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Abstract 
 

Controlling non-linear systems in the most intelligent and efficient manner is the biggest 

and ongoing challenge for control engineers and scientists. Current research revolves 

around developing methods for control processes which can work with no plant 

information at all. Implementing online global learning in direct fuzzy controllers is an 

attempt to pursue this objective. Starting from an empty knowledge free controller, these 

controllers are able to learn, adapt and tune themselves with the desired results. Online 

tuning of rule consequents of the fuzzy controllers is discussed on the basis of plant 

output error i.e., adaptive control scheme was utilized. Modifying the adaptive controllers 

parameters by using only the qualitative information of the plant i.e., the monotony of 

input and output along with the adequate no of iterations required for learning was the 

basis of this work.  

 

Detailed error analysis on linear and non-linear plants concluded that the learning/tuning 

of the scheme was drastically improved with the correct combination of controller 

parameters. Finally, this empty knowledge free adaptive fuzzy controller was tested on a 

real plant in which it was successful in online controlling of water level on a real three 

tank system.   
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CHAPTER 1 

1. Introduction 

 

1.1 Motivation  
 

Every practical system in this world consists of some complexities and non-linearities. 

This is the reason why controlling non-linear systems in the most intelligent and efficient 

manner is the biggest and ongoing challenge for control engineers and scientists. Current 

research revolves around developing methods for control processes which can work with 

no plant information at all. 

 

Within the domain of control schemes, Adaptive control scheme is one of the most 

popularly known. It has revolutionized the process industries because of its abilities to 

control processes with constraints and nonlinearities.  

 

In mid 70s, a new branch of controls emerged i.e. Fuzzy controls and it has been 

phenomenal in being a successful control technique used by control engineers worldwide. 

 

Fuzzy controller is primarily based on the concepts of fuzzy set theory and fuzzy logic 

and proved themselves to be universal approximators. It is their proven ability to 

approximate any continuous function to any desired accuracy. [1] 

 

Keeping in view the proficiency of the two above mentioned control systems, modern 

researchers anticipated exceptional results in merging the two schemes and started 

focusing on the integration of the concepts and techniques from conventional adaptive 

control into fuzzy control mechanism. Blending of both schemes i.e. fuzzy modelling and 

adaptive Control has produced phenomenal results in the field of control systems.  

The consistently increasing research in this area inspired the author to choose „Fuzzy 

Model based adaptive Control for controlling different nonlinear system‟ as thesis work.  
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1.2 History of fuzzy controllers 
 

Research work [2] done regarding the application of learning techniques to process 

control was the basis of the concept of Fuzzy control. At that time, conventional/ 

analytical control theory was unshakable in the areas of learning and adaptive control 

systems. [3].  

 

This status quo was challenged and eventually taken over because of the increasing 

application of fuzzy controllers in Japan[3] brought fuzzy control into consideration and 

now fuzzy control and allied techniques such as self-organizing fuzzy control, neural 

networks, genetic algorithms and so on, provide an alternate paradigm to the analytic 

control theory. Fuzzy controls may also employ non analytic approaches to control which 

are based on decision making approaches derived from artificial intelligence. 

  

There existed a misunderstanding that a controller must be designed by a good analytical 

treatment only and the similar controller if designed by other techniques such as based on 

methods of artificial intelligence would essentially be highly complex to meet the desired 

level of sophistication. Zadeh‟s paper [4] persuaded the world to use a fuzzy rule-based 

approach. The controller design based on this paper attracted several researchers by the 

surprising ease in implementing a fuzzy controller.  

 

Researchers came across many situations where conventional approach to control failed 

because of the complex systems whose mathematical analysis was unavailable. 

Moreover, the control theory was applied to some other systems including 

telecommunication, management, economic systems etc. that were modeled in the form 

of differential equations instead of deriving their behavior form first principles of 

Physics. For instance, in the field of telecommunications networks, it is required to assess 

the performance of the network on regular basis and keep reconfiguring the network to 

maintain the quality of service metrics at the preferred values. For such systems to work, 

human interaction is needed. Even if the mathematical laws that describe the input/output 

behavior of such systems are developed, there still exists the uncertainty that the 
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mathematical law will remain valid for these systems since humans may alter their 

parameters that will unpredictably change the behavior of the systems.  

 

In addition to this, there are certain systems for which highly complex mathematical 

models are present and the design of their controllers requires a lot of time. On the other 

hand, if the controller is being designed on fuzzy logic, the requirement of knowledge of 

the systems will be less as compared to that for a conventional mathematical based 

controller. 

 

As an example, consider the process control system.  The mathematical equations which 

depict the behavior of such a process are too complex and almost impossible to derive 

with a high degree of accuracy. Also is the case with Cement kilns (the first industrial 

application which used fuzzy control [5]) and Steel making.  

 

Fuzzy control‟s approach out rightly becomes the best control solution for all the above 

mentioned systems because they have more in common with human systems. Since 

Fuzzy control base their working on intelligent rule applications and therefore perform 

much better than the classical non-linear dynamic systems.  

 

1.3 Description of a fuzzy controller 
 

Fuzzy controllers are simply rule-based controllers for which a designer of the system 

can provide all the necessary information and no expert operator in terms of 

mathematical equations is essentially needed to derive the knowledge to be used.  

 

A rule-based control model is capable of producing better controllers than analytic 

control model. The most favorable properties of a fuzzy logic based  controller is its 

robustness, simple design and easy to implement hardware. This is evident by the recent 

industrial experience [6].  
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Consider a simple example of  introducing intelligence in a washing machine regarding 

the “turbidity” of water. One would not be content by just displaying the “turbidity” 

value to the user of the washing machine because it would be pointless for the user. 

However, when this new information is understood i.e., Turbidity value indicates how the 

clothes washed were soiled and how dirty they were, we can interpret it in terms of rules 

i.e., we automatically adjust the washing time with respect to turbidity value. Therefore 

this simple knowledge representation (the strength of fuzzy control approach) introduced 

the associated intelligence for the user.  

   

1.4 Adaptive fuzzy controllers 
 

The first adaptive fuzzy controller was invented and presented by Procyk and Mamdani 

in 1979 [7]. It was called the linguistic self-organizing controller (SOC), which defined 

the scope of adaptive control. Their learning algorithm modified the rules which were 

responsible for poor performance.  

 

An Adaptive approach in fuzzy controllers deals with unpredictable behaviour of systems 

to be controlled. Therefore when the real implementation is accomplished [8] they are 

able to perform better than non-adaptive control policies.  

 

Many researchers have contributed different ideas in making the online self tuning 

adaptive fuzzy controller more robust and effective. In this thesis, one of the most recent 

approaches outlines by Pomares [9] will be studied.  

