data Cleansing System (DCS) is assembled on “Duplicate Detection toolkit (DuDe)” [7]

and this toolkit comprises the pool of duplicate detection procedures written in Java

programming language. DuDe was established and verified by German data scientists over a

period of time and constant perfections were made to advance its quality. The quality and the

open source license of this DuDe kit fascinated us to get the assistance from it.

This work was started from the base point of DuDe kit because it was previously established

and verified for its performance and as per software engineering principle, previously done

work was reused and reinventing the wheel was avoided [92]. As per the “Quality in, quality

out” [93] principle, the developed system is of high quality because the base and the input for

the building block is of high quality.

Results of classification accuracy and f-measure are discussed in this section. These results

are generated for the “Audiology” and “Dresses Attribute Sales” datasets filled for missing

values with the proposed SimFiller and DuDeFiller algorithms along with other five missing

values replacement algorithms. Experiments are conducted on the DuDeFiller algorithm for

the duplicate fusion options because DuDeFuse and DuDeFiller are created on the similar

mechanism so correctness of DuDeFiller also proves the correctness of the DuDeFuse

algorithm. Duplicate fusion technique not only resolves the unintended duplicates issue but

also helps to merge the deliberately created duplicates from the parallel sensors setup [49-52,

76, 77]. This technique is widely used for the fusion of multiple inputs received from the

multiple sensors installed to record a similar event [50, 78].

The algorithms suggested in this study generates the replacement of missing and duplicate

values by considering all the attributes of the record as a whole. Exiting replacement algorithms

for missing values (average, minimum and maximum) independently select a single attribute

and generate the replacement of missing value similar to the mechanism adopted by the “Naive

Bayes” classifier. Considering this similarity, there is a chance to get the biases classification

accuracy results of “Naive Bayes” classifier for the replicas filled with the existing (average,

minimum and maximum) algorithms. Results show that the proposed algorithms improve the

classification accuracy of selected classifiers including the classification accuracy of “Naive

Bayes” classifier.

107

The approach used in the developed system is more rational and appropriate for several

areas of life like in medicine field a patient medical history is matched with other patients as a

whole and no medication is given to the similar patient in case of partial or non-match scenario.

5.7. Evaluation of Classification Accuracy Results (SimFiller for Audiology)

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning” and

“Random Forest” are evaluated in this section. These results are generated for the replicas of

“Audiology” dataset filled for the missing values using a specific value, zero value, maximum

value, minimum value, the average value and SimFiller algorithms. Classification accuracy

improvement details of the selected classifiers are given in the section below:

1) Classification Accuracy Improvement of Decision Tree

Highest classification accuracy of Decision Tree is recorded for the SimFiller algorithm

as 84.62% which is 7.70% higher with respect to the accuracy of other selected missing

values filling algorithms. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 15.38% for Average as a replacement, 76.92% for

Minimum as a replacement, 76.92% for Maximum as a replacement, 76.92% for Zero as a

replacement, 15.38% for Specific Value as a replacement and 84.62% for replacement with

the SimFiller algorithm as shown in Table 10 and Fig. 16.

2) Classification Accuracy Improvement of Naive Bayes

Highest classification accuracy of Naive Bayes is recorded for the SimFiller algorithm

as 80.77% which is 11.54% higher with respect to the accuracy of other selected missing

values filling algorithms. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 61.54% for Average as a replacement, 69.23% for

Minimum as a replacement, 69.23% for Maximum as a replacement, 69.23% for Zero as a

replacement, 65.38% for Specific Value as a replacement and 80.77% for replacement with

the SimFiller algorithm as shown in Table 11 and Fig. 51.

3) Classification Accuracy Improvement of Deep Learning

Highest classification accuracy of Deep Learning is recorded for the SimFiller

algorithm as 88.46% which is 11.54% higher with respect to the accuracy of other selected

missing values filling algorithms. Classification accuracies of all six missing value

108

replacement algorithms, on “Audiology” dataset, are 76.92% for Average as a replacement,

73.08% for Minimum as a replacement, 73.08% for Maximum as a replacement, 73.08%

for Zero as a replacement, 61.54% for Specific Value as a replacement and 88.46% for

replacement with the SimFiller algorithm as shown in Table 12 and Fig. 52.

4) Classification Accuracy Improvement of Random Forest

Highest classification accuracy of Random Forest is recorded for the SimFiller

algorithm as 61.54% which is 7.69% higher with respect to the accuracy of other selected

missing values filling algorithms. Classification accuracies of all six missing value

replacement algorithms, on “Audiology” dataset, are 53.85% for Average as a replacement,

50.00% for Minimum as a replacement, 50.00% for Maximum as a replacement, 50.00%

for Zero as a replacement, 50.00% for Specific Value as a replacement and 61.54% for

replacement with the SimFiller algorithm as shown in Table 13 and Fig. 53.

