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Abstract

In this report, continuous model predictive control using orthonor-
mal functions has been used to control landing trajectory of the air-
craft. The purpose of this thesis was to implement constraint control
on unmanned aerial vehicle and get improved results as compared
to PID technique.

For the simulations in MATLAB, longitudinal state space model
of reliance 0.46 trainer aircraft has been used because of its stable
natural dynamics. The model has two inputs four states and four
outputs. The model is linearized at specific trim conditions.

Model predictive control(MPC) is used for designing controller re-
quired in landing for unmanned aerial vehicle. MPC can be simu-
lated in real time and online optimization at every step can be per-
formed. State space model is used and selected outputs are tracked.
Landing control requires more than one state to be controlled at the
same time so MPC proved to be a good candidate for designing such
multi input multi output(MIMO)system.

In real life applications, constraints are always present in all dynam-
ical systems. MPC gives the possibility of adding constraints on
inputs, input derivatives, states and output of a system. This gives
MPC a priority when designing constraints systems.

Simulation done in MATLAB shows good performance of landing
phase of the flight by simply tuning the parameters of the laguerre
functions.Also controller handled constraint very well while slightly
compromising on the output. But over all it showed improved per-
formance when compared to PID controllers.
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Chapter 1

Introduction

1.1 Background

Unmanned aerial vehicles are currently one of the main research
fields owing to their high demand in military operations. Research is
focused on producing highly efficient UAV’s for the complicated and
dangerous mission where human pilot’s physical presence is avoided.
Besides military operations, UAV also has immense applications in
surveillance missions and air traffic control.

In early days, UAV’s were piloted by the operators from the ground.
But, now due to advancement in research, operators set certain pa-
rameters of UAV’s (like speed , altitude etc) and an autonomously
operated UAV can now reach itself to its target point. This research
has made UAV, a monitored aircraft from constantly controlled air-
craft.

1.2 Focus of this Research

In order to make further research in making UAV fully autonomous,
landing and takeoff system must also be fully automated. There is
already a lot of research published in the field of Automatic landing
and takeoff(ATOL). This thesis has the objective to formulate and
achieve more accurate and efficient landing system of fixed wing
aircraft (A/C) capable of performing landing maneuvers efficiently
by keeping control inputs within their physical limitations.
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1.3 Literature Review

Landing is one of the most dangerous flight control phase. There
are various techniques for landing depending upon specific military
missions and A/C size and geometry. Wheeled landing is one of
them and proves to be most reliable technique for landing. Work
has been done in this field to improve autonomous wheeled landing.
In [1],and [3],basic groundwork has been done in landing and take off
of fixed wing A/C. The controllers required for landing and takeoff
maneuvers are presented in [1].

Both longitudinal and lateral motion of UAV are being considered
and researched to gain autonomous control over these phases. Land-
ing controller are considered under guidance controllers where land-
ing trajectory is first designed and relevant command is given to
controller for following the trajectory accurately. Way point navi-
gation is one of the method for getting the reference trajectory for
landing. Similar work related to path planning are done in [4], [5],
[6] and [7].

In [8], various control algorithms for autonomous landing are de-
signed for landing maneuvers in severe weather conditions. It is
shown through simulations that UAV followed all longitudinal and
lateral position commands and was able to stabilize the system when
subjected to changing weather conditions. A backstepping design is
developed in [9] for tracking angle of glide slope. This techniques
is much simpler and can effectively control the glide path of the
aircraft.

Total energy control and cross track control system is being utilized
in [10] for accurate landing of UAV in conditions involving cross-
winds. In [11], adaptive backstepping technique with PI controller is
utilized to generate commands for glide slope and flare. A nonlinear
control is designed in [12] using the dynamic inversion approach for
automatic landing of unmanned aerial vehicles (UAVs). It is ensured
that the sink rate at touchdown remains within specified bounds.
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1.3.1 Model Predictive Control

Model Predictive control, which is a costly technique computation-
ally wise is in use these days due to recent advancements in research.
In [13], restrictions imposed on control efforts have been considered
by implementing MPC over internal loop PID autopilot. Linear
quadratic tracker with integral(LQTI) and MPC is utilized in [14]
for landing a UAV on moving platform. This technique is useful
for finding the control inputs for landing by considering the motion
of UAV and moving platform. Non linear model predictive control
algorithm is used in [15] for landing of UAV on small space having
large angle of attack with less speed which is referred as deep stall
landing. 3D prediction model with two inputs is used in [16] for Non
Linear Model Predictive Control (NMPC) to predict future states to
reach to the commanded height and state. Field programmable gate
arrays (FPGAs) are utilized to compute states for NMPC in parallel
to save computational cost.

In [17] PID control, LQT, SMC control laws are applied to linearized
mathematical model of small fixed wing aircraft with 2 different trim
airspeed. [18] employs hierarchical fuzzy control to keep the states
at landing within the limits required for safe landing.

Model Predictive control is the most successful technique and is uti-
lized in various applications due to its ability to handle complex
systems with hard constraints on states and inputs. In this thesis
landing controllers are deigned using this technique. In MPC, cur-
rent state of the plant is used online to solve a finite horizon problem.
the solution will give the optimum control sequence. First control in
the sequence is applied to the plant and output is obtained. Main
difference of this technique with other technique is that it computes
the control law online at each step as opposed to use of already
controlled law in other techniques.

The other significance of this technique is its unique capability n
handling hard constraints on states and input. In every system there
is a possibility of constraints related to actuators and states. Also
there is a shortage of techniques which can handle constraints.

In this thesis, continuous model predictive control using orthonor-
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mal basis functions is utilized. The control sequence of the plant
required in MPC is estimated using set of laguerre functions. The
response of the closed loop system depends upon the choice of scaling
parameters. These scaling parameter tune the system and depict the
accuracy of the results.The state space form of the system is used
in MPC. A velocity form model of state space is used. This leads to
a embedding of integrator into plant and MPC can be easily imple-
mented on the plant. Also hard constrains can easily be implemented
in this velocity form model.

Almost all application in process industry has constraints on its
states and control variables. MPC has this most important fea-
ture of incorporating constraints on-line at each step of the process
without violating their limits. Quadratic cost function in MPC can
be solved using quadratic programming methods. Similar work is
done in [19],[20],[21],[22]. This thesis uses the velocity form model
in MPC algorithm. It uses state space model so that it can han-
dle multivariable systems. Papers related to state space from of the
MPC are [23], [24].

1.3.2 Quadratic Programming

Quadratic programming method is one of the most important topic
in general life sciences.Linear programming which was used to op-
timize linear functions was the first programming method and it
was used to handle linear constraints in 1940’s [25]. Nowadays,
Quadratic programming is in use for solving constrained problems.
Quadratic programming has been studied by researchers and work
has been done [26],[27],[28],[29],[30],[31],[32].There are several meth-
ods for solving this quadratic problem. Some of them are primal dual
interior point algorithm [33][34],[31], active set method [28], Shor’s
r-Algorithm[35] and Hildreth programming[36],[20]. This thesis will
use Hildreth quadratic programming procedure in implementing con-
straints in MPC

4



1.4 Unmanned aerial Vehicle

Unmanned aerial vehicles have been widely used and its predicted
that in near future all air space would be flooded with UAV’s per-
forming different assigned task of military or commercial use. Due
to non availability of pilot in UAV’s it is very necessary to have ef-
ficient autopilot control system so that in case of any disturbances
the aircraft can perform well within limits. The aim of this thesis is
to design landing control system for UAV’s for performing smooth
landing maneuvers.

