

Automated Model-based UI Test Case Generation from

Interaction Flow Modeling Language (IFML) Models

Author

Nazish Yousaf

FALL 2015-MS-15(CSE) 00000118918

MS-15 (CSE)

Supervisor

Dr. Farooque Azam

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

OCT, 2017

Automated Model-based UI Test Case Generation from

Interaction Flow Modeling Language (IFML) Models

Author

Nazish Yousaf

FALL 2015-MS-15(CSE) 00000118918

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Software Engineering

Thesis Supervisor:

Dr. FarooqueAzam

Thesis Supervisor’s Signature:___________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

OCT, 2017

i

DECLARATION

I certify that this research work titled “Automated Model-based UI Test Case Generation from

Interaction Flow Modeling Language (IFML) Models”is my own work under the supervision of

Dr. FarooqueAzam. This work has not been presented elsewhere for assessment. The material

that has been used from other sources has been properly acknowledged / referred.

Signature of Student

Nazish Yousaf

FALL 2015-MS-15(CSE) 00000118918

ii

LANGUAGE CORRECTNESS CERTIFICATE

This thesis is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also

according to the format given by the university for MS thesis work.

Signature of Student

Nazish Yousaf

FALL 2015-MS-15(CSE) 00000118918

Signature of Supervisor

iii

COPYRIGHT STATEMENT

 Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made onlyin accordance with instructions given by

the author and lodged in the Library of NUST College of E&ME. Details may be

obtained by the Librarian. This page must form part of any such copies made. Further

copies (by any process) may not be made without the permission (in writing) of the

author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST College of E&ME, subject to any prior agreement to the contrary, and

may not be made available for use by third parties without the written permission of the

College of E&ME, which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of NUST College of E&ME, Rawalpindi.

iv

ACKNOWLEDGEMENTS

I am thankful to my Creator Allah Subhana-Watala to have guided me throughout this work at

every step and for every new thought which You setup in my mind to improve it. Indeed, I could

have done nothing without Your priceless help and guidance. Whosoever helped me throughout

the course of my thesis, whether my parents or any other individual was Your will, so indeed

none be worthy of praise but You.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking

and continued to support me throughout in every department of my life.

I would also like to express my gratitude to my supervisor Dr. FarooqueAzamand my co-

supervisor Dr. Wasi Haider Butt for theirconstant motivationand help throughout this thesis.

Also for Software Development and Architecture (SDA), Model-driven Software Engineering

(MDSE) and Software Requirement Engineering (SRE) courses which they have taught me.I can

safely say that I haven't learned any other engineering subject in such depth than the ones which

he has taught.

I would also like to thank myGuidance Committee MembersDr. Rashid Ahmed and Dr. Usman

Akram for being on my thesis guidance and evaluation committee.Their recommendations are

very valued for improvement of the work. I would like to pay special thanks to Muhammad

Waseem Anwarfor his incredible cooperation. I appreciate his guidance throughout the whole

thesis. I am also thankful to Madeha Arif and Anam Amjad for their support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

v

Dedicated to my exceptionalparents whose tremendous support and

cooperation led me to this wonderful accomplishment

vi

ABSTRACT

Since the emergence of web 2.0, the architecture of web applications has been transformed

significantly and its complexity has grown enormously. In such web applications, the User

Interface (UI) is an important ingredient and with the increased complexity, its testing is getting

increasingly complex and cost / time-consuming process. Recently introduced, Interaction Flow

Modeling Language (IFML) is an OMG standard. IFML is gaining popularity for developing

web applications, primarily, because of its excellent features for modeling UI elements, their

content and their interaction capturing capabilities. However, despite of its superior UI modeling

features, its UI testing is accomplished through traditional time-consuming techniques, which are

employed after implementing the UI code. Hence, to overcome these limitations, a model based

testing approach has been proposed for testing IFML UI Elements. The proposed approach

provides complete navigation testing using formal models. Moreover, the approach transforms

the IFML models to all necessary UI Testing Artifacts by generating state transition matrix plus

detailed UI test case document. The main idea of this approach is to provide test cases at the

early stages of development i.e. specification and analysis, which eventually helps in building a

right product at the right time at comparatively lower cost. Proposed approach has been validated

through multiple case studies.

Keywords: Model driven engineering (MDE), Web based application development, Model

based testing, MBT, UI testing, GUI, Transition based testing, Navigation verification, Formal

verification, UPPAAL

vii

TABLE OF CONTENTS

DECLARATION ..i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT... iii

ACKNOWLEDGEMENTS ...iv

ABSTRACT ..vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES ..ix

LIST OF TABLES ... x

CHAPTER 1: INTRODUCTION... 12

1.1. Background Study .. 12

1.1.1. Interaction Flow Modeling Language (IFML) ... 12

1.1.2. Model Based Testing (MBT) ... 13

1.2. Problem Statement ... 14

1.3. Proposed Methodology .. 14

1.4. Research Contribution .. 15

1.5. Thesis Organization ... 16

CHAPTER 2: LITERATURE REVIEW .. 19

2.1. Review Protocol ... 19

2.1.1. Categories Definition ... 19

2.1.2. Selection and Rejection Criteria .. 20

2.1.3. Search Process ... 21

2.1.4. Quality Assessment ... 23

2.1.5. Data Extraction and Synthesis ... 25

2.2. Results and Analysis .. 26

2.2.1. Classification of significant researches .. 26

2.2.2. Model-driven web development approaches identification ... 27

2.2.3. Model-driven web development tools identification ... 29

2.2.4. Model-driven web development languages identification ... 31

2.2.5. Model-driven web approaches benefits and limitations ... 34

2.3. Research Gaps .. 37

CHAPTER 3: PROPOSED METHODOLOGY ... 42

3.1. Targeted IFML Constructs ... 42

3.2. Proposed Solution .. 44

CHAPTER 4: IMPLEMENTATION .. 48

4.1. Transformation Rules ... 48

viii

4.1.1. IFML to Test Case Transformation Rules ... 49

4.1.2. IFML to State Transition Matrix Transformation Rules .. 50

4.1.3. IFML to Source&Target Information Matrix Transformation Rules ... 50

4.1.4. IFML to UPPAAL Transformation Rules ... 51

4.2. Transformation Engine Architecture .. 53

CHAPTER 5: VALIDATION .. 58

5.1. Online Auctions Case Study .. 58

5.1.1. Requirement Specification ... 58

5.1.2. Modeling .. 62

5.1.3. Navigation Model and Test Case Generation .. 66

5.1.4. Automated Navigation Verification ... 69

5.2. Library Case Study ... 71

5.2.1. Requirement Specification ... 71

5.2.2. Modeling .. 71

5.2.3. Navigation Model and Test Case Generation .. 73

5.2.4. Automated Navigation Verification ... 74

CHAPTER 6: DISCUSSION AND LIMITATION .. 77

6.1. Discussion .. 77

6.2. Limitations ... 78

CHAPTER 7: CONCLUSION AND FUTURE WORK .. 80

APPENDIX A ... 81

REFERENCES .. 87

ix

LIST OF FIGURES

Figure 1: MBT Process ... 14
Figure 2: Research Flow ... 15
Figure 3: Thesis Outline ... 17
Figure 4: Search Process... 23
Figure 5: Selected researches per year .. 24
Figure 6: Selected researches per publisher .. 25
Figure 7: Example of IFML Model .. 43
Figure 8: Example of State Transition Matrix .. 45
Figure 9: Example of Source&Target Information Matrix ... 46
Figure 10: Main Interface of Model based UI Test Case Generator ... 48
Figure 11: Transformation Engine Architecture ... 53
Figure 12: IFML to Test Cases Transformation Engine ... 54
Figure 13: Online Auctions Domain Model ... 63
Figure 14: Online Auctions IFML Model (Diagram 1 of 5) ... 64
Figure 15: Online Auctions IFML Model (Diagram 2 of 5) ... 64
Figure 16: Online Auctions IFML Model (Diagram 3 of 5) ... 65
Figure 17: Online Auctions IFML Model (Diagram 4 of 5) ... 65
Figure 18: Online Auctions IFML Model (Diagram 5 of 5) ... 66
Figure 19: Transformation for Online Auctions Model .. 67
Figure 20: State Transition Matrix ... 68
Figure 21: Source&Target Information Matrix .. 68
Figure 22: Test Case for Search Form .. 69
Figure 23: UPPAAL Model for Online Auctions ... 70
Figure 24: Deadlock and Reachability verification .. 70
Figure 25: Library Domain Model ... 72
Figure 26: Library IFML Model ... 72
Figure 27: Transformation for Library Model .. 73
Figure 28: Library State Transition Matrix... 73
Figure 29: Library Source&Target Information Matrix ... 74
Figure 30: Test Case for Book Details ... 74
Figure 31: UPPAAL Model for Library System .. 75
Figure 32: Deadlock and Reachability verification for Library System ... 75

x

LIST OF TABLES

Table 1: Details of research works per database ... 21
Table 2: Details of search terms and search results .. 22
Table 3: Details of Data extraction and synthesis ... 25
Table 4: Results of Classification of selected researches .. 26
Table 5: Classification of Others category .. 27
Table 6: Identification of Model-driven Approaches for Web Development ... 28
Table 7: Identification of Tools for Model-driven Web Development ... 29
Table 8: Language Identification for Model-driven Web Development ... 31
Table 9: PIM level languages ... 32
Table 10: PSM level languages .. 32
Table 11: Transformation languages .. 33
Table 12: Comparative Analysis of MDWE Approaches ... 34
Table 13: Overall Comparative analysis ... 37
Table 14: Comparative analysis with model-based UI test case generation ... 38
Table 15: Transformation rules for IFML to Test cases ... 49
Table 16: Transformation rules for IFML to State Transition Matrix .. 50
Table 17: Transformation rules for IFML to Source&Target Information Matrix ... 50
Table 18: Transformation rules for IFML to UPPAAL model ... 52

xi

Chapter 1

Introduction

12

CHAPTER 1: INTRODUCTION

This chapter offers a detailed introduction of the research. Section 1.1 discusses the

background study, Section 1.2 presents the problem statement, Section 1.3 gives proposed

methodology in, research contribution is detailed in Section 1.4 and Section 1.5 contains thesis

organization.

1.1. Background Study

The purpose of providing the background study is to introduce the main concepts used

inthis research. The concepts involved are; 1) Interaction Flow Modeling Language (IFML) and

2) Model Based Testing (MBT). The details of the following are given in subsequent sections.

1.1.1. Interaction Flow Modeling Language(IFML)

The Interaction Flow Modeling Language was standardized by OMG in March 2013. It

was inspired by WebML and WebRatio experience which were used for model driven web based

application development. It has widely been adopted since then. IFML itself describes how we

can apply model driven engineering (MDE) to the problem of front-end design of software

applications. IFML is designed to capture the structure, user interaction and control flow of

front-end of any software application. Furthermore, it provides support for platform independent

level description for the GUI of any software application accessed on any kind of device i.e.

desktop, computer, laptop, PDA, mobile or tablet independent of the residing implementation

techniques or platforms. In order to provide platform independent level interaction, IFML

provides a stable set of concepts used to capture the fundamentals of user interaction with the

interface of software applications, defined in next section.

1.1.1.1. Domain Modeling

Requirement specification contains the textual information on what should be the

structure of the application or what functions should be performed by it. It provides us with user

roles, domain entities and the relationship between roles and use cases. Domain modeling is

referred as a highly relevant and complementary activity to front-end modeling. In order to

design an IFML model, UML model containing the domain concepts of the application is

13

required. This UML model is simply a UML class diagram contains the information about the

objects identified in requirement specification phase. The resulting model encompasses classes,

attributes and relationships between classes that are later used in the IFML model which is used

to map the domain concepts provided by UML domain model to the front-end of the application.

1.1.1.2. IFML Modeling

IFML provides support for the front-end application specifications without taking in

account the underlying technological details. IFML provides support for the visualization units

through which interface is composed, content to be displayed, events and actions involved, their

effect on the interface state and the parameters to be passed while the units communicate. In

short, IFML sums up all these concepts in one diagrams unlike UML which relies on multiple

diagrams to express each concept.

1.1.2. Model Based Testing (MBT)

Testing is considered one of the most important and difficult phase of Software

Development Life Cycle (SDLC). In the beginning, software products were used to be tested

manually and testing was confined to only one phase in SDLC. As the software development

methods evolved, testing was no longer done manually. Testers shifted from manual testing to

scripted testing. But as the time passed, agile and other iterative software development methods

were adopted, testing was no longer kept confined to one phase. Testing is now started right from

the beginning of SDLC till the end. This is called Model-based Testing (MBT). MBT involves

test case generation from software design models containing main functional aspects of system,

in whole or in parts. MBT is also referred as Model-driven Testing (MDT). An overview of

MBT process is shown in Figure 1. MBT provides the advantage of automated testing. Hence,

there is no chance of human error and also it makes the development period shorter because of

time efficient testing. Model driven Engineering (MDE) has been widely adopted in the recent

years and many MBT tools are available in the market, some of which are MaTeLo[1][2],

TestMaster[3], PyModel[4], JSXM[5], TEMA[6], UPPAAL[7][8], Conformiq[9], ParTeG[10],

Tedeso[11] and Simulink[12] etc.

