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Abstract

These day interactive and social media applications demand huge computa-
tion and storage capacity. To cope with the issue, technology giants such
as Google and many others have deployed large number of datacenters. In-
side these datacenters, where queries are highly time sensitive, about 80%
of the traffic is East-West (remaining within the datacenter). TCP restricts
the performance of the datacenter due to its various parameters designed
for wide area networks. In this regard, research community proposed many
modification to TCP that could improve its performance in datacenter en-
vironment. Google has recently proposed increase in TCP’s Initial window
(IW) to 10MSS. In this work, we would be investigating performance of TCP
with IW=10 in datacenter environment. In this simulation-based study, we
would evaluate the performance issues related to IW=10 proposition if imple-
mented in datacenter environment. We propose SDN controller based appli-
cation to mitigate the incast issue with the usage of IW-10. This application
uses network to avoid incast issue and does not require any modification on
end hosts.
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Chapter 1

Introduction

In this chapter, we first describe the motivation behind this work. We then
move to problem statement. This is followed by objective and goal of this
research. Finally, we provide a roadmap of this thesis.

1.1 Motivation

Data centers have become the part of enterprises of all scale. Technology
Giants such as Youtube, Amazon, Google or Facebook have built large scale
data centers to provide services. A data centers consists of thousands of com-
puter servers where they are connected in different architecture (topologies)
with the help of switches. Traffic inside a data center is mainly divided into
to categories, Elephant; throughput sensitive, and the mice; latency sensi-
tive. Since data center is meant to provide services with the fundamental
requirement of reliability. In communication networks, reliable communi-
cation conventionally make us choose no other than Transmission Control
Protocol(TCP). TCP was not designed for data centers, thus, its perfor-
mance deteriorates in data centers considerably. Recently, Software Defined
Networks (SDNs) have gained pace from academia and industry. Google’s
adoption to SDNs [1] is the practical example of this. Next generation net-
work architecture, the SDN, provides more centralized control in the hands of
network administrators, making the network devices dumb, therefore cheap
. Such centralized management feature of the SDNs makes its usage ideal
for data centers alike networks where each host and device is in control of
service provider. Though a number of data centers issues (security, load bal-
ancing, routing, to name a few) can be enhanced with capabilities of SDN,
however, our this work focuses on congestion control caused by TCP inside
data centers using SDNs approach.
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1.2 Problem definition

TCP after connection establishment, sends different number of Maximum
Segment Size (MSS). This window of TCP is called Initial Window (IW).
Its value varies from one operating system to the other. Its value has direct
impact on the performance of the connection. For example if large value is
used, a fewer number of Round Trip Time (RTTs) are required to complete
the data transfer and vice versa. On the other hand, large value would result
in triggering of burst of flow right after final ACK of the three-way handshake
process. This would not be case with small value of IW. In this regard, Google
has made effort for the standardization of IW=10 in WAN services. Does
this IW-10 is suitable for data centers like networks where large number of
concurrent servers communicate with one server and switches in between are
shallow buffered? We show that this value could have drastic impact on
the throughput of data centers flows. SDNs can make this proposition of
IW-10 realistic because SDN controllers have knowledge of entire network
and various approaches can be used to either limit or throttle the sender
according to dynamic network conditions.

1.3 Objectives and goals

In this thesis, Our two-fold goals are below:

• We unveil the effects of IW-10 on traffic in data centers environment.
More specifically, we target relation of IW-10 with incast problem; con-
current servers competing for one output port. We explore how IW-10
can increase severeness of the incast in the presence of shallow buffer
switches.

• We propose how SDN can help make the adoption of IW-10 possible.
We explain the usability of any IW value on end hosts. Our method
neither proposes new version of TCP, nor does it require any changes
on end host TCP implementation.

1.4 Thesis roadmap

Our thesis organization is as follows: In Chapter .2, we first provide fun-
damental concepts of conventional networking, TCP and SDNs. These con-
cepts provide base knowledge to grasp the advanced concept in later chapters.
Chapter .3 describes different approaches from literature which are proposed
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to mitigate the effects of congestion in data centers. This chapter is followed
by Chapter .4, in which we describe in detail our contribution; A controller
application for avoiding TCP incast in data centers. Chapter .5 gives results
of the simulation. We conclude and provide future research directions in .6



Chapter 2

Background

In this chapter, we provide the background knowledge essential to follow the
research work discussed in subsequent chapters.

2.1 Data Centers

Technology giants Twitter, Youtube, Amazon, Google, manage large scale
data centers to provide services in real time. Data centers typically supports
link of Gbps while switches with low, shallow buffer are commonly employed.
Due to this, data center traffic faces very low latency. All this setup is
networked mostly in the form of a tree topology [2, 3], where multiple paths
exist from one host to the other.

2.1.1 Traffic Characteristics

Based on the origin and destination, the traffic inside a data center can be
classified in two types namely North-South (NS) and East-West (EW). NS
traffic arrives from outside the data center e.g., application query and leaves
after required processing within the data center in the form of a response to
the query. EW traffic is intra-data center that flows between the servers inside
the data center to complete either computation or storage related tasks. NS
and EW traffic is shown to be distributed in the ratio of 20:80 i.e. almost 80%
of the traffic inside a data center is EW [3, 4]. This implies two important
things, first that EW traffic requires careful traffic engineering because of its
volume and velocity. Second, dealing with EW traffic is easier than the NS
traffic as both ends of communication lies within the administrative domain
of the data center. For example, it is trivial to deploy custom/replacement
protocols that can outperform the standard protocols.

4
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Traffic inside a data center carries a mix of flows with varying character-
istics and demands. These flows are broadly classified as Elephant and Mice
flows. Elephant flows are typically TCP flows having large size (from few
MBs to even GBs) that persist for a duration generally from a few seconds to
hours. These flows demand high throughput and are non-latency-sensitive.
Applications such as Hadoop, MapReduce [5], VM migration and cloning
generate Elephant flows. Mice flows, on the other hand, are short flows that
are highly latency-sensitive. These are typically bursty in nature and are
normally generated by gaming, voice and web traffic. The ratio of mice to
elephants in a data center is 80% to 20% with elephant flows carrying 80% of
the total bytes and mice flows carrying 20% of rest of the bytes in the data
center [6, 7]. Therefore, although less in number, a large volume of traffic
inside a data center is TCP-based.

