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Abstract 

Worldwide survey from health department indicates that approximately 50 million people are 

currently affected with epilepsy, which is caused due to seizure. Among the top four common 

neurological diseases in the United States after migraine, stoke and Alzheimer‟s disease is 

epilepsy. Internationally, a vague count of average epilepsy patient‟s each year is 2.4 million. 

Electroencephalogram (EEG) monitors the electrical activity inside our brain, which is due to the 

movement of neurons. It is used for the in time detection of various diseases in neonatal and 

adults, such as a seizure.  EEG displays the signals received by our brain from all body parts. 

Any sort of seizure that is likely to occur in our body or brain can be seen through EEG. As only 

time or frequency analysis is not sufficient to clearly depict the non-stationery electrical activity. 

Time-frequency (TF) analysis is helpful for the dynamic property of EEG signals. The signal is 

affected by different artefacts, which produce false detections. 

Distinct research has been carried out in this field. Various methods have been tested for 

extracting features of the EEG signal; also classifiers, such as Neural Networks and support 

vector machine (SVM), were applied for the detection purpose. TF representation provides a 

wealth of information about the underlying EEG in temporal as well as spectral domains. This 

work will use novel image-processing methods and machine learning procedures for the feature 

extraction stages to improve the accuracy (in terms of both sensitivity and specificity) of existing 

methods. The understanding and assessment about epilepsy is still a long way ahead. Epilepsy 

awareness and its care among the masses are below a considerate level. This work will assist the 

doctors in the field of neurology to improve the timely detection of seizures. 

 

 

 

Key Words:Electroencephalogram (EEG) , Time-frequency distribution , Feature extraction, 

Machine learning, 2-D Discrete Wavelet Transform (DWT),Support Vector Machine (SVM). 

http://www.mayoclinic.org/tests-procedures/eeg/basics/definition/prc-20014093
http://www.mayoclinic.org/tests-procedures/eeg/basics/definition/prc-20014093


vii 
 

Table of Contents 

 
Declaration ....................................................................................................................................................................i 

Language Correctness Certificate ............................................................................................................................. ii 

Copyright Statement ................................................................................................................................................. iii 

Acknowledgements .....................................................................................................................................................iv 

Abstract .......................................................................................................................................................................vi 

Table of Contents ...................................................................................................................................................... vii 

List of Figures .............................................................................................................................................................ix 

List of Tables ................................................................................................................................................................ x 

CHAPTER 1: INTRODUCTION AND MOTIVATION ......................................................................................... 1 

1.1 Background, Scope and Motivation ............................................................................................................. 1 

1.2 Research Objectives ..................................................................................................................................... 5 

1.3 Thesis Organization ..................................................................................................................................... 5 

CHAPTER 2: LITERATURE REVIEW .................................................................................................................. 6 

2.1 Wavelet Transform (WT) as a Feature Extractor ......................................................................................... 6 

2.2 Classification through Neural Network (NN) ............................................................................................ 12 

2.3 Classification using Support Vector Machine (SVM) ................................................................................ 14 

CHAPTER 3: TIME-FREQUENCY REPRESENTATION OF NON-STATIONERY SIGNALS ................... 17 

3.1 Introduction ................................................................................................................................................ 17 

3.2 Time Domain ............................................................................................................................................. 17 

3.3 Frequency Domain ..................................................................................................................................... 18 

3.4 Joint Time-Frequency Domain................................................................................................................... 19 

3.4.1 Time-Frequency Distribution (TFD) Formulation ................................................................................. 20 

3.5 Discussion .................................................................................................................................................. 22 

CHAPTER 4: PROPOSED METHOD .................................................................................................................... 23 

4.1 Introduction ................................................................................................................................................ 23 

4.2 EEG Signal Classifications ........................................................................................................................ 23 

4.3 Feature Selection ........................................................................................................................................ 25 

4.3.1 Time-Frequency (t-f) Flux ..................................................................................................................... 25 

4.3.2 Time-Frequency (t-f) Flatness ............................................................................................................... 26 

4.3.3 Renyi Normalized Entropy .................................................................................................................... 26 

4.4 Discrete Wavelet Transform (DWT) .......................................................................................................... 27 

4.5 Proposed Methodology .............................................................................................................................. 29 

4.5.1 Time Representation of EEG Signal ...................................................................................................... 29 

4.5.2 Time-Frequency Image Representation of EEG Signal ......................................................................... 30 

4.5.3 Feature Extraction thorugh DWT .......................................................................................................... 33 

4.6 Discussion .................................................................................................................................................. 34 



viii 
 

CHAPTER 5: PARAMETERS AND CLASSIFICATION .................................................................................... 35 

5.1 Introduction ................................................................................................................................................ 35 

5.2 ROC Analysis ............................................................................................................................................ 35 

5.2.1 Area Under Curve (AUC) ...................................................................................................................... 37 

5.3 Classification .............................................................................................................................................. 40 

5.3.1 Classifier Results ................................................................................................................................... 40 

5.4 Discussion .................................................................................................................................................. 43 

CHAPTER 6: CONCLUSION AND FUTURE WORK ........................................................................................ 44 

APPENDIX A ............................................................................................................................................................. 45 

REFERENCES .......................................................................................................................................................... 53 

 

 

 

 

 

 

 

 

 

 



ix 
 

List of Figures 

 
Figure 1.1: EEG Signal of Single Channel ................................................................................................................... 3 
Figure 1.2: Fourier Transform of a Sinusoidal Time Signal ......................................................................................... 4 
Figure 1.3: Joint Time-Frequency (TF) Representation ............................................................................................... 4 
Figure 3.1: Time Dominion Representation of EEG .................................................................................................. 17 

Figure 3.2: Frequency Dominion Representation of EEG .......................................................................................... 18 
Figure 3.3: EEG‟s Time-Frequency (T-F) Image ....................................................................................................... 19 

Figure 4.1: EEG Electrodes 10-20 System ................................................................................................................. 23 
Figure 4.2: EEG Frequency Bands ............................................................................................................................. 24 

Figure 4.3: Haar Wavelet Filter Function ................................................................................................................... 28 

Figure 4.4: EEG Test Sample of a Seizure Signal ...................................................................................................... 29 

Figure 4.5: EEG Sample of Non-Seizure Signal ........................................................................................................ 30 

Figure 4.6: Representation of Seizure Signal in Both Time & Frequency domains ................................................... 31 

Figure 4.7: Representation of Non-Seizure Signal in Both Time & Frequency domains ........................................... 32 

Figure 4.8: Methodology for Seizure Detection ......................................................................................................... 33 

Figure 4.9: Examples of DWT level-4 approximation coefficients of seizure (left column) and non-seizure (right                                                                     

column) samples. ..................................................................................................................................... 34 

Figure 5.1: Methodology for calculating Area Under Curve (AUC) .......................................................................... 35 

Figure 5.2: Area Under Curve (AUC) for Spectral Flux T-F Domain using MBD .................................................... 36 

Figure 5.3: Area Under Curve (AUC) for Spectral Flatness T-F Domain using CW distribution.............................. 37 
Figure 5.4: Area Under Curve (AUC) for Renyi Normalized Entropy using CW distribution .................................. 38 
Figure 5.5: Area Under Curve (AUC) for Discrete Wavelet Transform (DWT) ........................................................ 39 
Figure 5.6: Classifier Output for Discrete Wavelet Transform (DWT) ...................................................................... 41 
 

 

 

 

 

 

 

 

 



x 
 

List of Tables 

 
Table 3-1: Time-lag Kernels of the TFD‟s ................................................................................................................. 21 

Table 5-1: Area Under Curve (AUC) values for various Features using QTFD‟s ...................................................... 39 

Table 5-2: Comparison ofEEG seizure Detection Results of 2-D DWT using SVM ................................................. 42  

 

  



1 
 

CHAPTER 1: INTRODUCTION AND MOTIVATION 

 
Seizure is a type of disease which needs continuous monitoring of EEG for hours by the doctors, 

which is physically impractical. With the increased number of patients there is a need for correct 

and speedy detection of seizure activity. Mainly in neonatal case it can be a life-time disability if 

left un-noticed. Sole objective of this effort is to provide a solution that is robust and swift. 

1.1 Background, Scope and Motivation 

Epilepsy came into existence centuries ago but it has become eminent in field of medical in only 

past hundred years or so. The only known indicator of epilepsy is the epileptic seizure and the 

person who has gone through it or even witnessed someone knows how fearsome it is especially 

without prior knowledge of modern science. Seizure recordings take us back to the first days of 

history. These were considered to be highly superstitious, though medically sound minded 

people provided more experimental findings. An extensive solution for the cure of this has been 

attempted by all of them. 

With the passage of time epilepsy was taken as to be a likely disease and later on it was 

extensively acknowledged. Although modern science helped in developing mixed theories about 

seizure but still it wasn‟t believed to be a brain dysfunction. Due to which seizure was taken as a 

contagious disease and affected patients were restricted to specific areas of a mental hospitals.  

Although it started to deal seizures as a disease and scientific research started to begin in a 

broader perspective.  

The earliest electrical theory of seizure was described by Robert Bentely Todd in 1849 at the 

Royal College of Physicians. But the initial findings were done by John Hughlings Jackson in 

1873. Seizure was known as the irregular electric expulsions within the human body although 

brain was never considered as the basis of it lately. Jackson could not fully understand the reason 

behind seizure activity but defined his findings as an electrical abnormality. 

 Electroencephalography (EEG) came into existence less than a century, when first testing of 

electrical theory for epilepsy was discovered by Hans Berger in 1930‟s. The main foundations 

which lead to the finding about brain, being the core of epilepsy and also confirmed it to be an 

electric disorder inside human body were the peculiar electric markings. The unsymmetrical 
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electrical movement that was being produced inside brain throughout an epileptic seizure proved 

to be the main cause of the problem, confirming the brain as its origin. In a ten years time the 

primary animal model for epilepsy was developed for verification of experimental methods. 

Afterwards multiple drugs were created and different treatment methods were suggested for this 

disease. Later it refined to the current range of treatments available.   

Even after enormous findings and knowledge about the seizure was widespread, the disease was 

not considered as a same type of illness until 1990‟s.Although nothing superstitious was believed 

about seizure attacks but still there was a discriminating behavior with these patients. Disabilities 

Acts in 1990‟s mentioned epileptics and they were refrained from being discriminated.  Despite 

significant knowledge of the seizure still there is room for research in dealing with this 

mysterious disease. Some fifteen years back from now a mass level conference was conducted 

by the Epilepsy Foundation of America to quest cure for epilepsy [1]. 

Seizure is an uncontrolled electrical activity inside human brain. It is found in Pakistan that about 

9.99 per 1000 population is affected from epilepsy, which is caused by the seizure. Most of them 

are below the age of 30 years. But a very small number of epileptic persons are treated in urban 

and rural areas; just below twenty eight and two percents in both areas respectively. Yet there‟s a 

huge gap among the people to fully understand the affliction of epilepsy. 

