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Abstract 

Convolutional Neural Network (CNN) is an important machine learning algorithm. Due to its 

broad applications and classification accuracy it has become hot topic in recent times. 

Convolutional Neural Networks are both computationally expensive and have extensive memory 

accesses which has rendered it inefficient on general purpose computers. GPU implementations 

have improved the performance of algorithm but high energy consumption of GPUs doesn’t allow 

its usage in robotics and mobile embedded platforms. This study presents the implementation 

details of mapping Convolutional Neural Networks on field programmable gate arrays (FPGAs). 

Visual Geometric Group (VGG-16) Networks are the most admired CNN architectures in 

community. They have uniform and regular structure which is most suitable to be implemented on 

FPGA. So, a detailed discussion of mapping VGG-16 style networks on FPGA is presented. 

Flower Recognition example of Kaggle was used as case study. Training of a VGG style network 

was carried out on core i9 computer with NVIDIA GTX 1660 GPU. On dataset trained network 

achieved an accuracy of 90%. Trained CNNs are algorithmically simple to model and deploy. 

Xilinx Zynq Zedboard was used for analytical modeling and mapping of CNN. Trained CNN was 

partitioned into two parts hardware part and software part. Hardware part being comprised of 

computationally extensive convolutions and software part being comprised of computationally less 

expensive tasks such as Pooling layer, Fully Connected layer and SoftMax layer. Hardware part 

of CNN was mapped on Zynq-PL and software part was mapped on Zynq-PS. For different types 

of parallelism opportunities that exist in CNN workload, proposed methodology achieved inter 

output parallelism in design of hardware accelerator on Zynq-PL. Hardware design on Zynq-PL 

also took into consideration memory access patterns of convolution operation and optimized them 

to achieve good performance. For a complete network implementation, proposed methodology 

achieved a peak performance of 1.3 GMACCs at 120 MHz frequency and achieved a speed up of 

4 times compared to software implementation on General Purpose Computer. 

Key Words: FPGA, Convolutional Neural Network, VGG-16, Zedboard 

 



 

8 
 

Table of Contents 

Declaration ..................................................................................................................................... iii 

Language Correctness Certificate .................................................................................................. iv 

Copyright Statement ....................................................................................................................... v 

Abstract ........................................................................................................................................... 7 

CHAPTER 1: INTRODUCTION .................................................................................................... i 

1.1 Motivation .......................................................................................................................... 10 

1.2 Our Contribution ................................................................................................................ 11 

CHAPTER 2: CONVOLUTIONAL NEURAL NETWORKS .................................................... 12 

2.1 Convolutional Neural Network ............................................................................................... 12 

2.1.1 Introduction to Neural Networks ......................................................................................... 12 

2.1.2 Convolutional Neural Network ............................................................................................ 14 

2.2 Neural Network Training Frameworks ................................................................................... 17 

2.3 State of art CNN Architectures ............................................................................................... 17 

CHAPTER 3: FIELD PROGRAMABLE GATE ARRAYS ........................................................ 21 

3.1 Introduction to Field-Programmable Gate Arrays .................................................................. 21 

3.2 Introduction to High Level Synthesis ..................................................................................... 22 

3.3 Embedded Convolutional Neural Networks ........................................................................... 23 

3.3.1 Potential Hardware Platforms .............................................................................................. 23 

3.3.2 Existing CNN Implementations ........................................................................................... 24 

CHAPTER 4: CNN IMPLEMENTATION .................................................................................. 28 

4.1 VGG-16 Network.................................................................................................................... 28 

4.2 Training Platforms .................................................................................................................. 30 

4.3 GPU-based Training System................................................................................................... 32 

4.4 Setting up GPU-based Training System ................................................................................. 33 

4.5  Dataset .................................................................................................................................... 34 

4.6  Caffe Overview ...................................................................................................................... 37 

4.7  Data Pre-Processing ............................................................................................................... 37 

4.8  Model Definition .................................................................................................................... 38 

4.9 Solver Definition ................................................................................................................ 38 

4.10 Model Training .................................................................................................................. 38 

4.11 Learning Curve Plot ........................................................................................................... 39 

4.12 Predicting New Data .......................................................................................................... 39 

CHAPTER 5: FPGA ACCELERATOR DESIGN ....................................................................... 41 



 

9 
 

5.1 Xilinx Zynq Zedboard............................................................................................................. 41 

5.2 High Level Synthesis .............................................................................................................. 41 

5.2.1 Coding Style......................................................................................................................... 42 

5.2.2 Compiler Directives ............................................................................................................. 42 

5.3 CNN: Computational Analysis ............................................................................................... 44 

5.4 Software and Hardware Partitioning ....................................................................................... 46 

5.5 Accelerator Design.................................................................................................................. 47 

5.5.2 The Roofline Model ............................................................................................................. 48 

5.5.3 Computation Model ............................................................................................................. 49 

5.6 Experimental Setup: ................................................................................................................ 55 

CHAPTER 6: RESULTS .............................................................................................................. 57 

CHAPTER 7: CONCLUSION ..................................................................................................... 63 

References: .................................................................................................................................... 64 

APPENDIX A ............................................................................................................................... 69 

APPENDIX B ............................................................................................................................... 70 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

10 
 

CHAPTER 1: INTRODUCTION 

1.1 Motivation 

Pattern recognition is quite a difficult thing for computers to accomplish. Tasks such as 

scene labeling, pattern recognition and image classification are very important in computer 

vision and robotics. Advancement in the field of computer vision has introduced new 

methods and techniques which are helpful in understanding objects in images. Previously 

recognizing objects consisted of techniques which required hand engineered features and 

hard coded algorithms. These techniques were found to be passive and not so impressive 

in efficiency. Advanced recognition methods consist of machine learning algorithms. 

These algorithms consist of models which are trained on images of a large dataset and once 

features in images are learnt, they can classify objects in an image. These learning models 

are usually based on high performance computing platforms. 

Convolutional neural networks (CNNs) are one of the most impressive techniques which 

are currently being used in computer vision algorithms. These networks are sub class of 

Artificial Neural Networks (ANNs). Instead of hidden layers, CNNs comprise of 

convolutional layers, subsampling or pooling layers, activations layers which are usually 

sigmoid and fully connected layers (like ANN). The idea of Artificial Neural Network has 

been around for quite some time but only recently with the emergence of high-performance 

computers, it has been possible to train and deploy these CNN models. The progress in the 

last decade has been nothing short of amazing, currently CNNs rival human visual system 

in terms of recognition accuracy, for example FaceNet [1] has recognition accuracy of 

96.7% which even exceeds human ability. 

Ground breaking performance of these CNN models usually comes at the cost of huge 

amount of computation complexity. Operation of image recognition CNN usually requires 

billions and trillions of operations in one second. Add to that the preprocessing and 

postprocessing of images required to build a real time application, computation complexity 

becomes even greater. Graphical Processing Units (GPUs) were recently utilized to a 

greater effect to achieve high computational throughput required for these CNN models. 

Problem with use of these GPUs is that they consume a lot of power. GPU based 

implementation of these models in not possible in robotics system or mobile platforms. 

Robotics and mobile applications thus require embedding these CNN models on small, 

efficient and powerful computing platforms. 

Different computing platforms have been explored recently like field programmable gate 

arrays (FPGAs) and Application Specific Integrated Circuits (ASICs). Each has its own 

pro and cons like ASICs implementation are very efficient solution in terms of power 

consumption but they are not so good for commercial applications due their large 

development cycle, huge NRE cost and non-configurability. FPGA implementation can be 
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fast with low power consumption with a good programmability which is important for 

commercial applications. 

1.2 Our Contribution 

This study presents architecture scheme for highly efficient design space exploration of 

CNN on FPGA Platform. FPGA and its vendors have made frameworks which target the 

accelerating machine learning models. But, those solutions were not commercially 

available. So, we decide to build a proof of concept implementation of CNN on FPGA 

platform from scratch. Recent advances in both FPGA technology and machine learning 

algorithm has aggravated the problems in implementation of CNNs on FPGA. Increase in 

logic resources and external memory bandwidth on FPGA platforms makes the design 

space exploration large. On the other hand, deep learning algorithms keep getting bigger 

and complex each day. So, it is has become more difficult to implement deep learning 

algorithm on FPGA. 

Main focus of this study is to build optimized accelerator for CNN on FPGA platform 

keeping in mind the architecture of the network and memory access optimization. Second 

part is key to achieving good performance and throughput. Many of the previous 

implementations have failed to address this aspect. Extensive experimentation showed that 

accessing memory to read weights and neurons is as important as speeding up the process 

itself. Both of these problems have dependency on each other. So, a careful realization of 

each part is needed to make an accelerator work. Previously most CNN implementations 

on FPGA have been of two type Systolic Architecture and Hardware Implementation. Most 

complete network implementations have been carried out using systolic architecture. Most 

frequently used network implementation when speeding up the process of convolution only 

is Hardware Implementation. This study presents a scheme for mapping CNN on FPGA 

which is mixture of both these techniques. Some of the key features of our work are listed 

below. 

• Use of Zynq-7 ZC7020 Evaluation Board for implementation 

• Implementation of VGG-16 style network for classification flowers of five different 

categories 

• Analytical Modeling of the network in terms of Zynq implementation 

• Image Acquisition and Preprocessing and subsampling tasks are performed on Zynq 

PS 

• Convolution is performed on Zynq PL 

• Tiled data transfer between PS and PL 

• External memory access optimization by performing loop transformations 

depending upon dependency analysis of different loop iterations 
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CHAPTER 2: CONVOLUTIONAL NEURAL NETWORKS 

This chapter presents a background of the Convolutional Neural Networks (CNNs), their 

origin and different types of CNNs that are considered state of art to solve real life 

problems. Section 2.1 discusses the basis of   Neural Networks and also CNN is explained 

as a special class of Neural Networks. Section 2.2 gives introduction to different platforms 

which are currently being used to train Neural Network Models. Section 2.3 demonstrates 

different network architectures that are currently being used. 

2.1 Convolutional Neural Network 

This section presents the study of evolution of Neural Networks. Besides, General 

overview of mathematical representation of Neural Networks is discussed. Evolution and 

modeling of convolutional neural networks is provided in details. Convolutional Neural 

Network is a special class of Artificial Neural Network (ANNs). ANNs can be used in 

many pattern recognition problems like sound signals and real-life problems, whereas 

CNNs are specially used in pattern recognition. First, the working of Artificial Neural 

Networks is presented including. Secondly discussion on architecture and mathematical 

representation of Neural Network along with different network architectures is presented. 

2.1.1  Introduction to Neural Networks  

Artificial Neural Networks (ANNs) are hugely computational algorithms which have 

biological inspiration in their making. A Human brain usually consists of 86 billion neurons 

which are connected by approximately 1014 synapses where, each neuron takes its inputs at 

the dendrites and generates an output signal along its axon which makes tree  with other 

axons of other such neurons to form inputs to at the dendrites of subsequent neurons as 

shown in Figure.2.      

