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ABSTRACT 
 

Degradation caused by corrosion in complex engineered systems strongly affects the economic 

and industrial growth of a country. Failure caused by corrosion in industries are the major cause 

of breakdown maintenance. Corrosion detection and monitoring techniques can diagnose health 

of industrial structures and reduce their life-cycle cost. Corrosion detection and monitoring 

techniques can be classified into two categories namely destructive testing and Nondestructive 

testing techniques (NDT). Various NDT techniques like Ultrasonic, Acoustic emission, Guided 

waves, Eddy currents, Radiographic testing and Magnetic flux leakage have been applied by 

researchers for corrosion monitoring. Acoustic emission being a passive NDT technique has 

greater potential to be used as corrosion detection and monitoring technique. Acoustic emission 

during the accelerated corrosion testing is a reliable method for corrosion detection, however, 

classification of these acoustic emission signals by machine learning techniques is still in its 

infancy. To overcome this problem, machine learning based classifier approach is proposed that 

extracts the statistical features of the acquired acoustic emission signals from accelerated 

corrosion testing of mild steel samples and then use these distinct statistical features as inputs to 

the classifier to classify corrosion and no-corrosion state and further corrosion severity level 

prediction. Proposed method automatically extracts distinct statistical features like AE Mean, AE 

Energy, AE RMS, Skewness and Kurtosis of each acquired acoustic signal and then present these 

distinct features as inputs to classifier for classification. Acoustic emission signals for 

accelerated corrosion process were acquired using acoustic sensor, NI Elvis kit and LabView 

interface. Three different algorithms, back propagation neural network, radial basis function 

neural network and naive bayes classifier have been used as supervised learning algorithms for 

classification of ‘corrosion’ and ‘no corrosion’ state and corrosion severity level prediction. For 

multi-class problem, five corrosion severity levels have been made based on the mass loss 

occurred during accelerated corrosion testing. For bi-classification problem, Naive Bayes, BP-

NN and RBF-NN showed accuracy of 98.68%, 98.57%, and 100% respectively. For five-class 

corrosion severity level problem, Naive Bayes, BP-NN and RBF-NN showed accuracy of 90.4%, 

94.57%, and 100% respectively. Radial basis function neural network outperformed the other 

two classifiers and showed the best classification accuracy for corrosion severity level prediction 

due to presence of gaussian activation function in network hidden layer neurons. 
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1. INTRODUCTION 
 

This chapter presents an introduction to corrosion detection and monitoring techniques using 

various methods while focusing on importance of corrosion monitoring in industry, research 

aims, scope of the research and the motivation lying behind the thesis. 

1.1. Introduction to Thesis 
 

Corrosion is a natural phenomenon which degrades the metals into its components by reacting 

chemically or electrochemically with its environment. Corrosion is the metal’s chemical 

disintegration into its components. Corrosion has always been an immense problem for 

engineering community because complex engineering structures such as bridges, aircrafts, 

ships, nuclear power plants, and industrial pipelines are always subjected to such conditions 

that leads to corrosion. However, environmental conditions such as humidity, temperature and 

presence of any reactive substance strongly affects rate of corrosion. Corrosion affects the 

strength of the materials and reduces the life cycle of an equipment. Corrosion has many types 

namely general attack corrosion, pitting corrosion, stress corrosion cracking, galvanic 

corrosion and flow assisted corrosion. 

 

Degradation caused by corrosion in these complex engineered systems strongly affects the 

economic and industrial growth of a country. According to world Corrosion Organization 

annual direct cost of corrosion is 2.2 trillion US dollars worldwide which accounts for over 

3% of worldwide GDP [1]. Direct costs include the costs of materials, repair, maintenance and 

the replacement cost of equipment damaged due to corrosion. Production loss, environmental 

impacts, transportation disruptions, injuries, and fatalities are the indirect costs associated to 

corrosion. Failure caused by corrosion in industries are the major cause of breakdown 

maintenance. Corrosion detection and monitoring techniques can diagnose health of industrial 

structures and reduce their life-cycle cost. Major portion of the life-cycle cost goes towards 

finding and then fixing the fault. Early diagnosis of faults can save up to 30% of the total 

ownership cost [2]. Corrosion detection and monitoring techniques can save a lot of cost in 

terms of predictive maintenance. According to researchers 20 − 25 % of the annual direct cost 
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of corrosion can be saved by applying the available technologies [1][3]. Intelligent health 

monitoring systems for detection and monitoring of corrosion are under great focus these days.  

Corrosion detection and monitoring techniques can be classified into two categories namely 

destructive testing and Nondestructive testing techniques (NDT). NDT techniques inspect and 

evaluate materials and assemblies without affecting their future usefulness. Various NDT 

techniques like Ultrasonic, Acoustic emission, Guided waves, Eddy currents, Radiographic 

testing and Magnetic flux leakage have been applied by researchers in this regard [4]. Each 

technique has its own benefits and limitations; however, the main benefit of NDT techniques is 

that the part can still be used when the part is under inspection.  

 

In active type NDT techniques, external energy is used as an excitation source, therefore, 

transmitting transducer and receiver both are required. Acoustic emission testing relies on the 

energy initiated within the material or component under test so only receiving transducers are 

required. Acoustic emission is defined as emission of transient elastic waves generated by 

rapid release of energy due to deformation in the materials. Acoustic emission being a passive 

NDT technique has greater potential to be used as corrosion detection and monitoring 

technique. There are two types of acoustic emission namely air-borne acoustic emission and 

structure-borne acoustic emission. In corrosion detection and monitoring systems, Air-borne 

acoustic emission is commonly used but it has issues such as environmental noise. Structure-

born acoustic emission during the accelerated corrosion testing is a reliable method for 

corrosion detection, however, classification of these acoustic emission signals by machine 

learning techniques is still in its infancy. To overcome this problem, machine learning based 

classifier approach is proposed that extracts the statistical features of the acquired acoustic 

emission signals from accelerated corrosion testing and then use these distinct statistical 

features as inputs to the classifier to classify corrosion and no-corrosion state and further 

corrosion severity level prediction. Proposed method automatically extracts distinct statistical 

features like AE Mean, AE Energy, AE RMS, Skewness and Kurtosis of each acquired 

acoustic signal and then present these distinct features as inputs to neural network based 

classifier for corrosion classification. 
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The thesis is organized in following sections. Chapter 2 presents the previous work related to 

corrosion monitoring techniques, classifiers and statistical signal processing. Chapter 3 

explains the theory behind the chosen methods and chapter 4 explains the experimental setup 

and data acquisition while chapter 5 explains the results and detailed discussion respectively. 

Chapter 6 discusses the challenges related to implementation of the proposed technique and 

chapter 7 explains the conclusion and future work.  

 

1.2. Summary 
 

❖ Corrosion is a naturally occurring phenomenon in which metal’s chemical 

disintegration into its components occurs. Corrosion affects the strength of the 

materials and reduces the life cycle of an equipment. Production loss, environmental 

impacts, transportation disruptions, injuries, and fatalities are the indirect costs 

associated to corrosion. 

 

❖ Degradation caused by corrosion strongly affects the economic and industrial growth of 

a country. Annual direct cost of corrosion is 2.2 trillion US dollars worldwide. Failure 

caused by corrosion in industries are the major cause of breakdown maintenance.  

 
❖ For better accuracy and efficiency of automated corrosion inspection systems, acoustic 

emission based corrosion detection needs to be combined with machine learning based 

classification techniques. 

 

 

 

 

 

 

  



4 
 

2. LITERARTURE REVIEW 
 

This chapter provides a discussion on various methods that have been used to detect and 

monitor corrosion. A comparison of discussed technique is also provided in the chapter. 

Various techniques for detection and monitoring of corrosion using acoustic emission are also 

explained. Lastly, a discussion on machine learning based classifiers for classification purpose 

in contrast with the corrosion detection and monitoring systems is also included in the chapter. 

 

2.1. Corrosion and Types of Corrosion 

Corrosion can be defined as the deterioration of the metal. Metals disintegrate into their 

components due to corrosion. Corrosion costs billions of dollars a year in maintenance and 

repair. Corrosion occurs due to the chemical or electrochemical reaction of a metal with its 

environment. Main cause of corrosion is the chemical instability, so they react with 

environment to form a chemically stable form. Metals such as gold and platinum are found in 

their stable form. All other metals found in nature in form of ores are unstable in 

environmental conditions and have natural tendency to react with environment and form a 

chemically stable form. Natural corrosion is a slow process, however, environmental 

conditions such as pH, temperature, stress and humidity can accelerate the process [5]. 

Chemical mechanism of corrosion can be explained by the reaction of a metal with a strong 

acid. When pure iron metal reacts with hydrochloric acid, Iron oxidizes. Oxidation reaction 

produces ferric chloride and hydrogen gas is produced in the form of bubbles which will rise to 

the surface of solution. Chemical reaction of the above corrosion process is given in the 

following equations below. 

𝐹𝑒 + 2𝐻𝐶𝑙 → 𝐹𝑒𝐶𝑙2 + H2      (2.1) 

𝐹𝑒 + 2𝐻+ + Cl2- →Fe2+ + Cl2- +H2    (2.2) 

Due to above reactions iron will start losing gradually and the rapid release of hydrogen 

bubbles at the top. Iron metal has been oxidized by leaving two electrons and hydrogen atom 

has been reduced by gaining two electrons. This transfer of electrons is taking place at the 

surface of the metal hence metal loss occurs. Corrosion has many types, mainly depending 

upon the type of loss that occurs on metal and the reaction that happened with the 

environment. Understanding the type of corrosion can help researchers to find the remedy to 
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prevent and monitor corrosion. Different types of corrosion have been reported in the literature 

[5-6] which are given below. 

A. Uniform Corrosion 
 

Uniform corrosion also known as general attack corrosion is the most common form of 

corrosion. When metal loss occurs evenly over the whole exposed surface area it is 

known as uniform corrosion. Metal loss rate is an important parameter while 

considering the uniform corrosion. Metal loss rate is generally expressed as millimeters 

per year. Material with metal loss more than 50 millimeter per year are not acceptable 

for critical engineering applications. 

B. Localized Corrosion 
 

When the corrosion attacks at the specific portions of the material it is known as 

localized corrosion. Localized corrosion is considered as more dangerous as compared 

to uniform corrosion due to its ability to localize at a point.  

Localized corrosion can be divided into following types. 

• Pitting Corrosion 

Pitting corrosion is the highly localized loss of material to form a pit or hole on 

the surface of the material. Pitting starts with the breakage of protective passive 

film from the surface of metal and it initiates the pit. Leakage and breakdown of 

Industrial pipelines are mostly caused by this type of corrosion. 

• Crevice Corrosion 

Type of localized corrosion which occurs at the gap or crevice joining the two 

surfaces. This type of corrosion generally attacks at the stagnant locations 

where physically access is limited. Small localized attack at such locations can 

be magnified with intense environmental conditions [7]. 

C. Galvanic Corrosion 
 

Galvanic corrosion occurs when two different metals are placed in a common 

electrolyte and a driving force such as voltage is applied between them. Applied 

potential difference causes the flow of electrons between anode and cathode and 

consequently the metal loss occurs. 
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D. Stress Corrosion Cracking 
 

Stress corrosion cracking occurs when the metal and alloys are exposed to corroding 

environment and stresses simultaneously. Amount of stress applied, and temperature 

have significant effect on rate of corrosion. Extensive cracking of Stainless steel SS-

304 can be generated in hours when placed in boiling magnesium chloride solution. 

E. Intergranular Corrosion 
 

Intergranular corrosion is a chemical or electrochemical attack on the grain boundaries 

of a metal. This often occurs due to impurities in the metal, which tend to be present in 

higher contents near grain boundaries. As attack penetrates individual grains are 

separated from the layer and the grain structure of the layer changes, making the 

surface layer porous. Porous surface leads to rapid powdery metal loss. 

F. Erosion Corrosion 
 

This type of corrosion occurs due to the combination of erosion due to mechanical wear 

and then corrosion due to the presence of some liquid. Erosion corrosion can lead to an 

accelerated metal loss. Erosion corrosion can cause cavitation in tubes and pipelines. 

 

 

Figure 2. 1: Types of corrosion [5] 
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2.2. Corrosion Monitoring Techniques 
 

Different researchers proposed different corrosion monitoring techniques. These techniques 

can be divided into two categories, destructive testing and non-destructive testing techniques. 

  

While performing destructive testing, specimen under test is subjected to load until its 

breakdown. Common example of destructive testing is the crash test used in automotive 

industry, stress testing and the hardness test. Non-destructive testing is to inspect and evaluate 

materials without affecting their serviceability. Common NDT techniques include visual 

testing, ultrasonic testing, magnetic flux leakage, eddy current, radiographic testing and 

acoustic emission [8]. Benefits and the limitations of the destructive and non-destructive 

testing are summarized below. 

• Destructive testing yields only the mechanical properties of the materials such as 

corrosion resistance, ultimate tensile strength, yield point, hardness, ductility and 

toughness. 

• Destructive testing yields accurate and reliable data from test which is generally used 

for design purposes. 

• Destructive testing can give precise information about the specimen characteristics; 

however, the specimen is destroyed so it cannot be used again. 

• Destructive testing requires large and expensive laboratory equipment. 

• Non-destructive testing can inspect parts while in service, and without affecting their 

future usefulness. 

• Non-destructive methods are cost effective, long term and portable. 

• Data gathered from Non-destructive testing needs interpretation. 

Main goal of corrosion inspection and detection techniques are to inspect for corrosion without 

dismantling the structure. Visual methods for corrosion inspection and detection are the most 

commonly used non-destructive testing methods. Visual methods involve the periodic visual 

inspection of the structure for any defects and disorders. Common visual methods for corrosion 

detection and inspection involves boroscope and charge couple devices (CCD) [2]. Boroscope 

is an optical device that uses telescope with a light source. This optical device allows visual 

inspection of internal surfaces for corrosion defects. Diffracto D-sight, edge of sight, optical 

profilometry and video imaging are common CCD techniques. These techniques make use of 
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CCD cameras to acquire the images and then process them using computer programs to look 

for corrosion related defects. Pidaparti et al. [9] proposed an image processing-based technique 

for classification of corrosion defects. Proposed technique uses Scanning Electron Microscope 

(SEM) images of NiAl bronze, exposed in different corrosive and stress environment. These 

SEM images are cropped to the size of 256×256 pixels. Wavelet packet transform, and fractal 

analysis are used as image analysis techniques. The flow chart of the proposed technique is 

shown in the figure 2.2. 

