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Abstract

Automatic controllers for insulin infusion are used in artificial pancreas for
treatment of diabetes type 1 patients. Controllers are designed based on
some models of blood glucose-insulin system. A physiologically verified model
that governs the characteristics of human blood glucose is Bergman’s non-
linear model. Using this model we have designed an adaptive backstepping
based nonlinear controller for diabetes type 1 patients. For controller glu-
cose effectiveness factor of blood is treated as an unknown parameter and
numerical values of controller gain and tuning function are selected to pro-
duce best possible results. A complete mathematical derivation of nonlinear
controller is described and simulation results are discussed using MATLAB
SIMULINK. Lyapunov stability theorems are used to analyze stability and
convergence of blood glucose level to a desired concentration. Lyapunov
theorems propose exponential stability of controlled glucose concentration.
Simulation results also indicate faster convergence in tracking response and
overshoot/undershoot characteristics as compared to some recently devel-
oped techniques in literature. In the end a simple backstepping based non-
linear controller is also proposed. Again its exponential stability is proved
mathematically and shown in simulations also. Comparison of SIMULINK
results with adaptive backstepping based controller is discussed in the last
chapter.

Keywords: Artificial pancreas, diabetes controller, adaptive backstep-
ping, Lyapunov stability.
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Chapter 1

Preliminaries

1.1 Linear Systems

A linear system is one that satisfies properties of superposition and homo-
geneity. A general form of a linear system is

ẋ = A(t)x+B(t)u
y = C(t)x+D(t)u

(1.1)

where “x” is the state vector, “y” is output and “u” is input. Matrices A, B,
C and D depend on the model parameters.
Superposition: If u(t) is input of a system and y(t) is output and for two
different inputs u1(t) & u2(t) outputs are y1(t) & y2(t) than system is said
to hold superposition property if u1(t) + u2(t) = y1(t) + y2(t).
Homogeneity: If y(t) is output of a system against an input u(t) and “a”
is a scalar number than for homogeneity au(t) = ay(t) should be satisfied.

1.2 Nonlinear Systems

Nonlinear systems do not posses superposition and homogeneity properties.
In mathematical models of nonlinear systems there are nonlinear terms in
state equations. An example of a nonlinear time invariant system ẋ = f(x, u)
is given below:

ẋ1 = a1x1 + b1x1x2 + c1x3
ẋ2 = a2x2 + b2x

2
3 + c3x2x3

ẋ3 = a3x1 + b3x2 + c3x3

(1.2)

In this model there are three nonlinear terms in first two equations i.e.
b1x1x2, b2x

2
3 and c3x2x3. Where coefficients a1, b1, c1, a2, b2, c2, a3, b3 and c3

are real numbers.

1
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1.3 Lyapunov Stability Theory

Information about energy of a system can be a useful to determine whether
a system is stable or not. If the energy of a system is decreasing it is stable
and if it is increasing then unstable. e.g. If a ball is dropped vertically from
a height its total energy will be sum of potential and kinetic energy. After
some time this ball will hit the ground and eventually become static with
zero energy due to resistive forces acting against its motion. Therefore we can
conclude that a ball dropping vertically from certain height is stable as its
energy is decreasing. This concept was first introduced by a Russian math-
ematician Aleksandr Mikhailovich Lyapunov and hence theory was named
after his name. Lyapunov stability theory describes stability of a system in
terms of its energy i.e. if energy of a system is decreasing with time it is
stable.
To determine whether energy of a system is decreasing or increasing we can
simply write down energy function of a system e.g. as in a mechanical system
sum of all the energies (kinetic and potential). This function is called a Lya-
punov candidate function. After that we take time derivative of Lyapunov
candidate function if the derivative comes out to be negative it means system
is stable. In many problems we do not know the exact energy function of the
system. In that case Lyapunov candidate function is not a perfect energy
function but an energy like positive definite function in which all the state
variables of system are included.

Another important point is that if derivative of candidate function cannot
be proven negative it does not mean that system under consideration is
unstable. It may be stable or unstable because sometimes a system is stable
but we can not prove it mathematically due to different choice of Lyapunov
candidate functions. Therefore by using Lypunov theory we can only prove
that system is stable but can not say for sure that it is unstable. Because
there may exist a different candidate function for which derivative comes out
to be negative but we do not know it yet.
For a general three state system, given below;

ẋ1 = f1(x1, x2, x3)
ẋ2 = f2(x1, x2, x3)
ẋ3 = f3(x1, x2, x3)

(1.3)

We can define a Lypunov candidate function “V” such that it is a positive
definite function with all three state variables included in it. Few examples of
positive definite function for system 1.3 with three state variables are given
below;

V = x21 + x22 + x23 (1.4)
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V = x21|x2|+ x23 (1.5)

V = |x1|+ |x2|+ ẋ3
2 (1.6)

Using lyapunov stability theory we can define three types of stable systems.
i.e. stable, asymptotically stable and exponentially stable.

1.3.1 Stability

A system is said to be stable if it has a bounded output against a bounded
input. In terms of Lypunov theory a system is stable if derivative of Lyapunov
candidate is less or equal to zero.

