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ABSTRACT 

Reconfigurable Manufacturing Systems (RMS) effectively respond to fluctuating market 

needs and customer demands for finished product. Diagnosability is a supporting 

characteristic of RMS that has a say in the quality of finished product. Cost and time taken for 

manufacturing are also considerably affected if proper diagnosability measures are not taken. 

Previous studies on Diagnosability of RMS have been studied from Axiomatic System Theory 

as such Design For Diagnosability (DFD). Nevertheless Diagnosability remains to be the least 

studied characteristic of RMS. With the availability of digitized data, Machine Learning 

approaches to advance manufacturing have proven to be considerably effective. A research 

gap existed for the application of Machine Learning techniques in improving the 

Diagnosability of RMS. A framework of Machine Learning has been proposed to address this 

gap. The working of the framework has been illustrated by two demonstrations from the 

available datasets, one in identifying proper signals in semi-conductor manufacturing to 

predict excursions, and the second in predicting machine failures due to a variety of factors. 

The framework is rendered in a concurrent-engineering fashion. The framework is tested 

against two available manufacturing datasets. Increase in Diagnosability will decrease the cost 

and time taken to production. 

Key Words: Reconfigurable Manufacturing Systems, Machine Learning, Artificial 

Intelligence, Preventive Maintenance, Intelligent Manufacturing 
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CHAPTER 1: INTRODUCTION 

 

1.1 Manufacturing Systems 

The term Manufacturing is used for anything hand-made by humans and by extension 

anything made by a system which was made by humans in the first place. In modern times, 

humans depend on machines for most of their tasks and manufacturing is no exception. It is 

in this realm that manufacturing is referred to a production process carried out mainly in 

industries in all countries across the world. Manufacturing is an activity to add value to the 

raw materials using forces of nature to make a product that solves some problem human(s) are 

facing. A manufacturing system can be termed as an arrangement of closely interacting agents 

called machines or tools working in time and space to meet a customer demand in an efficient 

manner. It is therefore necessary to come up with all the scenarios a manufacturing system 

will be facing for making products in its lifetime. Traditionally, manufacturing has always 

involved human intervention and oversight and there is no manufacturing system in practice 

to date which is totally autonomous. 

1.2  Different types of Manufacturing Systems 

 

1.2.1 Dedicated Manufacturing System 

 Dedicated Manufacturing Systems were the first to arrive and follow from the 

mechanized and standard production of unvarying and unchanging products such as gun 

barrels or wheel of vehicle or any component for which the demand will not change. It focuses 

on large production orders. If the system runs for a long time, production costs keep on 

decreasing resulting in the profit for manufacturing enterprise. However, the limitation of 

DMS is that the production of variety of products is not possible. In other words, DMS is a 

highly inflexible system. 

1.2.2 Cellular Manufacturing 

Cellular Manufacturing takes into account Group Technology (GT) which takes into 

account the similarities of parts to be produced and combine then into groups called Part 
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Family. This helps to achieve more production with lesser machines. The time taken to 

produce items in this way is also expected to decrease. Each cell consists of machines assigned 

to carry out Part Family operations. The concept of GT enables FMS and RMS. 

1.2.3 Flexible Manufacturing System 

 Flexible manufacturing system (FMS) is a GT machine cell which is controlled by its 

software component and has high production rate. The fact that FMS are software controlled 

with CNC’s at the operational end, the kinds of task FMS can perform are highly flexible. 

This enables FMS to respond to market need but a major drawback of FMS is that they are 

costly to operate.  

1.2.4 Reconfigurable Manufacturing Systems 

The Reconfigurable Manufacturing Systems (RMS) were designed in the 1990s to 

respond to the fluctuating product demands and changing market conditions. RMS is a 

compromise between Dedicated Manufacturing Lines and Flexible Manufacturing System – 

the former has a high throughput but a low variation in product features, the latter has low 

throughput but a high variation in product features. 