14

Figure 1: MBT Process

1.2. Problem Statement

Due to the growing complexity and size of web applications, manual testing of web

interface becomes a time, resource and cost consuming process. Identifying web interfaces that

can be used for testing such applications has become increasingly challenging. Moreover,

changes in development phase cause changes in the front-end. (page layout can change, input

elements are added or removed, data–flow of the pages is modified).These changes must be

tested for error free application. Without the model driven approach, the tests are created

manually, and the cost of testing is approximately 50% of the total development cost. Every

change made to the interface must be synchronized with the tests i.e. when an element is added

to a form, all functional tests associated with that form must be modified accordingly. So, in

order to test our web application front-end in an effective and efficient manner, the test cases

should be generated systematically through the IFML models at platform independent level

without considering the development techniques.This leads to initiate the testing activity in the

early requirement specification phases especially without considering the ultimate application

development technologies.

1.3. Proposed Methodology

The entire research is done in a systematic way. Flow of the research is shown in Figure

2.First of all, we identify the problem, then we propose a solution to the identified problem.

Then, we carry out a comprehensive systematic literature review which becomes the foundation

of the proposed solution. Researches related to the proposed solution are analyzed and compared.

The proposed work includes a fully automated approach for obtaining the UI testing

artifacts from IFML models at platform independent level i.e. in early phases of requirement and

15

analysis. The proposed tool provides facilities of modeling, transformation and verification.

Mapping rules defined for the transformation become the basis of transformation engine. In the

implementation phase, the transformation engine helps transform the IFML models into UI test

case generation, UI testing matrices and UPPAAL navigation model. The navigation model

generated by transformation engine can further be verified using verification feature of the tool

and hence, providing the fully automated navigation verification. The proposed methodology has

been validated for two case studies of different sizes.

Figure 2: Research Flow

1.4. Research Contribution

Contributions made from this research work are two-fold i.e. comprehensive automated

navigation verification and UI test case generation at platform independent level. Detailed set of

contributions of the proposed approach are as follows:

 We have exploited Model Driven Engineering and Formal Verification technique for

automated navigation verification. Timed Automata formalism has been used for this

purpose.

16

 We have specifically developed a method to generate Timed Automata model from IFML

model, so that it can be verified for reachability and deadlock freedom using UPPAAL model

checker.

 We have introduced a model based approach in order to obtain testing artifacts. The main

artifact produced using this approach is a complete UI test case document in-line with the

specification document which is generated even before the development starts. The UI test

case document covers exhaustive test cases for proper display of data on the web pages.

 Other testing artifacts i.e. transition matrices are also generated from which testers and

developers can easily utilize other formalisms and testing techniques i.e. quick state

transition testing.

 The transformation engine is developed using Java and Acceleo for the generation of full test

case report (.txt) and also UPPAAL navigation model.

 We have provided validation of our proposed work using two benchmark case studies i.e.

Online Auctions and Library case study.

1.5. Thesis Organization

Organization of the thesis is represented in Figure 3. CHAPTER 1: INTRODUCTIONoffers

a brief introduction containing the background study, problem statement, research contribution

and thesis organization.CHAPTER 2: LITERATURE REVIEWprovides the detailed literature review

highlighting the work done in the domain of web based application development using Model

Driven Architecture (MDA). The systematic literature review is composed of four main sections.

First section is review protocol which gives details on the methodology using which the literature

review is carried out. Section two offers details on research works using MDA for web

development. Whereas, section three highlights the research gaps that we encountered.

CHAPTER 3: PROPOSED METHODOLOGY covers the details of proposed methodology used for

identification of problem. CHAPTER 4: IMPLEMENTATION presents the detailed implementation

regarding the proposed tool and transformation engine along-with its architecture. CHAPTER

5:VALIDATION provides the validation performed for our proposed methodology using two

important case studies. The two case studies selected for validation purposes are of different

domains and different sizes to make sure that our proposed approach works on every case. Case

studies selected are Online Auction and Library case study. CHAPTER 6: DISCUSSION AND

17

LIMITATION contains a brief discussion on the work done and also contains the limitations to our

research. CHAPTER 7: CONCLUSION AND FUTURE WORK concludes the research and recommends

a future work for the research.

Figure 3: Thesis Outline

18

Chapter 2

Literature Review

19

CHAPTER 2: LITERATURE REVIEW

This chapter presents the literature review carried out for the research.

Section2.1discusses the review protocol, Section 2.2presents the results obtained from the

review protocol and Section 2.3highlights the research gaps which form the foundation of our

research.

2.1. Review Protocol

We carried out the review protocol development for our study, based on already defined

Systematic Literature Review by Kitchenham[13]. This review protocol demonstrates the

category definition, criteria of selection and rejection, assessment of quality, extraction of data

and the mechanism used for data synthesis.The details of these elements are given in following

sub-sections.

2.1.1. Categories Definition

We have categorized our researches into four main categories on the basis of different

types of approaches used for model driven development of web applications. Later on, various

approaches and tools used in these researches are identified. The research studies in these

categories can overlap.

Profiling Category: This category contains the research works in which profiles either new or

existing have been used for development of web applications. This category includes the

research studies where either UML-extended profiles or user-interest profiling methods have

been used.

Domain Specific Modeling Languages (DSML) Category: This category contains the research

works in which domain specific modeling languages have been used for model based web

development. WebML and Object-Oriented languages are placed in this category.

Service Oriented Architecture (SOA) Category: The research works in which service oriented

architecture has been used along-with model driven approaches are to be placed under this

category.

Others Category: This category includes the research studies that did not belong to any of the

above-mentioned categories. It is divided into following three sub-categories.

20

a. Web user interface development: This sub-category contains the research studies that do

not lie in any of the above-mentioned three categories and focuses on web user interface

development or web user behavior analytics using model driven approach. The research

works on desktop, mobile web and rich internet applications(RIA) web interface are included

in this sub-category. For example, [14]and[15] discussed the application of MDA for

developing a model based technique that can be used to develop responsive web user

interfaces for Rich Internet Applications (RIAs).[16]and [17]discussed the MDA integrated

with Interaction Flow Modeling Language (IFML) for development and validation of web

interfaces for mobile applications.

b. Business process modeling: The research studies related to the MDA based business process

modeling for web based applications are to be placed under this sub-category. Business

Process Modeling Notation (BPMN) is used for modeling purposes.

c. Model based testing: The research works in which model based testing of web applications

has been discussed are to be included under this sub-category.

2.1.2. Selection and Rejection Criteria

The standard and benchmark for the inclusion and exclusion of this study are declared by

using seven parameters. These factors defined to certify the validness of the responses of our

questions. The studies that do not comply with and do not fulfill these seven parameters are not

considered. Selection parameters for research works are given below,

1. Subject relevance: We selected only those papers which dealt with the model driven

development of web applications. The selected work supports the responses of the research

questions that we asked. Furthermore, we rejected unrelated research studies which did not

include MDA.

2. 2010-2017: We ensured the collection of latest studies by opting for those studies which lie

in the years 2010 to 2017, and by not considering those studies which fall beyond the

described period.

3. Publishers: Primarily five famous scientific databases were used, which are IEEE, ACM,

ELSEVIER, SPRINGER and TAYLOR & FRANCIS; to ensure the inclusion of authentic

and state of the art research works we opted for those papers which have been brought

forward by the specified publishers. Details are given in Table 1.

21

4. Imperative effects: The papers that we chose have imperative positive impact on

development of web-based applications. We tend to reject the studies that have no important

subsequence on the development of web-based applications.

5. Result-oriented: The studies that we opted are result oriented, and their proposal and final

conclusions are analyzed and proven by stable experimentation and factual data. Moreover,

we do not consider those studies whose claims are proven by weak methodologies of

validation.

6. Redundancy: We rejected redundant research studies and only most outstanding one of them

was used.

7. Proper Validation: Selected researches must be validated by developing a web application

using model driven development.

Table 1: Details of research works per database
Sr. # Scientific

Database

Type Selected Research Works No. of Researches

1. IEEE Journal [18][19] 2

Conference [14][20][21][22][23][24] 6

2. ACM Journal [15][25] 2

Conference [26][27][28][29] 4

3. ELSEVIER Journal [30][31][32][33][34][35][36] 7

Conference [37][38][39] 3

4. SPRINGER Journal [40][41][42] 3

Conference [16][17][43][44][45] 5

5. TAYLOR &

FRANCIS

Journal [46][47][48] 3

Total 35

2.1.3. Search Process

The selection and rejection criteria depict that we have opted for five prime databases of

publication (i.e. ACM, IEEE, Taylor & Francis, Springer and Elsevier) to perform the systematic

literature review process. We used “2010–2017” year-filter on all the search terms to get the

searches put out during 2010–2017, merely. Some of the search terms included (e.g. Model

22

driven web, Model based web development, MDA based web, Web modeling, WebML and

IFML) as mentioned in Table 2. We used the “AND” and “OR” operators to accomplish the

possible investigation outcomes necessary for our study. We followed the search process flow

diagramas illustrated in Figure 4.

1. Identification: We specified multiple search expressions in five scientific databases and

examined about 3509 results.

2. Screening: We excluded 2887 studies in the screening process because their title did not

comply with our criteria.

3. Eligibility: We considered 622 researches and by accessing their full text and by reading

their abstracts and results we discarded 483 researches because they did not match with our

selection and rejection criteria. For example., [49]presented an article based on web

languages but did not provide valid case study or website example so we rejected this study

because it did not meet our eligibility criteria of validation mentioned in Section2.1.2.

Selection and Rejection Criteria.

4. We performed a thorough qualitative and quantitative study of 52 researches by extracting

their data and synthesizing it later for our research questions. After detailed examination of

our 52 paperswe rejected 17 studies which did not fulfill our merit quantitative and

qualitative criteria.

5. Included: We finally included remaining 35 papers because they fully comply with our set

criteria for selection and rejection.

6. The details of selected research studies as per the publishers.

Table 2: Details of search terms and search results
Search Terms Operators Number of Search Results

IEEE SPRINGER ELSEVIER ACM T&F

Model driven web AND 2 2 41 4 25

OR 83 155 117 58 148

Model based web

development

AND 2 10 20 0 0

OR 113 294 344 144 53

MDA based web AND 7 2 5 0 0

OR 43 9 103 39 8

Web modeling AND 11 2 35 1 6

23

OR 1145 15 250 90 12

WebML N/A 4 9 47 4 0

IFML N/A 6 20 16 5 0

Figure 4: Search Process

2.1.4. Quality Assessment

We established the quality assessment criteria for understanding the importance of our

result from the selected research studies. These criteria also help to define the trustworthiness of

each research work we have selected and its fundamental discoveries:

1. The data evaluation of the researches is free from the ambiguous statements and relies on the

solid facts and theoretical discerning.

24

2. Selected researches have been validated using appropriate validation techniques and

approaches e.g. validation on some website or using case studies etc.

3. Tools information that has been used to perform different activities that helped us to validate

our findings is provided.

4. As our intention is to examine or study the application of MDA for web development, model-

transformation approaches and available tools for this purpose so, our goal is to include

considerable total of most recent studies as much as possible. Figure 5 shows the details of

number of selected researches per year.

5. We have clearly and logically prepared and sorted the research by focusing on themes or

ideas rather than the authors.

6. Uniqueness of the study is another important feature. Therefore, we have only included those

research studies that are published in at least one of the following five well-known and

internationally recognized scientific databases which are: ACM, SPRINGER, IEEE,

ELSEVIER and TAYLOR & FRANCIS. Details given in Figure 6.

7. We have tried to avoid risk biasness at our best by taking researches of five of the most

published databases i.e. IEEE, ACM, Elsevier, Springer and Taylor & Francis which helped

us in sighting a significant amount of important research publications. There is a chance of

risk biasness from many other sources for example, Wiley and Google Scholar etc., which

we have not considered. This will not affect our research results in huge ratio but there would

still be a difference of ±10%.

Figure 5: Selected researches per year

25

Figure 6: Selected researches per publisher

2.1.5. Data Extraction and Synthesis

Table 3 shows the data extraction and synthesis performed for our nominated researches

to attain the answers of our research questions. After the data extraction, we conducted an

inclusive analysis on model driven web based applications.

