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Abstract 

Robots are progressively becoming more and more useful in bringing comfort to human life. 

One of the important new roles of robots is caring for elderly people who want to stay at 

home due to physical or cognitive difficulties. Navigation algorithm of a robot is a basic 

constituent that is to be programmed for its desired motion. Autonomous navigation of robots 

is tough to be planned in uncertain and dynamic environment. It becomes a complicated task 

to navigate a robot when the human‟s movement is uncertain. Partially Observable Markov 

Decision Process (POMDP) is one of the techniques used in navigation of robots in uncertain 

environment. POMDP is a complicated technique that requires more processing and 

computational power. In this work a Localized POMDP technique is introduced. This 

technique will enable robot to reduce computational power and allow it to calculate results in 

lesser time. Furthermore, in this work a robot learning phase is defined. In this phase a robot 

learns the positions of human with respect to time and creates a probability distribution 

function that help the robot to navigate human more accurately. An algorithm in MATLAB 

software with simulation is developed for its implementation and results. 

 

Key Words: Partially Observable Markov Decision Process, Probability Distribution 

Function, Robot Navigation, Path Planning, Motion Planning of Mobile Robot 
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CHAPTER 1: INTRODUCTION 

Robotics holds tremendous potential for benefiting every domain of human life. 

Although this benefit has been limited to very specialized environments such as factories, 

technology has matured to integrate robotic technologies into the human environment for 

everyday use. However, this integration cannot be successful without understanding the 

interaction between robots and humans. Robot is a machine consisting of three major things 

sensing, movement & intelligence. Sensing the environment is the initial thing that the robot 

has to do. It is similar to the way that human sense the surroundings like eyes (light sensors), 

hands (touch and pressure sensors), nose (chemical sensors), ears (sonar sensors) and tongue 

(taste sensors). These types of sensors give awareness to robot. The second aspect of the 

robot after sensing is the movement. Movement or the actuation of the robot in the 

environment is the basic outcome of the robot. Movement of the robot includes rolling on the 

wheels, walking on legs, moving some parts like arms. The third factor of the robot is the 

smartness and intelligence while performing action in the environment. Program is installed 

in the robot on which the robot plans to maneuver or act in the environment. With all the 

above discussion it concludes that the robot is a system that contains sensors, control system, 

manipulators, power supplies and software all working together to perform a task. [1] 

 

Figure 1: Robot Control System [1] 

 Robots are mechanical devices programmed to perform specific repetitive functions. 

They are used routinely to carry out many tasks that people don‟t want to do because they are 

boring, dirty and dangerous. Moreover robots are used where the tasks are too complex to do 

for humans. In few countries robots are used in restaurants kitchens for serving.  They are 

also important earlier in food production, planting rice and tending growing crops. Robots 

also work as receptionists and cleaning and help look after the elderly in care homes. [2] 
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Figure 2: Robot Arm for Welding (Complex Tasks) [2] 

 

 Robots are used in variety of applications like space robotics, underwater robotics, 

Electric mobility, Logistics, search & rescue, security robotics, assistance & rehabilitation 

system and agricultural robots. In assistance & rehabilitation field of robotics, robots can 

support human in complex, exhausting or repeated tasks. Application areas are both helping 

in daily life activities and medical rehabilitation. [3] 

 

Figure 3: Assembly Line Robots (Repetitive Tasks) [3] 

 

For mobile robots, navigation is the basic thing that needs to be programmed before 

acting in an environment. Map based is one of the techniques that is used for mobile 

navigation. Map based is a technique in which a mobile robot creates a map of its local 

environment. This local map is then compared with the global map that is initially saved in 

the memory of mobile robot. Robot creates a map with the help of attached sensors. Sensor 

detects the hurdles like wall and obstacles and updates its map according to that. Error and 
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uncertainty analyses play an important role in accurate estimation and map building. It is very 

essential to cater for the uncertainty in the map e.g. by modeling it with probability 

distribution functions. The representation used for the map should provide a way to 

incorporate newly sensed information into map. It should also provide the necessary 

information for path planning and obstacle avoidance. [4] 

 

Figure 4: Robot Navigation [4] 

 

Now a days robots are used to help elderly people who want to stay at home remain 

independent past the point they‟d usually be unable to live alone due to physical or cognitive 

difficulties. [5] 

For mobile devices navigation is very important. In navigation mobile robot avoids 

different obstacles to achieve its target. Robot navigation is the ability of robot to determine 

its own location with reference to a frame then plan a path towards some target. Navigation 

can be divided into three categories: self-localization, Path planning and map interpretation. 

[6] Self-localization is the process of figuring out where the robot is located. Planning is the 

way to achieve the target is best possible way. Map interpretation is the logic that robot 

creates to overcome the obstacles and achieving goals. [7] 

Navigation of robot in uncertain environment in which the obstacles are moving 

randomly is very tricky. Furthermore if the target is also random then in this case the 

planning of the path becomes complicated. There is variety of techniques to overcome this 

criticality. Robot updates the path according to the current dynamic obstacle and moves by 

creating a probabilistic function to finds its target.  

One of the methods to solve this uncertainty is Markov Decision Process (MDP) [8]. 

MDP provides a model of decision making in the situation of uncertainty where the target is 

partly random. This technique is used to solve problems with dynamic programming for 

example if a robot tracks a target, its own motion is un-deterministic and the target that the 
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robot is chasing is also not fully specified. These factors increase the dynamicity while 

tracing target. There are four basic components of MDP: Sates, actions, effect of the action 

and immediate value of the action [10]. Moreover solution of an MDP is called a policy and it 

specifies the best policy. Policy is described by a value function [11].  

MDP technique is quite helpful to interpret when target is uncertain. But if robot‟s 

own position is uncertain, then a different technique is used i.e. Partially Observable MDP 

(POMDP). In POMDP we add a set of observations to a model. The current state gives us an 

observation which provides a guess about the state. The observation can be probabilistic 

which tell us the probability of each observation for every state in the model [12]. 

POMDP technique takes a lot of computational power during problem solving. As in 

this technique the robot manipulates possibilities from each possible node and finds its target 

from each node and after moving a step generates another similar tree of nodes until target is 

achieved. During its movement robot also updates the values of probability distribution 

function and assign every possible node a value. To resolve such issue of computational 

power a Localized POMDP technique is introduced by which computational power will be 

reduced as well as by defining a localized technique robot unusual movement while target 

searching will also be reduced [13]. 

Now a day‟s robots are used for health/care and for social use beyond the traditional 

scope of surgical. It is a growing research field based on human perception centered on 

supervised learning. Our application is to implement this technique in which the robot will 

optimally find its way in uncertain environment at home to help elderly people who want to 

stay at home due to physical or cognitive difficulties [11].  

The robot and the target operate in a grid environment defined at home. In one step 

robot can either stay or move to one of the eight adjacent positions in home environment as 

shown below:  

 

Figure 5: Possible Robot Moves (MATLAB GUI Reward Values Show Box) 
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The robot pays a cost for each move and receives a reward every time it arrives in the 

same position as that of the target. The robot makes observations that generate actions by this 

an internal belief state are created. When robot move it update values the cells of grid 

according to observations and save in its memory. A state estimator in programming is used 

for updating the belief state based on last action, the current observation and previous belief 

state or values to cells of grid. After computing different states a policy is defined that the 

robot will avoid walls and will travel to the shortest path towards its target i.e. human. To 

implement this technique a simulation on MATLAB software was built in GUI (Graphical 

User Interface) environment [10]. 

Our goal in this project is to track robot optimally after it is called by a human. The 

robot will stays closer to human in order to get maximum award and reach to human in lesser 

time. This technique is implemented in this project by defining different default locations of 

robot. Robot automatically selects and travels towards the default locations in the home map 

to stay closer to elder person. Moreover, in this project robot learning phase is also defined 

that helps robot to learn the positions of the robot with respect to time and update the values 

each time when it observes the human.  