 

Figure 2. 2: Flow chart of the proposed defect detection technique using image 

processing [9] 

 

SEM Image is decomposed into one approximation and three detail images through discrete 

wavelet packet transform (DWPT). A second level decomposition is applied on the resultant of 

the first decomposition. Combination of high-pass and low-pass filters are used to implement a 

2-D DWPT. Feature extraction involves the calculation of energy and entropy of these images.  

Fractal analysis of SEM images involves the calculation of fractal dimension to measure the 

roughness in these images. Power spectral density (PSD) of the surface image f (x,y) is 

calculated. where F (u,v) is the Fourier transform of f (x, y), and u and v are the spatial 

frequencies (number of waves per unit wave length) in the x and y directions, respectively. 
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Figure 2. 3:Typical Corrosion defects (SEM images) [9] 

 
 
 

 

Figure 2. 4: Results of classification of corrosion defects from SEM images 

using Fractal Dimension [9] 
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Figure 2. 5: Results of classification of corrosion defects from SEM images 

using Wavelet Transform [9] 

Visual inspection for long range systems is a very tedious and labor-intensive task. Vision 

based monitoring of corrosion needs offline processing of images and has physical limitations 

like accessibility issues.  These systems are generally not considered as reliable testing 

methods for critical applications. 

 

Magnetic flux leakage based corrosion PIGs were conventionally used to detect corrosion 

defects. Magnetic flux leakage is the most widely used non-destructive evaluation technique 

for in-service inspection of pipelines [10]. Wall of the pipe is magnetized and when metal loss 

occurs due to corrosion, magnetic flux is leaked and is sensed by the sensor. Magnetic 

saturation of the pipe wall is the requirement of Magnetic flux leakage technique because it 

forces the magnetic field to leave the material during the metal loss, hence, small diameter and 

thick pipe walls cannot be inspected by this technique.  Gloria et al. [11] proposed an internal 

corrosion sensor that uses magnetic flux leakage and magnetic perturbation [12] technique to 

detect internal corrosion in pipelines. Proposed technique measures the direct magnetic 

response from small pipe area and it is not affected by the thickness of the pipe wall. Magnetic 

flux lines tend to remain inside the material with better magnetic properties.   Due to defects 

caused by metal loss, deformation is produced in the magnetic flux lines and this deformation 

is sensed by the proposed sensor. Best configuration of the sensor is proposed by the finite 

element calculations. 
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Figure 2. 6: Principles of operation of ICS sensor based on the difference 

between the magnetic. (a) in the absence of a defect (b) in the presence of a metal 

loss defect [12] 

 

Kim et al. [13] proposed an eddy current based stress corrosion crack detection for gas 

transmission pipelines. The addressed problem in this technique is to detect the stress corrosion 

cracking colonies oriented axially along the length of the pipeline. The proposed technique 

uses ploy-phase rotating magnetic field to setup eddy currents and magnetic fields. Remote 

field region is used to make measurements of the decaying eddy currents away from the 

exciter. 

 

 A three-phase power supply, induction motor rotor, pick-up coil, lock-in-amplifier (LIA), PC-

based motion controller and a personal computer are required to setup the experiment. Four 

different defects were induced at different depth level at the outer wall of the pipe. 

Electromagnetic field within the remote field region that penetrates through pipe is sensed by 

the pick-up coil. Remote field eddy current (RFEC) based scanning is performed by moving 

pick-up coil circumferentially and axially in both directions. Results of RFEC based scanning 

at the induced defects pipe is shown in the figure 2.7. For estimation of defects, a boundary 

detection algorithm has been employed. Detected phase signal has been de-trended and filtered 

through wavelet de-noising scheme. X-axis in the figure depicts the inches in circumferential 

direction and Y-axis shows the degrees in axial direction.  
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Figure 2. 7: RFEC scanning of defects: (a) 80%, (b) 60%, (c) 40%, (d) 20% 

depth [13] 

Guided waves are the stress waves that are bounded to follow the boundaries of the structure 

[14]. Guided waves based structural health monitoring (SHM) systems are considered as an 

important tool for damage detection in civil, mechanical and aerospace structures. SHM 

provides accurate information to user about the health of structure and it can also help in 

predicting the remaining useful life of the structure. Early diagnosis of defects by SHM saves a 

lot of maintenance cost by changing the scheduled maintenance to condition based 

maintenance. Guided wave testing being an active non-destructive testing technique, excites 

the structure and then examine it for the damage. Pulse-echo and pitch-catch are two common 

guided wave SHM schemes. In pulse-echo scheme, structure is excited with a known narrow 

bandwidth pulse and a sensor is used to listen the echoes coming from discontinuities. Because 

of the known frequency of the boundary signals they can be filtered out and the remaining 

signal is of the defect if present. In pitch-catch scheme, a pulse is sent across the structure 

subjected to test and sensor at the other end of structure receives the signal. Characteristics of 

received signal reveals the information about the damage. Figure 2.8 explains the essential 

steps involved in Guided wave SHM. Guided waves are passed through the structure under 
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test, reflected signals are collected and processed for the feature extraction and then the final 

step involves the implementation of pattern recognition and machine learning techniques. 

 

 

 

Figure 2. 8: Steps involved in guided wave structural health monitoring system 

[14] 

 

Detection of corrosion in insulated pipelines is very important in chemical industries. 

Insulation needs to be removed to inspect the pipelines, hence, making it an expensive and 

time-consuming task. Solution to the problem of Corrosion under Insulation (CUI) was 

proposed by Lowe et al. [15]. Proposed technique makes use of guided waves that propagates 

along the wall of the pipe. Main benefit of this technique is that insulation needs to be removed 

from just one location on pipe. Proposed technique uses the pulse-echo arrangement of guided 

waves that uses ring of piezoelectric transducers for wave excitation and receiving. Reflections 

of guided waves and their arrival time reveals the presence of defects and their axial location. 

The proposed technique has the ability to inspect pipelines for corrosion defects up to fifty 

meters. Figure 2.9 explains the general pulse echo guided wave inspection technique for pipes. 
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Figure 2. 9: Pulse echo inspection system for pipelines [15] 

Proposed inspection system uses 70 kHz axially symmetric mode of guided waves for 

excitation of the structure. Selection of high frequency narrow band single mode is justified by 

the fact that it gives good signal strength and avoids dispersion over long ranges. 

 

 

Figure 2. 10: Narrow band signal 70 KHz a) Time domain signal b) Frequency 

spectrum [15] 

 

Figure 2.11 shows the reflected signal that was generated by reflection of the high frequency 

single mode excitation signal when it encounters the other end and the notches. 
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Figure 2. 11: Time vs Amplitude of reflected signal [15] 

 

Mokhles et al. [16] proposed Long Range Ultrasonic Testing (LRUT) for long distance 

pipeline inspection. Proposed technique uses guided ultrasound wavelet for detection and 

inspection of external and internal metal loss due to corrosion in pipelines. Ultrasonic signal 

used in the proposed technique is above human hearing range normally of 10-100 KHz. 

Relationship between signal amplitude and pipe line distance is obtained in each LRUT scan. 

High amplitude peaks are produced by the pipe line features and defects produced by 

corrosion. 

2.3. Acoustic Emission as Corrosion Monitoring Technique 
 

The above reviewed non-destructive techniques for corrosion detection and monitoring are 

active in nature because they involve the excitation of the structure by means of some external 

energy and then receiving these signals. Acoustic emission being a passive NDT technique just 

listen to the micro seismic activity happening inside the structure. Acoustic emission (AE) 

testing detects the high frequency elastic waves produced under stress loading and then 

conversion of these waves to electrical signals. Corrosion detection and monitoring through 

AE is reviewed. 

 

Droubi et al. [17] proposed the use of acoustic emission for defect detection and identification 

in carbon steel welded joints. Four samples of carbon steel, one non-defective reference 

sample and three induced defects samples of crack, porosity and slag are used for 

experimentation. Data acquisition system used in experimentation make use of piezoelectric 

AE sensor, a pre-amplifier unit, data acquisition card and Labview software data acquisition 

interface. 
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Figure 2. 12: Schematic layout of the AE data acquisition system [17] 

 

Peak amplitude, AE energy, rise time, decay time and RMS are extracted from the acquired 

AE signal. Figure 2.13 shows that each defect has different amplitude level hence providing 

clear identification of defects. 

 

 

 

Figure 2. 13: Amplitude vs Time of acquired AE signal a) No defect b) Crack c) 

Porosity d) Slag [17] 
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Figure 2. 14: Frequency Spectrum of acquired AE signal a) No defect b) Crack 

c) Porosity d) Slag [17] 

 

Kaige Wu et al. [18] monitored pitting corrosion of stainless steel (SS) 304 with the help of 

Acoustic emission. Proposed technique makes use of hydrogen bubbles acoustic emission 

produced in the pitting process. 10 mm×10 mm sample of Commercial SS-304 was used in the 

experiment. Pitting corrosion was controlled by anodic polarization using potentiodynamic 

method. Experiment make use of three-electrode electrochemical cell with AgCl electrolyte 

having 3 % NaCl and pH of 2.  R15 Physical acoustic sensor, Pre-amplifier and AE data 

acquisition software were used to make Acoustic emission measurements. AE behavior shows 

three stages of corrosion, Stage I when bubbles form but no AE signal detected, Stage II when 

series of single bubbles break and Stage III when bubbles breaking up. Fig shows the 

morphology of bubbles during stage II and then FFT and magnitude plot of the acquired 

acoustic signal during stage II. 
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Figure 2. 15: (a)The morphology of bubbles generated during AE stage II 

breaking up as a series of “single bubble”, (b) the typical AE waveform of AE 

stage II and its corresponding FFT result [18] 

Patil et al. [19] proposed an acoustic emission based technique for evaluation of accelerated 

corrosion testing. Due to slow process of natural corrosion, proposed technique uses the 

accelerated corrosion testing in steel reinforced concrete (RC) structures. Experimentation 

involved the specimen to be submerged into 5% NaCl solution and then drying it in ambient 

conditions for 255 days. For AE activity monitoring, Acoustic sensor, pre-amplifier and AE 

data acquisition setup was used. Threshold level of 40 dB was determined and sampling rate of 

1 million Samples per second (SPS) was set for AE data acquisition. Different AE parameters 

like signal strength were extracted and Cumulative signal strength have shown promising 

results for corrosion monitoring in accelerated corrosion testing. 

 

Prateepasen et al. [20] also monitored the pitting corrosion using acoustic emission. Proposed 

technique used accelerated corrosion testing of 4×6×0.05 cm3 SS-304 specimen, having 

ground surface with silicon carbide paper, rinsed with distilled water and dried in air. 3% NaCl 

was mixed in HCl electrolyte and a pH of 2 was maintained. AE data acquisition system 

involves PAC R15 acoustic sensor and 60 dB gain pre-amplifier and a LOCAN frequency 

spectrum analyzer and data acquisition system. 
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Figure 2. 16: Electrochemical corrosion setup with AE data acquisition system 

[20] 

Constant potential was supplied for twenty hours and frequency and time domain data of 

acoustic emission was collected every ten minutes. Pit nucleation, metastable pit growth and 

stable pit growth are the three stages associated to pitting corrosion process. Different AE 

parameters were extracted. AE hit rate has shown important relationship with pit growth.  Fig 

shows as hit rate goes on increasing, pit depth increases too. 

 

 

Figure 2. 17: Relationship of Pit depth and Hit rate (AE extracted parameter) 

[20] 
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Table 2. 1: Comparison of Non-Destructive Corrosion Monitoring Techniques 

Corrosion 

Monitoring 

Technique 

Advantages Limitations 

Visual Inspection ✓ Direct Method 

✓ Inexpensive 

▪ Labor Intensive 

▪ Time Consuming 

▪ Limited Access Issues 

▪ Limited to surface inspection 

Vision Based 

Inspection 

✓ Reliable Monitoring 

✓ Inexpensive 

▪ Off-line Processing 

▪ Computationally Expensive 

▪ Limited Access Issues 

Magnetic Flux 

Leakage 

✓ Active type NDT 

✓ Fast surface and sub-

surface inspection 

✓ Relatively Inexpensive 

▪ Limited to ferromagnetic materials 

▪ Alignment between magnetic flux 

and defects is necessary  

Guided waves 

Based Inspection 

✓ Active type NDT 

✓ On-line Monitoring 

▪ High frequency Ultrasonic waves are 

required 

▪ Cross-talk issues 

▪ Expensive 

Radiographic 

Inspection 

✓ Active type NDT 

✓ Not limited by Material 

type 

✓ Accurate and Reliable 

▪ Safety Hazards 

▪ Expensive 

▪ Required Interpretation for Results 

Acoustic 

Emission 

✓ Passive type NDT 

✓ On-line Monitoring 

✓ Relatively Inexpensive 

▪ Interpretation of AE is important 
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2.4. Machine Learning Techniques in Corrosion Monitoring 
 

With advancements in the field of machine learning and artificial intelligence, focus is to 

produce hybrid technologies that have better accuracy and reliability. Neural networks serve as 

an important tool of machine learning which have the capability to handle complex systems 

that cannot be modeled. Machine learning techniques that have been blended with corrosion 

monitoring are in great focus now days. Artificial Neural Networks (ANN) applied to 

corrosion monitoring have been reviewed in the literature [21]. 

 

Saenkhum et al. [22] proposed the use of Artificial Neural Network (ANN) for classification of 

corrosion that was detected by acoustic emission. SS-304 specimen with size of 4×6×0.05 cm3 

was subjected to electrochemical corrosion in 3% NaCl and HCl solution having pH of 2. 

Proposed technique involves the extraction of statistical features like rise time, amplitude, 

count, and AE energy from recorded signals. The features that expressed a good correlation 

with corrosion were then used to train a feed forward neural network, aiming to classify the 

corrosion severity. Figure 2.19 shows the relationship of different AE levels with corrosion 

severity levels. 