20%

80%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

Mice

flow

Elephant

flow

Traffic volume

Figure 2.1: Comparison of Traffic volume

2.1.2 Problems and challenges

TCP exercises congestion control at senders so that it can adapt to the net-
work conditions. The problem is that TCP was originally designed keeping
the network dynamics for the wide area network in mind. Standard TCP
struggles to perform when it is deployed as the transport protocol in the
unique environment of a data center that supports high-bandwidth and low-
latency. Changes are thus warranted in the standard TCP to adapt it to the
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Figure 2.2: Share of Mice and Elephant flows in data center

dynamics of the data center traffic. TCP faces issues such as TCP incast,
TCP outcast and queueing delay etc. [8, 9] inside a data center.

TCP incast [10] is a kind of congestion collapse due to simultaneous trans-
mission of data by multiple synchronized servers to the same receiver/aggregator
server resulting in the overwhelming of the shallow buffer at the bottleneck
switch. This results in severe throughput degradation up to 90%. This
problem is very common with storage traffic in data centers operating on
partition/aggregate model [11]. In partition/aggregate model, the aggrega-
tor partitions a single application request and sends concurrent sub-requests
to multiple servers for fulfilment of the original request. The response from
multiple servers (see Figure 2.3) arrives simultaneously (following many-to-
one communication pattern) resulting in exhaustion of the shallow switch
buffer leading towards large number of packet drops. TCP congestion con-
trol mechanism tries to recover from this situation through timeouts and
retransmissions. This ultimately results in severe throughput collapse [12].
TCP outcast [13] is another issue that is primarily caused by different types of
flows competing for the same output port at a switch. For example, consider
Elephant and Mice flows arriving through different input ports of a switch
while competing for the same output port. The elephant flows easily satu-
rate the output port queue and leads towards starvation of the mice flows.
Mice flow may even face a total port blackout depriving it of any bandwidth
utilization. Similarly, Elephant flows consume high throughput for a long
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period of time, especially in periods of congestion, leaving mice flows with
non-trivial queuing delays thus affecting their delay sensitiveness drastically.

Servers

Request 

par��oner & 

aggregator

Switch

1

2

3

n

: Data �ow

: Incast point

Figure 2.3: TCP Incast Scenario

2.1.3 TCP’s Sending Rate

The main feature of TCP is its default congestion control mechanism that
enables senders to react to the perceived congestion in the network with-
out requiring any explicit support from the network. The sender can infer
the congestion in the network based on indirect measures such as measure-
ments of RTTs (Round trip times) and segment losses. It is a window-based,
end-to-end mechanism where the sender maintains a dynamic sliding win-
dow named Congestion Window (Cwnd) that controls the sender’s sending
rate. Cwnd grows and shrinks as a function of the perceived network con-
gestion. TCP also maintains another window, Receive/Advertised Window
(Rwnd/Awnd) that is an indication of the current buffer capacity for that
TCP connection at the receiver. Rwnd is used for flow control between the
sender and receiver. The receiver advertises this window (in Acks) to prevent
the sender overflowing its current buffer space. Collectively, the sender limits
the amount of un-acknowledged sent packets in the network to the minimum
of Cwnd and Rwnd as given in following,

TCPsendingrate = min(cwnd, rwnd) (2.1)

TCP’s IW and MSS

The Maximum Segment Size (MSS) is the size that can be handled by the
link layer (MTU minus the upper layer headers). It is shared among two
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TCP ends at start of a TCP connection (SYN and SYN/ACKs). MTU for
Ethernet is 1500 bytes, while MSS works out to 1460 Bytes accounting for 20
Bytes of IP and that of TCP. The TCP Initial Window (IW) represent the
number of segments a TCP sender can send when the connection is initially
established. The size of the IW varies from one operating system to the other.
For instance, current kernel implementation of TCP in Linux has IW=10.

2.2 Non-SDN Networking

Normal network architecture is deployed in distributed fashion. Network
consists of intelligent as well as dumb devices. All devices communicate with
each other to provide services. Every device has own independent operating
system which runs on hardware. Similarly all feature and applications like
routing, security (firewalls and Access control lists), Quality of Service (QoS)
to mention a few, are implemented on the top of operating system of devices.
This is shown in figure .2.4. There is no central entity controlling all of them.
There are following drawbacks of traditional networking

Hardware

OS

Feature Feature

Hardware

OS

Feature Feature

Hardware

OS

Feature Feature

Hardware

OS

Feature Feature

Figure 2.4: Traditional Networking overview

• Every device and protocol is proprietary. One can not build its own
application and implement on network devices.

• In case of modification to application, each device must be configured
explicitly.

• Using more rich applications on devices requires cost to be paid to
vendor.
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• Networks are configured from command line, no programming feature
can be provided once device is installed with OS and deployed in the
network.

2.3 Software Defined Networks

Software Defined Networking (SDN) has recently become subject of much
research attention. The centralized nature of SDN coupled with its capa-
bilities to provide programmability and dynamic flow management makes it
a suitable paradigm to handle the congestion issues in data centers. Open
networking foundation (ONF) [14], a non profit organization involved in de-
velopment and standardization of SDN, has defined SDN as a network that
offers separation of control plane from data plane and programmability of the
networks [15]. Three major components of SDN include the centralized SDN
controller, SDN enabled switches, and the end hosts. The controller manages
the task of controlling the control plane and is responsible to enforce policy
parameters in the form of flow rules in the data planes of the network devices.
The controller being centralized is able to probe for network statistics from
all devices under its control to oversee the current state of the network.

The SDN architecture describes two main APIs: i) Northbound API de-
fines the application programming interface exposed by the controller to the
network applications to configure the controller and its policy parameters.
ii) The Southbound API defines an interface between a SDN controller and
the network devices that it controls (e.g., SDN switches). OpenFlow [16],
the most readily recognized protocol associated with SDN, is an example of
the Southbound API.