It has been assessed by the doctors that neonatal and youngsters those are being assumed to have 

seizure must be immediately taken to a physician with two weeks. If there is a neurological 

discrepancy, it will be detected through brain imaging. 50% of patients diagnosed with a seizure 

for the very first time, are expected to have other minor seizures. 25-30% of primary stage 

seizure patients were mainly caused by fever, head injury, excessive alcohol intake, electrolyte 

disturbance and brain infections [2]. Significant abnormalities can be observed in about 70% of 

cases, if EEG is performed within 2 days of a first seizure. Otherwise if it is delayed that 

outcome will be lower. Observing EEG data for a longer period of time can be a tedious task for 

any specialist. There is also a possibility of leaving out a potential seizure activity. For this 

purpose a system that can analyze hours of EEG, identify the correct time and area of brain 

affected by seizure will be of great assistance for the doctors. With the increasing number of 

seizure affected people globally, there needs to be a diagnosing method which shall not only 

provide correct identification but also an in-time cure of the disease. 
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EEG produces results in a single domain i.e. the time domain, as shown in figure 1.1 [3]. The 

changes that are occurring concurrently in the frequency domain cannot be seen by using only 

single area. To analyze the frequency part, Fourier Transform (FT) of time signal will be needed, 

as in figure 1.2 [3]. By this conversion the problem remains to be there, as in this part there will 

be no indication of time. 

 

 

Figure 1.1: EEG Signal of Single Channel [3] 

(Figure taken from TFSA toolbox by B.Boashash) 

 

The requirement aroused for a type of representation that can simultaneously present a joint time 

and frequency domain. This need was fulfilled by the joint time-frequency representation of the 

EEG signal. As shown in figure 1.3 [3]. Along the horizontal axis (x-axis), frequency changes 

can be observed, while signal variation along the time can be viewed along vertical axis (y-axis).  
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Figure 1.2: Fourier Transform of a Sinusoidal Time Signal [3] 

(Figure taken from TFSA toolbox by B.Boashash) 

 

 

Figure 1.3: Joint Time-Frequency (TF) Representation [3] 
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1.2 Research Objectives  

  This thesis explores the objective of seizure detection by merging image processing 

feature and time-frequency analysis. These efforts extend previously published models for 

classification of the disease. In light of the contemporary researches being carried on there is a 

swift advancement in this field of study. Multiple methods are available for seizure detection and 

classification. One of the targets of this undertaking is to improve the precision of the seizure 

classification, which includes the imaging technique of electroencephalography (EEG) signals, 

further inherent time-frequency feature extractor will be assessed and then performance 

evaluation of the classifier will be matched with other researches. 

 

1.3   Thesis Organization 

 Previously carried out studies are discussed in chapter 2. Time domain, frequency domain 

and joint time-frequency domain are elaborated in chapter 3. Different features that can be used 

for seizure detection is discussed in chapter 4.Also the mathematical derivation of time-

frequency image formation is explained. Afterwards electroencephalography (EEG) signal is 

elaborated with different frequency components that exist in EEG signals. Further in chapter 5, 

performance evaluation methods and the results obtained through application of distinct features 

are compared. Such as area under curve (AUC) is assessed as a receiver operating characteristic 

(ROC) requirement. For the classification part, support vector machine (SVM) is considered. 

Results obtained by SVM are presented. Chapter 6 concludes the contribution of current research 

thesis along with the suggestions for future work in this field of study. 
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CHAPTER 2: Literature Review 

 

Time-Frequency domain analysis may be new to some, but initial work in this particular area is 

found almost six decades ago. Eugene Wigner and Denis Gabor are the pioneers of this field of 

research. Wigner introduced the Wigner-Ville distribution and Gabor came up with the idea of 

Gabor transform.  Both worked in the Quantum mechanics. Later down the road numerous 

advancements took place in the TF analysis. Some of the work produced in biomedical 

engineering is discussed herewith, although it spreads out in other areas also.  

2.1 Wavelet Transform (WT) as a Feature Extractor 

H. R. Mohseni et al (2006) compared different methods for seizure detection. The dataset 

contained three sub-sets. Set one consists of healthy persons with their eyes open. Second set 

contains samples with epileptogenic zone, while the third set comprises of seizure activity. For 

detection of seizure various features have been tested. First one is the nonlinear based features. 

In this method Lyapunov exponent is estimated, which can further be done in two ways. Primary 

is by using the time series and secondary is performed by the motion equations of any dynamic 

system. But this only provides the largest Lyapunov exponents. Other method is calculation of 

local Jacobi matrices and results in all Lyapunov exponents. Jacobi-based method is used in this 

study. Second is the entropy based features. Entropy consists of calculating the amplitudes of 

components. It detects the spectral intricacy of the time domain. Third feature detection method 

is the Wavelet based features. Wavelet transform are the upgraded form of short term Fourier 

transform. It analyses the signal at multiple frequency groups. It has scaling and dilation 

functions, which are the outputs of low-pass and high-pass filters. The energy of the output 

coefficients were taken as the input for classifier. Fourth are the time-frequency based features. It 

can represent the changes that are occurring simultaneously in time and frequency domain. A 

single representation of a time signal in both domains allows for detection of variations in both 

spectral and temporal domains. Further there can be numerous methods of analyzing an EEG 

signal in time-frequency domain using multiple distributions. After signal is converted to joint 

time-frequency domain, maximum frequency is checked at each instant of time. Least mean 

square (LMS) is used for cubic curve. Further these extracted features are input to feed-forward 

back propagation neural networks (FBNN). The last approach is power spectrum. It takes 
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integration of all the frequency components that are above zero. The results show that variance 

based features show maximum accuracy in seizure classification of 100 percent. While time-

frequency, Lyapunov exponent, entropy, logistic regression and discrete wavelet transform 

follow in seizure detection with accuracies of 98.25 percent, 97.38 percent, 93.7 percent, 93 

percent and 86.25 percent. The variance based features show best results, which did not use any 

classifier, while other features were input to classifiers mostly based on neural networks. The 

limitation in these methods is there should be an unknown dataset for testing purpose [4]. 

Nasser Sadati et al (2006) compared different classifiers for the epileptic seizure detection 

problem. Previously Fourier transform were mostly applied for automatic EEG processes. As 

EEG contains four frequency bands, so it was considered that these bands have some 

characteristic waveforms. This study has come up with the idea of using wavelet transforms for 

feature extraction of the EEG signals. The database used for the evaluation contained 100 single-

channel EEG recordings. Total of five sets are discussed. First and second sets were taken from 

five healthy persons with a 10-20 electrode placement. Third and fourth set were taken of 

epileptic patients, but in seizure-free interval. Fifth dataset was taken in duration of seizure 

activity. In this study out of five sets available, three sets have been used. The signals were 

shortened into parts of 256 points (5.9s). Further these were given as an input to the discrete 

wavelet transform. The main purpose of using discrete wavelet transform is its transient nature, 

as it provides localization of variations in both temporal and spectral domain. The Daubechies 4 

wavelet filter has been applied in this research. The decomposition level achieved is up to fifth 

level. First the support vector machine (SVM) has been discussed for performance evaluation. It 

is an approach for a supervised classification. It places the training dataset as far as 

mathematically possible from the hyper plane. Further for increased distance for placement of 

testing and training dataset it uses radial basis function as the Kernel. After support vector 

machine the other classifier discussed is adaptive-network-based-fuzzy interference systems. The 

structure for the neuro-fuzzy network in this research uses a system of six inputs and one output. 

Further these inputs have a couple of Gaussian membership function and the rule base contains 

144 rules. Twenty epochs were used for the training purpose of adaptive neural fuzzy 

interference system. Least square and gradient descent methods were applied for fuzzy structure. 

Another classifier used was adaptive neural fuzzy network. This works along with the adaptive 

neural fuzzy interference system. This is activated by the activation functions of the adaptive 
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neural fuzzy interference system. The positive aspect of this classifier is that it has an adaptive 

neuron firing. For training purpose back propagation and gradient descent has been used. But 

there is a limitation with the back-propagation, as it can be trapped for an indefinite period in 

local minima. Also it requires long training time. The ratio between testing and training dataset is 

1:1. A total of two hundred samples were used for training purpose and the same number for 

testing. The results show that adaptive neural fuzzy network has the highest accuracy rate of 85.9 

percent followed by support vector machine with 83.1 percent. The adaptive neural fuzzy 

network provides the solution which carries the joint effect of both neural network and fuzzy 

systems [5]. 

A. Subasi (2007) presented epileptic classification model through EEG. A mixture of expert 

(ME) model and Multi-layer Perception Neural Network (MLPNN) are compared via discrete 

wavelet transform (DWT) as a feature extractor. Dataset used contained 100 single-channel EEG 

recordings. Total of five sets are discussed. First and second sets were taken from five healthy 

persons with a 10-20 electrode placement. Third and fourth set were taken of epileptic patients, 

but in seizure-free interval. Fifth dataset was taken in duration of seizure activity. For evaluation 

first and fifth sets are taken. First level of discrete wavelet transform (DWT) has been used. 

Daubechies filter of order 4 is being used for construction of approximation and detail 

coefficients. After these coefficients are constructed four statistical parameters are taken as main 

feature extractors. First parameter is taken as the mean of absolute values of wavelet coefficients 

in each sub-band. Second parameter is the average power of the wavelet coefficients in each sub-

band. Third is the standard deviation of the coefficients in each sub-band. Last one is the 

absolute mean of adjacent sub bands. First and second feature represents the signal‟s distribution 

of frequency. Third and fourth feature will depict the total change produced in frequency 

distribution. Mixture of experts (ME) is used as a classification algorithm. The output from 

feature extractors is input for the multi-layer perception neural network (MLPNN). For 

classification testing 1000 random samples have been taken for training neural networks and rest 

of the samples have been used for testing. Mixture of expert (ME) achieved an accuracy of 94.5 

percent while multi-layer perception neural network (MLPNN) had an accuracy of 93.2 percent. 

The cumulative of training and testing samples used are 1600, as the length of dataset increases, 

it requires more computational time. Best suited algorithm will train in a much less number of 

samples and provide better approximation results [6]. 
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Abdul hamit Subasi (2006) came up with a methodology for epileptic seizure detection using 

fuzzy neural networks. In this study, epileptic discharges that are produced in brain are recorded 

for seizure activity. As an input to the classifier discrete wavelet transform (DWT) is used. To 

acquire the dataset for the study, three males and two females who only had epileptic disorder 

were used. Four channel data was used. 500 EEG samples have been taken. Also data was taken 

of subjects who were not having any seizure. Discrete wavelet transform has been used for 

feature extraction. As it provide better temporal and spectral analysis. They allow for multi-

resolution decomposition of the input signal. A combination of high-pass and low-pass filter is 

applied to the input signal which can further be decomposed at a different frequency sub-band. 

The type of wavelet filter to be chosen depends upon the nature of signal. As there can be a 

signal which minimal noise or artifacts or on the contrary it can be of high noise. In this study the 

decomposition is taken up to the fifth level. While the Daubechies 4 filter of the wavelet family 

was used for decomposition. The discrete wavelet transform coefficients are then taken as an 

input by the dynamic fuzzy neural network. Fuzzy network has neuron as its main entity, which 

actually is a representation of biological neuron. When it reaches the maximum level of 

excitation it fires up. Fuzzy system has used Gaussian membership and center average de-

fuzzifier for the activation. There were two datasets of six and five subjects for training and 

testing purposes respectively. A total of 300 samples were taken from training subjects and 200 

samples from the testing subjects. Normal subject accuracy achieved by this method is 92.8 

percent while epileptic subjects detection had 92 percent accuracy. Overall accuracy of the 

dynamic fuzzy neural network is rated at 93 percent [7]. 

Hojjat Adeli et al (2007) anticipated a wavelet chaos method for the seizure classification of 

epilepsy patients. A wavelet filter is applied for the feature detection. Discrete wavelet transform 

(DWT) has an added advantage over Fourier transform that it produces multi-resolution output. 

