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ABSTRACT 

 
 

Data mining techniques exist that have the ability to extract useful knowledge from the 

available event logs. Over the years, there has been a tremendous enhancement in the IT 

sector. Organizations are moving towards automation of their business processes to 

improve and fasten their day to day business operations that in turn can lead to enhance 

their businesses. It is highly important for them to see their software(s)/ERP solution(s) 

reliable, having high performance and with full hardware resources utilization. To 

successfully execute business process, there can be hundreds or thousands of business 

rules/constraints that must be satisfied. Hard coded written sequence inside a system may 

reduce system performance and can lead to high resource wastages. In the present work, 

we first classify the business rules execution logs and then apply pattern mining techniques 

to predict a possible optimized business rules execution order. This new predicted 

optimized sequence is used for further execution of the software to adjust business rules 

execution order dynamically according to the running environment to make system self-

adaptive. We have experimented the approach on 89304 no of failed business instances 

logs and found that using the proposed model, system resources consumption can be 

prevented from wastage by 69.7% (worst case) and 77.62% (best case) respectively. 
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CHAPTER 1 

 

 INTRODUCTION 
 

 

A business process is a set of activities and tasks that are carried out to achieve an 

organizational goal. Business process management system (BPMS) is a system that helps to 

accomplish business process management (BPM) [1].Today, large areas of applications 

belonging to different domains e.g. textile industry ERP systems, Pharmaceutical industry 

ERP systems, Car rental and lease ERP systems, large HRM systems, Stock management 

systems, Employee reward management systems, CRM systems, Financial and Accounting 

systems and other long chain of solutions automates business processes of an organizations. 

Those business processes contain large number of business rules to be satisfied for their 

successful completion. Million lines of code are written to ensure that desired business 

constraints must be satisfied for successful completion of a business process. 

The goal of business process mining is to discover, analyze, optimize and apprehend 

business strategies primarily based on the run-time behavior of executed business process 

instances recorded in an event logs [26]. Business process management (BPM) technology has 

been evolved and implemented almost in every enterprise. Many businesses and companies 

use different type of business process oriented systems. An automated system or software 

implements large number of business processes for smooth execution of business operations. 

 Software engineer is the one who develops software using some programming 

language e.g. C#, F#, Visual Basic, VB.Net, Java, Python, R etc. In a normal scenario, when a 

requirement comes from a client to adjust new business constraint or rule in a large system, a 

software engineer tries to code and put it in its best supposed location inside a class along with 

keeping in view to maintain the desired dependency (if any) among them. Those set of written 

business rules execute in hard coded fashion continuously till either the system is running or 

the new rule is inserted to adjust new requirements. The addition of new business rule may 
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although change execution sequence of previously existing business rules but will again keep 

system to continue running with the new updated hard coded sequential order. Each user has 

different mind filter and different mindset people interact with the system differently, 

especially with the application that is exposed to public. If the usage of system by the people 

is logged and analyzed carefully, it can be mined to predict number of different parameters 

e.g. nature of users that are frequently interacting with the system, which business rules are 

causing the business process to fail, which business rules need more focus to be matured, 

where the security breach could be, where business process improvements are needed and 

what type of preventive measures are needed to be taken. It will also help decision makers to 

either device new strategies or to improve and optimize the existing ones.  

Using data mining techniques, an optimized business rules execution order can be 

predicted that will allow system to prioritize business rules as per their execution importance / 

cost. System can run for specific time duration by executing the business rules as per the new 

predicted order. Logs will be generated for that time duration and will be mined again to 

predict new rules order for the next time duration. Instead of using hard coded execution 

sequence for business rules, they should be adjusted dynamically as per the running 

environment, if executed can prevent system resources from wastage and can enhance system 

performance as well. 
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Fig 1. Business Rules Optimization Concept 

There may exist some dependency among business rules to achieve the desired output. 

For that purpose, an effective way for complicated and big structures analysis is Dependency 

Structure Matrix (DSM) [14] that facilitates user to define the dependencies among entities 

and also to visualize them. DSM presents entities in the form of matrix. Consequently, 

complex systems may be analyzed in a simpler way. DSM includes rows and columns as 

system components and use to analyze the entities involved. DSM breaks down the complex 

system into finer subsystems / modules / elements to provide its understandable look. As a 

handy tool for system evaluation, DSM works well to capture the interactions and 

interdependencies between components of a system. To decompose the system into simpler 

subsystems and drawing correct dependency relationships is the real achievement of DSM. 

Adjacency matrix M can be treated as ‘n x n’ matrix, that depicts that either one node to other 

node is interconnected or not. 

M (i,j) = { '1' if there is edge connecting i& j; else '0' } 

In a large and complex system, when there may be hundreds or thousands of 

implemented business rules, it may become a hard task to prioritize them manually even by 
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experts. Apart from that, it is also time consuming task and prone to errors as well. Also, using 

a manual approach, it may not be fully analyzed by those experts that when will be the best 

time to shuffle their priority that can boost up system performance and can prevent system 

resources from wastage. 

Today companies are cost sensitive and moving towards cloud to lower their cost that 

offers ‘pay as you go’ model. Their purchased resources are if consumed fully along with the 

low wastage, it can profit them a lot. Our proposed approach can help organizations to make 

their systems cost effective by preventing system resources from wastage. Our main objective 

is to apply data mining techniques on event logs of executed business process instances in 

such a way that previously written hard coded sequentially executing business rules can be 

replaced dynamically with a possible optimized execution sequence. Hard coded execution 

sequence can slow down process's performance and may keep system busy in unhealthy tasks. 

Our approach makes the software engineers life easy by letting them to focus fully on writing 

the business rules instead of worrying about their best optimized execution order to enhance 

system performance. In the present work, event log is the process instances that left a trace in 

the log. Each trace defines business rules that were executed either successfully or 

unsuccessfully. An important point to be noted here is that, in our case, failure of business rule 

execution doesn't represent its absence; instead it shows that rule when evaluated gave a false 

result and was not executed successfully. Both 'Success' and 'Failed' shows the presence of an 

item/rule whereas 'UnExecuted' shows the absence of an item/rule execution as shown in 

Table 5. Each row refers to a single case and is represented as a sequence of events. A 

business rule can either be a simple 'IF' condition to confirm some variable value or it can be a 

time intensive and high resource consumption task e.g. database or a web service call. 

Our proposed approach that uses data mining techniques can also help in optimization 

of business rules engine technology. Many corporations tend to use business rule engines to 

offer higher flexibility. An enterprise rule engine system segregates enterprise operations from 

automated system in which the enterprise operations are shown via policies and completed 

with the aid of a rule engine. It can sufficiently lower the designing, growing and delivering 
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cost of software program. A business rule engine will process enterprise business instances 

using defined business rules and will execute the desired action if 'condition' is fulfilled. 

Normally, a group of rules’ evaluation and execution will be done that is referred as a 'rule 

set'. Let suppose, given a consumer transaction for reserving a seat, there can be different 

business rules for a discount. 

i) If the passenger is above 60 years, he can avail 'old citizen concession' facility. 

ii) If the passenger is a student, having a valid student card and allowed by 

institute to travel can avail 'student concessional ticket'. 

iii) If a passenger is an employee of same service providing transportation 

company, he/she can get 70% discount. 

1.1 Motivational Scenarios 

This section describes some examples of real life scenarios that motivate to have an 

efficient execution of business processes in which desired business rules need to be adjusted 

dynamically as per the running environment and the nature of users frequently communicating 

with the system. 

1.1.1 Business Process Optimization 

Inside a large application, high number of business rules is implemented by software 

engineers. These rules may belong to a vast domain of business applications, e.g. a public facing 

website that offers a facility to reserve tickets online for travelling. Process may contain hard 

coded implemented business rules that are executed sequentially for each business instance. First 

implemented business rule confirms that either a customer is eligible or not to avail concessional 

ticket and it is verified by an external web service call. Second implemented business rule 

verifies customer's CNIC via an exposed NADRA web service call. Third business rule verifies 

the train availability for booking via a Database (DB) call. Fourth implemented business rule 

makes a DB call to verify that either provided CNIC is of Journalist or not. Fifth implemented 

business rule makes a DB call to confirm that the attached coach with train is still available. 

Sixth implemented business rule makes a DB call to verify that a customer has enough funds in 

his/her bank account via the provided credit card information. 
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The implemented business rule for credit card authentication is at No.6. It was observed 

that for more than 70% customers visiting the site, their credit card authentication is failed. It can 

be seen that due to failure of 6th business rule, not only those passengers were unable to reserve 

seats but also system resources were wasted in evaluation of 5 business rules placed before that. 