1.3.2 Asymptotic Stability

A system is asymptotically stable if it has bounded output for a bounded
input and it converges to origin with the passage of time. Mathematically
a system can be proven asymptotically stable if time derivative of Lypunov
function is negative definite.

1.3.3 Exponential Stability

An asymptotically stable system is said to be exponentially stable if it con-
verges to origin with an exponential decay. According to Lyapunov theory,
a system is said to be exponentially stable if for a positive definite Lyapunov
candidate function V(x), the derivative V̇ (x) is negative definite such that
V̇ (x) 6 −αV (x).

1.3.4 Local and Global Stability

Locally stable systems are stable for a set of initial conditions but not stable
for initial conditions that are outside the set. While globally stable systems
are stable for all the possible input conditions. In other words we can say
that for a locally stable system region of attraction is a limited set and system
can converge to origin for the initial conditions within that set. A globally
stable system has an unlimited set as region of attraction.
In terms of Lyapunov theory a system is globally stable if derivative V̇ (x) is
negative and V(x) is radially unbounded.
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1.4 Backstepping

Backstepping is a technique in which stabilizing control for a nonlinear system
(in strict feedback form) is designed in a recursive way where a system can be
divided into subsystems and these subsystems can be stabilized by choosing
appropriate virtual inputs [23]. Resulting control law obtained in such a
way is robust for both matched and mismatched disturbances. A matched
disturbance is one that appears in the same state in which input is present.
While a mismatched is in a different state from input e.g. in blood a glucose
input is treated as a mismatched disturbance because input to control glucose
level is insulin, later it will clear in discussion of blood glucose model.
A four state model in strict feedback form is shown in eqn. 1.7. We can
divide this system into four subsystems and stabilize each one separately, for
this we have to take virtual inputs for each subsystem. e.g. For ẋ1, ẋ2 and
ẋ3 we can take x2, x3 and x4 as virtual inputs and finally, control input “u”
can be derived.

ẋ1 = f1(x1) + g1(x1)x2
ẋ2 = f2(x1, x2) + g2(x1, x2)x3
ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4
ẋ4 = f4(x1, x2, x3, x4) + g4(x1, x2, x3, x4)u

(1.7)

1.5 Adaptive Control

Adaptive control is a control technique useful when some system parameters
are variable or uncertain. Because adaptive controller adapts to the new
conditions if value of some parameter changes. e.g. In a rocket, airplane or
helicopter flight quantity of fuel in the fuel tank is not a constant, it varies
as the time of flight increases. Therefore to overcome the effect of variable
fuel quantity adaptive controller is a suitable choice.

1.6 Robust Control

Robust controllers are used where we have uncertain parameters, matched
or mismatched disturbances and modelling errors. This is a static technique
in which effect of errors and uncertainties is canceled out by introducing a
gain in controller which is larger than any possible uncertainty/disturbance.
Hence robust controller does not adapts to the changes in parameters as
in adaptive controller, it just has the ability to overcomes any uncertain
situation. Another difference is that for robust controllers bounds of uncer-
tainty/error/disturbance should be known which is not necessary for adaptive
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controllers. e.g. In an aircraft flight suppose it is hit by some object (bird
etc.) which disturbs the stability of aircraft. This is where robustness comes
in handy to bring back that airplane to stability.

1.7 Matched and Mismatched Disturbance

A matched disturbance is one that, if represented in mathematical model
of a system, appears in the same state equation in which control input is
available. e.g. In a four state system model shown below a disturbance d3(t)
is matched disturbance because of the presence of control input “u”.

ẋ1 = f1(x1) + g1(x1)x2 + d1(t)
ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + d2(t)
ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4
ẋ4 = f4(x1, x2, x3, x4) + g4(x1, x2, x3, x4)u+ d3(t)

(1.8)

A mismatched disturbance is one that is in the state equation in which there
is no control input. e.g. In above model d1(t) and d2(t) are mismatched
disturbances.



Chapter 2

Introduction

Diabetes is one of the most common diseases which results in deaths of mil-
lions of patients per year around the world. Diabetes is a widespread disease
in the whole world with billions of dollars spent on its treatment on yearly
basis. In year 2002 total medical expenses on treatment of diabetes in US
were estimated to be $ 132 billion which exceeded to $ 245 billion by 2012 [7],
[2]. Studies also indicate that number of patients worldwide may increase to
300 million by year 2025, this number was much less back in 1995 with 135
million patients [24]. Total diagnosed diabetes patients in US in year 2007
were 17.5 million with total medical expenditure of $ 174 billion and this
number is increasing ever since [1]. Diabetes cases can be divided into two
major etiopathogenetic categories. Diabetes mellitus type 1, traditionally
termed as “juvenile diabetics”, is a disease in which patient has high blood
glucose level due to insulin deficiency. This lack of insulin is resulted by loss
of insulin producing beta cells of the islets of langerhans in the pancreas, for
which insulin therapy is necessary for affected individuals. Although it can
occur at any age, it mostly occurs in childhood or adolescence. Type 2 dia-
betes is caused by two main factors (i) combination of resistance to insulin
action (ii) inadequate insulin secretory response. It is uncommon under the
age of 40 and number of cases increase with increase of age [3] & [9].
Diabetes if not controlled can result in life threatening consequences such
as hyperglycemia with ketoacidosis or the non ketotic hyperosmolar syn-
drome. Hyperglycemia causes dysfunction and failure of eyes, kidneys, heart
and blood vessels [3]. Therefore proper control of blood glucose in human
body is of primary importance. This bleak situation has motivated many
researchers to look for new methods and ways of improvement in treatment
of diabetes.

