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ABSTRACT 
This study was conducted to find an effective way to immobilize 

titania nanoparticles (un-doped & silver-doped) on a suitable solid 

substrate so that this coated substrate would be used for photocatalytic 

elimination of toxic environmental pollutants in water. In this study 

immobilization of titania on glass beads was carried out by conventional 

Sol Gel (SG) method and the Modified Sol Gel (MSG) method 

(Balasubramanian et al., 2003)  using three different types of titania 

precursors; (a) Titania General Purpose Reagent (GPR); (b) Titania Un-

doped nanaoparticles (UNP) and (c) Titania Ag-doped nanoparticles 

(AgNP). Pure and silver doped (1% molar ratio) titania nanoparticles 

were synthesized from titania General Purpose Reagent (GPR) by 

calcination and liquid impregnation methods (Asghar et al., 2011). XRD, 

SEM, EDS, analysis were performed to characterize the synthesized 

particles and the coating on the beads. The results of this study show that 

MSG method offers superior coatings as compared to SG method, in term 

of titania quantity and nanoparticles added MSG method offers better 

coatings results, in term of coating coverage and photocatalytic 

performance for elimination of 4-Nitrophenol and Arsenic from water. 
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Chapter 1 

INTRODUCTION 
1.1 BACKGROUND 

Fresh and clean water is essential for healthy life but it is a limited 

resource on earth. Municipal, industrial and agricultural discharges into water 

bodies pollute this precious resource and demand for clean water is going to 

increase with escalating population growth (Rahaman and Varis, 2005). There 

are certain pollutants which are persistent in nature and cannot be easily 

degraded. Due to the presence of these poorly biodegradable organics in 

polluted streams, conventional water purification processes become less 

effective for the treatment of these waters (Bahnemann, 2004). Therefore the 

development of new techniques for the treatment of drinkable, municipal, 

agricultural and industrial water has much more importance than that of the 

earlier days. 

Advanced Oxidation Processes (AOPs) can effectively degrade the toxic 

environmental pollutants those offer resistance to conventional water treatment 

methods. Among AOPs, heterogeneous photocatalysis has been employed to 

eliminate a number of environmental pollutants like textile dyes, phenols, 

toluene, acetone, ethanol etc. (Gaya et al., 2008). Among heterogeneous 

photocatalysts, titania (TiO2) nanoparticles has been found to be very effective 

and efficient for photocatalytic degradation of organic substrates (Ilyas et al., 

2011) owing to its low-cost, photochemical stability and non-toxic nature. 
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1.2 TITANIA PHOTOCATALIST FOR ELIMINATION OF 

ENVIRONMENTAL POLLUTANTS 

For titania photocatalyst application, two photochemical reactor 

configurations are usually applied (Pozzo et al., 2000): 

(1) Continuous stirred tank reactors are normally used in laboratory 

experiments for batch studies. This configuration provides maximum 

utilization of photocatalyst and UV light. However, these reactors needs 

post treatment separation of titania particles from the mass fluid by 

filtration/centrifugation (Chong et al., 2009). These separation steps 

increase cost and complexity to the treatment method and reduce the 

attraction of this type of application.  

(2) In fixed bed reactor configuration titania particles are attached onto a 

solid substrate and placed in the path of fluid under UV light. This type 

of reactor configurations with coated particles immobilized on the 

reactor walls (Xie et al., 2010), or on a solid-supporting material 

(Dijkstra et al., 2001) and provision of continuous mode of operations 

provide a more practical approach of photocatalyst application.  

In most of the research carried out, titania has been applied as a powder 

dispersion in the target solution. Although such applications resulted in efficient 

degradation of the organic contaminants (Torres et al., 2007), post treatment 

recovery and reuse of the photocatalyst, make it unsuitable for practical 

applications. Solid phase immobilization of titania, before its contact with the 
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contaminated solution, seems an attractive option which could address these 

problems. 

1.3 IMMOBILIZATION OF TITANIA  

Several techniques have been proposed for the immobilization of titania 

on solid supports like glass, glass beads, quartz, silica, activated carbon, 

fiberglass cloth, zeolites, stainless steel, ceramics, clothes, monolith, and 

polymer membranes. The major drawback of immobilized titania is the 

decrease of its specific surface area. 

Immobilization of titania can be done by many deposition techniques 

such as sol-gel, atmospheric pressure metal organic chemical vapor deposition, 

electron beam evaporation, reactive magnetron sputtering, spray pyrolysis, 

electrophoresis, reactive thermal deposition and static-dynamic films 

compressed methods. 

1.4 OBJECTIVES 

The objective of the study is to find an effective way to immobilize 

titania nanoparticles (un-doped & silver-doped) on a suitable solid substrate so 

that this coated substrate would be used for photocatalytic elimination of toxic 

environmental pollutants in water.  

Following are the specific objectives of the study: 

1. Qualification of glass beads as solid support for titania 

immobilization 

2. Selection of a suitable process for titania coatings on glass beads, 
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from SG and MSG methods. 

3. Assessment of resultant titania coatings on glass beads. 
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Chapter 2 

LITERATURE REVIEW 

In this chapter an overview of the Advanced Oxidation Processes 

(AOPs) and heterogeneous photocatalysis using titania is narrated. Applications 

of environmental nanotechnology and recent developments, in this context, at 

IESE, NUST are summarized. Mechanism of titania photocatalysis and way of 

utilization titania nanoparticles are discussed and reported in the end. 