Daubechies filter 4 has been used among various wavelet family filter. The decomposition is 

taken up to fourth level. Online available dataset has been used. It contained 100 single-channel 

EEG recordings. Total of five sets are discussed. First and second sets were taken from five 

healthy persons with a 10-20 electrode placement. Third and fourth set were taken of epileptic 

patients, but in seizure-free interval. Fifth dataset was taken in duration of seizure activity. Total 

of 300 EEG samples are taken. Average values and standard deviation are calculated for the EEG 

sub-bands. Correlation dimension (CD) and largest Lyapunov exponent (LLE) has been 
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calculated for all the sub-bands. It is concluded that alpha sub-band shows the maximum 

variations in LLE values among the three sets used for evaluation. Each band has its own chaotic 

performance.  So it is suggested that dynamics are not equally shared among all the sub-bands 

after the decomposition, rather it limits itself to a certain band. Increasing the number of 

parameters will alter the accuracy of EEG classification [8].  

Ling Guo et al (2010) proposed a way out for self-activating seizure detection through EEG, 

which has it findings on extracting line length features from Wavelet Transform (WT). Dataset 

consists of five subsets. It contains single channel EEG of 100 subjects. Each sample has 

duration of 23.6 s and sampling rate of 173.6 Hz. Discrete wavelet transform (DWT) was then 

applied to each sample with a cut-off frequency of ¼ of sampling frequency. Down sampling of 

the signal is performed till the fourth level of signal decomposition. In each decomposition level 

the frequency component is doubled whereas time sampling is reduced to half. The 

decomposition level is taken up to fourth. Daubechies (dB4) has been used as the wavelet filter 

as it provides better smoothing of the signal. Line length feature is then applied to the 

decomposed signal. This feature is responsive to amplitude and frequency changes. The output 

of line length feature of each subset sample is then fed to artificial neural network (ANN) for 

classification. Sensitivity, specificity and accuracy have been tested as performance evaluation 

metrics. Accuracy of up to 99.77 percent has been achieved by this method. The limitation in this 

work is the database used has been pre-processed for artifact removal through visual inspection, 

whereas in actual clinical situations artifacts can cause a change in classification [9]. 

Deng Wang et al (2011) proposed an epilepsy classification based on wavelet packet entropy 

features. It contained 100 single-channel EEG recordings. Total of five sets are discussed. First 

and second sets were taken from five healthy persons with a 10-20 electrode placement. Third 

and fourth set were taken of epileptic patients, but in seizure-free interval. Fifth dataset was 

taken in duration of seizure activity. The feature extraction method used in this study is the 

wavelet packet transform (WPT), which is derived from the wavelet transform. Disintegration of 

the input is produced by wavelet transform by high and low pass filter. At each stage multi stage 

decomposition is performed. Wavelet transform has the ability to show transients in both 

temporal and frequency domain. The features derived of the wavelet transform to make up a 

wavelet packet transform (WPT) are maximum, minimum and mean of the absolute values of the 

coefficients and standard deviation in each sub-band. Further a best based wavelet 
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decomposition packet is measured. For this entropy feature is selected, after decomposition of 

signal at each level above mentioned values is calculated. Those wavelet coefficients which 

provide maximum values are considered to be most complex in computations, while those with 

relatively lower entropy parameter values are considered for the feature extraction. After the 

feature extraction a number of classifiers are also discussed. First is the k-NN classifier. It 

searches a test sample with the nearest training sample for classification. Next considered is the 

hierarchical classification system. It adds on another aspect to the k-NN classifier, with input of 

reference or background behavior to classify a test sample. For the classification 100 EEG 

samples were used. M-fold cross-validation was used. All of the five wavelet family filters were 

run over for best possible accuracy. 2-, 5- and 10-fold cross validation achieved accuracy of 

99.355, 99.420 and 99.449 percent. The limitation in this study is setting the value for the 

minimal confidence level (MCL), which assures the completeness of the training dataset. Its 

value varies from 0<MCL<1. Also other classifiers such as support vector machine (SVM) and 

neural networks can add on to another dimension [10]. 

Yusuf U Khan (2012) with associates proposed a seizure detection approach in neonatal case. 

The dataset used in this study available online that was collected at Children's Hospital Boston. 

23 subjects were used for EEG recordings. 10-20 electrode system has been used consisting of 

23 channels. Out of 23 subjects only 10 subjects recording were used in this research. High 

frequency component of 60Hz is removed from this dataset.  For feature extraction first 

histogram of the samples are taken. Histogram is taken to extract three features, first is the ratio 

of variance, second is ratio of absolute mean and third is kurtosis and skewness. As seizure 

activity is mostly present in lower frequency components, so wavelet transform is used to 

disintegrate the signal in low frequency. Daubechies 4 wavelet filter was used up to the fifth 

level. The feature vectors were given input to the support vector machine (SVM). The training to 

testing ratio was 4:1. The average number of false detection per hour was 1.1 and latency was 3.2 

seconds. Improvement in accuracy can be attained by escalating the number of features [11]. 

2.2 Classification through Neural Network (NN) 

Hamid Hassanpour et al (2004) discussed seizure detection of neonates using time-

frequency domain. Dataset for this research was collected at the Royal Women‟s Hospital, 

Brisbane, Australia. 10-20 electrode placement method was used over neonatal aged between 
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two days to two weeks. Twenty channel EEG recordings were taken at 256Hz. Seizure activities 

were visually marked by a neurology specialist. First the signal is converted into time-frequency 

domain for further processing. To reduce the effect of cross-terms and acquiring low frequency 

components behavior B-distribution has been considered as the time-frequency distribution. For 

feature extraction singular value decomposition (SVD) has been used. At the start filtering is 

performed to extract the low-frequency components. Signals below 10Hz have been drawn out. 

Then the signal is divided into 30 s epochs. The third step was to reduce the no of samples per 

second. From 256 samples it was reduced to 20 samples. Then time-frequency representation of 

the above mentioned epochs are taken. Afterwards singular value decomposition has been 

applied for computing left and right singular values that correspond to the time frequency 

domain. Distribution functions are being assessed through the density functions. Next step was to 

figure out the histogram that related to the distribution function. The output of the four singular 

value matrices that were computed from histogram was taken as an input by the neural network 

classifier. The feed-forward neural network was used as a classifier. For training purpose of the 

classifier, 200 samples of both seizure and non-seizure were being used. The aggregate of 

iterations performed to train the classifier was 800. The remaining dataset of 100 seizure and 600 

non-seizure samples was being tested. The accuracy achieved by this method was 90 percent. 

The limitations of this work is that it only contained features that are applicable on low 

frequency components, while there can only be indication of seizure in high-frequency 

components which will result in reduction of accuracy [12]. 

A. T. Tzallas et al (2007) proposed a method for the automated seizure detection. Dataset has 

been tested which include both epileptic and normal subjects. Single-channel EEG was taken of 

100 patients. Each of which had a 23.6-second duration. Smoothed pseudo-Wigner-Ville 

distribution (SPWVD) is used as the Time-frequency distribution. The proposed distribution 

helps in cross-term reduction. Smoothing window of 64-point length was used. Frequency 

resolution of (64, 128, 256, or 512) was varied. Different time windows of (3 or 5) and frequency 

sub-bands of (4, 5, 7, or 13) have been taken as feature set. Advanced Neural Networks (ANN) 

has been tested for the functional evaluation of projected method. Accuracy achieved is between 

(97.72-100) percent. The limitations in the above study are that multiple artifacts in the dataset 

were removed beforehand after visual inspection. So the evaluation under real clinical 

environment is required. Also in the dataset frequency components above 40Hz were not taken 
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into consideration. Only half of dataset was used for testing while other half was used for 

training neural network. Furthermore different feature reduction methods and alternate classifier 

can be tested for evaluation [13].  

Alexandros T. Tzallas et al (2007) provided the importance of time-frequency distributions for 

the seizure detection in EEG. Dataset used in this study is publicly available. It contains of five 

sets. Out of which three sets have been used in this research. Set one consists of healthy persons 

with their eyes open. Second set contains samples with epileptogenic zone, while the third set 

comprises of seizure activity. Three different types of classes have been used for this study. In 

the first process only two classes have been tested, i.e. seizure and normal. In the second process 

one class is added on that is of seizure free samples. In the third process all five classes have 

been tested. The number of samples in each of three classes is 200,300 and 500 respectively. 

Thirteen various time-frequency distributions have been used independently. The smoothing 

window in all of the distributions was of 64-point length. For feature extraction power spectral 

density has been used. Further the signal was decomposed in different frequency sub-bands of 0-

2.5Hz, 2.5-5.5Hz, 5.5-10.5Hz, 10.5Hz-21.5Hz and 21.5Hz-43.5Hz. This feature signifies the 

division of energy over the time frequency domain. Each feature vector contained 16 features. 

For the classification purpose feed-forward ANN was used. Input is equivalent to the size of 

feature vector with an additional hidden layer 5*N neurons and the number of classes equals the 

outputs. Among the thirteen various time frequency distributions reduced interference produced 

the maximum accuracy of 89 percent. The least was 54.6 percent by Margenau-hill. The 

limitations in this study are the less number of parameters, if increased than it can produce better 

approximation of the seizure activity. Also the EEG recordings are of longer duration, so there 

needs to be a modification to cope up with this also [14]. 

Varun Bajaj and Ram Bilas Pachori (2013) presented a theory for seizure detection through the 

area if instantaneous mode functions (IMF). The dataset used in this research is publicly 

available. It is taken from 21 patients that are suffering from fractious central epilepsy. The data 

was recorded using 6 channels EEG equipment at the epilepsy centre of the University Hospital 

of Freiburg, Germany. The samples were taken at a frequency of 256 Hz. Out of the 21 patient‟s 

data, only 9 of them are used for this work, which makes a total of 90 EEG signals per channel, 

out of which 51 samples are having ictal activity while rest of 39 are ictal free. Empirical mode 

decomposition (EMD) transforms the signal into a defined set of amplitude and frequency 
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modulated components and known as the intrinsic mode functions (IMFs). The signal‟s Hilbert 

transform is taken for the analytic representation, further modified central tendency measure 

(CTM) is used for visual information. The area of each IMF is calculated through the CTM in 

imaginary plane. A set of three rules have been defined for the detection of seizure through the 

area calculation. After the decision rules are met it has been drawn out that first three IMF‟s of 

the EEG signal are helpful in seizure detection. Error rate detection (ERD) is computed with 

other performance parameters, which resulted in a reduced percentage of 40 percent as compared 

to 79 percent in other studies performed on same dataset. The limitations in this research is that 

noise reduction is not catered for which may produce false detection [15]. 

2.3 Classification using Support Vector Machine (SVM)  

Bruno Gonzalez-Vellon et al (2004) gave a methodology for seizure detection through 

support vector machine (SVM). For feature extraction a window function is used, which is run 

over the EEG signal. Windows is over-lapped for better resolution. As there is a variation in the 

signal‟s energy during ictal activity, so energy is taken as the first feature. As window function is 

used so each frame‟s energy is calculated. The second feature used is the damping of the 

frequency during ictal activity. Dominant frequency of each window is calculated. The third 

feature used is the cyclostationarity of the signal. It calculates the energy spread over the 

frequency components before the seizure arrival. At the seizure activity all the frequency 

components drastically lose their sketch.  SVM using radial basis function Kernal has been 

applied. 40 samples were tested over the classifier. Sensitivity of 100 percent was achieved, with 

no false positives. The specificity was reported to be 80 percent [16]. 