1.4.1 Aircraft and model

In this section, aircraft dynamic model will be discussed. Reliance
0.46 Size RC Trainer Aircraft model taken from [1] is used in this
thesis as a suitable airframe because of its stable natural dynamics
for carrying out landing operations.

Figure 1.1: Photograph of the Reliance 0.46 Size RC Trainer Aircraft[1]
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A 6 DOF model is presented in [1]. In this model, aerodynamic forces
and moments(called the airfoils), engine and gravity are the three
main sources contributing towards forces and moments acting on
the aircraft. Propeller engine contributes towards the engine forces
and moments. It’s angular momentum is ignored. Constant force per
unit mass model act as a model for gravitational forces acting on the
aircraft. Aerodynamic forces include lift and drag forces acting on
the aircraft.

1.4.2 Axis system

Three reference axes systems are used when modeling the dynamics
of the aircraft:

1. The inertial axis system:

The inertial axis system is a reference frame in which all Newton
laws can be applied easily. The origin of the axis is chosen as
the aircraft’s starting point on a runway for convenience. The
XE axis points in the north direction, the YE axis points in the
east direction and the ZE axis points downwards towards the
centre of the earth as photographed in [1].

2. The fixed body axis system:

The origin of the fixed body axis system is the aircraft’s centre
of gravity. The XE axis is in the aircraft’s plane of symmetry
and is taken positive in the forward direction. The YE axis lies
normal to the plane of symmetry XEZE and points towards the
right wing. The ZE axis is positive in the downward direction.

The aircraft roll,pitch and yaw about XE,YE and ZE axis re-
spectively. Conventional Aerodynamic control inputs are de-
fined with respect to this system as:

(a) Aileron control surface deflection δa:

Aileron Positive deflection creates a negative rolling mo-
ment.

(b) Elevator control surface deflection δE:

6



Figure 1.2: Body Axis reference system [2]

Elevator’s Positive deflection creates a negative pitching
moment.

(c) Rudder control surface deflection δR:

Rudder’s Positive deflection creates a negative yawing mo-
ment.

3. The wind axis system :

The reasons for using the wind-axes system is that aerodynamic
forces can be easily expressed in this system. The wind axis
shares the same origin with body fixed axis system but its ori-
entation is different. The Xw axis points in the direction of the
velocity vector. The Zw axis points downwards. The Yw axis
points in the direction of the right wing.

The non-linear model given in [1] can be linearized about the trim
conditions using small disturbance theory. The system is linearzied
so that linear control algorithms can be applied to the model. In
small disturbance theory, we assume that aircraft moves with steady
flight conditions with very small change in these steady conditions.
This theory cannot be applied to systems where there is large change

7



in steady state motions. The air speed has a huge impact on dynam-
ics of aircraft, the aircraft model given in next section is trimmed
and linearized about 20m/s. The following linearized model will be
utilized for applying control algorithms of landing.

1.5 Longitudinal model

The linear longitudinal state space model values of the Reliance 0.46
size trainer aircraft[1] is given below:

ẋl = Alxl +Blul (1.5.1)

ḣ = Clḣxl (1.5.2)

ṗN = Cluxl (1.5.3)

δ̇t = − 1

τT
δt +

1

τT
δtc (1.5.4)

where

Al =


−0.15 0.23 0 −0.17
−0.97 −12.13 3.49 0

0 −45.56 −11.18 0
0 0 10 0

 (1.5.5)

xl =
[
u w q θ

]
(1.5.6)

Bl =


0 1

−0.43 0
−24.09 0

0 0

 (1.5.7)

ul =
[
δe δt

]
(1.5.8)

Clḣ =
[
0 −1 0 20Π

180

]
(1.5.9)

Clu =
[
1 0 0 0

]
(1.5.10)

τT = 0.5 (1.5.11)

xl is the vector containing all longitudinal states, where u and w are
the axial and vertical velocity components of airspeed expressed in
m/s, q is the pitch rate in degree/sec, θ and δe in degrees, δt and δtc
in m/s2. pN is the position error along longitudinal axis measured in
metre(m), h is the height state in metres(m). τT is the engine time

8



Figure 1.3: Longitudinal Aircraft Model

constant. The linear engine model corresponds to equation (1.5.4).
Figure 1.3 shows the block diagram of longitudinal model of the
aircraft.

The states are allowed to deflect from the trim conditions within
specific limits[1]. Maximum allowed control deflection in δe and δt is
10deg and 5m/s2 respectively.

As eigenvalues of the state space system tells us about its dynamic
stability modes. There are two longitudinal modes of the aircraft,
the phugoid mode and short period mode. Low frequency compo-
nents corresponds to phugoid mode and high frequency components
corresponds to short period mode.

The longitudinal modes are used to describe the motion of the air-
craft, when the aircraft is not perturbed about the yaw or roll axis.
There are two distinct longitudinal modes of motion.

1.5.1 Phugoid Mode

Phugoid mode is a slow and low frequency. It is a long period mode
which involves trade between altitude and airspeed. This mode is
lightly damped consisting of many overshoots. In this mode pitch
angle and axial velocity varies more than the vertical velocity and
pitch rate.

Phugoid mode response of the aircraft under study in this thesis can
be found out by setting initial conditions of the state space model
equal to real parts of the phugoid mode eigenvector. Real parts of

9



the eigenvector corresponding to phugoid mode are:
u
w
q
θ

 =


−0.0573

2.189× 10−3

−6.69× 10−3

1

 (1.5.12)

Figure 1.4: Pure Phugoid mode Response

Response of Pure phugoid mode response is shown in Figure1.4

1.5.2 Short Period Mode

Short period mode is fast, having high frequency components and is a
stable mode. It is well damped having few overshoots. In this mode,
values of pitch rate changes significantly while other values remain
considerably constant.Real parts of the eigenvector corresponding to

10



short period mode are:
u
w
q
θ

 =


−2.339× 10−3

0.01058
1

−0.3954

 (1.5.13)

Figure 1.5: Short Period mode Response

Figure 1.5 shows the time response of short period mode when initial
conditions corresponding to this mode is put in system’s state space
vector.

1.6 Lateral Model

Figure 1.6 shows the block diagram of lateral model of the aircraft.
The linear Lateral state space model of the Aircraft understudied [1]
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is given below again for reference.