 

Figure 2.1 Left hand side shows biological neuron and right-hand side shows artificial neuron Image taken from source [2] 
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Figure 2.2 Artificial Neural Network 

 

Synapses usually affect the transfer of knowledge from one to another neuron. This is done 

by affecting a signal along its axon. This scheme further makes branches in outward 

direction and connects to dendrites of other neurons. Billions of simple neurons connect 

with each other to form a complex system which enables humans smell, hear, feel, 

communicate, remember and even fantasize [2], [3]. 

Artificial Neural Network:   

Figure 2.2 shows the building block for  an ANN. Artifical neuron receive input signal Xi 

from other neurons. Xi inputs are multiplied by Wi weights. This mimics the process of 

synaptic interaction of the dendrites. Input signals Xi are multiplied by corresponding 

weights values Wi and then summed together with a baised Wb.  Resultant value is than fed 

to non-linear function (activation) which generates output signal as shown in equation 2.1 

y = f(∑[Wi ∗ Xi] + Wb)                     (2.1) 

The weights Wi are tuning parameters which defines the behavior of neurons depending on 

certain type of output [2][4]. 

A neural network is made by interconnecting millions of such simple artificial neurons 

which are connected in a subsequent graph fashion which forms a feed-forward Neural 

Network. Figure 2.2 shows an example of feed-forward neural network. It has one input 

layer, 3 hidden layers and  one output layer.  
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Network Training: 

Neural Network parameters are not engineered using scientific knowledge. These are 

usually learnt by training these models with inputs and labels. There are two types of 

approaches to train a Neural Network. First one is supervised learning and second one is 

unsupervised learning. Supervised learning is most effective of the two types of learning. 

It consists of inputs with their predefined labels. Optimization of network using supervised 

learning is carried out by passing it through all training examples at once. This process is 

called an epoch. Complete training of Neural Network can take anywhere from one to a 

few hundred epochs depending upon type of data and capacity of network. The training 

starts randomly initialized weights. Input images are subjected to this network and resultant 

output is compared against its labels using a loss function. Loss function gives the measure 

of difference between generated output and corresponding labels. Learning process is 

geared towards minimizing this loss function on the training inputs and labels by changing 

the weights.  

Stochastic Gradient Descent (SGD) is very efficient optimization technique which is used 

for optimizing weights in neural networks. SGD algorithm runs on top of neural network 

training and generates a gradient which relates the influence of each weight on the error. 

Gradient vectors are calculated by backpropagating output error through the network. The 

optimization process takes input images, generates loss on these inputs, calculates the 

gradients, and modify all parameters by a small margin in the direction which is opposite 

in nature. The strength of these updates is provided through learning rate [2][5][6]. 

 

Performance Validation: 

Adjusting the weight parameters in each iteration, network converges towards a solution 

which has minimum loss. Desired outputs are resulted on the training dataset. After each 

epoch, model’s performance is verified with validation dataset. This dataset is not part of 

training dataset. Actual real-world training dataset usually results in good approximation 

of network on unseen data. However, if training dataset is very small or model has bigger 

capacity to learn, the CNN can memorize examples and loses its ability to classify on 

unseen examples. This problem is called overfitting. This problem can be catered through 

increase in training samples or by bringing alterations to the network structure like the 

addition of regularization methods [2]. 

2.1.2 Convolutional Neural Network 

CNNs are special case of ANNs. In ANNs neurons are stacked in 2D arrays or vectors 

whereas, in CNNs neurons are stacked in multiple dimensions. Like Artificial Neural 

Networks, CNNs also take input from previous layer and feed to subsequently next layer 

for further transformations. Like ANNs, each neuron in CNNs also applies a weight to each 

of its input neuron, and adds the weight multiplied input together with a bias. Result of this 

addition is then subjected to an activation function which applies non-linearity to this 

neuron value and limits its output to a reasonable range. 

Convolutional Neural Networks (CNN) use small windows of kernel weights which are 

convolved with a number of input feature maps. In this way neurons are shared across 
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multiple input feature maps. Then the kernel windows are moved over the input feature 

maps in each layer for the convolution. CNNs also have subsampling or pooling operations. 

In pooling layer some outputs are taken in a 2x2 or 3x3 window and either maximum value 

is taken or average of all the values is taken. Kernel size of one make a degenerate case of 

CNNs in Artificial Neural Network [7][8]. 

 

Types of Layers in CNN: 

CNN model architecture usually comprises of different types of layers like convolution 

layer, pooling layer and fully connected layer. Convolutional layer extracts feature of 

feature maps, followed by Nonlinearity layer and Pooling layer. Pooling layer reduce the 

size of feature maps. A typical CNN Layers consist of following layers.  

 

Convolution Layer; 

Convolutional layer performs convolution of kernels on input feature maps to produce 

output feature maps. Equation 2.2 and Equation 2.3 gives the dimension of output feature 

maps depending upon the values of size of kernel window (K), Stride of kernel window 

(S) and Padding around input feature maps(P). Stride reduces the dimension of the image 

as follows Rout = Rin/S. Padding is used for filters whose size is greater than 1x1 as it 

reduces the size of image. To retain the size of image we use the padding of P = K/2. Taking 

into account all these parameters, Equation 2.2 and 2.3 give the size of the output feature 

map 

 

 

Rout = 1 +
Rin + 2 ∗ P − K

S
             (2.2) 

Cout = 1 +
Cin + 2 ∗ P − K

S
             (2.3) 

 

Non-Linearity Layer: 

NL layer applies nonlinear activation function to each neuron of the input feature map 

which results from trainable weight layers. Various types of activation functions that are 

used in Convolutional Neural Network. For example, early on people used sigmoid 

Equation 2.4 and tanh Equation 2.5. But now they are not used. Because they create a 

diminishing gradient problem in back propagation. Rectified nonlinear Unit (ReLU) is at 

the moment most extensively used non-linearity function. It preserves the gradient very 

well in backpropagation. Equation 2.6 shows ReLU layer operation. ReLU layer cuts off 

the negative side of the signal. It only outputs positive signal forward. ReLU layer gives 

the best possible approximations in CNN, that’s why it is used most frequently. 

 

f(x) =
1

1 + exp(−x)
              (2.4) 

f(x) = tanh (x)                         (2.5) 
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f(x) = max(0, x)                      (2.6) 

 

Figure 2.4 gives the comparison of results of sigmoid, tanh and ReLU activation 

functions. 
                  

 
Figure 2.3 comparison of results for different types of activation functions 

 

Pooling Layer: 

Pooling or subsampling layer is layer that is used to down sample the input images to output 

images. Pooling layer reduces the size of image. Pooling layer preserves the most important 

features in the images. Pooling layer provides scale and distortion invariance to input 

feature maps.  Two types of Pooling function are used in Convolutional Neural Networks, 

Max-Pooling and Average-Pooling. In Max-Pooling, maximum value is chosen to be 

output in a certain spatial location. And in Average-Pooling average is taken of all the 

values of that particular spatial location. A window of size 2x2 or 3x3 is applied at a 

particular spatial location. Stride is usually the same or lower than size of the patch. 

Equation 2.2 and 2.3 Apply to get the dimension of Pooled output feature maps.  

 

 

Fully Connected Layer: 

Fully connected layers are Artificial Neural Network Layers. Equation 2.1 gives the details 

of FC Layers. These layers are usually used at the end of CNN to find the class score in an 

image classification problem. Most of the weights in convolutional layers are usually from 

fully connected Layers. Number of weights in a Fully connected Layers is MxN where N 

is number of Neurons in output layer and M is number of neurons in input layer. 

 

 

Local Response Normalization (LRN) Layers: 

This layer brings competition among different adjacent neurons of an output channels 

through normalization of their responses. This is done w.r.t a special neighborhood of N 

channels. AlexNet architecture had first used Local Response Normalization layers[10]. 
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Batch Normalization (BN) Layer: 

This layer is applied after completion of each training batch. BN layer normalizes the 

output of a layer to unit-variance and zero-mean distribution. This uniform distribution to 

next upcoming layer produces high learning rates and accelerate the training. BN Layers 

usually result in improved accuracy of the network.  

 

Dropout Layers: 

Dropout Layer is best technique to overcome the problem of overfitting in Neural 

Networks. Dropout layer randomly drops a certain amount of its layer connections during 

training phase. This technique makes sure that network will not learn precisely. Dropout 

layer produces abstraction in general behavior of network. it also brings redundancy which 

is built into the learnt weights. 

 

SoftMax Layers: 

SoftMax layer is the most widely used classifier layer used in CNNs. A classifier layer 

usually follows a fully-connected layer in a CNN. SoftMax transforms the raw scores Zi  of  

certain class into probabilities Pi as shown in equation 2.7 

 

Pi =
exp(Zi)

∑ exp(Zk)K

                     (2.7) 

 

This equation results in P which is equal to 1. 

2.2 Neural Network Training Frameworks  

Various different platforms have been specifically built implementing Convolutional 

Neural Networks. Some of the examples include MATLAB’s Neural Network Toolbox 

[12], TensorFlow [17], Keras [15], Torch [16] and Caffe [18]. All these frameworks have 

support for GPUs to accelerate the processing of learning. In this study, Caffe platform is 

used to build and train CNN models. 

 

2.3 State of art CNN Architectures  

Once the most difficult task in Computer Vision is to recognize an object in an image. This 

is an easy task to accomplish for humans but computers have to go through extensive 

amount of computations to finalize an object in an image. For example, whether there is 

cat or dog or car or road in an image. There could be many labels for object in an image or 

output could yes or no for example is there a person in front of car or not. As an extension 

of image recognition, scene labeling assigns labels to each and every pixel of an image.  

Topologies of Convolutional Neural Networks 

Huge number of training images and complexity of the problem presents at ImageNet 

challenge is an ideal opportunity for researchers and developers to come up with new 

models and techniques to increase the capabilities of machine vision. Since inception in 

2012 convolutional neural networks have emerged as the most successful algorithms in 
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this competition. Top-5 and Top-1 error rates of these CNN based models have reduced 

very each yearly. Most successful models in last 10 years of ILSRV have been listed below.  

AlexNet: 

This network was made by Alex Khrizhevsky et al. AlexNet won ImageNet competition 

in 2012. Emergence of AlexNet algorithm is considered a major achievement in the field 

of Deep Learning. This network architecture has 5 convolutional layers, it consists of 60.5 

million parameters and requires about 1.3 billion MACC operations in single execution of 

forward pass.  

                             

Figure 2.4 AlexNet Network Architecture. Image taken from source [10] 

 

Network-in-Network 

This CNN Architecture was made in National University of Singapore in 2013. Network 

in Network (NiN) architecture is made of multilayer perceptron consisting of small stacks. 

These perceptions are slid over input feature maps just like convolutional filters. These 

models have also used global average pooling layer instead of fully connected layers in 

classifier. Using global average pooling layer in place of Fully Connected layers reduces 

the number of weight parameters in a network. This network never really participated in 

ILSRV but it has the accuracy of AlexNet architecture.  

             

Figure 2.5 NiN Network Architecture. Image taken from source [40] 
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Visual Geometric Group (VGG) 

VGG architecture is named after the group of researchers at University of Oxford. VGG 

architecture won ImageNet ILSRV in 2014. These networks are very deep usually 18 to 22 

layers. Most popular VGG network has16 layers with trainable parameters. This network 

is usually very regular in structure with convolutions of 3x3 and pooling of 2x2 throughout 

the network. This network has achieved a top-5 error of about 7.3% which is significantly 

better than AlexNet. This network contains 140 million weights and it requires 16 billion 

MACCs. Figure 2.5 shows the architecture details of VGG.  