In Chapter 2, different navigation methods of mobile robot are explained that includes 

potential field method, visibility graph mapping and tracking method, sampling based target 

tracking method and robot navigation by Bayesian filtering method. In this chapter 

uncertainty solving methods described are Markov Decision Process (MDP) and Partially 

Observable Decision Process (POMDP). MDP is used when the target is un-deterministic and 

robot motion is known. Methodology that is adopted to solve this uncertainty of target is 

described in this chapter. Furthermore POMDP technique is also described for un-

deterministic motion of robot.  

In Chapter 3, the methodology of localized POMDP technique is simulated in the 

MATLAB software. In this methodology, initialization of map is carried out, after that target 

defining and path segregation for localization is implemented. Furthermore policies are 

defined to solve the uncertainty while chasing the target. Optimization technique is combined 

with POMDP technique to optimize the movement of robot. 

In Chapter 4, MATLAB coding and simulation results are presented to understand full 

picture of human tracking robot navigation. In this chapter, MATLAB interface is described 

step by step with the experimental results. At the end of this chapter, comparison of simple 

POMDP technique and localized POMDP technique is tabulated to get a clear idea of this 

efficient technique. 
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In the last Chapter 5, conclusions and future recommendations of this localized 

technique is discussed that will be helpful for the robot and the target operated in a dynamic 

environment. The Localized POMDP technique has some limitations. This method is 

incomplete as when the probability of human varies drastically then the robot will be unable 

to find its way correctly towards the human when it calls. This issue can be solved by guiding 

robot about the presence of human.  

Robots are useful in bringing comfort to human‟s life, for example caring for elderly 

people who want to stay at home due to physical or cognitive difficulties, help in monitoring 

elder person, offers endless patience to elder person, preserve dignity and promote 

independence and serve as a communication tool. For a Mobile Robot the ability to navigate 

in its environment is important, when human calls the robot, it will track the human and 

avoids different dynamic and fixed obstacles. 

Navigation algorithm of a robot is a basic constituent that is to be programmed for its 

desired motion. Autonomous navigation of robots is tough to be planned in dynamic 

environment. Navigation Uncertainty Factors are: 

• Target movement is uncertain 

• Robot movement is not fully accurate 

• Dynamic uncertain Obstacles in the way while chasing target 

The technique that we are using in this project to solve uncertainty is POMDP. It is a 

decision process in which the agent cannot directly observe the states. Instead, it maintains a 

probability distribution over the set of possible states, based on a set of observations and 

observation probabilities. POMDP is a complicated technique that requires more processing 

and computational power. Our objective is to introducing a new Localized-POMDP technique 

that enable robot to reduce computational power and allow it to calculate results in lesser 

time. Our second objective is to merge robot learning phase in this technique. In this phase a 

robot learns the positions of human with respect to time and creates a probability distribution 

function that help the robot to navigate human more accurately. Our achievement in this 

project is that we have carried out the above mentioned objective through MATLAB software 

simulations detailed in chapter 3 and chapter 4.   
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CHAPTER 2: LITERATURE REVIEW 

Navigation of mobile robot is basically to find a collision free motion for the robot 

from one configuration space to another configuration space. Sensors detect the hurdles in the 

way while robot is in motion. Robot explores and senses an unknown environment to 

construct a representation that is useful in navigation. Once the task and the robotic system is 

defined, selection of algorithm is being carried out. Algorithm is selected in such a way that 

the execution time is optimal with the problem of motion planning. Optimality, completeness 

and computational complexity naturally trade off with each other. Some methods of motion 

planning are very efficient but it lacks the completeness and vice versa [10]. 

2.1 Potential functions 

A potential field method of tracking an object is basically through an attractive and 

repulsive gradient. The goal location generates an attractive potential that pulls the robot 

towards the goal. The obstacles generate a repulsive potential that pushes the robot far away 

from obstacles. The negative gradient of the total potential is treated as an artificial force 

applied to the robot. The sum of the forces is shown in the following equation [32]. 

 Artificial Potential 

( ) ( ) ( )goal obstaclesU q U q U q  --------- (Eq: 1.1) 

In the above Eq 1.1, ( )goalU q  is the attractive potential & ( )obstaclesU q  is the repulsive 

potential 

  Artificial Force Field 

    ( ) ( )F q U q               --------- (Eq: 1.2) 

In above Eq 1.2, ( )U q is the negative gradient 
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Repulsive Potential creates a potential barrier around the obstacle region that cannot be 

traversed by the robot‟s configuration. It is usually desirable that the repulsive potential does 

not affect the motion of the robot when it is sufficiently far away from obstacles. For example 

in the following figure 6: 

 

Figure 6: Potential Field Example [32] 

 

In the above figure 6 the attractive potential is given as follows in a parabolic function: 

 

    
21

( ) || ||
2

goal goalU q q q  -------- (Eq:2.0) 

 

The parabolic shape equation graph of attraction is shown below which is minimum at goal: 

 

Figure 7: Parabolic Function [32] 

 

The attraction force of the above function is: 

( ) ( )att goalF q q q   ----------- (Eq:3.0)      

   

The repulsive force calculations are as follows: 
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if ( ) oq  --------(Eq: 4.1) 

( ) 0repU q  if ( ) oq  --------(Eq: 4.2) 

 

 

Where: 

-  is the scaling factor 

- ( ) min || ' ||q CBq q q    

- o is the positive constant (distance of influence) of the obstacles. 

 

The force is given as follows: 

2

1 1 1
( ) ( ) ( )

( ) ( )
rep

o

F q q
q q

 
  

      if  ( )q o ------- (Eq: 5.1) 

( ) 0repF q      if ( ) oq  ------- (Eq: 5.2) 

        

    

The repulsive graph as shown as follows, where z-axis is the force magnitude: 

 

Figure 8: Repulsive graph [32] 

 

By adding the attractive and repulsive force we obtain the following potential graph: 

 

z

y

x

z-axis: Repulsive 
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Figure 9: Sum of Potentials [32] 

 

 

2.2 Visibility Graph 

Visibility is the type of roadmap navigation. In this navigation method the polygonal 

configuration space for a robot is segregated in such a way that vertices of each object is 

connected to one another. It is formed by connecting all visible vertices, start point and the 

end point to each other. For two points to be visible no obstacle can exists between them. 

Path exists on the perimeter of obstacles. The following is the method of drawing the lines 

between vertices [32].  

 

Figure 10: Visibility Graph Navigation [32] 

 

Each line in the above figure 10 represents part of a path from the start to the goal. When the 

robot travels on the path made by the above method the clearance from the objects is zero 

that is not a proper navigation for a robot. This problem is can be solved by using another 

roadmap method of navigation i.e. Voronoi diagram. In this method the path that is created 

has a maximum clearance between the point and obstacles. Locus of the points in this 

diagram is equidistant from the closest two or more obstacle boundaries including the 

workspace boundary [32]. The Voronoi diagram is shown in the figure 11: 
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Figure 11: Voronoi Diagram [32] 

 

 The advantage of this method is that the roadmap that is created avoids obstacles as much as 

possible. 

2.3 Cell decomposition method 

In this method of navigation the cells are made and are decomposed into small 

segments. There are two types of methods exact cell decomposition and approximate cell 

decomposition. Exact cell decomposition is a trapezoidal decomposition in which the free 

space is decomposed into trapezoidal and triangular cells. The decomposition is shown in the 

following diagram [32]. 

 

 

Figure 12: Cell Decomposition Method [32] 

 

Connectivity graph representing in the above figure 12 is representing the adjacency 

relation between the cells. For the path the mid points of the intersection of two consecutive 

cells are connected as shown in the figure 13: 
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Figure 13: Path formed by cell decomposition method [32] 

2.4 Sampling based algorithm 

In this method, the random samples are scattered in the map as shown in the following 

figure 14: [32] 

 

Figure 14: Random Samples [32] 

 

After that the sampled configurations are tested for collision. The samples which are 

inside obstacles are deleted. The highlighted black dots in the following figure 15 are deleted. 
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Figure 15: Sample Selection [32] 

 

The collision free configurations are retained as milestones. Each milestone is linked 

by straight paths to its nearest neighbors as shown in the figure 16. 