5.8. Evaluation of Classification Accuracy Results (DuDeFiller for Audiology)

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning” and

“Random Forest” are evaluated in this section. These results are generated for the replicas of

“Audiology” dataset filled for the missing values using a specific value, zero value, maximum

value, minimum value, the average value and DuDeFiller algorithms. Verification of the results

is performed using the “using stratified sampling based on 10 folds’ cross validation”.

Classification accuracy improvement details of the selected classifiers are given in the section

below:

1) Classification Accuracy Improvement of Decision Tree

Highest classification accuracy of Decision Tree is recorded for the DuDeFiller

algorithm as 69.03%. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 67.26% for Average as a replacement, 68.14% for

Minimum as a replacement, 68.14% for Maximum as a replacement, 68.14% for Zero as a

replacement, 68.14% for Specific Value as a replacement and 69.03% for replacement with

the DuDeFiller algorithm as shown in Table 14 and Fig. 54.

109

2) Classification Accuracy Improvement of Naive Bayes

Highest classification accuracy of Naive Bayes is recorded including for the DuDeFiller

algorithm as 80.97%. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 80.97% for Average as a replacement, 80.97% for

Minimum as a replacement, 80.97% for Maximum as a replacement, 80.97% for Zero as a

replacement, 80.53% for Specific Value as a replacement and 80.97% for replacement with

the DuDeFiller algorithm as shown in Table 15 and Fig. 55.

3) Classification Accuracy Improvement of Deep Learning

Highest classification accuracy of Deep Learning is recorded for the DuDeFiller

algorithm as 74.78%. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 74.34% for Average as a replacement, 70.80% for

Minimum as a replacement, 70.80% for Maximum as a replacement, 70.80% for Zero as a

replacement, 73.45% for Specific Value as a replacement and 74.78% for replacement with

the DuDeFiller algorithm as shown in Table 16 and Fig. 56.

4) Classification Accuracy Improvement of Random Forest

Highest classification accuracy of Random Forest is recorded for the DuDeFiller

algorithm as 75.22%. Classification accuracies of all six missing value replacement

algorithms, on “Audiology” dataset, are 71.68% for Average as a replacement, 73.01% for

Minimum as a replacement, 73.01% for Maximum as a replacement, 73.01% for Zero as a

replacement, 73.01% for Specific Value as a replacement and 75.22% for replacement with

the DuDeFiller algorithm as shown in Table 17 and Fig. 57.

5.9. Evaluation of Classification Accuracy Results (DuDeFiller for DASD)

Classification accuracy results of “Decision Tree”, “Naive Bayes”, “Deep Learning”,

“Random Forest” and “Logistic Regression” are evaluated in this section. These results are

generated for the replicas of “Dresses Attribute Sales Dataset” (DASD) filled for the missing

values using a specific value, zero value, maximum value, minimum value, the average value

and DuDeFiller algorithms. Verification of the results is performed using the “using stratified

sampling based on 10 folds’ cross validation”. Classification accuracy improvement details of

the selected classifiers are given in the section below:

110

1) Classification Accuracy Improvement of Decision Tree

Highest classification accuracy of Decision Tree is recorded for the DuDeFiller

algorithm as 58.20%. Classification accuracies of all six missing value replacement

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.00% for Average as

replacement, 58.00% for Minimum as replacement, 58.00% for Maximum as replacement,

58.00% for Zero as replacement, 58.00% for Specific Value as replacement and 58.20%

for replacement with DuDeFiller algorithm as shown in Table 18 and Fig. 58.

2) Classification Accuracy Improvement of Naive Bayes

Highest classification accuracy of Naive Bayes is recorded for the DuDeFiller

algorithm as 61.20%. Classification accuracies of all six missing value replacement

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.20% for Average as

replacement, 58.20% for Minimum as replacement, 58.20% for Maximum as replacement,

58.20% for Zero as replacement, 58.20% for Specific Value as replacement and 61.20%

for replacement with DuDeFiller algorithm as shown in Table 19 and Fig. 59.

3) Classification Accuracy Improvement of Deep Learning

Highest classification accuracy of Deep Learning is recorded for the DuDeFiller

algorithm as 63.80%. Classification accuracies of all six missing value replacement

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 60.20% for Average as a

replacement, 60.20% for Minimum as a replacement, 60.20% for Maximum as a

replacement, 60.20% for Zero as a replacement, 61.40% for Specific Value as a

replacement and 63.80% for replacement with the DuDeFiller algorithm as shown in Table

20 and Fig. 60.

4) Classification Accuracy Improvement of Random Forest

Highest classification accuracy of Random Forest is recorded for the DuDeFiller

algorithm as 75.22%. Classification accuracies of all six missing value replacement

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 58.00% for Average as

replacement, 58.00% for Minimum as replacement, 58.00% for Maximum as replacement,

58.00% for Zero as replacement, 58.00% for Specific Value as replacement and 58.20%

for replacement with DuDeFiller algorithm as shown in Table 21 and Fig. 61.