Thasneem Fathima et al proposed a wavelet based detection for seizure activity. The seizure 

detection problem involves three stages. First is the pre-processing stage, next is the feature 

extraction and third is the classification. As EEG signals contain artifacts due to movement of 

eyes and their blinking. Also A/C supplies also have an effect on EEG recordings. So pre-

processing is applied to remove these major artifacts. Next is the feature extraction stage. Here 

wavelet transform (WT) have been applied to the signal. Because of the non-stationary property 

of the EEG signals it provides better representation. Also it provides varying windows for 

different frequency components. Wavelet transform is an advanced form of Fourier transform. 

As in Fourier the window is chosen once, whereas in wavelets it changes in each level. In this 
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study two datasets have been used, first is from the five healthy persons, showing no seizure 

activity, whereas the other one is having seizure activity. The number of decomposition level is 

taken up to fourth. The Daubechies 2 wavelet filter family was used. The four features taken 

from the wavelet coefficients are the maximum, minimum, mean and standard deviation of the 

wavelet coefficients in each sub band. The output of these feature vectors was provided to a 

classifier for evaluation. A training set of 40000 elements and testing of 24000 elements was 

input to the classifier. It provides an accuracy of 99.5 percent [17]. 

Ram Bilas Pachori (2008) proposed a method for distinguishing ictal and non-ictal signals. 

Empirical mode decomposition (EMD) has been proposed for feature extraction. The 

decomposed signals make up a set of band-limited functions known as intrinsic mode functions 

(IMF). Mean frequency is computed using Fourier-Bessel expansion. The coefficients produced 

of this expansion are unique for every signal. Calculation of empirical mode decomposition 

(EMD) prior to mean frequency is essential for non-stationery signal type. In this study mean 

frequency (MF) estimation of the intrinsic mode function (IMF) is taken as feature extractor. 

Dataset contains 100 EEG recordings taken of a single channel. Out of these five sets, two sets 

are combined to form a single class while one is taken as another class. The two sets that were 

taken from subjects in seizure-free sections are combined to form one set. The other set is of 

seizure containing samples. The mean frequency values have been calculated for both types of 

datasets by using IMF. The difference in values of mean frequency for ictal and non-ictal 

samples is that it will be small for former and large for later mentioned samples. The classifier 

used is Kruskal-Wallis test. The limitations in this study are that the intrinsic mode function 

values are different for each decomposed sample. As these values are relying on frequency 

content of each signal. So when comparison is made between any two samples it might relate to 

different frequency bands. Also for clinical practice it should be tested on out-of-sample dataset 

[18]. 

Boualem Boashash and Ghasem Azemi (2014) presented a time-frequency based filter design for 

the seizure detection. The filter will remove the additive noise of the EEG recordings. Design is 

based on the multi-channel EEG equipment with a 10-20 electrode placement technique. As 

there are a numerous quadratic time-frequency distributions (QTFD) that can be used, this 

approach has proposed Wigner-Ville distribution (WVD) and cross Wigner-Ville distribution. 

Also another QTFD that has its basis on signal ambiguity domain representation, also named as 
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Radon-ambiguity detector is approached. The proposed methodology is tested over newborn 

EEG signals for seizure detection. Also different t-f kernels are also tested for evaluation. The 

cross Wigner-Ville distribution outperforms other QTFDs with an area under curve (AUC) value 

of 0.95. The performance of these can be improved using data-dependant TFD‟s and more 

efficient methodology for implementing TFDs [19]. 

Boualem Boashash et al (2014) discussed various quadratic time-frequency distributions 

(QTFDs) for the seizure detection in neonatal case. It uses two different databases, one for 

artifact detection and other for seizure detection. First database consists of EEG samples taken of 

5 subjects at the Royal Brisbane and Women's Hospital, Brisbane, Australia. The recordings 

were taken for 28 minutes with a sampling frequency of 256 Hz. Second database consisted of 

sixty minutes of EEG recordings from 39 newborn at the Cork University Maternity Hospital, 

Ireland for Qatar University as part of a Qatar National Research Fund (QNRF) funded NPRP 

project. A total of fifteen features were being run over for the categorization of seizure 

containing signals. Three features were inherently from frequency domain and five from time 

domain, which were transformed to be applied on the joint time-frequency domain. Rests of the 

eight features were taken from inherent time-frequency domain. Further area under curve (AUC) 

was calculated for each feature using six different quadratic time frequency distributions. AUC 

for each dataset was calculated in the same way. Further these features were given to support 

vector machine (SVM) for the artifact detection and seizure classification. For seizure 

classification smoothed Wigner-Ville distribution (SWVD) gave maximum accuracy of 93.75 

percent. Leave one-out cross validation method was used for the classification. The limitation is 

that the features are necessarily extended from time only and frequency only features [20]. 

The literature survey shows that EEG classification using TFDs as images is a new area of 

research where further work needs to be done. Furthermore, 2-D DWT has not been optimally 

utilized for EEG signal analysis in spite of its popularity in biomedical image processing [21].  
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CHAPTER 3: Time-Frequency Representation of Non-Stationery Signals 

 

3.1 Introduction 

 Mostly in real world applications we are dealing with non-stationery signals. Stationery 

signals are considered those where frequency content remains same over a period of time. On the 

contrary if the frequency component is varying rapidly, then it will be taken as a non-stationery 

signal.  

3.2  Time Domain 

 Time representation can be defined as s(t). In time domain analysis, frequency component 

is averaged over all time. Such as if we have a signal of the form given in equation 3.1: 

s(t) = A sin (2πfot)                                                             (3.1) 

In above mentioned equation if s (t) is plotted against time (t), then visualization of oscillating 

frequency component (fo) will be a complex task. So only temporal domain is unable to show 

what is happening in frequency domain. 

 

Figure 3.1: Time Dominion Representation of EEG [3] 

(Figure taken from B.Boashash TFSA toolbox) 
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3.3  Frequency Domain 

 Any time signal can be transformed into frequency domain by simply taking its Fourier 

Transform. The transformation is represented as: 

       s (t)t↔f S(f) 

Frequency domain has two parts. One is the real and other is the imaginary part. In spectral 

domain time is averaged over all frequencies. But it only shows the frequencies existing in the 

signal, there isn‟t any indication of what time these frequencies were present. As shown in figure 

3.1, a time varying signal that consists of one or more than one frequency component can be 

shown by taking its Fourier transform. As displayed in figure 3.2. Along the abscissa is the 

frequency part and along the ordinate is the power spectral density (PSD), which is the squared 

magnitude spectrum. 

 

Figure 3.2: Frequency Dominion Representation of EEG [3] 

(Figure taken from B.Boashash TFSA toolbox) 
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To observe the time observations of any particular frequency, the signal has to be converted back 

into time domain. This can be achieved by taking the Inverse Fourier Transform. But if the signal 

is non-stationery than this will be a tedious task to simultaneously observe changing in both 

domains. 

3.4  Joint Time-Frequency Domain 

 As discussed in the previous two sections, only time or frequency representation of a non-

stationery signal is insufficient to describe the complete nature. To accomplish this there has to 

be a way that can simultaneously provide bi-domain observation. One axis will represent time 

while other will show frequency. Constant-t will tell what frequencies are present in any 

particular time, while constant-f will depict the times at which any frequency is present. So 

moving out of the conventional time and frequency representations, bi-dimensional domain will 

be a convenient mode of analyzing a non-stationery signal. As a result of which a time-frequency 

(t-f) space will be developed. To better understand the concept of this, we will see a simple 

illustration of t-f domain. 

 

Figure 3.3: Time-Frequency (T-F) Image Representation of a Seizure Signal 
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The figure illustrates the t-f distribution. The input is a linear time domain signal. While time 

length of the input signal is 256 seconds. Quadratic time-frequency distribution of extended 

modified B, applied on the input signal, to attain a t-f image. As obvious from the figure 3.3, the 

constant-t depicts the frequencies present at any particular instant, while visualization of 

constant-f along the time axis gives the occurrence of a frequency at any given time.  

 

3.4.1 Time-Frequency Distribution (TFD) Formulation 

 Quadratic TFD‟s (QTFD) will be considered for this study. As these are the type of TFD 

which produce images in TF domain that assist in detection and classification, through various 

feature applications. Further insight of QTFD‟s is discussed in later part. 

Quadratic time-frequency distributions are considered to be most fitted approach for the non-

stationery signal analysis in various applications. Mathematically they can be devised as [22]:  

 

     𝜌 𝑡,𝑓 =  𝑊𝑧  𝑡,𝑓 ∗∗(𝑡 ,𝑓)  𝛾 𝑡,𝑓                                               (3.2) 

In the equation 3.2, 𝜌 𝑡,𝑓  indicate the time-frequency distribution, 𝑊𝑧   𝑡, 𝑓  represents the 

Winger-Ville distribution (WVD), 𝛾 𝑡,𝑓  is the T-F kernel of the distribution, and ∗∗(𝑡 ,𝑓) 

denotes 2D convolution function in time and frequency. With reference to equation 3.2,𝛾 𝑡,𝑓  is 

2D smoothing filter, applied to get a smoothed version of Wigner-Ville distribution (WVD). 

Different quadratic distributions will emerge by changing the Kernal. Each class of distribution 

has its own merits and de-merits. It depends upon the requirement for choosing the appropriate 

Kernal. WVD is the centre class described by a T-F Kernal as𝛾 𝑡,𝑓 = 𝛿 𝑡 𝛿(𝑓), where δ is the 

Dirac delta function. For a real-valued signal𝑠 𝑡 , the WVD is defined as: 

 

𝑊𝑧 𝑡,𝑓 =   𝑧
+∞

−∞
 𝑡 +  

𝜏

2
 𝑧∗  𝑡 −

𝜏

2
 𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏                            (3.3) 

In the equation 3.3 𝑧 𝑡 = 𝑠 𝑡  is the analytic associate of 𝑠 𝑡  and 𝑧∗(𝑡) its complex conjugate. 

Among different quadratic TFD‟s, WVD is a better option for the joint T-F image formation. But 

there are artifacts produced in a multi-component input signal case. As it‟s the case in the EEG 

signals. With the introduction of cross-terms the true image representation will become a 

difficult task. To overcome this reduced interference TFD‟s can be applied. Using equation 3.3, 

equation 3.2 can be expressed as [23]: 
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𝜌 𝑡,𝑓 =  ℱ𝜏→𝑓𝐺 𝑡, 𝜏 ∗𝑡 𝑧  𝑡 +
𝜏

2
 𝑧∗  𝑡 −

𝜏

2
  

 

=    𝐺 𝑢, 𝜏 𝑧  𝑡 − 𝑢 +
𝜏

2
 𝑧∗

+∞

−∞

+∞

−∞
 𝑡 − 𝑢 −

𝜏

2
 𝑑𝑢𝑒−𝑗2𝜋𝑓𝜏 𝑑𝜏                       (3.4) 

 

In the above expression𝐺 𝑡, 𝜏 =  ℱ𝑓⟶𝜏
−1  𝛾 𝑡,𝑓  shows the time-lag Kernal of the time-

frequency distribution. Among the various distributions, Extended Modified B Distribution 

(EMBD) is considered as the prime suitable for representation of EEG signals. 

