DEDICATION

Dedicated To My Family, Specially Dr.Bilal Khan and all those who sacrifice their present for the better future of Pakistan

ABSTRACT

Different formulations of EPDM based composite were synthesized to achieve a composition that gives best mechanical properties. Silica, alumina, ATH, MDH, Kevlar chips, phenolic resin were used as reinforcements in EPDM. Woven Kevlar fiber (armour grade), Nomex fiber, Silicon carbide coated woven Kevlar fiber have been used to formulate the laminate structure with EPDM. Kevlar fiber a product of Dupont, which has best mechanical properties in all fiber family and EPDM, has low density and high shock absorbance properties. The composite with woven Kevlar fiber gives good mechanical properties but silicon carbide coated woven Kevlar fiber embedded in EPDM gives the best result regarding mechanical properties. This composite has an impact strength of 303 KJ/m² i.e. three times more than mild steel; it has also high tensile strength i.e. 2190 Psi.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

First and foremost, all praise is to ALLAH *SUBHANAHU-WA-TA'ALA*, the Almighty, Who gave me an opportunity, patience and courage to carry out this work. I feel privileged to glorify His name in the sincerest way through this small accomplishment. I seek His mercy, favor and forgiveness. I ask Him to accept my little effort. May He, *SUBHANAHU-WA-TA'ALA*, guide us and the whole humanity to the right path (Ameen).

Acknowledgement is due to School of Chemical & Materials Engineering (SCME), NUST for providing the research facilities and all kind of assistance to complete this work.

I wish to submit my sincere gratitude to my thesis supervisor, Dr. M. Bilal Khan for his priceless support, guidance, incessant encouragement and every possible way of cooperation all the way through the period of my research and in the preparation of this manuscript. His valuable suggestion made this work motivating and learning for me. He was always kind, considerate and compassionate to me.

I gratefully acknowledge the support of all the faculty members and staff of the department who has in one way or other enriched my academic and research experience at SCME. I am also grateful to my fellow students for their help.

I am also indebted to my senior colleagues Dr. Zaffar M.Khan, Sheikh Zulfiqar Ahmed (MD Longman Mills Lahore) for many valuable discussions and their earnest help, constructive suggestions and constant encouragement.

Last but not the least, I would like to pay my best gratitude to my parents and my other family members for their prayers, encouragement, and support that permitted me to indulge my passion for the long task to complete this work.

Table Of Contents

Abstract		ii
Acknowledgement		iii
List Of Figures		vii
Lists Of Tables		xiv
Char	oter # 1 "Introduction"	
1 1	Composites	2
1.1	Classification of composites Based on	3
1.1.1	Matrix	5
1.1.2	Classification of composite materials based on reinforcement	3
1.2	Stress and Strain	4
1.2.1	Stress	4
1.2.2	Strain	5
1.2.3	Engineering and True Stress and Strain	6
1.2.4	Stress Concentration	7
1.2.5	Tensile Properties	7
1.2.6	Linear-Elastic Region and Elastic Constants	8
1.2.7	Yield Point	9
1.3	Ultimate Tensile Strength	10
1.4	Measures of Ductility (Elongation and	11
	Reduction of Area	
1.5	Notch-Toughness	12
Chapter	# 2 "Literature Review"	
2.1	Mechanical Properties of Materials	14
2.1.1	The Tensile Test	14
2.1.2	Yield point	17
2.1.3	Stretching of steel beyond the yield point	20
2.2	Types of fractures in tension	24
2.3	Compression tests	27
2.4	Tests of material under combined stresses	30
2.5	Basic principles of Composite materials	33
2.51	Introduction	33
2.52	Basic Principles	34
2.6	Reinforcement With Continuous Fibers	39
2.7	Statistical failure of composites	51

2.8	Strain rate effects	56
2.9	Microscopic effects	62
2.10	Elastic deformation	65
2.11	Permanent deformation	69
	A : The tension test.	69
	B : Strain rate sensitivity	79
2.12	Hardness test	80
2.13	Fracture	80
2.13.1	Tensile Fracture	80
2.13.2	Creep fracture	83
2.13.3	Fatigue fracture	83
C1		

Chapter # 3 "Materials & Experimental Set Up"