Table 3: Details of Data extraction and synthesis
Sr. # Descriptions Details

1. Bibliographic

information

Title of study, author, year of publication, details of

publisher and the type of study (i.e. conference or

journal publication)

Data Extraction

2. Overview Basic idea of the selected research

3. Results Results obtained from the selected research

4. Collection of Data (if

any)

Qualitative or Quantitative

5. Assumption(s) For validating the results

6. Validation Methods used for validating the results of research idea.

Data Synthesis

7. Approach Utilization Model driven approach used for web development

8. Tools Identification Tools used for model based web development

9. Language Identification Languages used for model based web development

26

Table 3 contains the details of data extraction and synthesis. We have defined some

parameters, from serial number 2 to 6 for data extraction, from which we extracted the details of

each selected research study to make sure that it conforms with our selection and rejection

criteria. We have defined some parameters, from serial number 7 to 9 for data synthesis,

considering these parameters we have performed detailed investigation of each selected research

study. Each selected research study has been studied and investigated in detail in order to assign

it to the equivalent category. Each selected research study has been studied intensively in order

to extract the correct information regarding the approach utilization, tool and language

identification as defined in serial number 7 to 9 respectively. We have tried to avoid risk biasness

across individual studies by selecting the research studies that worked on complete and validated

case studies for example, we have selected[16][29] and [45] because of the evidence of their

methodology with complete IFML case studies.

2.2. Results and Analysis

2.2.1. Classification of significant researches

We have determined this Systematic Literature from 35 significant research studies and

then we organized the selected researches into four pre-defined categories (Section2.1.1.

Categories Definition). This was done to acknowledge the relevant research works as shown in

Table 4.

Table 4: Results of Classification of selected researches
Sr. # Categories No. of Researches Research Identification

1 Profiling 7 [22][23][33][34][35][38][47]

2 DSML 15 [15][18][19][25][27][29][30][31][32][37][41][43][44

][46][48]

3 SOA 4 [17][20][21][42]

4 Others 9 [14][16][24][26][28][36][39][40][45]

From the detailed investigation of 35 selected research studies we have analyzed that 7

research studies have been identified under profiling category. For example, [23] and [33]

discussed a method of extending a new profile from UML for the introduction of web concepts at

design level. [22] proposed a mechanism to enhance web application development by

introducing MDA approach with a new user-interest profile. We also analyzed that Domain

27

Specific Modeling Languages (DSML) is the leading category in the model based software

engineering practice. For example, [25] suggested different approaches like UML-based web

engineering, Web Modeling Language, Object Oriented Web Solutions etc., that can be used for

model driven development of web based applications. Therefore, we have selected 15 researches

under DSML category.

On the other hand, only 4 research studies have been identified that are specific to

Service Oriented Architecture (SOA-based) i.e., [21] and 9 research studies have been identified

that do not correspond to any of the above-mentioned categories and hence are selected under the

others category. Details of categories included in others category are given in Table 5.

Table 5: Classification of Others category
Sub-categories No. of Researches Research

Identification

Web user interface

development

Desktop web 3 [14][26][28]

Mobile web 3 [16][36][45]

RIA web 1 [24]

Business Process Modeling 1 [39]

Model based Testing 1 [40]

Table 5 enlists three sub-categories of others category. The sub-category of web user

interface development has been divided into three parts. About 3 research works have been

identified under the category of web user interface development for desktop applications, 3

research studies have been identified under the category of web user interface development for

mobile applications and only one research study has been identified for Rich Internet

Applications (RIAs) user interface development. Only one research work has been identified

under the sub-category of business process modeling and one research work has been identified

under the sub-category of model based testing.

2.2.2. Model-driven web development approaches identification

From the selected researches, we have identified a total of 16 approaches that have been

used for model driven development of web applications. As per our research criteria, we only

investigated the approaches in use since 2010 till now. Table 6 summarizes widely used model

based web development approaches now-a-days.

28

Table 6: Identification of Model-driven Approaches for Web Development
Sr. # Model-driven Web Development

Approaches

No. of

Researches

Research Identification

1 UWE (UML-based Web Engineering) 7 [25][30][31][36][37][41][44]

2 WebML based 7 [19][25][29][30][31][32][44]

3 IFML based 9 [16][17][24][27][28][29][36]

[42][45]

4 WSDM (Web Site Design Method) using

user-interest profiling

4 [19][22][23][25]

5 W2000 (UML Profiling) 6 [25][33][34][35][38][47]

6 OO-H, OOH4RIA and OOHDM (Object-

Oriented Hypermedia Method)

4 [15][25][30][31]

7 RUX-Method 1 [31]

8 NDT (Navigational Development

Techniques)

3 [25][31][44]

9 CSCS pattern for MOWS 1 [18]

10 WCF (web component framework) 1 [20]

11 SOD-M (Service Oriented Development

Method)

1 [21]

12 VDM (Vienna Development Method) 1 [21]

13 FMrP (Function-Model-Responsive

Presentation) Model

1 [14]

14 MockupDD (Mockup Driven

Development)

1 [30]

15 BPMN (Business Process Model and

Notation)

1 [39]

16 OOWS (Object Oriented Web Solutions) 1 [25]

29

From the detailed investigation of selected 35 researches, we have identified 16

approaches used for the model based web development purpose as enlisted in Table 6. Out of

these 16 approaches, we have identified that UML-based Web Engineering, Object Oriented

Hypermedia and Web Modeling Language based approaches have been used together in some of

our researches such as in[25], [30] and [31]. Whereas, these approaches are used separately in

some of the selected researches as well.

We have also identified that some approaches work on the idea of profiling which was

selected as one of our categories for classification of the selected researches. For example,

[33]and [34] discussed the approach called W2000 the idea of extending profiles form UML for

the model based web application development purpose. Interaction Flow Modeling Language

(IFML) has been identified by 9 selected researches as a widely-adopted approach for web

interface development these days as discussed in [29] and [45]. 4 selected researches discussed

another approach called Web Site Design Method (WSDM) which works on the idea of user-

interest profiling.

On the other hand, there are some approaches such as Web Component Framework,

MDA-SOA based approach, Vienna Development Method, Function-Model-Responsive-

Presentation, Mockup Driven Development, Business Process Model & Notation and Object-

Oriented Web Solutions which are only used in 1 research study.

2.2.3. Model-driven web development tools identification

From the selected researches, we have identified 15 tools that are being used for model

driven development of web applications. As per our research criteria, we only investigated the

tools in use since 2010 till now. Table 7 gives a detail of tools used for model based web

development classified according to the functionality they provide.

Table 7: Identification of Tools for Model-driven Web Development
Sr. # Tools Purpose No. of

Researches

Research

Identification Modeling Model

Transformation

M2T M2M

Framework (5)

1 Eclipse Kepler with  4 [20][15][33][47

30

Papyrus Project]

2 Eclipse Kepler with

Acceleo Project

  2 [20][33]

3 OO-Method by

INTEGRANOVA

   1 [35]

4 NDT Suite   2 [25][44]

5 Eclipse GMF  3 [18][25][37]

6 Eclipse EMF   4 [14][23][34][38

]

Modeling (1)

1 Eclipse Ecore (MOF)  3 [25][33][41]

Transformation (3)

1 KM3  1 [41]

2 MedniQVT   4 [21][22][23][38

][47]

3 WebDSL generators

using Stratego/XT

   1 [41]

Modeling & Transformation (6)

1 MagicDraw   1 [23]

2 WebRatio and

WebRatio BPM

  6 [19][27][29][30

][32][45]

3 ArgoUWE and

MagicUWE

  1 [25]

4 Mockup-to-HTML

Tool

  1 [30]

5 Interactive Tagging

Tool

  1 [30]

6 Demo Sandbox

Environment

  1 [30]

31

Table 7 shows the details of tools identified for the model driven development of web

based applications. These tools are classified under four categories depending upon the

functionality of each. Table also shows the features or purpose of each identified tool i.e.,

modeling and transformation. In transformation, we have further divided it into two categories,

model-to-text or code(M2T) and model-to-model(M2M). From the detailed study of 35 selected

researches we have identified 5 tools under the framework category where Eclipse Kepler was

found an efficient framework with different plugins available for different purposes[20]. Only

one tool i.e., Eclipse Ecore(MOF) has been identified under modeling category. Under

transformation category, 3 tools have been identified. On the contrary, 6 tools have been

identified which provide both modeling and transformation functionality. From the above table,

it is easily distinguishable that both types of transformations are only supported by

INTEGRANOVA, NDT Suite, Eclipse EMF and WebDSL generators.

2.2.4. Model-driven web development languages identification

We have divided the languages used for model driven web development into three

categories on the basis of their purpose. We have identified a total of 23 languages that are used

for model based development of web applications. Table 8 defines the three categories we have

developed for languages used in our selected research works. Table 9 shows that PIM (Platform

Independent Model) level languages are further divided into two categories, GPMLs (General

Purpose Modeling Languages) and DSLs (Domain Specific Languages) and Table 10 gives the

information regarding PSM (Platform Specific Model) level languages. Table 11summarizes

transformation languages and also specifies whether the language is used for Model to model,

model to text transformation or both.

Table 8: Language Identification for Model-driven Web Development
Sr. # Category No. of

Languages

included

Research Identification

1 PIM level

languages

9 [15][16][17][19][20][21][22][23][24][25][27][28][29]

[30][31][32][33][34][35][36][38][39][41][42][44][45]

[48]

2 PSM level 3 [15][18][20][21][22][23][24][33]

32

languages

3 Transformation

languages

11 [21][22][23][38][39][41][47]

From the detailed analysis of 35 selected researches, we have classified the languages

used in them in three categories which are the building block of any model driven engineering

process. We have selected 9 languages under the category of PIM level languages which are

basically general modeling languages as shown in Table 9. Whereas, Table 10 shows that 3

languages have been identified under the category of PSM level languages. For transformation of

Platform independent model to a platform specific model, some transformation languages are

used, 11 of them have been identified by the examination of our selected researches. Details

given in Table 11.

Table 9: PIM level languages
Sr.

Category Language No. of

Researches

Research Identification

1 GPMLs UML 11 [15][20][21][23][31][32][33][34][36][38][39]

IFML 9 [16][17][24][27][28][29][36][42][45]

2 DSLs WebML 11 [15][19][21][29][30][31][32][41][43][44][48]

MobML 1 [27]

UWE 6 [22][25][30][41][43][44]

MockupToME 1 [34]

MIDAS 1 [41]

OOWS 2 [35][41]

Netlison 1 [41]

Table 10: PSM level languages
Sr. # Languages No. of

Researches

Research

Identification

1 XML 5 [15][18][20][23][33]

2 WSDL (Web Service Description Language) 2 [21][22]

3 WS-BPEL (Web Service Business Process

Execution Language)

1 [21]

33

Table 11: Transformation languages
Sr. # Languages No. of

Researches

Research

Identification

(M2M)

1 QVT and QVT-R 7 [21][22][23][24][38][

41][47]

2 ATL (Atlas Transformation Language) 4 [21][39][41][47]

(M2T)

1 AndroMDA 2 [24][41]

2 Stratego/XT (grammar) 1 [41]

3 XPand 1 [41]

4 Velocity 1 [41]

5 Groovy scripting language 1 [41]

(M2M + M2T)

1 TCS (DSL for textual concrete syntaxes) 1 [41]

2 AspectJ 1 [38]

3 openArchitecture-Ware’s xTend 1 [41]

4 openArchitecture-Ware’s Workflow language 1 [41]

Platform Independent level languages are further categorized into two categories as

enlisted in Table 9. First category is GMPLs, which includes general purpose modeling

languages used for software development or software interface development such as UML and

IFML. UML is widely used PIM level language, as suggested in 11 of our selected researches. 9

research studies have been identified in which IFML has been used. IFML is a relatively new

approach identified by 9 research studies and has been adopted for the interface development as

discussed in [42] and [45]. On the other hand, DSL is the second category which includes the

domain specific languages such as WebML, UWE, OOWS etc. WebML is a language used for

the web domain specifically as discussed in detail in 11 of the selected researches. [27] suggested

34

a new approach for mobile application development, language extended from IFML for this

purpose has been named as MobML.

Table 10shows the details of platform specific level languages that have been identified

from our selected research studies. 5 research studies focused mainly on eXtensible Markup

Language (XML) which was designed to store and transport data and is machine and human

readable. Web Service Description Language (WSDL) and Web Service Business Process

Execution Language (WS-BPEL) have been identified from 2 and 1 research study respectively.

Table 11gives the detail of transformation languages identified from the detailed study of

our selected researches according to the transformation supported by them.