2.1 ADVANCED OXIDATION PROCESSES (AOPs) 

Advanced Oxidation Processes (AOPs) are unconventional methods for 

elimination of toxic organic contaminants from water. In these processes 

chemical oxidation of the pollutants is accelerated by the use of hydrogen 

peroxide (H2O2), electrolysis, ozone (O3), ultrasound, Ultra-Violet (UV) 

irradiation and Fenton’s reagent (Comninellis et al., 2008). These processes 

have been successfully applied for the difficult to biodegradable organic 

pollutants. 

In AOPs, oxidative breakdown of the contaminant is initiated by a 

strong oxidizing species like the hydroxyl radical (.OH) that can increase the 

reaction rate by a millions to billions time as compare to traditional agents (Ball 

et al., 1997).  

Potential applications of AOPs may include treatment of industrial 

wastewater, ground water, drinking water and process water.  Heterogeneous 
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photocatalysis has been found as one of the most prominent advanced oxidation 

process for the degradation of organic pollutants. 

2.2 HETEROGENEOUS PHOTOCATALYSIS 

Heterogeneous photocatalysis can be defined as a process involving 

redox reactions induced by photogenerated electron hole pairs on the surface of 

a semiconductor catalyst when exposed to light having greater energy than the 

band gap of the semiconductor material. 

Initial interest in photo-induced redox reactions was prompted by 

Fujishima and Honda’s (1972) discovery of water dissociation upon 

illuminating a titania single crystal electrode (Hashimoto et al., 2005). Since 

then, extensive research has been done focusing on the production of hydrogen 

from water using solar illumination to generate a combustible fuel. Since 1980s 

a second attractive application was proposed to study this process for degrading 

organic compounds presents in environment. 

2.3 TITANIA AS A PHOTOCATALYST  

Titania is semiconductor material having band gap of 3.2 eV. Valence 

electrons of titania, upon exposure to UV light, having energy higher than its 

band gap, get excited and move towards conduction band. This process creates 

holes in the valence band. The generated electron-hole pair can recombine or 

participate in oxidation reduction reaction leading to the degradation of the 

contaminants. Due to this photocatalytic phenomenon titania has been studied 



7 
 

as a photocatalyst in environmental applications over the past few decades (Pan 

et al., 2010).  

Titania has got prime consideration for the poto-oxidative elimination of 

environmental pollutants i.e. organic contaminants and inorganic compounds. 

Low cost, nontoxicity, high photocatalytic activity, chemical stability, 

biological inertness and wide band gap make titania preferable over compounds 

such as ZnO, CdS, and WO3 (Carneiro et al., 2004 and Malato et al., 2009). 

The environmental applications of titania include (Allen et al., 2009 and 

Pan et al., 2010): 

a) In Water; the removal of arsenic, the removal of mercury, 

degradation of phenols and degradation of textile dyes. 

b) On Soil; degradation of polythene films and decomposition of 

oil spills.  

c) In Air; conversion of NOx and SO2, oxidation of volatile 

organic compounds (VOCs) and odor control. 

d) Biological applications include destruction of microorganism 

such as bacteria and viruses and inactivation of cancer cells. 

 
2.4 ENVIRONMENTAL NANOTECHNOLOGY  

Recent advancement in the development and applications of nanoscale 

materials has opened the horizon for environmental applications of 

nanotechnology. Nanoscale materials have exhibited unusual chemical, 

mechanical, electrical, optical and magnetic properties. Studies have shown 
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improved properties of nanomaterials, due to increased specific surface area of 

nanomaterial as compared to traditional materials. For example, in 

photocatalysis, titania powder, having particle size in nano range and high 

surface area, offers improved catalytic performance over the bulk titania 

catalyst (Torres et al., 2007 and Siddiquey et al., 2008). The enhanced photo 

oxidative properties of the titania nanoparticles, has made use of titania 

nanoparticles as an attractive option for environmental applications. 

2.5 TITANIA NANOPARTICLES DEVELOPMENT AT 

INSTITUTE OF ENVIRONMENTAL SCIENCE AND 

ENGINEERING (IESE) 

IESE has been active in nanoparticles research for some years now. In 

this context, Deedar Nabi was able to prepare good quality titania nanoparticles 

by the So-Gel technique (Nabi, 2008). He subsequently coated these particles 

on sand and used these immobilized titania nanoparticles for the removal of 

arsenic from water (Nabi et al., 2009). 

The Ministry of Science and Technology has sponsored a three year 

project for the development of nanotechnology based filtration units for 

purification of arsenic contaminated water (Qazi and Awan, 2009). Titania 

nanoparticles doped with metals including Ag, Ba, Bi, Ce, Cs, Cr, Cu, Fe, Gd, 

La, Ni, Sr, Th, and Tl have been prepared. Some of these nanoparticles have 

exhibited very encouraging results as regards their potential for the arsenic 

adsorption (Zeb et al., 2010). 
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More recently, Wasim Asghar prepared silver doped titania 

nanoparticles using the Liquid Impregnation techniques (LI). When these 

particles were imbedded into the Polythene Films, the degradation of such film 

was considerably accelerated due to UV light exposure (Asghar, 2010 and 

Asghar et al., 2011).  Similarly, Hassan Ilyas investigated LI prepared iron, 

silver and iron-silver doped titania nanoparticles for degradation of 

Chlorophenols (Ilyas, 2010 and Ilyas et al., 2011).   