It has also been seen that most of the time passenger's credit card is not fully enabled by the 

corresponding issuing bank to make online transactions. It justifies that after going through this 

whole process but failing to reserve seats at the end will frustrate customers and they may not 

like to use system for online bookings. Other reasons of credit card transaction's failure may be 

due to suspicious possible fraudulent transactions. Although such users were unable to make 

transactions by trying to penetrate into system but the fact is that system resources were 

consumed and wasted in evaluation of 5 business rules coming before the 'credit card 

authentication' business rule. What if by keeping in view the cost and frequency parameters, 

credit card authentication is done first?, so that if it failed, next 5 rules will not be evaluated and 

thus will save the consumption of resources being spent on next 5 rules. It is also possible that in 

future, some other frequent pattern is followed during the communication of users with the 

system. So the more smart approach to make the system flexible would be to adjust the business 

rules execution order dynamically as per the running environment. Resultantly, a business 

process could be optimized. Following advantages could be achieved. 

 It will provide customers better user experience. 

 It will make business processes efficient to execute. 

 It will help analysts in identification of step(s) that needs strong focus, careful 

observation and proper coordination among teams. 

 It will help organizations to involve relevant teams for implementation of needed 

identified fraudulent checks in their applications. 

 It will prevent system resources from wastage and their consumption in an unhealthy 

task(s). 
 

1.1.2 Market Basket Analysis 

We can see in our daily life that different shopping sites offer various product purchasing 

deals. There are multiple deals offered on an online shopping application and each deal contains 

different number of products. Let suppose that Deal#1 contains 15 products. A customer visits 
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the site and analyzes each product inside a deal sequentially to view its specifications. Once 

he/she is satisfied with all the products inside a deal, he/she purchases that deal. It was observed 

that among other deals, Deal#1 was most visited by customers but was not availed. Also, it was 

noted that gradually the number of users visiting the site got reduced. May be customers 

preferred to visit some other sites and did shopping from there. After careful and detailed 

analysis, it was identified that during review of products inside Deal#1, the customers were 

satisfied with first 14 products and showed their interest in buying them but due to the fact that 

the last one was not of their interest, they did not prefer to buy that deal. Also, it could be 

annoying to customers that after going through a bit time consuming process and due to the fact 

that first 14 products were of their interest but the presence of last disinterested product forced 

them to leave the deal. Facing the same issue frequently for multiple deals might be the reason to 

make them unhappy with the site user experience and they preferred to do shopping from some 

other site. What if by keeping in view the interest of frequent customers, either that product no 

15 should be excluded from the deal or need to be placed at the top in a deal, so that it can be 

viewed initially by the customers and if it didn't appeal them, they can jump instantly to review 

some other deals. It will not only help them in saving their time but will also keep their interest 

to remain on the site for reviewing some other deals, thus there will be higher probability of 

some purchases on website. This approach may help to achieve following advantages. 

 It will enhance user experience. 

 It can help marketing department in identification of less likely product &grouping of 

more likely products among the deals, thus enhancing their buying probability. 

 It can help organization in identification of a product that needs more concentration 

related to improving its quality. 

 It will also prevent system resources from being consumed in an unhealthy task(s). 

1.1.3 Medical Science 

Most of us commonly see patients that have different diseases and are admitted in a 

hospital. Some of serious among them are continuously under treatment and needs high care. 

When a new patient comes to a doctor, a long list of tests is suggested to him/her in order to 

identify his/her possible disease. A patient visits each lab one after another. Let a patient was 

asked for “10 tests” and for each test he may need to wait in a long queue. He was guided to 
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report back to doctor as soon as he is notified about his first test positivity, so that his treatment 

could be started instantly. On an average, for each test he is standing for almost 20 minutes in a 

queue. Don’t forget that he is already a patient and for him/her it may not be easy to wait 20 

minutes for each test in a long queue. After analysis of large number of patients' data, it has been 

observed that majority of patients have negative results for the first 9 tests but the blood test 

conducted at the last is positive. If we do some calculations, it can be seen that in previous case, 

that patient waited for 200 minutes when he came to know about 1st test positivity but his waiting 

time could be reduced if blood test is being conducted at first. This careful analysis can help 

policy makers to optimize the process by changing the sequence of tests' conduction. It will not 

only save the rush inside hospital but will also help in the fast treatment of patients. What if, by 

keeping in view the attributes of patients e.g., their age, gender, weight, disease etc., if there is 

higher probability that a patient will have positive blood test, the blood test is conducted first 

among others? Following advantages could be achieved. 

 It will save patient’s time along with providing him/her relief. 

 It will also help in saving hospital’s resources. 

 It can help in identification of diseases that are frequent among patients. It will motivate 

doctors, researchers & Government organizations to device preventive strategies. 

 It will help hospitals to make sure that high demand medicines are available in stock. 

1.2 Problem Definition 

Let consider, 'R' be a set of rules: R = {Ri}, i∈{1,2, ...,N}, where N represents number of 

rules and Ri denotes a single rule. Each single rule Ri is comprised of condition part and the 

action part. In a similar way, business instances can be represented as {Bj}, j∈{1,2,..., M}, where 

Bj is a single instance and ‘M’ represents the number of instances. For a single instance Bj, one 

by one the rules will be evaluated and their action part will be executed in a given sequential 

order. If condition part of Ri is satisfied for the instance Bj, we say that Bj activates Ri. If it is 

supposed that there is no dependency among rules then they can be executed in any order and it 

will not affect the final execution result. Similarly, E = {Eik}, k∈{1,2, ...,T}, where Eik denotes 

the execution sequence number ‘k’ for rule ‘i’ among rules ‘N’. For a given business instance, 

rules evaluation cost will vary depending upon which rule in a sequence was not satisfied and 
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caused the business process to fail. Cost of each business instance will be the resources 

consumed on evaluation of 1st to the nth failed/success business rule. Successfully completed 

business process is an ideal scenario for us and justifies the correct use of consumed resources, 

so we will not focus on such cases. Instead our focus will be on the failed business instances logs 

to extract useful knowledge from them. For simplification purpose, we are treating the cost of 

each business rule's evaluation as single unit of time because if there are 'n' number of web 

service or database calls that are almost doing the same nature of work, they will have 

approximately same cost provided that if other parameters like network state, internet speed etc. 

remains the same. Let there be 'n' number of business rules involved that must be satisfied for a 

successful business process execution. We are interested in a case that contains rules 

'1,2,...,x,y,...n'. '1….x' business rules are executed successfully but the rule next to 'x', that is 'y' is 

not satisfied and it resultantly caused the whole business process to fail. The more the business 

rules are evaluated, the higher will be the cost. The cost spent on processing the business process 

instance Bj, can be denoted as the condition evaluation cost C(Bj,R,E) which is decided on the 

basis of Rules ‘R’ and their execution sequence ‘E’. An efficient system will have low mean 

condition evaluation cost. In case of failed business process instance, an early failure of business 

rule is preferred. By keeping the more important rules to be executed first, we can save the cost 

of system and can make it more productive. For ‘M’ business instances, mean condition 

evaluation cost can be calculated as 

CM= 1/𝑀 ∑  𝑀
𝑘=1 Bk……………………………………….. (1) 

Cost of Bk= ∑  (Cost of 
𝑁

𝑖=1
Ri ) ……………………. (2) 

A smaller CM will represent lesser consumption of system resources and vice versa. Via 

using this statistical measurement 'CM', we can make comparison of execution performance of 

different applied approaches. Following objective function needs to be optimized.  

C* = Min(CM) ………………………………………….…. (3) 

Among business rules execution sequences, the one that will have lower C* will be considered as 

an optimized sequence. 

 



 
 

19 
 

1.3 Challenges 

At enterprise level, application software can contain a large number of business rules 

that need to be fulfilled in order to successfully execute a business process. In a normal 

scenario, when a requirement comes to adjust new business rule inside an application, a 

software engineer tries to prioritize and put it in its best supposed place inside the code as per 

his best knowledge. Those set of rules execute in that hard coded sequence continuously till 

either the system is running or the new rule comes for adjustment. Although it may change the 

previous order but will again make a system continue to execute business rules in the same 

new sequential order. Each person has different mind filter and different mindset people will 

interact differently with an application that is exposed to public. Thus a hard coded business 

rules execution sequence that is executing frequently but not allowing process to complete can 

degrade system performance and make system resources to be wasted in an unhealthy activity. 

Thus, in summary there are two main issues with the hard coded written business rules 

execution sequence. 