1.5 Scope of the Work 
 

The aspiration for this work is to study, understand and add value to the emerging 

approach of online self-organizing fuzzy controllers which do not use any prior 

knowledge or any offline pre-training. It is assumed here that the plant is unknown and 

input output data of the plant is made available online.  
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Pomares[10], proposed an adaptive block which tries to adapt the plant output. This block 

implements a modified SOC to ascertain the plant‟s current state and implements an 

algorithm for updating the rules. It uses basic online information of the tread of plant 

error i.e., monotonicity of the plant output with respect to the input and updates the rule 

consequents. Since this block can only ensures relative adaptation therefore it‟s work is 

termed as coarse tuning of the rule consequents. Another factor i.e. β or no of epochs, 

which outlines the controller learning, is very crucial in affecting the online coarse tuning 

of these rules. For instance, selecting a very small value of β might account for 

inadequate learning of the controller and too large values may make the convergence 

very slow.  

 

After coarse tuning of the rules, Pomares implements another block named GL-block 

(Global Learning Block) for fine tuning of the results. Global learning is done by 

compiling real time input/output data and the system then learns from this data using 

controller output error method [11]. The global learning block relies on the adaptation 

block for initial control action. Thus, it is capable of controlling highly non-linear 

systems, in a pseudo-optimum way, even when these are time variable. 

 

To the best of author‟s knowledge, no papers have been published for the identification 

of the best coarse tuning parameters of the adaptation block of pomares on a non-linear 

plant. If such a work is done, then the second block i.e., GL block, might become 

redundant. 

 

This work aims to identify the optimal parameters of Adaptive block (i.e, monotonicity 

and no of epochs) for best course tuning. With the addition of this, the overall algorithm 

will eliminate the use of GL-block, making it much more effective.  
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1.6 Thesis Organization 
 

The thesis is organized as mentioned below: 

 

Chapter 2 details the literature review of the progress in the domain of Online Adaptive 

Fuzzy Model. 

 

Chapter 3 describes the complete control architecture for online controlling of plants with 

specific focus on Adaptive learning.  

 

Chapter 4 delineates the overall performance in detail by implementing the control 

architecture on different plants and different set-points. The simulation results of 

controller will be presented and discussed. 

 

Chapter 5 finally concludes the thesis work by outlining the working of the proposed 

scheme, the novelty introduced in the basic idea, its benefits and the recommendations 

for future. 
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CHAPTER 2 

2. Literature Review 
 

2.1 Prologue  
 

The chapter presents a literature review of the studies carried out for thesis work. For the 

sake of compactness, all of the corresponding material is not brought into the scope of the 

chapter however some key references will be discussed briefly. A detail list of the 

reference material is provided in reference section for further study. 

2.2 Review of the Research Work  
 

Most recently, control scientists are exploring and extensively working on Online 

Adaptive schemes using fuzzy models and a significant number of papers have been 

published. Their approach is to make use of different benefits which are extracted from 

different variations in the online adaptive scheme. 

 

This chapter outlines the progression of Adaptive fuzzy mechanisms during the course of 

time. This upstream of technology primarily revolves around the amount of information 

of available regarding the plant. As it is known, fuzzy models are suitable where the 

goals and constraints or the physical mechanisms are ambiguous therefore the way a 

fuzzy controller is designed will vary. It all depends on the dynamics of the system and 

the knowledge which is available about it. [12].  

 

Broadly speaking,  three situations are encountered i.e., plants which either have known 

internal dynamics or plants with reduced knowledge of internal dynamics or plants with 

no information at all about it. Adaptive Fuzzy control designers have worked on all these 

fronts as discussed ahead.  
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2.3 Plants with known internal dynamics 

 

If the differential equations (i.e., internal dynamics) of the plant and their properties are 

completely known, then designing stable controllers with this information is an easy task 

i.e., conventional control techniques are best suited [13], [14].  

 

Its main advantage is that it can result in an optimal controller with satisfactory criteria 

i.e., a controller with minimum number of rules or a controller with an adequate topology 

etc. Its design also ensures that their stability can be studied and proved. 

 

However, their disadvantages include a design, 

 

1. That is very time-consuming,  

2. That will need to be redefined for various plants  

3. That cannot cope with changes in the dynamics of the plant if the designer missed out 

the possibility of various occurrences.  

2.4 Plants with reduced knowledge of internal dynamics 
 

Plants with reduced knowledge of internal dynamics are the most common of all. 

Reduced knowledge may include the existence of upper bounds or some properties of 

differential equations. The literature contains a large no of techniques for the design of 

controllers for such plants. 

 

For instance, existence of certain bounds can help to make assumptions about the plants 

equations. Liu and Zheng [15] and Wang et al. [16] obtained Lyapunov-based update 

laws for the parameters of the controller by assuming that the approximation error is 

bounded.  
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In all the above cases, only the parameters are updated online while keeping structure of 

the fuzzy system fixed. Their main advantage is the surety about the stability of the 

closed-loop system but, the membership functions (MFs), and the rules have to be 

defined beforehand. This of course means that some knowledge about the plant is 

fundamental in order to make available a fine definition of the rule base. Without this 

knowledge the consequential structure would be too complex or too simple and will not 

be able to handle plant nonlinearities. 

 

A neurofuzzy controller proposed by Gao and Er [17] has the capability to update both 

the parameters and the structure online. It adds new rules on the basis of completeness 

and system error and error-reduction-ratio (ERR) concept is used to delete the rules. The 

advantage of this method is that it places fewer rules in the areas with lower 

nonlinearities which in turn indicate that uneven rule distribution is formed. Another 

disadvantage is its high computational cost because of large matrix computations and 

storage of all previous input/output data. 

 

Some techniques like direct adaptive self-structuring fuzzy controllers [18] add a new MF 

and new rules to the controller at each instant whenever any input exceeds the range limit 

of existing MFs. In this way, it places MFs in all those regions which are actually reached 

by the controller in the input space. Their disadvantage is, the even distribution of the 

rules in its explored space. This leads to two different cases; if the region contains low 

non-linearities then a high concentration of MFs are introduced while the regions with 

many nonlinearities do not have adequate MFs. This in turn will affect the non-linear 

control performance.  

 

P. A. Phan and T. J. Gale [19] uses the same criteria of Gao and Fr for addition of new 

MFs. They modified it by proposing a condition that only those MFs will be added which 

achieved the rule with the maximum firing strength and highest activation degree. The 

MFs in the input space which are not sufficient to address all the nonlinearities are 

identified by a large system error. The advantage of this method is reduction of memory 

requirements as it does not store any past input/output (I/O) data, although it also implies 
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that the decisions made by the algorithm are short-sighted i.e., the algorithm only views 

happenings at present. Only Gale and Phan were able to prove stability in structure 

changes. However, all these techniques require certain assumptions about the plant to be 

made.  