Query/View/Transformation (QVT) is the model-to-model transformation language standardized

by Object Management Group for model transformation in the context of MDA. 7 research

studies have been identified focusing on QVT and QVT-R(Relational). As suggested by [23]

QVT-R can be used for transformation of system functionality from PIM to PSM level. ATLAS

Transformation Language is another language used for the same purpose as identified by 4 of our

selected researches. As per the category of model-to-text transformation languages, by our

analysis we have identified that AndroMDA is a strong M2T transformation language. Other less

used languages identified in the same context are XPand, Stratego/XT, Velocity and Groovy as

suggested by [41]. Whereas, some less used transformation languages in the context of model

driven web based application development which provide both model-to-model and model-to-

text transformation such as TCS, Velocity, openArchitecture-Ware’s xTend and Workflow have

been identified by only one research work [41].

2.2.5. Model-driven web approaches benefits and limitations

From an unbiased point of view, there are some clear benefits and limitations that can be

identified from the 16 model driven approaches identified for development of web based

applications. Table 12 summarizes some of the important differences in context of web

application 3 tier architecture supported by these MDA based approaches identified already in

Table 6, as well as the notations supported and tool support available for them.

Table 12: Comparative Analysis of MDWE Approaches
MDWE Approaches Supported Tiers Supported Tool Support

35

Presentation Business

Logic

Data Notation

UWE   UML AngroUWE,

MagicUWE

WebML based    E-R, UML WebRatio

IFML based    E-R, UML WebRatio

Eclipse IFML

plugin

WSDM using user-

interest profiling

   UML N/A

W2000    HDM, UML N/A

OO-H, OOH4RIA and

OOHDM

   E-R, UML CASE tool

RUX-Method    UiML RUX tool

NDT   UML, OCL NDT Suite

CSCS pattern for MOWS  UML N/A

WCF   UML N/A

SOD-M    E-R, UML SOAP toolkit

VDM   UML VDM toolkit

FMrP Model  E-R, UML N/A

MockupDD    UML Mockup-to-

HTML

BPMN    UML WebRatio BPM

OOWS    UML OO-Method

All the above approaches also support their own notations.

Table 12 shows the detail of each tool’s supported features from the 3-tier web

architecture. These three tiers i.e., presentation, business logic and data in web application are

based on separation of concerns. Presentation tier is user interface which is the top most level of

a web application. Interface shows the interaction between user and the application. This tier is

supported by all of the model based web development approaches identified by our research.

36

Second tier is the business logic tier which deals with the data processing and makes logical

decisions of the application. Third and last tier is the data or persistence tier which stores the

information and retrieves it from a database. This information is passed on to the business logic

tier for processing and then eventually is sent back to the user at presentation layer. We have

analyzed that the persistence layer is not supported by many approaches yet, which is one of the

major limitations to these approaches.

Another important observation made from Table 12 is that most of the identified

approaches use models which are based on UML notations, which is commonly used standard in

numerous varieties of software modeling. UWE (UML-based Web Engineering) and WSDM

(Web Site Deign Method) use UML extensions based on profiling with specific notations and

stereotypes. WSDM is based on user-interest profiling an idea of MDA, it tries to decouple the

functionality of systems defined at PIM level from the platform on which it runs at PSM level, to

preserve the system functionality even if changes have been done in the underlying technology

platform. These methods are complete, consistent and reliable when we consider modeling the

client and server pages in a web based application. W2000 is also an extension and

customization of UML with HDM (Hypermedia Design Model) based concepts of web design.

Web Component Framework (WCF) at design level uses profiles extending UML with the

introduction of web domain concepts. Later, the WCF framework which follows component

based methodology is extended to support the development of web application. WCF does not

have the tools solely used for its support but Eclipse Kepler with UML development and code

generation plugins such as Papyrus and Acceleo Projects can be used. Model driven and Service

Oriented approaches are also based on UML extension to get a domain specific language at PIM

level. These two approaches are often combined to get an approach called SOD-M (Service

Oriented Development Method) for the development of web application interfaces. Where most

of the approaches are extending UML, RUX method is a rich user experience model used for

web applications works on the concept of UiML (User interface Modelling Language). CSCS is

a Configuration, Setting and Current State pattern used for Model Oriented Web Services

(MOWS) supported by Eclipse GMF. WebML has been observed to be the most active approach

used for web based application modeling. WebRatio environment provides full support for

WebML and IFML whereas, WebRatio BPM provides support for large business process

applications. Notation used for this purpose is again UML, in Business Process Model and

37

Notation (BDMN), an approach that allows models describing the business to move towards

models presenting design and analysis of software product.

2.3. Research Gaps

This section discusses the research gaps and the proposed solution. On whole, we have

identified six research works related to model based UI test case generation. Table 13presents an

overall comparative analysis of our proposed approach with the state of art. We have selected six

parameters for comparison; 1) Reference #is used to represent he reference number of the

selected work, 2) Publication Year is used to represent the year of publication of the selected

research, 3) Modeling Language is used to indicate the language used for modeling, 4) Tool

Support available for the proposed approach is represented as either complete, partial or not

available, 5) Testing Aspects indicate that either functional or navigation testing has been

focused.

Table 13: Overall Comparative analysis

Reference # Publication

Year

Modeling

Language

Tool Support Testing Aspects

[40] 2014 UML None Navigation

[51][52] 2015 IFML Partial Functional

[53] 2015 UML None Navigation

[54][55][56] 2017 IFML Complete Navigation

[59] 2017 UML Partial Functional

[60] 2011 BPMN Partial Functional

Our

proposed

approach

2017 IFML Complete UI

Navigation

In Table 13, six research works have been selected as references excluding the extended

work of the research studies. From the literature review we have identified six researches which

have worked exclusively on model based UI test case generation. From which three research

works were based on UML modeling, three on IFML and one on BPM (Business Process

Modeling). We have observed that no research related to model based UI generation from

WebML has been identified. Main reason to which can be that WebML was used for a short

duration and it was not a standard language and soon got transformed into IFML as a standard

38

modeling language for representation of GUI. For example, Vikas S. et al., [40]worked on MDE

along-with data mining techniques on UML web and sequence diagrams in order to obtain a

navigation matrix containing the resulting test cases. Matrix parameters i.e. Source page, target

page and arguments etc. are obtained using data mining SQL methods. These abstract test cases

produced in form of matrix are not executable. Karel Frajtak et al., [51][52] worked on

generation of executable test cases in JavaScript format using MDE transformations and a

template engine. The tests are executed using Jasmine test runner but no verification has been

provided in the research paper. Eman M. Saleh el a., in [53]used MDE for transition based

testing of application GUI models. CTT and ESDM (navigation model) have been used. Model

based transformation have been applied in order to generate the test oracle as transition matrix

containing events and states. Only navigation testing has been covered in this research and

simulation using EDSM model is also provided. An online open source tool “IFMLEdit.org” has

been implemented by Carlo Bernaschina[54]which provides modeling facility in IFML,

generates code in json format using MDE transformations on IFML model, also provides

verification for navigation testing using its simulator. Judy Bowen et al., [59] worked on

interactive systems and focused on test case generation by tight integration of UI and

functionality but mainly the assertions are based on functional testing. UI Model was based on

finite state automaton, which can be developed using state diagrams in UML. After

transformation of abstract tests to concrete tests, executable test oracles are produced. Priya

Gupta at al., [60] also worked on both UI and functional test case generation but used BPMN to

represent the business flows along with UI but main focus of this work is on fully-automated

functional testing.

Table 14 presents the comparative analysis of our proposed work with the researches

which worked on model based UI test case generation. We have selected five parameters for

comparison; 1) Reference #is used to represent he reference number of the selected work, 2)

Automated Test Cases represents that if the research resulted in generation of automated test

cases or test case documentation, 3) Navigation Testing represents if the test case generation

approach has performed navigation testing or has provided state transition or navigation matrix,

4) Automation Level indicates if the navigation testing has been semi or fully automated, 5)

Formalism represents the formal verification technique used, 6) Applicability represents the

39

applicability of research in the domain of web application testing. Yes and No indicate the

presence and absence of the parameter, respectively.

Table 14: Comparative analysis with model-based UI test case generation

Reference

Automated

Test Cases

Navigation

Testing

Automation

level

Formalism Applicability

[28][29] Yes No Semi-automated None Narrow

[54][55][56] No Yes Fully-automated Petri nets Narrow

Our

proposed

approach

Yes Yes Fully-automated Timed

Automata

Broad

Table 14provides a summary of overall studies found on Model based GUI testing along-

with the proposed approach. Karel Frajtak et al., [28][29]used IFML as modeling language for

UI components representation. MDE transformation has been applied in order to generate

abstract test case scenarios which are again transformed into specific test case scenarios using the

WebdriverIO template. Jasmine test runner then executes this JavaScript code. Even if

executable tests are generated on the basis of events, but navigation testing has not been covered.

Hence, mentioned as Semi-automated. Carlo Bernaschina et al., [54]majorly contributed in code

prototype generation for mobile and web applications. It presents an open source online MDD

tool called IFMLEdit.org which generated fast prototypes for mobile and web apps using

transformations on IFML models. Focus of this research is code generation so testing has not

been covered. Although, mapping from IFML to Place Chart Nets (PCN) formalism of Petri

Nets, has been applied for model checking which eventually checks navigation in the model i.e.

fully automated navigation verification. Extended work of Carlo Bernaschina et al., is presented

in [57] and [58].

Although Carlo et al., presented a very good work which illustrated the strength of IFML

based modeling for web application code generation, but we have identified some of the

problems after using IFML.Edit.org. This tool only works on IFML models modeled in its own

environment, models generated by using other tools i.e. Eclipse and WebRatio etc. are not

supported. Whereas, our proposed approach does not depend on any tool. IFML core model

modeled in any tool can be loaded and tested. It provides an option to model IFML models in

Eclipse environment and also welcomes the model already generated in any other environment

with .core extension. IFML.Edit.org does not support domain modeling and data type.

40

Metamodel concepts are not incorporated fully in their approach which caused mismatch of

concepts.

Our proposed approach uses IFML based modeling and provides us complete UI testing

including the navigation testing and the automated test cases after successful transformations on

IFML model. Meanwhile, it also provides simulation, reachability and deadlock freedom

verification for the navigation model using Timed Automata in UPPAAL tool.

41

Chapter 3

Proposed Methodology

42

CHAPTER 3: PROPOSED METHODOLOGY

This chapter contains details of the proposed methodology. Section 3.1 discusses the

targeted IFML constructs and Section 3.2 provides detailed proposed solution.

3.1. Targeted IFML Constructs

IFML metamodel provides the semantics and structure of constructs used in IFML. UML

profile in IFML metamodel defines the syntax used to express IFML models in UML. IFML

metamodel comes with two packages. Core package contains main IFML concepts whereas the

Extensions package contains some enhanced characteristics that make the application more

interactive. The basic purpose of introducing extensions is to make application more expressive,

increase the readability and to make the elements less abstract. This package majorly contained

web, desktop, component and multi-screen extensions. We have only targeted the core concepts

and some of main extensions concepts. A brief description of some of the core concepts of IFML

is given as follows

 <<ViewContainer>> IFML model consist of one or more view containers which basically

are used to express web pages and windows in case of web applications and desktop

applications respectively. View containers can be nested. Child containers can be displayed

at the same time as of parent containers or they can be made mutually exclusive by using

XOR nesting. In case of mutual exclusion, one container can be set as default, when user

accessed parent container, default child container is also displayed. For Example, Figure 7

shows a simple IFML model from movies case study. It explains simple scenario that if the

user wants to add a new movie, form will be displayed, and user will add the asked input and

add action will be performed resulting in saving the new data in MovieList. And if the user

wants to see detailed information of movies data, the selected movie in MovieList will be

displayed in detail. In given model, AddMovieForm and Movie are ViewContainers and

MovieList represents a ViewContainer that has been set to default.

 <<ViewComponent>> In IFML model, a ViewContainer can contain one or many

ViewComponents. ViewComponents contain the type of data to be displayed i.e. Form, List

or Details which are included in extensions package of IFML metamodel. Input and output

parameters can be associated with ViewComponents. Figure 7 shows the notation used for

43

ViewComponents with specific extension type i.e. MovieList is used to represent movie data

in the form of list. AddMovieForm represents ViewComponent used to take input data in a

form whereas Movie is a ViewComponent type to display detailed information about selected

object i.e. SelectedMovie.

 <<Event>> Events are used to express interaction between ViewContainers and

ViewComponents. It causes a transition between source and target web page. There are many

types of Events i.e. OnSubmit, OnLoad and viewElementEvent etc. In Figure 7, Add a

movie attached to the MovieList ViewComponent is a representation of viewElementEvent

and Select a movie is a representation of OnSubmit event.

 <<InteractionFlow>> An InteractionFlow represents the effect of an event used to connect

ViewComponents and ViewContainers. It characterizes the change of state of interface.

Interaction flows in IFML are of two types i.e. data flow and navigation flow. Data flow

represents the transfer of data between two IFML elements represented by dotted line and are

not caused by user interaction whereas, navigation flow expresses the navigation between

components and containers represented by solid lines as shown in Figure 7.