3.1	Aim of research work	88
3.2	Materials and their properties	88
3.2.1	Ethylene-Propylene-Diene-Terpolymer	88
3.2.2	Characteristics of EPDM	89
3.2.3	Carbon black	89
3.2.3.1	Properties	89
3.2.3.2	Applications	90
3.2.5	Other ingredients used	90
3.3	Common Raw Materials & Their Properties	91
3.3.1	Matrix Material	91
	a. Thermoplastics	92
	b. Thermosets	93
	C. Copolymers	94
3.4	Common Polymeric Matrix Materials	94
3.5	Reinforcements	95
3.5.1	Fiber-Reinforced Composites	96
3.5.2	Glass Fibers	98
3.5.3	Kevlar (aramid) fiber reinforced polymers	100
3.6	Particle-Filled Composites	100
3.7	Syntheses of Composites	101
	a.Mixing	102
	b. Molding	103
3.8	Experimental Techniques and Setup	104
3.8.1	Charpy Impact Testing Machine	104
3.8.2	Determination of yield force	107
3.8.3	Technical data	108

3.8.4	Specimen Geometry	108
3.9	Universal Testing Machine (UTM)	109
3.9.1	Machine Equipped With Straining Unit	109
3.9.2	Principle of operation	110
3.10	Fracture Toughness	111
3.10.1	Role of Material Thickness	112
3.10.2	Plane-Strain and Plane-Stress	115
3.11	Plane-Strain Fracture Toughness Testing	115
3.12	Plane-Stress and Transitional-Stress States	117
C1	1/4 (D = 14 0 D' = 27	

Chapter # 4 "Results & Discussions"

4.1	Chemistry of Samples	119
4.1.2	Composition Chart & Function of other	120
	components with EPDM in composites	
4.1.3	Ultimate tensile strenght & Breakage	122
	behavior of Metallic and Non-metallic fibers.	
4.2	Result & discussions	126
4.2.1	Table of Charpy Values of Tested Samples	126
4.2.2	Sample SN1	128
4.2.3	Sample SN2	129
4.2.4	Sample SN3	130
4.2.5	Sample SN4	131
4.2.6	Sample SN5	132
4.2.7	Sample SN6	133
4.2.8	Sample SN7	134
4.2.9	Sample SN8	135
4.2.10	Sample SN9	136
4.2.11	Sample SN10	137
	Chapter # 5 "Conclusion & Future Work"	

Conclusion	139
Future Work	141
References	142

Figures

Fig 1.1 Appl	ications of composite material	2
Fig 1.2	Measurement of stress	4
Fig 1.3	Three dimensional stress	5
Fig 1.4	Measurement of strain	6
Fig 1.5	Stress concentration due to cavity	6
Fig 1.6	Stress strain curve behaviour	8
Fig 1.7	Deformation behaviors of ductile and brittle materials	11
Fig 1.8 regimes	Fracture test versus temperature plot of different loading	12
Fig2.1 (a) A application (contents of c	cylindrical specimen grip in machine show central load b) series of tensile diagramsof carbon steel with various earbons (c) tensile test diagram of mild steel	14
Fig 2.2 In p sample	lastic elongation deformation start by necking formation in	16
Fig 2.3	plot σ Vs ϵ	18

Fig	2.4	Unit stress Vs elongation for mild steel	19
Fig 2	2.5Simp	le stress strain diagram	19
Fig 2	2.6Unit s	tress VS elongation in % of mild steel	20
Fig 2	2.7Tensil	e test diagram for mild steel	21
Fig 2	2.8tensile	e test diagram for Die cast Aluminium	21
Fig 2	2.9Stress	VS time diagram for mild steel	22
Fig 2	2.10Unit	t stress Vs Elongation in % of steel bar	22
Fig 2.	.11Cup -	- Cone fracture	25
Fig 2.	.12 Mod	es of fracture	25
Fig 2.	.13Recta	ingular shape specimen in machine	27
Figure compr	e 2.14 M ression o	ethod developed in Kaiser Wilhelm for producing uniform n cylindrical specimen.	28
Fig 2.	15stress-	strain curve for specimen in figure 2.14	29
Fig 2.	16 the re	esult of compression tests on copper cylinders	29
Fig2.1 specin	7 shows nen with	s the yoke arrangement by which tension was applied to a in the pressure vessel.	30
Fig2.1 stress	8 (a)Fra 114,000	cture of medium carbon steel (0.45% of carbon) with true psi	31

Figure 2.18 (b) Fracture of medium carbon steel (0.45% of carbon) with true stress 474,000psi

Fig 2.19The combined axial compression and lateral pressure on marble31specimen

Figure 2.20 If $n = \sigma_t / \sigma_a$ then for different values of n different type of fracture. 32

Fig 2.21 Lamellar arrangements of two phases (α and β) having different 35 properties. In (a) a tensile force is applied in a direction such that the stress borne by both phases is the same, but they experience different strains. In (b), the force is applied in a direction that results in the phases experiencing the same strain but different stresses. This is the arrangement that utilizes the strong phases to the best advantage.