 

Figure 2. 18: Relationship of AE energy levels with corrosion severity levels 

[22] 

Single layer feed forward neural network is used to classify corrosion severity levels. Four 

features AE energy, amplitude, rise time and count extracted from experiments are used as 
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inputs to neural network. Dataset is preprocessed using data scaling and adaptive moving 

average (AMA) techniques. One half of the original dataset is used as training, one fourth as 

testing and one fourth as validation dataset. Network architecture employs the use of 4 input 

neurons, 8 hidden layer neurons and 5 output neurons for corrosion severity levels. Tan-

sigmoid activation function is used in hidden layer neurons and log-sigmoid activation 

function is used in output neurons. Levenberg-Marquardt algorithm was used for optimizing 

the training of the network. Figure 2.20 shows confusion matrix in for the training and testing 

phase of neural network, which indicates very less misclassification rate and a very good 

generalization capability.  Confusion matrix reveals the training accuracy to be 96.41 % and 

testing accuracy to be 94.35 %. 

 

Figure 2. 19: Confusion matrix for training and testing datasets of Neural 

Network [22] 

Hendi et al. [23] proposed the use of artificial neural networks (ANN) for concrete corrosion 

monitoring in sewage systems against the attack of Sulphuric acid. Proposed technique uses 

ANN to learn from past and predict an output based on the value of input. Distinct 

experimentation features were used as inputs and back propagation neural network (BP-NN) is 

trained to predict the metal loss based on the learning that used sigmoidal activation function 

in its hidden layer neurons. 60% of the whole dataset is used for training and 40% is used for 
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testing and validation purposes. Network used 9 input neurons with two hidden layers having 

8and 6 neurons respectively and one output neuron used for prediction. Mass loss and volume 

loss both were predicted with same inputs and same network architecture. Network Mean 

squared error (MSE) for mass loss and volume loss are found to be 0.44 and 1.18 respectively. 

 

 

Figure 2. 20: Comparison of real mass loss vs predicted mass loss by ANN [23] 

 

De Masi et al. [24] made the corrosion assessment in subsea pipelines using machine learning 

based approach. Proposed technique uses data driven machine learning model for internal 

corrosion assessment that poses great threats to integrity of pipelines. Geometrical pipeline 

characteristics and fluid dynamics multiphase variables were used as input features to the 

neural network. Fitting neural network (FNN) based regression approach was used to predict 

the corrosion rate, metal loss, area of defects and number of defects. Non-linear input-output 

relationship is fitted by feed forward fitting network with two or more hidden layers. Figure 

2.21 shows that the architecture of proposed fitting neural network, that contains 14 input 

neurons, 20 hidden layer neurons and a single output neuron. Corrosion rate, Metal loss, 

Number of defects and Area of defects were predicted using single output neuron. Network is 

trained using Levenberg-Marquardt back propagation algorithm was used to minimize the 

error function by weight and bias updation.  
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Figure 2. 21: Architecture of proposed Fitting Neural Network [24] 

Figure 2.22 shows comparison of actual target values and predicted values produced by Fitting 

Neural Network for volume loss prediction. 

 

Figure 2. 22: Comparison of target vs output of FNN for Volume Loss 

prediction [24] 

Liao et al. [25] used hybrid machine learning algorithms for numerical corrosion rate 

prediction in internal corrosion assessment of gas pipelines. Basic corrosion inspection data 

was gathered from seven pipelines in Sichuan China and was arranged into 116 groups. Metal 
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material and metal surface state, the fluid nature, and pipeline operating parameters were main 

groups from which of main corrosion influencing parameters were identified and used for 

numerical corrosion rate prediction. Back Propagation Neural Network (BPNN) and hybrid 

neural network approaches like Genetic Algorithm (GA) and BPNN, Particle Swarm 

Optimization (PSO) and BPNN are used as numerical prediction model. GA and PSO in these 

hybrid approaches are used as optimization methods for weights and biases. Internal corrosion 

influencing parameters were then processed using grey rational analysis which ranked the 

parameters based on correlation degree. Dataset is divided into training and testing dataset. 95 

groups of data out of 116 are divided into training dataset and 21 are divided into testing 

dataset. Figure 2.23 shows the architecture of the proposed network. 

 

Figure 2. 23: Architecture of proposed ANN [25] 

 

Liquid holdup, heat transfer coefficient of inner wall, deposition rate, superficial velocity total 

liquid film, liquid maximum wall shear stress, pipe angle and as maximum wall shear force are 

chosen as input parameters of network based on grey rational analysis. Network contain 7 

input neurons, 14 hidden layer neurons and a single output neuron for corrosion rate 

prediction. ANNs are trained to minimize the Mean Squared Error (MSE). Inspected corrosion 

rates are compared with the predicted corrosion rates produced by BP, genetic algorithm 

optimized BPNN and particle swarm optimized BPNN in figure 2.24. GA optimized BPNN 

showed the best corrosion prediction rate than other two techniques based on its least absolute 

error. 
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Figure 2. 24: Corrosion rate prediction comparison between inspection, BP, 

GA&BP and PSO&BP [25] 

Jian et al. [26] proposed the use of machine learning methods for determining corrosion types. 

Proposed technique uses data gathered through Electrochemical Noise (EN) measurement and 

then machine learning techniques for accurate corrosion type determination. EN is the 

fluctuations of potential and current generated during spontaneous corrosion process. 

Experimentation involves the exposure of SS-304 sample for 72 hours in three electrodes set 

up to generate pitting, uniform and passivation corrosion. Raw EN data is then processed to 

extract feature vectors that includes 10 useful parameters including energy of 7-level wavelet 

crystal. Feature vectors are then processed through data normalization in the range of 0-1 to 

minimize gap between features. Figure 2.25 represents the flow chart of the proposed 

technique. 

 

Figure 2. 25: Flow chart for the development of ANN corrosion classification 

[26] 
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Data set comprises of 100 feature vectors that are randomly selected representing the EN data 

for corrosion. 80% of Dataset is divided into training and 20% is divided into testing dataset. 

Back Propagation Neural Network (BPNN) and Support Vector Machines (SVM) are used as 

classifiers. BPNN is used as pattern recognition tool trained with 10 input neurons, 9 hidden 

layer neurons and two output neurons to minimize the Mean Squared Error (MSE). Network 

best training performance is achieved in 26 iterations of training with an MSE reduced to 

2.1381×10-6. Accuracy of the network is shown in terms of confusion matrix which shows the 

overall accuracy of the network as well as the individual accuracy of each class of corrosion 

predicted by BPNN. Figure 2.27 shows the confusion matrix of BPNN against training, testing 

and validation data. Confusion matrix reveals the classification accuracy of BPNN to be 99.7 

%. SVM uses kernel based learning functions to solve classification and regression problems 

with better accuracy. Figure2.28 Shows the architecture of SVM with kernels in the middle 

layer. SVM combines kernels like linear, polynomial, radial basis and sigmoid with 

optimization algorithms like GA and PSO. Proposed SVM model uses cross validation 

technique to find best parameters for training. After completion of training, network is tested to 

predict corrosion type using testing dataset. Figure 2.26 shows the comparison of actual versus 

predicted corrosion type by SVM. Actual type is represented by ‘o’ and predicted type by ‘*’. 

Classification accuracy of SVM comes out to be 100 %. SVM has shown better classification 

performance than BPNN in the presented scenario. 

 

 

Figure 2. 26: Generalized architecture of SVM [26] 
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Figure 2. 27: Confusion matrix for the proposed BPNN Classifier model [26] 

 

 

Figure 2. 28: Comparison of actual and predicted corrosion type on testing 

dataset (SVM Classifier) [26]  
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2.5. Thesis Aims and Objectives 
 
 

The scope of the research is quite broad, however, according to level of research and based on 

the literature review, the thesis aims and objectives can be defined as follows 

 
 

I. To develop a novel technique to detect and classify corrosion using acoustic emission 

and machine learning based approach.  

 
II. To study state of the art techniques in corrosion monitoring. 

 
III. To develop a user-friendly interface to classify acoustic corrosion data. 
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2.6. Summary 
 
 

 

The chapter can be summarized as follows: 

 
 

❖  

Corrosion has many types, mainly depending upon the type of loss that occurs on metal 

and the reaction that happened with the environment. Understanding the type of 

corrosion can help researchers to find the remedy to prevent and monitor corrosion. 

Different types of corrosion found in literature are uniform corrosion, pitting corrosion, 

crevice corrosion, stress corrosion cracking, galvanic corrosion, intergranular corrosion 

and erosion corrosion etc. 


❖ Main goal of corrosion inspection and detection techniques are to inspect for corrosion 

without dismantling the structure. Vision based methods, Eddy current, Magnetic flux 

leakage, Guided waves and Acoustic emission are NDT techniques that may be used 

for corrosion detection. However: each technique has its own advantages and 

limitations. Acoustic Emission being a passive NDT technique is a low-cost and 

effective corrosion Monitoring technique.


 
 

 

❖ Different AE schemes for defect detection have been reviewed from the literature. 

Acoustic emission data acquisition for the accelerated corrosion testing has been 

reviewed. Classification of AE data for better accuracy and reliability is taken as a 

major issue in implementation of acoustic emission as corrosion monitoring technique 

in industrial environments.






❖ Different Machine Learning based classifiers used in corrosion monitoring have been 

reviewed from literature. Different classification and regression based models have 

been employed for corrosion monitoring applications.  

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3. TOOLS AND TECHNIQUES 
 

This chapter explains the techniques used to fulfill the scopes of thesis as well as the 

background theory related to them. The Chapter is divided into two main sections; explaining 

the acoustic emission and different paradigms of machine learning based classifiers for 

classification of corrosion signal. 

3.1. Acoustic Emission 
 

Acoustic Emission (AE) is the rapid release of transient elastic waves due to sudden 

redistribution of stress in the material. AE has become an important NDT technique for 

evaluation and monitoring of structures and materials. J. Kaiser introduced AE in 1950s [27]. 

AE relies on listening the energy initiated within the component. Frequencies of AE released 

during mechanically loaded structures are usually above the audible range. Common examples 

of the processes that involve acoustics are, crack growth due to hydrogen embrittlement, stress 

corrosion cracking, fatigue, creep etc. AE falls into the category of non-destructive testing 

techniques because it does not affect the serviceability of the part subjected to test and it can be 

used as an online structural integrity inspection technique. However, AE is different from the 

other NDT techniques because AE just listens to the release of energy within the component 

hence, making AE a passive NDT technique. Active NDT uses external source of energy for 

creating some effect in the component. Radiographic and Ultrasonic are common examples of 

Active NDT techniques. 

 

 

Figure 3. 1:  Comparison of Active and Passive NDT techniques [28] 
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3.1.1. AE Principle 
 

Component subjected to stress or mechanical loading release energy due to discontinuities. 

Stress acts on body and produce local plastic deformation in the material that lead to 

breakdown of material at specific regions. This breakdown is the source of energy that travels 

outside of a material. Released energy travel in the form of high frequency stress waves. These 

waves are received by acoustic sensors and transducers that convert stress waves to voltage. 

Signal conditioning circuits amplify that voltage for AE data acquisition. AE data is further 

processed for analysis and interpretation. Stress and structural loading are the main sources of 

AE activity. 

3.1.2. AE Sensors 
 

Acoustic sources emit acoustic energy at different frequency ranges instead of a single 

frequency band. Acoustic sensors are mainly of two types namely broadband sensor and 

narrow-band sensor depending upon the source emitted frequency.  Broadband sensors are 

normally used when the requirement is the detection of a wide range of frequencies. Narrow-

band sensors are normally preferred, dealing with a specific range of frequency. Narrow-band 

sensors are normally preferred in practical AE data acquisition systems due to their better 

performance against noise problems. Resonant sensors are more sensitive and less expensive 

than broadband type sensors. Resonant sensors operate in a defined operating frequency range 

which helps in optimizing their performance against attenuation and noise. 

 

 

Figure 3. 2:  Schematic diagram of AE sensor [27] 
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AE sensors uses piezoelectric crystals for AE wave sensing. Piezoelectric materials generate 

electric voltage when they were deformed subjected to stress waves. Incoming stress waves 

from AE sources produce elastic deformation in the piezoelectric crystal that converts it into 

electric voltage [28]. 

AE sensor sensitivity is defined as the ratio of the output voltage and input motion.  If sensor 

produce output voltage proportional to the input motion its response is said to be linear. 

Sensitivity of AE sensor mainly depends upon the frequency of motion and highest sensitivity 

of the element is achieved at resonant frequency. Sensor calibration curves shows how sensor 

sensitivity varies with frequency. Sensitivity of sensor does not only depend upon the 

frequency but also on the direction of motion because AE sensors unlike accelerometers 

respond to motion in any direction. AE sensors come with calibration certificates that have 

sensitivity in terms of decibels. 

 

 

Figure 3. 3: Typical AE sensor calibration curve [27] 

 

3.1.3 AE Signal and Wave Prorogation 
 

AE signals can be characterized into two categories mainly depending upon the type of source 

namely continuous and burst signal. Burst signals are produced due to the spontaneous release 

of energy due to cracking and other material deformation process. Continuous AE signals are 

released by the sources that continuously emits energy. 
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Figure 3. 4: Comparison of burst vs continuous AE signal [28] 

 

AE signal has a chain of controlling links that influence the size and shape of the measured 

signal. The signal produced by the acoustic source is very much different from the signal that 

is acquired at the final stage. The AE signal chain has four links namely the source, the wave 

propagation, the sensor and the signal-conditioning circuit. Signal-conditioning circuits 

involve the use of amplifiers to amplify the low amplitude signals, and usage of filters for 

acquiring the right frequency band of signal to get rid of noise. 

 

 

Figure 3. 5: Signal shaping chain [27] 
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AE wave propagation involves two major problems namely signal attenuation and wave 

velocity. Attenuation means the decay of signal amplitude as acoustic signal travels outside the 

source. Effect of attenuation is due to several factors namely geometric spreading, scattering at 

structural boundaries, and absorption. Geometric spreading means that the sound wave tries to 

spread to the whole volume of structure. Scattering depicts the reflection of acoustic waves at 

structural discontinues that tends to decrease signal amplitude. Absorption refers to the 

phenomenon in which kinetic and elastic energies in the acoustic wave are absorbed in the 

material from which they are passing through. Absorption is greater at higher frequencies due 

to their shorter wavelengths. 