Infusing insulin externally to overcome the lack of insulin in human body

6
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Figure 2.1: Closed Loop Control of Blood Glucose

is the most effective and commonly used method for treatment of type 1
diabetes patients. This infusion can be done by injecting insulin into body
manually or automatically by using some controller. For patients who use
insulin manually before sleeping or before fasting a very common condition
observed during sleep is nocturnal hypoglycemia/hyperinsulinemia. By us-
ing overnight closed loop control episodes of nocturnal hypoglycemia can be
reduced significantly [19], [20]. Therefore, it is preferred to use closed loop
control during night and fasting conditions. During day time and normal
conditions (without fasting) a good control sequence can also be used to
control glucose concentrations. A simplified closed loop feedback system is
shown in Fig. 1, which shows a sequence in which blood glucose level is reg-
ulated automatically with a controller. A sensor measures glucose in blood
and gives an electrical signal to controller which releases insulin slowly into
body through an actuator. A real time artificial pancreas is also shown in
Fig. 2.2 and its application on human body is elaborated in Fig. 2.3.
The measure of effectiveness or quality of a controller to be used in an ar-
tificial pancreas can be studied by (i) convergence time to different glucose
set points, overshoot/undershoot from set points & steady state error and by
(ii) (a) OGTT (Oral Glucose Tolerance Test i.e. ingesting glucose by mouth)
(b) IVGTT (Intravenous Glucose Tolerance Test i.e. injecting glucose into
body) & (c) MMTT (Mixed-Meal Tolerance Test i.e. taking a dose of mixed
meal by mouth). In all three tests (a, b & c) response of controller against
an external glucose input is studied by frequently taking blood samples and
checking insulin resistance over a period of time [9].
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Figure 2.2: An Artificial Pancreas (Ref: discovermagazine.com)

Figure 2.3: Artificial Pancreas Application (Ref: www.healthline.com)
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In our research an adaptive backstepping based nonlinear controller is
designed and its response to different set points, a sinusoidal glucose input
disturbance and noise in measured glucose level is studied using MATLAB
SIMULINK. Controller is derived mathematically using adaptive backstep-
ping technique and its stability analysis is performed using Lyapunov stability
theory. Comparison of proposed controller is made with some other control
techniques and simulation results are also discussed in detail.



Chapter 3

Literature Review

For automatic control of blood glucose many control techniques and algo-
rithms are available in literature. Many methods are introduced for contin-
uous insulin therapy since early years of 1970s. These control techniques
include PID controllers, PD controllers, model predictive controllers, linear
quadratic regulators, fuzzy controllers and empirical model based algorithms.
Both black box and grey box based model strategies are available in literature
[27]. Which are discussed in detail below:

3.1 Continuous Time Linear Control Tech-

niques

In the very start curve fitting was used as first bedside control technique as
described in [8] by clemens et al. A look up table based control was proposed
by Furler et al in which an input value is decided from a table against an
output value [14]. Application of optimal control theory to diabetes mellitus
patients was studied in [34]. A rule based control with adaptive basal therapy
was introduced by Wang et al. [46] in which control algorithm is adaptive
for several basal profiles. A more mathematically based control strategy is
discussed in [43] & [10]. PI controller and an improved PID switching based
strategy are available in [15] & [33]. PID controller is generally considered the
best as it can be tuned to minimize steady state errors [40]. Proportional,
integral and derivative gains in PID controller can be adjusted to get the
most optimized result of a controller. Proportional gain contributes to the
speed of the controller while derivative and integral gains are used to control
the overshoot/undershoot and steady state errors respectively. Some authors
prefer PD controllers with high derivative gain and omitting integral gain to
avoid overdosing of insulin.

10
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3.2 Discrete Time Linear Control Techniques

Along with continuous time glucose controllers is discrete time controllers can
also be applied for insulin infusion. Discrete time PID control is described
in [44] and a continuous extended version of the same controller is design by
Dalla Man et al. In which simulation results are discussed but for real time
applications it should be discretised [10]. Basal insulin injection volumes can
be optimized on run to run basis e.g. by studying the required insulin basal
values of the previous days in different times during a day, present basal
values can be optimized. This idea was shared by Palrem et al. in 2008[35].