1. Lowering system performance. 

 

2. Wastage of resources. 
 

It is because of these issues that researchers are trying to find alternative techniques for 

business rules optimization / prioritization. One approach can be to replace hard coded written 

sequence with the optimized business rules execution sequence that will dynamically change 

as per the running environment. If the business rules execution logs are mined and analyzed 

that what nature of users are frequently interacting with the system, it may help in enhancing 

system performance. Also an optimized business rules execution order can be predicted that 

will allow the system to first execute those business rules that are considered more important 

in-terms of execution importance / cost. As per set time frame, the sequence will dynamically 

be replaced with the new optimized predicted one. It may not only prevent system resources 

from wastage but can also boost up system performance. 
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1.4 Research Objectives 

Our main objective is to study business rules in the form of “if condition then action” 

to propose a model that will mine business process instances event log and will suggest a 

possible optimized business rules execution order to prevent system resources from wastage 

and to enhance system performance. It will also prevent to execute business rules always in 

same hard coded fashion as written by programmers. Instead our model will take care of it that 

which order is the most suitable execution order and which rules need to be executed first that 

can help in preventing system resources from wastage. Logs will be mined for specific time 

duration and then the predicted business rules order will be executed for a next decided time 

frame. Same process will be again executed after specific time to mine the most recent logs 

and to execute business rules as per new predicted execution sequence for next time frame. 

1.5 Outline 

The chapters of the thesis are organized as follows. 
 

Chapter 2: Chapter 2 discusses the background and different ways to prioritize rules execution. 

This chapter also explains the different classification and pattern mining techniques in detail to 

mine the data logs. 

 

Chapter 3: This chapter presents the related work which has been carried out in recent years on 

rules prioritization/optimization and also related to applying pattern mining and classification 

techniques on different problems. 

 

Chapter 4: This chapter describes the work that we performed to design a solution for the 

problem. A small data sample has been taken as an example to convey the idea in a simpler way. 

 

Chapter 5: In chapter 5, different experimental results after applying pattern mining and 

classification techniques on actual data logs are shown and discussed. 

 

Chapter 6: In this chapter summary of research work is presented, along with the future work. 

This chapter also presents the contributions of this research work and its limitations. 
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CHAPTER 2 
 

BACKGROUND 

 
 

In this chapter, we discussed background and the concepts involved related to different 

pattern mining and data classification techniques. 

 

2.1 Business Process 

A business process is a collection of tasks that are executed in a specific sequence in 

order to accomplish a particular business goal. In 1776, an economist Adam Smith provided a 

description of business process. He was the first one to give an idea that how output could be 

increased by the use of labor division. Examples of business processes include registration, 

online ticket reservation, opening an account in a bank, checking account credit, billing process, 

approving an order etc. An automated system or software implements large number of business 

processes to make them fast, accurate and efficient. 

 

2.2 Business Rules 

Business rules define the constraints that must be satisfied in order to achieve business 

goal. Those can be applied to business processes, people working in an organization, automated 

systems etc. A business process automated inside software can have number of business rules 

that must be satisfied for its successful completion. Every organization wants that all business 

constraints must be satisfied in order to execute business process successfully. If any of the rules 

is dissatisfied, the business process should not be successfully executed. If it is executed then the 

system may have some bug or security breach. An example of business rules is following. 
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IF Is_Any_Pending_Order_Exists THEN     …………………………………… Business Rule 1 

     IF Is_CreditCard_IsValid THEN            ………..…………………………     Business Rule 2 

         IF Is_Valid_Journalist_Pass_Code THEN  ………………. ……………. .  Business Rule 3 

IF Is_User_Railway_Employee THEN                   …………………….   Business Rule 4 

        IF Is_User_Has_Valid_Railway_Concessional_Pass THEN ……..  Business Rule 5  

 

                  // Reserve seat for a passenger (Business process).  

 

 END 

     END 

         END 

             END 

             END 

 

2.3 Pattern Mining Techniques 

Following are the famous types of pattern mining techniques i) Frequent pattern mining ii) 

Weighted Frequent pattern mining. 

2.3.1 Frequent Pattern Mining 

Frequent pattern mining is considered as an important research area in the field of Data 

Mining. Frequent patterns are considered as those patterns that fulfills the minimum support 

threshold in a data set. Let suppose, a set of items, which include pen and ink are frequently 

appearing together in a data set, so it will be considered as frequent. By generating frequent 

patterns from data, previously unknown knowledge can be identified that can lead organizations 

towards better planning and best decisions. 

Association rule is identified on the basis of two measures called, support(s) and 

confidence(c). Mathematically, support and confidence can be represented as s(A)= P(A), s(AB) 

= P(AB) and c(AB)=P(B/A) = P(AB)/P(A). Let I = i1, i2,i3,...,im be considered as set of items 

and D = t1, t2, ... ,tn is an input dataset in which ti is treated as a transaction. An association rule is 

not anything however an implication of the form X  Y, where X ⊂I, Y ⊂I, and X ∩Y = Ø 
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To mine frequent patterns, Agarwal et al. [5] proposed Apriori algorithm that uses a 

breadth-first approach but multiple times scan of database creates an amazing overhead. Despite 

the fact that Apriori algorithm itself has made a few optimizations, the time and area intake is 

large and efficiency is not high. Ordinary speaking, it is miles hard to avoid three main defects 

[16]. 1) It generates a large number of candidate items. When producing all of the candidate k-

itemsets Ck by using frequent (k-1) itemset I, it needs multiple connections and large number of 

comparisons are made. The time complexity of connection constraints evaluation is O(k*x2). 2) 

It scans the database multiple times. While 'k' is 1, 2, 3....n, the database is at least scanned 'n' 

times. 3) It spends a lot of time in candidate item sets matching. On contrary to Apriori, FP-

growth uses divide-and-conquer approach that makes it much faster than the Apriori algorithm. 

It makes use of a compact data structure called FP-tree to extract frequent item-sets without the 

generation of candidate item-sets. 

2.3.2 Weighted Frequent Pattern Mining 

In real applications, different items have different importance but frequent pattern mining 

treats all items uniformly. In some areas, real data has distinct importance, as some of the objects 

may give extra benefits in terms of income or profit, some may be putting extra cost etc. As an 

instance, sale of shirt may generate 20 cents profit, where as a cotton of shirts might generate a 

40 cents profit. Although latter have a low support count but in-terms of profit, it will have 

greater advantage than the other. This is the reason that the idea of weighted frequent pattern 

mining came into existence. 

 

Leti1, i2,..,in denoted by 'I' be a set of items and 'D' can be considered as transactional 

database which represents a set of transactions in which every transaction 'T' is a set of items 

such that 'T' subset 'I'. An identifier, called 'TID' is attached with each transaction. An item-set 

that contains 'k' items in it is called k-itemset. The set {shirt,comb} is a 2-itemset. Let 'W' is a set 

of non-negative real numbers. A pair(x,w) is known as a weighted item and 'w' is the weight 

associated to 'x'. Weighted support [17] computation includes the multiplication of measures; 

support and weight. If support and weight are taken into consideration individually, then mining 

might bring about item-sets that need to have both the enough weight and also the minimum 

support count. However, this will bring about loss of interesting patterns. For instance, a product 



 
 

24 
 

that is going under promotion and having its sale close to zero will be pruned as it does not have 

enough support. Weighted support for an itemset X can be calculated using Eq. 4. 
 

WSup(X) = W(X) * Sup(X)   --------------------------- (4) 

 

W(X) is the weight of itemset X, whereas Sup(X) presents support count of an itemset X. 

 

W(X) = Maxw(x); where x∈ X ----------------------- (5) 

 

whereas W(X) is maximum weight of an itemset ‘X’. E.g. among {pen,ink,book} pen has 

weight 5, ink has 9 and book has 8 then W(pen,ink,book) = 9;  

2.4 Classification Algorithms 

Classification problem has its own roots inside the area of data mining, database and 

information retrieval. Classification problem is described as, a training records represented as D 

= X1, X2,...,Xn, such that a class label is assigned to every record that can have 'k' unique discrete 

values listed by 1,2,...,k. Training data is used to build a classification model and a trained model 

makes a prediction to predict a class label for the new input test instance for which class label 

was previously unknown. Some widely used classification algorithms that are applied in the 

proposed work are following. 

2.4.1 Decision Tree 

Decision Tree uses the splitting criteria to classify the instances. A flow chart like tree 

structure is built to classify the instances by breaking down the dataset into smaller subsets. 