 

For better AE data acquisition, sensor must be in good contact with the structure, so it can 

detect AE wave and deliver a strong signal. Sensor mounting techniques play a vital role in 

accurate measurement. Sensor is mounted at clean and smooth surface with sensor face having 

liquid or adhesive that will act as acoustic couplant [27]. 
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3.2. Machine Learning Based Classifiers 
 

Classifier is a function f that maps input feature vectors 𝑥 ∈ 𝑋 to output class labels y ∈{1, . . 

. ,C}, where X is the feature space [29]. Machine learning involves programming of computers 

to optimize a problem by learning from the past experiences and data. Learning can be 

classified into two categories, supervised and supervised learning. If the classes of the data are 

known then the obvious choice is supervised learning in which we provide a teaching signal to 

classifier to learn. Unsupervised learning is used where class labels are unknown and algorithm 

clusters the data by using the patterns within data. 

 

3.2.1. Back Propagation Neural Network 
 

Different neural network based classifiers have been proposed in the literature for 

classification of corrosion and for corrosion severity prediction using acoustic emission signal. 

Techniques involve mainly the use of back-propagation neural network (BP-NN) as a 

supervised learning technique for classification purpose. 

 

Artificial Neural Networks (ANN) are biologically inspired computational models that mimics 

biological brain in their working. ANN consists of simple information processing units that are 

called as neurons. These interconnected neurons process information to solve a certain 

problem based on input it receives. Like biological neurons, artificially generated neurons have 

adjustable gains that influence on the output of the network. Information from system is fed 

into the network as input pattern. Then input is then amplified using adjustable weights of 

neurons which are further processed using activation functions to form an output. These 

adjustable weights attached with neurons slowly adjust to produce the output patterns based on 

input patterns presented to the network. Adjustment of weights is called the training phase of 

the network. After training, network is tested against the new input patterns which is called as 

the recall phase of the network. 
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Back-propagation neural network is a feed forward neural network that generally consists of 

three layers; an input layer, hidden layer and output layer respectively. Architecture of the feed 

forward neural network is shown in the figure 3.6. 

 

 

Figure 3. 6: Structure of a Feed Forward Neural Network [30] 

 

Number of input neurons of the network is equal to the number of features of the data. Number 

of output neurons depends upon the output classes. Number of hidden layer neurons can be 

varied against the network optimum performance. Back propagation neural network is a multi-

layer feed forward network is trained with gradient descent method commonly known as back 

propagation. The input layer is connected to hidden layer and hidden layer is fully 

interconnected to output layer. All these interconnections have weights that amplify the input 

and hidden layer neurons have activation function. Threshold, sigmoidal, tan-sigmoidal are 

commonly used activation functions. Back propagation training algorithm involves four basic 

steps [31]. 

• Weights initialization 

• Feed forward operation 

• Back propagation of errors 

• Updation of weights and biases 
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During the feed forward stage network is initialized with small random values of weights and 

then these weights are used to form an output. Network output is compared with the desired 

output and an error signal is generated. That error signal is then fed back into the network 

layers and weights and biases are updated against that back propagation of error. 

 

Input layer, hidden layer and output layer of the network are denoted as i, j and k respectively. 

X is the input training vector where X= [x1, x2…… xn] and T is the desired target vector where 

T= [t1, t2……tn]. Input layer i is connected to the hidden layer j through Vij. Hidden layer j and 

output layer are connected through weights Wjk. After Initialization of small random value to 

the weights Vij and Wjk, each input unit receives the input signal xi and transmits it to all units 

in hidden layer. Sum y at each hidden unit is calculated using following equation. 

 

𝑦𝑖𝑛 = ∑ 𝑉𝑗𝑖𝑥𝑖 + 𝑏      (3.1) 

 

Where b is bias, and it is the weight whose activation function is always one. At each hidden 

unit, an activation function is applied from following equation and the resulting signal is sent 

to the output layer. 

𝑓(𝑦) =
1

1+𝑒−𝑦
      (3.2) 

 

𝑧𝑗 = 𝑓(𝑦𝑖𝑛)       (3.3) 

Signal then gets multiplied with the weights of hidden and output layer Wjk using following 

equation. 

𝑦𝑖𝑛𝑘 = ∑ 𝑊𝑗𝑖𝑧𝑗𝑖
+ 𝑏      (3.4) 

 

𝑌𝑘 = 𝑓(𝑦𝑖𝑛𝑘)       (3.5) 

 

Once each output unit receives output pattern based on the input pattern, error term is 

generated using the following equation. 

 

𝛿𝑘 = (𝑡𝑘 − 𝑦𝑘)𝑓(𝑦𝑖𝑛𝑘)     (3.6) 
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𝛅k is the error term at output unit that is fed to the hidden layer where further error is calculated 

using the same way and then weights and biases are updated. 

 

𝑊𝑗𝑘(𝑛𝑒𝑤) = 𝑊𝑗𝑘(𝑜𝑙𝑑) + 𝛻𝑊𝑗𝑘     (3.7) 

 

𝛻𝑊𝑗𝑘  is the change that is produced in the weight when error is fed back into the network 

layers.  

𝛻𝑊𝑗𝑘 = 𝛼𝛿𝑘𝑧𝑗      (3.8) 

 

Where α is learning rate, whose value lies with in [0-1] range. Equation 3.8 also represents the 

generalized delta rule which is the base of back propagation algorithm. 

3.2.2. Radial Basis Function Neural Network 
 
 

Radial basis function neural network is a multilayer feed forward neural network having input 

layer, hidden layer and output layer. Main difference between Radial basis function neural 

network and back propagation neural network is that radial basis uses gaussian potential 

function as its activation function [31]. Functions of the form of following equations are 

considered as radial basis functions. 

𝛿(𝑟) = 𝑟       (3.9) 

𝛿(𝑟) =  𝑟2      (3.10) 

𝛿(𝑟) = 𝑟3      (3.11) 

𝛿(𝑟) = exp(−𝑟2)      (3.12) 

Input layer contains “m” number of neurons and output layer contains “n” number of neurons 

depending upon the features of the dataset and number of output classes respectively and 

hidden layer lies between the input layer and the output layer. The hypothetical connections 

exist between the first two layers which are input layer and the hidden layer, whereas weighted 

connection exists between the hidden layer and the output layer. Architecture of radial basis 

function neural network is shown in the figure 3.7. 



40 
 

 

Figure 3. 7: Multilayer Feed Forward Radial Basis Function Neural Network 

with N hidden neurons [32] 

Classification can be easily performed by utilizing radial basis function neural network, 

moreover, this network can also be utilized for approximating functions by using Gaussian 

potential functions [32]. Training Algorithm of radial basis function neural network [31] is 

given below. Gaussian activation function is used by the radial basis function [33]. Non-

negative response is given by such function for all the values of 𝑟. The same function as of 

equation is used. 

𝐺(𝑥) =  exp (−𝑥2 )    (3.13) 

 

Derivative of the function is calculated as  

 

𝐺′(𝑥) = −2𝑥𝑒𝑥𝑝(−𝑥2)    (3.14) 

𝐺′(𝑥) = −2𝑥𝐺(𝑥)     (3.15) 

 

Step 1: small random values of weights are initialized. 

 

Step 2: Perform steps 3-10 if the stopping condition is not true. 

 

Step 3: Perform steps 4-9 for each input. 
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Step 4: Input signals are received by each input unit (𝑦𝑖  , 𝑖 =  1, … . . , 𝑛)  

Step 5: Radial basis function is calculated. 

 

Step 6: The set of input vectors are utilized for choosing the Radial basis functions centers. 

For guaranteed adequate sampling of the input vector space sufficient numbers of centers must 

be designated. 

 

Step 7: The output of im unit Gi ( xi) in the hidden layer 

𝐺𝑖(𝑥𝑖)  =  𝑒𝑥𝑝 (− ∑ [𝑥𝑗𝑖 
𝑟
𝑗=1 − 𝑥𝑗𝑖

^ ]2 / µ2
1 )   (3.16)  

Whereas 𝑥𝑗𝑖 = Centre of the RBF unit for input variables,  µ𝑖  = Width of the ith RBF unit, 

𝑥𝑗𝑖 =  𝑗𝑡ℎ variable of input pattern. 

Step 8: Weights in the output layer are initialized by assigning small random small values. 

 

Step 9: Neural network output is calculated 

 

𝐻𝑛𝑒𝑡  =  ∑ 𝑤𝑖𝑚 
𝑁
𝑖=1 𝐺𝑖  (𝑥𝑖)  + 𝑍𝑜    (3.17) 

Whereas 

𝑁= number of hidden layer nodes, 𝐻𝑛𝑒𝑡  = Output value of mth node in output layer for the nth 

incoming pattern. 𝑤𝑖𝑚  = Weight between mth output node and ith radial basis function unit. 𝑍𝑜 

= Biasing term at nth output node. 

 

Step 10: Error is calculated and stopping condition is tested. Changing of weights and number 

of iterations can be the stopping condition. 
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3.2.3. Naive Bayes classifier 
 
 

Naive bayes classifier is the statistical classifier that uses the bayes theorem probability theory 

as its base. Naive bayes classifier is different from conventional classifiers because it involves 

calculation of posterior probability of classes hence reducing its computational complexity and 

does not involve any training unlike neural network-based classifiers. They can predict class 

membership probabilities, such as the probability that a given sample belongs to a specific 

class [31]. Bayes theorem of probability involves the calculation of conditional probabilities. 

Conditional probability is the probability of an event that have influence on another event. 

Bayes theorem make use prior probability that is the original probability of a hypothesis or 

event without any additional information. Prior probabilities are used to find posterior 

probabilities which are the revised probabilities of an event after getting additional information 

about the event [34-35]. 

Bayes Theorem can be explained using following equations. 

 

𝑃( 𝑋 ∣ 𝑌 ) =  
𝑷(𝒀∣𝑿)𝑷(𝑿)

𝑷(𝒀)
                                  (3.18) 

𝑃( 𝑋 ∣ 𝑌 ) =
𝑷(𝒀∣𝑿)𝑷(𝑿)

𝑷( 𝑌∣∣𝑋 )×𝑷(𝑿)+𝑷( 𝑌∣∣−𝑋 )×𝑷(−𝑿)
                       (3.19) 

 

𝑃(𝑋) is the probability of 𝑋, 𝑃(𝑌) is the probability of 𝑌 without having knowledge about 

event 𝑋, 𝑃( 𝑋 ∣ 𝑌 ) is the posterior probability of 𝑋 given 𝑌 and 𝑃(𝑌 ∣ 𝑋) is the posterior 

probability of 𝑌 given 𝑋. 𝑃(−𝑋) is the probability of 𝑋 being false and 𝑃(𝑌 ∣ −𝑋)  is the 

probability of 𝑌 given 𝑋 is false. The Naive Bayes Classifier assumes that the effect of each 

feature on a class is statistically independent of all other features. This assumption of statistical 

independence between different features of a class is called class conditional independence and 

is made to simplify computation. Naive Bayes classifier works best in two cases: when the 

features are completely independent and secondly when the features are functionally 

dependent. The worst performance is seen in between these two extremes. The popularity of 

naive bayes classifier has increased and is being adopted by many because of its simplicity, 

computational efficiency, and its good performances for real-world problems. 
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3.3. Proposed Technique 
 

Proposed technique makes use of accelerated corrosion testing of mild steel samples to acquire 

acoustic emission data of corrosion process. Acquired acoustic signals are processed to extract 

distinct features of acoustic data. These distinct features are used by different machine learning 

algorithms to classify corrosion and no corrosion state and corrosion severity level 

classification. Figure 3.8 represents the flow chart of the proposed technique. 

 

 

 

Figure 3. 8: Flow chart of proposed technique 

 

For classification purpose, proposed technique presents a comparative study after 

implementation of different classifiers namely Back Propagation Neural Network (BPNN), 

Radial Basis Function Neural Network (RBF-NN) and Naive Bayes Classifier. 
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Figure 3. 9: Flow chart of proposed technique with BP-NN 

 

Figure 3.9 represents the flow chart of the proposed technique with back propagation neural 

network used as a classifier here. Flow chart presents the data acquisition setup followed by 

feature extraction and classification with the help of back propagation neural network by 

elaborating all the necessary steps required to initialize, train and test the network. 
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Figure 3.10 represents the flow chart of the proposed technique with radial basis function 

neural network used as a classifier here. Flow chart presents the data acquisition setup 

followed by feature extraction and classification with the help of radial basis function neural 

network by elaborating all the necessary steps required to initialize, train and test the network. 

 

 

Figure 3. 10: Flow chart of proposed technique with RBF-NN 
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Figure 3. 11: Flow chart of proposed technique with Naive Bayes classifier 

 

Figure 3.11 represents the flow chart of the proposed technique with Naive Bayes classifier 

here. Flow chart presents the data acquisition setup followed by feature extraction and 

classification with the help of Naive Bayes classifier by elaborating all the necessary steps 

required to initialize, train and test the classifier. 
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3.4. Summary  
 
 

The chapter can be summarized as follows: 

 

❖ J. Kaiser discovered Acoustic emission in 1950 and then in years coming later that AE 

field progressed through sensitive AE sensors, calibration methods and reliable data 

acquisition systems.






❖ Different paradigms of machine learning algorithms are selected to compare their 

performance. These techniques include, Backpropagation Neural Network, Naive 

Bayes classifier and Radial Basis Function Neural Network.




❖ Flow charts of proposed technique including data acquisition, feature extraction, 

dataset preparation, network initialization, network testing with separate classifiers are 

given.




• 




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4. EXPERIMENTATION 
 
 

This chapter provides details about the accelerated corrosion experimental setup and acoustic 

emission signal acquisition. A table of various features of acquired signals is also presented.  

 

4.1. Experimental Setup 
 

Experiments are conducted in Embedded Systems Lab of college of EME, National University 

of Sciences and Technology, Islamabad, Pakistan. Accelerated corrosion testing of mild steel 

samples is performed in water and sodium bi-carbonate solution using high potentials. 

Acoustic emission signals for the process are acquired using Sound Well CG80 wideband 

acoustic sensor. The acoustic emission produced during corrosion process lies in high 

frequency ranges, so signals are acquired at higher sampling rates of 250 KHz to fulfill the 

Nyquist criteria. Figure 4.1 shows the flow chart of the data acquisition system. 