3.3 Robust Control Techniques

Controllers have been designed to compensate disturbances in glucose level.
Feedforward-feedback control strategies are available which preprocesses the
effect of disturbance before the disturbance occurs. Similarly uncertainties in
model parameters can also be compensated. Some robust control strategies
for diabetes are available, a robust tracking problem is described in [39], an
application of robust control on linearized system is discussed in [38] & an
optimal controller for ICU applications was designed by Chee at al. in [6].

Sliding mode controller with two degree of freedom was proposed by Gar-
cia Gabin et al [16]. In every sliding mode controller there is effect of chat-
tering associated with it,a reduced chattering option was proposed by Kaveh
and Shtessel in [22].

3.4 Model Predictive Control Techniques

Model predictive control (MPC) is another control method included in the
domain of optimized control. MPC is a feasible technique for both linear
and nonlinear models with powerful computational solvers. Model predictive
control predicts the model of the system with passage of time and gives con-
trol input accordingly to the system [36], [29], [30] & [31]. Both linear model
predictive control (LMPC), nonlinear model predictive control (NMPC) tech-
niques are available in literature. An LMPC algorithm on a black box model
was designed by Parker et al. [36] & [37]. To simulate response on an arti-
ficial pancreas a more detailed model is used in [42] & [42]. Linear discrete
MPC based on model of Dalla Man et al. [12] & [11] is discussed in [30]
by Magni et al. Along with linear continuous and discrete control tech-
niques, nonlinear model predictive control (NMPC) was also proposed by
Magni et al. using complete nonlinear model of Dalla Man et al. NMPC
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uses a more detailed model and a different objective function which requires
requires more computational effort. Hovorka et al. presented an adaptive
NMPC based on a nonlinear model in [18]. It was specifically designed for
patients with fasting condition with self adaptation of control algorithm to
some insulin sensitive parameters. Another condition during glucose level
control is hypoglycemia which should be avoided while infusing insulin. To
control hypoglycemia a feedforward-feedback control strategy is described in
[33] & [32] by Marchetti et al. Both the effect of insulin infusion on glucose
level and of a known disturbance on glucose level should be known in this
controller.

3.5 Advanced PID Control Techniques

Advancements in PID performance have been made by adding fuzzy control
techniques resulting in PID type fuzzy controllers. A combination of PID and
fuzzy controller is discussed in [26] by C. Li. and R. Hu. An application of
multimodel based approach using fuzzy-PI and genetic fuzzy-PI controllers
on diabetes type 1 patients is studied in detail by T. Vinod Reddy and M.
Goharimanesh in [45] & [17] respectively.
Application of Linear Quadratic regulator (LQR) and empirical model based
algorithm has also been studied [4].

3.6 Nonlinear Control Techniques

For nonlinear systems there are many nonlinear control techniques available
in literature. These nonlinear control design techniques have been discussed
in detail by Hassan Khalil in [23] and by Slotine et al. [41]. Some advanced
nonlinear techniques are higher order sliding mode control, passivity based
control, backstepping and adaptive backstepping based control and lyapunov
redesign based control.



Chapter 4

Glucose-Insulin Nonlinear
Model

In human body glucose concentration in blood is mainly regulated by liver
and pancreas. Through interaction of these two organs low and high glu-
cose concentrations are controlled by producing glucose and insulin in body
respectively as elaborated in Fig. 4.1. A simplified model of blood glucose
regulation is shown in Fig. 4.2 also. Characteristics of glucose-insulin dy-
namics in human blood can be represented by a mathematical model. An
authentic model can be used to design different control algorithms which
might be helpful for technological developments in the field of biomedical
engineering.

A nonlinear model for blood glucose-insulin system is described in equa-
tions (1)-(3). This model was derived from work of R. N. Bergman and often
referred to as Bergman’s minimal model of glucose-insulin dynamics [5]. It
is a physiologically verified three state model with identifiable parameters
which takes into account the effect of glucose effectiveness (p1) in human
body and delay in insulin action (p2) due to remote compartment of insulin.
G, X, I, U and Gmeal are glucose concentration, insulin concentration (re-
mote compartment), plasma insulin concentration, insulin input (insulin in-
fusion rate) and external disturbance of glucose, which is generally a meal
disturbance, respectively.

dG/dt = −p1G−X(G+Gb) +Gmeal/V1 (4.1)

dX/dt = −p2X + p3I (4.2)

dI/dt = −n(I + Ib) + U/V1 (4.3)

13



CHAPTER 4. GLUCOSE-INSULIN NONLINEAR MODEL 14

Figure 4.1: Glucose Regulation in Human Body (Ref: www.emaze.com)

Figure 4.2: Model for Glucose Regulation
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Parameters described in above model and their values is described in Ta-
ble 4.1 To study comparison of results with some other controllers, parametric
values are chosen exactly same as in [45] & [17].

Table 4.1: Parameters & Values

Sr.
no.