ẋt = Atxt +Btut (1.6.1)

ψ̇ = Ctrxt (1.6.2)

ẏ = Ktψ + Ctvxt (1.6.3)

(1.6.4)

where

At =


−0.57 0 −3.49 −0.17
−37.22 −45.15 4.72 0
18.81 −0.36 −2.52 0

0 10 0 0

 (1.6.5)

xt =
[
v p r φ

]
(1.6.6)

Bt =


0 0.16

−52.58 1.50
0.53 −5.23

0 0

 (1.6.7)

ut =
[
δa δr

]
(1.6.8)

Ctr =
[
0 0 10 0

]
(1.6.9)

Ctv =
[
1 0 0 0

]
(1.6.10)

Ktψ =
20π

180
(1.6.11)

Cross track error is the shortest distance between present position

Figure 1.6: Lateral Aircraft Model

of the aircraft and the line joining the origin and the target position.
It can be calculated from equation (1.6.4). Unit of Cross track error
y is in metres. v is the lateral velocity measured in m/s. r and p are

12



in 10deg/sec while all other states δa δr φ ψ are measured in degrees.
The maximum δa and δr deflections are limited to 10deg. The natural
modes of motion corresponding to lateral mode are discussed below:

1.6.1 Roll Mode

The roll mode is generally a non-oscillatory motion consisting of pure
rolling motion. There is a differential lift generation when one wing
goes down in rolling motion and the other goes up. This lift creates
a moment which tries to reinsate the equilibrium. Roll rate value
increases when aircraft is disturbed by the rolling moment until the
restoring moment balances it.

The following real parts of the roll mode eigenvector when put in
the state state of the systems gives the time response of this mode.
The value of roll rate is larger because of the phenomenon discussed
above. The graph showing roll mode is given in Figure 1.7

v

p
r

φ

 =


1.5× 10−3

1
0.0077
−0.2214

 (1.6.12)

1.6.2 Spiral Mode

This mode is a slow and unstable mode. If in a level flight, a dis-
turbance occurs and creates a small roll angle. This can move the
vehicle downhill as the side slip also increases due to disturbance.
If this disturbance is not properly checked, the aircraft experiences
yawing moment which would tend to move the aircraft spirally into
the ground. A small tail and a dihedral wing is used to reduce the
spiral mode affect. The time response of this mode of the aircraft
under study is plotted in Figure 1.8.

The real part of the eigenvector corresponding to spiral mode are
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Figure 1.7: Roll mode Response

given below: 
v

p

r
φ

 =


0.0064
−3× 10−4

0.0480
1

 (1.6.13)

1.6.3 Dutch Roll Mode

Yaw rate is mostly affected by this mode, while all other lateral
states experience small changes in their values. In this mode, roll
rate motion lags the yaw rate motion by 90o. It is very much similar
to longitudinal short period mode. A disturbance oscillations in yaw
ψ makes the wings to move back and forth which results in oscillatory
differential drag and lift forces. This lift/drag causes aircraft to roll
with roll angle (φ) that lags yaw angle (psi) by 90o. the time history
response of this mode is shown in Figure 1.9.
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Figure 1.8: Sprial mode Response

The real parts of the eigenvector corresponding to this mode are:
v

p

r
φ

 =


0.052

−4.905× 10−3

1
−0.4291

 (1.6.14)
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Figure 1.9: Dutch Roll mode Response

1.7 Summary

In this chapter, literature review of the research done in the aircraft
Landing phase is discussed. Linear model of the reliance aircraft and
its axis systems used is discussed. Various modes of longitudinal and
lateral aircraft dynamics have been discussed and their time history
response is shown.
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Chapter 2

Landing Problem

2.1 Introduction

This chapter discusses landing problem and its different phases. In
the thesis, we assume that the aircraft first descends to a certain
height. Aircraft then align itself with the runway center-line and
point its heading to it. It also decrease its velocity. Then, A/C
start its landing maneuver and descends towards the runway with a
constant glide path angle and speed. For a smooth landing, It enters
a flare phase when it is near to touchdown point. After touching the
ground, the A/C follows the centerline of the runway path until its
speed reduces to zero and aircraft comes to rest.

2.2 Glide Path Phase

This phase comprise the interval in which A/C descents from its
initial height to flare altitude. The glide slope angle (γ) and airspeed
(Uo) is kept constant during this phase. The aircraft speed and the
flight path angle, γ, determine the trajectory for this phase. For a
short landing distance, lower velocity and larger path angle is desired
to decrease the landing distance and landing time. This tracking
trajectory is based on the steady state constant sink rate which must
be maintained during glide phase.

During this phase, the height of the A/C above ground is regulated.
The desired height is calculated as a function of forward distance.
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The glide slope is a straight line path whose slope is determined by
the flight path angle γ.

Figure 2.1: Glide path and Flare Generation

For the glide-slope tracking, the aircraft follows a constant vertical
speed that represents the sink rate of the aircraft [11]. Glide path
graphical representation is given in Figure 2.1. (xg, hg) is the start
of the glide path. Flare begins at (xf , hf). The glide path reference
command for the glide-slope tracking is defined as

ḣref,GS = tan−1

(
h− href

S

)
Uok +

−4

180/π
Uo (2.2.1)

where S is the horizontal distance and href is the desired height of
glide slope after which flare starts. h is the starting height of glide
slope which is taken to be 21m. Uo is the constant speed. Speed is
taken to be double of stall speed which is 7.5m/s.The first term in
the expression of (2.2.1) is adjusted factor. k is an adjusted factor
which adjust time taken for glide maneuver. The simulink block
diagram is shown in Figure (2.2).
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Figure 2.2: Glide slope Controller Block diagram

2.3 Flare Phase

The flare maneuver is commenced after the glide path. The flare
phase must start at a correct height to avoid risking damage to the
aircraft at the touchdown. That is why it should not be started at
much lower height. Also larger flare initiation height results in large
horizontal distance towards the touchdown and decrease in airspeed.

During the flare manoeuvre, the descent rate is kept exponential.
In this phase, the aircraft follows an exponential path and moves
towards the touchdown point in a curved path. The aircraft raises
its nose and slides down smoothly while following the curved path.
The desired curved path can be found from equation

href(t) = ho e
−t
τ (2.3.1)

ho is the distance at the start of the flare phase. τ is time con-
stant which defines the time taken to reach the runway. To get the
corresponding climb rate command from this equation we can take
derivative of equation (2.3.1).

ḣref = −ho
τ

exp(−t/τ) (2.3.2)

As it is assumed that the airspeed remains same during glide and
flare phase so flight path angle during flare can be calculated as

γref(t) = − ho
Uoτ

exp(−t/τ) (2.3.3)

Initial flare height can be calculated by putting t = 0 in equation
(2.3.3)

ho = −Uoτγ(0) (2.3.4)
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γ(0) is the path angle at the start of flare which is equal to glide
path angle that is 4 deg because of the steady descent between glide
mode and flare mode. From equation (2.3.3) and (2.3.4), γ required
at touchdown can be calculated as

γref,TD = γref(0) exp(−t/τ) (2.3.5)

As the airspeed is constant so we can replace t by (D − Do)/Uo
where Do is the distance from starting point of flare mode and D
is the horizontal distance. by manipulating the terms, we can get
expression for time constant τ .

τ = − D −Do

Uo[ln(γref,TD/γref(0)]
(2.3.6)

D−Do is the distance between touchdown and flare starting mode.
γref,TD can be calculated by considering climb rate at touchdown to
be 0.4572m/s by the following formula

γref,TD = ḣTD/Uo (2.3.7)

Graphical description of the flare phase is shown in Figure 2.1. The
climb rate command obtained for flaring as in (2.3.2) is then fed to
climb rate controller to regulate it. Flare controller block diagram
is shown in Figure 2.3.