 

Figure 16: Straight Path linkage [32] 

 

The collision free links are retained as local paths form the probabilistic sample based 

road map as shown below: 

 

Figure 17: Collision Free Links [32] 

 

Suppose that the above method is applied to search for a path from „s‟ point to „g‟ 

goal as shown in the figure 18. 
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Figure 18: Start to Goal Path [32] 
 

 

2.5 Robot Navigation with Bayesian Filtering 

In robot navigation the path planning is essential to optimize the movements of robot. 

Sensors are used to create an environmental map. Robot owns location and the target location 

estimation is very important to navigate in that particular environment. The probability map 

based localization is the basic theme that is used for determining the robot own position. In 

the following figure 19 robot location estimation is defined in the following diagram [32]. 
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Figure 19: Probability Map based Localization [32] 
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In the above figure 19 the encoder senses the movement of the robot in real space and 

gives feedback to a state estimator that predicts the position of robot. Then this predicted 

position of robot is matched with the map data base to estimate exact position [11].  

State estimation of mobile robot can be carried out by Markov Localization. In this 

method the robot‟s belief is represented by a probability distribution function over possible 

locations. This method uses Bayer‟s Rule and convolution to update the belief whenever the 

robot senses or moves. During each update, the probability for each state of the entire space is 

updated [32]. Assume the robot position is one-dimensional as shown in the following figure: 

 

Figure 20: Robot One dimension Location [11] 

 

The robot queries its sensors and finds out its next to a door as shown below: 

 

Figure 21: Expected location [11] 

 

After that the robot moves one meter forward. To account for inherent noise in robot 

motion the new belief is smoother. The robot queries its sensors and again it finds its next to 

the door as shown below: 

 

Figure 22: Robot Exact Location [11] 

Probability 

(States) State Vector 

Probability 

(States) 
State Vector 

State Vector 

Probability 

(States) 



Page 17of 55 
 

2.6 Markov Decision Process 

The basic motion planning of a mobile robot is to produce a continuous motion from a 

start point to target. Navigation of robot can be decomposed into three tasks: Mapping, Path 

planning and Collision avoidance [29]. Hierarchy of mobile robot planning is defined in the 

figure 23: 

 

 

Figure 23:  Basic Navigation Flow Chart 

 

Robot perceives form the environment from its sensors. Mapping is then processed by 

the robot according to the observed environment. After that the rules and regulations that are 

programmed in the robot is processed [29].  

 In the most of the cases the target is uncertain; the uncertainty in the target can be 

solved with different techniques. Target uncertainty means that the target position is not fully 

deterministic. One of the techniques to solve such problem is Markov Decision Process 

(MDP). Moreover if the robot‟s own position is un-deterministic then another advance 

technique is used named as Partially Observable MDP. Following is the detail of these two 

techniques [29]. 

MDP is the mathematical model of an uncertain environment, where the results are 

partially random. It is very helpful for reinforcement learning and dynamic programming. It 

is a basic technique to solve complicated partially observable problems. Furthermore, it is a 

discrete time control process. In the Figure 24 an MDP example is shown in which there are 

three states s1, s2 & s3 with two actions a1 & a2 [21].  
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Figure 24: Example of MDP 

 

This technique is described as states, actions, state transition function and reward 

function. The expected reward only depends on previous state and the action taken. Agent 

acts in such a way to maximize the expected sum of reward [12].  

For a given policy let „ ( )tV s ‟ is the expected sum of reward starting from state „s‟ to 

target in „t‟ steps.   

( ) ( )tV s R s DEV  ---------- (Eq: 6.0)             

 

Where: DEV (Discounted expected value) 1( , ') ( ')tT s s V s   

This DEV is basically the future expected value for all resulting sates 's . Immediate 

value of being in a state„s‟ is ( )R s . Where ( , ')T s s  is the state transition function which gives 

probability function over each world state and agent action. For a greedy policy an action is 

taken to maximize the expected immediate reward plus the expected discounted value of the 

next sates [26].  

1( , ') ( '( ) max[ ( ) )]tTs ss R s V s    ---------- (Eq: 7.0) 

 

 

We will get values of policies as 1 2( ), ( ),..... ( )ns s s   . The optimum policy is the 

maximum attain value as defined in Equation 8: 

1 2*( ) max[ ( ), ( ),..... ( )]nV s s s s    ---------- (Eq:8.0) 

 

States: 

S0, S1, S2 

 

Actions:  

a0, a1 
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Table 1: Pseudocode MDP 

Pseudocode 

V1(s) = 0 ∀s 

t=1 

while | Vt (s) – Vt-1 (s) | < €  

t = t + 1 

for ∀s  

Qt (s) = R (s) + γ ∑ T( s , s‟) Vt-1(s‟) 

Vt (s) = max Qt (s) 

end 

end 

2.7 Partially Observable Markov Decision Process (POMDP) 

MDP only compute the optimal policy for the current state „s‟ but lack the capability 

to cater for the agent whose current position is not completely deterministic. POMDP 

framework provides systematic way to solve this. A POMDP is a generalization of a MDP 

technique in which probability distribution function is maintained over the set of possible 

states. Results of POMDP yield the optimal action for each possible belief over the world 

states. The optimal action maximizes the expected reward of the agent over expected infinite 

horizon [26].  

 

Figure 25: Finite Horizon (POMDP) 
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The framework of POMDP contains {S, A, T, R, Ω, O}; where Ω is observation 

function which gives a probability distribution for each action and resulting state. O ( 's , a, o) 

is the probability of making observation o given that the agent took action „A‟ and present in 

next state 'S [30].  

 The basic structure of POMDP can be represented as follows: [31] 

 

 

Figure 26: POMDP Structure 

 

In the above Figure 26; SE is the state estimator that determines the state from the 

observations taken from the environment. “π” is the policy of move / action that defines move 

according to the estimated state. After taking an action the robot again estimates its location 

and afterwards changes the state estimator [23]. 

 In this research we have taken an example of human tracking robot navigation at 

home. In this the robot will follow the human and helps the human in his / her daily life 

activities. Robot will search and track the human when human needs it. In this application we 

have implemented a Localized way of implementing POMDP technique [22]. 

 Robot senses the human with sensors attached on the body of robot. It may be vision 

based tracking or some other way. In this research we will not discuss the methods of sensing 

human rather we will discuss regarding navigation of robot in a given map of home [24].  
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CHAPTER 3: METHODOLOGY 

To implement Localized POMDP technique in navigation of mobile robot we have 

simulated it in MATLAB. Following are the programming steps to implement this technique. 

Note that these following steps are described in a generalized way so that a programmer can 

easily program the technique. Our goal is to implement the POMDP technique for navigation 

of human tracking robot in less time. The flowchart of methodology is describes as follows: 

Map Initialization

Defining Target Path

Path Segregation for Localization

Defining Policy Tree

Dealing with uncertainty While moving

Localization to optimized the movement of robot

Human Call

Navigation Planning
 

 

Figure 27: Methodology Flow chart 

3.1 Map initialization 

Robot must have an idea of the path in which it has to travel and to track a target. For 

this, robot learns the map initially. In programming of robot the map is initially defined. In 

the following Figure 27the black lines are the walls and remaining is the space for robot to 

move.  
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Figure 28a: Initial MAP 

3.2 Defining Target path 

The second step is to define the path of the target. Purpose of defining the target track 

is to tell the robot to trace the target on that path while tracking phase. In the Figure 28, target 

first and last point is shown from 1 to 198. For the sake of simplicity in the calculations and 

understanding; the path of the human is specified form 1 to 198 points, which means the 

target will be available in any of these points from 1 to 198. 