Parameter Parameters Description Values

1 (Gb) Basal Plasma Glucose 4.5 mMol L−1

2 (Gmeal) External Glucose Input 5.54 mMol L−1min−1

3 (p1) Glucose Effectiveness Fac-
tor

0 min−1

4 (V1) Insulin Distribution Volume 12 L

5 (p2) Delay in Insulin Action 0.025 min−1

6 (Ib) Basal Plasma Insulin 4.5 mU L−1

7 (n) Fractional Disappearance
Rate of Insulin

5/54 min−1

8 (p3) Patient Parameter 0.000013 mU
L−1min−2
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4.1 Problem Statement

Current problems for designing artificial pancreas are continuous glucose
measurement, controlling external glucose disturbances and effect of rou-
tine activity on glucose levels. Therefore improvements in sensors, modeling
and control strategies are required. Here we shall try to improve the con-
trol algorithm for artificial pancreas. As discussed earlier actual model of
glucose-insulin system is nonlinear, therefore, a nonlinear controller can be
designed to achieve global stability instead of using linear techniques. The
decision of nonlinear technique to be applied, largely depends on nonlinear
model under consideration. Therefore first we have to analyze our three state
model carefully.
For simplicity state variable G, X and I in equations (1)-(3) are replaced
with x1, x2 & x3 and the terms Gmeal/V1 & U/V1 are replaced with d(t) & u
respectively. Now model can be rewritten as:

ẋ1 = −p1x1 − x2(x1 +Gb) + d(t) (4.4)

ẋ2 = −p2x2 + p3x3 (4.5)

ẋ3 = −n(x3 + Ib) + u (4.6)

Equations (4)-(6) describe a model of three states where in equation (4)
we have a nonlinear term x2(x1 + Gb) and a mismatched disturbance d(t).
Further, to study tracking response of controller, we have to introduce a set
point variable xs. A variable z1 is chosen such that as z1 approaches zero, x1
approaches xd i.e.

z1 = x1 − xd (4.7)

Where xd is a set point for desired glucose level. Putting value of x1 from
equation (7) in our model with new variables, we have:

ż1 = −p1(z1 + xd)− x2(z1 + xd +Gb) + d(t)− ẋd (4.8)

ẋ2 = −p2x2 + p3x3 (4.9)

ẋ3 = −n(x3 + Ib) + u (4.10)

This form of model implies that the proposed controller should have the abil-
ity to track the set points in the presence of nonlinearities and mismatched
disturbances in the system.



Chapter 5

Nonlinear Controller Design

5.1 Backstepping Based nonlinear controller

5.1.1 Introduction

Backstepping technique is a suitable choice for systems of this type if result-
ing controller meets our requirements [23]. Backstepping utilizes concept of
virtual inputs.

5.1.2 Mathematical Derivation

STEP I First of all we take x2 as virtual input for eqn. 5.1 further x2 can
be replaced with a function α1 which itself is a function of z1 such that
First of all we take x2 as virtual input for eqn. 5.1 further x2 can be replaced
with a function α1 which itself is a function of z1 such that

z2 = x2 − α1 (5.1)

Now, We can rewrite ż1 as

ż1 = −p1(z1 + xd)− x2(z1 + xd +Gb) + d(t)− ẋd
ż1 = −p1(z1 + xd)− (z2 + α1)(z1 + xd +Gb) + d(t)− ẋd
ż1 = −p1z1 − p1xd − z1z2 − xdz2 − α1z1 − α1xd
−Gbz2 −Gbα1 + d(t)− ẋd

(5.2)

Exact function α1 can be drawn using Lyapunov Stability Analysis.

V1 = 1/2z1
2 (5.3)

V̇1 = z1ż1 (5.4)

17
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Using eqn. 5.1 and taking following value of α1, V̇1 is shown in eqn. 5.19

α1 = (−p1xd − ẋd + d(t)) ∗ 1/(z1 + xd +Gb) (5.5)

V̇ takes following form(with c1 ≥ 0)

V̇1 = −p1z12 − (z1 + xd +Gb)z1z2 (5.6)

STEP II For eqn. 4.6 we can take x3 as virtual input and replace it with
α2 where α2 is a function of z1 and z2 such that

z3 = x3 − α2 (5.7)

Now, eqn.s for ż2 and ż3 can be written as:
From eqn. 5.1 & 5.20 we can write

ż2 = ẋ2 − α̇1

ż2 = −p2x2 + p3x3 − α̇1

ż2 = −p2(z2 + α1) + p3(z3 + α2)− α̇1

(5.8)

Now another Lyapunov candidate which includes both Z1 and z2 is

V2 = V1 + 1/2z2
2 (5.9)

Taking derivative w.r.t. time yields

V̇2 = −p1z12 − (z1 + xd +Gb)z1z2 + z2ż2 (5.10)

Putting ż2 from eqn. 5.21 and following value of α2, V̇2 is shown in eqn. 5.25

α2 = 1/p3[+p2α1 + α̇1 + (z1 + xd +Gb)z1] (5.11)

V̇2 comes out to be(c2 ≥ 0)

V̇2 = −p1z12 − p2z22 + p3z2z3 (5.12)

STEP III Again from eqn. 5.1 & 5.20 we can write

ż3 = ẋ3 − α̇2

ż3 = −nx3 − nIb + u− α̇2

ż3 = −n(z3 + α2)− nIb + u− α̇2

(5.13)

Now we take one final Lyapunov Candidate which includes dynamics of all
three states z1, z2 and z3.