Figure 2.3: Flare Controller Block Diagram

2.4 Taxi Phase

This phase starts just after the touchdown. It is required to keep the
plane on the runway in particular direction, so heading controllers
are utilized to keep the heading error zero and make the A/C follow
the center line of the runway.

20



2.5 Challenges

There are certain constraints and points which can be summed as
challenges which are needed to be followed while landing. This sec-
tion discusses these challenges faced in landing problem.

The pilot must predict the altitude and distance accurately from
which a gradual descent will result in landing at the desired spot on
the runway. This is called base leg. The distance will depend on the
two factors i.e effect of wind and position of base leg. If a strong
wind is present on final approach or the flaps are used to produce a
steep angle of descent, the base leg must be positioned closer to the
approach end of the runway. The opposite is required to be done if
light wind is present.

After moving onto the base leg, the pilot should start the descent
with reduced power and airspeed of nearly 1.4 VSO ( (VSO is the
stalling speed with power off, landing gears and flaps down). An
Airplane will stall when critical angle of attack is exceeded. Pilots
find it difficult to find angle of attack at flight so airspeed is used to
find when stall will occur. The stall speed of aircraft under study
is 7.3m/s. The aircraft landing and takeoff speed is then 15m/s for
landing.

As a aircraft moves through the air, the wing of the aircraft is in-
clined at some particular angle with the flight direction. The angle
which is between the chord line and the direction of the flight is
called the angle of attack and has a large effect on the lift produced
by a wing. Hence, these factors affects the speed and it varies. The
descent angle is affected by four basic and fundamental forces that
acts on an aircraft (lift, drag, thrust, and weight). If all these forces
are constant, the descent angle will stay constant in a no-wind con-
dition. The pilot can control and adjust these forces by adjusting
the airspeed, attitude, power, and drag.

Many runways or landing paths are such that landings must be exe-
cuted while the wind is blowing across the landing path rather than
parallel to the landing direction. All pilots should be prepared to
cope with these situations when they occur.
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All these challenges like maintaining speed double than stall speed
have been taken in account while designing controllers for glide and
flare. Also, Microburst a type of weather condition which occurs
in thunderstorms has been considered and controller efficiency is
assured by incorporating microburst condition in simulation.

2.6 Summary

This chapter discusses different phases of landing. Glide and flare
path trajectories required for designing controllers have been dis-
cussed and derived. It also discusses challenges faced while landing.
With the aircraft model and trajectories defined, next step is to de-
sign controllers for landing.
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Chapter 3

PID Controller Design and
Simulations

3.1 Introduction

In controls systems, controller is the device which can regulate, alter
and maintain the operating dynamics of the system. The linearized
state space models about the trim conditions are used to design con-
trollers to control various states of the aircraft. The control consists
of two blocks containing longitudinal and lateral Controllers. Lon-
gitudinal block uses throttle and elevator while lateral block uses
aileron and rudder as control input channels. Longitudinal autopi-
lot regulates the speed and pitch angle of the aircraft, and lateral
autopilot regulate the roll and yaw angle of the aircraft. Controller
design in this thesis is broken into stability augmentation controllers,
attitude regulation controllers and trajectory controllers.

The stability augmentation controllers forms the inner loop and in-
crease the natural damping of the dynamical system by introducing
artificial damping into the system. Thus controlling high frequency
modes of the aircraft. The attitude controllers regulate the aircraft’s
pitch and roll angles. They are the outer loop of stability controllers.
Attitude controller forms the outer most loop and are responsible for
regulating trajectory motion states like altitude and heading.This
thesis concerns with the design of longitudinal controllers allowing
to regulate altitude and pitch states of the aircraft. The longitudinal
controller designed in [1],and [3] are reproduced for comparison with
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MPC and are discussed in subsequent sections.

3.2 Aircraft Longitudinal Controllers

Speed and altitude controllers come under the category of longitudi-
nal controllers These states are very dependent and correlated with
one another. In landing it is required for speed and altitude to be in
specific states at a certain time, so airspeed and climb rate controller
designed in this section process both correlated states (u, h) at the
same time.

3.2.1 Pitch Rate Damper

Artificial damping in aircraft is required for rejecting wind gust dis-
turbances. So pitch rate damper is designed to give artificial damp-
ing to the system. Pitch rate damper is designed in [3]. Its simulink
block diagram is shown in Figure 3.1 where q is pitch rate and is fed
back to the controller. The value Kq chosen for artificial damping in

Figure 3.1: Pitch Rate Damper

landing controller is −0.06. The closed loop system equation is as
follows

ẋ = [A−B[Kq 0]T ]x+Bu (3.2.1)

3.2.2 Climb Rate Controller

Climb rate Controller designed in [3] is used in flaring phase of land-
ing to control climb rate. Decreasing exponential climb rate is re-
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quired in flaring,which must be controlled for smooth landing. The
designed controller showed slow time response.

The Simulink block diagram of the above mentioned controller is
shown in Figure 3.2 where plant dynamics are taken from equation
(3.2.1). C is a matrix extracting climb rate state (ḣ) from output
state vector in m/s. The trim velocity at which the model is being
linearized is 14m/s. Feedback gain Kp used is −0.9 . A integral
value of −0.3 is used in the model to decrease overshoot.

Figure 3.2: Climb Rate Controller

The designed controller reaches the final state value very slowly. In
flaring we require fast response as it consists of only few seconds
so the designed controller must be very efficient in regulating the
states a early as possible which is not the case when flare controller
is designed using PID. That’s why this controller was not utilized by
[3]. Also sink rate of less than 0.5 m/s should be maintained so that
flare occurs smoothly. The time to reach this sink rate using PID
controller is very slow. The time history response of the climb rate
controller to the reference command of 1m/s is shown in Figure 3.3.
The controller is following the commanded value in 10sec with some
set point error.

3.2.3 Airspeed and Climb rate Controller

The Airspeed and Climb rate controller is designed in [1]. The
Simulink block diagram of the airspeed and climb rate controller
is shown in Figure 3.5. It is a Multi-Input-Multi-Output (MIMO)
controller which is regulating both airspeed and climb rate simul-
taneously. The values Kp and Ki of the controller is designed by
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Figure 3.3: Climb Rate Controller Simulation

Figure 3.4: Climb Rate Controller Elevator Response

iterative procedure. In this process value of kp and ki are changed
and corresponding change in response and root loci graph are no-
ticed. The values where satisfactory response and pole locations are
obtained are chosen for the controller. The controller is designed for
various trim speeds. The values of Kp and Ki for various trim speed
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are given in [1]. In landing, we will be using trim speed of 14m/s.
The values of Kp and Ki corresponding to this trim speed are:

Kp =

[
0.08 −0.98
0.88 0.18

]
Ki =

[
0.24 −0.18
0.14 0.64

]
(3.2.2)

.