2.6 MECHANISM OF TITANIA PHOTOCATALYSIS  

The photocatalytic oxidation of an organic pollutant is carried out by a 

semiconductor photocatalyst (e.g., TiO2 and ZnO), UV light and an oxidizing 

agent such as oxygen. Fig. 2.1 illustrates the mechanism of titania 

photocatalysis. 

Ahmed et al., (2010) and Gaya et al., (2008) have discussed the 

mechanism of titania photocatalysis in detail. In these reactions irradiation of 

photocatalytic surface with UV light of sufficient energy results in formation of 

holes (h+) and electrons (e−) in the valance band (VB) and conduction band 

(CB) respectively. The positive holes in the valence band oxidize water to 

generate ·OH radicals or directly react with pollutant. Whereas, the oxygen 

present on the surface of catalyst get reduced by the electrons available in 

conduction band.   
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2.7 UTILIZATION OF TITANIA NANOPARTICLES 

For titania photocatalyst application, two photochemical reactor 

configurations are usually applied (Pozzo et al., 2000) on the basis of deployed 

state of titania particles:  

(1) Slurry type photocatalytic reactors with titania nanoparticles in suspension 

form and  

(2) Fixed bed reactors with immobilized particulates onto solid substrate  

Slurry type titania photocatalytic reactors are generally applied in 

laboratory experiments. This configuration needs a post treatment recovery 

process for used titania nanoparticles. Whereas, the fixed bed reactor 

configuration has provision for continuous mode of operation. Different reactor 

configurations have been used in photocatalytic water treatment applications 

such as annular slurry photoreactor (Pozzo et al., 1997 and Chong et al., 2009), 

tubular coated wall photoreactor (Xie et al., 2010) and coated beads packed bed 

photoreactor (Dijkstra et al., 2001). 

2.7.1 Slurry Type Titania Photocatalytic Reactor 

The slurry type photocatalytic reactor has been considered favorite 

configuration due to simple application of nanoparticles and provision of 

enhanced surface area of the photocatalytic material. This type of reactor 

configuration provides maximum exposure of UV light to the photocatalyst 

surface and uniform mixing of photocatalyst particles within the reactor (Pareek 

et al., 2008). 
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As compared to photocatalytic performance of fixed bed reactor, slurry 

type reactor has advantage of high photocatalytic surface area per unit volume. 

Whereas, immobilized photocatalyst reactors suffer from limitation of mass 

transfer phenomenon over the layers of coated material.  

An important challenge attached with the application of suspended 

slurry system is separation of titania nanoparticles and reuse of recovered 

material for further processing. Furthermore, failure in separation of these 

photocatalyst particles will add a new contaminant into the treated stream 

(Yang and Li, 2007). Schemes proposed and studied for post treatment recovery 

of photocatalyst include membrane separation processes (Zhao et al., 2002 and 

Zhang et al., 2008), cross flow filtration process (Doll and Frimmel, 2005) or 

conventional sedimentation process (Ferna´ndez-Ibanez et al., 2003). 

Suspended slurry systems have been facing many operating issues even then 

when integrated with membrane separation process. Issues related with 

membranes include selection of a suitable type of membrane, specifications of 

membrane and operating phenomenon like blockage, backwashing, fouling and 

regeneration.  (Lee et al., 2001; Xi and Geissen, 2001; Molinari et al., 2002). 

In order to overcome the complexities associated with the slurry type 

reactors, immobilization on a solid support has now been considered a viable 

solution for titania nanoparticle applications. In this regard, different coating 

techniques and a number of materials have been tested as support media. Some 

examples of previous work are summarized in the next section. 
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2.7.2 Immobilized Titania Photoreactor 

Titania nanoparticles have shown significant improvements in their 

physical and chemical properties. However, commercial application of these 

nanoparticles for water treatment is not yet established (Byrne et al., 1998; Yu 

et al., 2002). 

In a number of studies catalyst particles were attached onto the small 

substrate medium to facilitate the contact with the contaminants without causing 

pore blockage or membrane fouling (Zhang et al., 2009; Xi and Geissen, 2001). 

In these immobilizations catalyst particles were attached to membrane (Kwak 

and Kim, 2001), mesoporous clays (Chong et al., 2009), fibers (Zhu et al., 

2004) and activated carbon (Lee et al., 2004). 

The following subsections are focused on some previous studies 

regarding titania immobilization on solid supports and their photocatalytic 

applications. 

a) Titania Coating on Glass Pipes/Tubes 

Zhang et al., (2001) immobilized titanium dioxide on the surface of the 

glass pipe by dispersing powder in water at 25 wt. % and spraying using 

a spray gun on the glass film followed by heat treatment at 450oC for 1 

hour. The titania coated rotated drum reactor, about 40% immersed in 

water was investigated for photocatalytic degradation of aqueous 

phenol.  
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Li et al., (2007) deposited Ag/ TiO2 and Pt/ TiO2 photocatalysts on the 

pyrex glass tube surface by chemical vapor deposition (CVD) method 

and the photo-reduction deposition process. In reactor the photocatalytic 

performance of these films for the degradation of salicylic acid was 

studied.   