Decision tree is capable to handle both categorical and numeric data. There are many decision 

tree algorithms e.g. C4.5, ID3, CART etc. In a Decision Tree, each node represents an attribute 

in an instance that is going to be classified by sorting them based on feature values [19]. An 

output tree is a combination of 'decision nodes' and 'leaf nodes'. Entropy and Information Gain 

are used to build a Decision Tree. Entropy measure is used in order to calculate the homogeneity 

of a sample. It will be '1' if the sample is equally divided and will be '0' when the sample is 

completely homogeneous. Entropy can be calculated using the following formula. 

 

E(S) = -∑𝑛
𝑘=1 pklog2pk 

 

Information Gain can be calculated using following eq.6. 
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Gain(T,S) = Entropy(T) -Entropy(T,S) ----------------------------------------- (6) 

 

Information Gain is used as an important measure to find the best split attribute. Attribute having 

high Information Gain will be selected as an attribute to split the data. After the calculation of Entropy for 

each branch, it will be then added proportionally to obtain Total Entropy for the split Entropy(T,S). 

Resultant Entropy is subtracted from the Entropy before the split Entropy(T) of data to get the 

Information Gain(T,X). 

2.4.2 Naive Bayes 

The Naive Bayes classifier is considered as probabilistic classifier that is based on to apply Bayes' 

theorem with strong (naive) independence assumptions. It works by calculating probabilities for 

hypothesis and is robust to noise as well. A Naive Bayes classifier assumes that given the class variable, 

the presence or absence of a selected attribute is unrelated to the presence or absence of any other 

attribute. It is a fast algorithm to build a model and can be applied on large data-sets. It finds the 

conditional possibility of every document to belong to each class. The conditional probability P(C|D), 

where 'C' is a classes and 'D' is the description of objects that needs to be labeled. Given a description ‘d’ 

of an object, we assign the class argmaxcP(C=c|D=d). 

 

argmaxcP(C=c|D=d) = argmaxcP(D=d|C=c)P(C=c)/P(D=d) 

 

In order to determine maximum a-posteriori class, the denominator P(D=d) is considered as normalizing 

factor and can be ignored, as it is not depending on the class. An important term is P(D=d|C=c), that is 

probability of the description given the class. 

2.4.3 K-Nearest Neighbour Algorithm (K-NN) 

It is considered as the simplest classification algorithm that is easy to apprehend. It identifies the 

class of an unknown data point based on its nearest neighbour whose class is already recognized [20]. In 

k-NN the ‘k’ nearest of neighbours are to be taken into consideration to define a class of a data point.  If 'k' 

is '1' then the class of its nearest neighbouris assigned to the object. If k>1 then 'k' nearest neighbours are 

selected and the majority class of neigbours will be assigned the class to the new object. Euclidean 

distance is used to define the closeness, where Euclidean distance between two points, X={x1, x2,…..,xn} 

and Y=(y1,y2,…..,yn} is 

d(X,Y) = √ ∑ (𝑋𝑖 − 𝑌𝑖) 2
𝑛

𝑖=1
 

'X' and 'Y' are the two objects that are compared to find the distance between them and 'n' is their number 
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of attributes. 

2.4.4 Support Vector Machine (SVM) 

SVM is supposed as one of the effective technique for regression, pattern recognition and 

classification problems. Support vector machine is a supervised learning technique which 

classifies points to one of the two disjoint half-spaces. It is taken into consideration as a good 

classifier due to its high generalization performance without needing any prior knowledge. SVM 

is based on the idea of decision planes that define the decision boundary between classes called 

support vectors, treated as parameter [19]. The main objective of SVM is to find the best 

classification function that can accurately classify the instances. It can be used for both linear and 

non-linear data [20] to separate it between two hyperplanes. Linear data can be easily separated 

whereas it becomes quite challenging task to distinguish non-linear data between classes. SVM 

struggles to maximize the following function w.r.t ‘𝑤‘ and 'b', so that it can be ensured that 

maximum margins hyperplanes are found. 

 

Lp= ½ ||𝑤|| - ∑𝑛
𝑖=1 αiyi (𝑤. 𝑋l + b) + ∑𝑛

𝑖=1 αi 

 where 't' is considered as the count of training examples and , i=1,...,t are non-negative numbers 

and 'Lp' is called the Lagrangian, whereas the vectors ‘ 𝑤‘ and constant 'b' defines the 

hyperplane. 

2.5 Dependency Structure Matrix 

There may exist some dependency among business rules to achieve the desired output. 

For that purpose, an effective way for complicated and big structures analysis is DSM [14] that 

facilitates user to define the dependencies among entities and also to visualize them. DSM 

presents entities in the form of matrix. Consequently, complex systems may be analyzed in a 

simpler way. DSM includes rows and columns as system components and use to analyze the 

entities involved. DSM breaks down the complex system into finer 

subsystems/modules/elements to provide its understandable look. As a handy tool for system 

evaluation, DSM works well to capture the interactions and interdependencies between 

components of a system. To decompose the system into simpler subsystems and drawing correct 

dependency relationships is the real achievement of DSM. Adjacency matrix M can be treated as 

‘n x n’ matrix, that depicts that either one node to other node is interconnected or not. '0' which 

shows that they are same one and are not dependent. Relationship is represented as '1', if objects 

are dependent. If a rule implementation got changed and started to depend on some other rule, 
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dependency matrix will be updated respectively. Business rules order could be changed only if 

the desired dependency among them using the DSM is met. 

 

M (i,j) = {'1' if there is edge connecting I & j; else '0'} 
 

 A B C 

Object A 0 1 0 

Object B 0 0 1 

Object C 0 0 0 

Table 1: DSM as a Diagonal Matrix 

 

2.6 Summary 

In this chapter, we have discussed background and the concepts involved related to 

business process, business rules, DSM, different pattern mining and data classification 

techniques. 
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CHAPTER 3 
 

RELATED WORK 

 

 

In chapter 3, we have discussed important contributions by researchers that have been 

carried out in past few years. The related work enables us to gain vision into this research work 

and identifies the research gap in the existing systems. 

Rule prioritization/optimization is not a new area but as per our best knowledge a limited 

work has been carried out in this field. 

3.1 Rule Prioritization 

Broadly speaking, prioritizing business rules for a business process can either be done 

explicitly by the user or can be automated by system. For each business instance in a business 

process, different business rules sequence can exist, as shown in Fig 2. 
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Fig 2. Seat Reservation Process 

In an environment where an activation of one rule causes all other rules to be reevaluated 

makes a system less efficient. [21] work includes the objective to minimize the condition 

evaluation count to improve the execution efficiency of rule engine in such environment. Two of 

famous used approaches discussed in literature are as following. 

3.1.1 Default Priorities 

Embedded rules have default relative priorities which are the feature of static properties 

of the business rules. This function p, defines a default total order over the business rules. A 

function yielding the creation time-stamp of the rules (assuming creation timestamps are 

specific) is an instance of this sort of features which offers higher precedence to older business 

rules. A default total order is presented by ‘d’ such that, given two rules R & S, if P(R) 

>P(S)then R  d  S [28]. This approach has a serious drawback, it has a high computing cost 

that makes it inefficient for a large system. 
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3.1.2 User Defined Priorities 

Software engineer or user may explicitly specify relative priorities among particular rules 

via defining a relationship among them. If the user has mentioned that rule ‘R’ precedes ‘S’, then 

‘R’ is taken into consideration first for execution, irrespective of the default general ordering. 

User-defined priorities are transitive; this is, if ‘R’ precedes ‘S’ and ‘S’ precedes ‘T’, then ‘R’ 

precedes ‘T’ even though ‘S’ is not executed [28]. The work in [27] concluded that while 

activation of rule among rules during conflicting state, it is necessary to specify a numeric 

priority for each rule. User defined priorities override default priorities. Cycles are not allowed in 

user-described priorities. User defined priorities are dynamic and they may be dropped and 

added at any point during existence of rule set. Naive approach is used to implement business 

rules sequence as per the best knowledge of system analysts and software developers, so that if 

business process fails, low system resources could be wasted. 

Set Rl = R1,R2,...,RN as all hard coded rules sequence 

For j=1 to T, following process for Bj needs to be executed 

Execute R1 then R2 and so on, that are activated by Bj 

End. 

End. 

If all needed rules are successfully evaluated and executed, we call it ‘a business process 

completed successfully’. If any of hard coded rules ‘Rl’ was not satisfied, we call it ‘a business 

process failed to complete’. We are more interested in such cases, ’when business process failed 

and high system resources were consumed’. 