111

5) Classification Accuracy Improvement of Logistic Regression

Highest classification accuracy of Logistic Regression is recorded for the DuDeFiller

algorithm as 75.22%. Classification accuracies of all six missing value replacement

algorithms, on “Dresses Attribute Sales Dataset” (DASD), are 56.40% for Average as

replacement, 56.40% for Minimum as replacement, 56.40% for Maximum as replacement,

56.40% for Zero as replacement, 56.40% for Specific Value as replacement and 57.60%

for replacement with DuDeFiller algorithm as shown in Table 22 and Fig. 62.

5.10. Evaluation of F-measure Results (DuDeFiller for DASD)

F-measure results “Decision Tree”, “Naive Bayes”, “Deep Learning”, “Random Forest”

and “Logistic Regression” are evaluated in this section. These results are generated for the

replicas of “Dresses Attribute Sales Dataset” (DASD) filled for the missing values using a

specific value, zero value, maximum value, minimum value, the average value and DuDeFiller

algorithms. Verification of the results is performed using the “using stratified sampling based

on 10 folds’ cross validation. F-measure improvement details of the selected classifiers are

given in the section below:

1) F-measure Improvement of Decision Tree

Highest f-measure of Decision Tree is recorded for the DuDeFiller algorithm as

73.58%. The f-measure of all six missing value replacement algorithms, on “Dresses

Attribute Sales Dataset” (DASD), are 73.42% for Average as replacement, 73.42% for

Minimum as replacement, 73.42% for Maximum as replacement, 73.42% for Zero as

replacement, 73.42% for Specific Value as replacement and 73.58% for replacement with

DuDeFiller algorithm as shown in Table 23 and Fig. 63.

2) F-measure Improvement of Naive Bayes

Highest f-measure of Naive Bayes is recorded for the DuDeFiller algorithm as 69.50%.

The f-measure of all six missing value replacement algorithms, on “Dresses Attribute Sales

Dataset” (DASD), are 66.24% for Average as replacement, 66.24% for Minimum as

replacement, 66.24% for Maximum as replacement, 66.24% for Zero as replacement,

66.24% for Specific Value as replacement and 69.50% for replacement with DuDeFiller

algorithm as shown in Table 24 and Fig. 64.

112

3) F-measure Improvement of Deep Learning

Highest f-measure of Deep Learning is recorded for the DuDeFiller algorithm as

71.13%. The f-measure of all six missing value replacement algorithms, on “Dresses

Attribute Sales Dataset” (DASD), are 67.85% for Average as replacement, 67.85% for

Minimum as replacement, 67.85% for Maximum as replacement, 67.85% for Zero as

replacement, 69.98% for Specific Value as replacement and 71.13% for replacement with

DuDeFiller algorithm as shown in Table 25 and Fig. 65.

4) F-measure Improvement of Random Forest

Highest f-measure of Random Forest is recorded for the DuDeFiller algorithm as

73.58%. The f-measure of all six missing value replacement algorithms, on “Dresses

Attribute Sales Dataset” (DASD), are 73.42% for Average as replacement, 73.42% for

Minimum as replacement, 73.42% for Maximum as replacement, 73.42% for Zero as

replacement, 73.42% for Specific Value as replacement and 73.58% for replacement with

DuDeFiller algorithm as shown in Table 26 and Fig. 66.

5) F-measure Improvement of Logistic Regression

Highest f-measure of Logistic Regression is recorded for the DuDeFiller algorithm as

64.55%. The f-measure of all six missing value replacement algorithms, on “Dresses

Attribute Sales Dataset” (DASD), are 63.55% for Average as replacement, 63.55% for

Minimum as replacement, 63.55% for Maximum as replacement, 63.55% for Zero as

replacement, 63.55% for Specific Value as replacement and 64.55% for replacement with

DuDeFiller algorithm as shown in Table 27 and in the Fig. 67.

113

6. Chapter 6

CONCLUSION AND FUTURE WORK

This chapter discusses the outcomes and the impact of the proposed study and concludes

the overall benefit and result from this study. This chapter also defines the future directions

and advises the prospect research from the presented idea in the earlier chapters.

6.1. Conclusion

Sensors, devices and human-generated data volumes encompass data irregularities

containing missing and duplicate records. Volumes of data are expanding every second because

sources of data creation are also expanding. Computerized data cleansing is performed by

filling the missing value and merging the duplicate records because manual fixation of data

irregularities is not possible due to massive volumes of data. Automatic cleansing methods

recover the quality of the dataset before applying any data mining process on it to extract some

useful information.

