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ABSTRACT 

 
Different formulations of EPDM based composite were synthesized to 

achieve a composition that gives best mechanical properties. Silica, alumina, ATH, 

MDH, Kevlar chips, phenolic resin were used as reinforcements in EPDM. Woven 

Kevlar fiber (armour grade), Nomex fiber, Silicon carbide coated woven Kevlar 

fiber have been used to formulate the laminate structure with EPDM. Kevlar fiber a 

product of Dupont, which has best mechanical properties in all fiber family and 

EPDM, has low density and high shock absorbance properties. The composite with 

woven Kevlar fiber gives good mechanical properties but silicon carbide coated 

woven Kevlar fiber embedded in EPDM gives the best result regarding mechanical 

properties. This composite has an impact strength of 303 KJ/m2 i.e. three times 

more than mild steel; it has also high tensile strength i.e. 2190 Psi. 
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