Figure 3.5: Airspeed and Climb rate Controller Simulink diagram

The closed loop equation of the controller is:[
ẋ

ẋi

]
=

[
A−KPC −BKI

C 0

] [
x

xI

]
+

[
BKP

−I

]
r (3.2.3)

where A,B,C matrices are longitudinal state space equation taken
from [1]. The response of air speed and climb rate state to 5m/s
airspeed command is shown in Figure 3.6. similarly , Figure 3.7
shows response of both these states to 2m/s climb rate command.

3.2.4 Altitude Controller

Altitude controller designed in [1] come under trajectory controllers.
In this climb rate command is generated by the controller which
is fed to the system and system achieves the desired height. The
saturation block is used to limit the climb rate input signal in excess
of ±2m/s.

The Simulink block diagram of altitude controller is shown in Figure
3.8. The plant model used is from equation (3.2.3). Output matrix
C extracts climb rate from the output. The value of Kh is taken to
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(a) Airspeed Response (b) Climbrate Response

(c) Elevator Response (d) Throttle response

Figure 3.6: Response to 5m/s step command in airspeed

(a) Airspeed Response (b) Climbrate Response

(c) Elevator Response (d) Throttle response

Figure 3.7: Response to 2m/s step command in Climbrate

be 0.48. The natural integrator changes the state into height state
which is then fed back to controller as a feedback. The time history
response to a 10m height command is shown in Figure 3.9.
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Figure 3.8: Altitude Controller Simulink Diagram

Figure 3.9: Altitude Controller Response to 10m Altitude Command
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Figure 3.10: Altitude Controller Throttle Response to 10m Altitude Command
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3.3 Summary

The controllers required for landing maneuver have been redesigned
in this chapter. All controllers are designed using PID control. All
controllers can regulate the motion variables of the system efficiently.
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Chapter 4

Controller Design using Model
Predictive Control

In this chapter, Model predictive control design is introduced. The
benefits of MPC is its ability to find out predictions of systems,
use of state space model and to handle hard and soft constraints
of the system under study. The controller can reduce the cost of
computation by using series of laguerre functions. This chapter also
describes the solution of cost function under systems constraints.
To find optimal solution of the problem, optimization techniques for
solving cost function will be discussed.

Section 4.1 discusses the design principle and use of laguerre func-
tions in approximating control input series. Section 4.2 discusses
equations used to predict future control inputs. Section 4.3 defines
optimal cost function calculation. section 4.4 discuses constrained
solution of the problem. Section 4.5 discussed quadratic program-
ming methods utilized in solving constrained cost function. Pro-
gramming procedure to solve constrained problem is discussed in
section 4.6. The basic diagram depicting MPC is shown in Figure4.1.
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Figure 4.1: Basic block diagram of Model Predictive Control

4.1 Design Principle

4.1.1 Laguerre Functions

An arbitrary function f(t) can be expressed a series expansion

f(t) =
∞∑
n=1

℘ili(t) (4.1.1)

where ℘i = 1, 2, 3, . . . n and li(t) = 1, 2, 3, . . . n are orthogonal if
satisfy the following properties∫ ∞

0

li
2dt = 1 (4.1.2)

and ∫ ∞
0

li(t)lj(t)dt = 0, i 6= j (4.1.3)

Assume that ∫ ∞
0

f(t)2dt <∞ (4.1.4)
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and for any ε > 0, there exists an integer N such that such that for
all k ≥ N ∫ ∞

0

(f(t)−
∞∑
n=1

℘ili(t))
2dt < ε (4.1.5)

Thus, we can approximate any function f(t) that satisfies (4.1.4) ar-
bitrarily closely by

∑∞
n=1 ℘ili(t) with an increasing number of terms,

N .

The laguerre functions are the orthonormal functions used and can
be defined as ∫ ∞

0

li(t)e
−stdt =

√
2p

(s− p)i−1

(s+ p)i
(4.1.6)

where p is a positive number and is called the tuning parameter.
L(t) = [l1(t) l2(t) ...lN(t)]T . Initial conditions of the Laguerre param-
eter vector as L(0) =

√
2p[11...1]T . The Laguerre functions satisfy

the following state-space equation:
l̇1(t)

l̇2(t)
...

l̇N(t)

 =


−p 0 · · · 0
−2p −p · · · 0

... . . . . . . ...
−2p · · · −2p −p



l1(t)
l2(t)

...
lN(t)

 (4.1.7)

The solution of the above differential equation gives the set of La-
guerre functions for i = 1, 2, ..., N as

L(t) = eAptL(0) (4.1.8)

where

Ap =


−p 0 · · · 0
−2p −p · · · 0

... . . . . . . ...
−2p · · · −2p −p

 (4.1.9)
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4.2 Prediction

MPC utilizes state space model of the plant. The linear dynamic
model of the process is defined as

Ẋm = AmXm(t) +Bmu(t) (4.2.1)

Y (t) = CmXm(t) (4.2.2)

where Xm is state vector having dimension n. In MPC we use rate
of control input which can be approximated using set of laguerre
function ad can be

u̇ = LTη (4.2.3)

We can incorporate this rate of change of control input into our
main model by taking derivative of the plant model. The augmented
model having the same output as that of the original model can be
written as [

ẍ(t)
ẏ(t)

]
=

[
Ap om
Cp oq×q

]
ẋ(t) +

[
Bp

oq×q

]
u̇(t) (4.2.4)

y(t) =
[
om Iq×q

] [ẋ(t)
y(t)

]
(4.2.5)

Define Ẋ(t) = Z(t) and X(t) = [Z(t)T y(t)T ]T . The augmented
model takes the following form

Ẋ(t) = AX(t) +Bu̇(t) (4.2.6)

y(t) = CX(t) (4.2.7)

Assume that at the current time ti, the state variable x(ti) is avail-
able. Then at the future time τ , τ > 0, the predicted state variable
x(ti + τ |ti)is described by the following equation:

x(ti + τ |ti) = eAτx(ti) +

∫ τ

0

A(τ − γ)Bu̇(γ)dγ (4.2.8)

Let the control signal of the plant can be written as

u(τ) = [u̇1(τ) u̇2(τ)...u̇m(τ)]T (4.2.9)
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and the input matrix B be written as B = [B1B2...Bm], where Bi

is the ith column of the B matrix. The ith control signal u̇i(t)(i =
1, 2...m) is expressed as :

u̇i(τ) = Li(τ)Tηi (4.2.10)

where the ith vector Li(τ)T consists of

Li(τ)T = li1(τ)li2(τ)...liNi(τ) (4.2.11)

and the ith coefficient vector: ηi = [ci1c
i
2...c

i
Ni]

T The values of pi and
Ni are tuned for all systems inputs separately and are defined for
each Li(τ) individually.

Then, the predicted future state at time τ is

x(ti + τ |ti) = eAτx(ti) +

∫ τ

0

A(τ − γ)[B1L1(τ)T . . . BmLm(τ)T ]dγη

x(ti + τ |ti) = eAτx(ti) + [φ1(τ)φ2(τ) . . . φm(τ)]η

Thus the prediction of the future state trajectory is partly expressed
in terms of φi(τ)T with 1 ≤ i ≤ m.