For any given analytic signal 𝑧[𝑛] associated with the real discrete time signal 𝑥[𝑛],𝑛 =

0,1, . . . ,𝑁 − 1while the discrete side of equation 3.4 is given by equation 3.5 [23]: 

 

𝜌𝑧 𝑛,𝑘 = 2 𝐷𝐹𝑇𝑛→𝑘 𝐺 𝑛,𝑚 ∗𝑛  𝑧 𝑛 + 𝑚 𝑧∗ 𝑛 − 𝑚                                      (3.5) 

 

For an N-point real signal 𝑥 𝑛 , 𝜌[𝑛. 𝑘] is represented by a 𝑁 × 𝑀 matrix of 𝜌𝑧 , where𝑀 𝑀 ≥

𝑁  is the number of FFT points used in calculating the TFD. Note that 𝑛 = 𝑡and 𝑘 =
2𝑀

𝑓𝑠
𝑓 where 

t and f are the continuous time and frequency variables, and 𝑓𝑠is the sampling frequency of the 

signal. 𝐺 𝑛,𝑚 is the Time-lag Kernal.Table 3-1 shows various time-lag kernels that can be used 

to define time-frequency distribution for image formation [23]. 

 

Table 3-1: Time-lag Kernels of the TFD‟s [23] 

Distribution 𝑮[𝒏,𝒎] Parameters 

WVD 𝛿[𝑛] N/A 

CWD 
 𝜋𝜍

2 𝑚 
𝑒𝑥𝑝  

−𝜋2𝜍𝑛2

4𝑚2
  𝜍 = 5 

MBD 
𝑐𝑜𝑠−2𝛽𝑛

∑𝑛𝑐𝑜𝑠−2𝛽𝑛
 𝛽 = 0.01 

EMBD 
𝑐𝑜𝑠−2𝛽𝑛

∑𝑛𝑐𝑜𝑠−2𝛽𝑛

𝑐𝑜𝑠−2𝛼𝑚

∑𝑛𝑐𝑜𝑠−2𝛼𝑚
 𝛼 = 0.01,𝛽 = 0.19 

SPEC 𝑤 𝑛 + 𝑚 𝑤[𝑛 −𝑚] 𝑤 𝑛 : Hamming,
𝑁

4
samples long 

 



22 
 

The parameters 𝛼,𝛽 and σ are positive and real, 𝑤[𝑛] represents the windowed function used in 

SPEC, while N is the length of the signal under analysis in Table 3-1. 

3.5    Discussion 

 In daily life mostly we are dealing with the non-stationery signals. EEG is one of the 

examples of it. Multiple frequency components are present in a single EEG waveform. Acquiring 

of various channel signals and simultaneously converting them into image to extract information 

requires a swift technique. The joint Time-Frequency distribution that has been considered in the 

current chapter shows a possible way out to accomplish the task. Furthermore Quadratic Time-

Frequency Distribution (QTFD‟s) have been discussed, which are considered as a viable option 

among the TFD‟s for our case, i.e. EEG. 
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CHAPTER 4: PROPOSED METHOD 

 

4.1     Introduction 

 Our body is continuously producing potential through chemical reactions taking place 

inside. The human brain senses these signals as they are occurring. Electroencephalography 

(EEG) is a non-invasive method of measuring these potential. Previously, a trained 

neurophysiologist used to visually monitor EEG for the abnormality detection. The advancement 

in technology has eased the way of analyzing EEG. In this chapter we will discuss four features. 

T-F flux, T-F flatness and Renyi normalized entropy features are used in B. Boashash research, 

while Discrete Wavelet Transform (DWT) has been proposed in this study. 

4.2 EEG Signal Classifications 

 Apart from numerous biomedical signals, EEG is considered as one of the complicated 

signal to correctly understand. An inexperienced observer won‟t be able to extract the correct 

information, as different regions of our brain represent a unique part of human body and 

electrodes are placed accordingly for measurements. 

 

 

Figure 4.1: EEG Electrodes 10-20 System [20] 
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EEG signals are acquired through electrodes placed over the human head. International 

placement of EEG electrodes is known as 10/20 system. The numbers 10 and 20 represent the 

percentage distance between any two adjacent electrodes, right to left and front to back. Figure 

4.1 depicts the electrodes placement over the head [20]. 

The recorded waveforms imitate the brain electrical activity. EEG signal have very minimal 

power amplitude, in milivolts (mV). The frequency components that are present in EEG are: 

 

 

Figure 4.2: EEG Frequency Bands [24] 
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 Up to 3Hz: The frequency range of up to 3Hz is known as Delta. These waves are slow 

but high in amplitude. It is found in multiple sleep stages of up to 1 year neonatal. 

 3.5 to 7.5 Hz: This range is considered relatively a slow activity and named as Theta 

frequency band. Children that are up to 13 years of age are found to have these waves, 

but are not acceptable for adults in awake condition. 

 7.5 to 13Hz: Categorized as Alpha, are mostly observed in back side of the head on either 

part. These waveforms are elevated in magnitude on prevailing region. Alpha band is 

obvious during eyes closed and relaxation mode, and vanishes while eyes are open or 

thinking operation of brain. It is a main band observed in normal relaxed adults of age 

above 13 years. 

 Greater than 14Hz: It is a relatively fast movement, known as Beta waves. These are 

commonly seen on each side and distributed proportionally. It is considered as a normal 

rhythm. It is prevailing in patients who are watchful, restless or having their eyes open. 

Figure 4.2 shows the electroencephalography (EEG) frequency bands of Delta, Theta, Alpha 

and Beta [24]. 

4.3    Feature Selection 

Extraction of features always remains a key factor of any overall system for recognition 

and classification, moreover for any algorithm that requires automatic detection of particular 

incident that is occurring in an uncontrolled manner. Dealing with the EEG signals for seizure 

detection, we require features that can distinguish any un-natural behavior in any of the above 

mentioned waveforms. There are numerous temporal and spectral features that can be applied for 

our system. But using too many features is not always a favorable option. Also if there is a need 

for a swift operation, along with the rate of incoming data is high, increasing number of features 

will never be a viable option. Although on the contrary if there are less numbers of feature, there 

is a possibility of a false detection or may be even overlooking a potential risk. Some of the 

features applied in this study are discussed herewith. 

4.4.1     Time-Frequency (t-f) Flux  

 Spectral flux is the measure of only frequency change in a signal, dealing with the 

stationery signals. T-F flux is the modified form of spectral flux for signal‟s energy change 

detection in both temporal and frequency domain. It deals with the non-stationery signals such as 

the EEG signals. The mathematical form of which is shown in equation 4.1 [22]: 
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                           𝑇𝐹𝐹𝐿𝑈𝑋 =  ∑ ∑ |𝜌 𝑛 + 𝑙,𝑘 + 𝑞 − 𝜌 𝑛,𝑘 
𝑀−𝑞
𝑘=1

𝑁−𝑙
𝑛=1                                           (4.1) 

The parameters 𝑙 and 𝑞 are dependent on the rate of t-f flux change. The values used are 

𝑙=1,𝑞 = 1,𝑁 = 256 𝑎𝑛𝑑 𝑀 = 256 . t-f image is of dimension 256x256, so both the parameters 

𝑁 and 𝑀 are choosen accordingly. 

As EEG seizure signals change their energy slowly along both time and frequency, so t-f flux is 

used to identify these variations. EEG normal activity in „awake‟ condition can also show an 

arbitrary pattern like seizure signals. While taking the (t, f) flux of EEG signals, we can 

distinguish between both normal and seizure states. (t,f) flux will have a lower value for seizure 

activity and high value for normal activity.  

 

4.4.2      Time-Frequency (t-f) Flatness 

 Spectral flatness is a measure of distinction between a pure noise and a no-noise signal. 

The time-frequency (t,f) flatness feature will distinguish between the noises or no-noise in an 

EEG image. Also it determines whether EEG signal energy is widespread on concentrated in 

specific regions. If the t-f flatness has an increased value than it depicts that the signal‟s energy is 

equally distributed, whereas if we get a decreased value this means that the energy is 

concentrated in some parts of the over the EEG image. In addition to the above, the t-f flatness 

also assists to distinguish between TFD‟s having signal components entrenched in noise and 

those having pure noise.     

Time-frequency flatness is the ratio of geometric mean and arithmetic mean of a TFD image. 

The transformed function from spectral flatness to t-f flatness can be mathematically expressed 

as [22]: 

                           𝑇𝐹𝐹𝑙𝑎𝑡𝑛𝑒𝑠𝑠 =
(𝛱𝑛=1

𝑁 𝛱𝑘=1
𝑀 𝜌 𝑛 ,𝑘 )

1
𝑁𝑀

1

𝑁𝑀
∑ ∑ 𝜌 𝑛 ,𝑘 𝑀

𝑘=1
𝑁
𝑛=1

                                                                 (4.2) 

 

The parameters 𝑁 and 𝑀 both have values of 256 in the above equation (4.2). While 𝜌 𝑛,𝑘  is 

the TFD image. 

 

4.4.3      Renyi Normalized Entropy 

 The spectral entropy (SE) is the amount of irregularity in the proportion of the signal 

energy in the frequency domain. It can be expressed as [22]: 
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                                𝑆𝐸(𝑓) =  −∑ 𝑍𝑥 𝑘 log2 𝑍𝑥  𝑘 
𝑀
𝑘=1                                                           (4.3) 

Where 𝑍𝑥  𝑘  is defined as [22]: 

   𝑍𝑥 𝑘 =  𝑍𝑥 𝑘  
2  ∑  𝑍𝑥 𝑘  𝑘

2
                                                             (4.4) 

In time-frequency domain, spectral entropy expression will be changed. Shannon Entropy (SE) 

will be expressed as [22]: 

                 𝑆𝐸(𝑡 ,𝑓) = −∑ ∑
𝜌𝑧𝑥  𝑛 ,𝑘 

∑𝑛 ∑𝑘𝜌𝑧𝑥  𝑛 ,𝑘 
log2  

𝜌𝑧𝑥  𝑛 ,𝑘 

∑𝑛 ∑𝑘𝜌𝑧𝑥  𝑛 ,𝑘 
 𝑀

𝑘=1
𝑁
𝑛=1                                        (4.5) 

Raised SE (t,f) value depicts that signal energy is homogeneously extended in the (t,f) plane. Low 

SE (t,f)value depicts that signal energy in clustered in particular regions in the (t,f) plane. Shannon 

entropy has restrictions, that it can‟t be used for TFD‟s which assume negative values. To 

overcome this, normalized Renyi Entropy is introduced. The mathematical form of which is 

written in equation 4.6 [22]: 

                        𝑅𝐸(𝑡 ,𝑓) =
1

1−𝛼
log2 ∑ ∑  

𝜌𝑧𝑥  𝑛 ,𝑘 

∑ ∑ 𝜌𝑧𝑥  𝑛 ,𝑘 𝑘𝑛
 
𝛼

𝑀
𝑘=1

𝑁
𝑛=1                                                 (4.6) 

Where in above equation 𝛼 is an odd integer and 𝛼 > 2. 

 

4.4 Discrete Wavelet Transform (DWT) 

 Wavelets provide simultaneous spatial and frequency representations of the images. The 

methods based on wavelets divide the images into sub bands in terms of space and frequency; 

hence encourage their use for feature extraction. Furthermore, the coefficients representation 

allows for data reduction, making it easy to handle and process the data. A considerable set of 

wavelet families are available, derived from their respective mother wavelet. We based DWT on 

the Haar Wavelet Transform. Wavelets provide multi resolution representation which keeps 

intact the global as well as local information.  

Wavelets are categorized as Continuous wavelet transforms (CWT) and discrete wavelets 

transform (DWT). Mostly in real life problems we are facing non-stationery signals, wavelets are 

highly recommended for these sorts of situation because of their finite oscillator motions. 

Wavelet transform offer joint “time-frequency” resolution in contrast to only Fourier transform 

which present only frequency analysis.  