 <<Action>> Actions are triggered as an effect of events and are executed before change of

state of the interface. Actions can contain usual functions i.e. UPDATE, ADD or DELETE.

Figure 7: Example of IFML Model

44

3.2. Proposed Solution

We have proposed an approach based on Model Driven Software Engineering and formal

verification. MDSE involves transformations for obtaining the code or target model from source

model. Two types of transformations can be performed in MDSE. First type of transformation is

Model to Model (M2M) transformation in which a target model is obtained from a source model.

Second type of transformation is called Model to Text (M2T) transformation in which code or

text is generated from target model. The source models can be of any design type i.e. UML

model and IFML core model. Our approach used UML model for domain modeling and an

IFML model for UI design of the web application. The approach takes both these models as

input and applies M2T transformations in order to obtain desired outcomes. The transformations

result in automated navigation verification testing and multiple testing artifacts.

In order to obtain the complete test case document for the web application testing, a M2T

transformation is applied on UML and IFML model. Each view components of type Form, List

and Details is mapped to single test case in the generated test case document. Simple fields and

selection fields from Forms in the IFML model are used to obtain input elements along-with the

required input type for the test cases. Events on the forms are considered as the final submission

step in the test cases. Data binding from the lists in IFML model are exploited in order to obtain

the domain element name and Visualization attributes from lists give the attributes of the domain

element to be displayed in list on a particular web page. This domain element is usually a class

or entity in the UML domain model of the web application. Similarly, test cases for Details view

component of the IFML model are retrieved.

Other testing artifacts generated from M2T transformation on IFML model are State

Transition matrix and an information matrix containing navigational details. The detailed

navigational matrix has been referred as Source&Target Information matrix. The State

Transition matrix is a matrix containing states as its first row and first column. Each column is

checked against all the elements of first row. If a transition exists between two states, then

particular cell of the matrix is marked ‘T’(true) otherwise ‘F’ (false). An example of such matrix

for a simple switch operation is shown in Figure 8. Two states ‘ON’ and ‘OFF’ are represented

in first row and first column of the matrix and after checking the transition between two states, T

and F values are filled. In order to obtain this matrix a transformation is applied on IFML model

45

and view containers from the model are selected to represent states in the matrix. Checking the

transition in IFML model is not simple, Navigation flow is checked for multiple possible

combinations i.e. from one container to the other, from component of one container to other

container, from component of one container to the component of other container, from event of

one container to other container, from event of one container to the component of other

container, from event on component of one container to other container, from event on

component of one container to the component of other container etc. and T/F values are assigned

to respective cells of the matrix. This matrix is used as a black box testing technique and is

useful for quick state transition testing of the web application where states are taken as web

pages and navigation between them is checked. It helps testers to expose the invalid or

unintended states.

Figure 8: Example of State Transition Matrix
Another testing artifact called Source&Target information matrix is also generated from

the transformation applied on IFML model. This matrix contains the details about the source and

target pages in case of a valid navigation. The matrix covers detailed attributes of source page

and also contains the navigational data or parameters to be passed from source page to the target

page. An example of such matrix for the movies IFML model (Figure 7) is shown in Figure 9.

The transformation includes the view containers along-with their landmark, default and XOR

attributes and the parameter binding groups in order to retrieve the required cells of our matrix.

This matrix helps developers to include primary parameters or arguments to be passed in order to

carry out successful navigation. Each row of Source&Target Information Matrix contains test

case for each navigation in the IFML model eventually helping the testers too.

46

Figure 9: Example of Source&Target Information Matrix
Most important contribution made by the proposed approach is automated navigation

verification. IFML model is transformed into a navigation model which contains the view

containers as states and the transitions between them are also represented using the checks used

to obtain the State Transition matrix. The resulting model can be opened in UPPAAL model

checker tool in order to verify the reachability and deadlock properties; hence, providing fully

automated navigation verification.

47

Chapter 4

Implementation

48

CHAPTER 4: IMPLEMENTATION

This chapter presents the implementation details for Model Based UI Test Case

Generator (MBUITC) (atool we have developed for automated model-based UI testing and

navigation verification for IFML models). The tool we have implemented has three main

features. Firstly, it provides facility to model IFML model in Eclipse IFML editor. Secondly, it

provides a transformation engine that transforms the IFML model and provides testing artifacts.

Finally, it provides the facility of model verification using UPPAAL. Main interface of MBUITC

is shown in Figure 10. MDE has become the basis of our work. Section 4.1presents the

transformation rules used to develop MBUITC and Section 4.2discusses the architecture of

transformation engine.

Figure 10: Main Interface of Model based UI Test Case Generator

4.1. Transformation Rules

In this section, we have described the transformation rules in detail,which we have defined in

order to transform the IFML models to testing artifacts.

49

4.1.1. IFML to Test Case Transformation Rules

Mapping rules used for transformation of IFML model components into their respective

test cases are provided in this section. ViewComponent have three extension types i.e. Form, List

and Details. The transformation rules defined in Table 15 are used to transform the UI

components from IFML model to test cases. We have not included other components of IFML

model for transformation because they did not capture the UI details.

Table 15: Transformation rules for IFML to Test cases
IFML Model Test Case

Document

Description

IFML Form

Test case

containing

checks for

form

ViewComponent--Form--nameTest case name

ViewComponent--Form--SimpleFieldinput value

ViewComponent--Form--SelectionFieldinput value

ViewComponent--Form--onSubmitfinal step (submit).

IFML List

Test case

containing

checks for list

ViewComponent—List--nameTest case name

ViewComponent--List--DataBindingDomain model

element

ViewComponent--List--VisualizationAttributeDomain

attributes to be displayed.

IFML Details

Test case

containing

checks for

details

ViewComponent—Details--nameTest case name

ViewComponent—Details--DataBindingDomain

model element

ViewComponent--Details--

VisualizationAttributeDomain attributes to be

displayed.

IFML ViewComponent of type Form is mapped to its respective test case in the test case

document. Name of Form is mapped to test case name. SimpleField and SelectionField of each

form is mapped to check for the type of input value and selected value, respectively. onSubmit

event on the form is mapped to final submit step in test case. IFML ViewComponent of type List

is mapped to its respective test case in the test case document. Name of List is mapped to test

case name. DataBinding in the List is mapped to domain model element and

VisualizationAttribute is mapped to the domain element attributes to be displayed in the list.

50

IFML ViewComponent of typeDetails is mapped to its respective test case in the test case

document. Name of Details is mapped to test case name. DataBinding in the Details is mapped

to domain model element and VisualizationAttribute is mapped to the domain element attributes

to be displayed in detail.

4.1.2. IFML to State Transition Matrix Transformation Rules

In this section, we have explained the mapping rules used for our transformation of IFML

core model to the State Transition Matrix. The transformation rules defined in Table 16are used

to transform the concepts from IFML model to the State Transition Matrix.

Table 16: Transformation rules for IFML to State Transition Matrix
IFML Model State Transition

Matrix

Description

ViewContainer

State ViewComponent--nameFirst row and column

NavigationFlow

Transition NavigationFlow”True” and “F” values.

ViewComponent in IFML core model is transformed into state in the State Transition

matrix. Each viewContainer name is mapped to elements of first row and column of the State

Transition matrix. NavigationFlow in IFML model is mapped to transition in the State Transition

matrix where it is represented as “T” (true) and if the transition does not exist, it is represented as

“F” (false).

4.1.3. IFML to Source&Target Information Matrix Transformation Rules

In this section, we have explained the mapping rules used for our transformation of IFML

core model to the Source&Target Information Matrix containing the detailed test cases for each

navigation in the IFML model. The transformation rules defined in Table 17 are used to

transform the concepts from IFML model to the Source&Target Information Matrix.

Table 17: Transformation rules for IFML to Source&Target Information Matrix
IFML Model State

Transition

Description

51

Matrix

ViewContainer

Source/Target

name

ViewContainerSource and target states.

ViewContainer--(isLandmark=true)true value

ViewContainer--(isDefault=true)true value

ViewContainer--(isXOR=true)true value

NavigationFlow

Navigation NavigationFlowNavigation

ParameterBindingGroup

Parameter
ParameterBindingGroup--

ParameterBindingparameter value

ViewContainer in IFML core model is mapped with source and target in the

Source&Target Information Matrix. One container can act as source in one case and target in

another. “isLandmark”, “isDefault” and “isXOR” attributes of each ViewContainer as “true” and

“false” values are mapped to their respective cells in the matrix against the name of

ViewContainer. NavigationFlow in IFML model is mapped to navigation. Only in case of

navigation, rows are added in the Source&Target Information Matrix. Each ParameterBinding

inside the ParameterBindingGroup is mapped to name of parameter passed during navigation in

the Source&Target Information Matrix where it can contain a value or can be null if there is no

ParameterBinding.

4.1.4. IFML to UPPAAL Transformation Rules

Mapping rules used for our transformation of IFML core model to timed automata are

provided in this section. These rules result in an equivalent navigation model for verification

purposes. We have used Eclipse IFML plugin for modelling of IFML core model and UPPAAL

has been used for verification of resulting navigation model. UPPAAL provides simulation and

verification of the models in which timed automata has been used. UPPAAL model is comprised

of states and transitions[60][61]. location in UPPAAL model represents a state and intiallocation

is used to represent initial state of the model. Edge in UPPAAL model is used to represent

transition. For our approach, we do not need to include the time and guard constraint in

UPPAAL model because only a navigation model is required for verification of reachability and

52

deadlock in our web navigation, so only states and transitions have been used. ViewContainer in

IFML model typically is used to represent page in a web application and screen in a mobile

application. Transformation rules for view containers and navigation flow are provided in Table

18 along-with the graphical notations of source and target transformation.

Table 18: Transformation rules for IFML to UPPAAL model
IFML Model UPPAAL

Model

Description

Home

ViewContainer

Initial

location

ViewContainer--Home(isDefault=true)initiallocation

NavigationFlow

Edge

NavigationFlowEdge

ViewCont

ainer

Locat

ion

ViewContainerlocation

ViewContainer mentioned as Home and containing value “true” for isDefault attribute,

representing home page in the IFML model is mapped to the initiallocation in the UPPAAL

model. Initiallocation is used to represent the initial state of the system. NavigationFlow in the

IFML model is mapped to Edge in the UPPAAL model. In order to create an Edge between two

locations in UPPAAL model, at least one Navigation Flow should exist either between two view

containers, view components of two view containers, any view component of one view container

and other view container or vice versa. Both of these notations represent transition from one state

to another. ViewContainer representing a page in the IFML model is transformed into location in

the UPPAAL model where it represents state. ViewComponent in a ViewContainer is not

transformed and containing ViewContainer is taken as a state.

We have not included other components of IFML model for transformation and hence

their rules are not included because they did not lie under our area of focus. We have described

53

the details of applicability of these rules in CHAPTER 5:VALIDATION. Two case studies have

been used to verify the transformation rules mentioned above.

4.2. Transformation Engine Architecture

Architecture of our transformation engine is described in detail in Figure 11. We have

implemented a transformation engine based on model based test case idea. This transformation

engine fully automates the testing phase of SDLC by providing automated test cases from IFML

models. Tool used for transformation of UML and IFML models to test cases and navigation

model is Eclipse Acceleo. Our transformation engine is composed of three main components

which are Main Interface, Acceleo Transformation and Java Services. Details of functionality

performed by each component is explained below.

Figure 11: Transformation Engine Architecture
Main Interface: Main Interface component consists of three classes i.e. MainScreen, Launcher

and WinMain. These three classes are used in development of graphical user interface of our

tool. MainScreen is a class whichprovides execution and WinMain and Launcher contain its

actual functionality. When the main screen of tool is opened (Figure 10), it provides us with

three options i.e. IFML Editor, Transformation Engine and UPPAAL model verification. IFML

Editor and UPPAAL can be opened directly whereas the interface of our transformation engine is

shown in Figure 12. The transformation engine takes UML and IFML models as input using a

54

Browse button. It also asks for path of Destination folder. Checkboxes are provided so that the

user only generated the output files he needs. By clicking the Generate button, the engine

generates the selected files. Along-with test case document (.txt), State Transition matrix and

Source&Target Information matrix are generated in xls format. Another important artifact

generated by transformation is Navigation model with xta extension which can then be opened in

UPPAAL [61]. To represent if the transformation has been performed successfully or if some

error has occurred while transformation, a Status bar is shown. Reset button, empties all the

fields i.e. input models path, destination folder path, status and all checkboxes except for the test

case document checkbox which is by default checked. Close button closes the interface from the

screen.