Fig 2.22 The ratio of the force carried by the (strong) α phase to that of 38 the β Phase for the two geometries shown in fig. 2.21. For the equal-stress condition (fig.2.21a), $F_{\alpha} / F_{\beta} = 1$, and the ratio is independent of V_{α} , the α phase volume fraction. for the equal-strain condition F_{α} / F_{β} increases with both V_{α} and the stiffness ration (E_{α} / E_{β}) of the phases. The results shown in this figure apply when both phases deform by linear elastic deformation.

Fig 2.23 A fiber composite consisting of strong fibers imbedded in a (presumably) weaker matrix. When the force is applied in the direction shown, the equal-strain condition holds.

Fig 2.24 composite stress-strain curves are predicted by the volume fraction rule, in both (a) and (b), stages I and II are shown. In stage I, the fiber and matrix deform elastically and the modulus is the volumetrically weighted modulus of both phases. In stage II the matrix deforms plastically and the fiber elastically. Thus, the "secondary" modulus, i.e., the slope of the stress-strain curve, is reduced. In (b), a third stage, in which both the matrix and fiber deform plastically, is shown. The fiber failure strain (ε_c) is assumed less than that of the matrix. Matrix failure is not necessarily concurrent with fiber failure. Thus, a secondary tensile strength V_m (T.S)_m is observed following fiber failure Fig 2.25 composite tensile strength as predicted by the volume fraction

Fig 2.25 composite tensile strength as predicted by the volume fraction rule (curve (a)) and the "secondary" tensile strength (curve (b)) as function

45

44

of fiber volume fraction, V_f . Observed composite tensile is the greater of these two values. For $V_f < V_c$, the secondary tensile strength is greater than the VFR strength and composite strength decrease with V_f . In order for composite tensile strength to exceed that of the matrix, a minimum volume fraction (V_{min}) of the fiber must be present.

Fig 2.26 composite stress-strain curves (stage I and II) for two different fiber volume fraction. The curve marked "low V_f " has $V_f < V_c$ and composite tensile strength is the secondary tensile strength. For the curve marked "high V_f " ($V_f > V_c$), composite tensile strength is given by the volume-fraction rule.	47
Fig 2.27: (a) The effect of fiber mis-orientation on fiber tensile fracture. (b) curve between strength and Φ .	49
Fig 2.28: A schematic of 90° "cross-plying" fiber composite.	50
Fig2.29 : method of describing the fiber strength variation. (a) the fiber donot demonstrate a wide variability in strength. (b) the variation can be defined by the standard deviation in fiber strength.	51
Fig 2.30: schematic of a tensile test on a bundle of fiber.	52
Fig :2.31 The bundle stress as a function of σ_f is obtained by multiplying σ_f by the fraction of unbroken fibers [$1 - G(\sigma_f)$]. The variation of σ_f [1- $G(\sigma_f)$], and their product, σ_B is shown here as a function of σ_f .Bundle tensile strength is obtained when the product σ_f [$1 - G(\sigma_f)$] is maximum.	53
Fig 2.32: bundle theory can be applied to composite containing fiber.	54
Fig 2.33 : curve between fiber coefficient of variation s/ σ_f Vs Normalized composite strength σ_C/σ_f .	56
Fig: 2.34 an elastic fiber imbedded in a matrix deforming at the tensile strain rate ϵ_{m} . the tensile strain rate results iin a relative shear strain rate	57

displacement, γ ', at the fiber matrix interface.

Fig 2.35 : The shear stress developed at the fiber matrix interface as a function of position along the fiber.(a) For fixed strain rate $,\tau$ increases most rapidly for strain rate sensitive materials. (b) As the strain rate increases, τ does like wise.	58
Fig 2.36: The fiber tensile stress, developed via the shear stress as in fig 6.22 as a function of position along the fiber . The variation in σ_f parallels that of τ ; i.e., σ_f increases as the strain rate sensitivity of the matrix increase (a) and is greater ,too when the matrix strain rate is increased(b).	59
Fig 2.37 : The variation in τ and σ_f shown in figs(2.35 and 2.36) are appropriate only when the fiber mid point is stressed to a level below that of the equal strin condition and this applies only at long creep times.(a) at shorter times , σ_f attains the maximum stress and (b) τ approaches zero at the fiber middle . (c) the average fiber stress increases with time but obtained limiting value characteristic of average stress.	60
Fig 2.38: (a) Strain rate and (b) Strain for a creeping composite.	62
Fig 2.39: (a) transverse section of a Cr fiber –NiAl matrix composite obtained by eutectic directional solidification. The Cr fibers (ca.1micron meter diameter) extend in and out of the plane of the photograph, (b)longitudinal section of a Co-Co ₂ Si lamellar in situ composite produced by directional eutectoid decomposition. A transverse section of this platelike array would appear very similar. Typical spacings for directionally decomposed eutectoid are an order of magnitude finer than they are for eutectics.	63
Fig 2.40: An σ - phase and β -phase lamellar array. The constraints on β - phase deformation (outlined section) are provided by the more rigid σ phase , which restricts – phase deformation in the vicinity of the interphase boundary. The deformation constraints becomes more pronounced with decreasing interlameller spacing.	63
Fig : 2.41 (a) Applied force F with elongation l_o , (b) Applied force F is kept constant but elongation is double (c) Applied force F is constant but cross sectional area is dougle.	65