 

Figure 1.1 Comparison between the functionality and capacity of DML, RMS, FMS 

Yorem Koren (1999) defines RMS as, [1]

 

The RMS consists of the following characteristics: 

• Modularity 
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• Integrability 

• Customized flexibility 

• Scalability 

• Convertibility 

• Diagnosability 

1.2.4.1 Diagnosability 

Diagnosability remains to be the least studied characteristic of RMS despite having a 

say in the quality of products being manufactured in RMS and hence optimizing the cost and 

time of production. 

The definition of the characteristic Diagnosability as defined by the pioneering 

author of RMS, Y. Koren [1], 

 

It is important to mention here that RMS has yet to be implemented in its entirely in 

the industry but a few aspects of RMS have been applied in aerospace, automotive and 

semiconductor manufacturing. 

The approaches to improve the diagnosability of a manufacturing system prior to RMS 

are summarized in the following table, 

Approach System Description Shortcoming 

JIDOKA Toyota Production 

System (TPS) 

Automated and autonomous 

sensors to monitor 

manufacturing defects 

Low margin for 

error 

POKA-YOKE Toyota Production 

System (TPS) 

Avoidance of accidents that 

can lead to faulty 

manufacturing 

Only prevents 

human errors 

Six Sigma General Electric, 

Motorola 

Proactive approach to reduce 

error 

Costly, low margin 

of error 
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NDT Independent quality 

control 

Involves a range of physics 

based techniques 

Does not detect 

fault related to or 

arising in machine 

tools, is not real 

time, time 

consuming 

Human inspection Manual Requires work force Human inspection 

is a slow and 

inaccurate process 

Table 1.1 Diagnosability along various manufacturing traditions 

 Owing to the deficiencies in the previous methodologies for detecting fault in 

manufacturing, RMS is advantageous because it addresses Diagnosability from two aspects,  

• detecting machine failure, and  

• detecting unacceptable part quality 

Machines specialized in inspecting the defects of manufacturing has been proposed by Koren 

as, 

 

In order to make the holistic fault detection methodology of RMS real-time, it has to 

be equipped with the recent advances in artificial intelligence such as the machine learning 

techniques. It can now be postulated that Diagnosability in RMS ought to have three legs. 
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DIAGNOSABILITY

Unacceptable 
Part Quality

Machine 
Failures

Realtime Fault 
Detection

 

Figure 1.2 Three legs of Diagnosability in RMS 

1.3 Industry 4.0 

With the advent of Industry 4.0 and increased product varieties and fluctuating customer 

demands, manufacturing companies are finding ways to reduce cost and time needed for 

production while upping the quality of product. Due to the computerization of manufacturing 

systems, there is an increase in the digitized data. Industry 4.0 is being referred to by different 

terminologies in different part of the world: Advanced Manufacturing (USA), Smart Factory 

(South Korea), Vision China 2025 (China). 

Big Data is the name given to the increase in data because it comprise of various formats, 

and as such, the availability of data on quality enables engineers to analyze the data for insights 

into process improvements, and diagnosing quality problems. This leads to better 

manufacturing outcomes. 

Stages of industrial evolution is shown in the Figure 1.3. Industry 1.0 was the point in 

time when mankind made use of steam power to drive locomotives and engines in factories. 

The production of steam lead to electricity production. This conversion of energy made 

possible the second industrial revolution. Availability of electricity boosted research in 

electronics through which a degree of automation was achieved forming the third stage of 

industrial revolution. Most of the industry nowadays lie at Industry 2.0 and Industry 3.0. 
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However, miniature transistors enabled micro-electronics and nano-electronics developed and 

made possible the semiconductor manufacturing and the availability of computer systems that 

could be connected in the form of network. 

 

Figure 1.3 Evolutionary stages of industrial progress 

 It is very difficult to move from Industry 2.0 to Industry 3.0 due to the unavailability 

of good datasets that are clean because at this stage there are not AI systems available to 

magically improve the process, and as such industries cannot move from 2.0 to 4.0. Cisco 

Survey reveals that 75 % of IOT projects that transition from Industry 2.0 to Industry 4.0 fail 

[10]. 