Luu et al., (2010) prepared Fe doped titania by SG method and a 

transparent film of which, formed on Pyrex tube, was tested for deep 

oxidation of p-xylene in gas phase at 40 oC. 

b) Titania Coating on Fabric  

Brezova et al., (1997) prepared titania and metal doped titania layers 

fixed on glass fiber by SG technique. The photocatalytic activity of the 

supported photcatalysts was tested for phenol degradation in a 

photochemical immersion reactor. 

Tryba (2008) immobilized Fe–C–TiO2 photocatalyst on the cotton 

material by applying aqueous mixture of photocatalyst and sodium 

silicate with brush. The coated cotton was placed inside the commercial 

cylindrical water disinfection reactor so that the cotton remained 

attached with the inner wall of the reactor. It was concluded that the 

coated photocatalysts could efficiently decompose phenol in multiple 

cycles. 

Joanna Grzechulska-Damszel (2009) immobilized titanium dioxide on 

glass fabric as a thin layer from the alcoholic suspension followed by 
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thermal stabilization. The coated glass fabric was applied as photoactive 

refill in a reactor for removal of phenol from water. 

Szabova et al., (2009) coated titania nanoparticles on plasma activated 

polypropylene fibers by immersing in the water suspension of titania 

powder. The dried fibers were then characterized for adhesion analysis. 

c) Titania Coating on Plates/Slides/Sheets 

Yamashita et al., (2003) used Ion Assisted Deposition (IAD) method for 

coating of titania on Porous Teflon Sheet (PTS). The coated sheets were 

then investigated for degradation of rhodamine-B aqueous solution 

under UV irradiation.  

Paez and Matousek (2004) prepared coatings on glass substrate using 

SG method and dip coating technique. After heat treatment the titania 

layers were characterized using UV-VIS spectrophotometer, XRD 

diffraction analysis and electron microscope.  

In the study of McMurray et al., (2006), indium doped tin oxide coated 

borosilicate glass was coated with titania (Degussa P25) using an 

electrophoretic deposition technique. After annealing the TiO2–ITO 

glass in air at 673K for 1 hour, it was tested for photocatalytic 

degradation of atrazine in a specifically designed stirred tank reactor. 

Addamo et al., (2008) used dip coating method for preparing thin layers 

of titania using sols deriving from titanium tetra isopropoxide on glass 



16 
 

slide followed by heat treatment. They also compared the film formed 

by immersing glass slide in aqueous dispersion of titania powder 

(Degussa P25). It was observed that coatings obtained by using Degussa 

P25 were more thick and photoactive, however, the film was badly 

adhered to glass substrate. 

Latifi et al., (2008) in their work deposited titania onto titanium 

substrate using dip coating and SG method. They concluded that the 

thickness and the morphology of the coatings were found to be 

influenced by the repetition number of process.   

Khataee et al., (2009) immobilized titania nanoparticles on glass plates 

by heat attachment method and compared the photocatalytic 

decomposition of three different azo dyes (C.I. Acid Orange 8, C.I. Acid 

Orange 10 and C.I. Acid Orange 12) in a circulation photochemical 

reactor.  

Barati and Faghihi Sani (2009) prepared uniform and nanocrystalline 

titania thin coating on 316L stainless steel substrate by dip coating and 

SG method followed by heat treatment. They investigated the influence 

of calcination temperature and pH values on the surface morphology and 

crystal structure of titania films. 

Lin et al., (2010) synthesized anatase typed titania nanoparticles by SG 

method with mixing acetyl acetone, tetra butyl titanate, isopropyl 

alcohol and pure water followed by heat treatment. Titania thin film on 
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glass substrate, formed by dip coating method, was investigated for 

photocatalytic degradation of acetic acid under UV light. They also 

prepared doped anatase TiO2 nanoparticles with Fe, Cu and Zn by 

impregnation method.  

Ali et al., (2010) used electrolysis technique in (NH4)2[TiO(C2O4)] 

solution at 12 V for 20 minutes to obtain titania films onto Zn/ZnO and 

Al/Al2O3. Zn/ZnO/TiO2/UV combination showed the peak 

photocatalytic decomposition results for cypermethrin as compared to 

Zn/ZnO and Al/Al2O3/TiO2 photocatalytic system in a square pyrex 

reactor. 

d) Titania Coatings on Beads/Sphere/ Rings  

Dijkistra et al., (2001) immobilized titania onto the wall of a tubular 

reactor and glass beads by dip coating in a Degussa P25 suspended in 

water followed by heat treatment. They compared titania powder slurry 

reactor, titania coated wall tubular reactor and titania coated glass beads 

packed bed reactor for the degradation of formic acid. They found that 

these three tubular catalytic configurations had comparable degradation 

performance and coated wall reactor suffered from mass transfer 

limitations. 

Balasubramanian et al., (2003) modified the SG process, by addition of 

Degussa P-25 powder, to prepare titania film on glass and stainless steel 
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substrates. The MSG process resulted in a thicker film as compared to 

films obtained by the conventional SG method. 

Ryu et al., (2003) investigated coatings of TiO2 on SiO2 spheres through 

SG method using the peptized titania nano sols. They investigated the 

effect of pH change on the homogeneous coating processes under open 

atmosphere using only water as a solvent.  