 

Figure 2.6 VGG-16 Convolutional Neural Network. Input Layer (Yellow), Convolutional Layer (Gray), Pooling Layer (Red), Fully 

Connected Layer (Blue), SoftMax Layer (Green) 

GoogLeNet 

This network was made by researchers at google. This is considered as a major work in the 

domain of Machine Learning. It was published just a few days after VGG-16 Network 

emerged. This network is even deeper than VGG, it consists of 22 layers. GoogLeNet has 

achieved 6.67% error in top-5 category. 

 

Figure 2.7 GoogLeNet Network Architecture. Image taken from source [58] 

ResNet  

This network architecture was made by Microsoft Research group. It won the ILSVRC 

competition in 2015. Previously, architectures which had more than 25 layers with 

trainable weights were considered hard to train. To solve this problem designers introduced 

detours around the batch of two convolutional layers. These two detours were than summed 
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actual and the one which were filtered for representation together at a certain point. ResNet 

achieved an error of 6.7% in top-5 category [53]. 

SqueeezeNet: 

This architecture was developed at UC Berkeley, research paper [44] published in February 

2016. SqueezeNet architecture is different from the other CNN architectures in design goal. 

As it was made to reduce number of trainable parameters in network not to increase 

accuracy. Authors in this work managed to develop a network which had an accuracy of 

AlexNet, but with 50× less parameter. Fire modules introduced in this model resulted in 

parameter reduction. Fire module is a reduce-expand micro architecture which is similar to 

the Inception modules. Fully-Connected, LRN and Batch Normalization layers were 

omitted from architecture. 

 

            
Figure 2.9 SqueezeNet Network Architecture [44] 
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CHAPTER 3: FIELD PROGRAMABLE GATE ARRAYS 

In this chapter we discuss about Field Programmable Gate Arrays. First, we introduce 

FPGA and how they compare with other computing platforms, highlighting key 

characteristics, strengths and weaknesses of this platform. This chapter also gives 

introduction on basics of HLS. It is a new design framework which enables to configure 

FPGAs in higher abstraction level languages such as SystemC/C/C++. And at the end we 

discuss about all previous implementations are CNN on FPGA. 

3.1 Introduction to Field-Programmable Gate Arrays 

FPGAs are semiconductor devices which consist of two-dimensional arrays of 

reprogrammable logic blocks also called logic slices. Logic slices in FPGA are connected 

through programmable interconnects. Interconnects are collection of wire bundles which 

are running horizontally and vertically between logic slices. Each interconnect has a switch 

box. Modern FPGAs usually consist of millions of such Logic Slices. Modern FPGAs also 

has a lot of functional units which makes it possible to implement common arithmetic 

functions fast and efficiently. Configuration bitstream is loaded into device which 

configures logic slices, arithmetic function units and interconnects. FPGAs can be 

programmed many times [22][23]. 

FPGAs Versus CPU Computers: The biggest benefit that an FPGA Platform can provide 

compared to general-purpose computers such as desktop computers, smartphones and 

Graphical Processing Units is the availability of programmable hardware which consists 

of general-purpose logic blocks, look up tables DSP slices etc. Programmable hardware 

resources available in FPGA allow to us to make special architecture to carry out specific 

tasks. This results in high energy efficiency, high throughput and speed. This advantage of 

FPGAs usually comes at the expense of reduced programmability and enhanced 

complexity during period of development. Designers usually need to take into 

consideration the available hardware resources on given platform and the efficient 

implementation of algorithm into FPGA architecture. Some algorithms might not be able 

to map well at all on FPGA considering rigid block structures found on FPGA [22][24].  

FPGAs versus ASICs: ASICs are custom built chips made with semiconductor devices. 

Compared to FPGAs, they do not exhibit any area or timing delays from configuring logic 

and interconnects. Hence, they usually result in most energy efficient systems. But ASICs 

Chips are manufactured through sophisticated fabrication process which can take long 

development cycles and very high NRE costs. Design and development of ASIC systems 

demands a lot of testing and verification before manufacturing and details on each step of 

development. So, they provide a good solution for cost-sensitive and high-volume 

applications. FPGAs with their reprogrammable are more suitable for making new 

application in short time [22]. 
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3.2 Introduction to High Level Synthesis  

Xilinx Vivado High level synthesis (HLS) tool converts a code written in C/C++ into 

register transfer level (RTL) implementation which can be synthesized into an FPGA. 

Historically, FPGAs have been traditionally programmed with CHDL or Verilog 

Languages. Designs are written mostly at RTL. At RTL level the designer specifies 

algorithm to carry it out in parallel. So, vector processing is key element to achieving high 

design throughput. RTL design is a process of describing combinational logics, basic 

arithmetic operations and registers. These RTL designs are managed by the falling and 

rising edges of a clock signal. These design specifications are very close to the logic gates 

and wires like in RTL which are available in the provided FPGA or ASIC technology. 

Generated hardware from RTL Synthesis can also be controlled. Breaking down an 

algorithm into combinational logic, arithmetic operations and registers on RTL can a be 

tedious and error-prone and time-consuming work. A lot of decisions during design process 

are made before writing any code. Changes made at later stages can be difficult and costly 

[22]. 

The promise of high-level synthesis (HLS) is welcome development as HLS has the ability 

to produce very good register transfer level (RTL) implementations from high-level 

descriptions like C, C++ or SystemC. So, we can say that HLS automatically transforms 

manual process of writing huge RTL. It reduces the sources of a lot of design errors and 

also speeds up a very long and iterative part of the development cycle. 

 

Increased Level of Abstraction with HLS: Instead of coding FPGA RTLs in Verilog and 

VHDL, High-Level Synthesis (HLS) provides another easy to adopt HLS. It helps us to 

write RTL codes in a higher abstraction level language such as C, C++ or SystemC. In 

doing so, minor details of design implementation can be taken away and accomplished by 

the Vivado HLS compiler, which then changes the software written in C, C++ or SystemC 

into RTL specification. 

High Level Synthesis (HLS): 

Xilinx’s VHLS is major development. Vivado HLS enables Engineers to can use structs, 

floats, loops, arrays, arithmetic operations and functional calls. HLS compiler than 

automatically converts these into memories, computational cores, counters and handshake 

protocols. This process also results in associated state machines and schedules. The 

compilation of program is influenced through compiler directives or compiler PRAGMS, 

meta instructions that only an HLS compiler can comprehend. By default, operations are 

scheduled to be performed as early as possible. With these compiler pragmas, the engineer 

can further influence the designs at any level like memories, loops and pipelines [22][23]. 

Promises and Difficulties: The increased level of abstraction in High-Level Synthesis 

enables us to achieve Fast development rounds with optimizations and productivity which 

is much higher. Though, this comes at the cost of lesser control on the end product. Keeping 
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in mind latest trends in market especially with regards to design complexities which keep 

on increasing and time-to-market keep on decreasing. This turns out to be a promising 

approach to design space exploration. Even after being so impressive in increasing 

productivity of FPGA based designs people working in R&D still prefer Verilog or VHDL. 

It is extremely difficult job to convert sequential programs into parallel executing entities 

with same number of optimizations and performance. Even though different firms have 

invested billions of dollars and many years of research into High Level Synthesis [22], 

[23], [24]. Performance and efficiency of program written in HLS highly depend upon style 

of coding and finest of details which have to be done in Verilog and VHDL. There are still 

some flaws in High Level Synthesis and it can only be discovered at compile time.  So, the 

decision our decision to use High Level Synthesis is associated with non-negligible risk 

[25]. 

3.3 Embedded Convolutional Neural Networks 

This section provides a discuss on implementation of CNNs on various platforms like 

CPUs, GPUs and ASICs leading up to the implementation on FPGA. It is common practice 

among community to train model on high performance GPUs based systems and then 

deploy trained model on different embedded systems. The following sections describes 

important implementation of CNN algorithm on different embedded platforms. 

3.3.1 Potential Hardware Platforms 

Embedded designs usually comprise of very specific design goals such as power, energy, speed 

reliability and battery requirements. These design goals can make deploying deep learning models 

on these embedded systems a very different field of research. As there are a lot of different types 

of embedded systems which can be deployed to carry out the designs. So, of them are listed below 

with details of some sort. 

Central Processing Units (CPUs): CPUs are general purpose computers which can be 

found in a lot of devices these days. Most of them consist of personal computers and 

smartphones. These CPU computers are hugely flexible in nature and can carry out wide 

variety of workloads. There are a lot of different processors available today for embedded 

systems design and implementation. All of them have different tradeoffs regarding speed 

and power requirements. But downside to these CPUs is that they are sequentially 

computing systems and don’t allow parallelism. 

Digital Signal Processors (DSPs): DSPs are highly specialized micro-processors. These 

processors are optimized for computing floating-point signals very fast and efficiently. 

DSPs have VLIW instructions set. It helps to increase parallelism in code. Modern DSPs 

processors can contain multiple cores which run in GHz with peak DSP performance up to 

160 GFLOP/s at less than 15W. but these processors are not suitable for implementation 

of CNNs. 

Graphics Processing Units (GPUs) 

GPUs are multiple-core computers. They were originally made to perform highly parallel 

algorithms in Graphics based applications. Recently, GPUs have been used for general-
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purpose computing tasks as well. A high-end GPU can contain more thousands of floating-

point processing cores which can run at up to 1 GHz of frequency, with a bandwidth of 330 

GB/s. They can have a peak DSP performance of up to 6600 GFLOP/s. They can consume 

up to 250W of power. GPUs are most suitable because of nature of workload presented by 

CNNs and are fully supported by most deep learning frameworks. They also become the 

major platform for research in the area of CNNs. 

Field-Programmable Gate Arrays (FGPAs): 

Already introduced in section 2.2. FPGAs can contain millions of logics cells, and 

thousands of DSP units. Run at frequency of 300MHz and can generate a peak floating-

point performance of 1000 GFLOP/s at a few tens of watts [26], [27], [28]. But FPGA work 

best on algorithms which have regular computation patterns. And thus, parallelism can be 

exploited using the programmable logic blocks. Algorithms with huge data-dependencies 

are simply not suitable for implementation on FPGA. 

 

Application-Specific Integrated Circuits (ASICs) 

In terms of energy efficiency and performance gains ASICs provide usually the best 

solutions. But compared to FPGA they are even more less suitable for irregular 

computation patterns. That is why ASICs chips are typically  made only to accelerate a 

certain aspect of CNNs. 
 

3.3.2 Existing CNN Implementations  

 

Accelerating Datacenter Workloads using FPGAs: 

Microsoft and Baidu have built FPGA-based accelerators for their search engines workload 

in datacenters. Microsoft’s Catapult platform [42] has already doubled the speed of Bing 

ranking algorithm. Recently, it was deployed to implement a record breaking AlexNet 

accelerator which achieved a throughput of x2 times compared to modern GPU based 

system at 1/10 of the power consumption. Baidu made similar plan to use FPGA and they 

deployed Altera based system. 