This research develops an efficient duplicate data detection based cleansing system named

Data Cleansing System (DCS) to fix the inconsistencies of any dataset. Data Cleansing System

(DCS) has four subsystems named as Pre-Processing Subsystem (PPS), Duplicate Detection

Subsystem (DDS), Duplicate Fusion Subsystem (DFS) and Post-Operation Subsystem (POS).

Pre-Processing Subsystem deals with the preliminary activities executed on the input file

before performing any data cleansing task on it. PPS is further divided into four main modules.

A user interface is created with an option to select and load the CSV file in the subsystem.

After successful loading, the subsystem reads the input dataset from CSV file, extracts the list

of attributes from it. The subsystem then asks the user to select the required attributes from the

list of attributes and the selected attributes are used to extract the required data from the dataset

which is returned to the main system for further processing.

After the successful preprocessing, extracted data and the attributes list is passed to the

Duplicate Detection Subsystem (DDS) to find duplicates from it. Duplicate Detection

Subsystem (DDS) is further divided into four main modules. In the first module, the user is

asked to set the similarity threshold after successful data extraction then records pairs are

114

generated and their similarity is calculated. If pairs similarity exceeds the similarity threshold,

pairs are saved for the later processing.

In Duplicate Fusion Subsystem (DFS), extracted duplicate pairs are further analyzed to

merge them into a single record. Duplicate fusion is one of the duplicate cleansing process

developed to clean the duplicate records from the datasets. During the data fusion, duplicate

records are merged to create a new and more accurate and useful record as a result. Duplicate

fusion technique not only resolves the unintended duplicates issue but also helps to merge the

deliberately created duplicates from the parallel sensors setup. This technique is widely used

for the fusion of multiple inputs received from the multiple sensors installed to record a similar

event.

Post-Operation Subsystem (POS) deals with the activities executed to create the output file

after performing a cleansing task on it during the Duplicate Fusion Subsystem (DFS). DCS

passes the output of the Data Fusion Subsystem (DFS) to the Post-Operation Subsystem (POS)

in the form of fused duplicates which is further processed and written to the file for the user.

The raw dataset file is given as input to the system which is sent to the Pre-Processing

Subsystem (PPS) to extract and select the attributes from the dataset. The data is extracted for

the selected attributes which are then passed to the Duplicate Detection Subsystem (DDS) to

extract the duplicate pairs from the dataset. The extracted duplicate pairs are then passed to the

Duplicate Fusion Subsystem (DFS) to fuse the duplicates into a single record. The fused

duplicates are then passed to the Post-Operation Subsystem (POS) to create the cleaned copy

of input dataset by adding attribute names and non-duplicate data in it.

Three new algorithms named SimFiller, DuDeFiller and DuDeFuse are also introduced for

the Duplicate Fusion Subsystem (DFS). SimFiller is similarity-based missing values algorithm

which clears the missing value of one record by getting the value of the attribute from the most

similar record. DuDeFiller is duplicate detection based missing values algorithm which clears

the missing value of one record by getting the value of the attribute from its duplicate record.

DuDeFuse is duplicate detection and fusion algorithm which accepts input from the

Duplicate Detection Subsystem as duplicate record pairs. DuDeFuse calculates the similarity

and occurrence of each possible value of an attribute for each of the records within the duplicate

pair under consideration.

115

Experimentations accomplished during this research attested that Data Cleansing System

(DCS) is a significant, effective and suitable system to fix the inconsistencies of any dataset.

Datasets fixed for the inconsistencies with the system conveys upmost f-measure and accuracy

for all the selected datasets within all other selected data cleansing methods.

The approach used in the developed system is more rational and appropriate for several

areas of life like in medicine field a patient medical history is matched with other patients as a

whole and no medication is given to the similar patient in case of partial or non-match scenario.

6.2. Contributions to the Data Science Body of Knowledge

A fully customized data cleansing system is developed by this research which is a huge

addition to the data science body of knowledge. Following contributions are also added by this

research work:

 Two efficient and robust similarity-based and duplicate detection based missing values

filling algorithms are added to the data science body of knowledge those fill the

dataset’s missing values more efficiently than the existing algorithms.

 A proficient and robust duplicate detection based data fusion algorithm is added to the

data science body of knowledge which fills the dataset’s missing values more

efficiently than the existing algorithms.

6.3. Future Work

Similarity threshold was set to a particular value for the tests accomplished during this

research and it is also observed that accuracy is also changed by changing the value of the

similarity threshold. Finding the similarity threshold and its relationship with the accuracy of

each dataset are out of the scope of this research but considered as strong future direction for

this research. work.

Data Cleansing System (DCS) can also be extended in terms of its subsystems to add a new

subsystem or in terms of algorithms to add new algorithms in existing subsystems to resolve

the other irregularities of datasets including outliers of the datasets.