2.5 Plants with no knowledge of internal dynamics 
 

This is the most challenging case because of the inability to make assumptions about the 

equations or the plant because of inadequate relevant information.  

 

The work of this thesis is primarily based on these types of plants therefore this subject 

will be studied in a little more depth than the previous ones. Control designers have 

mostly used offline pre-training techniques to control such plants. However, current 

researchers are trying to work out techniques where controllers automatically tune 

themselves according to the requirements without any offline work. It will be discussed 

briefly below. 

2.5.1. Offline Techniques 

 

Most offline techniques are based on evolutionary algorithms and automatic design of 

controllers is utilized. In many cases, the I/O data is made available, and various methods 

based on pre-training are used.  

 

Offline Parameter learning in the controller proposed by [19] employs evolutionary 

algorithms with a predefined topology. In [20] and [21], the controller‟s topology is also 

learnt, which provide more flexible solutions, as they are independent of the ability of the 

designer to select the rules.  

 

Several techniques are also presented for controller parameter‟s offline auto-tuning in 

batch mode [22]. They generally employ genetic algorithms [23], and neural networks 

[24]. For instance, plants of certain class of differential equations with known bounds are 

dealt satisfactory by Wang [25]. This also requires offline pre-training before working in 



19 | P a g e  

 

real time. Another approach is MRAC [26] (model reference adaptive control), which 

also arose from research into how to improve self-organizing controllers by using ideas 

from conventional control. It employs a reference model, to provide a closed-loop 

performance feedback for synthesizing and tuning the fuzzy controller.  

 

Their disadvantage is that it is designed as a fixed controller because it is learned offline, 

and therefore it is incapable of following changes in the plant. Also, there are many 

situations in which the I/O data used for the training is very difficult and mostly 

impossible, to extract. 

 

Practical speaking, the unsatisfactory performance is evident from online applications 

when system behavior changes. The reason is the pre-training parameters are insufficient 

to cope with online changes. Therefore online techniques were developed. 

2.5.2. Online Techniques 

 

Online techniques are usually applied when no I/O data is available. There are several 

methods for the online adaptation of controller parameters. There are certain methods 

which tune the output scale factors; others tune the rules and some methods which 

modify the structure of the controller i.e., the MFs as well. For example in [27], all three 

parameters are tuned. 

2.5.2.1. Online tuning of output scaling factor 

 

In recent times, adapting input or output scale factors of the fuzzy controller has also 

been utilized. There are many cases in which this is sufficient for controlling a simple 

plant. 

 

As we tune the gain of a PID controller, similar is the case of tuning the scale factor of a 

fuzzy system. To improve the control policy in the first iterations where no information is 

present in the fuzzy controller, online tuning of the output scale factor is used in [28]. 

However, this addition improves very few control problems.   
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2.5.2.2. Online tuning of rules 

 

Probably, the initial papers on fuzzy rule-based controller which evolves online surfaced 

in 2001[29]. In this paper, online data collection is done and rules are updated on the 

basis of this data.  

 

For simple applications, online tuning of rules is adequate to solve the control problem. 

In many SOC approaches, algorithms use the monotonicity sign and tune the rules. This 

however is not very effective in highly nonlinear plants as it is able to only provide a 

coarse tuning of controller parameters [30][31].  

 

There are certain online algorithms [32] which work primarily on the qualitative 

knowledge and real time error at the plant output. This style of adaptation of fuzzy 

controller functions well but it is limited to modifying rule consequents only and is 

incapable of tuning membership functions.   

 

In [33], tuning of parameters of the controller is done by reinforcement learning. This is 

done by two fuzzy controllers working as an actor and a critic. The input state used to 

determine the next action is used by the actor while it is the critic which adds up the 

reinforcement signal with the information about the action. This produces an internal 

reinforcement which updates both the fuzzy systems.  

2.5.2.3. Online tuning of the controller structure 

 

Cara et. al [34] and [35] presented an online SOC which did not require any offline 

training. This controller initially has empty rules and a very simple structure. It updates 

the controller parameters on the basis of data obtained during the plant‟s operation. This 

approach was tested on a nonlinear servo system and gave excellent results [36]. The 

disadvantage of this approach is the exponential rise of the no of rules with the addition 

of every new membership function.  
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Another approach to tune the structure of the controller includes the usage of the error at 

the controller output and applies gradient–descent technique to find the lowest value of 

error. This error then updates the structure of the controller [11].  

 

In [10], two auxiliary systems are used. The adaptive block uses plant output error for a 

coarse tuning of the rules, while Global Learning block utilizes the controller output error 

for fine tuning of the rule consequents and the structure. We will be applying and 

studying this approach in our work and trying to modify it. 

2.6 Chapter Summary  
 

This literature review summarizes Fuzzy control‟s evolution from controlling a plant with 

complete details of internal dynamics towards a plant whose internal dynamics are 

completely unknown. In this thesis an attempt was made to study the controller which is 

able to control plants which have unknown internal dynamics.  
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CHAPTER 3 

3. Control Scheme  
 

3.1 Prologue  
 

This chapter discusses the complete control scheme, its architecture and the control flow 

which enables the fuzzy controller to tune its parameters for desired control action. 

3.2 Overview of control scheme  
 

Generally, the system or plant to be controlled is expressed by its difference equations. It 

can be mathematically represented as:  

 

 ( ) ( ( )),...., ( ), ( ),...., ( ))y k d f y k y k p u k u k q    (3.1)     

 

Where,  

 

d= Delay of the plant  

f= Unknown continuous/ derivable function.  

y= Output of the plant 

u= Control signal 

 

There is a mandatory condition that the plant to be controlled should have a control 

policy that can transform the output to preferred value. It means that the output value 

should always be dependent on the control signal. This can be mathematically explained 

by considering a function (F) which is continuous with respect to all state variables.  

Therefore the control signal is given by: 

 

   

 ( ) ( ( ))u k F x k
r

  (3.2) 
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The states of the controller are given by; 

 

 ( ) ( ( ), ( ),...., ( ), ( 1),...., ( )x k r k y k y k p u k u k q
r

    (3.3) 

 

Here, r(k) is the desired output at instant k, This means that we have substituted 

( ) ( )y k d r k  This is able to reach the set point target after d instants of time.  

 

In this algorithm, no information is needed about the mathematical equations of the plant, 

although it is necessary to know the monotonicity of its output with respect to the control 

signal and the inputs that have a significant influence on the plant output. 