User defined priorities has also a serious drawback. In a large and complex system, when 

there may be hundreds or thousands of implemented business rules, it may become a hard task to 

prioritize them manually even by experts. Apart from that, it is also time consuming task and 

prone to errors as well. Other than that, using a manual approach, it may not be fully analyzed by 

those experts that when will be the best time to shuffle their priority that can boost up system 

performance and can prevent system resources from wastage. Today companies are cost 

sensitive and moving towards cloud to lower their cost that offers ‘pay as you go’ model. Their 
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purchased resources are if consumed fully along with the low wastage, it can profit them a lot. 

Hard coded execution sequence can slow down process’s performance and may keep system 

busy in an unhealthy tasks. There must be some approach that can help organizations to make 

their systems cost effective by preventing system resources from wastage.  

The study in [29] proposes that how the execution of production rules can be made 

efficient which try to reduce the cost of computation. A naive approach is to reevaluate all the 

rules that are not executed and then select one among them for activation that meet the criteria. 

This approach is considered safe but has equally high cost of computation. An important method 

proposed in [27] is a RETE Algorithm for enhancing system performance. It has network of 

nodes where each node (other than root) presents the pattern that is coming in a condition of a 

rule. It has two important features that make it faster, one is 'state saving' and the other one is 

'sharing among similar conditions' but when it comes to situation where there is limited sharing 

among conditions, RETE algorithm is not applicable for that. This limitation make it useless 

where there is limited sharing among the given conditions. 

3.2 Pattern Mining Techniques 

There are number of frequent pattern mining techniques that can uncover hidden 

knowledge from the event logs. Data Mining is considered as one of the most important areas in 

which raw data is converted into meaningful and purposeful knowledge [4].When it comes to 

efficiency, strong need of an efficient algorithm arises that can cover the drawback of existing 

available algorithms. [6] present an important comparative study on various data mining 

algorithms in order to generate frequent patterns. Some was having problems of large size 

candidates generation, some having better efficiency and some having multiple DB scans etc. 

Some algorithms like DHP, Apriori, FP-Tree, Pincer and DIC search algorithm works 

horizontally on dataset while Eclat and Partition algorithm works vertically. Algorithms except 

Pincer uses bottom-up search while Pincer search algorithm uses Hybrid method. DHP, Apriori 

and Pincer search algorithm used Hash Tree data structure while FP-Tree uses FP Tree data 

structure. Prefix Tree data structure was being used by DIC while Partition and Eclat uses no 

particular data structure. Besides FP-Tree, all algorithms generate candidate item sets. [5] deals 

with enhancing the durability and efficiency of frequent pattern mining on NVM-based memory 

systems by keeping in view their properties. [18] suggested an efficient algorithm to mine 
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weighted frequent itemsets in a dataset. It uses hash table data structure and uses a single 

database scan. To find frequent patterns, [7] proposed a balanced approach that avoids methods 

in which either very high or very low pruning is made. They suggested a "weighted support" 

measure that not only considers the association and dissociation among items but also the ‘null’ 

transactions impact as well in order to generate frequent patterns. [8] proposed togetherness 

instead of support for generation of frequent patterns. As per their definition, for all 1-itemsets, 

cost of togetherness is 1 and as a result all 1-itemsets are considered as frequent regardless of the 

transactions and min_sup. It shows that all 2-itemsets are considered as applicants in 2-items 

candidate generation and their support will be calculated. While using togetherness, a higher 

order itemsets in a good quantity are probably to be qualified as frequent itemsets. 

Many researchers [9] [10] worked on to modify Apriori and Apriori-like algorithms to 

handle binary attributes as presented in Table.2. Each row presents a transaction and column 

denotes an item. ’1’ denotes the presence and '0' denotes the absence of an item in a transaction. 

To mine weighted frequent-regular item sets, [11] proposed a tree-and-pattern growth algorithm 

called WFRIM (Weighted-Frequent-Regular Item sets Miner) that uses FP-tree like structure 

named WFRI-tree to maintain candidate item sets during the process of mining. The work of 

Haiyun [12] proposed an approach of recommendation based on identified purchase patterns by 

analyzing the purchase history of users. In order to predict next category of purchase in a 

particular location, those identified patterns are used. [13] presents a comparative analysis of 

widely used algorithms and their variations like Apriori, Tree-projection, FP growth and Eclat 

for finding both frequent and weighted frequent patterns.  

 

Item1 Item2 Item3 Item4 Item5 

1 1 0 1 1 

0 0 0 1 0 

1 0 1 1 1 

        Table 2. Binary Attributes Presentation 
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3.3 Dependency Structure Matrix (DSM) 

. Dependency matrices can be made by analyzing documents collected during services, 

historical data etc. [2]. As an important tool used for system analysis, DSM captures 

interdependencies/interactions between system elements [14]. Dependency relationships analysis 

& correctness is the one of the top most feature of DSM. There may exist some dependency 

among business rules to achieve the desired output. For that purpose, an effective way for 

complicated and big structures analysis is DSM that facilitates user to define the dependencies 

among entities and also to visualize them. DSM presents entities in the form of matrix. 

Consequently, complex systems may be analyzed in a simpler way. DSM includes rows and 

columns as system components and use to analyze the entities involved. DSM breaks down the 

complex system into finer subsystems/modules/elements to provide its understandable look. As a 

handy tool for system evaluation, DSM works well to capture the interactions and 

interdependencies between components of a system. To decompose the system into simpler 

subsystems and drawing correct dependency relationships is the real achievement of DSM. 

Dependency matrix can be represented in the form of diagonal matrix as shown in Table 1. ‘0’ 

denotes that objects are independent, whereas ‘1’ denotes that they are dependent on each other. 

3.4 Critical Analysis 

It is concluded from the related work that a good number of datamining techniques are 

available in literature that can be applied to discover the hidden knowledge from a large amount 

of data. As per our best knowledge there is still a gap to apply those techniques for optimization 

of automated business processes. Softwares can be made more optimized thus allowing the 

hardware resources to be consumed in a healthy work. 

The proposed research is to perform optimization of business rules using pattern mining 

techniques. It will also be an innovative step especially in IT industry / software houses. 

Programmers will be able to focus on the core logic instead of focusing on to suggest the best 

business rules execution order for system optimization and better resources utilization. Software 

will be no more completely hard coded, instead an automation wrapper will be existing above it 

to make it adjustable as per running environment.  
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3.4.1 Auto Priorities Assignment 

Our proposed approach includes auto prioritization of business rules to cover such gap. 

While using naive approach, selection and execution of hard coded written rules in changing 

environment is not suitable. Instead, a system must be adaptive to adjust the business rules 

execution sequence as per the environment in which it is running. Their execution order should 

be prioritized and changed dynamically with the passage of time that is best suited for the nature 

of users frequently interacting with it. The core idea is to mine the business process instances 

logs and predict an optimized business rules execution sequence, if executed in that order can 

enhance system performance and prevent resources from wastage. 

 

Set Rl= Ri satisfying Pi> Pi+1 having optimized predicted sequence for a given process instance 

Bj 

For j=1 to T, following process for Bj needs to be executed 

Execute R1 then R2 and so on, that are activated by Bj 

End 

End 

If all needed rules are successfully evaluated and executed, we call ‘business process 

successfully completed’. If any of Rules ’R’ was not satisfied, we call it business process failed 

to complete. 

 

3.5 Summary 

This chapter highlighted different studies related to rules prioritization and data mining 

techniques. The related work of important concepts (rules prioritization, frequent pattern mining, 

weighted frequent pattern mining and data classification) has also been discussed. 
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CHAPTER 4 
 

PROPOSED METHODOLOGY 
 

In this chapter, proposed approach to mine business rules execution data logs is discussed 

in detail. We have taken a sample dataset with few instances as an example to convey the idea 

fully. To reduce the search space, first data is classified and then pattern mining techniques are 

applied in order to find an optimized business rules execution order. If executed in that order, 

system resources can be prevented from wastage. Figure 3 illustrates different stages of our 

proposed solution. 

 

 

Fig 3. Proposed Approach to Mine Data Logs 

Our approach consists of following steps. 

4.1 Preprocessing 

Preprocessing is considered as one of the most important phase in data mining. Achieving 

meaningful information from the raw data needs it to be preprocessed first. Data must be in a 

proper format so that data mining techniques could be applied efficiently on it. For 

understanding and simplicity purpose, we have selected 3 business instances’ logs as a sample 
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data as shown in Table.5. Actual data logs along with results are presented in Chapter 5. We first 

prepared and transformed the obtained data shown in Table 3 into a more suitable format as 

represented in Table 4. This data is in a format on which data mining techniques e.g. 