Figure 12: IFML to Test Cases Transformation Engine
Acceleo Transformation: Main interface takes UML and IFML models as input and passes them

to Accelo Transformation. Foremost files included in Accelo Transformation are Main.java

containing java code for transformation and main.mtl containing acceleo transformation code.

These two files work together to produce Test Case document (.txt) which contains all the UI

testing related concepts captured from IFML model. The Test Case document covers test cases

55

related to three main elements of IFML i.e. List, Form and Details explained earlier in Section

3.1. Main.java and main.mtl also produces an xta file containing code in UPPAAL syntax

describing the navigation model for the input IFML. This xta file has proper syntax and

semantics, local declarations are written at first, then states and transitions are written. This file

then can be opened in UPPAAL model verification tool as template in order to check the

deadlock and reachability of our model using queries in a specific syntax followed by UPPAAL.

Java Services: Java Services are developed using three main classes, JavaServices, ExcelWrite

and Model. Model class only used to get the input IFML model and instantiates the IFML model.

JavaServices is the main class we have used to store every detail needed for our transition

matrices as Accelo does not provide facility of storing things in easy way inside the mtl file. The

functions defined in JavaServices class can then be used inside main.mtl file using queries.

ExcelWrite is only used to shape our matrices in the form of excel sheets. One of the matrices

contain only navigation related data and the other one contains complete information on all the

paths in our IFML model.

After successful transformation, the transformation engine provides us state transition

matrix containing true and false values for transitions from one state to another. Secondly, it

provides another Source&Target Information Matrix which includes details of name of source

and target pages. Attributes like isLandmark, isDefault, isXOR of source page are given.

Parameters or arguments passed between source and target pages are also provided in this

matrix. Each row of Source&Target Information Matrix contains test case for each navigation in

the IFML model. Thirdly, it gives a test case document containing detailed UI test cases and this

document itself is a main testing artifact. Lastly, a navigation model is obtained which is used for

deadlock and reachability verification.

56

57

Chapter 5

Validation

58

CHAPTER 5:VALIDATION

In this chapter, the applicability and validity of our proposed approach is presented with

the help of two detailed case studies. Details and validation of Online Auctions case study is

given in Section 5.1and Library case study is presented in Section 5.2.

5.1. Online Auctions Case Study

Online Auctions case study has been explained and validated using four sections. Section

5.1.1covers the requirement specification for a website named as Online Auctions. Section

5.1.2presents the UML domain modeling and IFML modeling of this case study in Eclipse editor

using its IFML plugin. Lastly, the transformation and verification of the case study modeled in

IFML has been provided in Section 5.1.3and Section 5.1.4 respectively.

5.1.1. Requirement Specification

Following are the details of the web pages and their specifications included in the Online

Auctions case study. Generic specifications are given for example a small separate portion inside

a web page is known as division or div but the user may refer to it as section. So, modeling needs

to be done intelligently.

MASTER PAGE: The Online Auctions website should have a landmark page called Master page

which should be accessible from all other pages that exist. Master page should contain a section

showing details of the User, it shows user name, first name, last name and score of the current

logged in user. This section should contain a mouse over button which should lead the master

page to Logged in user menu page. Master page should have another section showing the cart

details i.e. number of items and logged in users. The user name data will be taken from user

details section.

Master page should also contain a Search form with an input field that takes String input for

search key and a drop-down list showing all the available category names. This form should

contain show suggestions and hide suggestions buttons which will redirect the page to itself. It

should also have a Search button which should lead the page to Search results page. Another

button named “Advanced” should be attached to this form which should lead the page to

Advanced results page. Master page should have sign in, register and shop by category buttons.

59

Sign in button should lead the page to Sign in page. Register button should lead the page to

Register page and shop by category button should lead the page to Category tree page.

LOGGED IN USER MENU: Logged in user menu page should contain a section with a list of

user details. Sign out, account settings and my collections buttons should be attached to this list.

Logged in user menu page should be accessible from master page.

SIGN IN: Sign in page should contain a section with a Sign in form containing sign in

credentials. Submit and register buttons should be attached to this form. Submit button leads the

page to Home page and register button leads towards the Register page. Sign in page should be

accessible from master page.

REGISTER: Register page should contain a section with a registration form containing all the

necessary information with a Submit button which redirects towards Home page. Register page

should be accessible from master page.

CATEGORY TREE: Category tree page should contain a section showing list of shop by

category with their names with a Select button. Category tree page should have two buttons; all

categories and trending collections. Category tree page should be accessible from master page.

CATEGORY: Category page should contain a section showing details of Category with their

names. Category page should also contain a section showing list of features with their names,

images and links with a button attached to it which takes feature link/address as parameter and

leads the page towards Show feature page. Category page should contain a section showing list

of listing groups with their names and images with a button attached to it which takes feature

selected group as parameter and leads the page towards Groups page.

Category page should contain a section showing the details of events according to names

and has a button attached to the list which takes selected events as parameter and leads the page

towards Event page. Category page should contain a section showing the details of Brands

according to names and has a button attached to the list which takes selected brand as parameter

and leads the page towards Brand page.

Category page should contain a section which contains list of peer categories according

to names and has a button attached to the list which takes selected category as parameter and

redirects the page to itself sending the parameter to Category details section. Category page

should contain a section which contains list of sub categories according to names and has a

button attached to the list which takes selected category as parameter and redirects the page to

60

itself sending the parameter to category details section. Category page should be accessible from

Home and Category overview pages.

EVENT: Event page should contain a section having event details. Event page should be

accessible from Category page and selected event should be passed as parameter.

BRAND: Brand page should contain a section having brand details. Brand page should be

accessible from Category page and selected brand should be passed as parameter.

SHOW FEATURE: Show feature page should contain a section having feature details. Show

feature page should be accessible from Category page and Home page.

GROUPS: Group page should contain a section having group details. Group page should be

accessible from Category page and selected group should be passed as parameter.

CATEGORY OVERVIEW: Category overview page should contain a section showing a list of

sub categories and a button which takes selected category as parameter and leads the page

towards Category page. Category overview page should also contain a section showing a list of

other sub categories and a button which takes selected category as parameter and leads the page

towards Category page. Category overview page should also contain a section showing details of

Category with image and sends top category as parameter to both other section s. Category

overview page should be accessible from Home page.

COLLECTIONS: Collections page should contain a section showing a list of Collections

containing name, payoff, main image, description blob, username and photo information. This

list also contains two buttons attached to see collection and seller. Collections page should be

accessible from All trending and Home pages.

HOME: Home page should contain a section showing list of main categories according to their

titles and has show, on select and mouse over buttons attached to it. Show button leads the page

towards top category page. On select button takes selected category as parameter and passes it to

Category details in Category page. Mouse over button leads the page towards Category overview

page. Home page should also contain a section showing list of features with images and has a

button attached to it which leads the page towards Show feature page. Home page should also

contain sections for top collection, promoted collections and trending collections.

Home page should have four buttons; collections, my feeds, all trending collections and

category overview. collections button leads the page towards collection overview page. My feeds

button leads the page to sign in form section inside Sign in page. All trending collections button

61

leads the page towards All trending page and category overview button leads the page towards

Category overview page by passing the top category parameter to category details section inside

Category overview page. Home page should be accessible from Sign in and Register pages.

SEARCH_RESULTS: Search results page should contain a section showing list of formats with

their values and count. A button should be attached to this list which takes the selected format as

parameter and sends it to the listings section. Search results page should contain a section having

a list of conditions and has a button attached to it which takes the parameter selected condition to

the listings section. Search results page should contain a section showing price list with their

maximum and minimum price. A button should be attached to this list which takes the selected

maximum and minimum price as parameter and sends it to the listings section.

Search results page should also contain a section having a list of locations and has a

button attached to it which takes the parameter selected location to the listings section. Search

results page should contain a section having a list of delivery types and has a button attached to it

which takes the selected delivery type as parameter to the listings section. Search results page

should contain a section having a list of options and has a button attached to it which takes

selected option as parameter to the listings section.

Search results page should contain a section showing categories list and has a button

attached to this list which takes the selected category as parameter and sends it to the listings

section. Search results page should contain a section showing listings list with their title, price,

image, number of photos, number bids and a see listings button should be attached to this list

which takes the selected category as parameter and sends it to the listings page. Search results

page should contain a section having a list of related queries according to the queries text and has

a button attached to this list which eventually saves the results and collaterals and redirects the

page to itself.

Search results page should contain a section showing count details having the count

value. Search results page should contain a section showing the list of popular related listings

with their names, image, prices and formats. A button should be attached to this list which takes

the selected current listing as parameter and sends it to the Listings page. Search results page

should be accessible from Master page and itself.

LISTING: Listing page should contain a section showing main image details with their images

and has two buttons attached to it; Mouse over and full screen. Mouse over button leads the page

62

towards a zoom frame in the main frame Listing and Vendor inside same page which shows the

zoomed image. Full screen button leads the page towards Images page. Details page should also

contain a section showing list of images and has a Mouse over button attached to it which takes

the selected image id as parameter and sends it to the main image section. Listing and Vendor in

Details page includes two frames; Zoom and Listings&Vendor. Listings&Vendor frame should

contain a section showing details of last bid showing its value.

Listings&Vendor frame should also contain a section showing details of Listings

showing name, format, description, condition, number of bids, number of sold items, number of

watches, shipping, location, delivery options, guarantee and payment information. Listings

should have tow buttons; add to watch list and add to collection attached to it. Listings&Vendor

frame should contain a section showing details of sale price. Listings&Vendor frame should also

contain a section showing Vendor details with user name, photo and score. Visit store, more

items and follow buttons should also be attached to this section. Details page should be

accessible from Search results page.

5.1.2. Modeling

Our tool provides the option to open IFML Editor. By clicking on it, Eclipse environment

is opened and IFML model can be designed by creating a new project for IFML modeling. Now

in eclipse, for designing an IFML model, UML domain model is mandatory which is UML class

diagram containing the domain concepts as classes, their attributes and interactions and can

easily be created in Eclipse Papyrus editor. Domain model of the Online Auctions case study is

shown in Figure 13.

Domain model of Online Auctions is designed as a UML class diagram in Papyrus editor

using Eclipse. Three main classes used in Online Auctions web application are users, bids and

listings. Data about user like user name, photo, score and type are kept in User class s attributes.

Bids have a value and timestamp. Listings are the main objects. Listings contain attributes like

id, title, itemCondition (i.e. new or second hand), description (detailed text), start and end dates

(validity period), returnsAccepted, location, shipping (delivery options), currency, guarantee

(terms on guarantee offered). Relationships between all the classes have also been shown.

63

Figure 13: Online Auctions Domain Model
IFML model can be modeled by selecting the domain model as pre-requisite. This helps

in the use of domain feature concepts in IFML model. Specifications defined in Section

5.1.1lead us directly to the modeling of IFML model. Master page concept in web is used to

avoid duplication. So, it has to be inferred that any page which is master page will be accessible

from all other pages. Due to complexity, parts of IFML diagram of Online Auctions case study is

shown in severalsubsequent figures.

64

Figure 14: Online Auctions IFML Model (Diagram 1 of 5)

Figure 15: Online Auctions IFML Model (Diagram 2 of 5)

65

Figure 16: Online Auctions IFML Model (Diagram 3 of 5)

Figure 17: Online Auctions IFML Model (Diagram 4 of 5)

66

Figure 18: Online Auctions IFML Model (Diagram 5 of 5)

5.1.3. Navigation Model and Test Case Generation

In Figure 19, UML and IFML model of online auctions web application are given as

input. The transformation does not involve UML model, just IFML model is needed. Eclipse

doesn’t allow IFML modeling unless UML domain model is provided for it. UML model with

.uml extension is selected and model with .core extension is selected as IFML model. We have

provided a folder on desktop as destination. On clicking the Generate button, the input IFML

model is transformed into four outputs.

1. First output obtained is a simple State Transition Matrix in excel format (.xls). This matrix

contains all the view containers of Online Auctions model as states and provides true and

false values against their navigation with other states. (A small part of matrix is shown in

Figure 20)

2. Another matrix generated as output is a detailed Source&Target Information matrix for

Online Auctions model in excel format (.xls). Each row of this matrix represents a detailed

navigation test case. (A small part of matrix is shown in Figure 21)

67

3. Test case document (.txt) with detailed UI test cases related to Forms, Lists and Details is

generated. (One test case from the Test case document is shown in Figure 22)

4. A text file (.xta) is generated as last output. This file contains UPPAAL code of navigation

model. This file acts as a template and can be imported in UPPAAL tool for verification of

deadlock and reachability.

Status displays that applied transformation was successfully performed.

Figure 19: Transformation for Online Auctions Model

68

Figure 20: State Transition Matrix

Figure 21: Source&Target Information Matrix

69

Figure 22: Test Case for Search Form

5.1.4. Automated Navigation Verification

UPPAAL model checker is the tools selected for verification purpose. When we load the

xta template file in UPPAAL (Figure 23), it first checks the syntax. Validation in UPPAAL is

done using its simulator which makes sure that the selected model is correct and complete.