 

Now let us consider a complete rule-based fuzzy controller [13]. Generally the rules are 

defined as:  

 

If 
1x  is 1

1

iX  AND 
2x  is 2

2

iX  AND ... AND 
Nx  is Ni

NX   

 
1 2 ... Ni i iu R   

 

Where, 

 

j

NX      = jth MF of variable x 

N        = no of input variables 

1 2 ... Ni i iR = rule consequent 

 

We are using product operator (T-norm) as fuzzy inference method. The defuzzification 

strategy includes the centroid method with sum–product operator. Triangular membership 

functions are used. The strength of rule can be calculated using 

 
1 2 1 2... ... 1 1

1

( ) ( ..... ) ( )imN N m

N

i i i i i i N mX
m

x x x x x
r

    (3.4) 

Hence, the following equation calculates the output of our fuzzy controller; 
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( ) ( ( ))u k F x k
r

 

         1

1

( ( ))

( ( ))

rules

rules

n

i ii

n

ii

R x k

x k

r

r  

          

1 2

1 21 2

1 2

1 2

...1 1 1
1

1 1 1
1

... ( . ( ))

... ( ( ))

N

imN mN

N

im
mN

N
n n n

i i i mXi i i
m

N
n n n

mXi i i
m

R x

x

    (3.5) 

 

 

Now, with this basic infrastructure of controller in place with no rules and a generalized 

triangular membership function structure of the controller, we move on towards the two 

stages of this scheme. 

 

 These stages are illustrated by the flowchart in Figure 3.1. 

 

Initially, Fuzzy rule consequents adaptation is done on the basis of output error of the 

plant. For this, the plant monotonicity is taken into account.  

 

Once this coarse tuning of the rules is complete, then stage two takes charge and fine 

tunes the system on the basis of controller output error. It does not only update the rule 

consequents but also modifies rule antecedents i.e., the M.Fs. If we are able to perform a 

perfect course tuning in the first stage, the second stage would become redundant and 

unnecessary. This will save computational cost and time. 

 

Further details of control scheme are explained in depth in the architecture of this 

controller. 
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Coarse 
Convergency
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Adaptation of fuzzy rule 
consequents

Stage I: Coarse tuning on the basis of 
Plant output error

Fine Update of Rule consequents 
and Rule premises

Stage II: Fine tuning on the basis of 
               Controller output error

Yes

 

 

Figure 3.1: Stages of the applied control scheme 

3.4 Architecture of the Fuzzy controller 
 

Control architecture of the applied control scheme is depicted in Figure 3.2. The Main 

Fuzzy controller is represented by the larger block. Self organizing controllers can only 

be tuned by the knowledge base present inside the controller. If we further analyze the 

knowledge base, we can see that it contains two major set of factors: the structure of 

controller identified by the definition of the MFs, and the rule consequents. This main 

controller now interacts with the two auxiliary blocks: The Adaptation block (A – Block) 

and the Global Learning block (GL – Block) to find suitable parameters from the 

evaluation of our control architecture. 
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By using the monotonicity of the output of the plant as regards the control signal, the 

coarse tuning of the rule consequents is done by the A-Block. For the fine tuning of the 

rule consequents and the MFs, GL-Block is employed. The GL-Block does this fine 

tuning by collecting the I/O data from the progression of the plant. A-Block contributes 

when starting parameter values are not present i.e., in the preliminary iterations of the 

control process. And then the GL-Block takes over and fine tunes the control results. 

 

Inputs selection

Fuzzifier

Fuzzy 
Inference

Defuzzifier

Rule Premises Rule Consequents

 GL Block A Block

r(k)

u(k)

y(k+1)

Global Learning Adaptation

Setpoint

Plant

 

 

Figure 3.2: Controller Architecture 

3.3.1 Adaptive Block 

 

This block works on the information on “monotonicity” of the plant. With known 0C , we 

can move in the right direction for updating the rule consequents. If the output of the 

plant increases directly with the control signal then we will need to adjust the rule 
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consequents for the desired control signal. Alternatively, if the 
0C  was negative, then the 

rule consequents for which a control signal is less will need to be adjusted.  

 

It must be remembered that we modify only those rules which affect the fuzzy controller 

output in the desired manner. Along with this, the modifications are performed based on 

the activation degree of the rules. 

 

This adaptive block is working on the basis of Specialized Inverse Learning. The 

parameters of fuzzy controller are adapted by minimizing the deviation between the 

output y and the reference r. Hence the adaptation is a goal-oriented technique [13] and 

the process is automatically excited with the correct signal if a typical reference trajectory 

must be followed. This is depicted in the Figure 3.3   

 

Fuzzy inverse model (P-1 ) Plantr(k) u(k) y(k)

Error _

 

Figure 3.3: Plant output error based inverse learning scheme 

 

Since this is being done on the basis of only qualitative information therefore, this block 

performs coarse tuning of fuzzy rules. As mentioned in the Figure 3.2, the GL block also 

updates the rules and structure. Therefore, both the blocks work in harmony to find the 

optimal rules for the best control action. First, the A block evaluates its results and then it 

gives way to GL block to fine tune the system.  

 

Hence, this A Block becomes adapts to the fuzzy rules of the main controller in 

accordance with the expression below: 
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1 2 1 2... .... ( ). ( )
N Ni i i i i i yR C k d e k  

  

 
1 2 .... ( ).( ( ) ( ))

Ni i iC k d r k d y k    (3.6) 

 

 

Where, 

 

 
0( ) .exp( / )C C k C k    (3.7) 

 

 

0C  represents monotonicity of the plant and β represents the no of epoch and also termed 

as the forgetting factor. This β ensures that the influence of the A block reduces with time 

and give way to the GL block. 

 

For minimizing the control error and maximizing the adaptation by the controller, the two 

most critical factors are 
0C and β in the above equation. We intend to work on them to 

make sure that setpoint is achieved using this block only. 

3.3.2 Global Learning Block 

 

This block uses the controller output error method proposed by [37] to fine tune the 

controller results. It applies the gradient decent methodology on the controller output 

error without needing a reference model or a plant model. 

 

If at any instant k, a control signal u(k) is introduces to the controller and after „d‟ periods 

of samples the output y(k+d) is observed then we do not attain only the error at the plant 

output as available information. Infact now we know that if our intended response was 

r(k)=y(k+d) then the optimum control signal would be accurately u(k). Hence, we get a 

more precise value for the plant‟s true inverse function after each sampling period.  
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With this inverse plant information, and the error of u(k) as mentioned in Figure 3.4, we 

update the parameters of the original controller.  