Let define Iint(τ)i having dimension (n + q) × Ni denote the the
convolution integral

Iint(τ) =

∫ τ

0

A(τ − γ)[B1L1(τ)T . . . BmLm(τ)T ]dγ (4.2.12)

AIint(τ)T − Iint(τ)TAT
p = −BL(τ)T + eAτBL(0)T (4.2.13)

By taking Ii as the column of Iint and Mi as the column of right
hand side of the above equation, the elements in Iint can easily be
determined. For i = 1

(A+ pI)I1 = M1

For i=2,3,. . . N

(A+ pI)Ii = Mi − 2p
i−1∑
k=1

Ik
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4.3 Optimal Control Strategy

The future desired plant response is known because we need our plant
to follow some reference trajectory. The reference trajectory can be
defined as r(ti + τ) = [r1(ti + τ) r2(ti + τ) . . . rq(ti + τ)], 0 < τ < Tp.
Tp is the prediction horizon. It dictates how far we wish to make
predictions. The purpose of MPC is to make the plant response
equal or nearly equal to the reference trajectory. Therefore, we need
to minimize the following cost function

J =

∫ Tp

0

(r(tτ − y(ti + τ))TQ(r(tτ)− y(ti + τ))dτ +

∫ Tp

0

u̇T (τ)TRu̇(τ)dτ

(4.3.1)

R and Q are symmetric matrices with both Q,R > 0. Q can be
taken as I for simplicity. R is a diagonal matrix with R = diag(λ(k)),
0 ≤ k ≤ r. From (4.1.4), the second term of the cost function can
be written in terms of η∫ Tp

0

u̇k(τ)T u̇k(τ)Dτ = ηTk ηk

By putting the above equation in cost function, we get

J =

∫ Tp

0

(r(tτ − y(ti + τ))TQ(r(tτ)− y(ti + τ))dτ + ηTRη (4.3.2)

R = diag(Ri) and Ri = λiINi×Ni. INi×Ni is unit matrix with dimen-
sion Ni.

4.4 Constrained Solution

The handling of constraints increases the systems performance and
system can perform well by keeping constraints into account. There
are constraints imposed on control inputs, outputs and states. In
this thesis hard constraints on control inputs and its rate of change
will be applied. For the constrained solution, all the constraints
should be written in terms of linear inequalities. The manipulated
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magnitude constraint can be written as

ulow(ti + τ) ≤ u(ti + τ) =

∫ τi

0

L(γ)Tdτη + u(ti −∆t) ≤ uhigh(ti + τ)

(4.4.1)

Substituting the prediction of the state variables x(ti+τ |ti) equation
into cost function. This will result in the following form of equation

J = η

[∫ Tp

0

Φ(τ)QΦ(τ)Tdτ +RL

]
η + 2ηT

∫ Tp

0

Φ(τ)QeAτdτx(ti)+

x(ti)
T

∫ Tp

0

eA
T τQeAτdτx(ti)

Let us define variables which depend on τ only and are independent
of η

Π =

∫ Tp

0

Φ(τ)QΦ(τ)Tdτ +RL

ψ1 =

∫ Tp

0

Φ(τ)Qdτ

ψ2 =

∫ Tp

0

Φ(τ)QCeAτdτ

Φ(τ) = [C[I1
int I

2
int . . . I

r
int]]

so cost function becomes

J = ηTΠη − 2ηT [ψ1r(ti)− ψ2x(ti)] +

∫ Tp

0

u̇T (τ)TRu̇(τ)dτ (4.4.2)

The value of η that minimized J can be found by

η = Π−1(ψ1r(ti)− ψ2x(ti)) (4.4.3)

subject to[ ∫ τi
0 Lk(γ)dγ
−
∫ τi

0 Lk(γ)dγ

]
η ≤

[
ulow(ti + τi) + u(ti −∆t)
−ulow(ti + τi) + u(ti −∆t)

]
MPC in case of unconstrained solution is just like linear quadratic
regulator. When constraints are applied on the problem, quadratic
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programming is utilized in solving the problem.Stable performance
can be guaranteed using MPC. The delays in response can occur
due to constraints on the control inputs. but it can be improved and
tuned with the help of tuning parameters which is the main feature
of designing MPC using laguerre functions.

4.5 Quadratic Programming methods

Optimization algorithms are used to treat inequalities equations of
constraints. In optimization, the set of independent variables are
introduced and their acceptable values are obtained at particular
conditions. These conditions are called constraints. These optimiza-
tion algorithms are applied to cost functions and optimum values of
control signal will be obtained.

The concept of stationary point for which g(x) = 0 and δ(f(x) = 0
is fundamental to the subject of unconstrained optimization and is a
necessary condition for a local minimizer. Lagrange multipliers arise
when similar necessary conditions are sought for the solution x∗ of
the constrained minimization problem.

In MPC, there may exist a point at which no output is available for
particular inputs because of constraints. In this case system return
without a result and will show systems in feasibility. So it is always
better to impose some constraints known as hard constraints while
relaxing other ones. The active set method applies this technique.
But this method is not feasible in case of large number of constraints.
So primal dual method is utilized. To make the problem easily solv-
able in computer, Hildreth quadratic programming method is useful
for solving this dual problem. For solving non linear constraints,
shor’s algorithm is useful but in this thesis, only linear inequality
constraints are dealt with Hildreth programming procedure. The
Active Set method and Hildreth’s Quadratic Programming method
produce the same results. They both can handle constraints well
as compared to other methods. Shor’s algorithm gives noise at the
derivative of the input and does not give feasible solution. Also more
iterations are required to get the feasible solution. It is not a good
solution for optimization online. The active set method is best for
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MPC using laguerre functions in problems in which constraints are
fixed or changing. The method eliminates the inactive constraints
and solution converges earlier. But it is not useful when constraints
are larger and while eliminating constraints, it may be eliminating
the feasible solutions.

4.5.1 Lagrangian Dual Function

The Lagrange Multiplier theorem lets us translate the original con-
strained optimization problem into an ordinary system of simulta-
neous equations at the cost of introducing an extra variable: The
primal problem can be written as

Minimize
1

2
xTQx+ cTx (4.5.1)

subject to Ax ≥ b

i.e Minimize f(x)

s.t. g(x) ≤ 0

where

f(x) =
1

2
xTQx+ cTx

g(x) = b− Ax ≤ 0

x ∈ Rn

Assume thatQ is positive semi definite, so that f(x) is convex.Lagrangian
multipliers is the strategy for finding the local maxima and minima
of a function subject to equality constraints.

L(x, λ) = f(x) + λTg(x)

L(x, λ) =
1

2
xTQx+ cTx+ λT (b− Ax)

For each value of λ, an unconstrained minimization of a convex
quadratic function must be performed. Because of the convexity of
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the Lagrangian function, the optimal x must be a stationary point
of the Lagrangian function.