 

 

 

 

 

 

 

 

 

Space 

Wall 

Start and End Point 

of target

 

Figure 28b: Target Path and Rooms 



Page 23of 55 
 

3.3 Path segregation for localization 

To optimize the computation power in POMDP technique we have implemented a 

path segregation technique. In the Figure 29 the rooms are specified with different colors. 

Robot changes its location automatically after determining the expected location of target. 

Default locations of robot are shown in Figure 29 by „Red‟ color (1 ~ 4). Methodology that is 

adopted to optimize the robot movement will be discussed afterwards in this chapter. 

 

 

Figure 29: Robot Map 

3.4 Defining Policy Tree 

POMDP technique can be decomposed into a state estimator and a policy. Moreover 

agent is unable to observe current state but by making observation based on the actions and 

resulting state. The next step after segregation is to define a policy tree. Policy is basically the 

brain of POMDP in which the rules and regulations of the robot are defined. Robot makes 

decisions according to this policy tree. In our application of human tracking robot the policy 

tree is shown in the Figure 30.  
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In the above Figure 30, the environment of robot is defined. In the world of the robot; 

map, information about obstacles and human path are defined. With this information the 

robot will able to observe its surroundings and learn the environmental changings. Robot 

learns the environment by learning the probability of target / human and updating its state 

values in grid. 

Figure 30: Policy Tree (Human Tracking Robot) 
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SE (state estimator) in the figure 30acquires data from environment by observing it 

and generates vectors on adjacent grid‟s cells. Robots observe the previous human behavior 

(percentage of move) and generate probability vector values according to that and determine 

the location of the target. 

After determining the state, policies are to be defined. In our application the policy is 

categorized in two parts. In first category the robot after determining the location of human in 

a specified room, moves to default room location. When human calls the robot it moves 

towards the human probable position in that specified room defined in category policy 

second. While finding the target robot meanwhile updates the probability values. In category 

second policy, the robot moves towards the maximum award value until it finds the 

human/target.  

If the robot stuck while searching human then a stuck policy is defined to achieve full 

traceability of human. The stuck condition policy will be described later on in chapter 4.  

The policy tree flow chart is shown in the Figure 31. After the initialization of GUI, 

map obstacles and path of target is defined in the output function. After defining these above 

mentioned parameters simulation will begin. Robot will move according to the information 

initially programmed in the robot. Initial information contains default locations of robot 

perspective to room locations. Robot will gather the information, manipulate the initial data 

and process it through probability function defined in the policy tree.  In probability 

distribution function robot creates a function that generates probability vectors in eight 

different directions. Human‟s probability of move is learned by the robot and robot will 

generate a data according to that. Meanwhile robot also updates the data if any human 

movement variation is observed. The probability vector will also help the robot to detect the 

specific room in which human is probably present. 
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Figure 31: Human Tracking Navigation Policy 

3.5 Dealing with uncertainty while moving 

Robot movement in real life is always uncertain. Robot moves in environment in a 

grid structure but there is always a probability that robot might have taken that step correctly 
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or not. This makes the robot to be uncertain in the environment. This factor of uncertainty is 

reflected in our simulation by defining a probability distribution function (Figure 32). This 

function creates a grid structure around a robot and assigns values to adjacent cells. The code 

of the above function in MATLAB is given table 2. 

 

Figure 32: Distribution Function 

 

Table2: Probability Distribution Function Code 

MATLAB CODE 

function [A] = p_mapping(P,A) 

%P: Probability of move & A: Initial/Final vector 

a=[0 A]; 

b=a; 

for n=2:1:length(a) 

    a(n)=(b(n-1)*P)+(b(n)*(1-P)); 

end 

if A(length(A))>0 

    a(length(a))=1-sum(a(1:(length(a)-1))); 

end 

A=a(2:length(a)); 

3.6 Localization to optimize the movement of robot 

The methodology that is adopted for optimization is by segregating the whole map in 

to small portions. In our application whole home map is divided into separate rooms. The 

probability of human in each room is calculated and based on that robot moves towards 

Y: Probability 

Value 

X: State 

Points  
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defined default location. This technique is implemented so that when human calls the robot it 

reaches to human in less time. The code that is used for optimization is given in table 3. 

 

Table 3: Optimization Coding 

MATLAB CODE 

function [Room] = RoomLocation (p_vector) 

 

%p_vector is the path of human in terms of probability 

 

%Defining rooms 

R1=[17 16 15 … 184 49 48]; 

R2=[47 46 45 … 20 19 18]; 

R3=[50 51 52 … 181 182 183]; 

R4=[90 91 92 … 163 164 165]; 

 

sum1=sum(p_vector(R1)); 

sum2=sum(p_vector(R2)); 

sum3=sum(p_vector(R3)); 

sum4=sum(p_vector(R4)); 

 

sumsum=[sum1 sum2 sum3 sum4]; 

 

%Defining the most probable location of human 

[V,Room]=max(sumsum); 

Note: Robot will move towards default room location after determining the probable location of target. 

The above function determines the room location; Probability vector of human is the 

input of this function. Rooms are defined in this function initially, afterwards the sum of all 

the probability in the specified rooms are determined. The maximum value of the sum 

indicates the location of human. After determining the room, robot moves to default room 

location to achieve maximum award by reaching towards human in less time.  

3.7 Call interrupt by Human 

In order to call robot human commands the robot to come; this scenario is represented 

in simulation by a button as shown in the following Figure 33. 
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After pressing button to run the environment, a probability grid is created. Values are 

assigned on the basis of probability distribution function. The methodology adopted while 

human calls the robot is described in the form of flow chart as shown in the Figure 34. 

 

 

 

Initial Map 

8 Reward Values 

Click for run Env. 

Figure 33: Simulation GUI in MATLAB 
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Interrupt: function 

‘CallRobot’
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Figure 34: Interrupt Flow chat 

In the Figure 34, when human calls the robot; a probability map is created. Values are 

then assigned to each element in the probability map that will determine the location of the 

target. After determining the location of the target, a while loop is configured that will end on 
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finding the target. Robot will move while avoiding the obstacles, in its each move it will 

assign values to eight adjacent cells of the grid depending on the probability function. 

Furthermore, robot will also check the stuck condition. In stuck condition, the Robot will find 

the nearest point on the human track and divide the track in two portions. After dividing the 

path in two portions, robot will determine the human location based on probability and follow 

the path where the probability of human is greater. 
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CHAPTER 4: IMPLEMENTATION &EXPERIMENTAL RESULTS 

In this chapter MATLAB coding and simulation results are presented to understand 

full picture of human tracking robot navigation implementation. 

The GUI interface of the robot environment is shown in the following figure 35: 

 

 

 

 

 

 

 

 

 

 

 

 

The figure 35 showed the initial map of a home. Black indicates the walls of the 

home, green are the dynamic obstacles, red indicates the robot location and blue dot indicates 

the human actual position. Rest of the grid in light grey is the free space for human and robot 

to travel. By clicking the “Run Environment” button as shown in the Figure 35, the program 

will execute and the human will move in the environment randomly in free space. After 

clicking this above mentioned button, another button “Call robot” is enabled so that user can 

click the button if human needs the robot. In actual environment the human can give a 

command to robot to come by a wireless connection or some other source. In this simulation 

the method of obtaining the command signals from the human is not mentioned rather 

focusing on the navigation technique that is implemented in this research. Moreover, the 

Initial Map 

8 Reward Values 

Click for run Env. 

Figure 35: GUI Interface (MATLAB) 
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values / rewards obtained on adjacent cells of the current robot‟s cell will appear in GUI 

while robot is tracking / searching the human on call.  

When “Run Environment” is clicked the following GUI will appear: 

 

Figure 36: Initial map after running the Environment 

 

The human (In blue dot) moves randomly on the path (empty dots) are the path grid 

points in which the human moves (Figure 36). Each step of the human is not deterministic 

and uncertain; the uncertainty of the human in MATLAB simulation is defined by the 

formula as shown in the Table 4. 