The journey from Industry 2.0 to Industry 4.0 start from finding problems or issues that a 

manufacturing company thinks can be better solved by AI techniques. This process is very 

manual, and generally goes as follows, 

a) Finding issues and problems  

b) Having engineers to identify root cause of the problem (this takes a long time)  

c) Figuring out the solution  

d) Validating the solution and putting the solution to work 
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However, this process is very inefficient, and porous because the manufacturing enterprise 

is relying on humans to find the problem issues. So, there is an opportunity to try to automate 

this process which will complete the process ‘a’ to ‘d’ faster so that product can be dispatched 

to the customer faster and have a higher quality. To accelerate this, the organization needs 

detailed dataset which is everything about the process in a clean format that is able to be 

processed. Today, engineers collect this data and put it in the form of spreadsheet, and perform 

statistical processes and inferences on it and get results. This process can be automated but it 

relies on clean data. However, it’s very difficult for humans to perform statistics on these 

datasets. Algorithms are needed in order to derive insights from the datasets. 

1.4 Machine Learning 

Machine Learning is a technique used in Artificial Intelligence - statistical inferences 

with emphasis on learning from human nervous system. Machine Learning can handle tasks 

of NP-complete nature. 

The difference between traditional programming approaches and machine learning 

based approaches is highlighted in the Figure 1.4. 

The application of Machine Learning in improving production quality is under-

explored and as such fraught with many opportunities as well as challenges. 

 

 

Figure 1.4 Difference between traditional programming and Machine Learning approaches 
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The Machine Learning is accomplished by performing statistical inferences on the 

available dataset in such a way that it results in an algorithm called the ‘model’ designed to 

optimize a specific output for that dataset as explained in the Figure 1.5. 

 

Figure 1.5 Machine Learning methods 

Only the classification-based Supervised Machine Learning instances have been 

considered in this research due to unavailability of an unlabeled manufacturing dataset. 

Artificial Intelligence and Machine Learning methods can be employed to model 

manufacturing processes quickly and easily as compared to any other available technique. 

Such modeled manufacturing processes can be further used to automate parameters related to 

machining processes for the optimization of process performance. 

1.5 Motivation for research 

Machine Learning methods have multi-disciplinary applications. In the wake of growing 

field of Artificial Intelligence whose major component is currently being practiced under the 

rubric of Machine Learning, developing the manufacturing systems to be more responsive to 

the recent advances in Machine Learning is the need of hour. This will ultimately lead to the 

rampant production of quality products thereby increasing the profit for manufacturing 

enterprises in a competitive world. An acceptance of latest trends in intelligent computing also 

prepares the manufacturing systems of today to brace up for the imminent advances of 

tomorrow. 

Henceforth, my motivations for carrying out this research are enumerated as follows, 
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1. To keep manufacturing systems & practices up-to-date with the latest research in 

artificial intelligence with the effect to further the computerization of manufacturing 

systems. 

2. To improve quality of life by increasing the efficiency and productivity manufacturing 

systems which has a direct effect on customer satisfaction, and profit maximization of 

manufacturing enterprises. 

3. To prepare manufacturing systems welcome newer advancement in technology which 

is only possible if the degree of automation in manufacturing systems is increased, for 

example, the development of Autonomous Manufacturing Systems (Industry 5.0) 

which is in the offing. 

1.6  Aim of Research 

A detailed study of literature revealed that distributed approaches for solving problem of fault 

diagnosis are present. 

1.7 Research Question 

Could approaches in literature be used to develop the bigger picture - a consistent and 

structured framework which consolidates the existing solutions as well as provide a platform 

for the solution of unforeseeable problems of diagnosability in a manufacturing system, 

especially the RMS? In this research, a possibility for forming such a framework is 

investigated and proposed. 

1.8 Thesis breakdown 

Chapter 2 discusses the latest advancements in RMS and ML.  

A survey of prevailing data-collection techniques in advanced manufacturing is done 

in Chapter 3. 

The proposed framework is discussed in detail in Chapter 4.  

The methodology and the workflow discussed in Chapter 4 is finally applied on two 

select datasets and the results discussed in Chapter 5. 