Mother wavelet is used as a function for further analysis. Different methods are applied over 

temporal and frequency domain. Time analysis is undertaken with a tapered, high-frequency 
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transformation of the mother wavelet, whereas frequency analysis is accomplished with a 

widened, low-frequency transformation of the mother wavelet. Basic function can be represented 

in a number of wavelet forms, with multiple linear combinations of wavelet coefficients. These 

different combinations allow for data processing with these coefficients.  Furthermore optimal 

wavelets can be chosen that best adapts to a particular problem.  In addition to this, the 

coefficients representation in this manner allow for data reduction, making it easy to handle and 

process the data. 

Wavelets are decomposed as Haar, Daubechies and Symmlets. Haar wavelet is the simplest form 

of decomposition. It consists of a mother wavelet (Ψ) and a scaling function (Φ). The two 

functions can be defined as shown in figure 4.3. 

 

 

 

 

 

 

 

   

   Mother Wavelet Ψ (t)                            Scaling Function Φ (t) 

Figure 4.3: Haar Wavelet Filter Function 

 

The Haar scaling function is defined as in equation 4.7 [25]: 

        ∅ 𝑡 =  
1,       0 ≤ 𝑡 < 1
0,    𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒 

                                                                   (4.7) 

The Haar wavelet mother function is expressed as in equation 4.8 [25]: 

𝜓 𝑡 =  

1,             0 ≤ 𝑡 <
1

2
,

−1,          
1

2
≤ 𝑡 < 1,

0,         𝑜𝑡𝑒𝑟𝑤𝑖𝑠𝑒

                                                                    (4.8) 

Daubechies wavelets in comparison to Haar wavelets are defined in a different manner. Mainly 

the difference is the mother wavelet and the scaling function. There are a number of Daubechies 

wavelet transforms but all are mostly alike. The scaling numbers are represented as [25]: 

1 

 

t=1 t=0 t=1 t=0 t=0.5 
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                    𝛼1 =
1+ 3

4 2
,     𝛼2 =

3+ 3

4 2
,    𝛼3 =

3− 3

4 2
,    𝛼4 =

1− 3

4 2
                                              (4.9) 

 

While the Daubechies mother wavelet will be expressed as [25]: 

  𝜓 𝑡 = −𝛼4 2𝑡 + 𝛼3 2𝑡 − 1 − 𝛼2 2𝑡 − 2 + 𝛼1(2𝑡 − 3)                         (4.10) 

Discrete Wavelet Transform (DWT) has been used in both signal analysis and image processing, 

for feature extraction and noise reduction applications. We will look into the details in our work 

in forthcoming documentation. Type of wavelet family filter and level of decomposition to reach 

is also important in image analysis [25]. 

 

4.5    Proposed Methodology  

 The proposed technique will commence from the time-frequency image representation, 

followed by the feature extraction by discrete wavelet transform (DWT).Extracted features will 

be evaluated for performance by the support vector machine (SVM) classifier. The methods that 

will be used for seizure detection and classification are discussed in forthcoming sections. 

4.5.1 Time Representation of EEG Signal 

 As discussed in previous chapter the EEG signals are 1-D, with amplitude changing 

over a time scale. Figure 4.4 shows the EEG sample of a seizure signal. 

 

Figure 4.4: EEG Test Sample of a Seizure Signal 
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The sample is taken from the same dataset that was used by Boaleum Boashash in his research 

work. This is a one dimensional signal, with time in seconds along the abscissa and amplitude in 

milivolts (mV) along the ordinate. The figure 4.5 shows the EEG test sample of a non-seizure 

signal. Further these signals will be taken to have a joint time-frequency representation of the 

signals. 

 

 

Figure 4.5: EEG Sample of a Non-Seizure Signal 

 

     

4.5.2 Time-frequency Image Representation of EEG Signal 

 To signal represented in the above figure is taken as: 

            𝑦 𝑡 = 𝑠 𝑡                                                                       (4.11) 

 

This signal of equation 4.11 is then given as an input to the time-frequency signal 

analysis toolbox (TFSA6.2) for joint time-frequency image representation. The toolbox applies 

different quadratic time frequency distribution (QTFD) Kernal, as per user‟s choice. Also the 
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specific process used is called discrete convolution is also performed. The quadratic time-

frequency distribution used in this study is extended modified B (EMB) distribution Kernal. The 

general equation that works to generate the time-frequency image is [23]: 

 

tf_image =quadtfd(signal,lag_win_length,time_res,kernel[,kernel_options],[fft_length])(4.13) 

 

In the above mentioned equation inputs to the respective quadratic time-frequency 

distributionare: 

1) Signal, is the one dimensional input signal after computation of the real and imaginary 

part product. 

2) Lag_window_length, is the size of the Kernal. 

3) Time_res, is the successive values over the time scale that is to be taken. 

4) Kernal, is the type of quadratic time-frequency distribution (QTFD) that is to be used. 

5) kernel_options, are different for each QTFD. In our case two parameter values are set 

α=0.01 and β=0.19. 

6) fft_length, is the length of the Fourier transformed signal. 

Figure 4.6 and 4.7 represent the time-frequency images of the seizure and non-seizure signal 

respectively. 

.  

 

Figure 4.6: Representation of Seizure Signal in Time-Frequency Domain 
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Two properties of the time-frequency image are:  

1) Integral of the time-frequency distribution (TFD) along the frequency axis gives us the 

instantaneous power |z (t) |
2
. 

2) Integral of the time-frequency distribution (TFD) along the time axis gives us the energy 

spectrum |Z(f)
 2

 |. 

 
 

 
Figure 4.7: Representations of Non-Seizure Signal in Time-Frequency Domain 
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The mathematical form of the time-frequency image representation used in this study is 

expressed below [23]: 

 

ρz 𝑛,𝑘 = 2DFTn→k G n, m ∗n  z n + m z∗ n − m                        (4.13) 

Note that 𝑛 = 𝑡 and 𝑘 =
2𝑀

𝑓𝑠
𝑓 here t and f are the continuous time and frequency variables, and 

𝑓𝑠is the sampling frequency of the signal. G n, m is the time-lag Kernal given by Table 3-1. 

 

4.5.3 Feature Extraction through DWT  

 Discrete Wavelet transform (DWT) is preferred for the feature extraction due to a number 

of reasons. It allows for variable window size as compared to short term Fourier transform 

(STFT) which doesn‟t allow this. As for higher frequency components a smaller window can be 

used, whereas for lower frequency component a larger window can be applied. In this study 2-D 

discrete wavelet transform has been applied. The figure 4.8 shows the methodology applied for 

the seizure detection. Figure 4.9 and 4.10 represents the output for seizure and non-seizure 

samples respectively. 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: Methodology for Seizure Detection 
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4.6  Discussion 

 Time-frequency representation of non-stationery signal is presented in this chapter. It 

provides the transients present in both temporal and spectral domains. Constant-t shows the 

number of frequency components present at a particular time. Constant-f shows the power 

density at that frequency. In contrast to this representation, only time domain cannot show what 

frequency changes are occurring at each time instant and only frequency domain cannot predict 

the time at which any particular frequency was present in the signal. In next chapter we will 

discuss the classification of seizure on the basis of proposed DWT feature. 

 

Figure 4.9: Examples of DWT level-4 approximation coefficients of seizure (left    column) and 

non-seizure (right column) samples. 
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CHAPTER 5: PARAMETERS AND CLASSIFICATION 

 
5.1 Introduction 

 Performance of any algorithm always remains a major factor for acceptance or rejection 

of a particular method. In this section the parameters that are considered as a prime technique for 

evaluation of a method are discussed. Results produced by various features are compared.  

5.2 ROC Analysis 

 The features discussed in the previous chapter were tested for Receiver Operating 

Characteristics (ROC). Each feature is analyzed for the Area Under Curve (AUC) for seizure 

detection. All the modeling was executed in MATLAB. Each feature was tested by giving 

hundred samples of EEG. The signal values from the twenty EEG channels were averaged to 

give a single value. The sampling frequency of the signal is 256 Hz and length of the EEG signal 

is 255 s. the averaging of EEG signal over multiple channels is given by [22]: 

                                              𝑥 𝑛 =
1

20
∑ 𝑒𝑒𝑔𝑖[𝑛]20
𝑖=1                                                                 (5.1) 

The methodology for the seizure detection through EEG signals is presented in the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: Methodology for calculating Area Under Curve (AUC)  
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Figure 5.1 depicts the evaluation of area under curve of each feature. Pre-processed EEG signal 

is averaged over twenty channels and band-passed filtered. 2-D image formation is attained by 

applying the TFSA toolbox available on the website link:www.timefrequency.net [22]. 

Afterwards this image is tested over the applied feature. The resultant vector of a feature Fx is 

provided to the performance evaluation parameter of Area Under Curve (AUC). After complex 

computations, we are provided with the resultant AUC value of respective feature. 

A number of features used in this study are analyzed for best possible results. Each feature is 

further studied for different quadratic time-frequency domain representation. Depending upon 

the nature of our problem, a single feature can perform differently over various time-frequency 

distributions. The feature that gives maximum area under curve is considered to be best suited. 

There can be a number of features that to be tested over the algorithm, but here in this work we 

have chosen four features. Applying too many of them will increase the complexity and 

computational time.  

 

Figure 5.2: Area Under Curve (AUC) for Spectral Flux T-F Domain using MBD 
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5.2.1   Area Under Curve (AUC) 

 The area under curve (AUC) value is taken by using the perf-curve operation of 

MATLAB. It takes three arguments. First is labels values, these are the standards which are to be 

maintained by the algorithm. Second is the scores, these are the values which are obtained 

through the data processed by the feature set. Third is the pos-class, which will define the class 

in which the output will lie.  

The first feature that has been taken is time-frequency Spectral flux (T-F Flux). The figure 5.2 

shows the area under curve for the feature using Modified-B quadratic distribution. The same 

feature is considered for other quadratic time-frequency distributions (QTFD). The AUC value 

for spectral flux t-f is 0.90 in the above given figure. This is the maximum AUC value achieved 

by this feature for any quadratic time-frequency distribution (QTFD).  The results from other 

QTFD‟s will be provided further in tabular form. 

 

 

Figure 5.3: Area Under Curve (AUC) for Spectral Flatness T-F Domain using CW distribution 
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Second feature used is the time-frequency flatness (T-F Flatness). The highest AUC value 

achieved by this feature is 0.67, by using the Choi-Williams (CW) distribution. Figure 5.3 shows 

the area under curve. 

Renyi normalized entropy is considered as another feature for the seizure detection. The best 

outcome from this feature is obtained through the Choi-Williams quadratic distribution. The area 

under curve value attained by this is 0.74. Figure 5.4 represents the AUC curve for this feature. 

The Renyi normalized entropy also provided better results than time-frequency flatness in other 

QTFD‟s but less than time-frequency flux. The values achieved by other TFD‟s will be provided 

in table. 

Figure 5.4: Area Under Curve (AUC) for Renyi Normalized Entropy using CW distribution 

 

Discrete wavelet transform (DWT) is also analyzed for calculating ROC curve. This feature is 

run over the EEG dataset for multiple time-frequency distributions. The AUC‟s achieved by 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Positive Rate(FPR)

T
ru

e
 P

o
s
it
iv

e
 R

a
te

(T
P

R
)

Renyi Entropy T-F Domain

 

 

AUC Line



39 
 

DWT will be presented further in the table. Extended Modified B distribution (EMB) provided 

the maximum value of 0.90. While Modified B distribution (MB), Short Time Fourier Transform 

(STFT) and Spectrogram (SPEC) followed respectively. In this study DWT is considered for 

seizure classification, as AUC values for DWT is higher in three QTFD‟s, which is higher than 

any other feature.  