Fuzzy Controller Plantu(k) y(k)

Error of u(k) _

Inverse plant 
model

u`(k)

 

Figure 3.4: Controller output error based inverse learning scheme 

 

Mathematically, at any instant k the control signal that the plant exerts can be represented 

as  

ˆ( ) ( ( ), ( ))u k F x k k
r

   (3.8) 

 

Where, x(k) is represented by the expression below and that represents the set of 

parameters that define the controller at instant k (rules plus MFs) 

 

 ( ) ( ( ), ( ),...., ( ), ( 1),...., ( )x k r k y k y k p u k u k q
r

   (3.9) 

 

The plant output y(k+d) is obtained after d iterations. Now if y(k+d) is replaced by r(k) , 

we get the detail that belongs to the actual inverse plant function. Now, the input vector 

x(k) is represented by 

 

ˆ( ) ( ( ), ( ),...., ( ), ( 1),...., ( )x k y k d y k y k p u k u k q    (3.10) 
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To perform the global learning process we must evaluate the output U^ given by the 

controller for each possible input, thus obtaining an error signal in the output of the 

controller. 

 

ˆ ˆ( ) ( ( ))u k F x k    (3.11) 

 

 

It is important to note that, although u^m is produced by the controller; it is not applied to 

the plant. Its only purpose is to calculate e(m) 

 

ˆ( ) ( ) ( )ue m u m u m    (3.12) 

 

 

Where u(m) and u^(m) are the desired output and that obtained by the current parameters 

of the main fuzzy controller, respectively. 

 

Hence, the optimization of the parameters of the main fuzzy controller in each iteration is 

done in the following manner: 

 

ˆ ˆ( ) ( ). ( ). ( ( ); ( ))uk k e k d F x k d k
r

   (3.13) 

 

 

Here, n(k) is the learning factor, taken to be < 1 

 

While the rest of the derivatives are calculated using the following expressions: 

 

Derivatives which update the rule consequents; 

 

 

1 2
1...

ˆ ˆ( ; )
ˆ( )jm

m

N

N

mX
mj j j

F x
x

R
   (3.14) 

 

While those which update the rule antecedents; 



31 | P a g e  

 

 

1 2

1 21 2

1
...1 1 1

ˆ( )ˆ ˆ( ; )
... .

im
m

N

NN

N

mX
n n n m

i i ij ji i i
v v

x
F x

R
c c

   (3.15) 

 

Where, 
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And further, 
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With the above controller designed, the controller is fine tuned because it acts as a perfect 

inverse model of the plant.  

 

Nevertheless, without the existence of the adaptation block the global learning block is 

not workable because it is the adaptation block which initially finds useful data for the 

controller. 
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3.4 Measuring Control Performance 
 

Since our work is based on the improvement in the adaptation block by varying its 

fundamental parameters i.e., 
0C  and β, we need to define a standard for measuring the 

control performance and relating our results to it. 

 

Hence, for measuring the effect of the two factors ( 0C and β) on the overall control 

performance, we use the standardised RMSE between the plant output and the set point.  

 

 

_ 2

1
( ( ) ( ))

_

Num epochs

k
r k y k d

RMSE
Num epochs

    (3.17) 

 

3.5 Chapter Summary  
 

We have outlined the detailed control scheme which includes its controller, additional 

blocks and the way we shall measure the control performance.  
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CHAPTER 4 

4. Simulation Results 
 

4.1 Prologue  
 

In this section it is intended to establish the fact that adaptive learning as outlined by the 

control scheme can be drastically improved by the way we select the two factors (
0C  and 

β) which form the core of the adaptive mechanism. Performing simulations by 

considering various values of β and
0C , the importance of our investigation will be 

evident. 

 

This analysis is not proved by considering only one non-linear plant, but different 

simulations have been done considering a linear and a nonlinear plant and then for two 

different reference signals. And the desired conclusion holds true for all these cases. For 

additional understanding of the strength of this controller, a linear plant is chosen and 

three non-linearities to further cross check the results. With this, it is believed that 

implementing GL block becomes unnecessary.  

4.2 Performance of Adaptive block for different B and Co 
 

To implement the controller technique on a non-linear system, we select a system whose 

difference equation is; 

 

 
3( 1) 0.3sin( ( )) ( ) ( )y k y k u k u k    (4.1) 

 

The above model was also implemented by Pomares[10]  as a demonstration of his work. 

I have performed all simulations on Matlab and Simulink. Figures 4.1 and 4.2 represent 

the Simulink Model of the adaptive controller as implemented and the plant model used.  
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Figure 4.1: Simulink Model - Adaptive controller with Sinusoidal as Set-point 
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1
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Figure 4.2: Simulink Model - Non-linear plant 

 

A purely sinusoidal signal with amplitude 0.75 and 600 samples per period is used as the 

desired response from the above non-linear system. Initially, rule consequents of the 

controller are zero, membership functions are triangular and universe of discourse is from 

-4 to 4.  

 

Table 4.1 was formed for 70k iterations considering the different values of 0C  and β. If 

one examines Table 4.1, we can clearly deduce that for every controller there is an 

operating range with specific values of β and 0C . By operating range, we mean a set of 

values for which the controller works and fulfills the control action by following the set 

point.  
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Here, β should not be too small to give insufficient room to the adaptation block to take 

up suitable values very large values of β slows down the learning process. 
0C is the scale 

factor which is necessary to avoid out of range modifications in the fuzzy rules. It also 

controls the convergence speed. When a controller is learning, how fast it learns depends 

on the correct rules it adapts. Small values of 
0C indicate very less or no convergence but 

large values of 
0C  means faster convergence. Even higher values of 

0C  can provoke 

undesired oscillations in the rule consequents which can cause instabilities.  

 

In order to explain our results, values of β are selected from lowest of 100 to a maximum 

of 100,000,000 with steps of x10. Values of 
0C  are selected from lowest of 0.001 to 5 

with variable steps in which the outputs significantly change. Table 4.1 calculates the 

RMSE values for different combinations of the β and
0C . 

 

 

 

 

 

 

 

To further elaborate the results and achieve a clear understanding of controller 

performance on these parameters, logarithmic graphs are drawn.  

 

Table 4.1: RMSE of non-linear plant output for different values of β and 0C . 

 

By analyzing Table 4.1 the following points can be deduced; 

 

1. The worst results are obtained for β <= 100 and for all values of 0C . The 

controller is unable to learn because the forgetting factor i.e., β is too small to let 

the adaptive block take up suitable values of rule consequents. 