V3 = V2 + 1/2z3
2

V̇3 = V̇2 + z3ż3
V̇3 = −p1z12 − p2z22 + p3z2z3
+z3(−nz3 − nα2 − nIb + u− α̇2)

(5.14)
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Figure 5.1: MATLAB SIMULINK Model

If we take

u = −p3z2 + nα2 + nIb + α̇2 (5.15)

we have negative definite V̇3 which is

V̇3 = −p1z1 − p2z22 − nz32 (5.16)

Negative definite derivative of Lyapunov candidate shows for input function
given in eqn. 5.28 will be stable and exponentially converging to origin or
the desired set point.

5.1.3 Simulation Results

Response of the proposed backstepping based controller can be studied in
MATLAB SIMULINK using ODE45 solver. First of all analysis of perfor-
mance is done at four different set points changing after regular time inter-
vals. In simulations, a saturation function is used at controller output to
limit infusion of insulin to a certain value which is 180 mUL−1min−1. Initial
conditions of variables x1, x2 and x3 are set to zero. Model implemented in
SIMULINK is shown in Fig. 3. System with original variables is present in
circled blocks, in block 2 change of variables is performed and controller is
designed in block 3.

Using proposed controller for setpoints tracking, a graphical representa-
tion of system response can be seen in Fig. 4. It is clear how proposed con-
troller keeps tracking four different glucose concentrations (4, 6, 8 & 10 mMol
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Figure 5.2: Setpoints Tracking with Backstepping Controller

per liter). Before convergence of glucose level to desired glucose concentra-
tions, we can observe overshoots for all four setpoints. Maximum overshoot
is observed when following first setpoint which is 6 mMol per liter. Longest
convergence time also occurs at first setpoint tracking with 167 minutes (or
approx. 1 ∗ 104 seconds) which is less for tracking other three concentration
levels. This long convergence time is related to a delay between a time of
glucose concentration measurement and a beginning of an action of insulin
that is infused in response of a measured glucose concentration. However
maximum time required to reach an acceptable range of glucose concentra-
tions (rise time of controller) is 20 minutes for tracking of last setpoint 10
mMol per liter.

Any change in blood glucose level can be taken as a disturbance which
is generally a meal disturbance. If a meal disturbance (Gmeal) is introduced
(as in OGTT or MMTT) which is less than 0.72 mMol L−1min−1, adaptive
backstepping controller shows robustness against this external disturbance.
When a sinusoidal meal disturbance is given to our system as shown in Fig.
5, variations in controlled blood glucose level can be seen in Fig. 6. It is
clear how a disturbance in blood glucose results in variation from desired
concentration but eventually it returns to the given setpoint. Now, practi-
cally blood glucose level is measured, frequently after small time intervals,
with a sensor. Which means we may have a situation when there is a noise
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Figure 5.3: Glucose Disturbance Input (Gmeal/V1)

in measured glucose level. Under these circumstances simulation results of
proposed controller are shown in Fig. 7 & Fig. 8. Where maximum noise is
0.72 mMol with a sampling time of 100 seconds.

5.1.4 Conclusion

Backstepping based controller can be used for insulin therapy of diabetes pa-
tients as glucose-insulin system is exponentially stable with controlled input.

5.2 Adaptive Backstepping based Nonlinear

Controller

5.2.1 Introduction

An adaptive backstepping based controller can also be designed by adding
adaptivity to backstepping based controller. Resulting control law will be
adaptive for variable parameters of model and robust against matched and
mismatched disturbances. A practically variable parameter is glucose effec-
tive factor (p1) therefore we take p1 as an unknown parameter while design-
ing adaptive backstepping controller. A detailed mathematical derivation of
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Figure 5.4: Response to Sinusoidal Disturbance of Backstepping Controller

Figure 5.5: Response of Backstepping Controller Subjected to Noise
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Figure 5.6: Response of Backstepping Controller Subjected to Noise

adaptive backstepping based controller is given below.

5.2.2 Mathematical Derivation

STEP I

First of all to make our controller adaptive, we take glucose effectiveness
factor (p1) as an unknown parameter. Using adaptive algorithm [25], [21],
the estimated term ˙̂p1 for unknown parameter p1 can be obtained in following
three steps:

ω1 = −x1
τ1 = −z1x1
˙̂p1 = −z1x1γ

(5.17)

where parameter ω1 is a function of the states directly affected by p1, τ1 is
tuning factor and γ is a positive number.
If difference of estimated and actual value of p1 is p̃1, we can write

p̃1 = p1 − p̂1 (5.18)

& its time derivative is
˙̃p1 = − ˙̂p1 (5.19)
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where ṗ1 = 0.
Now, in equation (8) we can take x2 as a virtual input and apply an input
φ1, which is a function of variable x1, such that their difference z2 can be
written as:

z2 = x2 − φ1 (5.20)

Putting this value of z2 in equation (8), we have

ż1 = −p1z1 − p1xd − (z2 + φ1)(z1 + xd +Gb) + d(t)− ẋd (5.21)

or
ẋ1 = −p1z1 − p1xd − z1z2 − xdz2 − φ1z1 − φ1xd

−Gbz2 −Gbφ1 + d(t)− ẋd
(5.22)

To determine φ1 in terms of state variables, we choose a positive definite
Lyapunov candidate function V1 such that effects of state z1 and the error in
estimated value of p1 (p̃1) are included in it.