Table 4: MATLAB code for Human Uncertainty 

%Defining percentage of robot move i.e. 90 percent 

rmov=randi([1 10],1,1)>1; 

%Defining percentage of robot move i.e. 50 percent 

    %rmov=randi([1 2],1,1)>1; 

 

Table 4 depicts the MATLAB keyword command “randi” is the random integer 

command that generates a random integer between 1 and 10. After that “<” command will 

returns a value of 1 or 0 depending on the integer that MATLAB has selected randomly. In 

this whole syntax there is 0.9 probability of human to move ahead in next cell. Furthermore, 

for the human probability to move in the next grid point with the probability 0.5 is also 

shown in of the MATLAB code in the last two lines. 
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In the Figure 37, a probability distribution function of the human in the whole track / 

path is defined. The darker the dot, the more will be the probability of human in that cell. The 

grey scale coloring is carried out through MATLAB commands as shown in Table 5. The 

purpose of grey scale implementation in coding is for the visual differentiation so that the 

user can easily see the probability values changings.  

Table 5: Grey scale for visual differentiation 

greyscale = abs(p_vector./max(p_vector)); 

%Plotting visually points of probability function 

for points=1:1:198 

plot(xt(points),yt(points),'o','markerfacecolor',[1 1 1]*... 

...(1-greyscale(points))) 

End 

The localization technique that is used in this research is to optimize the movement of 

robot in order to achieve maximum award value. In this technique the robot moves to defined 

robot locations with respect to the movement by human in perspective room. As the human 

changes the room the robot moves from one default location to other default location. This 

movement does not depends weather the human calls the robot or not.  

 

 

 

 

 

 

 

 

 

 

 

 

    Figure 37: Probability Distribution Function 

Figure 38: Robot default location changes w.r.t human location for optimization 

Human Location = Room 1 Human Location = Room 2 

Robot 

moves 

towards 2
nd

 

default 

location 
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In the Figure 38, the picture on the left is showing the human in Room 1 location and 

robot is in its first default location. In the right Figure 38, the robot changes its default 

position when the human travels from Room 1 location to Room 2 location. The default 

location of the robot changes with respect to human location in rooms. The probability 

distribution function of human‟s path decides the probable room where human is located. The 

methodology of the probability distribution function is already defined in the chapter 3.  

4.1 Computing Belief Space 

Belief state „b‟ is basically a probability distribution function „S‟. Let b (s) is the 

probability assigned to the human track.  

Where 0 ≤ b (s) ≤ 1 for all s ϵ S 

( ) 1s S b s      -------- (Eq: 9.0) 

'b  is the new belief state that originated from old belief state through state estimator 

SE with an action “a” and an observation “o”.  

'( ') Pr( ' | , , )b s s o a b  

Pr( | ', , ) Pr( ' | , )

Pr( | , )

o s a b s a b

o a b
  

Pr( | ', ) Pr( ' | , , )Pr( | , )

Pr( | , )

s So s a s a b s s a b

o a b


  

 
( ', , ) ( , , ') ( )

Pr( | , )

s SO s a o T s a s b s

o a b


  --------- (Eq: 10.0) 

 

The above formula is implemented in MATLAB to create probability distribution 

function as shown in the Table6.  

Table 6: Creating Belief Space 

for n=2:1:length(a) 

    a(n)=(b(n-1)*P)+(b(n)*(1-P)); 

end 

if A(length(A))>0 

    a(length(a))=1-sum(a(1:(length(a)-1))); 

end 
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The step by step results generated by the above MATLAB code of the probability 

distribution function are as follows:  

A = [1     0     0     0     0     0] 

>> A=p_mapping (0.7, A ) 

A =[ 0.3000    0.7000         0         0         0         0] 

>> A=p_mapping (0.7, A ) 

A = [0.0900    0.4200    0.4900         0         0         0] 

>> A = p_mapping (0.7, A ) 

A = [0.0270    0.1890    0.4410    0.3430         0         0]               Figure 32: Distribution Function 

 

Table 7: Code Iterations 

 

In the above table 7 the iterations are shown in which human‟s probability at a cell is 

initially 100%. After that the probability of human varies on each step as described above. 

4.2 Defining Localization, Optimum Policy and Value Function 

The optimization policy and Localization is the basic phenomena that help the robot 

to achieve maximum award in less time. For localization the technique that is implemented is 

describe in the MATLAB code in the Table 8. Robot first analyzes the probability of whole 

grid of the human path and then sums the probabilities of the grid within the room. Where the 

probability sum comes out to be one is the probable location of human in that room. The 

formula of calculating the probability sum is as shown as follows: 

 

         ---------- (Eq: 11.0) 

 

The MATLAB code is shown in the Table 8 with the results obtained by the above 

formula is also shown after the table in the Example. The example that is shown after the 

Table 8 is when the human location is probably in room 2.  

 

Iteration 1 1 0 0 0 0 0 

Iteration 2 0.3 0.7 0 0 0 0 

Iteration 3 0.09 0.42 0.49 0 0 0 

Iteration 4 0.027 0.189 0.441 0.343 0 0 

… … … … … … … 

X: State Points  

Y: Probability Value 



Page 37of 55 
 

Table 8: Localization 

MATLAB CODE 

function [Room] = RoomLocation (p_vector) 

 

%p_vector is the path of human in terms of probability 

 

%Defining rooms 

R1=[17 16 15 … 184 49 48]; 

R2=[47 46 45 … 20 19 18]; 

R3=[50 51 52 … 181 182 183]; 

R4=[90 91 92 … 163 164 165]; 

 

sum1=sum(p_vector(R1)); 

sum2=sum(p_vector(R2)); 

sum3=sum(p_vector(R3)); 

sum4=sum(p_vector(R4)); 

 

sumsum=[sum1 sum2 sum3 sum4]; 

 

%Defining the most probable location of human 

[V,Room]=max(sumsum); 

 

Note: Robot will move towards default room location after determining the probable location of target. 

 

Example: 

 

sum1 = 0 

sum2 = 1 

sum3 = 0 

sum4 = 0 

sumsum = [0     1     0     0 ] 

V = 1 

Room = 2 
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Actions that the robot can take with respect to human location and on calling are 

eight. The eight robots actions are shown in the Figure 39. 

In these adjacent grid points the robot will only move towards the maximum reward 

value. The policy that is made for the movement of robot is based on distance probability. 

Distance probability means that robot will calculate the distance from its own probable 

position and human probable position with a linear function. In initial parameters the robot 

learning is carried out so that the map of the home is recognized by robot. With this map the 

robot finds the distance between human and robot probable locations. In MATLAB this 

distance command is implemented by “pdist” as shown in the Table9.  

For initialization the some initial reward is given to whole grid points in order to 

differentiate the reward value of moving towards obstacles or side walls. Here the initial 

award is taken as follows: 

R ( s , a ) = 0.01 (All empty grid points) 

R ( s , a ) = 0 (Obstacles / Walls) 

The reward optimum policy of this human tracking robot is defined as follows: 

1. If the probable calculated distance between the robot and human is less as compared 

to previous calculated probable distance then the reward value is 0.04 (4%).  

2. If the probable calculated distance between the robot and human is greater as 

compared to previous calculated probable distance then penalty of 4% will be given. 

i.e. “-0.04”.  

3. Furthermore, if the probable calculated distance between the robot and human is same 

then a less penalty is given i.e. 3% (-0.03).  