0C  0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 

β = 100 0.5289 0.5732 0.5205 0.5079 0.5902 0.6054 0.5979 inf inf 

β =1000 0.4928 0.3195 0.1847 0.1714 0.1662 0.164 0.1628 inf Inf 

β =10,000 0.3031 0.0673 0.0285 0.0226 0.0197 0.0185 0.0176 inf Inf 

β =100,000 0.1779 0.0615 0.02 0.0124 0.0086 0.0069 0.0057 inf Inf 

β =1,000,000 0.172 0.0606 0.0192 0.0117 0.0077 0.0059 0.0048 inf Inf 

β =10,000,000 0.1715 0.0605 0.0192 0.0116 0.0077 0.0058 0.0047 inf Inf 

β =100,000,000 0.1715 0.0605 0.0192 0.0116 0.0076 0.0058 0.0047 inf Inf 

      
 Worst results Unstable Poor performance  Good operating range     Best results negligible effect of Beta 
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2. The Unstable results are obtained for 
0C >1 and for any value of β. The reason is 

that for the non-linear plant considered in equation 4.1 understands this value to 

be excessively large and thus cause undesired oscillations. 

3. Poor performance is for the range of β >100 & β <1000. Here, once again there is 

inadequate learning because of low values of β. 

4. Good operating range contains value low RMSE values. This range resides 

between β >10,000 and β <100,000. The Best results are also within this range 

with RMSE values the most optimum with fast convergence and adequate 

learning. 

5.                                         is marked on those results which do not reduce the 

RMSE values but slow down the convergence speed because of large values of β. 

  

This analysis is further clarified by drawing graphs highlighting the trends of RMSE for β 

and
0C . This is verified by the actual simulations on the plant and their outputs are also 

presented for comparison.   

 

For example, in Figure 4.3, it is evident that for small β, the learning is not adequate 

because the adaptive controller does not have enough time to fully learn itself. Another 

important finding is that as β increase more than 10,000, the control performance 

stabilizes and does not change much. For instance in figure 4.4, the controller fails to tune 

itself initially for small values of β but for β greater than 10,000 the control performance 

drastically improves as shown in figure 4.5.   

 

Negligible effect of β 
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Figure 4.3: Impact of changing β on Control performance of non-linear plant 
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Figure 4.4: Controller evaluation of non-linear plant  

for 0C = 0.5 and β = 100 
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Figure 4.5: Controller evaluation of non-linear plant  

for 
0C = 0.5 and β = 1,000,000 

 

Now, when we chalk out the trend of RMSE values in Figure 4.6, Its clear that the impact 

of 
0C  is constant from 

0C =0.1 to 1. The reason is because Co for this specific case limits 

the desired modifications of rule consequents in this range. Therefore naturally different 

systems will have different ranges of Co .Increasing Co within this range also improves 

the RMSE values because it also effects the convergence speed of the controller. Also, 

for values less than 0.1, the controller is unable to adapt rules as it is way below the range 

for this plant. For values greater than 1, the controller becomes unstable because the very 

high values (for this specific plant is > 1) cause undesired oscillations and makes the 

controller unstable. So the optimal range in this case would be any points between them.  

 

Results of figure 4.7 figure 4.8 serve as evidence to the discussion in the preceding 

paragraph.  
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Figure 4.6: Impact of changing 
0C  on control performance of non-linear plant 
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Figure 4.7: Controller evaluation of non-linear plant  

for 0C = 0.01 and β = 100,000 
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Figure 4.8: Controller evaluation of non-linear plant  

for 
0C = 0.75 and β = 100,000 

 

Since the results obtained are almost perfect by just using the adaptive block of the 

controller therefore we do not require a Global learning block to enhance the control 

performance. This is as per the initial discussion of the scope of this work. 

 

It is important to mention here that this analysis is for the non-linear plant of equation 4.1 

only. The optimal ranges ascertained in this analysis do not apply to any other plant. The 

reason is because all plants have different internal dynamics and parameters which 

certainly do not coincide with the plant in discussion.  

 

However, what is clear is that all plants can be analyzed in the above step by step 

procedural manner.  Initially by testing the controllers from lowest values of 0C and β and 

increasing them until the controller becomes unstable. Then finding best results from 

within this data would be an easy task.  
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4.2.1 Comparison of performance for different systems 

 

The proposed analysis technique is well established by the evidences given above. 

However, to further consolidate its findings a completely different plant is selected and 

analysed. This new plant is a linear plant of motor, control and gear represented by the 

following transfer function; 

 

 
0.2083

( )
1.71

T s
s

  (4.2) 

 

Table 4.2 gives a detailed comparison of the results. As speculated, the table shows that 

the optimal range for this plant is different than the previous one. The reason is of course 

for different plants, their aptitude for learning which are effected by β and the rule 

modification ranges controlled by
0C will be different. 

 

As can be seen from Table 4.2, the controller for first plant becomes unstable for 
0C > 1 

while the controller for the second plant improves the results as we increase 0C  from 1 

onwards. This shows that the rule consequents can still be adapted and the convergence 

for this plant has the potential to be further increased.  

 

Furthermore, it is visible from the trends of RMSE in Figure 4.9 and Figure 4.10, this 

analysis gives us an optimum range near the values of 0C  =0.1 and β =10,000.    

 

However, there is a similarity in the trend of RMSE values of the non-linear and linear 

plant and that is on two fronts. 

 

1. Increasing the values of B more than 10,000, the effect on the RMSE values 

become negligible. This means that normally this value of B is sufficient to fully 

take up desired values of rule consequents. 

2. The optimum values of Co generally lie in the range of 0.1 to 1 and ahead of that 

does not drastically affect the convergence of controllers. 
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This analysis shows that our online adaptive controller successfully performs coarse 

tuning for different plants even though the controller contains no knowledge of the new 

plant. Therefore, again, we do not require a Global learning block to enhance the control 

performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2: Comparison of performance of non-linear and linear plants 

RMSE of output of non-linear          

0C  0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 

β          

           

100 0.5289 0.5732 0.5205 0.5079 0.5902 0.6054 0.5979 inf inf 

1000 0.4928 0.3195 0.1847 0.1714 0.1662 0.164 0.1628 inf inf 

10,000 0.3031 0.0673 0.0285 0.0226 0.0197 0.0185 0.0176 inf inf 

100,000 0.1779 0.0615 0.02 0.0124 0.0086 0.0069 0.0057 inf inf 

1,000,000 0.172 0.0606 0.0192 0.0117 0.0077 0.0059 0.0048 inf inf 

10,000,000 0.1715 0.0605 0.0192 0.0116 0.0077 0.0058 0.0047 inf inf 

100,000,000 0.1715 0.0605 0.0192 0.0116 0.0076 0.0058 0.0047 inf inf 

          

RMSE of output of linear plant          

0C  0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 

β          

           