116

7. REFERENCES

1. Kim, J. and J.H. Ryu, Quantifying a Threshold of Missing Values for Gap Filling

Processes in Daily Precipitation Series. Water Resources Management, 2015. 29(11):

p. 4173-4184.

2. Bingwei, H., et al. A new method for filling missing values by gray relational analysis.

in 2011 2nd International Conference on Artificial Intelligence, Management Science

and Electronic Commerce (AIMSEC). 2011.

3. Lee, K.C., et al. Missing Value Estimation Based on Dynamic Attribute Selection. in

Knowledge Discovery and Data Mining. Current Issues and New Applications. 2000.

Berlin, Heidelberg: Springer Berlin Heidelberg.

4. Zhang, S., et al., Missing Value Imputation Based on Data Clustering, in Transactions

on Computational Science I, M.L. Gavrilova and C.J.K. Tan, Editors. 2008, Springer

Berlin Heidelberg: Berlin, Heidelberg. p. 128-138.

5. Varnild, E., Replace Missing Values. RapidMiner Studio Core, 2018. 8.1.

6. Kotsiantis, S., et al. Filling missing temperature values in weather data banks. in 2006

2nd IET International Conference on Intelligent Environments - IE 06. 2006.

7. Draisbach, U. and F.N. Hasso, DuDe: The Duplicate Detection Toolkit. hpi.de/

naumann/ sites/ dude/ javadoc, 2012.

8. Rekatsinas, T., X.L. Dong, and D. Srivastava, Characterizing and selecting fresh data

sources, in Proceedings of the 2014 ACM SIGMOD International Conference on

Management of Data. 2014, ACM: Snowbird, Utah, USA. p. 919-930.

9. Ragel, A. Preprocessing of missing values using robust association rules. in Principles

of Data Mining and Knowledge Discovery. 1998. Berlin, Heidelberg: Springer Berlin

Heidelberg.

10. Newcombe H. B., K.J.M., Axford S. J, and James A. P., Automatic linkage of vital

records. Science. 1959. vol. 130: p. 954–959.

11. Susanti, S.P. and F.N. Azizah. Imputation of missing value using dynamic Bayesian

network for multivariate time series data. in 2017 International Conference on Data and

Software Engineering (ICoDSE). 2017.

12. Lobo, O.O. and M. Numao. Ordered Estimation of Missing Values. in Methodologies

for Knowledge Discovery and Data Mining. 1999. Berlin, Heidelberg: Springer Berlin

Heidelberg.

13. Liu, W.Z., et al. Techniques for dealing with missing values in classification. in

Advances in Intelligent Data Analysis Reasoning about Data. 1997. Berlin, Heidelberg:

Springer Berlin Heidelberg.

117

14. Honghai, F., et al. A SVM Regression Based Approach to Filling in Missing Values. in

Knowledge-Based Intelligent Information and Engineering Systems. 2005. Berlin,

Heidelberg: Springer Berlin Heidelberg.

15. Ralescu, A. and S. Visa. On filling-in missing attribute values for Bayes and fuzzy

classifiers. in NAFIPS 2008 - 2008 Annual Meeting of the North American Fuzzy

Information Processing Society. 2008.

16. Manikanta, C. and V. Mamatha Jadav. Evaluation of modified PLS regression method

to fill the missing values in training dataset. in 2015 International Conference on Smart

Sensors and Systems (IC-SSS). 2015.

17. Pérez, A., et al., Use of the mean, hot deck and multiple imputation techniques to predict

outcome in intensive care unit patients in Colombia. Statistics in Medicine, 2002.

21(24): p. 3885-3896.

18. Barakat, M.S., et al., The effect of imputing missing clinical attribute values on training

lung cancer survival prediction model performance. Health Information Science and

Systems, 2017. 5(1): p. 16.

19. Salzberg, S.L., C4.5: Programs for Machine Learning by J. Ross Quinlan. Morgan

Kaufmann Publishers, Inc., 1993. Machine Learning, 1994. 16(3): p. 235-240.

20. Zhang, C. and S. Zhang, Association rule mining: models and algorithms. 2002:

Springer-Verlag. 228.

21. Zhao-hong, W. Numeric Missing Value's Hot Deck Imputation Based on Cloud Model

and Association Rules. in 2010 Second International Workshop on Education

Technology and Computer Science. 2010.

22. Surong, J., L. Jiangqiao, and Y. Yuhai. A Data Analysis Algorithm of Missing Point

Association Rules for Air Target. in 2015 14th International Symposium on Distributed

Computing and Applications for Business Engineering and Science (DCABES). 2015.

23. Xu, D. and Y. Tian, A Comprehensive Survey of Clustering Algorithms. Annals of

Data Science, 2015. 2(2): p. 165-193.

24. Ji, Y., W. Hong, and J. Qi. Missing Value Prediction Using Co-clustering and RBF for

Collaborative Filtering. in 2015 International Conference on Cloud Computing and Big

Data (CCBD). 2015.