Martyanov and Klabunde (2004) used SG method and dip coating 

technique for preparation of titania film on quartz support. They found 

that in contrast to the unsupported TiO2 powders, TiO2 nanocrystals on 

SiO2 remained in anatase phase even at 800 oC. 

Zheng and Qiu (2007) immobilized titania onto hydroxylated glass 

beads (HGB), hydroxylated quartz sands (HQS) and silica gel beads 

(SGB) via the thermal bonding and sol–gel coating methods. Titania 

coated HGBs demonstrated poor adherence stability during degradation 

of Congo Red aqueous solution in photocatalytic fluidized bed reactor. 

Coated SGBs showed better adherence stability as compare to HGBs 

and HQS. 

Yamashita et al., (2008) in their study, prepared and characterized 

titania photocatalysts loaded on Si3N4 using conventional impregnation. 

They successfully applied this material, in a quartz cell under UV 

irradiation, for the photocatalytic degradation of 2-propanol diluted in 

water. 
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Neti et al., (2010) immobilized titania on glass beads and rasching rings 

by spraying suspension of Degussa P25 in water/ethanol followed by 

drying and heat treatment at 150oC. In a batch recirculation photoreactor 

titania coated rasching rings showed better efficiency for vapour phase 

degradation of toluene, acetone and ethanol.    

Daneshvar et al., (2005) used titania powder (Degussa P-25) and heat 

attachment method to obtain coating on glass beads. They investigated 

photocatalytic decomposition of an azo dye; C.I. Direct Red 23 (DR23) 

using these coated beads. 
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Chapter 3 

MATERIALS & METHODS 

3.1 MATERIALS 

TiO2 GPR (Titanium (IV) oxide, Sigma Aldrich GmbH), Titanium 

Isopropoxide TIP (Titanium (IV) Isopropoxide), 97%, Sigma Aldrich GmbH), 

2-Propanol (99.5%, Sigma Aldrich GmbH), HNO3 (85%, GR Merck Germany), 

AgNO3 (99%, GR Merck Germany), 4-Nitrophenol (99%, Fluka Chemika AG 

CH), Sodium Arsenite (As (III) Merck Germany)  and glass beads of dia ≈ 

3.5mm, purchased from local market, were used for the experimental work. 

Distilled water (E.C.  2.8µS/cm), used in the experimental work, as obtained 

from the distillation apparatus (Model WSB/4, Hamilton Laboratory Glass Ltd). 

3.2 PREPARATION OF TITANIA NANOPARTICLES 

3.2.1 Un-doped Titania Nanoparticles (UNP) 

20 g titania GPR was taken in a washed and dried china dish. The china 

dish was placed in a Muffle furnace at 500 oC for 3 hours to obtain un-doped 

crystalline titania nanoparticles (Ilyas, 2010). 

3.2.2 Ag-doped Titania Nanoparticles (AgNP) 

To prepare silver doped titania nanoparticles (AgNP), liquid 

impregnation method (Asghar, 2010) was followed as described below. 

10 g of titania GPR was added to 200 mL distilled water in a 500 ml 

beaker with continuous stirring. An accurately weighed amount of AgNO3 (to 
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obtain 1% molar ratio silver doping) was added to the suspension and 

thoroughly mixed for 2 hours. The contents of the beaker were placed at room 

temperature for 12 hours to settle down. The beaker was then placed in an oven, 

at 105 oC, for 12 hours, for the removal of the residual moisture. The obtained 

solid material was ground and calcined at 500 oC in a furnace for 3 hours. Silver 

doped titania nanoparticles (AgNP), obtained from this step, was used for 

subsequent experimental work.  

3.3 THE COATING PROCESS  

3.3.1 Preparation of Coating Solution/Suspension  

The Sol-Gel method of Martyanov and Klabunde, (2004) was followed 

to prepare the sol. In this step, 5.9 mL of Titanium Isopropoxide (TIP) was 

added to 75 mL 2-Propanol in a beaker ’A’ while stirring. 75 mL of 2-propanol 

was taken in another beaker ‘B’ and 0.27 mL of HNO3 followed by 0.42 mL of 

distilled water was added in it drop wise with continuous stirring. (H2O/TIP = 2 

& HNO3/TIP = 0.2) 

The contents of beaker ‘A’ were rapidly transferred to beaker ‘B’ while 

stirring. The solution obtained was used to immobilize titania on glass beads by 

sol-gel method. In MSG method following the modification suggested by 

Balasubramanian et al., (2003) titania GPR and synthesized nanoparticles, 

equivalent to 30 g/L, was added slowly into beaker ‘B*’ with continuous 

stirring to prevent the formation of agglomerates. This resulted in a thick white 

homogenous suspension. The suspension obtained was used for modified sol-

gel coatings on glass beads. 
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3.3.2 Surface Etching of Glass Beads 

Before titania coating, glass beads were etched by heating at 95 oC in 

5M NaOH solution for 30 minutes. The beads were then washed with distilled 

water and dried. 