∆xL(x(λ), λ) = 0 (4.5.2)

i.e for each λ, we must choose x to satisfy

∆xL(x(λ), λ) = Qx+ c− ATλ = 0 (4.5.3)

In this problem, we need to minimize dual objective function while
x must satisfy (4.5.3). Therefore the problem becomes Lagrangian
dual of the original quadratic problem which can be written as

Maximize L(λ) = λT b− 1

2
xTQx (4.5.4)

subject to Qx+ c− ATλ = 0 (4.5.5)

λ ≥ 0 (4.5.6)

If is positive definite i.e f(x) is convex then Q must be non singular
and can be solved as

Qx+ c− ATλ = 0;

x(λ) = Q−1[ATλ− c]

This gives minimal value of x for particular Lagrange multiplier.
This value of x can be inserted into Lagrangian dual function and
an equation independent of x can b found as

Maximize eTλ+
1

2
λTDλ− 1

2
cTQ−1c

subject to λ ≥ 0

where

e = b+ AQ−1c

D = −AQ−1AT

In dual problem, number of unknown variables to be found decreases
to number of constraints. So the primal problem when converted to
its dual is can be dealt easily and is computationally attractive when
number of constraints are larger than the state variables.
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4.6 Hildreth’s quadratic programming procedure

A cyclic search coordinate search method is applied to this quadratic
problem. This problem satisfies following Kuhn tucker optimality
conditions.

∆L(λ) = Dλ+ e ≤ 0

λi
δL

λi
= 0

steps of programming

1. Select an initial λ0, ,e.g λ0
i = 0

2. Let i = 1 and λ = λo

3. Search for maximum in direction parallel to the λi -axis by fixing
λj, j 6= 1 and solving

∂L

∂λi
= 0 for λi

4. If λi < 0, then fix λi = 0

5. Increment i. if i ≤ n go to step 2

6. if λ 6= λo then let λo = λ and go to step 1.

The current λ will satisfy the KKT optimality conditions for Dual
problem. And optimum value of decision variable can be found using
this λ.

4.7 Summary

This chapter discussed in detail the design principle of MPC and how
predictions are made using state space model of the process. Con-
strained cost function has been defined and solved through quadratic
programming procedure.
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Chapter 5

MPC Simulation Results

5.1 Introduction

This chapter discusses the simulation results of the controller de-
signed in this thesis for landing. section 5.2 discuses glide controller
simulation results. Section 5.3 discusses flare controller results while
section 5.4 discusses whole landing trajectory both glide and flare in-
cluded. Section 5.5 discusses wind shear and its affect on simulation
results.

5.2 Glide Controller Simulation Results:

In glide controller, UAV follows a glide path defined in section 2.1.
It is a straight path line starting from some initial height and ends at
the point where flare begins. UAV has to follow the glide path with
minimum error. Calculations related to glide controller are discussed
in section 2.1. According to the calculations the aircraft must reach
from height 21m to height 4.58m covering 250m horizontal distance.
Result of MPC glide path controller is shown in Figure 5.1 and Figure
5.2 . It can be seen from the diagram that the controller is covering
the glide phase in specified distance.

Now the response results of the controller at different values of pa-
rameters are discussed below.

Case I: Effect of pole location tuning parameter: Here, the
effect of pole location on the system response will be discussed in
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Figure 5.1: Glide Simulation(height vs time)

Figure 5.2: height vs distance plot
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Figure 5.3. Prediction horizon Tp and tuning parameters N is kept
constant while changing p.

N1 = N2 = 11 Tp1 = Tp2 = 15

Conclusion: There is increase in response time when we increase
value of pole locating parameter p. Small values of pole parameter
give smooth response to all inputs. so small values are preferable.
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(a) airspeed response
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(b) climbrate response
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(c) elevator response
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(d) throttle response

Figure 5.3: airspeed and climbrate response(top), control signal (elevator and
throttle)(bottom) of the UAV glide path (N = 11, Tp = 15): with p = 0.1; p =
0.15; p = 0.2

Case 2: Effect of tuning parameters N: Here, the effect of
number of Tuning parameters of Laguerre functions on the system
response will be discussed. Prediction horizon Tp and pole locating
tuning parameter p is kept constant while changing N .

p = 0.1 Tp1 = Tp2 = 15

Conclusion: Large values of N give faster response with minimal
fluctuations as can be seen in Figure 5.4.
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(a) airspeed response
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(b) climbrate response
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(c) elevator response
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(d) throttle response

Figure 5.4: airspeed and climbrate response(top), control signal (elevator and
throttle)(bottom)of the UAV glide path (p = 0.1, Tp = 15): with N = 9;N =
10;N = 12

Case 3: Effect of prediction horizon Tp: Here, the effect
of prediction horizon on the system response will be discussed. Pole
location p and number of tuning parameters N is kept constant while
changing Tp. Results are shown in Figure 5.5

p = 0.1 N = 11

Conclusion: Small values of Tp give fast response
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(a) airspeed response
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(b) climbrate response
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(c) elevator response
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(d) throttle response

Figure 5.5: airspeed and climbrate response(top), control signal (elevator and
throttle)(bottom) of the UAV glide path (p = 0.1, N = 11): with Tp = 15;Tp =
30;Tp = 50

5.3 Flare Controller Simulation Results

After glide path, UAV follows the flare path which exponentially
decrease the height of plane and allow it to smoothly land on the
ground. Figure 5.6 shows flare controller results.

In this section, effect of various factors of MPC (pole location pa-
rameter, number of tuning parameters and prediction horizon) will
be discussed.

Case I: Effect of pole location tuning parameter Figure 5.7
depicts the effect of pole location parameters on results of flare path.

Conclusion: In case of flare, response improves by increasing value
of pole locating parameter.

Case 2: Effect of tuning parameters N Here effect of number
of laguerre paramters is discussed as shown in Figure 5.8.
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Figure 5.6: flare path trajectory
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(a) flare height vs time
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(b) elevator response

Figure 5.7: UAV flare path (p = 0.1, 0.5, 1) with Tp = 3 and N = 3

Conclusion: In case of flare, response improves by decreasing number
of pole locating parameters N .

Case 3: Effect of prediction horizon Tp Prediction horizon effect
on flare path of landing is discussed and analyzed in this subsection
in Figure 5.9.

Conclusion: Small values of prediction horizon Tp gives good results
with less settling time.
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(a) height vs time
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(b) elevator response

Figure 5.8: UAV flare path (Tp = 3; p = 1): with N = 2, 5, 8

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

time(sec)

he
ig

ht
(m

)

 

 

T
p
=3

T
p
=5

T
p
=7

(a) height vs time
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Figure 5.9: UAV flare path (N = 2; p = 1): with Tp = 3, 5, 7

5.4 Landing (glide and flare path) simulations

The whole landing trajectory consists of glide path and flare path
combined. In this section glide and flare embedded simulations will
be discussed. Both glide path and flare controllers are combined
and simulations are run one after another. The whole trajectory
of landing i.e glide path and flare path combined is obtained. Glide
path starts at 21m height. After reaching height of 4.58m, controllers
from glide path are switched to flare controllers which then control
the trajectory in exponential path. The simulation diagram is shown
in Figure 5.10. Black solid line shows the measured landing path
while dotted lines shows the ideal path which must be followed. The
controllers are following the trajectory with minimal errors. Thus it
can be concluded that MPC can handle the landing path trajectory
very well.
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Figure 5.10: Landing Trajectory
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Figure 5.11: elevator control input data in landing path

Control efforts corresponding to elevator and throttle are shown in
figure Figure 5.11 and Figure 5.12. The algorithm is handling con-
straints as it can be seen in Figure 5.12, the control when reached
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Figure 5.12: throttle control input data in landing path

Figure 5.13: height vs distance plot
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above its constraint value of 5, trimmed to its constant value and
not allowed it to go above it. The controller performance degraded
when constraint(throttle) was active in the start as it can be seen in
Figure 5.10, there is a hump in the start of the landing trajectory.
Overall the controller gives satisfactory results under constraints as
well. Height vs distance plot is shown in Figure 5.13 which shows
that UAV covered 350m distance horizontally while landing which
is correct according to the calculations done for glide and flare path
in section 2.1 and section 2.2.