 

Figure 39: Robot Actions 
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This policy is summarized in a Table 9as follows: 

Table 9: Policy Chart 

 

This above value is further sum with the belief state space calculated in the previous 

section. The combine formula of the reward value with the above mentioned policy is as 

follows: 

V = R ( s , a ) + γ ∑ Pr ( b‟ | a , b , o )  ---------  (Eq: 12.0) 

 

 

The code for the implementation of the above formula is shown in the Table10 as follows: 

Table 10: Policy Code 

MATLAB Code 

t_map=zeros([26,36])+0.01; 

p_vector = 0.01+evalin('base','p_vector'); 

.... 

for i=1:1:198 

t_map(xt(i),yt(i))= p_vector(i); 

end 

.... 

elseifpdist([RxN(i) RyN(i);PORxPORy]) <pdist([Rx Ry;PORxPORy]) 

 

PN(i)=t_map(RyN(i),RxN(i))+0.04;  

% Near Human +4% Reward 

elseifpdist([RxN(i) RyN(i);PORxPORy]) >pdist([Rx Ry;PORxPORy]) 

PN(i)=t_map(RyN(i),RxN(i))-0.04;  

% Away from Human -4% Penalty 

elseifpdist([RxN(i) RyN(i);PORxPORy]) == pdist([Rx Ry;PORxPORy]) 

PN(i)=t_map(RyN(i),RxN(i))-0.03; 

% May be Stuck Condition -3% Penalty 

 

 

Probable Distance 

“Pdist” 

Policy 

Reward Penalty 

Less 4 % (+0.04) 0 % 

Greater 0 % - 4 % (-0.04) 

Equal 0 % - 3 % (-0.03) 
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After obtaining the eight reward values the robot will take an action on the maximum 

awarded value as shown in the following formula: 

 

V * ( s ) = max [  R ( s , a ) + γ ∑ Pr ( b‟ | a , b , o )  ] -------- (Eq: 13.0) 

 

 

Where V * ( s ) is the optimum value that is the maximum value among the eight 

adjacent cell values of the robot. The values variations and the step by step implementation of 

the above algorithm are shown in an example below: 

Suppose a human call a robot at the location shown in Figure 40. In this figure the robot is 

present at the location mentioned as „1‟. Blue dot is the location of the human. The algorithm 

runs and the robot travel from location 1 to location 10. Step by step variation according to 

the algorithm defined above is shown after the Figure 40. 

 

 

Figure 40: Example 
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             Initial                                                1 to 2                                              2 to 5 

                                    

 

 

5 to 6                                               6 to 7                                          7 to 8 

                                    

  

              8 to 9                                              9 to 10                       10 to Human 

                                    

 

It is clear from the above flow chart that initially before starting the values of the eight 

adjacent cells are zero. After that initial award is assign as 0.01 except walls and obstacles. 

The POMDP algorithm runs and the robot will move towards the maximum value of the cell 

to reach the human. Finally when robot reaches the human, detects the human and get 

maximum award as 1.  
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4.3 Comparison of Simple POMDP & Localized-POMDP 

POMDP technique required lot of computational power. In this technique policy tree 

that is created to track the target contain all the probabilistic points of the map. In Localized-

POMDP technique the probabilistic points are reduced. Reduction is based on number of 

sections in a map. Simple POMDP provides a complete tracking of target to some extent, 

while the localized POMDP is not a complete solution if the probability varies drastically. 

Following in a comparison table the computational power is roughly calculated to give an 

idea of its optimality.  

 

Table 11: Comparison Table 

S. 

No. 
Aspects 

Methods 

POMDP Localized-POMDP 

1.  Formula 

(Value 

Function) 

V=R(s,a)+ r ∑              
 

   
 

Where  

n = Total map probabilistic 

points 

V=R(s,a)+ r ∑              
          

   
 

Where  

n = no of points in „x‟ region 

2.  Computation 

Power 

More data points, more 

computational power 

Less data points, less 

computational power 

3.  Coverage Full Coverage  

(Completeness) 

In complete  

(If the probability varies 

drastically) 

4.  Algorithm 

Computational 

power 

calculations 

Depends on total map 

probabilistic points. 

For example: 

36 x 26 

If human is in room 1: 

14 x 11 

Enhancement in computational 

power = 36 x 26 - 14 x 11 x 100 

                     36 x 26 

83.5% More efficient 
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CHAPTER 5: CONCLUSION & FUTURE RECOMMENDATIONS 

This Localized POMDP technique is helpful for the robot and the target operated in a 

grid environment efficiently. Furthermore in this technique, navigation is combined with the 

robot learning phase that helps robot to learn and update data to determine expected location 

with less error. As the time spends the robot action judgments becomes accurate by its 

observations with respect to time and the human belief also flourished. This is the major and 

important technique by which the uncertainty of mobile robots can be solved. This penalty 

and reward game helps robot to navigate accurately in the given map. The robot pays a cost 

for each move and receives a reward every time it arrives in the same position as that of the 

target. This technique continues until the robot reaches the required human target. Moreover 

it is useful for the uncertain changings in the environment and even human‟s motion is non-

deterministic. The factors that add the uncertainty in the area of mobile robot are the 

uncertain movement of target, robot‟s accuracy while moving in steps and dynamic obstacles 

that comes in the way while tracking. Moreover, it is an optimized way in which the robot 

stays closer to the person in order to track his position well and improve the chance of 

receiving rewards. The robot automatically moves and changes it position with respect to the 

human observed location to get maximum value in lesser time. Other advantage of using this 

technique is to minimize movement in order to reduce power consume by the robot. Battery 

consumption for mobile robot is very important in today‟s life because it is very time 

consuming to charge batteries before it goes to work again in a given environment. 

To enhance the generalization of this algorithm and navigation optimization of the 

human tracking robot a generalized algorithm can be defined with this project that can auto 

generate robot‟s default locations perspective to different rooms in the given map. The 

default locations of the rooms should be taken at minimum distance to avoid the unnecessary 

movements for the implementation of the above mentioned generalization technique. Any 

technique can be merged with this technique to auto calculate the default locations of the 

robot. This project methodology is generalized that can easily be merged with any other 

navigation technique. To make this methodology more efficient the default location can be 

defined in such a way that the distance between two consecutive locations are least.  

The POMDP technique provides a basic approach of planning under non deterministic 

environment with observations from surroundings. It gives a best way of taking an action 

after gaining information from the world. Our current work explores the use of localized 
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POMDP method for representing best way of obtaining values/awards and the use of 

simulation in order to concentrate the approximations on rapid changing environment through 

belief space. The results of this work have allowed us to have a good way of optimizing robot 

navigation. We are hopeful to extend this technique to get good solution to our variety of 

daily life applications. 
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APPENDIX A - MATLAB CODE 

function varargout = POMDP_Track(varargin) 
gui_Singleton = 1; 
gui_State = struct('gui_Name',       mfilename, ... 
'gui_Singleton',  gui_Singleton, ... 
'gui_OpeningFcn', @POMDP_Track_OpeningFcn, ... 
'gui_OutputFcn',  @POMDP_Track_OutputFcn, ... 
'gui_LayoutFcn',  [] , ... 
'gui_Callback',   []); 
if nargin && ischar(varargin{1}) 
    gui_State.gui_Callback = str2func(varargin{1}); 
end 

 
if nargout 
    [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:}); 
else 
    gui_mainfcn(gui_State, varargin{:}); 
end 

 
function POMDP_Track_OpeningFcn(hObject, eventdata, handles, varargin) 
handles.output = hObject; 

 
% Display pic on GUI 
axes(handles.DetailofMap) 
assignin('base','im_name' , 'DetailofMAP.jpg'); 
assignin('base','im_type' , 'jpg'); 
evalin('base','[IMG,MAP] = imread(im_name,im_type);'); 
IMG = evalin('base','IMG'); 
image(IMG); 
axis off 

 
guidata(hObject, handles); 

 
function varargout = POMDP_Track_OutputFcn(hObject, eventdata, handles) 

 
%Defining environment 
axes(handles.AxesMap)  
axis off 
hold off; 

 
%Creating Wall 
xw1(1:36)=1:1:36; 
xw1(37:61)=36; 
xw1(62:96)=35:-1:1; 
xw1(97:120)=1; 

 
yw1(1:36)=1; 
yw1(37:61)=2:1:26; 
yw1(62:96)=26; 
yw1(97:120)=25:-1:2; 

 

 
%Creating Fix Obstacle 
xo1(1:6)=22:1:27; 
xo1(7:10)=27; 
xo1(11:15)=26:-1:22; 
xo1(16:18)=22; 
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yo1(1:6)=8; 
yo1(7:10)=9:1:12; 
yo1(11:15)=12; 
yo1(16:18)=11:-1:9; 

