Neuromuscular Control for Lower Limb Prosthesis

Author A/O MUHAMMAD ADNAN KHALIL 00000238701

Supervisor DR. MOHSIN ISLAM TIWANA

DEPARTMENT OF MECHATRONICS ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY ISLAMABAD JULY, 2019

Neuromuscular Control for Lower Limb Prosthesis

Author A/O MUHAMMAD ADNAN KHALIL 00000238701

A thesis submitted in partial fulfillment of the requirements for the degree of MS Mechatronics Engineering

> Thesis Supervisor: DR. MOHSIN ISLAM TIWANA

Thesis Supervisor's Signature:_____

DEPARTMENT OF MECHATRONICS ENGINEERING COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY, ISLAMABAD JULY, 2019

Declaration

I certify that this research work titled "*Neuromuscular Control for Lower Limb Prosthesis*" is my own work. The work has not been presented elsewhere for assessment. The material that has been used from other sources it has been properly acknowledged / referred.

Signature of Student MUHAMMAD ADNAN KHALIL 00000238701

Language Correctness Certificate

This thesis has been read by an English expert and is free of typing, syntax, semantic, grammatical and spelling mistakes. Thesis is also according to the format given by the university.

Signature of Student MUHAMMAD ADNAN KHALIL 00000238701

Signature of Supervisor

Copyright Statement

- Copyright in text of this thesis rests with the student author. Copies (by any process) either in full, or of extracts, may be made only in accordance with instructions given by the author and lodged in the Library of NUST College of E&ME. Details may be obtained by the Librarian. This page must form part of any such copies made. Further copies (by any process) may not be made without the permission (in writing) of the author.
- The ownership of any intellectual property rights which may be described in this thesis is vested in NUST College of E&ME, subject to any prior agreement to the contrary, and may not be made available for use by third parties without the written permission of the College of E&ME, which will prescribe the terms and conditions of any such agreement.
- Further information on the conditions under which disclosures and exploitation may take place is available from the Library of NUST College of E&ME, Rawalpindi.

Acknowledgements

I am thankful to my Creator **ALLAH SUBHANA-WATALA** to have guided me throughout this work at every step and for every new thought which **YOU** setup in my mind to improve it. Indeed I could have done nothing without **YOUR** priceless help and guidance. Whosoever helped me throughout the course of my thesis, whether my parents or any other individual was **YOUR** will, so indeed none be worthy of praise but **YOU**.

I am profusely thankful to my beloved parents who raised me when I was not capable of walking and continued to support me throughout in every department of my life.

I would also like to express special thanks to my supervisor Dr. Mohsin Islam Tiwana for his help throughout my thesis and also for Biomedical Instrumentation course which he has taught me. I can safely say that I haven't learned any other engineering subject in such depth than the ones which he has taught.

I would also like to pay special thanks to Mr. Muneeb Hassan Raja for his tremendous support and cooperation. Each time I got stuck in something, he came up with the solution. Without his help I wouldn't have been able to complete my thesis. I appreciate his patience and guidance throughout the whole thesis.

I would also like to thank Dr. Umar Shahbaz Khan and Dr. Amir Hamza for being on my thesis guidance and evaluation committee and their kind guidance through every step of my thesis and degree. My special Thanks to Dr. Javaid Iqbal for his help. I am also thankful to Abdul Hanan for his support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable assistance to my study.

Dedicated to my exceptional parents and beloved spouse whose tremendous support and cooperation led me to this wonderful accomplishment

Abstract

Transtibial amputees come across various stress related issues. Gait cycle of these amputees vary from a healthy human being due to deviation in stresses primarily related to human ankle. Human ankle biomechanics provides a control platform to analyze these stresses. Deviation in human ankle angles, required torque and positive work done required in various phases of a gait cycle thus becomes a focal point for understanding. Passive ankle foot prosthesis doesn't provide required work done for the amputee during powered plantar flexion phase of gait cycle since the energy stored doesn't suffice for the desired outputs therefore a more viable option is the use of powered active ankle foot prosthesis. To design a robust control mechanism for this powered ankle foot prosthesis is of utmost importance since it ensures mimicking human ankle biomechanics of a healthy human being for an amputee as well. Input to this control mechanism rests in understanding the amputee's intent through neuromuscular EMG (Electromyography) signals. This research thus focuses on simulating a control system for powered ankle foot prosthesis along with neuromuscular control which will result in a natural gait cycle and reduction of metabolic cost of transport (COT) of a transtibial amputee.

Key Words: *Amputee, Gait Cycle, Intent, Metabolic Cost of Transport, Neuromuscular, Prosthesis, Transtibial.*