 

 

Figure 4. 1: Flow chart for the data acquisition scheme 

 

Acoustic emission released from accelerated corrosion testing of mild steel samples is sensed 

by acoustic sensor. High frequency acoustic signal is initially amplified with the use of pre-

Amplifiers, that amplifies the amplitude of the signal through considerable gain. NI Elvis kit is 

used to acquire data because it supports high frequency data acquisition and easy interface with 

Acquisition kit and acquisition software. Lab-view software interface is designed to acquire 

high frequency acoustic signals through NI Elvis kit. Figure 4.2 shows the setup of accelerated 

corrosion testing with data acquisition setup. 
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Figure 4. 2: Experimental setup for accelerated corrosion testing 

More than twenty experiments were performed in which mild steel samples were used for 

accelerated corrosion testing for different time spans ranging from one to four hours. Mild 

steel samples dipped in sodium bi-carbonate and water solution, attached with a DC power 

supply of 24V and drawing maximum of 2 Amp current depending upon the concentration of 

the solution. As soon as the potential is supplied to solution and sample, solution tends to turn 

its color as seen in the figure above. Figure 4.3 shows the samples after accelerated corrosion 

test for different time spans. A clear difference in the physical appearance of sample before 

corrosion and after accelerated corrosion test is observed. 

  

 

Figure 4. 3: Images of samples after accelerated corrosion testing 
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For further clarification about the corrosion, microscopic examination of samples was 

conducted after accelerated corrosion testing which revealed the presence of corrosion layer 

and disintegration of metal. Presence of corrosion layer can be observed in figure 4.4 that 

shows the microscopic images of a sample at different zoom levels.  

 

Figure 4. 4: Microscopic images of samples after accelerated corrosion testing at 

different zoom levels 

4.1.1. Mass Loss Calculations 
 

Besides change in physical appearance of samples and confirmation of corrosion layer after 

microscopic examination of samples, Mass loss calculations for each sample before and after 

accelerated corrosion testing was performed. Mass of each sample was recorded before and 

after the corrosion test. Difference in both values of mass before and after corrosion test was 

termed as mass loss. Table 4.1 shows the values of mass for each sample before and after the 

test, time for which sample was subjected to test, mass loss for each sample and percentage 

mass loss during each experiment. Significant percentage mass loss from samples was 

observed as the time goes on but the trend suggests that rate of percentage mass loss decreases 

goes on during accelerated corrosion test due to loss of concentration of solution during the 

prolonged tests. 
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Table 4. 1: Mass loss statistics of samples after accelerated corrosion testing 

 
Time Exposed   1 hour    

Sample. No Mass Before (gram) Mass After (gram) Mass Loss (gram) % Mass Loss 

2 9.75 9.29 0.46 4.71 

3 9.82 9.1 0.72 7.33 

4 10.12 9.7 0.42 4.15 

10 10.2 9.8 0.4 3.92 

11 9.4 9.1 0.3 3.19 

15 5.85 5.3 0.55 9.4 

Averaged     0.475 5.45% 

 
Time Exposed   2 hours    

1 9.64 8.93 0.71 7.36 

8 10.82 9.9 0.92 8.5 

9 10.35 9.6 0.75 7.24 

Averaged     0.793 7.70% 

 
Time Exposed   3 hours    

5 11.82 10.5 1.32 11.1 

7 10.55 9.47 1.08 10.2 

12 10.8 9.79 1.01 9.35 

Averaged     1.13 10.21% 

 
Time Exposed   4 hours    

14 10.55 9.3 1.25 11.84% 

 

Percentage mass loss occurred during accelerated corrosion testing versus the experimentation 

time has been plotted in Figure 4.5. Blue circles represent the percentage mass loss of mild 

steel samples against the time for which they have been exposed to accelerated corrosion 

testing. Graph shows that mass loss increases almost linearly as the experimentation time goes 

on. Plot suggests that the rate of mass loss for accelerated corrosion testing of mild steel 

samples is highest in first hour of experiment and the rate of percentage mass loss tends to 

decrease as the time goes on. One of the possible reason for drop in rate of percentage mass 

loss in prolonged tests would be the reduction in concentration of the solution.  
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Figure 4. 5: Plot of percentage Mass Loss vs experiment time and line fitting 

Figure 4.5 shows the polynomial equations after fitting quadratic and cubic lines to the plot of 

percentage mass loss versus experimentation time. Quadratic and cubic lines have been fitted 

on the plot of percentage mass loss versus experimentation time. Pink line shows the quadratic 

line fitting in which the original data points lie as outliers, whereas the blue line shows the 

cubic line fitting which passes through all data points and is more accurate fitting than 

quadratic fitting. With above equations, an accurate corrosion rate can be predicted in terms of 

percentage mass loss against the experimentation time. 

4.2. Raw Acoustic Signals 
 

 Data acquisition scheme was made based on literature review. Data was acquired at start of 

experiment and then every fifteen minutes of the accelerated corrosion process for two seconds 

with sampling frequency of 250 KHz. Acoustic signal amplitude in terms of voltage is logged 

into Microsoft Excel sheets. Five lac values of amplitude are acquired in a single data 

acquisition, which is further preprocessed by windowing operation of suitable size. Data 

logged in these Excel files is read through Matlab. Raw acoustic signals acquired at different 
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time spans during accelerated corrosion testing for one hour of sample 6 are plotted against 

data points. 

 

 

Figure 4. 6: Plot of raw acoustic signal acquired at start of experiment 
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Figure 4. 7: Plot of raw acoustic signal acquired after 15 minutes 

 

Figure 4. 8: Plot of raw acoustic signal acquired after 30 minutes 
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Figure 4. 9: Plot of raw acoustic signal acquired after 45 minutes 

 

Figure 4. 10: Plot of raw acoustic signal acquired after one hour 
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4.3. Fast Fourier Transform (FFT) of Acoustic Signals 
 
Frequency of acoustic emission during corrosion process is very good indicator of passive 

layer breakage. According to literature review frequency above 50 KHz indicates that 

corrosion process has been matured and material layer breaking is in progress. Data acquired 

during experimentation is in time domain, Fourier analysis is used here to visualize acoustic 

signals in frequency domain. To confirm experimentation, Fast Fourier Transform (FFT) of the 

acquired raw acoustic signals are calculated using Matlab script. FFT of a signal is 

representation of the its frequency versus amplitude at the same time. FFT of acoustic signal 

acquired at start of experiment is clearly distinguishable from FFTs of the acoustic signals 

acquired in later stages of the experiment. Higher frequency peaks are observed in FFTs of the 

acoustic signal confirming the on-going corrosion process. Figures below presents comparison 

between FFTs of a one hour accelerated corrosion test performed on sample 6. 

 

 

Figure 4. 11: FFT of acoustic signal acquired at start of experiment 
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Figure 4. 12: FFT of acoustic signal acquired after 15 minutes 

 

 

Figure 4. 13: FFT of acoustic signal acquired after 30 minutes 
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Figure 4. 14: FFT of acoustic signal acquired after 45 minutes 

 

 

Figure 4. 15: FFT of acoustic signal acquired after 1 hour 
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4.4. Feature Extraction from Acoustic Signals 
 

Raw Acoustic signals does not provide better observation about the corrosion process, so after 

FFT of acoustic signals, Acoustic Emission (AE) and statistical features were extracted for 

better understanding of the process. Common AE features such as AE Mean, AE Energy and 

AE RMS were computed along with several statistical features such as Skewness, Kurtosis. As 

the corrosion process starts and mature with time, significant change in the values of these 

extracted features is observed. Mass loss for each experiment was recorded and further used as 

an indicator of corrosion severity. Matlab script was written to automatically extract these 

features from logged data files. Data preprocessing step involves the application of window 

size of ten thousand data points after which fifty values of each feature is extracted. AE mean 

is the averaged value of acoustic signal obtained over a window size. AE RMS is the root 

mean squared values of acoustic emission signal over a specified window size. A comparison 

of extracted features from raw acoustic signals is presented below which shows the behavior of 

features as the experiment starts, mature and till the end time. 

 

Figure 4. 16: Comparison of mean plot of acoustic signals 

It can be observed from the Figure 4.16 that AE Mean at start of experiment is at its possible 

low and as the time of experiment goes on value of AE Mean tends to rise. Figure 4.17 shows 
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bar graph representation of AE Mean level increase with the increase in experiment time. As 

the corrosion process matures and metal loss occurs AE Mean level tends to rise. 

 

 

Figure 4. 17:  Bar graph of averaged mean extracted from acoustic signals 

 

Figure 4. 18: Comparison of RMS plot of acoustic signals 
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It can be observed from the Figure 4.18 that AE RMS rise as the time of experiment goes on, 

value of AE RMS tends to rise. Figure 4.19 shows bar graph representation of averaged AE 

RMS level increase with the increase in experiment time. As the corrosion process matures and 

metal loss occurs, AE RMS level tends to rise. 

 

Figure 4. 19: Bar graph of averaged RMS extracted from acoustic signals 

 

Figure 4. 20: Bar graph of averaged AE energy extracted from acoustic signals 
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It can be observed from Figure 4.20 that AE Energy is a distinct feature because averaged AE 

energy rise proportionally as corrosion process matures and metal loss occurs. Amongst 

statistical features kurtosis is observed as good feature. Figure 4.21 shows the averaged 

kurtosis level versus experiment time. 

 

 

Figure 4. 21: Bar graph of averaged Kurtosis extracted from acoustic signals 

Table 4.2 shows the averaged values of features extracted from the acquired raw acoustic 

signals. Experiments are divided into categories depending upon the time for which sample is 

subjected to accelerated corrosion testing. For each experiment, extracted features are 

tabulated according to the time span they are acquired. 

Table 4. 2: Various Features of acquired Acoustic Signals 

    S. No SAMPLE  Time Exposed   

    1 2 1 hour   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 3.36E-05 7.07E-04 5.3494 -0.0432 0.2826 

After 15 min 2.13E-04 9.76E-04 5.0081 0.0791 0.4782 

After 30 min 2.51E-04 0.0011 4.5212 -0.0436 0.6046 

After 45 min 2.90E-04 0.0039 3.6232 -0.0312 7.4606 

After 60 min 2.73E-04 0.0043 3.2152 -0.0255 9.1664 

    S. No SAMPLE  Time Exposed   

    2 3 1 hour   
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Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 1.82E-05 1.40E-03 80.8677 1.6301 0.9225 

After 15 min 4.83E-05 0.0015 54.5341 0.962 1.0949 

After 30 min 5.23E-05 0.002 49.6785 0.9041 1.9742 

After 45 min 9.94E-05 0.002 67.075 1.2389 2.012 

After 60 min 2.07E-04 0.0022 42.3759 0.7769 2.4745 

    S. No SAMPLE  Time Exposed   

    3 4 1 hour   

At start 2.74E-04 2.00E-03 16.6823 3.0839 2.1101 

After 15 min 3.84E-04 0.0015 8.407 1.5981 1.1832 

After 30 min 3.17E-04 0.0046 8.7271 0.1261 10.847 

After 45 min 4.66E-04 0.0044 8.407 0.0861 9.6254 

After 60 min 5.26E-04 0.0044 7.9702 0.4353 9.8363 

    S. No SAMPLE  Time Exposed   

    4 6 1 hour   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 2.55E-04 1.70E-03 118.41 1.5942 1.4824 

After 15 min 4.03E-04 0.002 81.954 1.5885 1.9472 

After 30 min 4.55E-04 0.0021 74.492 1.5603 2.267 

After 45 min 4.75E-04 0.0023 6.6386 0.191 2.5643 

After 60 min 4.96E-04 0.0024 11.21 0.1937 2.9837 

    S. No SAMPLE  Time Exposed   

    5 10 1 hour   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 2.41E-04 8.85E-04 17.958 0.0987 0.3922 

After 15 min 2.63E-04 9.22E-04 19.693 0.1293 0.4255 

After 30 min 2.84E-04 9.13E-04 20.0409 0.1639 0.4185 

After 45 min 3.54E-04 0.001 50.6138 0.8562 0.537 

After 60 min 1.71E-04 0.001 10.7298 0.0515 0.5256 

      

    S. No SAMPLE  Time Exposed   

    6 11 1 hour   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start -4.12E-04 1.10E-03 89.254 0.9987 0.6469 

After 15 min 9.25E-05 9.80E-04 13.2341 0.0869 0.4806 

After 30 min 1.63E-04 1.10E-03 9.3506 0.093 0.5864 

After 45 min 2.04E-04 0.0012 5.4642 0.0026 0.7411 

After 60 min 2.37E-04 0.0012 8.0546 0.0614 0.775 

    S. No SAMPLE  Time Exposed   

    7 15 1 hour   
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Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 4.18E-05 9.14E-04 65.6993 0.5706 0.4192 

After 15 min 1.84E-04 1.40E-03 127.6894 1.7216 1.0077 

After 30 min 2.41E-04 1.60E-03 74.8692 0.7891 1.2626 

After 45 min 2.59E-04 0.0018 16.6301 0.2414 1.5879 

After 60 min 2.81E-04 0.0022 9.4316 0.106 2.4377 
 
 

    S. No SAMPLE  Time Exposed   

    8 1 2 hours   

      

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 1.82E-05 1.40E-03 80.8677 1.6301 0.9225 

After 1 hr 2.07E-04 0.0022 42.3759 0.7769 2.4745 

After 2 hr 2.99E-04 0.0025 63.7255 1.0109 3.2047 

    S. No SAMPLE  Time Exposed   

    9 8 2 hours   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 3.36E-05 7.52E-04 5.3494 -0.0432 0.2826 

After 1 hr 2.73E-04 0.0043 3.2152 -0.0255 9.1664 

After 2 hr 3.17E-04 0.0021 5.6783 -0.0376 2.3614 

    S. No SAMPLE  Time Exposed   

    10 9 2 hours   

  
Averaged 

Mean 
Averaged RMS Averaged Kurtosis Averaged Skewness 

Averaged 

Energy 

At start 1.41E-04 9.23E-04 12.8226 0.0484 0.4299 

After 1 hr 2.91E-04 0.0034 58.2011 1.1228 5.8554 

After 2 hr 3.06E-04 0.0182 42.8211 3.238 4.9855 
 
 