3.3.3 Sol-Gel (SG) Coating on Glass Beads  

Etched, washed and dried glass beads were taken in a beaker ‘C’ to form 

a single layer at the bottom. The solution, obtained from SG method, of beaker 

‘B’ was poured into the beaker ‘C’ so that the beads were totally immersed in 

the solution. The contents of the beaker were then left to dry, at room 

temperature, for 24 hrs. After drying, the beads were heat treated by placing in 

an oven, at 105 oC, for 1 hour, followed by heating at 500 oC, for 1 hour, in a 

furnace.  

3.3.4 Modified Sol-Gel (MSG) Coating on Glass Beads 

Similar procedure described in section 3.3.3, with a slight change, was 

followed to get MSG coatings on glass beads. The only change made in this 

procedure was the use of the contents of beaker ‘B*’ obtained from MSG 

method instead of SG method. Rest of the steps remained the same.    

3.4 CHARACTERIZATION OF GLASS BEADS  

3.4.1 X-ray Fluorescence  

XRF (X-ray fluorescence spectrometry) is an analytical technique used 

to determine the elemental concentrations in solid or liquid samples. In this 

technique when the sample material irradiated with X-rays, each element emit 

fluorescent light of its specific wavelength which is used to determine each 
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element present in the sample. By using XRF, elemental analysis of samples 

having elements from beryllium (Be) to uranium (U) can be carried out even at 

trace levels (Anonymous, N.D). 

In the present work JEOL JSX 3202M EDX-X-ray Fluorescence (XRF) 

was used to determine the composition of synthesized titania nanoparticles. 

3.4.2 X-ray Diffraction  

X-ray diffraction analysis (XRD) is used to perform the structure 

analysis of crystals. When a X-ray beam falls on the planes of crystals it follows 

different paths after interaction with crystals. Some part of the beam is absorbed 

by the sample and some part is transmitted. While some part is 

scattered/refracted and part is diffracted. Each mineral diffracts the X-rays in a 

different way, depending on the composition of the crystal lattice and the 

arrangements of atoms within the lattice (US Geological Survey, 2001).  

In present work the STOE D-64295 X-ray Diffractometer was used to 

identify the crystalline phase and to determine crystallite size of the synthesized 

nanoparticles. 

3.4.3 Scanning Electron Microscopy 

The scanning electron microscope (SEM) is used to study the surface 

characteristics of a solid sample. When a focused beam of high-energy electrons 

falls on the solid surface, a variety of signals generated from electron-sample 

interactions.  From these signals, information regarding external morphology 

(texture), orientation of sample materials and crystalline structure can be 

determined. In SEM analysis, generally data for a selected area of the sample 
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surface are collected with 2-dimensional image. The generated image shows 

spatial variations of the properties. Conventional SEM can image approximately 

1 cm to 5 microns width areas in normal scanning mode (Voutou and Stefanaki., 

2008). 

JEOL JED-2300 Scanning Electron Microscope (SEM) was used in this 

study for the characterization of coated beads. Glass beads, after the coating 

step, were washed with distilled water to remove any attached powder particles 

and dried in oven at 105 oC to remove any moisture. The dried glass beads were 

subjected to SEM analysis. SEM images were used to study the surface 

morphology and distribution of titania on the glass bead. 

3.4.4 Energy Dispersive Spectroscopy 

Energy dispersive X-ray analysis is also known as EDS, EDX or EDAX. 

This technique is used to determine the elemental composition of small selected 

area on the surface of sample. In EDS analysis, when a sample is exposed to an 

electron beam, upon collision of electrons with the sample material, some 

electrons escape from their orbits. In this process higher energy electrons fill the 

vacated positions by emitting x-rays. The analysis of the emitted x-rays lead to 

determination of the elemental composition of the sample (Hafner, N.D). 

 The same JEOL JED-2300 Scanning Electron Microscope (SEM) was 

used to determine the composition of coatings on glass beads.  

3.5 PHOTOCATALYTIC PERFORMANCE TESTS  

To determine the photocatalytic effectiveness, these titania coated beads 

were applied to degrade 4-Nitrophenol solution under UV irradiation and 
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Arsenic removal from water. Experimental details for photocatalytic 

performance tests are presented below.  

3.5.1 4-Nitrophenol Degradation Experiment  

 3 mg of 4-Nitrophenol (99% pure) was added in 200 ml distilled water 

in a 250 ml beaker and dissolved properly. The contents of the beaker were then 

transferred to a 1 L analytical flask and the volume was made up to the mark 

with distilled water. The solution obtained was used as stock solution having 

concentration 3 ppm of 4-Nitrophenol in water.   

In a sample of stock solution, dilute NaOH (0.1N) solution was added 

drop wise to obtain pH of 10.  The resulting yellowish solution was subjected to 

UV visible spectrophotometer (HACH DR 2400) in a 4 cm path length glass 

cell and absorbance was measured at 400 nm. For a blank reading, in a glass cell 

of the same dimensions, distilled water was taken as a reference. The 

absorbance value obtained by using this reference, served as the reference value 

to determine the degree of reduction in the phenol concentration, after exposing 

the solution to UV light in the presence of (a) GPR, (b) UNP and (c) AgNP 

coated beads. 

15 mL of 3 ppm 4-Nitrophenol solution, with its pH adjusted to 4, was 

placed in three cylindrical quartz cells (25 mL volume).  35 coated glass beads 

of each type (GPR, UNP, AgNP) were washed with distilled water, dried, and 

introduced into each of the three cells containing the phenol solution.   