 

ASIC Implementations: DaDianNao (2014) is an accelerating system consisting of 64 

ASIC chips. These ASIC chips have large on-chip memories to reduce off-chip memory 

traffic resulting in optimize energy efficiency. Based on their simulation results, paper 

claims off up to 450 times better performance and 150 times lesser energy budget with 

respect to a GPU implementation [46]. 
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Figure 3.1 Top-Level Overview of the FPGA-based CNN Accelerator developed by Microsoft [42] 

 

FPGA based CNN accelerator have been a hot topic in last decade. Different people have 

used different approaches to implement CNN on FPGA. In all of these works training of 

convolutional neural network was performed offline and trained model was deployed on 

FPGA. Convolutional layer is computationally expensive layer in CNN, while Pooling 

layer, Fully Connected layers and SoftMax layers are less expensive. So, in most of these 

works’ convolution was performed on FPGA while other tasks are performed with Host 

PC. 

Authors in [33] implemented a facial detection system using low-end DSP-oriented Field 

Programmable Gate Array (FPGA). Limited capacity of FPGA didn’t allow them complete 

design space exploration. Network was implemented using systolic architecture with a 7x7 

convolution window doing the filtering job and Host PC doing other tasks in CNN. This 

work achieved a kernel level parallelism in execution of Convolutions, and achieved a peak 

performance of 3.4 GMACC/Second for Convolutions implemented in FPGA overall 

achieved a frame rate of 6 for scale and distortion invariance network. 

Work [34] is the extension of work [33]. This work explored further parallelism in 

convolution. Implemented network to achieve inter output parallelism, where one input 

feature maps make multiple output feature maps. They used 4 convolution windows of size 

5x5. Prototype of the CNN accelerator was implemented on Xilinx Virtex5 LX330T FPGA 

with four DDR2(total of 1GB) external memory banks. The Accelerator prototype could 

process at the rate of 3.4 GMACCs for CNN forward propagation, a speed that is 31x faster 

than base software implementation on a 2.2 GHz AMD Opteron processor. 
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Authors in [35] made four categories of workloads in CNN, and found that most 

computationally expensive part of algorithm can be formulated as matrix-vector or vector-

vector multiplication. Operations of CNN were divided into various steps, matrix-vector 

or vector-vector operations usually result in large amounts of intermediate data, in second 

step this large intermediate data was further reduced by a secondary layer of operations 

such as finding max/min, array ranking and aggregation. Their accelerator, which they 

called MAPLE, consists of hundreds of such processing units laid out in a 2D grid, with 

two key features. First, Accelerator used on-chip memory blocks to store large intermediate 

data perform to perform secondary reduction operations. So, this scheme decreased in off-

chip memory traffic and consequently increased performance. Secondly, Accelerator 

organized off-chip memory into different banks and program its processing units read off-

chip data independently. These two features combined together allowed accelerator to 

improve its performance with large data size. This work further explored its design space 

and illustrated how application kernels can be mapped to the hardware automatically. 

Implemented a 512-PE FPGA prototype running at 125 MHz of Accelerator which was 

1.5-10x faster than a 2.5 GHz quad-core Xeon processor. 

Work [36] is the extension of work [33][34][35]. This work proposed a CNN hardware 

architecture which could dynamically configure its hardware in runtime to match different 

types of parallelisms that exist in CNN workload. In this work a CNN compiler was used 

which could automatically translate a high-level abstraction of CNN specification into a 

parallel low-level microprogram. This architecture was then mapped into FPGA. It was 

scheduled. The Host processor executed the operations mapped on hardware. Compared 

the performance of proposed architecture to a 2.3 GHz quad-core, dual socket Intel Xeon 

C870 CPU @1.35 GHz and also with a 200 MHz FPGA implementation. Accelerator 

running at120 MHz dynamically configurable architecture was recorded to be 4x to 8x 

faster. This was the reportedly first CNN hardware architecture which could achieved real-

time video processing on a variety of object detection and pattern recognition tasks. 

Authors in [37] discussed the external memory patterns and proposed an accelerator design 

which could give optimum performance for given CNN workload. This paper explained 

issues which were mostly related to limited amount of DDR memory bandwidth provided 

in FPGA Platforms. Further this work introduced highly flexible memory hierarchy which 

could minimize the effects of the memory bottleneck in complex memory access patterns 

of CNN workloads. Efficiency of the on-chip memories was maximized by scheduler that 

used tiling to optimize for data locality in convolutional layers. Accelerator design also 

ensured to keep on-chip memory size small, which in turn could reduce area and energy 

usage. Proposed architecture was evaluated by a High-Level Synthesis implementation on 

a Virtex 6 FPGA board. This accelerator achieved a performance that was 11x faster than 

previous implementation. 

These implementations build FPGA-based Accelerator based on systolic architectures and 

run this accelerator with host PC through software. Systolic architectures are good solution 

for algorithms which have performance as bottleneck. CNNs have complex memory 

patterns which makes memory access a bottleneck as well. So, for implementing CNN 

systolic architectures don’t guarantee high throughput for complete operation of CNN. Any 
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performance gain achieved on FPGA is reduced on host PC when reading or writing feature 

maps. 

Work [38] and [39] is complete hardware implementation of DCNN. They have mapped 

complete convolution on FPGA. Beside previous work only focusses on filtering and 

convolution this work also takes into account memory access patterns and optimize them 

to get good result. Authors in [38] discussed a critical problem that the computation 

throughput of CNNs did not match the external memory bandwidth provided by current 

FPGA platform. So, previous approaches to design space exploration could not achieve 

high enough performance because of under-utilization of either logic resource or eternal 

memory bandwidth. To overcome this issue, an analytical design scheme was discussed 

using the roofline model. For any solution of a CNN design space exploration, 

quantitatively analyze computing throughput and required external memory bandwidth. 

This is done using different kind of optimization techniques, such as loop tiling and loop 

transformation based on dependency analysis. Then, with the help of roofline model 

identify the solution which has best performance and lowest FPGA resource requirement. 

Authors mapped a CNN accelerator which was only for convolutional layers. Design space 

exploration was carried out on a VC707 FPGA board. They compared the result to previous 

approaches. This mapping scheme could achieve a peak performance of 61.62 GFLOPS at 

100MHz working frequency, which latterly outperformed all previous approaches 

significantly. 

 

[39] Proposed an FPGA-based accelerator architecture which could leverage all sources of 

parallelism in CNNs. They developed analytical model to check the feasibility and 

performance estimation. This analytical model took into account various design and 

platform parameters. They also proposed a design space exploration scheme for obtaining 

the implementation which resulted in highest performance on any platform. Their 

simulation results with state-of-the-art CNN demonstrated that proposed accelerator could 

run 1.9x faster than state of the art CNN accelerator on the same FPGA device [38]. 
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CHAPTER 4: CNN IMPLEMENTATION 

This chapter presents the detailed discussion on already existing CNN Topologies, 

discussing meanwhile training platforms as well as optimization which we build into our 

CNN architecture. First, the CNN architectures were completely studied from prior work. 

Secondly, details discussion is presented on choosing a particular network depending upon 

the platform that we have at our disposal.  

4.1 VGG-16 Network  

Different network architectures were discussed in chapter.2. State of art network architectures 

include SqueezeNet, GoogLeNet, Visual Geometric Group, Network-in-Network, ResNet, 

Inceptions and AlexNet. Figure 4.1 present an analysis of all these networks. On left is top-1 

accuracy and on right is top-1 accuracy of all these networks with respect to number of operations 

(GOPs) in each of these networks. Graph on Right shows the compute intensive nature of CNN 

algorithms. 

 

 
Figure 4.1 Analysis of Convolutional Neural Network Architectures for Practical Applications. Image taken 

from source [59] 

 

Table 4.1 shows the properties of these networks. From Table 4.1 we can see that 

Convolutional Networks require huge amount of memory and perform millions of 

computations. There have been various implementations of these networks most notably 

on general purpose computer. Compared to all the networks, VGG- 16 style networks are 

most admired and used architectures in community. These networks have uniform 

structure. Convolutional kernel size (3x3) and Pooling Window(2x2) remains same 

throughout the network. All convolutional layers have same stride (1) and padding 

(’same’).  
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Table 4.1 Comparison of characteristics of Different Network Architectures 

Network 

Architectures 

#conv 

layers 

No of 

MACC 

(million) 

No of 

Param 

(million) 

No of 

Neurons 

(million) 

Top-5 

Error Rates 

AlexNet 5 1140 62.4 2.5 19.7% 

Network-in- 

Network 

12 1100 7.6 4 19.0% 

VGG-16 16 15470 133 29 8.1% 

GoogLeNet 22 1600 7.0 10 9.2% 

ResNet-50 50 3870 25.6 47 7.0% 

Inception-v3 48 5710 24 32.6 5.6% 

Inception-

Resnet-v2 

96 9210 31.6 75 4.9% 

SqueezeNet 18 860 1.2 12.7 19.7% 

 

 

All pooling layers have stride of (2). This study considers the implementation of VGG-16 

style networks on FPGA. State-of-the-art CNNs require huge amounts of memory for 

storing their weights and neurons. VGG-16 would require approximately 700MB of DDR3 

with 32-bit floating points precision. Proposed accelerator was intended to be developed 

on Xilinx Zynq Zedboard which has only 512 MB on chip DDR3 memory. Fitting a 

complete VGG-16 network is impossible task. So, a smaller variation of VGG- 16 style 

network is used. Instead of training VGG-16 for 1000 classes a smaller network for 5 

classes is trained and deployed. Kaggle’s Flower recognition example is used [55].  

 
Table 4.2 Network Configurations of VGG-16 Style Network 

Layers N R C M K 

Input - 150 150 3 0 

Conv1 3 150 150 32 3 

Pool1 32 75 75 32 2 

Conv2 32 75 75 64 3 

Pool2 64 37 37 64 2 

Conv3 64 37 37 96 3 

Pool3 96 18 18 96 2 

Conv4 96 18 18 96 3 

Pool4 96 9 9 96 2 

FC1 7776 - - 516 - 

FC2 516 - - 5 - 
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This example has dataset consisting of 4242 labeled images of five different categories of 

flowers; Sunflower, Tulip, Daisy, Rose, Dandelion. Each class has approximately 800 

images. Images are not high resolution (320x240). Training was carried out on Network 

shown in Table 4.2 on this dataset. This network architecture has four Convolutional 

Layers. Each of these layers are subsequently followed by Max Pooling Layers. Each 

Convolutional Layer Has Rectified Linear Unit (ReLU) activation. There are two Fully 

Connected Layers. First Fully Connected Layer is followed by ReLU activation and second 

one is followed by SoftMax layer.  

4.2 Training Platforms 

Currently There are various different platforms being used to train and deploy 

convolutional neural networks. Almost all of these platforms are helpful in sense that one 

doesn’t have to go through a lot of coding. Instead focus should primarily be on quality of 

data the one can have to train our model. At the back end each of these platforms use same 

kind of mathematics. All of these frameworks help in quick modeling and training of 

Convolutional Neural Networks. Some of the key feature that any Deep Learning 

frameworks should have are listed below. 

• Performance Optimization 

• Easy to understand 

• Easy to write code  

• Community Support  

• Parallelize the processes to reduce execution time 

Any deep learning library or platform that has above qualities is regarded as good platform. 