    S. No SAMPLE  Time Exposed   

    11 5 3 hours   

  
Averaged 

Mean 
Averaged RMS 

Averaged 

Kurtosis 
Averaged Skewness Averaged Energy 

At start 1.39E-04 2.20E-03 23.9831 0.5377 2.4217 

After 1 hr -1.70E-04 0.0028 25.562 0.8521 4.0295 

After 2 hr 1.28E-05 0.0029 19.4632 0.3456 4.2839 

After 3 hr -2.75E-05 0.0029 9.6167 0.0691 4.2967 

    S. No SAMPLE  Time Exposed   

    12 7 3 hours   

  
Averaged 

Mean 
Averaged RMS 

Averaged 

Kurtosis 
Averaged Skewness Averaged Energy 

At start 1.82E-05 1.40E-03 80.79 1.6301 0.9225 
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After 1 hr 2.07E-04 0.0022 42.3759 0.7769 2.4745 

After 2 hr 2.99E-04 0.0025 63.7255 1.0109 3.2047 

After 3 hr 3.22E-04 0.0024 67.035 1.1278 2.8386 

    S. No SAMPLE  Time Exposed   

    13 12 3 hours   

  
Averaged 

Mean 
Averaged RMS 

Averaged 

Kurtosis 
Averaged Skewness Averaged Energy 

At start 2.00E-04 1.40E-03 93.7576 0.868 0.5616 

After 1 hr 3.24E-04 0.0022 257.4128 2.1414 1.2605 

After 2 hr 3.43E-04 0.0025 135.7428 1.3468 1.0175 

After 3 hr 3.54E-04 0.0024 143.3983 1.3268 0.6913 
 
 

    S. No SAMPLE  Time Exposed   

    14 14 4 hours   

  
Averaged 

Mean 
Averaged RMS 

Averaged 

Kurtosis 
Averaged Skewness Averaged Energy 

At start 4.18E-05 9.14E-04 65.6993 0.5706 0.4192 

After 1 hr 2.81E-04 0.0022 9.4316 0.106 2.4377 

After 2 hr 3.26E-04 0.0019 12.5481 -0.0886 1.9035 

After 3 hr 3.35E-04 0.0017 5.9878 -0.0154 1.4652 

After 4 hr 3.53E-04 0.0012 13.3582 0.078 0.737 
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4.5. Summary 
 

 

The chapter can be summarized as follows 

 

❖ Accelerated corrosion testing of more than twenty mild steel samples has been done 

using sodium bi-carbonate and water solution with 24volt DC power supply. Acoustic 

emission signals for accelerated corrosion process were acquired using acoustic sensor, 

NI Elvis kit and LabView interface. 






❖ Data acquisition scheme have been made to acquire data based on corrosion process. Fast 
Fourier Transform of the acquired signals was obtained to convert the signal from time 
domain to frequency domain. Raw acoustic signal does not provide better information 
about the process, so feature extraction was done. 






❖ AE Mean, AE RMS, AE Energy were observed as distinct features due to their linear 

relationship with the metal degradation during accelerated corrosion process. 

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5. RESULTS AND DISCUSSION 
 

 

This chapter presents the results of the research. A detailed discussion on performance of 

different machine learning algorithms used as classifier is given in the chapter. Results of 

classification for corrosion detection and corrosion severity reconstruction using different 

classifiers are also included in the chapter. 

5.1. Classification 
 

Classification can be thought of as a pattern recognition problem.  Classification is a supervised 

learning problem in which we assign class labels to the data in the form of teaching or target 

signal. Classification includes the construction of a classifier which is trained on a set of training 

data that already has the correct class assigned to each data point. It is then used to classify new 

data where the values of features are known but the class is unknown. If classification is to be 

done in two classes, it is called as bi-classification problem and with more than two class 

classification it is known as multi-class problem. 

 

Extracted features from acquired acoustic signals are used as inputs to classifiers and arithmetic 

patterns are set as targets of the classifiers. Back propagation neural network and radial basis 

function neural network are two neural network based classifiers that are used here for 

classification purpose.  

 

Naive Bayes classifier is a probability base classifier that is used here for classification. Results 

of classification is confusion matrix, which further reveals the performance parameters like 

accuracy, precision, recall, F score, sensitivity and specificity. BP-NN, RBF-NN and Naive 

Bayes classifiers are used, and their performance is compared by using these performance 

parameters given in Table 5.1. 
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Table 5. 1: Performance parameters of classifiers 

 
 

 

5.2. Bi-Classification  
 

Problem of classification is divided into bi-class and multiclass problem. Bi-class classification 

problem deals with the correct classification of corrosion and no corrosion state. For one-hour 

experiments, acoustic data acquired at start of experiment represents ‘no corrosion’ state and all 

other acquired signals represents ‘corrosion state’. For one-hour experiment, total of five 

acoustic signals are acquired by starting at the start of experiment, after 15 minutes, after 30 

minutes, after 45 minutes and after 1 hour. Data acquisition scheme involves the acquisition of 

data at start of experiment than after every fifteen minutes till the end of experiment for two 

seconds with sampling frequency of 250 KHz. Each acquired signal has five lac voltage values 

logged. Features are extracted from each acquired signal using a window size of 10000.  Each 

extracted feature has an array size of 50. AE Mean, AE RMS, skewness and kurtosis are selected 

as distinct features. For each one-hour experiment, input data set comprises of four features each 

with the feature length of 250, out of which 50 values representing the ‘no corrosion’ state and 

200 values represents the ‘corrosion’ state. Targets are set according to input dataset and network 

is trained and tested.  
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Figure 5. 1: Architecture of BP-NN used for bi-classification 

 

Figure 5.1 shows the architecture of back propagation neural network used for classification of 

“corrosion” and “no corrosion” state for sample 6. Network consists of 4 input neurons, 10 

hidden layer neurons and 2 output neurons. Figure 5.2 shows the neural network training, 

validation and testing performance with best validation performance achieved at epoch 24 with 

mean squared error (MSE) of  1.734 × 10−06. Table 5.2 shows the results of back propagation 

neural network applied on different samples for bi-classification. Table shows the number of 

input neurons, hidden layer neurons, output neurons and an overall accuracy of 98.68% for BP-

NN. 

 

 

Figure 5. 2: Performance plot of BP-NN training 

Table 5. 2: Results of BP-NN on bi-classification problem 
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S.NO Sample 
Input 
Neurons 

Hidden 
Neurons 

0utput 
neurons Accuracy (%) MSE Epoch 

1 2 4 10 2 100 3.20E-06 23 

  

4 20 2 100 7.67E-07 23 

  

4 250 2 100 2.08E-08 28 

     

(Averaged = 100) 
  2 3 4 10 2 100 5.87E-06 51 

  

4 20 2 100 5.19E-06 43 

  

4 243 2 100 6.92E-06 47 

     

(Averaged = 100) 
  3 4 4 10 2 100 1.44E-06 36 

  

4 20 2 100 9.56E-07 41 

  

4 212 2 99.6 1.99E-04 25 

     

(Averaged = 
99.86) 

  4 6 4 10 2 100 1.73E-06 25 

  

4 20 2 100 2.33E-07 26 

  

4 249 2 99.6 8.77E-02 24 

     

(Averaged = 
99.86) 

  5 10 4 10 2 90.4 8.05E-02 24 

  

4 20 2 88.8 1.12E-01 20 

  

4 30 2 76.4 1.66E-01 8 

  

4 40 2 95.3 5.26E-02 25 

  

4 50 2 91.6 9.04E-02 29 

  

4 60 2 96.8 8.38E-02 47 

  

4 245 2 98.4 5.04E-02 41 

     

(Averaged = 
91.08) 

  6 11 4 10 2 100 2.59E-07 19 

  

4 20 2 100 1.23E-07 16 

  

4 72 2 100 2.02E-07 21 

     

(Averaged = 100) 
  7 15 4 10 2 100 1.83E-07 23 

  

4 20 2 100 1.74E-07 22 

  

4 167 2 100 1.03E-06 23 

     

(Averaged = 100) 
  

    

(Overall Averaged Accuracy = 
98.68) 
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Figure 5. 3: Architecture of RBF-NN used for bi-classification 

 
Figure 5.3 shows the architecture of radial basis function neural network used for classification 

of “corrosion” and “no corrosion” state for sample 6. RBF-NN has ability to select the suitable 

number of hidden neurons to reach to the preset goal of MSE. Here RBF-NN architecture shows 

4 input neurons, 249 hidden layer neurons and 2 output neurons. Figure 5.4 shows the neural 

network training performance with best training performance achieved at epoch 225 with MSE 

of  0.000212331 while preset goal MSE of 1 × 10−05.  

 

 

Figure 5. 4: Performance plot of RBF-NN training  
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Figure 5. 5: Confusion matrix of RBF-NN used for bi-classification 

Fig 5.5 shows the confusion matrix of radial basis function neural network applied on bi -

classification problem of sample 6. Confusion matrix shows that RBF-NN has been able to 

accurately classify all samples of “corrosion” class and class “no corrosion”. Table 5.3 shows the 

results of radial basis function neural network applied on different samples for bi-classification 

problem. Table shows the number of input neurons, hidden layer neurons, output neurons, MSE 

and an overall accuracy of 100% for RBF-NN. 

 

Table 5. 3: Results of RBF-NN used for bi-classification 

S.NO Sample 
Input 
Neurons 

Hidden 
Neurons 

0utput 
neurons Accuracy (%) MSE Epoch 

1 2 4 250 2 100 2.93E-04 250 

2 3 4 243 2 100 1.84E-04 225 

3 4 4 212 2 100 8.12E-06 200 

4 6 4 249 2 100 2.12E-05 225 

5 10 4 245 2 100 1.57E-03 225 

6 11 4 72 2 100 1.14E-03 50 

7 15 4 167 2 100 5.05E-03 150 
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Figure 5. 6: Confusion matrix for Naive Bayes Classifier used for bi-classification 

Figure 5.6 shows the confusion matrix for naive bayes classifier used for bi-classification 

problem of sample 6. Table 5.4 represents the results of naive bayes classifier applied on 

different samples showing accuracy, sensitivity and specificity. 

 

Table 5. 4: Results of Naive Bayes Classifier for bi-classification 

S.NO Sample Accuracy (%) Sensitivity Specificity 

1 2 100 1 1 

2 3 98 1 0.975 

3 4 100 1 1 

4 6 100 1 1 

5 10 92 1 0.9 

6 11 100 1 1 

7 15 100 1 1 

  

(Averaged=98.57) 
   

Table 5.5 shows the overall averaged accuracies of applied classifier algorithms for bi-

classification problem of “corrosion” and “no-corrosion” prediction. Classifiers showed an 

overall healthy classification accuracy with lowest of 98.57% for Naive Bayes and highest of 

100% for RBF-NN. 

Table 5. 5: Accuracy comparison of RBF-NN, BP-NN and Naive Bayes for bi-

classification 

Classifier 
Averaged 
Accuracy (%) 

RBF-NN 100 

BP-NN 98.57 

Naive Bayes 98.68 
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5.3. Multi-class Problem (Severity Level Prediction) 
 

Multi-class classification problem involves the classification of corrosion severity levels. Classes 

are assigned based on the experiment time and mass loss. Corrosion levels are decided based on 

mass loss calculations obtained from experimentation. Figure 5.7 represents the mass loss versus 

experimentation time which provides the basis of corrosion severity levels. As the 

experimentation goes on the mass loss occurs. 

 

 

Figure 5. 7: Plot of Mass Loss versus Experimentation time 

 

Table 5.6 shows the results of BP-NN applied on different samples of three class problem. 

Classes are labelled as “no corrosion”, “Grade 1” and “Grade 2” based on the mass loss. Table 

represents the sample number, input neurons, output neurons, accuracy, MSE and epoch with an 

overall accuracy of 99.92%. Output neurons for this problem are set to 3 due to three classes. 
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Table 5. 6: Results of BP-NN on three-class severity level problem 

S.NO Sample 
Input 
Neurons 

hidden 
Neurons 

0utput 
neurons Accuracy (%) MSE Epoch 

1 1 4 10 3 100 6.23E-07 39 

  

4 20 3 100 2.48E-05 34 

  

4 146 3 99.3 1.38E-05 36 

2 8 4 10 3 100 4.21E-05 27 

  

4 20 3 100 5.04E-05 33 

  

4 150 3 100 7.95E-08 30 

3 9 4 10 3 100 1.95E-07 40 

  

4 20 3 100 5.26E-07 38 

  

4 121 3 100 3.60E-07 41 

     

Averaged= (99.92) 
  

Table 5.7 shows the results of radial basis function neural network applied on different samples 

for three class corrosion severity level problem. Table shows the number of input neurons, 

hidden layer neurons, output neurons, MSE and an overall accuracy of 100% for RBF-NN. 

Table 5. 7: Results of RBF-NN on three-class severity level problem  

S.NO 
Sample 
No 

Input 
Neurons 

hidden 
Neurons 

0utput 
neurons Accuracy MSE Epoch 

1 1 4 146 3 100 0.00179868 125 

2 8 4 150 3 100 0.00022523 150 

3 9 4 121 3 100 0.00054337 100 

 

RBF-NN has ability to select the suitable number of hidden neurons to reach to the preset goal of 

MSE. Table 5.8 shows the performance stats for RBF-NN which showed high accuracy with 

precision, recall, Fscore and accuracy which chooses 146 hidden neurons to show MSE of 

0.00179868. 

Table 5. 8: Performance parameter of RBF-NN for high accuracy 

 
S.NO 

Sample 
N0 

Input 
Neurons 

hidden 
Neurons 

0utput 
neurons Accuracy MSE Epoch 

1 1 4 146 3 100 0.00179868 125 

 

No Corrosion Grade 1 Grade 2 

Precision 1 1 1 

Recall 1 1 1 

F score 1 1 1 

Accuracy 1 1 1 
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Table 5. 9: Results of Naive Bayes on three-class severity level problem 

S. No Sample No Accuracy (%) 

1 1 99.5 

2 8 100 

3 9 100 

  

Averaged= (99.83) 

 

Table 5.9 shows the results of naive bayes classifier applied on different samples of three-class 

corrosion severity level problem with an averaged accuracy of 99.83%. Table 5.10 and 5.11 

shows the performance stats of naive bayes classifier precision, recall, Fscore and accuracy for 

low accuracy and high accuracy respectively. 