2.3.1 OpenFlow

OpenFlow is a de-facto standard Southbound API which connects SDN con-
troller with OpenFlow enabled switches. The controller issues commands to
the switches and receive statistics and error messages in return using Open-
Flow commands. OpenFlow has been continuously improved since its emer-
gence. For example, its first version (1.0) only had 12 match fields. Though
version 1.6 is in development phase, however, state-of-the-art version is 1.5
which provides more than 40 match fields and plenty of other rich features
like metering, Pipeline processing and Group table etc.
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Figure 2.5: High level view of SDN architecture

2.3.2 How it Works?

In contrast with conventional networks which are distributed, a SDN is con-
trolled in a centralized fashion. Controller has entire network intelligence
and all forwarding devices like switches are dumb and depend on policy de-
fined in flow rules installed by controller. Every switch contains one or more
flow tables. These flow table(s) contain called match rules, called flow rules
hereafter. On arrival of packet on any switch port, switch checks if any rule
exists for this particular packet. This match depends on match fields used
by the SDN controller at the time of flow rule installation. If packet does not
match any rule in any table, it is forwarded to SDN controller for decision
about it. The SDN controller computes next hop and actions for this packet
and may install flow rule for subsequent packets of the same flow. If it only
sends packet out message, switch simply forwards packet and does not in-
stall rule. If message is Flow-mod, then rule is installed in switch’s table and
all subsequent packet matching these fields are forwarded by switch without
consulting controller. Depending on version of OpenFlow, controller can in-
stall any combination of match fields e.g( source/destination Mac addresses,
source/destination IP addresses etc). There is a little bit of restriction here
that is worth mentioning. One cannot simply use upper layer without defin-
ing low layer protocols in match fields. For instance we cannot install flow
rule based on match fields TCP source/destination ports without defining
protocol type (IP and TCP) in match fields.
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Figure 2.6: SDN flow rule components

2.3.3 Advantages

SDN have several advantages over traditional networking and are mentioned
below:

• Since forwarding function is decoupled from control, we can easily pro-
gram the network according to our requirements.

• It provides more control to network administrators to implement the
policies dynamically.

• Since intelligence of the network is embedded in controller, all remain-
ing devices(switches) can be dumb and hence cheap.

• Its programs are not proprietary. One can use opensource controller to
develop his program and implement on SDN switches. Thus it eradi-
cates proprietary protocols, standards and devices.



Chapter 3

Related Work

In this section we discuss various related works in the domain of congestion
control in SDN enabled data center networks.

3.1 Congestion Control Techniques using SDN

Congestion control measures in SDN enabled data centers can be classified
in two broad categories: i) In-Network Congestion Control covers solutions
that rely on support from the network devices (such as switches and the
SDN controller) to mitigate the effect of congestion in the data center. These
solutions does not require support from either the end-host TCP/IP stack or
the standard hypervisor (for virtualized data centers). These solutions can
thus work with any OS and TCP variant deployed by the service provider or
the tenant in their allocated Virtual Machines (VM). ii) Hybrid Congestion
Control on the other hand involves both the end-hosts/hypervisor and the
network elements to detect and mitigate the effect of congestion in the data
center. End-hosts have greater computational power and access to complete
TCP/IP stack as compared with the network devices. Similarly, a hypervisor
is an optimal location to identify, detect and handle flows associated with
each VM in a virtualised environment.

3.1.1 In-Network Congestion Control

Based on avoidance method of congestion, we further sub categorized this
main category and describe as follows.

12
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3.1.2 Providing larger switch buffer

Switches are normally shallow, meaning only having limited capacity of 100s
of KBs. The obvious solution, although not related to SDN is to increase this
size per port to cater the burst of packets. This could result in less number
of packet being lost in the network and thus reduced retransmissions. It is
shown in [17] that using large buffer capacity could delay the incast event
and number of concurrent server can be increased with large buffer capacity.
At European Organization for Nuclear Research, CERN, to provide large
bandwidth, [18] is proposed which works on the principle of software switch.
Unfortunately, that particular switch with large buffer capacity is only well
suited for their network, not for generic data center environments. There is
another issue that might occur with the increased buffer sizes; due to large
queue, there can be much of variation in round trip times that could eventu-
ally affect congestion control mechanism in practice at end hosts. Moreover,
long buffer delay may result in excessive TCP timeout event, worsening the
situation more. Also, the increased buffer comes at increased cost.

3.1.3 Flows Scheduling/Re-routing

Fat-tree alike topologies, mostly used in data centers, provide multiple links
from source to destination with the help of interconnection which are cross
layered. With multiple path, congestion can still not be avoided. Because
mostly data center is designed with much over-subscription. Multiple path
can be used to divert traffic towards a single destination. All congestion
techniques discussed in this category use Elephant and Mice flow to detect
the congestion. They used such traffic types to re-route and scheduling the
flow towards a destination.

Depending on hashing and fields of the packet header, Equal-cost multi-
path (ECMP) [19] is famous multipath routing that can be used to route the
traffic for the same destination on multiple paths. However, ECMP does not
consider current network condition, statistics and flow type in the scheduling
process. Also, same header fields might result in hash collision that may
eventually result in forwarding of two different elephant flows on the same
path, even if there are other path which are not being used and are idle.

Flow re-routing works as follows. The SDN controller gather the net-
work conditions(statistics) and detects congestion if many elephant flows are
traversing the same link. As a result, future or coming flow can be forwarded
to other links for the same destination [20–24]. Based on current work load;
bit rate ratio of current and maximum of each port of the switch, Congestion
Avoidance Algorithm (ACAA) is proposed in [21] where SDN controller de-
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tects the congestion. To mitigate the congestion, based on threshold of 70%,
the SDN controller checks workload on any port of the switch and installs
more flow rules to divert the flows that result in avoidance of congested port.
One threshold is used to detect the congestion and one 50% is used to recover
from congestion event and recovering of flow rules that were in practice when
no congestion was present.