Verification is checked after simulation. Two properties we have considered in verification are:

 Reachability: Reachability is checking if the state mentioned in query is reachable from the

initial state through any possible sequence (at least one). Reachability makes sure that the

web pages are accessible. Query used for checking reachability in UPPAAL model is:

E<> Process.Master_page

If the property is satisfied, it means that the “Master_page” is reachable from initial page

“Home” using at least one path.

 Deadlock: Deadlock checking is basically checking if there is a single point in the model

which blocks the transition. In simple words, deadlock occurs when there is at least one state

that has no next state to go to.

A[] not deadlock

If the property is satisfied, it means that the model is deadlock free. Figure 24shows that our

output model satisfies both these properties. Hence, our model is reachable and deadlock

free.

70

Figure 23: UPPAAL Model for Online Auctions

Figure 24: Deadlock and Reachability verification

71

5.2. Library Case Study

A chunk of Library case study has been used as second case study for validation. Section

5.2.1covers the requirement specification for a part of library web application. Section 5.2.2

presents the UML domain modeling and IFML modeling of this case study in Eclipse editor

using the IFML plugin. Lastly, the transformation and verification of the case study modeled in

IFML has been provided in Section 5.2.3 and Section 5.2.4 respectively.

5.2.1. Requirement Specification

We have taken a piece of Library system. Following are the details of the main web

pages and their specifications included in this case study. Five important pages have been

selected in the case study which specify a simple behavior of adding a book.

HOME: Home page contains a section in which recently published books are shown in a list

along-with their titles and publication years. On selecting any book, it leads us to Book Details

page.

BOOK DETAILS: Book Details page has a section which shows details of the selected book.

The details about title, author name, publication year and description about the book are shown.

BOOK LIST: Book List shows a list of books along-with their title, author name, year and

description. On selecting a book, the page is navigated to Book Details page. Another button

named “Add book” should also be attached which leads towards Add Book page and selected

book is passed as parameter.

ADD BOOK: This page contains a simple form for adding a book. The form takes title, author

year and description as input and on clicking Submit button, it saves the data to the Book List.

ERROR PAGE: If any error occurs during saving the data in Book List, then Error page is

displayed.

5.2.2. Modeling

As we have taken a simple feature of the case study, only one class is needed in domain

model. Book class contains important data about book i.e. title, author, year and description.

These attributes are later used in the IFML model. Book class shown in Figure 25 has been

designed using Papyrus editor.

72

Figure 25: Library Domain Model
To model the IFML diagram for library system, its UML model is taken as pre-requisite

and IFML model is designed in Eclipse IFML editor taking in account the specifications given in

Section 5.2.1. The pages mentioned in specifications are modeled as view containers. Lists,

details and forms are modeled as extensions of view components. Figure 26 shows the IFML

model for the part selected from library case study.

Figure 26: Library IFML Model

73

5.2.3. Navigation Model and Test Case Generation

Library UML (.uml) and IFML (.core) models are given as input (Figure 27). In

destination folder, we have specified Desktop. When we click on “Generate” button, the input

IFML model is transformed into State Transition Matrix (Figure 28), Source&Target

Information Matrix (Figure 29), a test case document (Figure 30) and a text file (.xta)

containing UPPAAL code. On successful transformation “Status” displays that the outputs have

been generated as shown in Figure 27.

Figure 27: Transformation for Library Model

Figure 28: Library State Transition Matrix

74

Figure 29: Library Source&Target Information Matrix

Figure 30: Test Case for Book Details

5.2.4. Automated Navigation Verification

When the xta template file is loaded in UPPAAL, it shows us the navigation model for

library system (Figure 31). Reachability and deadlock properties are verified for library system

using UPPAAL property checking syntax.

E<> Process.BookList

A[] not deadlock

Figure 32 shows that our output model satisfies both these properties. Hence, our library model

is reachable and deadlock free.

75

Figure 31: UPPAAL Model for Library System

Figure 32: Deadlock and Reachability verification for Library System

76

Chapter 6

Discussion and Limitation

77

CHAPTER 6: DISCUSSION AND LIMITATION

This section presents a detailed discussion on this research work (Section 6.1) and

limitations to the research are also presented in Section 6.2.

6.1. Discussion

From this research, it has been analyzed that there is a very limited amount of research

work done on IFML in the area of model based UI testing and the available research work did

not capture complete UI related testing. Most of the work has been done only for navigation

testing defocusing the testing needed for UI elements structure and the content to be displayed.

Our proposed approach is a first step toward automated UI testing using IFML including the

navigation testing as well as the content testing.

The approach generates test cases using model based testing technique on UI modeling of

the web application using IFML. The tool we have built, produces all the real testing artifacts

that a developer will need in order to develop the right product meeting the user specified UI

requirements and a tester will encounter while dealing with testing of actual web application.

Motivation behind this work is to provide early test cases so that quality can be build inside the

application which eventually proved out to be a cost and time efficient approach. The generated

test cases provide complete and detailed UI testing for example, how will the information flow

take place and what information is passed while navigation which is detailed in the Source and

Target matrix produced by the tool. The state transition matrix focuses entirely on the control

flow and linking of pages. Furthermore, the test cases related to the complete structure displayed

in web pages of the web application are provided in the test case document. Meanwhile,

navigation model is provided in language which is supported by UPPAAL which can simulate

the model and verify its reachability and deadlock freedom. Test cases generated are abstract and

not directly executable.

IFML has been inspired from WebML but is not fully evolved yet. Only two tools

“WebRatio” and “Eclipse IFML plugin” are available in market which provide IFML modeling.

Even these tools are not mature enough and there were still some problems encountered during

IFML modeling so we can say that IFML has not been fully covered in our research at the

present time. One of the many issues is the issue of nested containers. Both the tools did not

78

allow nesting for more than 3 levels. Even though the events are allowed on view containers, but

both these tools did not allow them. Navigation flows are not allowed inside nesting hierarchy by

the tools. There are few other limitations to IFML modeling found using these tools but as the

language is evolving and a lot of work is being done on its tool support, we are hoping that these

issues will be resolved soon.

Two case studies of different sizes have been selected in order to validate our proposed

approach. First case study we selected was a very detailed case study on Online Auctions web

application which included more than 25 view containers and plentiful view components and

navigation flows. Whereas, the Library case study was a small but main part of Library system

which included 5 view containers, 4 view components and various navigation flows. The

purpose of taking into account these two case studies was to validate the testing mechanism for

web applications of different sizes.

6.2. Limitations

As we have taken the first step to automation testing for IFML, there are a few limitations

to our work. IFML has a lot of potential but due to limited amount of time and resources, we

have currently only selected limited core metamodel elements i.e. ViewContaier,

ViewComponent, NavigationFlow etc. and a few important extensions metamodel elements i.e.

Form, List and Details etc. There are many IFML constructs that we have not yet considered for

example Menu, Window, Action, Module and ActivationExpression etc. on which we intend to

work in future.

79

Chapter 7

Conclusion and Future Work

80

CHAPTER 7: CONCLUSION AND FUTURE WORK

The proposed approach gives a big overhead to UI automation testing using IFML

models to capture the content, structure and control flow of the web application front-end.

Generation of UI test cases in the early stages of development cycle will allow developers and

testers to develop the right product by embedding the quality in it from the beginning of

development and by making the testing process less complex. The proposed approach makes use

of MDE for UI Testing through Acceleo transformations based on different rules resulting in test

cases which cover the navigational aspects along-with the structural aspects of web application

user interface. The approach has been validated and verified using two case studies varying in

sizes from simple to compound. The results of our proposed approach proved the potential and

viability of IFML for UI test case generation.

Future work includes improving and extending this approach in order to support other

important IFML constructs like Module, Action, Menu, Context and Expression etc. The

approach can be expanded by integration of UML behavior diagrams with IFML in order to

provide fully functional test cases for business processes along-with the UI testing.

81

APPENDIX A

USER MANUAL

1. Download Instructions
1.1.Model Based UI Test Case Generator (MBUITC)

Extract MBUITC Generator.zipfile. You will find “MBUITC Generator” Folder.

In the “MBUITC Generator” folder, you will find two files shown in Figure 1 below.

Figure 1: Files in “MBUITC Generator” folder

Click “run.bat” file to execute MBUITC Generator.

1.2.Sample Case Studies

Extract Sample-CaseStudies.zip file. You will find “Online-Auctions” and “Library” folders as

shown in Figure 2.

Each folder contains UML and IFML models for the respective case study developed in Eclipse

using Papyrus and IFML plugin.

Figure 2: Sample Case Study folder

You can use the existing UML and IFML models to generate complete UI test cases or you can

update the IFML model to include modeling of more web pages.

2. Prerequisites for MBUITC Generator

It is mandatory to install Java Runtime Environment (JRE) version 8 or above in order to

execute MBUITC Generator through run.bat file.

We have tested MBUITC Generator on Windows 8, Windows 8.1 and Windows 10. However,

we are confident that MBUITC Generator can also be executed on previous versions of

Windows.

3. Execution of MBUITC Generator

Click “run.bat” file in order to execute the MBUITC Generator. (See section for complete

details).

82

The main interface of MBUITC Generator is shown in Figure 3.

Figure 3: Main interface of MBUITC Generator

The MBUITC contains three main functionalities.

 IFML Editor: The IFML Editor allows you to model your own web application using

Interaction Flow Modeling Language (IFML).

 Transformation: Transformation engine contains the main functionality of generating UI

test cases from UML and IFML models. Details of the execution of transformation engine

are given in next section.

 Verification: Automated navigation verification of the navigation model generated by the

transformation engine is done using UPPAAL model checker.

3.1.IFML Editor

By clicking on “IFML Editor” Eclipse environment is opened and in order to allow IFML

modeling “Eclipse IFML plugin” must be installed.

3.2.Transformation

By clicking on “Transformation” in the main interface, interface for “IFML to UI Test Cases

Transformation Engine” is opened (shown in Figure 4).

83

Figure 4: Interface for IFML to Test Cases Transformation Engine

Input UML Model: Browse button is used to select the UML model for the case study.

Input IFML Model: Brose button is used to select IFML model for which one desires to e

perform UI Testing.

Destination Folder: Browse button is used to specify the destination folder for the generated

files.

Generate Files: User can select the required files from the given four options by checking the

checkbox.

Reset: This button clears all the current selections to defile new configurations.

Generate: This button transforms the selected UML and IFML models into the required testing

artifacts. It is mandatory to fill all the above field in order to click generate button.

Status: This displays the status of current transformations i.e. List of generated files or Files

Generated with Errors (in case of any problem in transformation).

Open Folder: This button is used to open the folder where output folder containing the

generated files is placed.

Close: This button closes the interface.

The UML and IFML models can be selected using browse button against each selection. Figure

5 shows the selection of Library model using browse button.

84

Figure 5: Selection of Library UML model using browse button

The Library UML and IFML models can be transformed into testing artifacts through Generate

Button as shown in Figure 6.

Figure 6: Generating UI Testing Artifacts for Library Model

85

The screenshot for the output folder containing generated files is shown inFigure 7.

Figure 7: Output folder containing generated files

3.3.Verification

One of the generated files “Template.xta” is used for navigation verification of the given IFML

model. From the main interface of MBUITC Generator, click on “Verification”, It will open

UPPAAL model checker tool. The xta file is imported in the tool through File>Import Template.

Screenshot for selection of Template.xta from the output folder for Library case study in

UPPAAL is given in Figure 8.

Figure 8: Importing Template.xta for Library case study

The imported template is opened as Timed Automata in UPPAAL where we can verify the

navigation properties i.e. reachability and deadlock freedom for our model. Figure 9 shows the

template opened in UPPAAL model checker.