Table 5. 10: Performance parameter of Naive Bayes for lowest accuracy 

 

No Corrosion Grade 1 Grade 2 

Precision 1 1 0.98 

Recall 1 0.98 1 

F score 1 0.989 0.989 

Accuracy 1 0.995 0.995 

 

Table 5. 11: Performance parameter of Naive Bayes for highest accuracy 

 

No Corrosion Grade 1 Grade 2 

Precision 1 1 0.98 

Recall 1 1 1 

F score 1 1 1 

Accuracy 1 1 1 

 

Table 5.12 shows an overall accuracy comparison of averaged accuracies of different classifiers 

applied on three-class corrosion severity level with lowest of 99.83% for Naive Bayes and 

100% for RBF-NN. 

Table 5. 12: Accuracy comparison of RBF-NN, BP-NN and Naive Bayes for 

three- class corrosion severity level classification 

Classifier Averaged Accuracy (%) 

RBF-NN 100 

BP-NN 99.92 

Naive Bayes 99.83 
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Table 5. 13: Results of BP-NN on four-class corrosion severity level problem 

S.NO Sample No of hidden Neurons Accuracy (%) MSE Epoch 

1 7 10 94.5 0.02674 40 

  
20 93.5 0.024248 22 

  
30 90 0.04527 21 

  
40 94 0.059419 38 

  
50 95.5 0.052291 24 

  
60 96 0.0099685 34 

  
70 94.2 0.02841 32 

  
198 91 0.03149 29 

2 12 10 88 0.04006 30 

  
20 83 0.082404 13 

  
30 88.5 0.098651 21 

  
40 87.5 0.057164 19 

  
50 81.5 0.076106 17 

  
60 87.5 0.087661 29 

  
70 82.4 0.07742 27 

  
200 87 0.073881 26 

3 5 10 97.5 0.0075421 35 

  
20 98 0.021751 35 

  
30 98 0.024208 23 

  
40 98.5 0.0061351 34 

  
50 98 0.022527 24 

  
60 98.5 0.00085106 29 

  
70 98.5 0.0031885 46 

  
189 97.2 0.00782 39 

   
Averaged= (92.48) 

   
 

Table 5.13 shows the results of BP-NN applied on different samples of four-class corrosion 

severity level classification problem. Classes are labelled as “no corrosion”, “Grade 1”, “Grade 

2” and ‘’Grade 3’’based on the mass loss Table shows the accuracy and MSE at different number 

of hidden layer neurons and number of epochs. Table 5.14 shows the samples with highest and 

lowest accuracy for BP-NN on four-class corrosion severity level with hidden neurons and MSE.  

 
 
 
 



78 
 

Table 5. 14: Lowest and highest accuracy for BP-NN  

 

Sample No of Hidden Neurons Accuracy (%) MSE Epoch 

Lowest Accuracy 12 50 81.5 0.076105 17 

Highest Accuracy 5 60 98.5 0.00085106 29 

 

Table 5. 15: Performance parameters of BP-NN for low accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 0.995 0.62 0.66 

Recall 1 1 0.6326 0.6346 

F score 1 0.989 0.6262 0.66 

Accuracy 1 0.995 0.815 0.82 

 

Table 5.15 and 5.16 shows the performance stats of RBF-NN classifier with precision, recall, 

Fscore and accuracy for low accuracy and high accuracy respectively on four-class corrosion 

severity level classification problem. 

 

Table 5. 16: Performance parameters of BP-NN for high accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 0.98032 0.96 0.98 

Recall 1 1 0.96 0.96 

F score 1 0.989 0.96 0.965 

Accuracy 1 0.995 0.98 0.985 

 

Table 5.17 represents the results of RBF-NN applied on different samples for four-class 

corrosion severity level problem. Table shows the accuracy of four-class corrosion severity level 

with number of neurons, MSE and epoch with an averaged accuracy of 99.83%. 

Table 5. 17: Results of RBF-NN on four-class corrosion severity level problem 

S. No Sample No Accuracy (%) No of Neurons MSE Epoch 

1 7 100 198 0.00448 175 

2 12 99.5 200 0.00125 200 

3 5 100 189 0.00198 175 

  

Averaged = (99.83) 
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Table 5. 18: Performance parameters of RBF-NN for low accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 0.98 1 1 

Recall 1 1 0.98 1 

F score 1 0.989 0.989 1 

Accuracy 1 0.995 0.995 1 

 

Table 5.18 and 5.19 shows the performance stats of BP-NN classifier with precision, recall, and 

Fscore for low accuracy and high accuracy respectively on four-class corrosion severity level 

classification problem. 

 

Table 5. 19: Performance parameters of RBF-NN for high accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 1 1 1 

Recall 1 1 1 1 

F score 1 1 1 1 

Accuracy 1 1 1 1 

 
 

Table 5.20 represents the results of Naive Bayes classifier applied on different samples for four-

class corrosion severity level problem. Table shows the accuracy of four-class corrosion severity 

level with an averaged accuracy of 89.1%. 

 

Table 5. 20: Results of Naive Bayes on four-class corrosion severity level problem 

S. No Sample No Accuracy (%) 

1 7 87 

2 12 81.5 

3 5 99 

  

Averaged= (89.1) 

 

Table 5.21 and 5.22 shows the performance stats of Naive Bayes classifier with precision, recall, 

and Fscore for high accuracy and low accuracy respectively on four-class corrosion severity 

level classification problem. 
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Table 5. 21: Performance parameters of Naive Bayes for high accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 1 0.979 0.96 

Recall 1 1 0.96 0.98 

F score 1 1 0.968 0.969 

Accuracy 1 1 0.985 0.985 

 

 

Table 5. 22: Performance parameters of Naive Bayes for low accuracy (four-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 

Precision 1 1 0.625 0.644 

Recall 1 0.98 0.7 0.58 

F score 1 0.989 0.66 0.6102 

Accuracy 1 0.995 0.89 0.82 

 
 

Table 5.23 shows an overall accuracy comparison of averaged accuracies of different classifiers 

applied on four-class corrosion severity level problem with lowest of 89.1% for Naive Bayes 

and 99.83% for RBF-NN. Note able fact here is, As the severity levels grows the overall 

accuracy of classifier tends to drop due the inter-class mixture of acoustic data. 

 

Table 5. 23: Accuracy comparison of RBF-NN, BP-NN and Naive Bayes for four- 

class corrosion severity level classification 

 

Classifier 
Averaged 
Accuracy (%) 

RBF-NN 99.83 

BP-NN 92.48 

Naive Bayes 89.1 
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Table 5.24 shows the results of BP-NN applied on different samples of five-class corrosion 

severity level classification problem. Table shows the accuracy and MSE at different number of 

hidden layer neurons and number of epochs with averaged accuracy of 94.57% for BP-NN. Five 

classes that have been made, presents “no corrosion”, “Grade 1”, “Grade 2”, “Grade 3” and 

“Grade 4” based on the mass loss difference for each “Grade”. 

 

Table 5. 24: Results of BP-NN on five-class corrosion severity level problem 

S.NO Sample No of hidden Neurons Accuracy (%) MSE Epoch 

1 14 10 94.8 0.057166 54 

  

20 94.4 0.027748 46 

  

30 92 0.032199 20 

  

40 95.6 0.042211 46 

  

50 95.2 0.040906 44 

  

60 97.2 0.007976 70 

  

70 92.8 0.048229 27 

  

249 94.8 0.805022 33 

   

Averaged= (94.57) 
   

 

 

Table 5. 25: Performance parameters of BP-NN for low accuracy (five-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 Grade 4 

Precision 1 1 0.82 0.78 1 

Recall 1 0.943 0.804 0.867 0.98 

F score 1 0.9706 0.8482 0.8211 0.989 

Accuracy 1 0.988 0.924 0.932 0.996 

 

 

Table 5.25 and 5.26 shows the performance stats of BP-NN classifier with precision, recall, and 

Fscore for high accuracy of 97.2% with 70 hidden neurons and low accuracy of 92% with 20 

hidden neurons respectively on five-class corrosion severity level classification problem. 
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Table 5. 26: Performance parameters of BP-NN for high accuracy (five-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 Grade 4 

Precision 1 1 0.94 0.92 1 

Recall 1 1 0.94 0.939 0.98 

F score 1 1 0.94 0.929 0.989 

Accuracy 1 1 0.976 0.984 0.996 

 

 

Table 5.27 shows the results of Naive Bayes classifier applied on different samples of five-class 

corrosion severity level classification problem with an averaged accuracy of 90.4%. Table 5.28 

shows the performance parameters of Naive Bayes classifier like precision, recall, Fscore and 

accuracy for five-class classification problem of corrosion severity level prediction. 

 

Table 5. 27: Results of Naive Bayes on five-class corrosion severity level problem 

S. No Sample No Accuracy (%) 

1 14 90.4 

 

Table 5. 28: Performance parameters of Naive Bayes classifier (five-class 

problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 Grade 4 

Precision 1 0.942 0.937 0.734 0.961 

Recall 1 0.981 0.64 0.94 1 

F score 1 0.963 0.731 0.8251 0.98 

Accuracy 1 0.984 0.912 0.92 0.992 

 
 

Table 5.29 shows the results of RBF-NN applied on five-class corrosion severity level 

classification problem with an averaged accuracy of 100%. Table 5.30 shows the performance 

parameters of RBF-NN classifier like precision, recall, Fscore and accuracy for five-class 

classification problem of corrosion severity level prediction. 

 

Table 5. 29: Results of RBF-NN on five-class corrosion severity level problem 

 

Sample No of Hidden Neurons Accuracy (%) MSE Epoch 

Highest Accuracy 14 249 100 0.0005372 225 
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Table 5. 30: Performance parameters of RBF-NN (five-class problem) 

 

No Corrosion Grade 1 Grade 2 Grade 3 Grade 4 

Precision 1 1 1 1 1 

Recall 1 1 1 1 1 

F score 1 1 1 1 1 

Accuracy 1 1 1 1 1 

 

 

Table 5.31 shows an overall accuracy comparison of averaged accuracies of different classifiers 

applied on five-class corrosion severity level problem with lowest of 90.4% for Naive Bayes and 

highest of 100% for RBF-NN. 

 

Table 5. 31: Accuracy comparison of RBF-NN, BP-NN and Naive Bayes for five- 

class corrosion severity level classification 

 

Classifier 
Averaged 
Accuracy (%) 

RBF-NN 100 

BP-NN 94.57 

Naive Bayes 90.4 
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Figure 5. 8: Overall accuracy comparison of BP-NN, RBF-NN and Naive Bayes 

classifiers for corrosion detection and severity level prediction problem 

 
 

Figure 5.8 shows an overall comparison of averaged accuracies for applied RBF-NN, BP-NN 

and Naïve Bayes classifiers on corrosion detection and corrosion severity level problems. 

Classifiers showed a higher classification rate overall, possible reasons for overall high 

classification rate is own acquisition scheme of acoustic emission data, distinct features of 

acoustic data and less variability in the data. Naive Bayes classifier due to its probabilistic nature 

have not been able to well handle the inter-class mixed data and showed the least accurate 

results. On the other hand, radial basis function neural network showed good generalization 

capability due to the presence of gaussian potential functions as activation functions in the 

hidden layer neurons and showed the highest accuracy for corrosion severity level classification 

problem. 
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5.4. Graphical User Interface (GUI) of the Proposed Technique 
 

Graphical User Interface (GUI) is a type of user interface that is designed to interact with the 

software and computing algorithms through graphical icons and visual indicators. Figure 5.9 

shows the GUI of the proposed corrosion monitoring technique made on Matlab. GUI can help 

user to easily interact with technique and initiate commands from a single window. GUI involves 

the loading of corrosion’s acoustic data to Matlab, Raw and FFT plots of the acquired acoustic 

data, Feature extraction from acoustic data and finally classification of corrosion severity levels 

using BP-NN, RBF-NN and Naive Bayes classifiers. 

 

 

Figure 5. 9: GUI of the Proposed Technique 
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5.5. Summary 
 

The chapter can be summarized as follows: 

 

❖ Performance of different machine learning algorithms as classifiers has been tested under 

different conditions. Three different algorithms, back propagation neural network, radial 

basis function neural network and naive bayes classifier have been used as supervised 

learning algorithms for classification of ‘corrosion’ and ‘no corrosion’ state and corrosion 

severity level prediction.








❖ For classification purpose, back-propagation neural network and radial-basis function   

neural network have been trained using AE mean, AE RMS, skewness and kurtosis as 

inputs of the network and arithmetic patterns set as output classes. Networks have been 

trained using training dataset and tested against the testing dataset.








❖ For multi-class problem, five corrosion severity levels have been made based on the mass 

loss occurred during accelerated corrosion testing. Back-propagation neural network, 

radial basis function neural network and naive bayes classifier are used to accurately 

predict the corrosion severity levels. Radial basis function neural network outperformed 

the other two classifiers and showed the best classification accuracy for corrosion 

severity level prediction due to presence of gaussian activation function in network 

hidden layer neurons.







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6. CHALLENGES 
 

 

Corrosion detection through acoustic emission is still in its infancy. Different researchers have 

used different techniques for corrosion detection and monitoring, involving, visual inspection, 

vision based techniques, magnetic flux leakage and radiographic inspection. Literature available 

on corrosion detection and monitoring through acoustic emission is very limited. Researchers 

have used air-borne acoustic emission for corrosion detection. However, there are few challenges 

in implementation of the technique. Major challenge in implementation of the technique is the 

environmental noise such as sounds from parallel running machines, operator voice or sounds in 

background etc. This research tried to provide a solution to the earlier mentioned problem, by 

using structure-borne acoustic emission emitted during accelerated corrosion testing process. For 

better reliability and accuracy proposed technique uses hybrid technique that detects corrosion 

through acoustic emission then accurately classifies corrosion severity levels with the help of 

machine learning algorithms. One of the major challenges faced during implementation of the 

proposed technique is to identify the correct method of accelerated corrosion testing because 

literature found on accelerated corrosion testing was too ambiguous. Correct method of 

accelerated corrosion was identified by months of rigorous experimentation.  

 

Data acquisition and data logging of high frequency acoustic emission was another big issue 

faced during implementation of proposed technique. NI data acquisition card was initially used 

to sample data at higher frequencies, but it was unable to achieve sampling rate of 250 KHz. To 

acquire higher frequency acoustic emission data, NI ELVIS kit with LabView interface was 

used. Own data acquisition scheme was made in accordance with timing of accelerated corrosion 

testing. For corrosion severity level prediction, prolonged accelerated corrosion tests were 

performed and metal loss for the samples were measured with high accuracy weighing 

instruments available at gold shops.  