Classification &Pattern mining techniques could be applied efficiently. 

Business Process Instance Rule Is Executed 

1 R1 Yes 

1 R2 Yes 

1 R3 No 

2 R1 Yes 

2 R2 No 

3 R1 Yes 

3 R2 Yes 

3 R3 Yes 

Table 3. Raw Data Log Format 

Business Process Instance R1 R2 R3 Class Label 

1 Success Success Failed Failed 

2 Success Failed UnExecuted Failed 

3 Success Success Success Success 

Table 4. Transformed Data Logs Format after Preprocessing 

4.2 Data Classification 

Available logs contain both 'Success' and 'Failed' business instances data but we are 

interested in a 'Failed' instances log. As the ones those are succeeded are an ideal scenario for us 

and justify that resources are consumed in a fruitful activity (business process completion). So in 

order to work with failed business instances log, we need to classify the data. Once the data is 

classified and the failed business process instances are separated, those will be used for mining 

frequent and weighted frequent patterns. Classifying business process instances will also reduce 

the search space before applying pattern mining techniques and it can be considered as an 

optimization step before applying frequent pattern mining algorithms. 
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There are number of classification algorithms available in literature, among which we 

have applied Decision Tree, Naive Bayes, KNN and Support Vector Machine. Detailed results 

obtained on actual data logs are presented in Chapter 5. We have used Confusion matrix and 

other measures e.g. TP rate, FP rate, Precision, Recall, F-Measure etc. to summarize the results 

and describing the classifier's performance on a set of test data for which the True values are 

known. TP (True positive) and TN (True negative) are instances that are classified correctly by 

classifier as a given class and FP (False positive) and FN (False Negative) are the instances that 

are falsely classified by the classifier as a given class. 

4.3 Frequent Pattern Mining 

To mine frequent patterns in a dataset, we have proposed a compressed tree data structure 

to overcome the multiple DB scans problem and it can be used efficiently to mine the frequent 

patterns. 

4.3.1 Construction of Compressed Tree 

For understanding purpose we are considering a small set of transactions as a sample data 

to convey the idea fully. Actual data logs along with results are presented in Chapter 5. Let the 

Database 'D' containing the following set of transactions 'T'.  

TID R1 R2 R3 R4 R5 R6 R7 

1 S S S F U U U 

2 S S S S S F U 

3 S S S F U U U 

4 S S S S S F U 

5 U U S U S S F 

6 S S S F U U U 

7 S S S F U U U 

8 S S S S S F U 

Table 5. Sample Dataset ‘D’ (Success=S, Failed=F, UnExecuted=U) 

Via single DB Scan, use each transaction Ti to build a compressed tree. First transaction 

will be scanned and a tree will be constructed with support as 1. Failed business rule will be 

placed on right side and succeeded one will be on the left side of a tree path(s). Each tree path 



 
 

38 
 

will indicate the occurrence of an itemset in a transaction. Each node will also maintain the 

support count. Likely, we will scan the remaining transactions to build the tree. Each node 

'count' property will represent the number of times the rule either succeeded or failed. Each tree 

node will also contain 2 more properties. 'LNA' (left node address) and 'RNA' (right node 

address). Leaf nodes will have both pointing to 'NULL'. 

 

Fig 4. Compressed Tree ‘T’ 

4.3.2 Mining Compressed Tree 

In the proposed work, to overcome the problem of scanning database multiple times, 

database mapping method has been changed. A compressed support count maintaining tree will 

be constructed via a single database scan that will be used for mining both Frequent and 

Weighted Frequent Patterns. Our approach uses two steps in predicting an optimized possible 

business rules execution order. 

 Find frequent business rules patterns that are causing business process to fail along with 

maintaining the downward closure property. 

 Pushing weight constraint to identify weighted frequent business rules patterns in order to 

suggest an optimized possible execution order, along with maintaining the needed 

dependency among them using DSM. 

Two pruning conditions are i) sup<min(sup),the support of an itemset is less than the 

minimum set support threshold. ii) Wsup(x)<min(sup), an itemset weight multiplied with support 
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is less then minimum set support threshold. An itemset X is considered to be weighted infrequent 

itemset if either of the condition 1 or 2 is satisfied. If any itemset is not satisfying both of the 

conditions, then the itemset will be called weighted frequent itemset. 

4.3.3 Identify Frequent Business Rules Patterns 

[30] proposed an approach to find maximal length weighted frequent itemsets (MLWFI) 

by dividing the WFP (weighted frequent pattern) tree into smaller sub trees. In order to mine all 

frequent business rules patterns in a database for which business process has been failed, we 

shall mine the constructed Tree in Fig.4. In a tree, there may be multiple branches initiated from 

root node.  We divide mining the whole tree into smaller trees which include both frequent and 

infrequent patterns. First of all, all branches starting from root will be extracted. After that, those 

will be mined by extracting all paths containing itemset starting from top node to right most leaf 

node, as ‘failed’ business rule will be existing on a right side of path. 

Let suppose that the set minSup is 30% and minConf is also 30%. Support = P/|D|, 

whereas |D| is the 'length of DB' or 'total number of transactions' and 'P' is the 'no of transactions' 

containing the itemset and Confidence = c(AB)=P(B/A) = P(AB)/P(A). Fig.6 presents the 

extracted frequent and in-frequent business rules paths from the tree. 

As R1, R2, R3, R4 (Support: 50%) and R1, R2, R3, R4, R5, R6 (Support:38%) itemset fulfill the 

minimum support and confidence criteria, so those are considered as frequent patterns. 

 

Fig.5. Extracted Frequent & In-Frequent Paths 



 
 

40 
 

4.3.4 Identify Weighted Frequent Business Rules Patterns 

In terms of resource consumption, k-itemset that is weighted frequent pattern and also 

having higher weighted support will be the one that has higher evaluation cost among the 

identified weighted frequent patterns. Weighted infrequent itemsets will be pruned based on 

weighted minimum support set threshold. w(xi) = {(w1,x1), (w2,x2),…, (wn,xn)}  where (wi,xi) is a 

weighted pair, showing the weight corresponding to each item xi and it will be the cost consumed 

starting from 1st index rule to xi(failed business rule) and then taking its average to normalize it 

as shown in following eq. 7. 
 

w(xi) = Avg(∑  𝑖
𝑘=1 (wi,xi)) ………………………………………….. (7) 

 

As R1, R2, R3, R4 and R1, R2, R3, R4, R5, R6 are identified as frequent patterns/itemsets and are 

further used to confirm that they are weighted frequent as well. For simplicity and understanding 

purpose, we are considering the cost/weight of each business rule as single unit of time e.g. '1' 

and minimum set weighted support threshold is 30%. Let first find the weight of each business 

rule using eq.5. 

w(xi) = {1/7,2/7,3/7,4/7,5/7,6/7,7/7} 

w(xi) = {0.1,0.3,0.4,0.6,0.7,0.9,1} 

Therefore R1, R2, R3, R4 (weighted support: 30%) & R1, R2, R3, R4, R5, R6 (weighted 

support: 34%) are also identified as weighted frequent patterns/itemsets. Between identified 

weighted frequent patterns, R1,R2,R3,R4,R5,R6 presents weighted frequent pattern that has 

higher probability of occurrence to cause business process fail along with consuming high 

system resources. Arrange the identified weighted frequent patterns in descending order w.r.t. 

their support as following. 

 

R1,R2,R3,R4,R5,𝑅6 ⃡    

R1,R2,R3,𝑅4 ⃡    

 

Each identified weighted frequent path itemset has length N. Break each itemset path into two 

parts '1...n-1' & 'n'. 

 

 



 
 

41 
 

                                R1(7),R2(7),R3(7),R4(3),R5(3),        R6(3) 

                                        1 to N-1 index                        N index 
 

Fig 6. Weighted Frequent Pattern Decomposition 

 

Extract nth index business rule (failed node in an extracted branch of a tree) from each 

identified weighted frequent pattern to generate new possible optimized execution sequence 'E'. 

A DSM in Table 6 will be used to confirm that desired dependency relationship is not violated 

among rules while prioritizing them. E.g. If R4 is dependent on R3, it cannot be prioritized 

higher than R3 to execute before it. Eq.8 presents predicted possible optimized business rules 

execution order by prioritizing the most important one at the top, if executed in that order can 

consume fewer resources in performing the same work as compared to previously used hard 

coded business rules sequence. 
 