Chapter 6 includes a summary and recommendations of findings along with future 

directions. 
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CHAPTER 2: RECONFIGURABLE MANUFACTURING SYSTEMS, 

MACHINE LEARNING – STATE OF THE ART 

 

Anticipating the imminent uncertainties and violent fluctuations in demand-supply of 

twenty-first century for manufacturers, Yorem Koren in a keynote paper pioneered the idea of 

Reconfigurable Manufacturing Systems that help manufacturing companies to stay 

competitive. The goal of RMS is to manufacture products in a cost-effective manner while 

being sensitive to the market changes. The RMS was supported by its enabling components 

namely Reconfigurable Machine Tools, Reconfigurable Inspection Machines, Reconfigurable 

Software [1]. 

The Stream of Variation theory is proposed by Koren in support for his Diagnosability 

theory of RMS which takes into account Six-sigma quality control with the placement of 

sensors [1]. 

To deal with the internal and external uncertainties arising in manufacturing 

environments, the concept of Biological Manufacturing Systems (BMS) was proposed. The 

BMS was inspired from the ideas of evolution and adaptation of organisms. The authors 

propose the combination of evolutionary function and learning function to deal with the 

challenge of complex and real-time decision making during manufacturing [2]. 

Ding et al. (2002) took the concept of Stream of Variation theory forward and debated 

that sensors-placement is a costly affair. He came up with an algorithm that finds sensors the 

most suitable positions for a multistage manufacturing. This approach made data obtained 

through sensors more reliable [3] 

Monotstori (2003) proposed that various AI techniques such as pattern recognition, 

artificial neural networks, fuzzy systems be integrated for problem as complex as 

manufacturing in which uncertainties arise. His approach is considered as a hybrid one but it 

does not talk about quality and diagnosability issues in manufacturing in general [4]. 

The most dedicated study to consider Diagnosability is done by Liu et al. (2004). He 

employed Axiomatic Theory approach to improve Diagnosability of manufacturing systems. 

Design For Diagnosability (DFD) approach assumes Diagnosability issues as part of the 

design of manufacturing system and recommends that measures that improve the quality 

issues should be incorporated at the outset of designing manufacturing systems. In his 
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approach a diagnosability matrix is made to render clear the relationship between quality 

attributes and diagnosis. This helps to establish the conditions for optimal diagnosability. [5] 

The ultimate purpose of machine learning is to give the software instructions 

responsible for operating the manufacturing system. Machine learning helps computer 

algorithms improve their performance over time as more and more training data becomes 

available for training of these algorithms. As such, behind these algorithms, is present, in the 

form of machine learning a ‘decision tree’ which is a mental framework existing in the mind 

of data-engineer and according to their experience and judgment as applied to the present 

activity of manufacturing system in achieving a desired product quality and production 

capacity. 

The concept of Machine Learning is as old as 1950s. However, its application to the 

wider domain of knowledge has witnessed an exponential increase only recently. The 

application of Machine Learning methods to manufacturing is fraught with challenges and 

opportunities [6]. 

To improve and automate the semiconductor manufacturing, Irani et al. developed a 

Generalized ID3 machine learning algorithm as early as 1993. The GID3 trains itself with the 

help of training data and generates a decision tree capable of predicting the result of further 

experimentations taking into account general and varied conditions. The nodes in this tree 

correspond to the properties or specifications (design criteria) of the semiconducting 

manufacturing task .The tree can then be consolidated into an expert system governing the 

future production of semiconductor. This technique was found helpful in process diagnosis, 

and process optimization [7]. 

Pham (2005) evaluates several machine learning techniques and their successful 

applications in manufacturing. He uses inductive learning which is an old name for supervised 

machine learning is. He also review the advanced in machine learning approaches and presents 

challenging facing the machine learning in manufacturing area. He emphasizes the need to 

include more data formats like image and text and be made the part of data-mining for 

manufacturing [8]. 

Wuest et al. (2016) stressed that manufacturing systems are dynamic and the 

production is a non-linear processes that can even behave chaotic. Utilizing all means 

available to cater for any market need, machine learning is an area which gives promising 

results and usability. Because machine learning has the potential to answer newer and old 
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challenges in manufacturing, it has the potential for becoming popular among researchers and 

practitioners. Machine Learning is not as fancy as it sounds since it involves many challenges 

and confusing approaches which come in the way of it being implemented globally [9]. 