100 0.5304 0.5968 0.717 0.5129 0.7984 0.8622 0.8487 0.6845 0.5375 

1000 0.5225 0.4611 0.3188 0.3094 0.3014 0.2996 0.2985 0.2959 0.2861 

10,000 0.4705 0.3415 0.1616 0.1219 0.0993 0.0886 0.0819 0.0647 0.0538 

100,000 0.4195 0.2682 0.1278 0.0938 0.0741 0.0646 0.0585 0.0428 0.0337 

1,000,000 0.415 0.2593 0.1239 0.0905 0.0711 0.0617 0.0558 0.0402 0.0311 

10,000,000 0.4146 0.2584 0.1235 0.0902 0.0708 0.0614 0.0555 0.0399 0.0309 

100,000,000 0.4145 0.2583 0.1235 0.0902 0.0708 0.0614 0.0555 0.0399 0.0308 
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Figure 4.9: Impact of changing β on Control performance of linear Plant 
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Figure 4.10: Impact of changing 0C  on control performance of linear Plant 
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4.2.2 Comparison of performance for different reference signals 

 

The adaptive controller was now implemented for a step signal as reference signal. As 

commented above, we need to make sure that the initial control evaluation is almost 

perfect so that we do not need to move on to global learning. Figure 4.11 shows the 

Simulink Model for the implementation of step signal as reference for the non-linear 

plant. If we consider Figure 4.12, it is self explanatory that the online adaptive controller 

has not done adequate learning hence applying fine tuning would be useless.   
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Figure 4.11: Simulink Model - Adaptive controller with Step as Set-point 

 

However, after thorough analysis of the controller on the basis of different values of its 

parameters ( as outlined by Table 4.3), we can easily conclude that for β =10,000 and 0C  

= 0.25, excellent results are obtained depicted by Figure 4.13. 

 



45 | P a g e  

 

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Controller Evaluation for  = 1,000 and C
o
 = 0.01

No of Iterations

P
la

n
t 

o
u
tp

u
t

 

 

r(k)

y(k)

 

Figure 4.12: Controller evaluation of step signal for 0C = 0.01 and β = 1,000 
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Figure 4.13: Controller evaluation of step signal for 0C = 0.25 and β = 10,000 
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Table 4.3: Comparison of performance of sine and step as reference signals 

 

This analysis shows that if our desired output changes, the controller changes its ranges 

of operation and successfully adapts to the required need. This finding is important for 

the designer as to be careful in selecting parameters of the adaptive controller (i.e., β 

and 0C ) for moving ahead and implementing the global learning of controller. 

 

Again, it is pertinent to mention here that the operating ranges of the controller drastically 

change if it is supposed to follow step signal as the reference signal. It means that the 

rules adapted do not work for regions of 0C  > 0.25 and β > 10,000 and, the best results 

after which the controller becomes unstable is this extreme limit (figure 4.13). Also, the 

change in β becomes ineffective for 0C  < 0.25 and B > 10,000.  

RMSE with sinusoidal as reference signal        

0C  0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 

β          

           

100 0.5289 0.5732 0.5205 0.5079 0.5902 0.6054 0.5979 inf inf 

1000 0.4928 0.3195 0.1847 0.1714 0.1662 0.164 0.1628 inf inf 

10,000 0.3031 0.0673 0.0285 0.0226 0.0197 0.0185 0.0176 inf inf 

100,000 0.1779 0.0615 0.02 0.0124 0.0086 0.0069 0.0057 inf inf 

1,000,000 0.172 0.0606 0.0192 0.0117 0.0077 0.0059 0.0048 inf inf 

10,000,000 0.1715 0.0605 0.0192 0.0116 0.0077 0.0058 0.0047 inf inf 

100,000,000 0.1715 0.0605 0.0192 0.0116 0.0076 0.0058 0.0047 inf inf 

          

RMSE with step as reference signal        

0C  0.001 0.01 0.1 0.25 0.5 0.75 1 2.5 5 

β          

           

100 0.4815 0.405 0.3965 0.319 0.3323 0.3257 inf inf inf 

1000 0.3994 0.2201 0.043 0.0223 0.0154 0.0151 inf inf inf 

10,000 0.2283 0.0449 0.0164 0.0123 0.0152 inf inf inf inf 

100,000 0.1325 0.0432 0.0161 inf inf inf inf inf inf 

1,000,000 0.1293 0.0431 0.0162 inf inf inf inf inf inf 

10,000,000 0.1291 0.0431 0.0162 inf inf inf inf inf inf 

100,000,000 0.1291 0.0431 0.0162 inf inf inf inf inf inf 
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4.3. Performance of Adaptive block with Deadzone as non-linearity 
 

Once again, fuzzy adaptive controller was implemented on the same linear plant i.e, 

Motor control but with Dead zone with limits of [-0.5 to 0.5] as an added nonlinearity. 

The Simulink model of the implementation is given in Figure 4.17. 
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Figure 4.14: Simulink Model - Adaptive controller with Dead zone as Non-linearity 

 

The idea here is to demonstrate the performance of the controller for different non-linear 

systems. The results for various parameters are visible from the figures 4.18 to 4.21, the 

controller works relatively very well for both the step signals as well as the sinusoidal 

signals as reference.  

 

As per our thesis findings, it is evident that for poor selection of 
0C  and β, the results of 

Figure 4.18 and 4.20 show that the control signal is NOT adapted. However, once we 

select good values of 
0C  and β, results improve drastically. And of course, if we perform 

our proposed detailed analysis, we can pick out the best values of our controller 

parameters. Here, once again there is no need to perform global learning because of good 

results. 
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Figure 4.15: Controller evaluation of plant with Dead Zone as  

non-linearity for 
0C = 0.3 and β = 1,000  
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Figure 4.16: Controller evaluation of plant with Dead Zone as  

non-linearity for 0C = 0.85 and β = 100,000  
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Figure 4.17: Controller evaluation of plant with Dead Zone as  

non-linearity for 
0C = 0.1 and β = 1,000 
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Figure 4.18: Controller evaluation of plant with Dead Zone as  

non-linearity for 0C = 0.5 and β = 100,000  
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4.4. Performance of Adaptive block with Backlash as non-linearity 
 

Similarly, applying Backlash with dead-zone of 1 as non-linearity in Simulink Model 

shown in Figure 4.22 for the test of the capability of our fuzzy controller shows excellent 

results. We can see in figure 4.24 that a good selection of 
0C  and β is able to solve the 

control problem as compared to a casual selection of parameters of figure 4.23. If we do 

detailed analysis in this case, we will again be achieving the best results. Once again, 

Global learning becomes redundant in this case. 
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Figure 4.19: Simulink Model - Adaptive controller with Back lash as Non-linearity 
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Figure 4.20: Controller evaluation of plant with Back lash as  

non-linearity for 
0C = 0.4 and β = 100,000 
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Figure 4.21: Controller evaluation of plant with Back Lash as  

non-linearity for 0C = 0.8 and β = 10,000 
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4.5. Performance of Adaptive block with Saturation as non-linearity 
 