25. Wang, L., et al., Modelling method with missing values based on clustering and support

vector regression. Journal of Systems Engineering and Electronics, 2010. 21(1): p. 142-

147.

26. Albayrak, M., K. Turhan, and B. Kurt. A missing data imputation approach using

clustering and maximum likelihood estimation. in 2017 Medical Technologies National

Congress (TIPTEKNO). 2017.

27. Mohammadi, A. and M.H. Saraee. Estimating Missing Value in Microarray Data Using

Fuzzy Clustering and Gene Ontology. in 2008 IEEE International Conference on

Bioinformatics and Biomedicine. 2008.

118

28. Zanaty, E.A., Support Vector Machines (SVMs) versus Multilayer Perception (MLP)

in data classification. Egyptian Informatics Journal, 2012. 13(3): p. 177-183.

29. Anderson, H.S. and M.R. Gupta. Expected kernel for missing features in support vector

machines. in 2011 IEEE Statistical Signal Processing Workshop (SSP). 2011.

30. Kim, J., et al., Deep neural networks with weighted spikes. Neurocomputing, 2018.

311: p. 373-386.

31. Setiawan, N.A., P.A. Venkatachalam, and A.F.M. Hani. Missing Attribute Value

Prediction Based on Artificial Neural Network and Rough Set Theory. in 2008

International Conference on BioMedical Engineering and Informatics. 2008.

32. Sobrevilla, K.L.M.D., et al. Daily weather forecast in Tiwi, Albay, Philippines using

Artificial Neural Network with missing values Imputation. in 2016 IEEE Region 10

Conference (TENCON). 2016.

33. Kramer, O., K-Nearest Neighbors, in Dimensionality Reduction with Unsupervised

Nearest Neighbors, O. Kramer, Editor. 2013, Springer Berlin Heidelberg: Berlin,

Heidelberg. p. 13-23.

34. Meesad, P. and K. Hengpraprohm. Combination of KNN-Based Feature Selection and

KNNBased Missing-Value Imputation of Microarray Data. in 2008 3rd International

Conference on Innovative Computing Information and Control. 2008.

35. Sen, S., M.N. Das, and R. Chatterjee. A Weighted kNN approach to estimate missing

values. in 2016 3rd International Conference on Signal Processing and Integrated

Networks (SPIN). 2016.

36. Cai, Q., et al. The research of missing value estimation of gene sequence based on

improved KNN. in 2009 4th International Conference on Computer Science &

Education. 2009.

37. Keerin, P., W. Kurutach, and T. Boongoen. Cluster-based KNN missing value

imputation for DNA microarray data. in 2012 IEEE International Conference on

Systems, Man, and Cybernetics (SMC). 2012.

38. Zhu, M. and C. Xingbing. Iterative KNN imputation based on GRA for missing values

in TPLMS. in 2015 4th International Conference on Computer Science and Network

Technology (ICCSNT). 2015.

39. Fürnkranz, J., Decision Tree, in Encyclopedia of Machine Learning and Data Mining,

C. Sammut and G.I. Webb, Editors. 2016, Springer US: Boston, MA. p. 1-5.

40. Ming-Fen, W. and W. Ting-Liang. An algorithm: Filling the missing values in the

incomplete decision table. in 2008 International Conference on Machine Learning and

Cybernetics. 2008.

41. Gavankar, S. and S. Sawarkar. Decision Tree: Review of Techniques for Missing

Values at Training, Testing and Compatibility. in 2015 3rd International Conference on

Artificial Intelligence, Modelling and Simulation (AIMS). 2015.

119

42. Webb, G.I., Naïve Bayes, in Encyclopedia of Machine Learning, C. Sammut and G.I.

Webb, Editors. 2010, Springer US: Boston, MA. p. 713-714.

43. Baharim, K.N., M.S. Kamaruddin, and F. Jusof. Leveraging Missing Values in Call

Detail Record Using Naïve Bayes for Fraud Analysis. in 2008 International Conference

on Information Networking. 2008.

44. Gupta, A.K. and N. Sardana. Naïve Bayes Approach for Predicting Missing Links in

Ego Networks. in 2016 IEEE International Symposium on Nanoelectronic and

Information Systems (iNIS). 2016.

45. Menezes, S.L. and G. Varkey. Prediction of Missing Items Using Naive Bayes

Classifier and Graph Based Prediction. in 2013 Third International Conference on

Advances in Computing and Communications. 2013.

46. Bilke, A., et al., Automatic data fusion with HumMer, in Proceedings of the 31st

international conference on Very large data bases. 2005, VLDB Endowment:

Trondheim, Norway. p. 1251-1254.

47. Banerjee, S., et al. A fusion approach for classifying duplicate problem reports. in 2013

IEEE 24th International Symposium on Software Reliability Engineering (ISSRE).