V1 =
1

2
z1

2 +
1

2γ
p̃1

2 (5.23)

Taking its time derivative, we have

V̇1 = z1ż1 +
1

γ
p̃1 ˙̃p1 (5.24)

Putting values of p̃1, ˙̃p1 & ż1 from equations (12), (13) and (16) respectively,
in above equation (18), we have

V̇1 = z1(−p1z1 − p1xd − z1z2 − xdz2 − φ1z1 − φ1xd

−Gbz2 −Gbφ1 + d(t)− ẋd)−
1

γ
(p1 − p̂1) ˙̂p1

(5.25)

In simplified form we can write equation (19) as:

V̇1 = −z21z2 − xdz1z2 −Gbz1z2 − p̂1x1z1 − z1(ẋd − d(t)

+φ1z1 + φ1xd + φ1Gb))

V̇1 = −(z1 + xd +Gb)z1z2 − p̂1x1z1 − z1(ẋd − d(t)

+φ1(z1 + xd +Gb))

(5.26)

Now, taking following value of φ1

φ1 = (c1z1 − p̂1x1 − ẋd + d(t)) ∗ 1

z1 + xd +Gb

, (5.27)
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equation (20) takes the form

V̇1 = −c1z21 − (z1 + xd +Gb)z1z2 (5.28)

STEP II

In equation (9) we take x3 as a virtual input and apply an input φ2 in
place of x3, the difference between these two can be denoted by a variable z3
such that

z3 = x3 − φ2 (5.29)

A similar equation is (14) from which we can determine ż2. Therefore by
taking derivative of equation (14) and expanding it using equation (9) &
(23), we have

ż2 = ẋ2 − φ̇1

ż2 = −p2(z2 + φ1) + p3(z3 + φ2)− φ̇1

ẋ2 = −p2z2 − p2φ1 + p3z3 + p3φ2 − φ̇1

(5.30)

Now, we take an accumulative Lyapunov candidate function V2, such that
dynamics of z1 & z2 are included in it.

V2 = V1 +
1

2
z2

2 (5.31)

Taking derivative of V2 and substituting values of V̇1 and ż2 from equations
(22) & (24), we have

V̇2 = V̇1 + z2ż2
V̇2 = −c1z21 − (z1 + xd +Gb)z1z2 + z2(−p2z2

−p2φ1 + p3z3 + p3φ2 − φ̇1)

(5.32)

or
V̇2 = −c1z21 − p2z22 + p3z2z3 − z2((z1 + xd +Gb)z1

+p2φ1 − p3φ2 + φ̇1)
(5.33)

Now choosing

φ2 =
1

p3
[(z1 + xd +Gb)z1 + p2φ1 + φ̇1] (5.34)

V̇2 takes the from
V̇2 = −c1z21 − p2z22 + p3z2z3 (5.35)

STEP III
Taking time derivative of equation (23) and expanding it using equation (10),
we have

ż3 = ẋ3 − φ̇2

ż3 = −n(z3 + φ2)− nIb + u− φ̇2
(5.36)
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Now another accumulative positive definite Lyapunov candidate function
for all three states z1, z2 and z3 is V3.

V3 = V2 +
1

2
z3

2 (5.37)

Taking derivative of V3 and putting values from equations (29) & (30), we
have

V̇3 = V̇2 + z3ż3
V̇3 = −c1z21 − p2z22 + p3z2z3 + z3(−n(z3 + φ2)− nIb

+u− φ̇2)

V̇3 = −c1z21 − p2z22 − nz23 + z3(p3z2 − nφ2 − nIb + u

−φ̇2)

(5.38)

Here controlled input u is derived such that derivative of accumulative Lya-
punov function V3 is negative definite. Clearly if we use following value of
control input in equation (32),

u = −p3z2 + nφ2 + nIb + φ̇2 (5.39)

V̇3 becomes
V̇3 = −c1z21 − p2z22 − nz23 , (5.40)

which is clearly less than zero. It means with derived control input u, the
derivative of positive definite Lyapunov function is negative definite. There-
fore system modelled with states z1, z2 & z3 is globally exponentially stable
[28], [13]. We infer from this result that by using adaptive backstepping
controller, for any initial conditions, state variables of system z1, z2, z3 & p̃1
(error in estimated parameter), all converge to zero exponentially.
Now, from equations (7) & (12) we see that as z1 approaches zero, x1(glucose
concentration in blood) approaches xd(set point) and as p̃1 approaches zero,
p̂1 approaches p1 i.e. difference in estimated and actual value of p1 becomes
zero. It means when controlled input with adaptive backstepping controller
is given to our system, glucose level will reach set points which is exactly
what we were trying to achieve.