And SDN based and dynamic scheduling of flows is given in [23] for data
centers. For todays data centers, it uses Fat-tree topology. Mainly three
steps are involved. In the first step, Elephant flows are detected from edge
switches in the first step based on global information. Secondly, computation
of available path that are non-conflicting is done with placement algorithm.
This makes sure that all combined flows would not exceed a particular link
capacity. Final step involves all the relevant switches accordingly.

Solution given in [20,21,24] do not differentiate between flow types; mice
and elephant. This result in degrading of mice flows due to increased latency.
Also, this re-scheduled might not be effective for mice flows. Until flows
are re-scheduled, mice flows would have been terminated. Moreover, switch
location limit the effectiveness of the approaches. For instance, if ToR switch
is congested, which happens in incast case specially, there exist no route
that can be used for re-routing. The benefit of such technique include no
modification of TCP stack on end hosts.

OF-controller

Flow classi�ca�on 

& rate alloca�on

Conges�on 

no��ca�on

: Conges�on point

Source 

server
Des�na	on

server

OF-S1 OF-S2 OF-S3

Modi
ed �ow 

table entries

Awnd changed

Figure 3.1: with SDTCP, ACK being modified for senders

3.1.4 Modifying TCP Parameters in the Network

In this section, we discuss solution which tweak parameters in TCP’s header
during the journey of the data packet from source to destination. In TCP’s
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header, the most effective and common parameter available for tweaking
is awnd/rwnd used in acknowledgments sent from one host to other host.
Since sending rate of the TCP sender is chosen minimum from congestion
window(computed from congestion algorithm in practice) and rwnd signaled
from receiver side in acknowledgement. Therefore, by replacing rwnd value
in the network according to share on the bottleneck link from source to
destination, the sender can be throttled.

On such technique presented in [25] is Scalable Congestion Control Pro-
tocol (SCCP) that extends OpenFlow to detect the congestion and measures
fair share of all flows competing for one output port of the switch. Computed
fair share is placed in TCP header in the field of rwnd in ACKs packets in
receiver to sender direction.

awnd: 2500awnd: 2500 awnd: 6000 awnd: 80,000 

Bottleneck

Figure 3.2: An example to demonstrate how bottleneck share is replaced in
rwnd using SCCP

To keep record and count the number of flows on a particular switch,
SCCP uses packet inspection for TCP flags SYN and FIN. SYN increments
and FIN decrement the counter. Using value of number of flows and Band-
width Delay Product (BDP), the fair share is computed. BDP is defined
as product of capacity of the link and RTT(common value flows present
in network). Once share is computed, switch compares this value with the
rwnd value of every packet. In case rwnd value in ACK packet is more than
computed share capacity, switch replaces this value with the computed one.
From source to destination, all switch in the path perform this action and
eventually when packet reaches sender, it contains minium value of the share
of the path from sender to receiver.

The SCCP works well when connection termination take place grace-
fully, not with the timeout events. Because, connection not being terminated
gracefully would require timeout to detect FIN and then algorithm would re-
act, resulting in wastage of resources(bandwidth, buffer capacity). Moreover,
it is assumed that ACK would follow the same path as data packet, which
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Table 3.1: A Brief Overview of SDN based Congestion Control Schemes

Protocol
Congestion Detection Congestion Detector Reactor

Changes Required
Performance
EvaluationMethod Location Location

Re-routing [20] Threshold on Controller Switches Controller Simulations (Mininet)
transmitted bytes

ACAA [21] Threshold on Controller Switches Controller Simulations (Mininet)
link utilization

Local re-routing [22] Threshold on Controller Switches Controller Simulations (Omnet++)
link utilization

Hedera [23] Detection of Elephant flows Centralized scheduler Switches Scheduler Simulations (customized)
at edge switches & Real testbed

DLB [24] Byte counting at port Controller Switches Controller Simulations (Mininet)

SCCP [25] Flow counting at port Switches Switches & End hosts Switches Simulations (Ns3)
& Real testbed

SDTCP [26] Threshold on queue Switches Switches & End hosts Controller & Switches Simulations (Mininet)

SED [27] Threshold on queue Switches Controller Switches Simulations (Mininet)

RWNDQ [28] Flow counting Switches Switches & End hosts Switches Simulations (Ns2)
and queue monitoring

OTCP [29] Network statistics Controller End hosts Controller & End hosts Simulations (Mininet)
(queue, link rate & latency)

OpenTCP [30] Link utilization Controller End hosts Controller & End hosts Real Testbed

NSCA [31] Flow characteristics Controller End hosts Controller & End hosts None

eSDN [32] Queue monitoring Slave Controller End hosts End hosts Simulations (Ns2)
at Switches at End hosts

SDN-GCC [33] Queue monitoring Controller Hypervisor Controller & Simulations (Ns2) &
at Switches Hypervisor Real Testbed

SICCQ [34] Threshold on queues Controller Hypervisor Controller & Simulations (Ns2) &
at Switches Hypervisor Real Testbed

is not the case in multipath Fat-tree alike topologies. The SCCP can be
deployed on switches that are OpenFlow 1.5.0 [35] supported and requires
no change of end host(s) TCP stack or network applications.

Prioritzing the mice flows, Software Defined TCP (SDTCP) [26, 27] lim-
its the rate of background elephant flows by modifying TCP rwnd value in
switches in the path from source to destination, just like SCCP. However,
connection record method and behavior of switch differs from SCCP. Con-
troller is responsible for flow regulation actions in the network; which flows
to limit and which ones to throttle.

Another in-network solution that employs the receive window modifica-
tion is RWNDQ given in [28]. The authors proposed to overwrite the Rwnd
values (and the window scale option, if used) in the packet ACKs with bot-
tleneck fair share value of the bandwidth for the flow. The Rwnd is modified
if the calculated fair share is less than the current value of the Rwnd. The
fair share is calculated by sampling the number of outgoing flows and the
target queue occupancy on the forward data path.
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3.1.5 Hybrid Congestion Control

In this section, we discuss proposed techniques that require support from
the network as well as the end-hosts/hypervisor for their functioning. We
have classified protocols of this category in two further sub-categories; Host-
based solutions and hypervisor-based solutions. Host-based solutions include
techniques that enable the SDN controller to directly communicate with the
host for enforcing rate-limitations. The hosts thus exhibit a modified TCP
congestion control behaviour, enabling it to accept notifications from the
controller. Hypervisor based solutions leverage the virtualization capabili-
ties of the hypervisor to identify flows and rate control the individual VMs
operating on the server.