Table of	Contents
----------	----------

Decl	laration	••••• i
Lang	nguage Correctness Certificate	····· ii
Cop	pyright Statement	····· iii
Ack	knowledgements	····· iv
Abst	stract	····· vi
Tabl	ble of Contents	····· vii
List	t of Figures	ix
List	t of Tables	х
CHA	APTER 1: INTRODUCTION	1
1.1	Background	1
1.2	Anatomical Planes	1
	1.2.1 Anatomical Movements for Lower Limb	2
	1.2.1.1 Sagittal Plane Movements	3
	1.2.1.2 Other Foot Movements	3
1.3	Gait Cycle	5
	1.3.1 Stance Phase	5
	1.3.2 Swing Phase	6
1.4	Transtibial Prosthetics	
1.5	Objective	0
СНА	APTER 2. LITERATURE REVIEW	11
2.1	Human Ankle Biomechanics	11
2.1	2.1.1 Parameters – Human Ankle Biomechanics	····· 11
	2.1.2 Gait Cycle Sub Division according to Ankle biomechanics	12
	2.1.2.1 Sub Phases of Stance Phase	13
	2.1.2.2 Sub Phases of Swing Phase	15
2.2	Electromyogram (EMG)	15
	2.2.1 Skeletal Muscles	18
	2.2.2 Lower Limb Skeletal Muscles for EMG Signal	19
2.3	Neuromuscular Control for Lower Limb Prosthesis	21
2.4 CHA	Summary	23
PRC	OSTHESIS NEUROMUSCULAR CONTROL	24
3.1	Surface Electromyography (SEMG)	24
	5.1.1 Factors Affecting SEMG Signal Acquisition	24
	3.1.2 Interent Noise	24 25
	3.1.4 Depth of the Muscle	25
	3.1.5 Spacing of Electrode	26
3.2	Intent Based Neuromuscular Control	27
	3.2.1 Synthetic EMG Data	27

Table of Contents (cont)

3.2.2 Real Time EMG Data Recording	9
3.3 Summary	2
CHAPTER 4: CONTROL SYSTEM FOR POWERED LOWER LIMB PROSTHESIS 3	3
4.1 Introduction	3
4.1.1 Prosthesis for Control System	3
4.1.2 Reference Trajectories for Control System	4
4.2 Control System	4
4.2.1 SIMULINK Model	5
4.2.1.1 Trajectory Generation Block	5
4.2.1.2 Conversion Block	6
4.2.1.3 Controller Block	8
4.2.1.4 Output Block 4	1
4.3 Summary	2
CHAPTER 5: RESULTS AND DISCUSSION 4	4
5.1 Results – SIMULINK MATLAB. 4	4
5.1.1 Initial Results for Ankle Angles during Gait Cycle 4	5
5.1.2 Final Results 4	7
5.2 Discussion	9
5.3 Summary	2
CHAPTER 6: CONCLUSION AND FUTURE WORK 5	3
APPENDIX A 5	5
REFERENCES 6	2

List of Figures

Figure 1.1:	Common levels of lower limb amputations
Figure 1.2:	Anatomical Planes for human body's description
Figure 1.3:	(a) Extension & Flexion (b) Plantar flexion & dorsiflexion (c) Inversion & Eversion 4
Figure 1.4:	Natural Gait Cycle starting with Heel Strike and ending at Deceleration
Figure 1.5:	Phases of Normal Gait Cycle
Figure 1.6:	(a) Endoskeletal System (b) Exoskeletal System
Figure 1.7:	(a) SACH Foot (Passive)
Figure 1.7:	(b) Powered Ankle Foot (Active) (c) CEME Developed Foot
Figure 2.1:	Human ankle biomechanics during natural gait cycle for level ground walking 12
Figure 2.2:	Human ankle biomechanics during natural gait cycle for stair descent walking
Figure 2.3:	(a) Human ankle biomechanics during natural gait cycle level walking gait 14
Figure 2.3:	(b) Ankle Angle vs. Ankle Torque for Ankle
Figure 2.4:	(a) Motor Neurons from Brain to Muscle activation
Figure 2.4:	(b) Schematic of a Neuron
Figure 2.5:	EMG Signal Decomposition 18
Figure 2.6:	Structure of a Skeletal Muscle
Figure 2.7:	Lower Limb Skeletal Muscles for Movement of Foot and Toe
Figure 2.8:	Raw and Filtered EMG Data. 21
Figure 2.9:	Control Architecture for Lower Limb Prosthesis
Figure 2.10:	Mimicking Results for level ground walking
Figure 2.11:	Control system for Eilenberg <i>et al.</i> [19] including a neuromuscular model
Figure 3.1:	Surface activity and Depth of muscle
Figure 3.2:	Effect of electrode spacing
Figure 3.3:	System model for real time EMG signal recording
Figure 3.4:	(a) Filtered EMG signal from Tibialis Anterior Muscle (b) Filtered EMG signal from 31
Gastrocnemi	us Muscle
Figure 4.1:	Flow chart of the Control System
Figure 4.2:	Trajectory Generation Block – SIMULINK
Figure 4.3:	(a) Conversion Block Ankle to Motor (b) Motor to Ankle Angles
Figure 4.4:	PI Controller – SIMULINK
Figure 4.5:	Control scheme for Motor Control
Figure 4.6:	Output Comparison Block – SIMULINK. 42
Figure 4.7:	SIMULINK Model for the Control System
Figure 5.1:	Step response of the Output
Figure 5.2:	Ankle Angle trajectory for level ground walking
Figure 5.3:	Comparison of reference ankle angle trajectory to ankle angles - Initial control system 46
Figure 5.4:	Flowchart for initial control system
Figure 5.5:	Final results achieved from the controller for powered lower limb prostnests \dots 48
Figure 5.6:	Kesuits for Ankle Angle and Ankle I orque by S. Au <i>et al.</i> $[/]$
Figure 5.7:	a) Kesuits for Ankie Lorque and (b) Ankie Lorque by M. Eilenberg <i>et al.</i> [19]

List of Tables

Table 3-1: Synthetic EMG and sensors data for level ground walking having 3 states for each	n 28
muscle input	
Table 4-1: Data of the Subject 5 (FJI) for Reference Trajectories	. 34
Table 4-2: Motor and Controller Parameters	38
Table 5-1: Design Requirements for the Closed Loop Control System and Controller Outputs	. 45
Table 5-2: Parameters for Closed Loop Control System for Ankle Angle Control Initially	45