Our fuzzy adaptive controller was implemented on the same linear plant i.e., motor 

control but with saturation as an added nonlinearity. The Simulink model of the 

implementation is given in Figure 4.14. 
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Figure 4.22: Simulink Model - Adaptive controller with Saturation as Non-linearity 

 

This is a unique case in which the controller is unable to completely adapt the desired 

results. As it can be seen from the figures 4.15 and 4.16, the controller tries to learn but is 

incapable of doing so with saturation as non-linearity. This is a specific class of non-

linearity which the adaptive controller is unable to adapt.  
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Figure 4.23: Controller evaluation of plant with saturation as non-linearity  

for 
0C = 0.3 and β = 1,000 
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Figure 4.24: Controller evaluation of plant with saturation as non-linearity  

for 0C = 2 and β = 100,000 
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4.6 Real time Controlling of water level in three tank system  
 

After thorough review of the adaptive controller‟s strength on simulations, it is now 

tested on an actual non-linear plant. The adaptive controller now attempts to control 

water level on a three tank system in real time. This adaptive controller does not have any 

information about the plant to be controlled and it is not tuned or pre-trained offline. The 

actual plant is demonstrated in figure 4.25. 

 

 

Figure 4.25: Actual plant (Water level control of  

Three Tank System) 
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Figure 4.26: Magnified picture of Actual plant (Water level control of  

Three Tank System) 

 

The details of the real plant are as under: 

1. There are total 3 tanks interconnected with valves 

2. Each tank is of 10.3cm x 9.2cm x 60cm dimensions 

3. The valves used are ball valve of 0.5"  

4. The two interconnected valves are completely open. 

5. Height in middle tank is measured using pressure transducer. 

6. Water pump has a maximum pumping capacity of 36001/h 

7. There is one inlet for flow of water inside the tanks represented by white pipe in 

figure 4.26. 

8. There is one outlet for flow of water outside the tanks represented by red pipe in 

figure 4.26. 
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With the above plant, the adaptive controller is required to control and maintain the water 

level in the center tank at 0.5 units for 500 iterations. Each of the iteration corresponds to 

1 second, and each unit of height corresponds to a water level of approximately 2.66cm 

in the center tank.  Consequently, the adaptive controller is required to maintain the water 

level in the middle tank to around 13cm for 500 seconds i.e. for about 8.3 minutes. After 

this is achieved, the controller needs to shift the water level of the main tank to 0.9 units 

and maintain it for the next 500 iterations. This means that the controller now pushes the 

water level of the middle tank from 13cm to 24cm and maintains it to 24cm for another 

8.3 minutes. This cycle is repeated for another 16.6 minutes.  

 

Here, it is pertinent to mention that the controller is controlling only the speed of the 

pump with which it delivers water to the tanks. It does this by sensing the output height 

of the middle tank. It does not concern itself with the amount of water flowing out of the 

plant or the amount of water distributed in other tanks. It works on a goal oriented 

approach by viewing the desired height and generating the required control signal which 

would trigger the water pump to control/maintain that height.  

 

The simulink model which contains the adaptive controller and controls the plant is 

depicted in figure 4.27. Apart from the Matlab function which contains the code for 

adaptive controller, three separate Matlab functions were added. The first Matlab 

function namely “limits of control signal” was added to ensure that the control output 

does not saturate the water pump. The second one converts the voltages received from the 

pressure sensor into their equivalent heights. Finally, the third function converts the 

heights obtained from the real plant to the units which are being input to the controller as 

desired results.    

 

The results are then checked by plotting the desired response with respect to the real 

response generated by the plant. 
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Figure 4.27: Simulink Model which connects to the Real Plant. 

 

After controller evaluation for different 
0C and β, one of the best control results were 

achieved for β=100,000 and 0C = 20. As can be seen clearly from control performance in 

figure 4.28, the adaptive controller has an initial offshoot in the initial cycle.  This 

offshoot is because of the inadequate learning of the controller in the beginning but once 

the controller gathers enough online information about the plant, it learns well and 

controls the plant as per desired height of 0.5 units. Now, after 500 iterations, the 

controller senses automatically that the desired height has changed to 0.9 units and thus 

pushes the plant to act accordingly. As the controller is given more iteration, its results 

start to improve further and the weights of the adaptive controller have been tuned as per 

the needs of the three tank system. 
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Figure 4.28: Controller evaluation of actual plant  

(Water level control of Three Tank System) 

4.7 Chapter Summary  
 

This chapter analyzes the performance of the online tuning of fuzzy controller which is 

implemented by the studied adaptive controller on different linear and non-linear systems 

as well as considering different set points. Simulation results show that if this analysis is 

not done in a comprehensive manner, the results of controller can drastically change. The 

parameters in discussion i.e., 0C and β effect the controller performance to the extent that 

it is necessary to ascertain their optimal values. Finally, this adaptive controller was 

successful in online controlling of water level in a real three tank system which is an 

excellent proof of the diverse controlling ability of this adaptive fuzzy controller.    
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CHAPTER 5 

5. Future of the Proposed Control Scheme  
 

5.1 Future of the Control Scheme  
 

The aim of this work was to demonstrate that a capable controller can be designed for 

plants which lack complete information. The suggested modifications were to improve its 

results but what remains as part of the challenge is the limitations that are encountered 

with such controllers. 

 

The following limitations are under research for improvement. 

 

1. Such controllers aren‟t able to demonstrate stability of the closed-loop system.  

 

2. Such controllers are inapplicable to reach certain states of the plant i.e., since we are 

unaware of the states of the plant, we cannot ascertain which state to enter. In this case, 

some pre training is needed to ensure that at the start of the operation of the controller 

these states are not encountered.  

 

3. Such controllers are only applicable to plants in which the output of the plant is 

directly dependent on the previous control signal. Therefore the sampling period for the 

controller should be adjustable in such a manner.  

 

These are the future prospects of this type of controllers. This work presents a 

preliminary structure which aims at developing new controllers which ultimately will 

solve all the above issues and develop a universal controller.  
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5.2 Conclusion  
 

Whilst performing a control process, a very challenging subject for researchers of today 

is to acquire techniques that are capable of working with smallest available information.  

 

These techniques share the inconvenient of pre defining structure of fuzzy controller and 

similar issues which we have previously addresses.  

 

As per literature review for this work it is evident that online adaptation of rule 

consequents as well as rule premise for the fuzzy controller without offline pre-training 

of the plant has been little studied.  

 

This was an attempt to move forward in the direction of these interesting works by 

identifying an improvement mechanism. For future research, some automatic tuning 

technique can be designed to find the best nominal values of these online adaptive 

controller parameters.  

 

As outlined by this study and various simulation results presented along with controlling 

of real time non-linear plants, it is evident that the proposed modification ensures better 

controlling and better working of online adaptive controller for the Global learning. 
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