Diagnosability remains to be least study characteristic of Reconfigurable 

Manufacturing Systems. A study gap was found in the application of machine learning 

methods for improving the diagnosability characteristic of RMS. The single largest hurdle 

witnessed in the way of is manufacturing data sharing and making data public. Machine 

Learning can solve NP-complete problems. In essence, ML techniques are a departure from 

equation based model of the problem, the algorithm in ML is called the model. 
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CHAPTER 3: AN OVERVIEW OF DATA-COLLECTION METHODS 

AND DATA-TYPES IN MANUFACTURING 

The biggest challenge in using AI/ML to model manufacturing process behaviors is 

the facility to obtain training data for training the model. The primary way to collect data is 

through sensors. These sensors are properly placed to minimize errors arising due to 

environmental conditions. 

All the manufacturing equipment used in assembly generate data. This data stays in 

manufacturer’s shop floor system, or on the machines. If not saved, such data are usually 

overwritten because the working memory of manufacturing systems are not large.  

 

3.1 Data Collection Techniques 

3.1.1 High resolution imaging, 3D Laser imaging 

 This technique was initially developed to enhance computer vision. An high resolution 

image is a rich source of information. Different pixel densities can be chosen depending on 

the nature of manufacturing job being carried out. 

3.1.2 Process measurement points 

 This technique was developed to validate six-sigma quality methodology. The data is 

not obtained in real-time fashion but in a interval fashion. 

3.1.3 Reconfigurable Inspection Machines  

 This was proposed by Y Koren (1999), a RIM has all the requisites required to obtain 

data real-time. It primarily consists of sensors and the machine is trained to obtain information 

in varying time and space positions [1]. Figure 3.1 shows part of a RIM. 

3.1.4 Human Inspection 

 It is an oldest method but still useful to obtain less critical data such as worker’s logs. 

Technique Sensor 

HD Imaging HD Camera, Laser 

source 
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Process Measurement 

Points 

Varied measurement 

techniques 

Reconfigurable Inspection 

Machine 

Sensors 

Human inspection Human senses 

Table 3.1 Summary of data-collection techniques in manufacturing systems 

 

Figure 3.1: Image of an RIM 

3.2 Data Types 

The resulting types of data collected in manufacturing system environment are  

• Images 

• Audio: Acoustic emissions 

• Text: Labels 

• Numeric: Temperature, humidity, pressure 

• String: Time-stamps, worker’s log (text with numeric) 

• Worker logs 

Important here is to mention that computer always process data in numeric form. If an 

image is the source of data, computer has a way to identify the individual location and color 

of each pixel with an address for processing it further. 

The feature based nature of dataset is such that each data can be qualified according to one 

or more of these, 

i. Useless (noise) 
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ii. Nominal 

iii. Binary 

iv. Ordinal 

v. Count 

vi. Time 

vii. Interval 

viii. Image 

ix. Video 

x. Audio 

xi. Text 

 

Useless data bears no relationship with the output variable. Nominal data bears no 

relationship between different classes. Ordinal data can be ranked but they provide no distance 

between to discrete points. Binary data is either fail or pass, on or off. Count data means all 

the numbers are positive, the lowest possible value can be zero but not negative. Cyclic data is 

called Time, it repeats. Time data can be ignored doing classification problems, for example, 

hours before the previous machine break down happened. Interval data is continuous and 

useful for regression based classification techniques. Text, Image, Audio, Video are 

exceptionally helpful in doing clustering analysis (unsupervised machine learning). 