The quartz cells were then placed under a 20W Black-Ray UV lamp 

(having wavelength peak at 365 nm & intensity of 1.4 mW/cm2) for up to two 
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hours. After irradiation the beads were removed by filtration.   

Absorbance values of 4-nitrophenol solution (pH adjusted to 10), before 

and after the UV exposure, allowed us to estimate the phtocatalytic degradation 

of the compound. These measurements were carried out using the HACH DR 

2400 UV-visible spectrophotometer.  

3.5.2 Arsenic Removal Experiment 

To obtain As (III) stock solution (1000 ppm or 1000 mg/L), 300 mL of 

Sodium Arsenite aqueous solution was mixed with 700 mL of distilled water in 

a 1 L volumetric flask. From this stock solution, sample solutions (0.5mg/L) 

were prepared for arsenic removal tests. 

15 mL of Arsenic (III) sample solution, having pH 7, was introduced in 

three 250 mL flasks. 35 coated glass beads of each type (GPR, UNP, AgNP) 

were washed with distilled water, dried, and added into each of the three flasks 

containing the Arsenic sample solution. The flasks were then placed on an 

orbital shaker at 90 rpm under ordinary light for one hour.  

After the experiment, the solutions of each of the flasks were subjected 

to Atomic Absorption Spectrophotometer for determination of residual Arsenic 

contents.  
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Chapter 4 

RESULTS & DISCUSSIONS 

4.1 CHARACTERIZATION OF NANOPARTICLES 

Titania nanoparticles (un-doped and silver doped) were synthesized in 

the laboratory, for the purpose of immobilization, as described earlier in section 

3.2. These nanoparticles were then characterized by XRF and XRD analysis for 

composition, crystalline phase and average crystallite size.  

4.1.1 XRF Analysis 

Elemental analysis of synthesize nanoparticles was performed using 

JEOL JSX 3202M EDX-X-ray Fluorescence (XRF). Titania nanoparticles, un-

doped and silver-doped, were subjected to XRF analysis and the results are 

presented in the table 4.1. The results show that silver doped titania contains 

0.92 % (molar) silver contents in the silver titania blend.   

Table-4.1: Elemental analysis of un-doped & Ag-doped titania 
nanoparticles 

Element Mole %(Un-doped) Mole %(Ag-doped) 

Ti 99.6544 98.7151 

Ag -- 0.9284 

K 0.3232 0.3308 

Ge 0.0324 0.0257 

4.1.2 XRD Analysis 

STOE D-64295 X-ray Diffractometer was used to  perform XRD 

analysis of synthesized nanoparticles. The results of X-ray diffraction spectrum 
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Table-4.2: Crystallite size of UNP and AgNP  

Material Peak-
Position 

Peak 
Broadness 

Crystallite 
size (nm) 

UNP 25.261 0.175 45.65 

AgNP 25.231 0.178 44.88 

 

By using Scherrer formula, un-doped titania crystallites have average size 

of 45.65 nm while average size of Ag-doped titania crystallite was 44.88 nm. 

The sizes of these crystallites are in accordance with the earlier work (Ilyas, 

2010). 

4.2 QUALIFICATION OF GLASS BEADS FOR TITANIA 

IMMOBILIZATION 

Glass beads (approximate diameter = 3.5 mm and average weight= 8.5 

mg) were purchased from the local market as a potential substrate medium for 

titania coatings. The stability of these beads was evaluated at the coating 

process heat treatment conditions (i.e. heating at 500 oC for 3 hours in Muffle 

furnace). These beads after heat treatment were analyzed by SEM and surface 

composition of these beads was determined by EDS elemental analysis. 

4.2.1 Characterization of Glass Beads  

JEOL JED-2300 Scanning Electron Microscope (SEM) was used to 

characterize the glass beads. The composition of a typical glass bead, before 

and after heat treatment, is presented in tables 4.3. As expected, no significant 

change was observed in composition of bead after heat treatment.  
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Although the heat treatment step had made minor changes in surface 

morphology of glass beads and some pores were observed on the surface 

indicating the escape of entrapped gases, these changes were insignificant.   

Table-4.3: Surface composition of a glass bead before and after heat 
treatment 
 

 
 
 
 
 
 

 
 

 

 

 

 

It was concluded that the glass beads could serve as a suitable substrate 

medium for titania coatings which would be utilized, subsequently, for photo 

degradation applications. 

4.3 TITANIA COATING ON GLASS BEADS 

Initially SG method (Martyanov and Klabunde, 2004) and MSG method, 

as suggested by Balasubramanian et al., (2003), were followed to immobilize 

titania on etched glass beads. For the selection of eventual coating process 

quantitative analysis of coated beads was performed through the use of Energy 

Dispersive Spectroscopy (EDS) of the JEOL JED-2300 Scanning Electron 

Element Mass% (before heat 
treatment) 

Mass % (after heat 
treatment) 

O 46.71 46.80 

Na 7.37 7.81 

Mg 2.90 3.25 

Si 35.16 35.07 

K 4.92 4.29 

Ca 2.94 2.77 
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Table-4.4: Comparison of SG and MSG coated beads in term of titania 
presence, using EDS 

S.No. Method TiO2 (mass %) 

1 SG method 
(double coat ) 1.22 

2 MSG with GPR 
( single coat) 2.91 

3 MSG with UNP 
(single coat) 4.51 

4 MSG with AgNP 
(single coat) 5.48 

The EDS results confirmed that MSG method offers better quality of 

coating compared to the traditional SG method as reported in previous studies. 