Since Deep CNNs are hot topic recently, many companies have come forward to make 

their own platforms. Some of the most famous deep learning frameworks are explained 

below. 

 

TensorFlow: 

This platform is considered as the most popular platform. It was created by Google. It is 

written is C++ and Python. Big companies like Uber, AirBnB, DropBox, DeepMind all 

have persuaded to leverage this platform. TensorFlow has highest rate of entry for 

beginner. This is relative low abstraction level language with a lot of details. 

Some of the most popular case of TensorFlow usage are 

• Language detection and text summarization 

• object detection, Image recognition and facial recognition 

• Sound pattern recognition 

• Video stream analysis 
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Keras: 

Keras is high end API that runs on top of TensorFlow, Theano or CNTK. It was developed 

by a Google engineers. Keras is modular framework. It is relatively easy to code and 

deploy. It has a plenty of layers to work with. It is also very easy to adopt for beginners. It 

has support for variety of embedded platforms. Some of the key advantages of this 

framework are 

 

• Fast and easy Prototyping; 

• Lightweight for building deep learning architectures   

• It has lot of layers 

• Its modules are fully configurable 

• Easy to use for those entering the field of Deep learning because of it simple and 

meaningful interfaces 

• Since it is based on TensorFlow back end, it has very good support for GPU based 

systems 

• Helps to train DL models multiple GPUs and Google Cloud as well. 

• This framework support modeling and training for NVidia GPUs, Google’s TPUs, 

and Open-CL based GPUs such as AMD. 

 

PyTorch: 

PyTorch is considered the most famous of all the deep learning frameworks.  It is part of 

the very useful Torch Deep Learning framework. PyTorch runs on Python. PyTorch is a 

Python package which helps Tensor computations. It also uses dynamic computation 

graphs. Some of the key advantages of this framework are 

• Simple and transparent model networks  

• Like traditional programming languages it also has default mode called as define by 

run 

• It has commonly used debugging tools such as PyCharm debugger, ipdb, pdb 

• It supports data level parallelism; 

• It has a plenty of pretrained models 

• It has readymade modular entities which are easy to deploy in our models  

• PyTorch like Keras also supports training on multiple GPUs or Clouds. 

 

 

Caffe: 

Caffe was developed by Yangqing Jia during his Ph.D. tenure at the University of 

California, Berkeley. This framework in written in C++ and it has a Python interface 

PyCaffe as well. Caffe is mainly build to model and deploy CNNs and various other feed-

forward networks. Caffe is considered the most useful framework for training deep learning 

models. like Keras and PyTorch, we don’t have to write codes to model Convolutional 

Neural Networks. It also has multiple built-in image processing modules. The framework 

is admired for following reasons: 



 

32 
 

• Caffe provide a lot of pre-trained models for building DL applications 

• It works well with other frameworks as well. 

• It has server optimized inference 

• It’s fast, scalable, and lightweight 

 

Deeplearning4j: 

Deeplearning4j is written for Java based frameworks. It is commercial grade and open 

source framework. It provides very good support for different types of neural networks like 

CNNs, RNNs, RNTNs, or LTSMs. It has very good potential for developing image 

processing pipelines and machine learning based natural language processing. Some of the 

key benefits of this framework are 

• Flexible and robust; 

• Good performance for handling big data 

• It has very good documentation 

• It has both community version and enterprise version. 

 

4.3 GPU-based Training System 

We set up our training environment on Core i9 (9th Gen) PC with Titan GeForce GTX 1660 

GPU. GeForce GTX 1660 is latest generation of GPUs made NVIDIA. They have immense 

computing power.  

We set up Caffe Framework on this system to train our network. Caffe is written is C++ 

and it has Strong Support for GPU. Caffe comes with option to train on both CPU and 

GPU. With Caffe one doesn’t have to write a lot of codes. Some of the key advantages of 

using Caffe framework for our network training are as follows. 

• Caffe is the fastest frame work for implementing Convolutional Neural Network. 

• It has Expressive architecture that enables application innovation and development. 

• Models and optimizations can define by writing configuration files 

• Switching between CPU and GPU is really easy. It can be done by simply raising a 

flag to train on a GPU. 

• Extensible code peruses active research and development.  

• Caffe is being used by 1000 of researchers. 

• Speed is what Caffe is all about. Speed make Caffe good platform for research-

based experiments and industry design. 
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• Caffe has great community support. It has already started to power projects in 

academia and research, startup projects, and even large-scale industrial projects in 

vision, speech, and multimedia. 

4.4 Setting up GPU-based Training System 

There are two modes in which Caffe can be installed on Ubuntu. GPU mode and CPU 

mode. Since we have GPU based system, Caffe was compiled for GPU option. To install 

Caffe first install OpenCV and all other dependencies that Ubuntu based system requires 

to run Caffe. 

Some of the key steps in setting up environment are listed below. Ubuntu terminal 

commands to carry out all the steps to install Caffe on Ubuntu are listed in APPENDIX.A 

1. Update and Upgrade Ubuntu through terminal command line. (Command.1-2) 

2. Installing required dependencies for OpenCV (Command. 3) 

3. Install BLAS Library for computation optimization (Command.4) 

4. Install PIP which is useful for handling Python Packages (Command.6-7) 

5.  Install Python Development Package tools (Command.8) 

6. Both OpenCV and Caffe require NumPy to handle arrays and big data, so install latest 

version of NumPy (Command.8) 

7. In Next Step, download and install OpenCV and its contributions. Compile OpenCV 

and its contributions and install it (Command.9-16) 

8. Check whether OpenCV was installed correctly (Command.17-20) 

9. With OpenCV set up, one can proceed to install Caffe with GPU support. To install 

Caffe with GPU support, first correct version of CUDA Development Kit needs to 

download and install. Figure 4.2 provides the detail of installing CUDA Development 

Kit. 

10. Next, cuDNN downloaded and installed, cuDNN is a GPU-accelerated library of 

primitives for deep neural networks provided by NVIDIA. cuDNN enhances the 

computation speed of GPU based computation. To Install it, one needs to go to cuDNN 

home page, register and download and that install it. Figure 4.3 gives the detail of 

installation of cuDNN. 

11. After successfully installing CUDA and cuDNN, Caffe is installed. To install for GPU, 

one needs to install all the necessary packages and libraries (Command. 21) 

12. Now get the latest version of Caffe from GitHub repository (Command.22) 
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Figure 4.2 Installation of CUDA Development Kit 

            

Figure 4.3 Installation of cuDNN Library for Caffe 

13. Apply required modifications in configuration file makefile.config (Command.23-31) 

14.  After that proceed through compilation of Caffe (Command.32) 

15.  After compilation of Caffe is completed. Check whether its working correctly 

(Command.33-35) 

4.5 Dataset  

After setting up the environment network training was carried out. First, dataset needs to 

be downloaded to train a particular network. As case study, this study uses Kaggle’s flower 

recognition example. This example has dataset consisting of 4242 labeled images of five 

different categories of flowers; Sunflower, Tulip, Daisy, Rose, Dandelion. Each class has 
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approximately 800 images. Images are not high resolution (320x240). Network shown in 

Table 4.2 was trained on this dataset. This network architecture has four Convolutional 

Layers. Each of these layers are subsequently followed by Max Pooling Layers. Each 

Convolutional Layer Has Rectified Linear Unit (ReLU) activation. There are two Fully 

Connected Layers. First Fully Connected Layer is followed by ReLU activation and second 

one is followed by SoftMax layer.  

 

 

Figure 4.4 Sample images of Kaggle Dataset for Flower Recognition 

 

For Classification of images there are two phases machine learning algorithm:  

• Training phase: This a phase where a machine learning model learns from given 

dataset of images. Each image has a label.  

• Prediction phase: In prediction phase, trained model is utilized to predict labels of 

images that are not present in training dataset. 

The training for an image recognition is done in two main steps: 

• Feature Extraction: Feature Extraction is done by utilizing the knowledge in that 

particular domain to extract new features from images which will be used by the 

learning model. 
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• Model Training: In training phase, a clean dataset is used which is composed of 

the features of images against labels which trains the machine learning model 

 

Figure 4.5 Traditional Flow of Machine Vision Algorithm 

 

Figure 4.5 shows a typical machine vision pipeline. The main difference between a 

machine vision and deep learning pipelines is feature extraction methodology. In machine 

vision algorithms, features are handcrafted using different mathematical tools. Whereas, in 

traditional deep learning models feature engineering is done automatically by the 

algorithm. Figure 4.6 show the flow of a traditional Machine Learning model. Feature 

engineering is difficult, time-consuming and it requires a lot of domain knowledge and 

expertise. Feature learning is easy to accomplish but it requires a lot of data to train the 

model. 

 

Figure 4.6 Traditional Flow of Deep Learning Algorithm 
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4.6 Caffe Overview  

Caffe is a famous deep learning platform. It was developed by the Berkeley Vision and 

Learning Center. Caffe is written in C++ and it has Python and MATLAB bindings as well. 

There are four major steps which needs to be followed for the training a Convolutional 

Neural Network using Caffe: 

• Data pre-processing: First of all, image data pre-processing is carried out. Pre-

processing involves steps like resizing, histogram equalization and storing images 

in format that Caffe framework uses. To carry out pre-processing of data we wrote 

a Python script. 

• Model definition: In second step, Convolutional Neural Network model is defined 

by writing CNN configurations for forward training phase in .prototext format file.  

• Solver definition: The solver makes for model training and optimization. Solver 

parameters are defined in .prototext format. configuration file  

• Model training: Netwok training starts by executing Caffe Command described 

below from the terminal in ubuntu. After training the model, we will get the trained 

model in a file in .caffemodel format. 

• Model Deployment: we than use .caffemodel trained model to make predictions of 

new data. For this purpose, Python Script is written with the help of PyCaffe. 

4.7 Data Pre-Processing 

First download the data of images from Kaggle to our local machine. Data is zipped so go 

to command line and unzip it first. Then create lmdb database of these images. For that we 

wrote python script create_lmdb.py. Code snippets of create_lmdb.py is given is 

APPENDIX B (Step1-3). 

Create_lmdb.py script performs following functionalities: 

• It runs histogram equalization on all images. Histogram equalization adjusts the 

contrast of all the images. 

• Then, resize all training images to a 150x150 dimension which is modeled input for 

our network. 

• Divide the training dataset in two separate categories. One for training and other for 

validation. About one sixth of all the images in dataset are chosen to be validation 

images. Training set was used to train the model, and the validation set was used to 

calculate the accuracy of the model. 
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• Store the training and validation in two seprate .lmdb databases. train_lmdb for 

training the model and validatione_lmbd for model evaluation. 

 

Define our Image_transfrom function which takes a colored input images, performs the 

histogram equalization of the 3 color channels and resizes the image.Code to create lmdb 

database for input images is shown below. Make_datum takes an input image and its label. 

Create a datum object with data and label of four dimension.Another common step in 

preprocessing of image in supervised machine learning is to take the mean of images. 

Subtracted the mean of image from each input image to make sure that mean of all image 

is zero. Following command is used to create mean. 