 
%Defining all obs excluding dynamic obs 
xw=[xw1 xw2 xw3 xw4 xo1 xo2 xo3]; 
yw=[yw1 yw2 yw3 yw4 yo1 yo2 yo3]; 

 
plot(xw,yw,'s','MarkerEdgeColor','k','MarkerFaceColor','k','MarkerSize',9) 
axis([-3 40 -3 30]) 
axis off 

 
hold on 

 
%Creating Uncertain dynamic obstacle 
xdo1=30; 
ydo1=21; 

 
%All uncertain dynamic obs 
xdo=[xdo1 xdo2 xdo3 xdo4 xdo5]; 
ydo=[ydo1 ydo2 ydo3 ydo4 ydo5]; 

 
do_plot=plot(xdo,ydo,'s','MarkerEdgeColor','g','MarkerFaceColor','g','Marke

rSize',9); 
axis([-3 40 -3 30]) 

 
%Defining robot location 
Rx=13; 
Ry=20; 
rplot=plot(Rx,Ry,'rs','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSi

ze',9); 
assignin('base','rplot',rplot); 

 
%Defining Current Obstacles overall 
CObs=[xw xdo Rx; yw ydo Ry]; 

 
% Target Random probabilistic path 
xt= [24 23 22 21 20 19 18 17 16 15 14 14 14 14 14 14 13 12 11 10 10 10 10 

... 

 
yt= [ 24 24 24 24 24 24 24 24 24 24 24 23 22 21 20 19 19 19 19 19 20 ... 

 
t_plot=plot(xt(1),yt(1),'s','MarkerEdgeColor','b','MarkerFaceColor','b','Ma

rkerSize',9); 

 
%Sending variables to base 
assignin('base','xw',xw); 
assignin('base','yw',yw); 

 
assignin('base','xdo',xdo); 
assignin('base','ydo',ydo); 

 
assignin('base','CObs',CObs); 

 
assignin('base','xt',xt); 
assignin('base','yt',yt); 
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assignin('base','do_plot',do_plot); 
assignin('base','t_plot',t_plot); 

 
assignin('base','Rx',Rx); 
assignin('base','Ry',Ry); 

 
varargout{1} = handles.output; 

 
function Run_Callback(hObject, eventdata, handles) 

 
pm1=0;pm2=0;pm3=0;pm4=0;pm5=0; 
sr1=0;sr2=0;sr3=0;sr4=0;sr5=0; 

 
Room=1;TransRoomCase=1; 
assignin('base','TransRoomCase',TransRoomCase); 

 
set(handles.Run,'Enable','off') 

 
set(handles.CallRobot,'Enable','on') 
% Defining Path for robot travel to optimize battery power consumption... 
% ...and obtaining maximum reward 
% Obtaining values from base 

 
xw=evalin('base','xw'); 
yw=evalin('base','yw'); 

 
xdo=evalin('base','xdo'); 
ydo=evalin('base','ydo'); 

 
CObs=evalin('base','CObs'); 

 
xt=evalin('base','xt'); 
yt=evalin('base','yt'); 

 
t_plot=evalin('base','t_plot'); 

 
Rx=evalin('base','Rx'); 
Ry=evalin('base','Ry'); 

 
pos=1;step=1; 
p_vector=[1 zeros([1,197])]; 
assignin('base','p_vector',p_vector); 

 
axes(handles.AxesMap)  

 
while pos < 198 

 
% Dynamic Obs avoiding current obs 
    [xdo, ydo]=UpdateDynamicObs (xdo, ydo,CObs); 

 
%Deleting previous dynamic obs 
    do_plot=evalin('base','do_plot'); 
    delete(do_plot) 
    

do_plot=plot(xdo,ydo,'s','MarkerEdgeColor','g','MarkerFaceColor','g','Marke

rSize',9); 
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    assignin('base','do_plot',do_plot); 

 
%Updating current Obs 
    CObs=[xw xdo Rx; yw ydo Ry]; 
    assignin('base','CObs',CObs); 
    assignin('base','xdo',xdo); 
    assignin('base','ydo',ydo); 

 
%Defining percentage of robot move i.e. 90 percent 
%     pv=100/(100-Percent) 
    pv=6; 
    rmov=randi([1 pv],1,1)>1; 
%Defining percentage of robot move i.e. 50 percent 
%     rmov=randi([1 2],1,1)>1; 

 
    pos=pos+rmov; 
    assignin('base','pos',pos); 

 
%Checking the possibility of target move 
    TMove=find((xdo == xt(pos) & ydo == yt(pos)),1); 
if any(TMove) 
    pos=pos-1; 
    assignin('base','pos',pos); 
end 

 
    Rx=evalin('base','Rx'); 
    Ry=evalin('base','Ry'); 

 
    pos=evalin('base','pos'); 

 
%Deleting Target plot and then updating it 
    delete(t_plot) 
    t_plot=plot(xt(pos),yt(pos),'s','MarkerFaceColor','b','MarkerSize',9); 
    assignin('base','pos',pos); 
    assignin('base','t_plot',t_plot); 

 
    p_vector=evalin('base','p_vector'); 

 
%creating pobability vector with percentage of move 
    p_vector=p_mapping(0.7,p_vector); 
    assignin('base','p_vector',p_vector); 

 
%If robot find its target it update the probability vector to 1 
if (xt(pos) == Rx && yt (pos)== Ry) || (xt(pos) == Rx+1 && yt (pos)== Ry+1) 

|| (xt(pos) == Rx && yt (pos)== Ry+1)|| (xt(pos) == Rx-1 && yt (pos)== 

Ry+1) || (xt(pos) == Rx-1 && yt (pos)== Ry) || (xt(pos) == Rx-1 && yt 

(pos)== Ry-1) || (xt(pos) == Rx && yt (pos)== Ry-1) || (xt(pos) == Rx+1 && 

yt (pos)== Ry-1) || (xt(pos) == Rx+1 && yt (pos)== Ry) 
        p_vector=zeros([1,198]); 
        p_vector(pos)=1; 
        assignin('base','p_vector',p_vector); 
end 

 
    PreRoom=Room; 

 
    [Room]=RoomLocation (p_vector); 

 
    NewRoom=Room; 
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    TransRoomCase=evalin('base','TransRoomCase'); 

 
    PreCase=TransRoomCase; 

 
if PreRoom ==1 && NewRoom ==2  
        TransRoomCase=2; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
if PreRoom ==2 && (NewRoom ==3 || NewRoom == 1 ) 
        TransRoomCase=3; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
if PreRoom ==3 && NewRoom ==4 
        TransRoomCase=4; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
if PreRoom ==4 && NewRoom ==3 
        TransRoomCase=5; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
if PreRoom ==3 && NewRoom ==1 
        TransRoomCase=6; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
if PreCase==7 && PreCase ~= TransRoomCase 
        TransRoomCase=8; 
        assignin('base','TransRoomCase',TransRoomCase); 
end 

 
    greyscale = abs(p_vector./max(p_vector)); 