Figure 5.5: Area Under Curve (AUC) for Discrete Wavelet Transform (DWT) using EMB 

  

Table 5-1: Area Under Curve (AUC) values for various Features using QTFD‟s 

 

T-F  Features 
Quadratic Time-Frequency Distribution (QTFD) (%) 

EMB MB SPEC STFT CW WVD 

DWT 90 79 72 71 55 52 

Spec Flux 64 90 59 66 70 64 

Spec Flatness 57 61 51 67 54 57 

Renyi Entropy 65 63 65 74 51 65 
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Table 5-1 provides the detailed area under curve values for respective feature set using different 

QTFD‟s. Among the time-frequency distributions, extended modified B distribution gives the 

maximum value of AUC for variance of 16 DWT features. The same will be considered for the 

classification of seizure detection. 

 

5.3 Classification 

 Classifying the data is a major part of evaluation. The classifier used in this work is 

support vector machine (SVM). It is an administered stereotype algorithm [26]. It creates a hyper 

plane between the data [27]. SVM is a binary classifier, which distinguishes between the classes. 

First the data is set for training the SVM. Afterwards data is provided for testing. For training the 

classifier a number of name-value pair arguments are taken by the MATLAB function. Kernel 

function uses to map the data. According to research the most accurate is the Gaussian radial 

basis function „rbf‟ kernel. Sigma value can be set as per requirement. A value of three is 

selected for rbf-sigma. Also there can be a linear method, as it varies with the dataset that is to be 

tested. As linear approximation produced better accuracy in this study, so it is used. Another 

argument is the method for construction of hyper plane. Quadratic programming (QP) is selected 

here. The box-constraint is set at 2.5. After the training of the classifier, it is provided to the 

testing part for grouping of the data.  

 

5.3.1 Classifier Results 

To check the performance of the methodology, parameters provided by the support vector 

machine (SVM) are used [28]. Parameters which are sensitivity [29], specificity [30], positive 

predictive value (PPV) [31] and negative predictive value (NPV) [31] are checked. These will be 

defined in forthcoming documentation. 

Support vector machine (SVM) based classification for seizure detection has been carried out 

through MATLAB. The results previously obtained for seizure detection through EEG are 

compared. The figure 5.6 below represents the classifier output. As the plot can only be 2-D, so 

the figure displayed will only be representing results of 2 features out of a total of 16 DWT 

features. 
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Figure 5.6: Classifier Output for 2-D Discrete Wavelet Transform (DWT) 

 

There has been improvement in detection using the 2-D Discrete Wavelet Transform (DWT). 

The classifier‟s performance for the other three features was less than DWT. With t-f spectral 

flux, t-f flatness and Renyi normalized entropy resulting with 50 percent accuracy. Also 

comparing the results with the same features in other research study, it is examined that discrete 

wavelet transform (DWT) alone performs a better classification for seizure. The results from 

other works are also tabulated for comparison in table 5-2 [20]. Performance parameters for the 

classification are defined as under. 
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      Sensitivity =
number  of  true  positives

number  of  true  positives +number  of  false  negatives
                                   (5.2) 

 

Specificity =
number  of  true  negatives

number  of  true  positives +number  of  false  negatives
                                   (5.3) 

 

         PPV =
number  of  true  positives

number  of  true  negatives +number  of  false  positives
                                   (5.4) 

 

       NPV =  
number  of  true  negatives

number  of  true  negatives +number  of  false  negatives
                                   (5.5) 

 

Accuracy =
 number  of  true  positives +number  of  true  negatives

number  of  positives +number  of  negatives
                                     (5.6) 

 

Table 5-2: Comparison of EEG seizure Detection Results of 2-D DWT using SVM 

Feature TFD 
SVM Statistical Parameter (%) 

SEN SPE PPV NPV ACC 

DWT EMB 98.75 100 100 98.76 99.37 

FVi=1-8 SWVD 95.00 92.50 93.24 95.19 93.75 

FVi=1-8 WVD 83.75 92.50 92.50 86.35 88.13 

FVi=1-8 MB 91.25 91.25 92.09 92.06 91.25 

FVi=9-17 CWD 95.00 90.00 91.46 95.67 92.50 

FVi=9-17 SPEC 93.75 92.50 92.92 94.09 93.13 

  FVi=9-17 EMB 98.75 76.25 82.02 98.33 87.50 

 

The table above represents the results achieved by this research in comparison to other work for 

seizure detection. Discrete Wavelet Transform (DWT) achieved an accuracy of 99.37 percent 

with extended modified B (EMB) as the quadratic time-frequency distribution (QTFD). Whereas 

in the previous study discussed here, which applies the same QTFD using eight features provided 

an accuracy of 87.5 percent. While a maximum of 93.75 percent of accuracy was achieved by 

using a feature set of eight with Smoothed Wigner-Ville Distribution (SWVD). For classifier 

evaluation a dataset of 80 seizures affected and 80 background signals were used, with leave-

one-out cross validation. FVi=1-8 in the table represents eight features that include (t, f) flux, (t, f) 

flatness, Renyi entropy, mean, variance, skewness, kurtosis and coefficient of variation. While 

FVi=9-17 include mean of the IF, deviation of the IF, Complexity measure, Maximum of singular 
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values, Mean of Swr, Standard deviation of Swr, Mean of Shr, Standard deviation of Shr and TFD 

concentration measure. 

For the seizure detection and classification, these parameters were cross validated. The results 

were obtained using the random permutation of the data. As both seizure and non-seizure data 

was randomly distributed ten times and iterated for training and testing. Conclusive findings are 

achieved by taking the average of ten successive repetition of algorithm. 

 

5.4 Discussion 

 Seizure detection through time-frequency imaging has achieved a considerable attention 

over past years. There are a number of methodologies that has been proposed and tested for 

accuracy. This research provides another insight for the classification of seizure activity inside 

human brain. Time-frequency domain proves to be a new dimension for advancement in this 

field of research. Also joint time-frequency domain is seems to be more suitable for the non-

stationary natured signal as of electroencephalography (EEG) [21]. 
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CHAPTER 6: Conclusion and Future Work 

 

This thesis summarizes the quest carried out in the seizure detection through 

electroencephalography (EEG). It started with a broad revision of the field which made possible 

to decide the methodology. Multiple researches have been carried out for the same using 

different techniques. Each of which having it‟s pros and cons. The findings and observations 

stated in this work can serve as a guide for future research projects. 

The time-frequency domain is an emerging area, awakening the interest of the researchers in 

biomedical engineering. It also comes up with new challenges and at the same time an 

opportunity to develop an improved approach. Feature extraction performed through 2-D discrete 

wavelet transform (DWT) provided a better approximation as compared to other features. For 

classification support vector machine (SVM) is used, as it produces better accuracy for binary 

classifier problem. Furthermore Leave-one-out cross validation (LOO) is used, as an assurance 

of the algorithms correct recurring decisions. 

There is always room for improvements to be made in any form of research. The performance 

degrades, as the number of training to testing sample‟s ratio decreases. We plan to use detail 

coefficients of DWT at different decomposition levels in addition to the approximation 

coefficients to address this issue. Robustness of our approach will also be validated by using the 

available full database of 400 samples. Other datasets mentioned in the literature survey chapter 

will also be tried when available. 

The current research used twenty channels EEG data, which can be taken up to twenty four 

channel. With the increased number of channels there will be excess of incoming data, to achieve 

the same accuracy with increased data and reduced timing can be another way forward. Further 

increased number of channels will have higher artifacts than lower channels. Artifact detection 

and removal at pre-processing stage will add on to another dimension. There has to be an 

algorithm which can work on any dataset that is provided to it. As different datasets will have 

respective artifacts and variations, so a robust algorithm that works on any dataset provided will 

be much more efficient. Different age group‟s EEG signals have distinct energy representation in 

respective bands. So a system that provides accurate results for any age group will be more 

effective than compared to the one which is applicable to only a limited set of age group. 
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APPENDIX A 

MATLAB Code 

Following are the codes that were implemented in MATLAB to achieve the results of AUC and 

SVM. 

ROC Analysis 
clear all 

close all 

clc 

load('seizure_samples.mat'); 

load('non_seizure_samples.mat'); 

%Spec_flux_variance_tf_mat = zeros(100,1); 

%Spectral_flatness_mat_tf = zeros(100,1);      % Matrix for calculating Spectral flatness in 

TFD 

%Approximation_coefficients = zeros(131,1); 

%dwt_label_mat = ones(132,1); 

%Area_under_curve = zeros(100,1); 

test_auc = zeros(100,256); 

 row_count =1; 

for samples = 151:200 

        test_auc(row_count,:) = seizure_samples(samples,:);   % Add 50 Seizure Samples for AUC 

Test 

    row_count = row_count+1; 

end 

 row_count = 51; 

 for samples = 151:200 

    test_auc(row_count,:) = non_seizure_samples(samples,:);   % Add 50 Non-Seizure Samples 

for AUC Test 

    row_count = row_count+1; 

end 

 for rows = 67:131 

    dwt_label_mat(rows,1)=0; 

end 

for patients_data = 1:100 

row_1=test_auc(patients_data,:);           %   x[n],extracting EEG Data of a SINGLE Patient  

figure 

hold on; 

plot(row_1) 

title('Single Patients EEG') 

label('Time') 

ylabel('Value') 

hold off; 
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%tfrep = quadtfd(signal,lag_win_length,time_res,kernel[,kernel_options],[fft_length]) 

tfrep = quadtfd(prod_real_imag_1,255,1,'wvd',252);           % WVD  

tfrep = quadtfd(prod_real_imag_1,255,1,'cw',10,256);         % Choi-Williams  

tfrep = quadtfd(prod_real_imag_1,255,1,'mb',0.01,256);       % MBD  

tfrep = quadtfd(prod_real_imag_1,255,1,'emb',0.01,0.19,256); % EMBD  

tfrep = spec(prod_real_imag_1,128,11,'hann',257,1);          %SPEC=0(STFT=1) 

 

figure 

%tfsapl(prod_real_imag_1,tfrep,'TimePlot','on','FreqPlot','on','title','Time-Frequency 

Plot','TimeGrid','on','FreqGrid','on');  % Time-Frequency 2-D Plot 

 tfrep_scaled= abs(tfrep); 

 

 %--------------------Spectral Flux Content T-F Domain--------------------% 

 

 k_=0; 

 n_=0; 

 Spectral_flux_tf = zeros(256,256); 

 %Spectral_flux_tf = zeros(257,2); 

 for n_= 1:255 

 %    for n_ = 1:256 

   for k_= 1:255 

  %     for k_ = 1:1 

     Spec_flux_tf = tfrep_scaled(n_+1,k_+1)-tfrep_scaled(n_,k_); 

    Spectral_flux_tf(n_,k_) = Spec_flux_tf;                       %saving values of spectral content 

   end 

 end 

 %Spec_flux_variance_tf_mat([1 patients_data])= var(Spectral_flux_tf(:));  

    % Calculates Variance of each patient's Spectral Flux 

 var_mat = var(Spectral_flux_tf(:)); 

 Spec_flux_variance_tf_mat(patients_data,:)= var_mat;        

      % Calculates Variance of each patient's Spectral Flux 

 

 %----------------------Spectral Flux Content T-F Domain------------------% 

 