4.8 Model Definition 

With CNN model finalized and data prepared, now define model in .prototxt file. Caffe 

provides few popular CNN models such as AlexNet and GoogLeNet. There are also 

bvlc_reference_caffenet models provided by Caffe. Bvlc_reference_caffenet is basically 

the definition of AlexNet model. We made changes in bvlc_reference_caffenet file 

according to our own requirements.  

4.9 Solver Definition 

Model optimization is done by Solver. It is written in .prototxt format. Define solver’s 

parameters in this file. Solver file computes the accuracy of trained model after every 1000 

iteration using validation dataset. The training will run for maximum of 30000 iterations 

and will take snapshot of trained model after every 5000 iteration. Adjust these values 

according to different situations. Lr_policy, base_lr, gamma, momentum and 

weight_decay are some of the hyperparameters that are needed to to make a model 

converge. 

4.10 Model Training 

After defining model and solver file in .prototxt format proceed to train model . Command 

in step 4 of APPANDIX B is used to start training model. Training logs are stored in 

model_1_train.log file. During the process of training one needs to monitor two values. 

Loss and Model Accuracy. If training process needs to be stopped at any time all we need 

to do is to press ctrl+c in command line. Caffe will automatically generate training 

snapshots with loss and model accuracy. Snapshots are stored in caffe_model_1 folder. 
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4.11 Learning Curve Plot 

A learning curve is a graph which give the accuracy of trained model.  Training loss and 

Test loss is plotted as a function of the number of iterations. These graphs are helpful to 

visualize the training (or validation) losses and accuracy of trained model. Image 4.2 shows 

the graph of training and validation loss and accuracy against number of iterations. From 

this graph it can be sees that this model saturates in performance at about 3000 iterations. 

Trained model achieved a testing accuracy of 90%. 

                         

Figure 4.7 Training Evaluation Graph with loss and prediction accuracy 

4.12 Predicting New Data 

After training of network model is complete it can be used to predict unseen data of images. 

We write a python code make_prediction_1.py and kept it in the same directory. This code 

needs four things to run. 

• Test images 

• Mean of test image 

• Model architecture file with SoftMax Function at the end 

• Trained model weights 

Important parts of the code are listed as step 6 and step 7 in APPENDIX B. Trained model 

was intiated in python as net and mean image were stored as as mean_array. Deploy trained 

model needs two things. Trained weights with extension .caffemodel and Model 
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architecture file. And following code reads input image which is test image, applies same 

pre processing steps as in training phase and computes the probability. Results of training 

were submitted the predications to Kaggle, it received an accuracy of 0.89691. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.kaggle.com/c/dogs-vs-cats/submissions/attach
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CHAPTER 5: FPGA ACCELERATOR DESIGN 
 

In this chapter discusses the design space exploration scheme for implementing 

Convolutional Neural Networks on FPGA. Section 5.1 and 5.2 discuss about Xilinx 

Zedboard. Section 5.2 demonstrates why it’s important to accelerate the Convolutional 

Neural Networks. A scheme is provided that analytically models the all operations of CNN 

and analyze their computation and memory access patterns. Finally, design space on FPGA 

is explored. 

5.1 Xilinx Zynq Zedboard 

Xilinx Zynq Zedboard (XC7z020-CLG480-t) is used for mapping of complete CNN. 

Figure 5.1 shows the diagram of Xilinx Zynq Zedboard. Zedboard is a cost-efficient 

development environment. It is based on Xilinx Zynq-7000 All programmable System on 

Chip (AP SOCs). The biggest advantage of Zynq Zedboard is that it has tightly coupled 

dual core ARM Processing Unit (PS).  It is considerably faster than MicroBlaze Soft 

Processor Core. It has 7-series Programmable logic (PL). It has 512MB DDR3 external 

memory for PS and 256 MB external Memory for PL. and it supports a 4GB SD Card. 

         

Figure 5.1 Layout of Zynq Zedboard 

 

5.2 High Level Synthesis 

Vivado High Level Synthesis (HLS) is a High abstraction Level Synthesis tool for FPGAs. 

In HLS one can write code and perform debugging in C/C++/SystemC of an FPGA design. 

An important part of this VIVADO is the VHLS. This compiler understands and converts 

the higher-level programs into a low-level RTL schematic of the to run this program. HLS 

automatically optimizes this code to run in parallel as much as possible. It generates 

schemes for resource allocation and scheduling. Process of synthesis creates RTL 
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specification. HLS Compiler tests the resultant RTL specification which helps engineers 

to use the original C/C++/SystemC software as a test-bench.  

Synthesis is followed by a process called Co-simulation in VHLS. In this step first of all 

software codes are executed and all input and outputs are stored. Then the RTL 

specification is simulated with these stored inputs and outputs. At the end outputs of the 

software model and output of RTL simulation are matched. If both output match, then o-

simulation is successful.  

Another useful feature of HLS is that when code is written in C and C++, software 

specification completely ignores timing and clock cycles in design.  So, it is the job of HLS 

to implement a design in optimized fashion using various compiler directives. 

Vivado HLS finds the utilization of all the resources on chip and the maximum clock 

frequency which a design can utilize after every synthesis. This tool also gives a lot of 

different analysis views that help us to find the resources which have been allocated to e 

section of code. It also gives the exact schedules for all loop and function. 
 

5.2.1 Coding Style 

UG902, User Guide for High-Level Synthesis [56] for Vivado Design Suite is very good 

document when working with VHLS. It helps designers to make designs at a level that is 

higher level of abstraction away from the implementation details regarding RTL.  The 

High-Level Synthesis Blue Book [57] by Mike Fingeroff provides useful insight when 

designing with BHLS.  

Mike Fingeroff presents the importance of the higher-level of abstraction for FPGA 

designs. But stressing that there is still possibility of resulting in poor RTL schematics 

when the C/C++ code is not specified well enough. Good style of writing VHLS requires 

an understanding of the hardware architecture which is to be implemented of an algorithm, 

it should also reflect not only in C++/C/SystemC code, but also requires an understanding 

of how HLS behaves. Mike in this document goes to an incredibly low-level of design style 

like bit level design of registers, muxes and arithmetic operations in the C/C++ code. 

 

5.2.2 Compiler Directives 

 

The high abstraction languages like C/C++ don’t have to capability to make parallelization 

in respective designs. There are various frameworks which help in explicitly exploiting 

parallelism in C/C++ programs. They make use of multiple threads which are executed in 

parallel for example as in CUDA. This allows engineers to mimics the source code with 

compiler to specify the desired type of parallelism. Now we introduce important #pragma 

HLS compiler directives which will be used in proposed Accelerator design. 

 

Interfaces: 

Vivado HLS synthesizes functions into various blocs where ach block will get clock and 

reset ports (ap_clk, ap_rst) by default. Function arguments are automatically result in 
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different types of RTL ports. Compiler directive for function level interface is shown 

below. 

 

 
 

Interface protocol is subjected at Function level, by applying this pragma on return port of 

function. Return port is usually marked as handshake signal but it can also be set as nothing, 

control signal or control chain signal by default. When this pragma is applied it also creates 

start signal, done signal, ready signal and idle signal which let the blocks in communicating 

for data transfers. Which interface protocol to apply on function arguments also depends 

on what kind of argument is under discussion. There are various modes like stream, 

memory mapped and high-speed burst mode for data transfer or simple memory ports.  

 

Loop Unrolling: 

Loop unrolling pragma is shown below. This pragma when applied on certain loop asks 

the compiler to unroll all the loop iterations. Loop unrolling can be either complete or 

partial with factor of N. All operations are scheduled as quickly as they are ready for 

execution by VHLS. Parallel execution of these unrolled loop iterations than carries out. 

Data dependency and external memory bandwidth usually limits the amount of unrolling 

in loops. For complete unrolling of loop external bounds must be known already. 

 

 
 

Loop Pipelining: 

Another very important optimization directives in HLS is loop pipelining. This pragma 

pipelines the section of code in which it is placed, and all that is in below this section. HLS 

automatically tries a pipeline code section with an initiation interval of one. This means 

that after pipeline every new clock cycles a new input can be taken. 

 

 
 

Resource Specification: 

This pragma applies a specific resource on any given variable (var) which is being 

implemented in RTL. This is important when we wish to use a special type of memory for 

example for an array like single port or dual port. 
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Function Inlining: 

This pragma is shown below. It forces a specific function which called many times to be 

inlined into all its callers. This makes multiple same hardware of said function. So, it results 

in increased resource utilization which is turn increases throughput. But eventually it comes 

down to tradeoff between the two area and speed. Vivado HLS more often than not 

automatically inlines functions. This pragma help increase design throughput at cost of 

area consumption. 

  

 
 

5.3 CNN: Computational Analysis 

Convolutional Neural Networks are computation intensive algorithms. They involve huge 

memory operations and perform millions of computations. Trained networks are 

algorithmically simple to execute. Chapter.2 presented a discussion about different types 

of layers in Convolutional Neural Networks. Compute intensive nature of those CNN 

architectures is discussed and analyzed. Later, this analysis is used to implement complete 

convolutional Neural Network on Zynq Zedboard.  

 

 

 

Convolutional Layer: 

Study of convolutional neural network suggests that 90% of the time of forward execution 

of a CNN is spent on convolutions [18]. Speeding up the process of convolution accelerates 

entire working of convolutional neural network. Figure.5.1 shows depiction of a 

Convolutional Layer. Convolutional Layer has input feature maps of dimension Rin x Cin 

x N, and output feature maps of dimension Rout x Cout x M, where N denotes input 

channels and M denotes output channels. Equation.2.2 and Equation.2.3 give the 

dimensions of output feature maps depending on the values of size of kernel window (K), 

padding (P) and stride of kernel window (S). To execute a convolutional layer RinxCinxN 

input pixel and NxMxKxK weights values are read from DRAM. In each iteration of 

Convolutional Layer one addition and one multiplication is performed. So, in each in a 

convolutional layer 2xRxCxNxMxKxK operation are performed which accounts for 

RxCxNxMxKxK Multiply-Accumulates (MACCs). R x C x M output pixels are written 

back to DRAM. 

𝑶𝑭𝑴[𝑴][𝑹][𝑪]

= ∑ ∑ ∑ (𝑰𝑭𝑴[𝑺 ∗ 𝑹 + 𝒊][𝑺 ∗ 𝑪 + 𝒋][𝑵]

𝒌/𝟐

−𝒌/𝟐

𝒌/𝟐

−𝒌/𝟐

𝑵

𝟎

∗ 𝑾𝒆𝒊𝒈𝒉𝒕[𝑴][𝑵][𝒊][𝒋])     (𝟓. 𝟏) 
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Table 4.2 shows the network we want to implement. Equation 5.1 shows convolution 

operation of Figure.5.1To perform convolution one 67,500 input pixels are read from 

DRAM. 864 weight values are read from memory and a total of 58 Million Convolutions 

are performed. And then, 2,160,000 pixels are written back to DRAM. This provides the 

foundation of our accelerator design. Accelerator design in discussed in section 5.7. 

 

                

Figure 5.2 Pictorial Description of Convolutional Layer 

Pooling Layer:  

Convolutional Layer is usually followed by a Pooling / Sub-Sampling Layer. Pooling Layer 

down samples input feature map. It provides scale and distortion invariance. Figure 5.2 

shows the pictorial depiction of a pooling layer.  Dimension of output image depends upon 

the pooling window size (P). pooling window size is usually 2x2 or 3x3. In each operation 

of Pooling Layer RxCxM input pixels are read and R/P x C/P x M pixels are written back. 