Involving hosts/hypervisor in exercising congestion control is beneficial
because these possess more computational powers. Additionally, hosts have
access to complete TCP/IP stack, while the hypervisor has visibility in to VM
based flow information that becomes obfuscated once within the network.

3.1.6 Host-based Solutions

Omniscient TCP (OTCP) [29] uses SDN’s centralized management capabili-
ties to compute granular TCP congestion control parameters for dealing with
TCP incast. These computed parameters are then distributed to all hosts
for utilization. The authors suggest that suitable fine-grained TCP retrans-
mission timers matching the network latency should be employed to trigger
an early response to packet drops. Also, the initial and maximum congestion
window used for that connection should depend on the BDP for that specific
host pair. This would prevent the buffer overflow caused by the synchronized
flows leading to TCP incast.

OTCP discovers the topology and switch fabric’s latency with Openflow
Discovery Protocol (OFDP). After latencies in the network are known, con-
troller computes RTT among hosts and set a value for TCP Retransmission
Time Out (RTOmin) to the minimum value. The upper bound of retrans-
mission time is constrained by switch’s queue delay; computed by dividing
value with rate of the link, and TCP RTOmin. Following equation is used to
compute the RTOmax between source destination pair.

RTOmax(H1 → H2) = RTOmin(H1 → H2) +
∑
s∈R

Qs

Ts
. (3.1)

Q and T demonstrate size of the buffer and rate of the link respectively
in the equation. On any route R, s shows a switch between host H1 and
host H2. Between any two host, lowest link available in route is multiplied
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with RTT to obtain BDP. This BDP between two hosts, is upper bound
for maximum congestion window denoted with (Cwndmax). In the presence
of more flows, share of each flow should be equal to (Cwndmax) divided by
number of flows present at any time. Every user would be running a daemon
for connecting with the API of the controller and fetching the fine tuned
congestion parameters calculated at controller for end hosts. Controller uses a
northbound famous API, the JSON/REST. Flow completion time is reduced
by mitigating effect of TCP incast with OTCP. However, modifications at
kerne level, and time involved in measurement of latency of fabric of switches
are costs of technique and significant overhead.

To fin tune the TCP according to network dynamics, authors in [30] have
presented a technique called OpenTCP. Application running on SDN con-
troller, the Oracle, gather networks statistics from SDN switches . Based on
parameters set by administrator, if congestion is about to happen, Oracle
notifies the end hosts which are running a Congestion Control Agent (CCA)
about this. This means that when to react, administrator can define certain
values and threshold on the controller application, Oracle. While initiating
a new TCP session, CCA at end host might opt entire new flavour of TCP
according to current network conditions. For performance of TCP, CCA is
capable of tuning TCP parameters for the established sessions. This tech-
nique requires installation of CCA on all end hosts but requires no changes in
hardware switches in the network. Also, statistics collection period, though
larger than RTT, bring a lot of overhead.

Network Assisted Congestion Avoidance (NSCA) is another host based
solution presented in [31]. The end hosts communicate with network to get
the information; occupied and available capacity, with the help of controller.
Then end host applies rate control method to limit the rate. Since controller
has recent global network statistics, thus, it can tell available data rate for
a particular link and flows. Thus, end hosts become aware of the maximum
available capacity in the path from source to destination to mitigate conges-
tion event in then network. Controller computes all possible path on which
flow can be accommodated with maximum capacity for the desired data
rate. This controller to end host communication is UDP based, thus, when
no UDP datagram is received, end hosts adapts to traditional mechanism of
congestion avoidance.

Supplementing the SDN controller, eSDN framework is proposed in [32]
is another approach based on endhost-controller communication which are
light-weight and deployed on end host stack. These mini controllers gather
network statistics from switches and communicate as slave with master con-
troller residing in network. These mini controller can only query network
statistics and are unable to install any flow rule on SDN enabled switches.
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Though master controller’s load is minimized; no congestion parameter gath-
ering and detection, however, periodic gathering of all network end host mini
controller from switches incur a lot of network message sharing and overhead.

3.1.7 Hypervisor-based Solutions

For SDN capable virtualized data centers, Abdelmoniem et al. in [33] pro-
posed a SDN Generic Congestion Control framework (SDN-GCC). Shim layer
is used to control the hypervisor in this framework. SDN controller is re-
sponsible for signaling the congestion to hypervisor of end host. As a result,
hypervisor for achieving throughput, controls the rate of the sender VM. This
framework allows using different flavours of TCP in different OS in VM TCP
stack. The core idea of this framework is to let the controller take decision on
congestion, and hypervisor is there to apply changes required notified from
controller. Considering capacity of NIC card, shim layer in the hypervisor
allocates bandwidth to all VMs. Allocation of bandwidth is repeated at every
message of SDN controller to hypervisor, whenever congestion takes place on
any switch. The benefit is that it requires no changing at TCP stack of end
hosts.

To predict the incast, technique SDN based Incast Congestion Control
through Queue based monitoring (SICCQ) proposed in [34] let the controller
to monitor switch resources like queues. TCP flags such as SYN and FIN
are counted for a specific time interval on switch. When defined threshold
is crossed, it is predicted that incast is going to happen. At this stage,
the controller notifies the senders(end hosts) about limiting rate to only 1
MSS. Hypervisor of Virtual Machine (VM), on reception of message of Incast
ON from controller, enables the marking of receiving window fields in TCP
ACKs packet for a particular VM. This lets senders to limit their rate and
consequently, queue at switch starts draining. When controller, periodically
with the help of statistics, checks that buffer occupied is less than 20%, it
again notifies hypervisor(Incast OFF) to stop marking rwnd in ACK and
restores sending rate that was set before Incast ON message. Marking stops
as well on expiry of timer which is set to common flow completion time of
mice flows.