2013.

48. Bleiholder, J., K. Draba, and F. Naumann, FuSem: exploring different semantics of data

fusion, in Proceedings of the 33rd international conference on Very large data bases.

2007, VLDB Endowment: Vienna, Austria. p. 1350-1353.

49. Andr, #233, and Bolles, A flexible framework for multisensor data fusion using data

stream management technologies, in Proceedings of the 2009 EDBT/ICDT Workshops.

2009, ACM: Saint-Petersburg, Russia. p. 193-200.

50. Bader, K., B. Lussier, and W. Schön, A fault tolerant architecture for data fusion: A

real application of Kalman filters for mobile robot localization. Robotics and

Autonomous Systems, 2017. 88(Supplement C): p. 11-23.

51. Khaleghi, B., et al., Multisensor data fusion: A review of the state-of-the-art.

Information Fusion, 2013. 14(1): p. 28-44.

52. Alyannezhadi, M.M., A.A. Pouyan, and V. Abolghasemi, An efficient algorithm for

multisensory data fusion under uncertainty condition. Journal of Electrical Systems and

Information Technology, 2017. 4(1): p. 269-278.

53. Haroun, A., et al., Data fusion in automotive applications. Personal Ubiquitous

Comput., 2017. 21(3): p. 443-455.

54. Rezig, E.K., et al. ORLF: A flexible framework for online record linkage and fusion.

in 2016 IEEE 32nd International Conference on Data Engineering (ICDE). 2016.

55. Gruenheid, A., X.L. Dong, and D. Srivastava, Incremental record linkage. Proc. VLDB

Endow., 2014. 7(9): p. 697-708.

120

56. Dong, X.L., et al., Knowledge-based trust: estimating the trustworthiness of web

sources. Proc. VLDB Endow., 2015. 8(9): p. 938-949.

57. Pohl, M., Naive Duplicate Detection (Class). hpi.de/ naumann/ sites/ dude/ javadoc,

2012.

58. Lindenberg, F., Duplicate Count SNM (Class). hpi.de/ naumann/ sites/ dude/ javadoc,

2012.

59. Pohl, M., Sorted Neighborhood Method (Class). hpi.de/ naumann/ sites/ dude/ javadoc,

2012.

60. Whang, S.E., et al., Entity Resolution with Iterative Blocking in SIGMOD 2009. 2009,

Stanford: Providence, Rhode Island.

61. Thomas, F., Lego (Class). hpi.de/ naumann/ sites/ dude/ javadoc, 2012.

62. Dyck, J., GSwoosh (Class). hpi.de/ naumann/ sites/ dude/ javadoc, 2012.

63. Dyck, J., RSwoosh (Class). hpi.de/ naumann/ sites/ dude/ javadoc, 2012.

64. Pohl, M. and U. Draisbach, Naive Blocking Algorithm (Class). hpi.de/ naumann/ sites/

dude/ javadoc, 2012.

65. Abedjan, Z., A. Heise, and M. Pohl, Levenshtein Distance Function (Class). hpi.de/

naumann/ sites/ dude/ javadoc, 2012.

66. Abedjan, Z., A. Heise, and M. Pohl, Euclidean Distance Function (Class). hpi.de/

naumann/ sites/ dude/ javadoc, 2012.

67. Abedjan, Z., A. Heise, and M. Pohl, Jaro Winkler Function (Class). hpi.de/ naumann/

sites/ dude/ javadoc, 2012.

68. Abedjan, Z. and A. Heise, Jaccard Similarity Function (Class). hpi.de/ naumann/ sites/

dude/ javadoc, 2012.

69. Abedjan, Z., A. Heise, and M. Pohl, Cosine Similarity Function (Class). hpi.de/

naumann/ sites/ dude/ javadoc, 2012.

70. Abedjan, Z., A. Heise, and M. Pohl, Block Distance Function (Class). hpi.de/ naumann/

sites/ dude/ javadoc, 2012.

71. Abedjan, Z., A. Heise, and M. Pohl, Dice Coefficient Function (Class). hpi.de/

naumann/ sites/ dude/ javadoc, 2012.

72. Agarwala, R., Data Modeling, ETL, and Data Quality Guide. Oracle® Warehouse

Builder, 2011. 11.2(E10935-05): p. 573-598.

73. Rezig, E.K., et al. Query-time record linkage and fusion over Web databases. in 2015

IEEE 31st International Conference on Data Engineering. 2015.

74. Varnild, E., Remove Duplicates. RapidMiner Studio Core, 2018. 8.1.

121

75. Bleiholder, J. and F. Naumann, Data fusion. ACM Comput. Surv., 2009. 41(1): p. 1-

41.

76. Pinto, A.R., et al., An approach to implement data fusion techniques in wireless sensor

networks using genetic machine learning algorithms. Information Fusion, 2014.