 

3.3 Information Processing Techniques 

 The entire data collected through sensors might not be useful. The data-engineer needs 

to identify the mission-critical data and extract it in the form of features. As it happens, some 

of the signals carrying important data might be encoded into the least-critical data. In such a 

case, data-engineer is trained to extract the useful information from a lesser important signals 

using information processing techniques such as but not limited to the following in the process 

known in literature as ‘data cleaning’, 

• Signal Processing 

• Data Augmentation 

• Data Fusion 
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• Data Omission 

In order to monitor parameters, data-engineer can also divide faults into hard-faults 

and soft-faults, with the mission-critical data corresponding to hard faults. Examples of hard-

faults and soft-faults are given in the following table, 

Criticality Parameters 

Hard Faults Power outage, Tool breakage, Workpiece 

presence, Vibrations 

Soft Faults Temperature, Humidity, Surface texture, 

Acoustic emissions 

Figure 3.2 shows how data is obtained through sensors and how it is processed. 

 

Figure 3.2: Summary of data collection methods 

 

For example, in order to model tool life, the data acquired from shop floor it often 

imbalanced (all classes being unequally represented) and some points are more clustered than 

the rest. This needs augmenting of the input data which is achieved by mixing synthetic data 

to the already generated data. The synthetic data added can either be purely simulation based 

or the matter of an expert modeling the problem. 

Due to commercial sensitivities, manufacturing organizations are reluctant to share 

their dataset. 
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3.4 Planning for the manufacturing data approach 

 The right of data is needed to keep productions high and not go behind manufacturing 

schedules because it helps do preventive maintenances both in actual manufacturing and 

process optimization. This can only be done if there is a system in place to collect reliable 

data. 

There are some already existing patterns to use data. 

3.4.1 Mission-critical data 

Without this data, the primary goals and responsibilities of manufacturing organization 

can’t be met. Almost everybody in the manufacturing environment knows about the mission 

critical data. 

3.4.2 Event-driven data 

Some workforce in a manufacturing enterprise is on the look for data that can help 

them in the future such as researching failures in manufactured products and machine failures 

on the assembly line. The teams has a futuristic outlook and wants to know the event well in 

advance to prepare for a relevant remedy. 

3.4.3 Background data 

This data does not assume an emergency behind it. Temperature and humidity are the 

typical example of background data. This data typically gets ignored unless there is a dire 

need to evaluate the manufacturing problem from its angle. 

 Likewise, a new strategy can be devised by the manufacturing team depending on the 

task and information at hand. 

 Some product manufacturers make sure that they have done tests and data obtaining 

fitness programs before starting to do batch production. Tests are meant to make sure the 

facility is functionally performing according to the specified attributes of the product and data 

means the system is able to maintain a historic record of which can then be recalled to solve 

uncertain problems. 

 A manufacturing enterprise has shortlisted some risks in advance. Special emphasis 

can be paid around acquiring datasets from these potential risks or failures. The interval to 

collect data can also be minimized and data can be collected before and after the manufacture 
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or assembly. This makes the functional performance data very flexible especially when 

dealing with the binary classes. Root-cause analysis can be enhanced by acquiring such a 

flexible data because it makes the virtual disassembly of product possible. 

 Structuring the data or information obtained from data becomes important if the 

manufacturing enterprise is concerned with a holistic maintenance of data for all aspects of 

the product so that it’s easy to work with later on. The complexity of data depends largely on 

the structure and organization of data. 

 Most companies spend on developing product systems rather than on data-collection 

techniques because it’s not an easy process to do so. Data security and managing the 

complexity of data, and deriving knowledge from it are complex tasks and need special 

expertise companies are just opening up to. 

 To get the value out of data, every company needs a special software with its own 

interface and machine learning models behind it. Presenting data in a way where engineer can 

understand is the most is crucial step in this process. Searching for a feature within the data 

demands for yet another expertise that must be embedded into the software user-interface of 

the company. Only a meticulous design of data strategy can generate correlations which will 

be of value to the manufacturing enterprise. 
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CHAPTER 4: THE FRAMEWORK 

 

The framework of machine learning for diagnosability of a reconfigurable 

manufacturing system consists of two environments working together namely, 

a) Machine Learning Environment 

b) Reconfigurable Software Environment 

The scheme of the framework is that as soon as the sensor data (training data) becomes 

available, the machine-learning environment fabricates an ensemble called the machine-

learning model (algorithm) with the help of data-engineer (in the case of Supervised Machine 