In contrast with other such SDN based approaches, SICCQ requires a
channel for communication between the controller and hypervisor for mes-
sage of Incast ON and OFF and rwnd value to be modified at hypervisor.
It neither requires modification of TCP stack working on end host, nor it
requires any changing in the hardware of the switch. To match the TCP
flag, it extended OpenFlow. In comparison with SDTCP; which degrades
elephant flows, SICCQ does throttle all flows equally which share the same
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link and switch in the path. Thus, elephant flows are not effected for the
throughput.



Chapter 4

Methodology

In this section, we describe proposed algorithm for avoiding TCP incast in
data centers using SDN. We describe every major step in form of subsection
to better explain it.

4.1 Application for Avoiding TCP Incast

As depicted in figure 4.6, our algorithm consists of several steps and decision
steps that are part of controller application. But as pre-requisite, lets elabo-
rate TCP’s connection establishment steps depicted in figure 4.1 and briefly
described below:

4.1.1 Proactive Flows Installation

Whenever switch connects with any SDN controller, it shares capabilities
with SDN controller. In response, controller installs atleast one entry called
missed entry. This results in every missed packet sent to controller. Using
this approach, controller firstly installs another flow(in addition to default)
rule based on TCP flag SYN. It sets only flag matching in this flow rule. The
action given in this rule is NORMAL, which means there will be no packet-
in for initial packet. Controller installed this rule to make communication
faster since we are only interested in ACK of this SYN. Our goal is to get
number of servers a particular server is going to connect. This should be
done with minimum communication between switch and the controller. If
we would have installed flow rule for getting SYN packet at controller, we
still are required to get subsequent packet to run our algorithm. Hence,
SYN packet is not of our interest and forwarded with NORMAL pipeline
processing, demonstrated in figure 4.2.

21
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HOST 1 HOST 2

Received SYN

Received SYN-ACK

Send ACK

Send SYN-ACK

Received ACK

These two are

Forwarded to

controller

Figure 4.1: Three way handshake

PKT type=TCP Flag=SYN Action=NORMAL

SDN controller

TCP packet
Traditional forwarding

Not SYN

Figure 4.2: Flag with normal processing

4.1.2 Server Count with SYN-ACK

When host(s) get SYN packet forwarded from NORMAL processing, they
reply to requesting server with SYN-ACK as depicted in figure 4.1. Now, no
rule exists that could match SYN-ACK packet, hence this packet would be
forwarded to SDN controller. To make our algorithm computationally effi-
cient, this is done only on Top of Rack switch (ToR). All remaining switches
forward and install flow rule based on application of normal layer-two for-
warding mechanism. Note that, any other routing mechanism can also be
used instead of normal layer-two forwarding. When switch is ToR, controller
increases number of server to requesting host to 1. This record of connection
will later provide us help in computing and share buffer capacity among all
SYN-ACK senders.
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4.1.3 Final ACK In reply to SYN-ACK

Now the requester would send final ACK to sender of TCP SYN-ACK. Again
there exist no flow rule for this side, hence this packet would be forwarded
to controller by ToR switch.The algorithm from previous packet has learned
that there exist on expected sender which is going to send data to requesting
server. At this time, there exist only one sender and no modification is done
to window, so as to throttle it at full rate.

If there were more than zero senders and less than threshold(, say n,

controller would have assigned
Th1buffer

n
of the buffer value to each sender.

Th1buffer is limit where buffer is assigned any other value except 1 and 0.
Once value is computed, it is installed in flow rule. Now every packet that has
these match field, its Rwnd field is marked at switch. It is worth mentioning
that this marking of Rwnd only takes place at ToR switch of requester.
Remaining switch and final receiver of this modified packet would not know
that ToR switch has modified the rwnd value in TCP ACK header.

4.1.4 Installation of FIN rule

When controller computes and installs flow rule for rwnd modification, it also
installs flow rule based on TCP FIN flag for the same direction, as depicted
in figure 4.3. Resultantly, when requester is finished with data receiving,
It would send FIN-ACK for the sender server. Again note that this rule
is installed on only ToR switch which would also minimize communication
time. Once FIN packet leaves ToR switch it would be forwarded by data
plane in all subsequent switches until it reaches sending server.

PKT type=TCP Flag=FIN-ACK Action=Controller

SDN controller

TCP packet
Rule 2 matched

Rule 1 

matched Rule 1

PKT 

type=TCP
SRC

Action=Next 

switch
DST

Rule 2

Figure 4.3: FIN as a match field
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4.1.5 Marking of rwnd at ToR of requesting server

Once both rules are installed i.e, one with rwnd and one with FIN, TCP
header field(rwnd) would be modified on ToR switch only. As demonstrated
in figure 4.4, host A is requesting server and the switch in circle is its ToR
switch. TCP window tweaking only takes place at this switch even it is
communicating with the host E, 5 hops away.

Core Layer

Aggregation Layer

Edge Layer

Host 

A

Host 

B

Host 

C

Host

D

Host E

ToR switch 1

Figure 4.4: Typical Fat tree topology

4.1.6 Division of Buffer

Now let’s assume there comes another final ACK from data requesting sender.
At this time, buffer of is totally reserved and assigned to server to whom we
assigned on first ACK reception. Now we have to divide assigned buffer
among new server and the first one. For this reason, buffer value assigned
to first server will be retrieved back from local database, and again share is
computed. Now share becomes half of that value which was assigned before.
Now rule for new ACK would be installed with computed share of buffer and
relevant FIN rule would be installed as described in section 4.1.4

4.1.7 Single Flow modification

One of the key feature of OpenFlow is it provides functionality to modify
the flow which has been installed earlier. One can easily modify action as
well. This is done by providing match fields in the FLOW-MOD(flow modi-
fication) message. The matching flow rule in the table being modified would
be changed according to new actions. Since we have to change rwnd of the
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previously installed flow, thus, we have to use distinguish match fields that
would match only one single flow rule we desire to modify.