15(Supplement C): p. 90-101.

77. Rawat, S. and S. Rawat, Multi-sensor data fusion by a hybrid methodology – A

comparative study. Computers in Industry, 2016. 75(Supplement C): p. 27-34.

78. Kubelka, V., M. Reinstein, and T. Svoboda, Improving multimodal data fusion for

mobile robots by trajectory smoothing. Robotics and Autonomous Systems, 2016.

84(Supplement C): p. 88-96.

79. Bronselaer, A., D. Van Britsom, and G. De Tré, Pointwise multi-valued fusion.

Information Fusion, 2015. 25(Supplement C): p. 121-133.

80. Dong, X.L., L. Berti-Equille, and D. Srivastava, Data Fusion: Resolving Conflicts from

Multiple Sources, in Web-Age Information Management: 14th International

Conference, WAIM 2013, Beidaihe, China, June 14-16, 2013. Proceedings, J. Wang,

et al., Editors. 2013, Springer Berlin Heidelberg: Berlin, Heidelberg. p. 64-76.

81. Dong, X.L., et al., From data fusion to knowledge fusion. Proc. VLDB Endow., 2014.

7(10): p. 881-892.

82. Wu, S. and F. Crestani, A geometric framework for data fusion in information retrieval.

Information Systems, 2015. 50(Supplement C): p. 20-35.

83. Peña Saldarriaga, S., E. Morin, and C. Viard-Gaudin, Ranking Fusion Methods Applied

to On-Line Handwriting Information Retrieval, in Advances in Information Retrieval:

32nd European Conference on IR Research, ECIR 2010, Milton Keynes, UK, March

28-31, 2010.Proceedings, C. Gurrin, et al., Editors. 2010, Springer Berlin Heidelberg:

Berlin, Heidelberg. p. 253-264.

84. Pochampally, R., et al., Fusing data with correlations, in Proceedings of the 2014 ACM

SIGMOD International Conference on Management of Data. 2014, ACM: Snowbird,

Utah, USA. p. 433-444.

85. Velic, M., T. Grzinic, and I. Padavic. Wisdom of crowds algorithm for stock market

predictions. in Proceedings of the ITI 2013 35th International Conference on

Information Technology Interfaces. 2013.

86. Kattan, M.W., et al., The Wisdom of Crowds of Doctors:Their Average Predictions

Outperform Their Individual Ones. Medical Decision Making, 2016. 36(4): p. 536-540.

87. Paltoglou, G., M. Salampasis, and M. Satratzemi, Simple Adaptations of Data Fusion

Algorithms for Source Selection, in Advances in Information Retrieval: 31th European

Conference on IR Research, ECIR 2009, Toulouse, France, April 6-9, 2009.

Proceedings, M. Boughanem, et al., Editors. 2009, Springer Berlin Heidelberg: Berlin,

Heidelberg. p. 497-508.

122

88. Dorman, C. and V. Rajlich. Software Change in the Solo Iterative Process: An

Experience Report. in 2012 Agile Conference. 2012.

89. Lui, K.M. and K.C.C. Chan. Software Process Fusion: Uniting Pair Programming and

Solo Programming Processes. in Software Process Change. 2006. Berlin, Heidelberg:

Springer Berlin Heidelberg.

90. Galkina, O. and V. Yachenko. Application of iterative software development

methodologies for reducing service quality gaps. in Proceedings of the 2014 IEEE NW

Russia Young Researchers in Electrical and Electronic Engineering Conference. 2014.

91. Macek, O. and M. Komárek. The practical method of motivating students to iterative

software development. in 2011 24th IEEE-CS Conference on Software Engineering

Education and Training (CSEE&T). 2011.

92. Schacht, S. and A. Mädche. How to Prevent Reinventing the Wheel? – Design

Principles for Project Knowledge Management Systems. in Design Science at the

Intersection of Physical and Virtual Design. 2013. Berlin, Heidelberg: Springer Berlin

Heidelberg.

93. Barenfanger, J., Quality in, quality out: rejection criteria and guidelines for commonly

(mis)used tests. Clinical Microbiology Newsletter, 2000. 22(9): p. 65-72.

94. Quinlan, R., Audiology (Standardized) Data Set UCI Machine Learning Repository,

1992.

95. Usman, M. and A. Ahmed, Dresses Attribute Sales Data Set. UCI Machine Learning

Repository, 2014.

96. Varnild, E., Cross Validation. RapidMiner Studio Core, 2018. 8.1.

97. Sokolova, M., N. Japkowicz, and S. Szpakowicz. Beyond Accuracy, F-Score and ROC:

A Family of Discriminant Measures for Performance Evaluation. in AI 2006: Advances

in Artificial Intelligence. 2006. Berlin, Heidelberg: Springer Berlin Heidelberg.