Where P is 2 or 3 depending on the size of pooling window. In Pooling layer 

RxCxMxMxPxP Boolean Operations are performed. 

Fully Connected Layers: 

Fully Connected layers are ANN layers. These layers have been explained previously. 

They are nothing more than dot product. Equation 2.1 gives the relationship of input 

neurons to output neurons. If there are N input neurons and M output neurons. A total of 

N input neurons are read from memory NxM MACCs are performed and M output neurons 

are written back to memory. 
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5.4 Software and Hardware Partitioning 

From previous discussion it is quite clear that Convolutional Neural Networks are 

computationally expensive algorithms. They have huge amount of memory accesses and 

they perform millions of operations. Of all the layers Convolutional Layers are most 

expensive layer. about 90% of the time of convolution is spent in Convolutional layer. 

Speeding up the process of convolution result in speed up achieved for entire working of 

Convolutional Neural Network. It is proposed to partition CNN algorithm into hardware 

part and Software Parts. Convolutions are computationally the most expensive part of 

algorithm hence they are mapped on custom hardware. Where one can exploit parallelism 

in workload of CNN and also design our custom DRAM controller to efficiently manage 

off-chip memory traffic. Other tasks such as Pooling Operation, Dot Product in Fully 

Connected layer and SoftMax layers are not computationally so expensive. Hence, they are 

mapped on Software in a host computer. 

Some of the key features of our Hardware Software Partitioning Scheme are as follows. 

Software part of algorithm deals with operations that consume less time to complete. Dot 

product or pooling or mathematically complex tasks such SoftMax operations. Which can 

not show any significant improvement on Custom hardware design. In Software part 

following tasks are performed 

• Define a network architecture as shown in Table.4.2. 

• Model forward propagation of network.   

• Define and allocate memory for keeping weights and feature maps. Malloc () 

function was used to create dynamic memory allocation for input feature maps and 

output feature maps and weights. 

• Read weights of Caffe Model which were then converted to .bin format by a python 

script. Load these weights into memory allocated for weights previously. 

• Read Input image for testing of network. Load this image into memory allocated 

previously. 

• Test input image by making forward propagation 

Hardware part of algorithm purely focuses on the Convolution. Convolutions being the 

most time-consuming part of CNN. A custom Accelerator design on FPGA is presented 

which takes into account memory access pattern of CNN and different levels of parallelism 

that exists in CNN. Analytically modeling was carried out to find the best possible solution 

which gives the highest performance. Details of Hardware Accelerator will be discussed in 

next section 
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5.5 Accelerator Design 

This section discusses the custom Accelerator design for carrying out convolution process. 

5.5.1 Different Levels of Parallelisms in CNN 

In CNN, there are different several sources of parallelism. To find an accelerator design 

with best possible performance one needs to exploit these parallelisms.                                                                      

 

Figure 5.3 Different Levels of Parallelism in Convolution Layer workload 

 

Inter Layer Parallelism 

In Convolutional Neural Network   

∀ 𝒍𝒂𝒚𝒆𝒓 ∈ {𝟏, 𝟐, 𝟑, … , 𝑳}: 𝑰𝑭𝑴(𝒍𝒂𝒚𝒆𝒓 + 𝟏) = 𝑶𝑭𝑴(𝒍𝒂𝒚𝒆𝒓)   

is dependency between two subsequent layers; hence, so it is not possible to execute two 

subsequent layers in parallel. Additionally, since state of art CNNs are huge in size so it is 

also not feasible to pipeline the operations of all CNN layers. Even for small sized CNN, 

pipelining doesn’t usually give good performance. 

 

 

Inter Output Parallelism 

Output feature maps in a Convolutional Neural Network are totally independent of each 

other. In theory all of these output feature maps can be executed in parallel. To achieve 

inter output parallelism equation.5.1 is computed for different values of M in parallel. 
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Inter Kernel Parallelism 

On pixel in output feature map is result of K2 convolutions. And these K2convolutions are 

independent of each output channel, this presents the possibility to compute all K2 

convolutions at once. This provides another source of data level parallelism which can be 

achieved. In order to exploit inter kernel parallelism, Equation.5.1 is calculated for 

different values of R and C. 

Intra Kernel Parallelism 

There is a vast amount of parallelism in each K2 convolution. A convolution is one MACC 

operation which consists of one multiplication and one addition. Weight kernel size of 3 

would produce 9 MACC operations. All of these multiplication between a kernel and a 

pixel in an input feature map is independent from another multiplication, all of them can 

be theoretically computed in parallel. 

 

If an FPGA chip has unlimited area, on chip memory (BRAM) and external memory 

bandwidth. all of these sources of parallelism could be exploited to speed up the operation 

of convolution in a CNN. But practically it is not possible. Therefore, we find the optimal 

combination of different level of parallelism which both minimizes the execution time and 

satisfies the constraints on target chip.  
 

5.5.2 The Roofline Model 

Computation and communication are two constraints to find system performance for 

optimization. Performance of an algorithm is restricted either by external memory-accesses 

or computation capability. In [55], a Roofline performance model was developed which 

relates system performance to off-chip memory traffic and gives peak performance of 

hardware platform to be used. Equation.5.2 gives the performance of an algorithm on a 

certain platform according to Roofline Model. 

 

𝑃𝑒𝑎𝑘 𝑃𝑒𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = min{𝐶𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛𝑙 𝑅𝑜𝑜𝑓, 𝐶𝑇𝐶 𝑅𝑎𝑡𝑖𝑜 𝑥 𝐵𝑊 𝑜𝑓 𝐼𝑂}   (5.2)  

 

Floating points per second (GFLOP/sec) is used as metric to evaluate system throughput. 

Floating Points per Second can be no higher than two terms in equation. 5.2. first term is 

peak GFLOPS provided by all available computational resources in a system which is also 

called computational roof. 
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Figure 5.5 Basis of Roofline Model 

 

Second term features off-chip memory traffic which operations per DRAM Byte Access 

called CTC (Computation to Communication) ratio.  

Figure 5.5 provides a visualization of roofline model. Algorithm 2 has higher performance 

as it has higher computation to communication ratio. It means that algorithm 2 has better 

reusability of data. Algorithm is restricted by external memory bandwidth. So, it can not 

perform higher than Algorithm 2. 

5.5.3 Computation Model  

This section presents design of Accelerator based on all the previous considerations. We 

implement CNN on Zynq Zedboard which has dual core ARM Processing unit (PS) and 7-

Series Programmable Logic (PL). We design our Convolution Accelerator on Zynq-PL. 

Whereas other operations like pooling, dot product and SoftMax have already been 

assigned to Zynq-PS. Figure 5.6 gives a depiction of our accelerator design on Zynq-PL. 

                        

 Figure 5.6 Proposed Accelerator Design 
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Our Accelerator primarily consists of Processing Elements (PE) which are responsible of 

performing convolutions, on chip BRAM buffers for storing input feature maps and output 

feature maps and weights. It consists of on chip interconnects which are responsible for 

dataflows through the Processing Elements. 

There are various design challenges which obstacle the performance of Accelerator design. 

First of all, Loop Tiling is important to fit small portion of input data, output data and 

weight data.  One needs to make sure choose correct tiling scheme. An improper tiling 

scheme reduces the performance of system. Second, it is important to carefully consider 

the on-chip buffers, processing elements and interconnects between them to have a better 

reusability of on-chip data. Poor reusability of on chip data degrades the performance of 

Accelerator. Third and the most important is that throughput of processing elements should 

match the off-chip memory bandwidth provided by Zynq Zedboard platform. 

Figure 5.5 gives the algorithm structure for data transfer to accelerator and on-chip 

computation of convolutions. As discussed previously, first apply loop tiling or point loop 

to fit the small portion of data on-chip. Table 4.2 shows that except the values of kernel 

window in all convolutional layers all the values change. So, restrict the values of R, C, M 

and N to TR, TC, TM, and TN. This makes a tile size tuple of <TM, TN, TR, TC>.  In 

subsequent section we discuss how to make loop tiles. 

                         

Figure 5.5 Pseudo Code for Data Transfer and On-Chip Computation of Convolution 

Loop Tiling 

Pseudo Code of Convolutional Layer is shown in figure.5.5. multi-dimensional 

convolution which exists in CNNs is nothing but a nested loop presentation of algorithm 

in Equation.5.1. this nested loop presentation of algorithm provides the basis of 

computation for our FPGA Top Function. 
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But FPGA designs strictly follow a certain pattern based on clock cycles. An FPGA top 

function operates for a specific number of clock cycles. But Table.4.2 shows that no 

parameters are same for layers except size of kernel window. So, it is not possible to 

efficiently map all convolutional layers of CNN on FPGA with the parameters that are 

varying all the time. Besides, limited amount of on-chip memory makes it impossible to 

load the all parameters and weights of a CNN layer on FPGA concurrently. So, using tiling 

to load specific set of data on FPGA BRAM. Proposed FPGA top function runs for a 

specific number of rows, columns, input channels and output channels and kernel. Our 

tiling scheme is inspired by the work of [8] [9]. Goal of our accelerator design is to deliver 

a complete CNN implementation our choice of tiles size differs from [8] [9] in a sense that 

we use lowest value of input channels and output channels, rows and columns across all 

layer. From Table. 4.2 we can see that lowest value of input channels, output channels, 

rows, columns are 3,32,18,18 respectively. Experimentally it was found that rows and 

columns of tile size 18 doesn’t give optimum performance on Software. Figure 3 gives the 

graph of latency of convolutional layer against different tile sizes of rows and columns. 

Tile Size of 30 gives the best performance across all convolutional layers. So, a tile size 

tuple of <3,32,30,30> was chosen. 

 

                         

Figure 5.4 Performance Analysis of Different Tiles size of Rows and Columns 

 

Optimization of Computation Engine  

This section presents computation engine optimization. Objective of these optimization is 

to take full advantage of loop unrolling and loop pipelining. To perform loop unrolling and 

loop pipelining it was assumed that input data, weight data and output data was already 

buffered on chip. 

Loop Unrolling helps us utilize huge amount of computation resources that are available 

in an FPGA Platform. Unrolling CNN Convolutional layer along different dimension 

results in different implementation models. loop unrolling along any dimension is affected 
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by the data dependencies and this eventually determines the complexity of design. For a 

given array data sharing relation for a certain loop dimension can be categorized in three 

ways. 

Irrelevant: If a loop iterator does not appear in any access function of an array ARR, then 

this loop dimension is irrelevant to ARR. 

Independent: If a loop iterator is totally separable along any dimension of an array ARR 

than it is independent to ARR. 

Dependent: If a loop iterator is not totally separable then, it is dependent to array ARR. 

Figure 5.5 gives the implementation detail of data sharing relationship between a loop 

iterator and array. Irrelevant iteration results in broadcasting connectivity. Independent 

titrator creates direct connections while dependent iterator results in complex connectivity.  

 

   Figure 5.5 Hardware Implementation for different data sharing relation 

Figure 5.6 gives the detail of dependencies of loop iterators with respect to the arrays input 

feature map, output feature map and weights. As we can see that loop dimension too and 

tii don’t have any dependencies along any array. Unrolling these two dimensions generates 

the best possible result. 