5.2.3 Simulation Results

Response of adaptive backstepping based controller can also be studied in
MATLAB SIMULINK. In simulations, values of saturation function, γ (a
parameter used with tuning function in section IV) and controller gain c1 are
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Figure 5.7: Setpoints Tracking with Adaptive Backstepping Controller

chosen as 180 mUL−1min−1, 0.005 and 1 respectively and again initial condi-
tions of variables x1, x2 and x3 are set to zero. In adaptive backstepping we
can achieve as good results as simple backstepping for tracking, disturbance
rejection and noisy conditions. An advantage is adaptivity of backstepping
controller to variable parameters. Simulation results for tracking of setpoints,
disturbance rejection and response to noise can be seen in Fig 11, 12 & 13
respectively. Disturbance input (gmeal) is sinusoidal and maximum value of
noise is taken as 0.012 mMol.

Now, to compare results of proposed controller with some other con-
trollers in literature, we take new set points (80, 95 , 115 & 95 same as in
[45] & [17]). A combined graphical representation of set points ys (blue dash
line) given to controller, system response with a manual fixed input (green
dash-dot line) and response of glucose-insulin system with adaptive back-
stepping controller (red continuous line) is shown in Fig. 9. For simulation
of manual infusion results, different insulin infusion rates (u) are selected
for all four set points such that at steady state desired glucose concentra-
tions are achieved. From this graph we can see how quickly convergence is
achieved using adaptive backstepping controller as compared to manual in-
fusion. Longest convergence time and maximum overshoot are observed at
first setpoint (80) tracking which are 335 minutes (or 2 ∗ 104 seconds) and
6.5 mMol respectively.
Table 5.1 gives a comparison of adaptive backstepping controller with multi-
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Figure 5.8: Response to Sinusoidal Disturbance of Adaptive Backstepping
Controller

Figure 5.9: Response of Adaptive Backstepping Controller Subjected to Noise



CHAPTER 5. NONLINEAR CONTROLLER DESIGN 29

Figure 5.10: New Setpoints Tracking

model based fuzzy-PI and genetic fuzzy-PI controllers [45], [17]. Comparison
is made from simulation results of controllers for four similar setpoints. From
maximum convergence time column, we see that using proposed controller
settling time is reduced significantly. In fact, it is less than half the conver-
gence times of fuzzy-PI and genetic fuzzy-PI controllers. Maximum overshoot
from desired concentration level is 6.5, as shown in Fig. 10, which is less than
fuzzy-PI and is slightly higher than genetic fuzzy-PI but within an acceptable
range. Finally, steady state error is also zero with proposed controller.

5.2.4 Conclusion

From mathematical and simulation results we conclude that with adaptive
backstepping based nonlinear controller we can achieve global exponential
stability for glucose-insulin system. Therefore it can be used for treatment
of type 1 diabetes patients to replace linear controllers.
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Figure 5.11: Maximum Overshoot

Table 5.1: Comparison of Control techniques

Controller Type Max. Conver-
gence

Max. overshoot Steady State

Time (minutes) Error

Adaptive Back-
stepping Con-
troller

335 6.5 No

Genetic Fuzzy-
PI

1000 3 No

Fuzzy-PI 1000 9 Yes



Chapter 6

Conclusion/Future Works

6.1 Conclusion

Linear controllers applied on nonlinear systems generally cannot produce as
good results as nonlinear controllers when global behavior of system is under
consideration. In our work, a nonlinear adaptive backstepping based con-
troller is proposed to control glucose level in blood which is characterized
by a nonlinear model. This new controller provides significant reduction in
convergence time as compared to linear approaches. Adaptive backstepping
algorithm and Lyapunov stability theory are used for derivation of controller
which results in global exponential convergence of system to setpoints. Sim-
ulations obtained in SIMULINK support the mathematically derived results.
Finally a comparison of proposed controller is made with fuzzy-PI and ge-
netic fuzzy-PI controllers which indicates notable improvements in results.

6.2 Future Work

• Lypunov redesign controller for automatic infusion of insulin.

• Passivity based controller for automatic infusion of insulin.

• Backstepping based controller for a more detailed six state model.

• Hardware implementation of proposed nonlinear controllers.

31
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and Dale E Seborg. A feedforward–feedback glucose control strategy
for type 1 diabetes mellitus. Journal of process control, 18(2):149–162,
2008.

[33] Gianni Marchetti, Massimiliano Barolo, Lois Jovanovic, Howard Zisser,
and Dale E Seborg. An improved pid switching control strategy for type
1 diabetes. IEEE Transactions on Biomedical Engineering, 55(3):857–
865, 2008.

[34] RL Ollerton. Application of optimal control theory to diabetes mellitus.
International Journal of Control, 50(6):2503–2522, 1989.

[35] Cesar C Palerm, Howard Zisser, Lois Jovanovič, and Francis J Doyle. A
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