Fig 2.42: A shear stress (τ) distorts the body on which it acts	63
Fig 2.43 : A shear displacement at the atomic level results in bond distortion. Atoms are represented by circles and atomic bonding with springs.	64
Fig 2.44: difference b/w linear elasticity and viscoelasticity	68
Fig2.45 : A schematic of torsion test	69
Fig 2.46 : (a) A schematic tensile stress – strain curve, which shows elastic and plastic response on stress (b) An expanded view of shaded protion in (a).	70
Figure 2.47 : sample dimension change during uniform tensile deformation.	71
Fig 2.48: Geometrical stability under tensile deformation	73
Fig 2.49 A schema showing the relationship between tensile true stress- true strain (dotted line) and enginerring stress-strain (solid line). For enginerring strains less than ε_{Eu} , $\sigma_T > \sigma_E$ and $\varepsilon_t < \varepsilon_E$. the necking point ($\sigma_E =$ T.S.) has no particular significance in the true stress – true strain curve. At some strain greater than ε_{Eu} , ε_t (when calculated on the basis of neck area) becomes greater than ε_E , although σ_T remains greater than σ_E .	76
Fig : 2.50 Engineering stress –strain diagram for a mild steel (1018 hot – rolled), which exhibit a yield point. Plastic flow is initiated at the upper yield point (UYP). It is continue at the lower one (LYP). At LYP , permanent deformation is heterogeneously distributed along the sample length. A deformation bond ,formed at the UYP, propagates along the age length at the LYP. The band occupies the whole of the gage length at the l ₀ ders strain. Beyond this point ,work hardening commences((<i>from K. M. Ralls , T. H. Courtney, and J. Wulff, an introduction to material science and engineering , Wiley, New York 1976)</i>)	78
Fig : 2.51 A time varying tensile stress that could eventuate in fatigue fracture. The maximum stress is less than the material tensile strength (the stress needed to cause static tensile failure). The number of stress cycle required to cause fatigue rapture depends on the material and the stress	84

range (σ_{max} - σ_{max} - σ_{max} - σ_{max} - σ_{max}	σ_{mim}) and the mean stress($\frac{1}{2}$)($\sigma_{max} + \sigma_{mim}$). The higher stress her the mean stress, the fewer the number of cycles of failure.	
Figure .3.1 Ar	n isotropic behavior of composite	97
Figure 3.2 Longman Mil	: Sample in Mixing Process Using Twin Rollers in ls Lahore	102
Figure 3.3	: Sample during Molding	103
Figure 3.4	Standard Charpy-V notch specimen	105
Figure 3.5.	Charpy testing machine	106
Figure 3.6	Universal testing machine	111
Figure 3.7	Different modes of fracture	112
Figure 3.9	Sample thicknesses versus fracture toughness profile	113
Figure 3.10	Uniaxial, biaxial and triaxial Strain profile	114
Figure 3.11 T	ypes of testing samples	116
Figure 4.1 Ul Metallic and Figure 4.2.2	timate tensile strenght & Breakage behavior of d Non-metallic fibers. stress strain curve of SN1 sample	125 128
Figure 4.2.3	stress strain curve of SN2 sample	129
Figure 42.4	stress strain curve of SN3 sample	130
Figure 4.2.5	stress strain curve of SN4 sample	131
Figure 4.2.6	stress strain curve of S5 sample	132
Figure 4.2.7	stress strain curve of SN6 sample	133

Figure 4.2.8	stress strain curve of SN7 sample	134
Figure 4.2.9	stress strain curve of SN18sample	135
Figure 4.2.10	stress strain curve of SN9 sample	136
Figure 4.2.11	stress strain curve of SN10 sample	137
TABLE		
Table 2.1 Table	le Between δ & Ultimate strength(lb per sq in.)	26
Table : 2.2 Properties of selected fibers		39
Table 2.3Definition of and relationships between true and engineering stress and strain		76
Table 3.1	Characteristics of EPDM	89
CHART		
Chart 4.1 Chart of Average Charpy Values		127