 

Figure 5.6 Dependency analysis of loop iterator along different arrays 
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Loop Pipelining: Loop pipelining is the most important pragma in High Level Synthesis 

(HLS) to improve the system throughput. It overlaps the execution of operations for 

different loop iterations. Data dependencies and resource constraint limit the performance 

achieved by loop pipelining. Loop carried Dependency prevents the loop from unrolling 

completely. It also stalls the pipeline process.  

 Figure 5.7 gives the detail of optimizations. Loop unrolling was carried out along two loop 

iterations, too and tii to make custom computing engine. And finally, loop pipelining 

pragma was applied on top of these two loop iterations. This design gave best throughput. 

Resultant computing engine is shown on the right hand side. Now pixels of Tn input feature 

maps combine together to form Tm output feature maps. 

 

Figure 5.7 Computation engine optimizations and resultant computation engine 

Optimization of External Memory Accesses 

Previous section presented a discussion on how to derive different implementations of 

computational engine having different computational roofs. A design which has high roof 

of computation does not necessarily mean higher performance due to memory bandwidth 

constraint. All input data (IFM, OFM, Weights) are already buffered to computation engine 

on-chip.  Figure 5.8 explains the external memory access operations of a Convolutional 

layer. Input feature maps, output feature maps and weights are loaded before the 

computation engine starts working and the resultant output feature maps are written back 

to main memory. 
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Figure 5.8 Memory Access of a Convolutional Layer 

As figure 5.8 shows that innermost loop dimension ti is completely irrelevant to array 

output feature map. Hence there is a redundant memory operation for array output feature 

map. To optimize this design, this operation was promoted to outer loop by one step. 

Operation of reading output feature map is performed in loop iterator to. This memory 

promotion scheme reduces the external memory access for Accelerator and also improves 

computation to communication ratio. 

 

 

Accelerator Design Flow 

Nested-loop algorithm presented in Figure.3 provides the basis for FPGA Accelerator 

design. Each of these loops in FPGA accelerator runs a specific number of times depending 

on tile-size tuple. At the start of layer execution, Zynq-PS points to the reference of location 

of data and accelerator starts cashing the data from that particular location, performs the 

convolutions and stores output data back to memory at a particular location pointed to by 

Zynq-PS. For achieving a good throughput of Accelerator, two things need to be ensured 

in design.  On chip caching of input data and output data and parallelization between the 

execution of different convolution operations. Line buffers were introduced for input data, 

output data and weights. Line buffers on each port ensure continuity of dataflows. There 

are different levels of parallelization dis- cussed in work [8] [9]. Proposed methodology 

achieves inter-output parallelism where pixels of Tn input feature maps combine together 

to form Tm output feature maps. One critical part of proposed Accelerator is DRAM 

Controller. DRAM Controller is designed taking into consideration memory access 

patterns of CNN. 
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Figure 5.8 Accelerator Design 

All the data is read from and written to DRAM by M-AXI interface protocol using Burst 

Mode with a Burst length of 128. Loop pipelining and loop unrolling are two pragmas that 

are used in HLS which helps in achieving high throughput    of design. HLS Unroll brings 

parallelization into design. HLS Pipeline gives high throughput. Figure 4 shows the 

architecture of proposed Accelerator design on Zynq PL 

5.6 Experimental Setup: 

Accelerator design was implemented in Xilinx Vivado High Level Synthesis tool (2018.1). 

HLS transforms codes written in C/C++/SystemC to RTL with the help of HLS-defined 

Pragmas. Proposed Accelerator design was written in C++ language. Working of 

Accelerator Design was than tested with Test Bench written in C++ language. Timing 

analysis and C/RTL Co-Simulation was then carried out to further check the validity of 

design. Pre-Synthesis Reports help in design space exploration and to evaluate the 

performance of a design. Resulting RTL design was than exported to Vivado for Synthesis. 

Synthesized Design was implemented using SDK. 
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                          Figure 5.8 Accelerator Design Schematic on Xilinx Vivado 
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CHAPTER 6: RESULTS 
 

First target of our project was to design a proof of concept FPGA Accelerator for CNN 

applications. Our second target is to achieve maximum possible throughput on the given 

platform. This platform in turn gives efficiency in power consumption. Implementation 

details of proposed design were discussed completely in last chapter. This chapter gives 

the results of simulations in Vivado and discuss throughput maximization step by step. 

Latency of design was used as parameter for measuring the throughput of our accelerator. 

These latency values have been noted for tiled Convolution. In each tiled convolution 

777600 MACC Operations were performed. 

 

 

Step 1: Base CNN Code  

In first step base CNN code was implemented for tiled convolution on FPGA. It resulted 

in a latency of 16905265 clock cycles which approximates to 147 milli seconds to perform 

777600 MACCs. This design could run up to 115MHz. Fig.5.1 shows the results of our 

simulation.  

                   
Figure 6.1 Result 1 

Step 2: Base CNN Code Implementation Pipeline and Unroll 

In Second step base CNN code was implemented for tiled convolution on FPGA with loop 

pipeline and unroll. It resulted in a latency of 8837101 clock cycles which approximates to 

77 milli seconds to perform 777600 MACCs. This design could run up to 120MHz. Fig 5.2 

shows the results of our simulation. 
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                    Figure 6.2 Result 2 

Step 3: Expansion of Design Space Exploration Without any optimization 

In third step operations of tiled convolution were expanded with introduction of on chip 

buffers. No optimization directive was used. It resulted in a latency of 10232084 clock 

cycles which approximates to 89 milli seconds to perform 777600 MACCs. This design 

could run up to 120MHz. Figure 5.3 shows the results of our simulation. 

 

                     

                    Figure 6.3 Result 3 

 

Step 4: Expansion of Design Space Exploration with Optimization  

Next with expanded design space exploration scheme for operations of tiled convolution, 

Loop Unroll and Loop Pipeline optimization directives were introduced. This resulted in a 

latency of 4059320 clock cycles which approximates to 35 milli seconds to perform 777600 

MACCs. This design could run up to 120MHz. Figure 5.4 shows the results of simulation. 

 

 

                          

Figure 6.4 Result 4 
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Step 5: Expansion of Design Space Exploration with further Optimization 

Next further expansion of design space exploration scheme was carried out for operations 

of tiled convolution. Previously, Loop Unroll and Loop Pipeline optimization directives 

were introduced. Now, dual ported BRAM buffers were used for on chip data of input 

feature maps, output feature maps and weights. This resulted in a latency of 3993323 clock 

cycles which approximates to 34 milli seconds to perform 777600 MACCs. This design 

could run up to 120MHz. Figure 5.5 shows the results of our simulation. 

 

                     
Figure 6.5 Result 5 

 

 

Step 6: Removing Data Dependency for Differ Loop iterations.  

Unlike previous steps a modification was made in design to take into consideration 

reusability of on chip data. Loop transformation was carried out to increase computation 

to communication ratio. In this scheme all our previous optimization directives like Loop 

Unroll, Loop Pipeline optimization directives and dual ported BRAM for on chip data of 

input feature maps, output feature maps and weights were introduced. It resulted in a 

latency of 777632 clock cycles which approximates to 6 milli seconds to perform 777600 

MACCs. This design could run up to 100MHz. Figure 5.5 shows the results of our 

simulation. 

 

 

                   

Figure 6.5 Result 5 
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Step 7: Improving dataflows in Accelerator design 

In this step loop transformation was carried out where loop for input channel was demoted 

outward and loop for output channel was promoted inward. This optimization improved 

the flow of data from on chip buffers to convolution computing engine. Improved dataflow 

resulted in higher throughput of accelerator. This experiment was carried with same tile 

size. In this scheme all our previous optimization directives like Loop Unroll, Loop 

Pipeline optimization directives and dual ported BRAM for on chip data of input feature 

maps, output feature maps and weights were introduced. It resulted in a latency of 118875 

clock cycles which approximates to 1 micro seconds to perform 777600 MACCs. This 

design could run up to 100MHz. Figure 5.5 shows the results of our simulation. 

In all previous results there was always under utilization of logic resources. This was 

because of data dependancies in design. This design improved the resource utilization.  

                                    

Figure 6.6 Result 6 

Step 8: New Architectural Template 

In this step after removing data dependencies and design of accelerator was reverted to 

original pseudo code shape. This experiment was carried with a bigger tile size to improve 

the underutilization of logic resources. With the improvement of dataflow this design was 

capable of maximum parallel execution.  In this scheme all our previous optimization 
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directives like Loop Unroll, Loop Pipeline optimization directives and dual ported BRAM 

for on chip data of input feature maps, output feature maps and weights were introduced. 

It resulted in a latency of 75911 clock cycles which approximates to 0.6 milli seconds to 

perform 1,782,000 MACCs. This design could run up to 115MHz. Figure 5.5 shows the 

results of our simulation. 

 

                          

Figure 6.7 Result 7 

Resource Utilization: 

Table 6.1 shows resource utilization on Zynq-PL for final and most optimized design.  

Table 6.1 Resource Utilization on Zynq PL 

 BRAM_18K DSP48E FF LUT 

Total 114 200 48680 45840 

Available 280 220 106400 53200 

Utilization (%) 40 90 45  
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Benchmark Comparison: 

Table 6.2 shows comparison of most optimized design to other state of art implementations. 

We achieve a performance density of 8.70E-04 which is better than ISFPGA and slightly 

less than 2016 implementation. This mostly comes from lack of logic resources that we 

had at our proposal. 

 

Table 6.2 Result Comparison 

 

 

Speedup Comparison: 

Proposed accelerator design runs at 120 MHz on PL achieving a peak performance of 

approximately 46 GOPs. Details of resources utilized is given below in Table 6.1. For a 

tiled Convolution proposed accelerator design achieves a speed up of 10 times compared 

to base software implementation on a Quad Core ARM Cortex-A72 @ 1.5GHz CPU. 
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CHAPTER 7: CONCLUSION 
 

This study discusses design and implementation of an FPGA-based Accelerator Design for 

Deep Convolutional Neural Network. An efficient Accelerator design of CNN on FPGA is 

highly dependent on the architecture of network to be implemented. VGG-16 style 

networks are most suitable networks to be implemented on FPGA. They have uniform 

architectures. Due to limitation of resources on Zynq Zedboard state of art VGG-16 

network could not be mapped.  

CNNs design and implementation was carried out from scratch in this study. It presents a 

fully working architectural template on the Xilinx Zynq Zedboard platform. This Study 

also presents the feasibility implementing CNN models on FPGA in detail. Result of 

proposed design methodology have shown significant performance gain. But this work is 

far from finished article but it does provide a potential for number of different opportunities 

for achieving further breakthroughs in terms of throughput and power efficiency measures. 

Zynq Zedboard doesn’t have huge amount of computational resources required for further 

work on CNNs. But this work can still serve as a guidance for further design space 

exploration of CNNs on FPGA as a platform. 
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APPENDIX A 

Ubuntu Terminal Commands to setup Caffe 
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APPENDIX B 

Data Pre-Processing Codes 

Step 1: 

 

Step 2: 

 

Step 3: 
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Step 4: 
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Step 7: 

 

 