4.1.8 The threshold th1buffer and threshold th2buffer

Entire buffer of any output port is managed with two different values of
buffer. First one is th1buffer for which value is 75% of the entire buffer.
Second buffer is th2buffer, 95% of the entire buffer. Remaining is reserved
for other protocols traffic, like ARP UDP etc, although 95% of the traffic
in data center is TCP. If current value is less than th1buffer, this means
that congestion is not expected yet and window can be assigned. One the
other hand, if value of current buffer of any output port is equal or greater
than th1buffer, we mark this point as medium level congestion and mark new
sender’s window as 1 MSS (1460 Bytes). We keep marking window as 1 MSS
until th2buffer is reached. This triggers marking of 0 MSS in rwnd of all
subsequent packets.

HOST 1 HOST 2

Received FIN

Received ACK

Received FIN

Send data ACK

Received ACK

(Only this one is sent to 

controller)

Send FIN

Figure 4.5: Connection termination

4.1.9 Reception of FIN-ACK packet

When requester is finished with the sender host, it sends FIN-ACK to ter-
minate the connection, shown in figure 4.5. Since we have installed FIN rule



26

and action that this particular packet must be sent to controller. This de-
cision was to release the buffer say Br, assigned for this particular host and
divide among other waiting either in Q0, Q1, and Qx. If rwnd assigned to
host with which connection is being terminated is more than 1 MSS, priority
would be given to Q0 because host in Q0 are not able to transfer any data.
Thus, we assign first host of Q0 as 1 MSS and put it to Q1. Now remaining
buffer is assigned to first host of Q1(who’s previous rwnd value was 1 MSS),
now value has become Br-1 MSS. Relevant flow modification messages are
sent to only one ToR switch.

4.1.10 Combined flow modification

We have set maximum number of senders that would be assigned rwnd more
than 1 MSS at any time. We assign all such sender same cookie value, say
X. On reception of FIN, if Q1 and Q0 are empty, now we have to distribute
released value among all competing flow in Qx. For this purpose we only
have to send a single flow modification message irrespective of number of
senders for those flow has been installed. We use cookie value X and new
action(rwnd) to modify the flows.

4.2 TCP Flags and RWND in OpenFlow

Support of TCP flags is not directly provided in OpenFlow. TCP flags as
match fields are provided by Nicira in their extension to OpenFlow. On the
other hand, TCP rwnd modification is yet not supported by any means in
OpenFlow itself and its implementation in OpenFlow switches. Therefore,
changes in both are required to achieve this functionality. We modified Open
vSwitch for the modification of TCP rwnd value.
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Figure 4.6: Flow chart of the proposed algorithm



Chapter 5

Evaluation

In this section we evaluate performance of proposed algorithm. We have
evaluated two cases. First, when algorithm reacts from very first sender,
mentioned as Case 1 hereafter. Second is when until 10 number of senders, al-
gorithm does not work and starts working when servers exceed 10, mentioned
as Case 2 hereafter. We have discussed Throughput, Flow Completion Time
(FCT) and Request Completion Time (RCT) in evaluation, though number
of retransmissions are depicted as well but are not discussed separately.

5.1 Why Mininet

We choose Mininet due to its following advantages:

• It allows creation of custom topologies and provides GUI that can ex-
port python scripts of generated topology automatically.

• Every host in this run actual Linux kernel under the hood which makes
us easy to run program/applications on particular host(s).

• One can use either default switch(Open vSwitch) or modified switch
easily

• It has support for SDN, for instance switches are capable of Open-
Flow protocol and it has support for several controllers (POX, RYU,
OpenDaylight etc.).

5.2 Data center topologies

There exist number of topologies for different types of data centers. However,
most common which provides multiple paths from one host to other is Fat

28
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Tree topology which is depicted in figure 5.1. There are mainly following
reasons due to which this topology has gained attention and importance in
deployments

• It consists of multiple paths from one host to other

• It uses cheap switches

• Oversubscription can be adopted

Core Layer

Aggregation 

Layer

Edge Layer

Figure 5.1: Fat tree topology

5.3 Emulation environment

We are using Linux OS, and Mininet emulator. Switch we are using is Open
vSwitch which is software opensource available switch and has mostly all
implementation of features of OpenFlow. Its new version are available but
we are using version 2.6. Fat-tree forms redundant links, so we have enabled
Rapid Spanning Tree Protocol (RSTP) to enable forwarding in loop topology.
We have listed important environment setup parameters in table 5.1.

5.3.1 Incast experiment

We have generated traffic which could result in Incast like events. This setup
is shown in table 5.2.
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Table 5.1: Experimental setup

Category Name Specification
CPU Intel Core (TM) i7-2600K CPU 3.4 GHz
RAM 8 GB - DDR4
OS Ubuntu 14.04.01 LTS

Emulator Mininet 2.3.0d1 [36]
South bound API OpenFlow v1.3 [35]

Switch Open vSwitch 2.6 [37]
Controller RYU [38]

Traffic generator Empirical traffic generator [39]
Packet analyzer Wireshark [40]

Table 5.2: Incast traffic generation setup

Parameter Values
SRU 1MB

Buffer 256KB
Servers 1-30

Packet size 1500B
Link 1Gbps

Number of Runs 4

5.3.2 Effect of Incast on throughput

Case:1

Major problem that incast incurs is throughput collapse. The fundamental
reason lies behind the basic concept of concurrent sending behaviour of large
number of TCP hosts to one host. Shallow buffer switches; which consist of
KBs of buffer available per port, can not accommodate large number of TCP
senders, especially when they use IW=10 MSS. Therefore, we plot TCP’s
throughput against number of concurrent server involved in communication.
It can be seen clearly that, maximum throughput can be achieved if number
of concurrent server are minimized. For instance, figure .5.2 reveals that if
servers are upto 10, for 1 Gbps link can provide as much as 700-800 Mbps
of throughput. However, following the trend also tells that at 15 servers,
throughput has been degraded to 600 Mbps. The culprit for this downfall is
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Figure 5.2: Throughput comparison for case 1

no other than entire window drop of TCP senders when incast takes place on
port towards the receiver. Considering worst case situation, when number
of senders are 30, throughput has been reached to less than 400 Mbps. This
trend is being followed only in case of TCP. When proposed algorithm is
being used in the network, it can be seen that even at 30 servers almost
750Mbps is achieved. Since we are avoiding incast in any case(number of
servers), therefore, throughput of our algorithm is less than TCP alone. In
that case TCP window is not being changed, hence it is throttled at full rate.
If we see that in figure 5.4, TCP alone is therefore dropping more packets
because it is throttled at full rate.