 

Another challenge to the proposed technique is the variability of the acoustic emission signal for 

prolonged accelerated corrosion tests due to decrease in the concentration of solution. To solve 

the above issue, features from data were extracted after preprocessing of the data. Distinct 
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features of acoustic emission signals showed correlation with material degradation occurred due 

to corrosion process.  

 

To achieve better prediction and classification accuracy found in literature, a novel classification 

technique radial basis function neural network is used to classify corrosion severity levels. 

Classification results of radial basis function neural network were compared with back 

propagation neural network and naive bayes classifier. 
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6.1. Summary 
 

 

The chapter can be summarized as follows 

 

❖ There are various challenges in implementation of the proposed technique. 

Experimentation involved in the proposed technique demands the accelerated corrosion 

testing of mild steel samples, for which accurate scheme for accelerated corrosion testing 

could be a demanding task.










❖ High frequency acoustic emission data acquisition demands data acquisition scheme, 

usage of accurate hardware and software interface. In order to classify corrosion in 

different levels by machine learning algorithms, acoustic data should be preprocessed and 

distinct features of acoustic data to be extracted and used as inputs to classifiers. 

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7. CONCLUSION AND FUTURE WORK 
 
 

7.1. Conclusion 
 

Degradation caused by corrosion to complex engineering structures strongly affects the economic 

growth of a country. Industry demands a low cost and efficient corrosion detection method. Acoustic 

emission of a corrosion process can give vital information about the process. Early stage corrosion 

detection and monitoring can be performed through acoustic emission. Corrosion detection through 

non-destructive testing techniques is commonly under use, which involves techniques like 

radiography, vision based inspection, guided waves and magnetic flux leakage. Acoustic emission 

unlike other NDT techniques, is a passive NDT technique which just listens to the micro seismic 

activity. However, AE data needs to be interpreted to get knowledge about the system and is 

considered as less reliable technique due to variability. The aim of the research is to propose a hybrid 

technique, which detects corrosion through acoustic emission and predicts corrosion severity levels 

with high accuracy using machine learning algorithms.  

 

Laboratory based experimental setup was established for accelerated corrosion testing of mild steel 

for different time spans and mass loss of samples were measured. Acoustic emission signals were 

acquired at high frequency sampling rate with Sound Well AE sensor, NI Elvis kit and NI Labview 

software. Acoustic emission frequency of accelerated corrosion process typically lies above 50 KHz. 

Data acquisition step involves the acquisition of amplitude of high frequency acoustic emission 

signals and logging them in Excel files. Raw Acoustic signals plot does not give clear information 

about the changing process. Fast Fourier Transform of acoustic signals confirms the high frequency 

band during corrosion process. For further interpretation of AE signals with the corrosion process, 

AE and statistical features of the data were extracted. AE Mean, AE RMS, AE Energy, kurtosis and 

skewness were selected as distinct features and represent a linear relationship with the corrosion 

process. 

 

Three different algorithms, back-propagation neural network, radial basis function neural network 

and probability theorem based naive bayes classifier have been investigated for corrosion severity 

level prediction. Five Corrosion severity levels have been made based on mass loss during 

accelerated corrosion testing.  For bi-classification problem, Naive Bayes, BP-NN and RBF-NN 
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showed accuracy of 98.68%, 98.57%, and 100% respectively. One of the possible reason for high 

accuracy is highly distinctive features representing “corrosion” and “no corrosion” state. For multi-

class problem dealing with the corrosion severity level prediction, accuracies of implemented 

algorithms drop due to inter-class mixture of AE signals and their features. For multi-class problem 

RBF-NN outperformed BP-NN and Naive Bayes classifier and showed better performance. One of 

the possible reason for better performance of RBF-NN is the presence of non-linear gaussian 

activation functions in hidden layer neurons of the network. The reason for the worst performance of 

Naive Bayes classifier for multi-class problem lies in its probabilistic nature which calculates the 

posterior probability based on prior probabilities assigned to each class and does not show better 

efficiency when there is inter-class mixed data.  

 

Finally, it can be concluded that the proposed technique works efficiently for lab environment, 

however, the proposed technique can face challenges while implementation in the industrial 

environment. Industrial grade acoustic sensors with manufacturer data acquisition software, prior 

knowledge of application industry and environment, detailed study of corrosion process and adequate 

machine learning skills are essentials for industrial application of proposed technique.   

 

7.2. Future Work 
 

Future aim of the research is to explore the suitable techniques and methods to overcome the 

challenges involved in industrial application of the proposed technique. Prolonged accelerated 

corrosion tests of samples may be performed to study the behavior of AE signals after increased 

timing. This may involve analysis of environmental noise in order to filter it out eventually. For 

practical Implementation of technique in industrial environment acoustic sensor calibration, 

rugged data acquisition hardware and subsequent acquisition software should be incorporated. 

For example, corrosion detection inside pipes during chemical flow in petrochemical industries 

is a challenging task, which can be addressed with the suitable sensor, acquisition software and 

hardware using proposed technique. Real time data acquired from industrial environment could 

be sent through wi-fi over a network for further analysis. Exploration of various un-supervised 

machine learning algorithms can be done using the real time acoustic data of corrosion process.
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7.3. Summary 
 

 

The chapter can be summarized as follows 
 




❖ A novel hybrid technique for corrosion detection using acoustic emission and corrosion 

severity level prediction with radial basis function neural network has been developed. 

Acoustic emission signals during accelerated corrosion testing of mild steel samples were 

acquired using own data acquisition scheme. For classification purpose, back propagation 

neural network and radial basis function neural network have been trained using AE 

mean, AE RMS, skewness and kurtosis as inputs of the network and arithmetic patterns 

set as output classes. Networks have been trained using training dataset and tested against 

the testing dataset. Radial basis function neural network outperformed the other two 

classifiers and showed the best classification accuracy for corrosion severity level 

prediction due to presence of gaussian activation function in network hidden layer 

neurons.







❖ Future work involves the exploration of techniques and methods suitable for practical 

implementation in industrial application of the proposed technique. It also includes study 

of various other algorithms to improve the performance of proposed technique.


 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



93 
 

REFERENCES 
 
 

[1]  Hays, George F. "Now is the Time." Journal of Advanced Materials Research 95 

(2010): 17-22. 

 
[2]  Agarwala, Vinod S., Perry L. Reed, and Siraj Ahmad. "Corrosion detection and 

monitoring-A review." CORROSION 2000. NACE International, 2000. 

 

[3]  Schmitt, Günter. "Global needs for knowledge dissemination, research, and 

development in materials deterioration and corrosion control." World Corrosion 

Organization, New York (2009). 

 

[4]  Blitz, Jack. Electrical and magnetic methods of non-destructive testing. Vol. 3. Springer 

Science & Business Media, 2012. 

 

[5]  Schweitzer, Philip A. Corrosion Engineering Handbook, -3 Volume Set. CRC Press, 

1996. 

 

[6]  Mali, Anil R., D. I. Desai, and C. U. Nikam. "Brief Review on Corrosion & its 

Prevention." Journal of Environmental Engineering and Studies 2.1 (2017). 

 

[7]  De Force, Brian, and Howard Pickering. "A clearer view of how crevice corrosion 

occurs." JOM Journal of the Minerals, Metals and Materials Society 47.9 (1995): 22-27. 

 

[8]  Hellier, Charles. "Handbook of nondestructive evaluation." (2001).  

 

[9] Pidaparti, R. M., Aghazadeh, B. S., Whitfield, A., Rao, A. S., & Mercier, G. P. (2010). 

Classification of corrosion defects in NiAl bronze through image analysis. Corrosion 

Science, 52(11), 3661-3666. 

 

[10]  Mandal, K., and D. L. Atherton. "A study of magnetic flux-leakage signals." Journal of 

Physics D: Applied Physics 31.22 (1998): 3211. 

 

[11]  Gloria, N. B. S., Areiza, M. C. L., Miranda, I. V. J., & Rebello, J. M. A. (2009). 

Development of a magnetic sensor for detection and sizing of internal pipeline corrosion 

defects. NDT & e International, 42(8), 669-677. 

 

[12]  Van der Veer, P. "Internal corrosion in small-diameter, heavy-wall pipelines: a critical 

phenomenon and how to measure it." Corrosion Prevention and Control 47.4 (2000): 

103-6. 

 

[13]  Kim, D., L. Udpa, and S. Udpa. "Remote field eddy current testing for detection of 

stress corrosion cracks in gas transmission pipelines." Materials Letters 58.15 (2004): 

2102-2104. 



94 
 

[14]  Raghavan, Ajay, and Carlos ES Cesnik. "Review of guided-wave structural health 

monitoring." Shock and Vibration Digest 39.2 (2007): 91-116. 

 

[15]  Lowe, Mike JS, David N. Alleyne, and Peter Cawley. "Defect detection in pipes using 

guided waves." Ultrasonics 36.1-5 (1998): 147-154. 

 

[16]  Mokhles, M., Ch Ghavipanjeh, and A. Tamimi. "The use of ultrasonic guided waves for 

extended pipeline qualification prediction." SINCE2013: Singapore International NDT 

Conference & Exhibition, Marina Bay Sands, Singapore. 2013. 

 

[17]  Droubi, M. G., Faisal, N. H., Orr, F., Steel, J. A., & El-Shaib, M. (2017). Acoustic 

emission method for defect detection and identification in carbon steel welded 

joints. Journal of Constructional Steel Research, 134, 28-37. 

 

[18]  Wu, Kaige, Woo-Sang Jung, and Jai-Won Byeon. "Acoustic emission of hydrogen 

bubbles on the counter electrode during pitting corrosion of 304 stainless 

steel." Materials Transactions 56.4 (2015): 587-592. 

 

[19]  Patil, Shilpa, Shweta Goyal, and Bilavari Karkare. "Performance evaluation of 

accelerated corrosion techniques using electrochemical measurements and acoustic 

emission parameters." Prognostics and Health Management (ICPHM), 2016 IEEE 

International Conference on. IEEE, 2016. 

 

[20]  Prateepasen, A. Pitting Corrosion Monitoring Using Acoustic Emission. INTECH Open 

Access Publisher, 2012. 

 

[21]  Mabbutt, S., Picton, P., Shaw, P., & Black, S. (2012). Review of Artificial Neural 

Networks (ANN) applied to corrosion monitoring. In Journal of Physics: Conference 

Series (Vol. 364, No. 1, p. 012114). IOP Publishing. 

 

[22]  Saenkhum, N., A. Prateepasen, and P. Keawtrakulpong. "Classification of Corrosion 

Detected by Acoustic Emission." ASME 2003 International Mechanical Engineering 

Congress and Exposition. American Society of Mechanical Engineers, 2003. 

 

[23]  Hendi, A., Behravan, A., Mostofinejad, D., Moshtaghi, S. M., & Rezayi, K. (2017). 

Implementing ANN to minimize sewage systems concrete corrosion with glass beads 

substitution. Construction and Building Materials, 138, 441-454. 

 

[24]  De Masi, G., Gentile, M., Vichi, R., Bruschi, R., & Gabetta, G. (2015, May). Machine 

learning approach to corrosion assessment in subsea pipelines. In OCEANS 2015-

Genova (pp. 1-6). IEEE. 



95 
 

[25]  Liao, K., Yao, Q., Wu, X., & Jia, W. (2012). A numerical corrosion rate prediction 

method for direct assessment of wet gas gathering pipelines internal 

corrosion. Energies, 5(10), 3892-3907. 

 

[26]  Jian, L., Weikang, K., Jiangbo, S., Ke, W., Weikui, W., Weipu, Z., & Zhoumo, Z. 

(2013). Determination of corrosion types from electrochemical noise by artificial neural 

networks. Int. J. Electrochem. Sci, 8(2), 2365-2377. 

 

[27] “Acoustic Emission Testing.” [Online]. Available: 

http://mech.vub.ac.be/teaching/info/Damage_testing_prevention_and_detection_in_aero

nautics/PDF/acoustic-emission.pdf. [Accessed 15 May 2016]. 

 

[28]  Grosse, Christian U., and Masayasu Ohtsu, eds. Acoustic emission testing. Springer 

Science & Business Media, 2008. 

 

[29]  Murphy, Kevin P. "Naive bayes classifiers." University of British Columbia (2006). 

 

[30]  Basri, M., Rahman, R. N. Z. R. A., Ebrahimpour, A., Salleh, A. B., Gunawan, E. R., & 

Rahman, M. B. A. (2007). Comparison of estimation capabilities of response surface 

methodology (RSM) with artificial neural network (ANN) in lipase-catalyzed synthesis 

of palm-based wax ester. BMC biotechnology, 7(1), 53. 

 

[31]  Sivanandam, S. N., and S. N. Deepa. Introduction to neural networks using Matlab 6.0. 

Tata McGraw-Hill Education, 2006. 

 

[32]  M. A. Selver and C. Guzelis, "Semiautomatic Transfer Function Initialization for 

Abdominal Visualization Using Self-Generating Hierarchical Radial Basis Function 

Networks," in IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 

3, pp. 395-409, May-June 2009. 

 

[33]  MathWorks, “Matlab help, Design radial basis network,” [Online]. Available: 

https://in.mathworks.com/help/nnet/ref/newrb.html [Accessed 20 May 2016]. 

 

[34]  Garg, Bandana. "Design and Development of Naive Bayes Classifier." Circulation 701 

(2013): 8888. 

 

[35]  MathWorks, “Matlab help, Train multiclass naive Bayes model,” [Online]. Available: 

https://in.mathworks.com/help/nnet/ref/newrb.html [Accessed 26 May 2016]. 

 

 

 
 



96 
 

 
 

Completion Certificate 

 

 
It is to certify that the thesis titled “Corrosion Detection and Classification using Acoustic 

Emission and Machine Learning Based Approach” submitted by registration no.00000117373, 

NS Muhammad Fahad Sheikh of MS-86 Mechatronics Engineering is complete in all respects 

as per the requirements of Main Office, NUST (Exam branch). 
 

 

 

 

 

Supervisor: ___________  

Dr. Khurram Kamal  
 

Date: ____ February, 2018 
 

 

 

 

 

 

 

 

 

 

 

  