 
%Plotting visually points of probability function 
for points=1:1:198 
    plot(xt(points),yt(points),'o','markerfacecolor',[1 1 1]*(1-

greyscale(points))) 
end 

 
% Robot new location programming 
switch TransRoomCase 
case 2 
if  pm1 < length(xRobOneToTwoPath)     
            rmov=randi([1 10],1,1)> 1; 
            pm1=pm1+rmov; 
if pm1 ~= 0 
            RMove=find(xdo== xRobOneToTwoPath(pm1) & ydo == 

yRobOneToTwoPath(pm1),1); 
if any(RMove) 
            pm1=pm1-1; 
end 
            Rx=xRobOneToTwoPath(pm1); 
            Ry=yRobOneToTwoPath(pm1); 
end 
end 
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case 3 
if  pm2 < length(xRobTwoToThreePath)          
            rmov=randi([1 10],1,1)> 1; 
            pm2=pm2+rmov; 
if pm2 ~= 0 
            RMove=find(xdo== xRobTwoToThreePath(pm2) & ydo == 

yRobTwoToThreePath(pm2),1); 
if any(RMove) 
            pm2=pm2-1; 
end 
            Rx=xRobTwoToThreePath(pm2); 
            Ry=yRobTwoToThreePath(pm2); 
end 
end 

 
case 4 
if  pm3 < length(xRobThreeToFourPath) 
            rmov=randi([1 10],1,1)> 1; 
            pm3=pm3+rmov; 
if pm3 ~= 0 
            RMove=find(xdo== xRobThreeToFourPath(pm3) & ydo == 

yRobThreeToFourPath(pm3),1); 
if any(RMove) 
            pm3=pm3-1; 
end 
            Rx=xRobThreeToFourPath(pm3); 
            Ry=yRobThreeToFourPath(pm3); 
end 
end 

 
case 5 
if  pm4 < length(xRobFourToThreePath) 
            rmov=randi([1 10],1,1)> 1; 
            pm4=pm4+rmov; 
if pm4 ~= 0 
            RMove=find(xdo== xRobFourToThreePath(pm4) & ydo == 

yRobFourToThreePath(pm4),1); 
if any(RMove) 
            pm4=pm4-1; 
end 
            Rx=xRobFourToThreePath(pm4); 
            Ry=yRobFourToThreePath(pm4); 
end 
end 

 
case 6 
if  pm5 < length(xRobThreeToOnePath) 
            rmov=randi([1 10],1,1)> 1; 
            pm5=pm5+rmov; 
if pm5 ~= 0 
            RMove=find(xdo== xRobThreeToOnePath(pm5) & ydo == 

yRobThreeToOnePath(pm5),1); 
if any(RMove) 
            pm5=pm5-1; 
end 
            Rx=xRobThreeToOnePath(pm5); 
            Ry=yRobThreeToOnePath(pm5); 
end 
end 
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case 7 
            Rx=xt(pos-1); 
            Ry=yt(pos-1); 

 
case 8 
if Rx == 14 && Ry == 19  
            SubRoute=1; 
end 
if (Rx == 11 || Rx==12) && Ry == 18 
            SubRoute=2; 
end 
if (Rx == 18 || Rx==19) && Ry == 3 
            SubRoute=3; 
end 
if Rx == 21 && Ry == 4 
            SubRoute=4; 
end 
if Rx == 15 && Ry == 16 
            SubRoute=5; 
end 

 
assignin('base','Rx',Rx); 
assignin('base','Ry',Ry); 

 
rplot=evalin('base','rplot');     
delete(rplot) 
rplot=plot(Rx,Ry,'rs','MarkerEdgeColor','r','MarkerFaceColor','r','MarkerSi

ze',9); 
assignin('base','rplot',rplot); 

 
step=step+1; 

 
%Time delay for visual inspection units:sec 
pause(1) 
end 
set(handles.Run,'Enable','on') 

 
function CallRobot_Callback(hObject, eventdata, handles) 
t_map=zeros([26,36])+0.01; 
PN=zeros(1,8); 
% U=0;L=0;D=0;R=0; 
RxPath=[0 0 0 0 0]; 
RyPath=[0 0 0 0 0]; 
var=1; 
p_vector = 0.02+evalin('base','p_vector'); 
xt=evalin('base','xt'); 
yt=evalin('base','yt'); 
Rx=evalin('base','Rx'); 
Ry=evalin('base','Ry'); 
CObs=evalin('base','CObs'); 
rplot=evalin('base','rplot'); 
pos=evalin('base','pos'); 
xdo=evalin('base','xdo'); 
ydo=evalin('base','ydo'); 
do_plot=evalin('base','do_plot'); 
xw=evalin('base','xw'); 
yw=evalin('base','yw'); 

 
%Updating values of t_map w.r.t p_vector 
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for i=1:1:198 
    t_map(xt(i),yt(i))= p_vector(i); 
end 

 
% Finding Probability Location of Robot POR 
[p_vector_value , p_vector_indx]= max(p_vector); 
PORx=xt(p_vector_indx); 
PORy=yt(p_vector_indx); 

 
Rep=0;  

 
while max(PN)<1 

 
% Dynamic Obs avoiding current obs 
    [xdo, ydo]=UpdateDynamicObs (xdo, ydo,CObs); 

 
%Deleting previous dynamic obs 
    delete(do_plot) 
    

do_plot=plot(xdo,ydo,'s','MarkerEdgeColor','g','MarkerFaceColor','g','Marke

rSize',9); 
    assignin('base','do_plot',do_plot); 

 
    assignin('base','xdo',xdo); 
    assignin('base','ydo',ydo); 

 
%Updating current Obs 
    CObs=[xw xdo Rx; yw ydo Ry]; 
    assignin('base','CObs',CObs); 

 
%Creating 8 points 
    RxN=[Rx+1 Rx Rx-1 Rx-1 Rx-1 Rx Rx+1 Rx+1]; 
    RyN=[Ry+1 Ry+1 Ry+1 Ry Ry-1 Ry-1 Ry-1 Ry]; 

 
%Assigning rewards for eight locations 
for i=1:1:8 
if RxN(i)==xt(pos) && RyN(i)==yt(pos) 
         PN(i)=1; %Human 
         p_vector=zeros([1,198]); 
         p_vector(pos)=1; 
         assignin('base','p_vector',p_vector); 
         t_map=zeros([26,36]); 
         t_map(RxN(i),RyN(i))= 1; 
elseif find((CObs(1,:) == RxN(i) & CObs(2,:) == RyN(i)),1); 
         PN(i)=0; %Wall or Obstacle 
         t_map(RxN(i),RyN(i))= 0; 
elseif pdist([RxN(i) RyN(i);PORx PORy]) < pdist([Rx Ry;PORx PORy]) 
         PN(i)=t_map(RxN(i),RyN(i))+0.04; % Near Human 
elseif pdist([RxN(i) RyN(i);PORx PORy]) > pdist([Rx Ry;PORx PORy]) 
         PN(i)=t_map(RxN(i),RyN(i))-0.04; %Away from Human 
if PN(i) <= 0 
                PN(i)=0.01; 
end 
elseif pdist([RxN(i) RyN(i);PORx PORy]) == pdist([Rx Ry;PORx PORy]) 
         PN(i)=t_map(RxN(i),RyN(i))-0.03;% May be Stuck Condition 
if PN(i) <= 0 
                PN(i)=0.01; 
end 
end 
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end 
    set(handles.one,   'String', round(PN(1)*10000)/10000) 
    set(handles.Two,   'String', round(PN(2)*10000)/10000) 
    set(handles.Three, 'String', round(PN(3)*10000)/10000) 
    set(handles.Four,  'String', round(PN(4)*10000)/10000) 
    set(handles.five,  'String', round(PN(5)*10000)/10000) 
    set(handles.Six,   'String', round(PN(6)*10000)/10000) 
    set(handles.Seven, 'String', round(PN(7)*10000)/10000) 
    set(handles.Eight, 'String', round(PN(8)*10000)/10000) 

 

 
    [PN_value , move]=max(PN); 

 
if PN_value ~=1 
        Rx=RxN(move); 
        Ry=RyN(move); 
else 
        Rx=xt(pos-1); 
        Ry=yt(pos-1); 
end 

 
        t_map(RxN(move),RyN(move))= PN_value; 

 
        RxPath(5)=RxPath(4); 
        RxPath(4)=RxPath(3); 
        RxPath(3)=RxPath(2); 
        RxPath(2)=RxPath(1); 
        RxPath(1)=Rx; 

 
        RyPath(5)=RyPath(4); 
        RyPath(4)=RyPath(3);        
        RyPath(3)=RyPath(2); 
        RyPath(2)=RyPath(1); 
        RyPath(1)=Ry; 
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