Optimized business rules execution sequence = E = R6,R4,R1,R2,R3,R5,R7 …………………(8) 

 

 R1 R2 R3 R4 R5 R6 R7 

R1 0 1 0 0 0 0 0 

R2 0 0 0 0 0 0 0 

R3 0 0 0 0 1 0 0 

R4 0 0 0 0 0 0 0 

R5 0 0 1 0 0 0 0 

R6 0 0 0 0 0 0 0 

R7 0 0 0 0 0 0 0 

Table 6. Dependency Structure Matrix (DSM) For 7 Business Rules 
 

Calculated cost for each instance while using hard coded business rules sequence is 

shown in Table 7. 
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TI

D 

R1 R2 R3 R4 R5 R6 R7 Cost 

1 S S S F U U U 4 

2 S S S S S F U 6 

3 S S S F U U U 4 

4 S S S S S F U 6 

5 U U S U S S F 4 

6 S S S F U U U 4 

7 S S S F U U U 4 

8 S S S S S F U 6 

F:Failed  

U:UnExecuted  

S:Success  

Table 7. Cost of Hard coded Used Sequence 
 

CM = Cost of (T1 + T2 + T3 + T4 + T5 + T6 + T7 +T8)/N 

= 4+6+4+6+4+4+4+6/8 

= 38/8 

= 4.8 

We will perform simulation on same sample dataset by using the identified optimized 

business rules execution sequence in eq.8 for making cost comparison. We will calculate 'mean 

condition evaluation cost' CM for 'hard coded business rules execution sequence' and for the 

identified 'optimized business rules execution order' to compare the results later. Table.8 is the 

new representation of same sample dataset after changing the business rules order using the 

obtained 'optimized predicted business rules' sequence [R6,R4,R1,R2,R3,R5,R7].  
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TID R6 R4 R1 R2 R3 R5 R7 

1 U F S S S U U 

2 F S S S S S U 

3 U F S S S U U 

4 F S S S S S U 

5 S U U U S S F 

6 U F S S S U U 

7 U F S S S U U 

8 F S S S S S U 

F:Failed  

U:UnExecuted  

S:Success  
Table 8. Dataset Representation Using Predicted Business Rules Sequence 

 

Here, a challenging task is how to treat 'UnExecuted' business rules while calculating 

cost? Two possibilities can exist. 

i) Worst Case: Treat 'UnExecuted' as 'Successful' 

'UnExecuted' business rule coming before the 'Failed' ones will be supposed that they 

were successfully executed and are putting a cost on system, as the rule(s) next to this one will 

also be evaluated. 

 

 

TID R6 R4 R1 R2 R3 R5 R7 Cost 

1 S F S S S U U 2 

2 F S S S S S U 1 

3 S F S S S U U 2 

4 F S S S S S U 1 

5 S S S S S S F 7 

6 S F S S S U U 2 

7 S F S S S U U 2 

8 F S S S S S U 1 

F: Failed  

U: UnExecuted  

S: Success  
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CM = Cost of (T1 + T2 + T3 + T4 + T5 + T6 + T7 +T8)/N 

= 2+1+2+1+7+2+2+1/8 

= 18/8 

= 2.25 
 

ii) Best Case: Treat 'UnExecuted' as 'Failed' 

'UnExecuted' business rule coming before the 'Failed' ones will be supposed that they 

were ‘failed’ to execute thus reducing the cost on system as the rule(s) next to this one will not 

be evaluated more. 

 

TID R6 R4 R1 R2 R3 R5 R7 Cost 

1 F F S S S U U 1 

2 F S S S S S U 1 

3 F F S S S U U 1 

4 F S S S S S U 1 

5 S F F F F F F 2 

6 F F S S S U U 1 

7 F F S S S U U 1 

8 F S S S S S U 1 

F: Failed  

U: UnExecuted  

S: Success  

 

CM = Cost of (T1 + T2 + T3 + T4 + T5 + T6 + T7 +T8)/N 

= 1+1+1+1+2+1+1+1/8 

= 9/8 

= 1.12 

Results justifies that the mean condition evaluation cost(CM) using predicted sequence is 

lower than the hard coded used sequence and it can be considered better in terms of system 

resources consumption. After changing the rules execution order as per obtained optimized 

predicted sequence in eq.8, even in worst case it gives us the better performance results as 

compared to hard coded used sequence. In both cases, while treating 'UnExecuted' as 'Success' & 

'Failed' gives us the lower CM . 
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4.5 Summary 

In this chapter a set of sample data as an example has been presented to present the concept 

fully. The description of proposed methodology, followed by different applied techniques in 

order to find a possible optimized execution order of business rules have also been discussed. It 

has been found that the optimized business rules execution order has a lower cost as compared to 

the used ‘hard coded sequence’. 
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CHAPTER 5 

RESULTS & EVALUATION 

 

5.1 Results and Discussion 

In this section, experimental results are presented.i7 Computer with 2.50 GHz 64bit Intel 

(R) Core (TM) processor and 8GB RAM was used for execution of classification and pattern 

mining techniques in order to find an optimized business rules execution sequence, if executed in 

that sequence can sufficiently able to reduce system resources from wastage. At the moment, 

present work focuses on to propose an idea to make softwares flexible instead of hard coding 

them. 

Our Dataset contains logs that are generated by ‘E-Ticket reservation software’. This web 

portal is used in reservation offices and also accessible online by passengers to reserve tickets for 

travelling. It contains execution information of 105467 business instances of business process 

‘Reserve seat’ having 25 business rules. Initial obtained logs are in relational form containing 

information of both 'Success' and 'Failed' business rules. We first prepared a feature file suitable 

for applying data mining techniques (preprocessing step). We mined the actual logs for the 

business process 'Reserve seat' denoted by 'B' containing 25 business rules 'R'. To successfully 

execute the business process ‘B’, all business rules/constraints 'R' must be satisfied. Logs contain 

information that which rules were executed successfully and which one failed that resultantly 

caused whole business process to fail. For simplicity, we represented each rule with shorter 

notation e.g. R1, R2, R3,..., R25 and are called features of business process 'B' as shown in Table 

9. Initial hard coded business rules execution sequence ‘E1’ is following. 

E1 = R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R19, 

R20,R21,R22,R23,R24,R25 
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S.No Rule Name S.No Rule Name 

R1 IsPassengerCNICValid R14 IsSpouseNotInPermanentDisabledList 

R2 IsPassengerCNICNotInFraudelentList R15 IsSpouceCNICValid 

R3 IsPassengerMobileNoValid R16 IsJournalistCNICValid 

R4 IsPassengerMobileNoNotFraudulentList R17 IsPassBelongsToConcernedJournalist 

R5 IsPassengerMobNoNotInPermanentBlockedList R18 IsJournaistNotInPermanentDisabledList 

R6 IsRailwayCardNoValid R19 IsJournalistNotInFraudulentList 

R7 IsEmployeeNotInFraudulentList R20 IsJournalistActive 

R8 IsEmployeeNotInBlockedList R21 IsJournalistPassNoValid 

R9 IsUserNotInTemporaryBlockedList R22 IsPassBelongToConcernedEmployee 

R10 IsUserValidToReserveSeatForPassenger R23 IsPassAlreadyAvailed 

R11 IsReservationNotStopped R24 IsEmployeePassNoValid 

R12 IsCoachNotDetached R25 IsEmployeeOnService 

R13 IsTrainAvailableForReservation   

Table 9. Business Rules List 
 

As an optimization step, we first classified the data into ‘Success’ and ‘Failed’ instances 

and then applied pattern mining techniques only on relevant data (failed instances).Class label of 

each instance is a binary attribute (‘Success’ & ‘Failed’). We divide the data into training and 

testing data using 80 by 20 ratio. 80% of the data is used for training and 20% for modal testing. 

Confusion matrix for the classifiers K-NN, SVM Decision Tree and Naive Bayes is presented in 

Table 10, Table 11, Table 12 and Table 13 that shows the performance of applied classifiers. 
 

N=21093 Success Failed 

Success TP(6213) FN(2850) 

Failed FP(3611) TN(8419) 

Table 10. Confusion Matrix for K-NN with 3 Nearest Neighbours 
 

 

 

N=21093 Success Failed 

Success TP(6158) FN(2905) 

Failed FP(3532) TN(8498) 

Table 11. Confusion Matrix for SVM 
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N=21093 Success Failed 

Success TP(6145) FN(2918) 

Failed FP(3521) TN(8509) 

Table 12. Confusion Matrix for Decision Tree 
 

N=21093 Success Failed 

Success TP(7307) FN(1756) 

Failed FP(5033) TN(6997) 

Table 13. Confusion Matrix for Naive Bayes 
 

In order to find the classifier that performs well, Table 14 presents different performance 

measures e.g. Precision, Recall, ROC area etc. of each classifier that shows how much the 

classifier performed well on the given data.  