86

Figure 9: Template.xta forLibrary case study opened in UPPAAL

87

REFERENCES

[1] Raluca, M., Cristina, C. S., Helene, L. G., Paul, P., 2015,“A Research Overview of Tool-

Supported Model-based Testing of Requirements-based Designs”, Journal of Advances in

Computers

[2] Hamza, S.,Hélène, L. G., 2014,“Ralf Bogusch; Mathieu Acher; Benoit Baudry: Deriving

Usage Model Variants for Model-Based Testing: An Industrial Case Study”, 19th

International Conference on Engineering of Complex Computer Systems (ICECCS)

[3] Justyna, Z., Ina, S., Pieter, J. M., 2011,“Model-Based Testing for Embedded Systems”, CRC

Press

[4] Jacky, J., 2011,“PyModel: model-based testing in python”, Proceedings of the Python for

Scientific Computing Conference

[5] Dimitris, D., Konstantinos, B., Florentin, I., 2012,“JSXM: a tool for automated test

generation”, Software Engineering and Formal Methods, pp 352–366

[6] Tommi, T., Mika, K., Julian, H., 2011,“Experiences of system-level model-based GUI

testing of an Android application”, IEEE Fourth International Conference on Software

Testing, Verification and Validation (ICST 2011), pp 377–386

[7] Paulo, S., 2016, “Practical Programming, Validation and Verification with Finite-State

Machines: a Library and its Industrial Application”, IEEE/ACM 38th IEEE International

Conference on Software Engineering Companion

[8] Yu, Z., Jidong, G., Pengcheng, Z., and Weigang, W., 2016,“Model based verification of

dynamically evolvable service oriented systems”, Science China Information Sciences

[9] Monalisa, S., P.V.R. Murthy, Sylvia, J., Andreas, U., 2010,“Model-based testing in industry:

a case study with two MBT tools”, Proceedings of the 5th Workshop on Automation of

Software Test, pp 87–90.

[10] Dehla, S., Stephan, W., 2010,“ParTeG-integrating model-based testing and model

transformations”, Software Engineering, pp 23–24

[11] Roberto, S. S. F.,Christof, J. B., 2012, “An integrated model-driven approach for

mechatronic systems testing”, IEEE Fifth International Conference on Software Testing,

Verification and Validation (ICST 2012), pp 447–456

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hamza%20Samih.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Hélène%20Le%20Guen.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Ralf%20Bogusch.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Mathieu%20Acher.QT.&newsearch=true
https://link.springer.com/journal/11432

88

[12] Zhenying, J.,Xiao, W.,Zeqian, D., 2017,“Ming Mu: Optimal Test Case Generation for

Simulink Models Using Slicing, Software Quality”, IEEE International Conference on

Reliability and Security Companion (QRS-C)

[13] Barbara, K., 2004,“Procedures for Performing Systematic Reviews”, Keele University

TR/SE-0401/NICTA, Technical Report 0400011T

[14] Guo, L., Hua, Q.Y., Wang, P., Yu, K., Wang, K., Xu, J., 2015,“A Model-Based Responsive

Web User Interface Development Method”, IEEE Proc. ICSESS

[15] Piero, F., Sara, C., Alessandro, B., Giovanni, T.C.,2010, “Engineering Rich Internet

Applications with a Model-Driven Approach”, ACM Transactions on the Web (TWEB),

Vol. 4(2)

[16] Marco, B., Andrea, M., Eric, U., 2014,“Extending the Interaction Flow Modeling Language

(IFML) for Model Driven Development of Mobile Applications Front End”, Springer Proc.

MobiWIS. Lecture Notes in Computer Science,pp 176-191

[17] Eric, U., Marco, B., 2016,“Model Driven Development Approaches for Mobile

Applications: A Survey”, Springer Proc. MobiWIS. Lecture Notes in Computer Science, pp

93-107

[18] Thiago, G., Rosana, T.V.B., 2016,“Model-Oriented Web Services. IEEE Symposium on

SOSE

[19] Adrian, F., Silvia, A., Emilio, I., Maristella, M., 2012,“Further analysis on the validation of

a usability inspection method for model-driven web development”, ACM-IEEE

International Symposium on ESEM

[20] Jose, L.H.A., 2015,“Model-Driven Web Applications. IEEE Proc. SAI

[21] Mardiana, Keijiro, A., Yoichi, O., 2011,“MDA and SOA Approach to Development of Web

Application Interface”, IEEE Proc. TENCON

[22] Mohammed, A.O.M., Mohd, F.B.H., Jafreezal, B.J., Lukman, A.R., 2013,“Enhanced

Approach for Developing Web Applications Using Model Driven Architecture”,IEEE Proc.

ICRIIS

[23] Mohammed, A.O.M., Mohd, F.B.H., Jafreezal, B.J., Lukman, A.R., 2014,“WSDMDA: An

Enhanced Model Driven Web Engineering Methodology”, IEEE Proc. ICCSCE

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zhenying%20Jiang.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Xiao%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Zeqian%20Dong.QT.&newsearch=true

89

[24] Sarra, R., Mohammad, E., and Samir, M., 2015,“A Model Driven Approach to generate

Graphical User Interfaces for Rich Internet Applications Using Interaction Flow Modeling

Language”, IEEE Proc. ISDA, Marrakech, Morocco

[25] Pedro, V., Vicente, P., 2011,“A Survey of Requirements Specification in Model-Driven

Development of Web Applications”, ACM Transactions on the Web (TWEB), Vol. 5(2)

[26] Fabio, P., Christian, S., 2011, “Model-Based Customizable Adaptation of Web Applications

for Vocal Browsing”, ACM Proc. Of SIGDOC

[27] Marco, B., Andrea, M., Mirco, F., Henry, M., 2016,“A Model-Based Method for Seamless

Web and Mobile Experience”, ACM Proc. of the 1st International Workshop on Mobile

Development

[28] Carlo, B., Marco, B., Thanas, K., Andrea, M., Eric, U., 2017,“Integrating Modeling

Languages and Web Logs for Enhanced User Behavior Analytics”, ACM Proc. WWW '17

Companion

[29] Roberto, A., Aldo, B., Stefano, B., Marco, B., 2015,“Model-driven development of cross-

platform mobile applications with WebRatio and IFML”, Proc. MOBILESoft '15

[30] Jose, M.R., Julian, G., Gustavo, R., Esteban, R.L., Francisco, M., Martin, G.,

2014,“Mockup-Driven Development: Providing agile support for Model-Driven Web

Engineering”, Elsevier Journal on Information and Software Technology, Vol. 56(6)

[31] Fransisco, J.D.M., Maria, J.E., Manuel, M., M, Ross., Geoff, S., 2012,“Quality evaluation

for Model-Driven Web Engineering methodologies”, Journal of Information and Software

Technology, Vol. 54(11)

[32] Marco, B., Piero, F., 2014,“Large-scale Model-Driven Engineering of web user interaction:

The WebML and WebRatio experience”, Journal of Science of Computer Programming,

Vol. 89(B)

[33] Jose, L.H.A., Pablo, C.D.B., 2013,“A model-driven approach to develop high performance

web applications”,Journal of Systems and Software. Vol. 86(12)

[34] Fabio, P.B., Raquel, M.P., Toacy, C.O., 2016,“Automated design of multi-layered web

information systems”,Journal of Systems and Software, Vol. 117

[35] Jose, I.P., Natalia, J., Francisco, V., Óscar, P., 2015,“A framework to identify primitives

that represent usability within Model-Driven Development methods”, Journal on

Information and Software Technology, Vol. 58

90

[36] Muhammad, U., Muhammad, Z.I., Muhammad, U.K., 2017,“A product-line model-driven

engineering approach for generating feature-based mobile applications”,Elsevier Journal of

Systems and Software, Vol. 123

[37] Humberto, L.A., Elias, A.N.S., Renata, P.M.F., 2015,“A model-driven development for

creating accessible web menus”, Proc. Computer Science DSAI

[38] Dhiraj, G., Madhu, N., 2015,“Review: Analysis of Aspect Orientation and Model Driven

Engineering for Code Generation”, Proc. Computer Science ICACTA

[39] Yassine, R., Youssef, H., Abdelaziz, M., 2016,“Model Transformation with ATL into MDA

from CIM to PIM Structured through MVC”, Proc. Computer Science SEIT

[40] Vikas, S., Rajesh, B., 2014,“Model based Test Cases Generation for Web Applications”,

Springer IJCA, Vol. 92(3)

[41] Zef, H., Lennart, C.L.K., Danny, M.G., Eelco, V.,2010, Code generation by model

transformation: a case study in transformation modularity”, Springer Journal of Software &

System Modeling, Vol. 9(3)

[42] Vanessa, N., Veronica, C., Fernando, L., Roberto, F., Claudio, G., 2016,“Model Driven

Architecture Software and Interaction Flow Modelling Language for Tourism Data

Acquisition in Colombia. Springer WEA”,Communications in Computer and Information

Science, Vol. 657. pp. 368-379

[43] Zuriel, M., Cristina, M., Jose, A.A., Anibal, Z.C.,Carolina, T.B., Sanjay, M., 2016, “A

Baseline Domain Specific Language Proposal for Model-Driven Web Engineering Code

Generation”, Springer Proc. ICCSA. Lecture Notes in Computer Science,pp. 50-59

[44] Jose, A.A., Anibal, Z.C., Carolina, T.B., Sanjay, M., Roberto, B., Abraham, O., 2015,“An

Analysis of Techniques and Tools for Requirements Elicitation in Model-Driven Web

Engineering Methods”,Springer Proc. ICCSA. Lecture Notes in Computer Science, pp.

518-527

[45] Roberto, A., Aldo, B., Marco, B., Stefano, B., 2015,“Model-Driven Development Based on

OMG’s IFML with WebRatio Web and Mobile Platform”, Springer Proc. ICWE.Lecture

Notes in Computer Science, pp. 605-608

[46] Carissa, B.J., Sundaram, N., Wayne, S., Ganesh, A., Shruti, N., 2011,“Modeling web-based

information seeking by users who are blind”, Taylor & Francis Journal on Disability and

Rehabilitation: Assistive Technology, Vol. 6(6)

91

[47] Luis, I., Nicolas, P., Javier, C., Jose, A.A., Rosa, A., 2010,“A Model Transformation

Approach for Automatic Composition of COTS User Interfaces in Web-Based Information

Systems”, Taylor & Francis Journal on Information System Management, Vol. 27(3)

[48] Mohamed, L., Abdelmounaïm, A., 2016,“Modeling and generating native code for cross-

platform mobile applications using DSL”, Taylor & Francis Journal on Intelligent

Automation & Soft Computing, Vol. 1

[49] Gustavo, R.,2013, “Web Modeling Languages Strike Back”, IEEE Internet Computing, Vol.

17(4)

[50] Muhammad, R., Muhammad, W.A., Aamir, M.K., 2015,“Towards the Tools Selection in

Model Based System Engineering for Embedded Systems - A Systematic Literature

Review”, Elsevier Journal of Systems and Software, Vol. 106

[51] Karel, F., Miroslav, B., and Ivan, J., 2015, “Using the Interaction Flow Modelling Language

for Generation of Automated Front–End Tests”, Federated Conference on Computer

Science and Information Systems (ACSIS)

[52] Karel, F., Miroslav, B., and Ivan, J., 2015,“Transformation of IFML schemas to automated

tests”, Proceedings of the 2015 Conference on research in adaptive and convergent systems

(RACS)

[53] Eman, M. S., and Omar, A. S. S., 2015, “A Model-Driven Engineering Transition-Based

GUI Testing Technique”, International Conference on Computational Science and

Computational Intelligence

[54] Carlo, B., Sara, C., and Piero, F., 2017,“IFMLEdit.org: Model Driven Rapid Prototyping of

Mobile Apps”, IEEE/ACM 4th International Conference on Mobile Software Engineering

and Systems (MOBILESoft)

[55] Carlo, B., Sara, C., and Piero, F., 2017, “IFMLEdit.org: a Web Tool for Model Based Rapid

Prototyping of Web and Mobile Applications”, MISE, Tool Demo

[56] Carlo, B., Sara, C., and Piero, F., 2017, “Online Model Editing, Simulation and Code

Generation for Web and Mobile Applications”, IEEE/ACM 9th International Workshop on

Modelling in Software Engineering (MiSE)

[57] Carlo, B.,2017, “ALMOsT.js: An Agile Model to Model and Model to Text Transformation

Framework”, International Conference on Web Engineering (ICWE), pp.79-97

92

[58] Rocio, N. T., and Carlo, B., 2017,“ALMOsT-Trace: A Web Based Embeddable Tracing

Tool for ALMOsT.js”, International Conference on Web Engineering (ICWE), pp. 554-558

[59] Judy, B., and Steve, R., 2017,“Generating Obligations, Assertions and Tests from UI

Models”, Proceedings of the ACM on Human-Computer Interaction-EICS, Vol. 1(1)

[60] Priya, G., and Prafullakumar, S., 2011,“Model based Approach to Assist Test Case

Creation, Execution, and Maintenance for Test Automation”, Proceedings of the First

International Workshop on End-to-End Test Script Engineering ETSE’11, pp. 1-7

[61] Robert, C., Armstrong, Ratish, J., Punnoose, Matthew, H., Wong, Jackson, R., Mayo, 2014,

“Survey of Existing Tools for Formal Verification”, Technical Report SAND2014-20533

551829, 2014

[62] Muhammad, A. B., Jamil, A., and Fahim, A., 2014, “Modeling of Real-Time Embedded

Systems using SysML and its Verification using UPPAAL and DiVinE”, 5th IEEE

International Conference on Software Engineering and Service Science (ICSESS)

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917618
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6917618