On the basis of these results the subsequent coatings were made using the MSG 

method. 

Using MSG method with three different titania materials, glass beads 

were subjected to ten (10) time coating cycles. The coating on each 

representative glass beads were characterized, by using Scanning Electron 

Microscope, after one (01), five (05) and ten(10) coating cycles. 

As expected, the amount of titania in the coatings, increased considerably 

with each coating cycle. From the EDS results of coatings Table-4.4, it can be 

inferred that by using all the three materials, after single coating cycle, 

nanoparticles addition in the MSG method resulted in higher titania contents on 

the beads as compared to the general purpose reagent. Enhanced titania contents 

on the subsequent coatings would have resulted due the increased roughness of 

the surface as a result of previous coatings. In case of earlier coatings, 
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comparatively smoother surface of glass beads would have offered less 

nucleation sites for titania deposition.  

By using all the three powders, after ten (10) coating cycles, sufficient 

amount of titania deposited on glass beads. However, nanoparticles (i.e. UNP 

and AgNP) added MSG method showed slightly higher amounts of titania in the 

coatings as compare to the GPR added MSG process. 

 
Figure 4.3: TiO2 coverage (avg mass %) on glass beads after different 
coatings 
 

Since coatings obtained by using all the three materials (GPR, UNP and 

AgNP), contained sufficient amount of titania with slight differences, therefore it 

can be concluded that to obtain coating of pure titania, GPR addition would be a 

better option over the UNP addition in the MSG process. However, to obtain 

coating of a doped material, nanoparticle addition in the MSG method would be 

the appropriate choice. 
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(a)                                 (b)                                      (c) 

Figure-4.6: SEM images of coated beads by MSG with AgNP, after (a) 1 
coating (b) 5 coatings and (c) 10 coatings 

To get a detailed look at the surface morphology, coated beads were 

analyzed at high resolutions by SEM. In case of GPR MSG method, where 

particles of varying sizes were observed on the coated surface. Lumps in the 

form of aggregates were also present showing that the agglomeration of 

particles had also occurred during the immobilization process.   

 

Figure 4.7: An image of a glass bead, coated by MSG with GPR, after 10 
coating cycles 

For both (UNP and AgNP) MSG processes, the deposited particles on 

the glass surface had increased uniformity in size as compared to GPR added 

process. Similar to GPR added MSG process, some aggregates of particles, in 

the form of lumps, were also present on these coatings.  
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Figure 4.8: An image of a glass bead, coated by MSG with (a) UP & (b) AP, 
after 10 coating cycles   

4.4 PHOTOCATALYTIC PERFORMANCE RESULTS   

4.4.1 4-Nitrophenol Degradation Experiment  

Results for the degradation of 4-Nitophenol, by the coated beads (GPR, 

UNP and AgNP), in the presence of UV light, are shown in ‘Fig 4.9’. During all 

the tests, nanoparticles (UNP & AgNP) added coatings offered slightly better 

degradation results as compare to GPR added coating. In this study, by using 

coated glass bead the degradation was not comparable with the direct use of 

nanoparticles (Ilyas, 2010). However, the degradation efficiencies obtained were  

 
Figure 4.9: Comparative degradation results, for 4-Nitrophenol, using 
GPR, UNP and AgNP coated beads. 
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in accordance with earlier degradation studies using coated titania 

(Thiruvenkatachari et al., 2008). 

The degradation level of the coated glass beads was smaller in extent to 

nanoparticles reported earlier (Ilyas et. al. 2011), which may be due to the 

experimental conditions like, lesser surface area, UV absorbance by glass and 

confinement of the sample in a sealed tube cell.   

4.4.2 Arsenic Removal Experiment 

Arsenic removal results, by the coated beads (GPR, UNP and AgNP) are 

shown in ‘Fig 4.10’. In these tests, all coated glass bead showed encouraging 

results for the removal of Arsenic from water. However, titania coated beads 

with doped and undoped nanoparticles offer better arsenic removal efficiency as 

compare to GPR coated beads.   

 

Figure 4.10: Comparative Arsenic removal results by using GPR, UNP and 
AgNP coated beads. 
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        Chapter 5 

CONCLUSIONS & RECOMMENDATIONS 

5.1  CONCLUSION  

From this study following conclusions are drawn: 

1. Heat treatment studies show that glass beads can sustain the titania 

coating conditions, hence these can be used for immobilization of titania, 

by the Sol Gel method. 

2. Modified Sol-Gel method offers superior coatings as compared to Sol-Gel 

method, in term of titania quantity.  

3. Nanoparticles added Modified Sol Gel offers better coatings results, in 

term of coating coverage and photocatalytic performance, as compared to 

other coated beads. 

5.2   RECOMMENDATIONS 

The experimental results show that titania nanoparticles can be 

effectively coated on glass beads and good efficiencies for elimination of toxic 

pollutants (e.g. 4-nitrophenol and Arsenic) can be achieved. Further studies, 

using coated beads in a photoreactor, may lead to the development of water 

purification unit for the elimination of toxic pollutants and bacteria as well. 
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