 %-------------------Spectral Flatness T-F Domain-------------------------% 

 

 geo_mean_row_tf = geomean(tfrep_scaled,2);      % Geometric mean of rows 

 geo_mean_col_tf = geomean(tfrep_scaled,1);      % Geometric mean of columns 

 Spectral_flatness_num_tf = geo_mean_col_tf*geo_mean_row_tf; 

 Spectral_flatness_den_tf = mean2(tfrep_scaled);%Arithmetic mean of numerator 

 Spectral_flatness_mat_tf(patients_data,1) =65536*(Spectral_flatness_num_                                                         

tf/Spectral_flatness_den_tf);  % Saving Spectral flatness value in matrix 

 

%---------------------Spectral Flatness T-F Domain-----------------------% 

 %------------------Spectral Flatness T-F Domain STFT/SPEC----------------% 
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 geo_mean_row_tf = geomean(tfrep_scaled,2); % Geometric mean of rows 

 geo_mean_col_tf = geomean(tfrep_scaled,1); % Geometric mean of columns 

 Spectral_flatness_num_tf = geo_mean_row_tf*geo_mean_col_tf; 

 Spectral_flatness_den_tf = mean2(tfrep_scaled);% Arithmetic mean numerator 

 expression_1 = 65536*(Spectral_flatness_num_tf./Spectral_flatness_den_tf); 

   % Saving Spectral flatness value in matrix 

 average_value = mean(expression_1,2); 

 Spectral_flatness_mat_tf(:,patients_data) = average_value; 

 

 %------------------Spectral Flatness T-F Domain STFT/SPEC----------------% 

 

 %---------------------Renyi Normalised Entropy T-F Domain----------------% 

 Ren_entropy_exp=0; 

 double(Ren_entropy_exp);  

 Ren_entropy_den = sum(sum(tfrep_scaled));                             % Renyi Entropy Denominator 

 %for ren_n = 1:256 

  for ren_n = 1:256 

     for ren_k = 1:256 

     %for ren_k = 1:1 

         Ren_entropy_exp = Ren_entropy_exp+(tfrep_scaled(ren_n,ren_k)/Ren_entropy_den)^3; 

     end 

 end 

 Ren_entropy_value([1 patients_data])= Ren_entropy_exp; 

 %---------------------Renyi Normalised Entropy T-F Domain----------------% 

 

 %---------------------Discrete Wavelet Transform-------------------------% 

    [cA,cD] = dwt(tfrep,'db4'); 

 

     [X,Y,T,AUC] = perfcurve(dwt_label_mat,cA,1); 

     Area_under_curve(patients_data,1) = AUC; 

 

 %---------------------Discrete Wavelet Transform-------------------------% 

end 

 

mean(Area_under_curve); 

 %---------------------Spectral Flux Content T-F Domain--------------------% 

spec_flux_input_mat = ones(1,100); 

 

for columns = 51:100 

    spec_flux_input_mat(1,columns)=0; 

end 

 

[X,Y,T,AUC] = perfcurve(spec_flux_input_mat,Spec_flux_variance_tf_mat,1); 

plot (X,Y)    % X = Falsely +ive  Rate, Y = Truly +ive Rate 
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xlabel('(FPR)'); 

ylabel('(TPR)'); 

title('AUC of Spectral Flux T-F Domain'); 

%---------------------Spectral Flux Content T-F Domain--------------------% 

%--------------------Spectral Flatness T-F Domain-------------------------% 

   spec_flatness_input_mat = ones(100,1); 

   for rows = 51:100 

    spec_flatness_input_mat(rows,1)=0; 

   end 

   %label_mat = mean(Spectral_flatness_mat_tf); 

[X,Y,T,AUC] = perfcurve(spec_flatness_input_mat,Spectral_flatness_mat_tf,1); 

plot (X,Y,'linewidth',2)    % X = False Positive Rate, Y = Truely+ive Rate 

xlabel('(FPR)'); 

ylabel('(TPR)'); 

title('Spectral Flatness T-F Domain'); 

legend('AUC Line','location','northwest'); 

legend('boxoff'); 

 %-------------------Spectral Flatness T-F Domain-------------------------% 

 %------------------------Renyi Entropy T-F Domain-------------------------% 

 Renyi_entropy_input_mat = zeros(100,1); 

   for rows = 1:50 

    Renyi_entropy_input_mat(rows,1)=1; 

   end 

 Renyi_entropy_mat = (-0.5)*log2(Ren_entropy_value);      % Calculates Renyi Entropy Value 

[X,Y,T,AUC] = perfcurve(Renyi_entropy_input_mat,Renyi_entropy_mat,1); 

plot (X,Y,'linewidth',2)    % X = False Positive Rate, Y = Truly+ive Rate 

xlabel('(FPR)'); 

ylabel('(TPR)'); 

title('Renyi Entropy T-F Domain'); 

legend('AUC Line','location','northwest'); 

legend('boxoff'); 

 %------------------------Renyi Entropy T-F Domain-------------------------% 

 

SVM Classifier  
 

clear all 

close all 

clc 

load('seizure_samples.mat'); 

load('non_seizure_samples.mat'); 

 

testing_svm = zeros(50,256); 

% SVM training matrix with 150 Seizure & Non-Seizure samples each 

training = zeros(20,2); 
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% The rows of this matrix represent the sample taken and column of this matrix is the feature that 

is used for distinguishing the two types 

group = zeros(20,1);   

% Grouping logical vector matrix  

box_constraint = zeros(20,1);  

% Soft margin array for SVM Struct, of same size as Training data 

training_svm = zeros(20,256); 

testing =zeros(50,2);          

% SVM testing matrix with 25 Seizure & Non-Seizure samples each 

 

%--------------------------EEG Training Samples---------------------------% 

 

for rows = 1:10 

    group(rows,1) = 1;%character matrix with each row representing a class  

end 

    %--------------------Seizure Training Samples--------------% 

row_count =1; 

for samples = 31:40 

        training_svm(row_count,:) = seizure_samples(samples,:); 

 % Add 10 Seizure Samples for AUC Test 

    row_count = row_count+1; 

end 

 

row_count = 11; 

 

for samples = 30:39 

    training_svm(row_count,:) = non_seizure_samples(samples,:);    

% Add 10 Non-Seizure Samples for AUC Test 

    row_count = row_count+1; 

end 

 

%-----------------------Box-Constraint--------------------------% 

 

for box_rows = 1:20          % Box_constraint name-value pair rows & columns 

            box_constraint(box_rows,:)= 2.5; 

end 

 

%--------------------------EEG Training Samples---------------------------% 

 

%--------------------------EEG Testing Samples----------------------------% 

row_count =1; 

for samples = 1:25 

        testing_svm(row_count,:) = seizure_samples(samples,:);    

% Add 25 Seizure Samples for AUC Test 

    row_count = row_count+1; 
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end 

 

row_count = 26; 

 

for samples = 151:175 

    testing_svm(row_count,:) = non_seizure_samples(samples,:);    

% Add 25 Non-Seizure Samples for AUC Test 

    row_count = row_count+1; 

end 

 

%--------------------------EEG Testing Samples----------------------------% 

 s = RandStream('mt19937ar','Seed',0);    % Create a scheme for RandPERM  

 for k_fold = 1:10 

 patients_data_1 = randperm(s,20); 

 

%--------------------------SVMstruct Training-----------------------------% 

for patients_data = 1:20 

row_1=training_svm(patients_data,:);%x[n], EEG Data of a SINGLE Patient  

figure 

hold on; 

plot(row_1) 

title('Single Patients EEG') 

xlabel('Time') 

ylabel('Value') 

hold off; 

 

 

 

tfrep=quadtfd(signal,lag_win_length,time_res,kernel[,kernel_options],[fft_length]) 

 

tfrep = quadtfd(prod_real_imag_1,255,1,'wvd',252);           % WVD   

 

tfrep = quadtfd(prod_real_imag_1,255,1,'cw',10,256);         % Choi-Williams  

 

tfrep = quadtfd(prod_real_imag_1,255,1,'mb',0.09,256);       % MBD 

 

tfrep = quadtfd(prod_real_imag_1,255,1,'emb',0.01,0.19,256); % EMBD 

 

tfrep = spec(prod_real_imag_1,128,11,'hann',257,1);          % SPEC=0(STFT=1) 

 

 figure 

 

tfsapl(prod_real_imag_1,tfrep,'TimePlot','on','FreqPlot','on','title','Time-Frequency  

 

Plot','TimeGrid','on','FreqGrid','on'); %Time-Frequency 2-D Plot 
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 %---------------------Discrete Wavelet Transform-------------------------% 

    [cA1,cD1] = dwt(tfrep,'db8'); 

 

    approximation_coefficient_1 = cA1(10,1);      % Selected Feature Vector 

    approximation_coefficient_2 = cA1(20,1);      % Selected Feature Vector 

 %---------------------Discrete Wavelet Transform-------------------------% 

 %--------------------------SVMstruct Training----------------------------% 

training(patients_data,:) = [approximation_coefficient_1 approximation_coefficient_2];        

%training data for SVMstruct 

 

SVMStruct = 

svmtrain(training,group,'kernel_function','rbf','boxconstraint',box_constraint,'method','QP'); 

SVMStruct = 

svmtrain(training,group,'kernel_function','rbf','rbf_sigma',3,'method','QP','boxconstraint',box_co

nstraint,'showplot',true); 

 

 %--------------------------SVMstruct Training----------------------------% 

 end 

 %-----------------------------SVM Testing---------------------------------% 

for patients_data = 1:50 

row_1=testing_svm(patients_data,:);%x[n], EEG Data of SINGLE Patient  

 

 

tfrep = quadtfd(prod_real_imag_1,255,1,'mb',0.09,256);       % MBD 

 

tfrep = quadtfd(prod_real_imag_1,255,1,'emb',0.01,0.19,256); % EMBD  

 

tfrep = quadtfd(prod_real_imag_1,255,1,'cw',10,256);         % Choi-Williams  

 

tfrep = spec(prod_real_imag_1,128,11,'hann',257,1);          % SPEC=0(STFT=1) 

 

%---------------------Discrete Wavelet Transform--------------------------% 

    [cA2,cD2] = dwt(tfrep,'db8'); 

 

    approximation_coefficient_3 = cA2(10,1);        % Selected Feature Vector 

    approximation_coefficient_4 = cA2(20,1);        % Selected Feature Vector 

%----------------------Discrete Wavelet Transform-------------------------% 

 

%-----------------------------SVM Testing---------------------------------% 

   testing(patients_data,:) = [approximation_coefficient_3 approximation_coefficient_4];   % 

testing data for SVM_Classify 

 

   %approximation_coefficients = cA2.';  

   %approximation_coefficients_mean = mean(cA2,1); 
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   %testing(patients_data,:) = approximation_coefficients;   % testing data for SVM_Classify 

 

 %-----------------------------SVM Testing---------------------------------% 

 

End 

 

%--------------------------SVM CLASSIFIER---------------------------------% 

 

 Group = svmclassify(SVMStruct,testing,'showplot',true); 

 

 %--------------------------SVM CLASSIFIER---------------------------------% 

%-------------------------Classifier Performance-------------------------------% 

grouping=zeros(50,1); 

for rows=1:25 

    grouping(rows,1)=1; 

end 

cp = classperf(grouping,Group); 

cp.CorrectRate 

 

cp.Sensitivity 

cp.Specificity 

cp.PositivePredictiveValue 

cp.NegativePredictiveValue 

 %-------------------------Classifier Performance--------------------------% 
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