Case:2

In this case, we have set number of servers equal to 10 for which our algo-
rithm would not affect ongoing transmissions. Therefore, it is shown in figure
5.3 throughput of our proposed algorithm is closed with throughput of TCP
along. When number of server crosses 10, it is clear that algorithm outper-
forms the TCP. The reason behind is efficient allocation of buffer capacity
marked by ToR switch where incast could occur. TCP is giving full IW=10
at all number of servers, hence throughput is drastically decreasing with the
increase in number. On the other hans, our proposed algorithm is tweaking
number of bytes in TCP’s header according to number of servers involved in
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communication at any stage.

Figure 5.3: Throughput comparison for case 2

5.3.3 Flow Completion Time (FCT)

Case: 1

Flow completion time is defined as, the time aggregator takes for receiving
data from the other server is called flow completion time. The data discussed
in this context in literature is called Server Requested Unit (SRU). Most of
the time, its size is from Bytes to KBs. We have set size of SRU as 1MB
in this experimental setup. It can be seen from the figure .5.6, 5.5, 5.7 that
number of senders involved in communication are directly proportional to
flow completion time. This is obvious because, more senders means every
senders will have less share on the Incast port. Consequently, more number
of RTTs are required to complete the transmission of data. Consider that
IW-10 is adopted and 1 MSS is 1500 Bytes. Therefor IW=10 would transmit
15KB of data in the first RTT. If 30 number of server would transmit this
much data, 450KB of data would reach output port concurrently. Shallow
buffer’s capacity is by far less than this value. Flow’s packet would eventually
get dropped. Incast’s severe case can also occur in which entire window gets
drop. In this case, TCP’s three duplicate ACK can not rescue the sender.
TCP has no other option than waiting for RTO= 200 µseconds. If this has
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Figure 5.4: Number of retransmissions comparison for case 1

to be done in every window, it drastically increases flow completion time. So
therefore, flow completion time either depends on number of servers involved
or size of the SRU. It is seen that average FCT of proposed algorithm is
almost equal to TCP alone. Due to entire window drop, it can be seen that
maximum FCT is increased incase of TCP. On the other hand, proposed
algorithm is not letting drop as much packets, resulting in less number of
RTO and thus a few retransmissions. Hence, better maximum FCT.

Case: 2

In this case, since we do not act until number of senders are 10, therefore
FCT in this is increased for our algorithm and has resulted in close value
with TCP alone. But as long as number of servers are increased in 5.8, we
see that FCT of our algorithm is better than TCP. Reason behind is same
as better management of buffer capacity at ToR switch where all servers are
competing for output port buffer towards aggregator.
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Figure 5.5: Maximum flow completion time for case 1

5.3.4 Request Completion Time (RCT)

Case: 1

RCT is defined as when all servers are finished with sending data to aggre-
gator server. In other words, it is the value of last server finished its data
sending process. It can be observed in figure 5.11 that in case 1, when we are
reacting even at one sender, our RCT is slightly more than TCP. Because
TCP is sending at full rate and results in small RCT value. But as long as
servers are increased, we see that our algorithm efficiently allocating buffer
capacity to servers minimizes RCT time with considerable margin.

Case: 2

As we have discussed in previous section that, our algorithm starts working
incase 10 servers are communicating with servers, thus until 10, RCT is same
as TCP in this particular case. But at increased number of senders, all server
compete for sharing, therefore, all get affected and drop packets accordingly
at buffer. This is also clear in figure 5.13. On the other hand, our algorithm
solving incast issue, only allows that much number of bytes that can be
accommodated in buffer, thus less number of retransmissions. This means
that combined, all server would take less time finishing flows and hence, RCT
is improved.
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Figure 5.6: Comparison for average flow completion time case 1

Figure 5.7: Minimum flow completion time comparison case 1
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Figure 5.8: Maximum flow completion time for case 2

Figure 5.9: Comparison for average flow completion time case 2
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Figure 5.10: Minimum flow completion time comparison case 2

Figure 5.11: Request completion time comparison for case 1
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Figure 5.12: Request completion time comparison for case 2

Figure 5.13: Number of retransmissions comparison for case 2



Chapter 6

Conclusion and future work

In this thesis, we unfolded the problem of TCP’s IW-10 which takes place in
data centers environments. We investigated its effects on TCP incast issue
in data centers. In addition to this, we use SDN approach to mitigate this
issue at the cost of controller processing. We argue that rather than buying
number of intelligent, therefore expensive network devices, in data centers we
could use cheap and dumb devices and we can run a number of applications
(congestion avoidance in our case) on top of high computation capable SDN
controllers, providing more control to network administrators to manage and
modify the network configuration with minimum human intervention. Our
incast avoiding SDN application manages buffer of the switch port and does
the job on ToR switch only, further reducing the communication overhead
between controller and switches. Note that we neither propose new TCP,
nor we modify TCP’s implementation on host. The only assumption we
set is that switches are capable of modifying rwnd value in TCP’s header.
However, our this modifications is required only at ToR switches. Results of
simulations show that approach is effective in managing buffer of output ports
towards requesting server. Consequently, instead of recovering from incast,
our scheduling and buffer management approach can avoid it occurrence.

Machine Learning (ML) techniques have recently being widely adopted in
various fields. To the best of my knowledge, there is minimum work done on
usage of ML for detection and mitigation of congestion in SDN enabled data
centers. This is a reason for adoption of ML in data center environments;
ML based method, based on dataset on historic basis, learn and predict the
event that could occur. In data centers, their is alot of repition of flows
or data being replicated on multiple servers. So ML can efficiently predict
the flows based on previous and current flows and scheduler can schedule
the flows accordingly. Such work is presented in [41] under the name of
Knowledge-defined networking paradigm.
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