 

Classifier TP Rate FP Rate Precision Recall F-Measure ROC Area 

SVM 0.695 0.309 0.698 0.695 0.696 0.693 

Naive Bayes 0.678 0.290 0.710 0.678 0.677 0.714 

K-NN 0.694 0.308 0.698 0.694 0.695 0.729 

Decision Tree 0.695 0.309 0.698 0.695 0.696 0.711 

Table 14. Calculated Performance Measures on the Basis of Confusion Matrix 

 

We set a minimum support threshold as 15% in order to find frequent patterns 

B1,B2,B3,B4.  
 

Frequent Patterns: 

B1 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, R16,R17,R18 (Support : 

23%) 

B2 =R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, R16,R17,R18,R19,R20,R21 

(Support:18%) 

B3 = R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21, 

R22 (Support : 22%) 

B4 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21, 

R22,R23 (Support:17%) 



 
 

49 
 

Having set minimum confidence threshold as 20%, following are identified association 

rules. ‘n-1th’ part of pattern are the rules that were successfully executed and ‘nth‘ denotes failed 

rule that caused business process to fail.  E.g. Association rule ‘A4’ denotes that there is 54% 

probability that when ‘R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, 

R16,R17,R18,R19,R20,R21,R22’ will successfully execute, ‘R23’ will fail. 
 

Association Rules: 

A1 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, R16,R17R18 (Confidence: 

24%) 

A2 =R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, R16,R17,R18,R19,R20 R21 

(Confidence: 25%) 

A3 = R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21 

R22 (Confidence: 41%) 

A4 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20, 

R21,R22 R23 (Confidence: 54%) 

After arranging the frequent patterns in descending order w.r.t. to their support, ‘nth’ 

(Failed) rule of each frequent pattern will be moved at the top to prepare the new business rules 

execution sequence ‘E2’. If it failed earlier, less will be the consumption of resources. Following 

optimized business rules execution order ‘E2’ is obtained based on identified frequent patterns. 

 

E2 = R18,R22,R21,R23,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16, 

R17,R19, R20,R24,R25 

We are more interested to identify the business rule(s) that are putting higher cost on 

system when they fail. Moving them first to execute will prevent system resources from wastage, 

so we have included the weight/cost factor in order to identify weighted frequent patterns. 

Optimized business rules execution order predicted via weighted frequent pattern mining will be 

used to make comparison with the one found using frequent pattern mining and the hard coded 

business rules execution sequence. Following identified patterns F1,F2,F2,F4 denotes the 

frequent patterns that are weighted frequent as well. Table 15 shows the weighted support of 

each pattern. In our case, identified pattern should be ‘Frequent’ and ‘Weighted Frequent’ as 

well. ‘Frequent’ measure denotes that a pattern has enough probability of occurrence and 

‘Weighted Frequent’ measure fulfills the criteria that it must have enough cost, at-least the 
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minimum set threshold. If a pattern has a very low cost that is negligible then it is better to 

exclude it. 

Weighted Frequent Patterns: 

F1 = R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20,R21 

,R22 

F2 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18 

F3 =  R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17,R18,R19,R20, 

R21,R22, R23 

F4 =R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15, R16,R17,R18,R19,R20,R21 

Total Instances:89304 Weighted Support 

F1 Itemset 0.17 = 17% 

F2 Itemset 0.15 = 15% 

F3 Itemset 0.19 = 19% 

F4 Itemset 0.16 = 16% 

Table 15. Weighted Support of Each Itemset 
 

‘n-1th’ part of pattern are the rules that were successfully executed and ‘nth’ denotes the 

failed rule that caused business process to fail. We then arranged the identified weighted frequent 

patterns in descending order w.r.t. their weighted support/(cost) along with maintaining the 

needed dependency among them using DSM. ‘nth’ (Failed) rule in each identified weighted 

frequent pattern will be moved at the top to execute it first. If it failed earlier, less will be the 

consumption of resources. Following optimized business rules execution order is obtained that is 

sufficiently able to prevent system resources from wastage and having low consumption cost as 

well. 

E3 = R23, R22,R21 ,R18,R1,R2,R3,R4,R5,R6,R7,R8,R9,R10,R11,R12,R13,R14,R15,R16,R17, 

R19,R20,R24,R25 

 

In Table.16, results clearly show that using the predicted sequence of business rules 

obtained through ‘weighted frequent pattern mining’ approach performs much better than the 

‘hard coded’ used sequence and the one identified using ‘Frequent pattern mining’, as it has the 

lowest CM, thus consuming less system resources in-case the business process is failed to 
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complete. For such cases when larger the business processes will fail, lesser will be the resources 

consumption. 
 

 Total Failed 

Instances of 

Business Process 

(‘Reserve Seat’) 

Treat 

'UnExecute

d' as 

'Success'  

Treat 

'UnExecute

d' as 'Failed' 

Condition 

Evaluation 

Cost(CM) 

Resource 

Wastages Cost 

Prevention w.r.t 

‘E1’  

 E1 89304 NA NA 20.69  

 E2 89304 Yes No 6.29 69.6 % 

 E3 89304 No Yes 5.44 73.7 % 

 E4 89304 Yes No 6.27 69.7 % 

 E5 89304 No Yes 4.63 77.6 % 

E1:  Hard coded used sequence 

E2: Predicted execution sequence using Frequent pattern mining 

E3:  Predicted execution sequence using Frequent pattern mining 

E4:  Predicted execution sequence using Weighted frequent pattern mining 

E5: Predicted execution sequence using Weighted frequent pattern mining 
 

Table 16. Cost Comparison for 89304 Instances 

 

5.2 Summary of Chapter 

This chapter presents the results of the applied approaches used to classify the data and 

then to apply pattern mining techniques in order to find an optimized business rules execution 

order, if executed can enhance system performance and can also prevent system resources from 

wastage. Results prove that hard coded business rules execution can degrade system performance 

while wasting system resources. 
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CHAPTER 6 

 

CONCLUSION & FUTURE 

RECOMMENDATIONS 

 

 

6.1 Conclusion 

This thesis addresses an important concept of predicting the optimized business rules 

execution order by applying data classification and pattern mining techniques on the generated 

logs. Weighted frequent pattern mining approach has been used in order to identify the high cost 

consumption frequent patterns that are causing business process to fail. Later on, it has been 

compared with the ‘hard coded business rules execution sequence’ and the one identified using 

‘frequent pattern mining’. Assigning default priorities to execute business rules may make 

system less efficient. Also, algorithms like RETE algorithm may not work well if there is limited 

sharing among rules’ conditions. In the proposed work, a compressed data structure has been 

used that needs only one database scan for its construction unlike Apriori algorithm that requires 

multiple DB scans. As verified by the results, we mined 89304 no of failed business instances of 

a business process ‘Reserve seat’ and found that the cost of system resources consumption can 

be prevented from wastage by 69.6% (worst case) and 73.7% (best case) if only probability 

factor is taken. By including the cost/weight parameter along with support measure, the 

resources wastage can be lowered more to 69.7% (worst case) and 77.6% (best case). Telcos and 

IT industry / Software houses can take big advantage of our proposed model that will not only 

optimize their applications but will also enhance their businesses. Software engineers can focus 

fully in developing a quality software instead of worrying about to code an optimized business 

rules execution order. Research conducted and presented in this paper exhibits that optimization 

of business rules is appreciably beneficial in identification of bottlenecks, to improve 

productiveness of useful resource control and optimization of system resources to make it 

flexible and reliable.  
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6.2  Limitations 

One of the limitations of our applied approach is that if business rules are highly depending 

on each other than applying the proposed mining process on logs will have no advantage. 

Instead it will be an extra overhead step conducted without obtaining any fruitful objective. 

Secondly, if the execution logs are containing a mix data of business rules belonging to multiple 

different business processes, our proposed model may not work well for such case. Third 

limitation in our proposed work is that we are not dealing with transitive dependency among 

business rules. If ‘A’ is dependent on ‘B’ and ‘B’ is dependent on ‘C’ then ‘C’ can’t be 

executed neither before ‘B’ nor ‘A’. 

 

6.3 Future Work 

The contribution can be extended to propose an efficient solution for predicting an 

optimized execution order for highly dependent business rules. Also, research can be extended 

to mine business rules data that are part of multiple business processes. Apart from that, a 

solution can be proposed to predict an optimized business rules execution order while dealing 

with transitive dependency in parallel. 
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