5.5 Disturbance Rejection in Glide Controller

In this section, disturbances will be added in the plant and simula-
tions will be performed. Effectiveness of MPC glide controller under
disturbance will be studied in this section and analyzed.

5.5.1 Windshear

Wind shear is a change in speed of the wind over short distances.
Wind shear can change a regular approach towards ground into emer-
gency situation. Aircraft is affected by this windshear because it
changes the speed and motion of the aircraft relative to the ground.
If the aircraft is stable and moving on landing path, when it encoun-
ters the head wind, there is significant decrease in the speed and lift
of the aircraft which causes it to descend earlier. Now the pilot must
compensate for this loss of the lift, but the critical factor is that
whether the aircraft has sufficient altitude to complete a recovery.

The aircraft drops below the glide path if it encounters the wind
shear. The aircraft starts to sink. The airspeed is decreased equiv-
alent to shear value. In this situation, the pilot considers this a
deviation from the glide path and tries to correct this deviation by
more power and increased pitch. Mostly the correction is large and
the aircraft rises above the glide path and starts to decent and follow
the glide path afterwards.

There are two cases, one in which relative speed of aircraft increases
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and other in which relative speed decreases. Decrease in relative
speed causes the aircraft to fall below the glide slope path, while
increases in relative velocity causes the aircraft to rise above the
glide slope trajectory. This can cause accidents. several cases have
been reported in which shear forces were a contributing factor in
major aircraft crash.
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(a) Glide path with no windshear effect (b) height vs distance graph with no winds-
hear effect

Figure 5.14: Simulations without any disturbance added

According to calculation the aircraft under study must complete
horizontal distance of 250m while covering vertical distance from
21m to 4.58m. Figure 5.14 shows the simulations under no windshear
effect. Now we will incorporate windshear force and see the impact
on simulations.

5.5.2 Disturbance Rejection

Suppose we apply head wind sheer force of 5m/s at an altitude of
6m. Due to headwind the speed of the aircraft will decrease, airlift
lift decreases and sink rate increases and it starts to drop off below
its glide path. As can be seen from Figure 5.15, MPC can handle
this disturbance well and tries to move the aircraft in defined glide
trajectory. Aircraft is trying to reduce the effect of disturbances.
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Response due to wind shear

(a) glide trajectory in 5m/s windshear force (b) height vs distance in 5m/s windshear
force
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(c) airspeed change due to windshear
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(d) climbrate change due to windshear

Figure 5.15: Change in response of glide controller due to windshear

5.5.3 Reducing the effect of disturbance

The purpose of this simulation is to check how affect of disturbances
can be reduced by changing tuning parameters. Increasing prediction
horizon improves the result. The simulation in Figure 5.16 show
improved results when prediction horizon is increased.
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(a) glide path simulation
(b) height vs distance plot
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(c) airspeed simulation
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(d) Climbrate simulation

Figure 5.16: improved results by increasing prediction horizon to 25

5.6 PID and MPC results comparison

In this section comparison of results of two control techniques i.e
PID and MPC will be done through simulations.

5.6.1 Glide Controller

Figure 5.17 shows simulations of PID ad MPC controller results of
glide controller. In Figure 5.17a, glide path trajectory is very well
followed by MPC, while PID gives results with certain set point error.
In Figure 5.17b, MPC has attained the speed for landing which is
15m/s(double of stall speed) and constant climbrate command with
less rise time as compared with PID. Throttle input simulation in
Figure 5.17d shows constrained input control. MPC algorithm has
prevented the input from going above its set limit(i.e 5m/s2) and
trimmed its value without affecting the output. While PID has no
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mechanism to limit the control input within its constrained value.
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(a) Glide path results of MPC and PID
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(b) Airspeed simulation
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(c) Climbrate simulation
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(d) Throttle input simulation
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(e) Elevator input simulation

Figure 5.17: Comparison of PID and MPC Glide path controllers

5.6.2 Flare Controller

Simulations of comparsion of PID and MPC for flare path is shown
in Figure 5.18. In Figure 5.18a, MPC has followed the flare path
very well as compared to PID. In flare throttle is completely closed
and airspeed gradually slows down. . so the trhottle input control is
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zero. Climbrate simulation of flare in Figure 5.18c shows attainment
of zero climbrate faster as compared to PID. Elevator and throttle
control input simulation in Figure 5.18e shows control inputs within
its limit bounds.
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(a) Glide path results of MPC and PID
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(b) Airspeed simulation
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(c) Climbrate simulation
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(d) Throttle input simulation
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(e) Elevator input simulation

Figure 5.18: Comparison of PID and MPC Flare path controllers
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5.7 Summary

In this chapter, MPC concepts are reviewed by running simulations
in simulink. Glide and flare controller simulations are performed and
affect of different parameters on response of the process is checked.
Constraints are applied to the controllers and quadratic program-
ming is applied to ensure that the response does not violate the
constraints imposed on the control inputs. This confirmed the evi-
dence of ability of MPC to handle constraints. Results of PID and
MPC are compared. MPC shows better performance and can handle
constraints as compared to PID. The slight delay in response may
have occurred due to constraints on the control inputs. But the re-
sponse can be improved by changing the tuning parameters which
is key success of using MPC using laguerre functions. MPC also
gives faster response when disturbances are added. MPC can handle
windshear disturbances between 1m/s to 5m/s in glide controller.
The response can further be improved by changing the tuning pa-
rameters.
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Chapter 6

Conclusion

6.1 Conclusion

In this thesis, orthonormal functions are used to describe the control
signal of the plant and then continuous model predictive control is
built. A multi input multi output linear state space model of the
unmanned aerial vehicle is used for designing the controller. It is
shown through simulations that model predictive control is capable
of handling constraints imposed on the control input very effectively.

The controller works very well when designed using MPC. It follows
the reference trajectory while taking constraints into account. The
simulations showed that the controller will never override the input
constraints. It should be noted that when constraints was active
in landing, the controller showed slightly degraded performance and
was not able to follow the reference trajectory required for landing.
But overall the response was satisfactory. If the constraints are ac-
tive for a longer period then the controller will try to compensate by
adjusting the other control input or state so that overall controller
gives satisfactory response. for example if increase in speed is re-
quired, the controller will not only increases the throttle to its full
limit but also adjust the pitch of the aircraft to increase the speed
instead of waiting for the aircraft model to gain its desired speed.

The work in this thesis shows that continuous time MPC using or-
thonormal functions to design control signals gives good performance
when applied to linear state space model of unmanned aerial vehicle
for landing phase.
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