Learning), and stores it in the memory. After the formation of machine –learning model is 

completed, the algorithm is trained enough to take on new data and operate the manufacturing 

environment on its own and deal with the uncertainties, errors, faults, inaccuracies, incursions 

arising with a reasonable confidence level. A Reconfigurable Manufacturing Systems when 

made autonomous with the incorporation of Machine Learning methods achieves a degree of 

autonomy and can register its own decision which are actuated through Reconfigurable 

Machine Tools via the control system. This scheme is outlined in Figure 4.1. 
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Figure 4.1: A scheme of proposed Machine Learning Framework for RMS Diagnosability 

 The elements, stages and phases of the Framework is discussed in detail as follows. 
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4.1 The Machine Learning Environment 

4.1.1 Real World Data (Signals) 

The Machine Learning environment consists of training the data and testing it against 

the new or split data. The data consists of signals. These can be obtained through 

Reconfigurable Inspection Machines or any set of sensors forming the monitoring part of the 

manufacturing system and optimally placed around the manufacturing process activity. 

4.1.2 Information Processing and Signal Selection Phase 

 Not all signals are equally useful for monitoring a specific system. Often times a 

signals is a mixture of cardinal information, non-useful information and also noise. It can 

happen that the cardinal information is obstructed by and encoded in the latter two. Usually, 

there are a large number of signals which are collected, however, if every signal is called a 

feature, the most relevant signals should be identified. Approaches to feature selection and 

identification vary and are left on data-engineer’s choice. Information Processing Techniques 

have been described in Chapter 3. These shortlisted or selected signals can be used to factor-

in the causes responsible for production errors and inaccuracies. Such an approach results in 

the increase in throughput, cuts the time the computer needs to learn and also decreases cost 

of production. 
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Figure 4.2 The Machine Learning Environment 
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4.1.3 Machine Learning Techniques 

4.1.3.1 The Hold-out Method, Cross Validation 

In this method, data is arbitrarily split into training and testing data. The training data is then 

split into training and validation data by continuous and random shuffling.  The fundamental 

kind of cross validation is a method called the holdout method. A model is generated from 

the training data and the error-function is recorded. Using this error function a function is 

generated which then tried to predict the class values for test data (which serves as a new data 

for the training model). The error function tests itself against the new data and improves over 

again. 

Machine Learning 
Techniques

Validation 
Model

Test Model

Training 
Model

New 
Data

Cross 
Validation

Error Function

Hold Out 
Method

 

Figure 4.3 The hold-out method 
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The performance of algorithm is then tested on the new data. The result of new data is 

displayed in the form of a matrix called confusion matrix. 

At this stage, data-engineer is able to get the answers to their ‘what if’ questions, and 

of predictions. An insight from the data results in the production of knowledge. 

4.1.3.2 The Confusion Matrix:  

The decision is represented in the form of Confusion Matrix. A detailed discussion on 

Confusion Matrix can be found in the section 4. .  

4.2 The Reconfigurable Software Environment 
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Figure 4.4 : The Reconfigurable Software Environment with Machine Learning modification for 

Reconfigurable Software 

A Reconfigurable Software is what enables RMS perform its operation smoothly. A 

reconfigurable software is one with modular and open-architecture bases controllers so that 
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the addition and assimilation of new data can be done real-time. Such a software has three 

components [1], 

(i) an OS platform to run modules 

(ii) a system to combine modules into a running system at boot-up of the control 

(iii) a communication system to enable information interchange between modules 

on the basis of a standardized protocol 

 

4.3 The Supervised Machine Learning Path to improving Diagnosability 

4.3.1 Workflow 

Reading from the framework, the workflow for supervised machine learning is as 

follows, 

1. Preprocessing 

2. HITL (data-engineer) 

3. Hold out method {Cross validation [Train model. Validate model.] Test 

model.} 

4. Using classification technique 

5. Performance on new data.  

6. Predictions (answers to question, situations). 

4.3.2 Techniques: Logistic regression. Random tree. Random forest. Bayesian Network, 

so on 

4.4 The Position of Data-Engineer or Process Engineer (Human-In-The-Loop) 

The data-engineer is, however, only bound by their experience and, as a matter of fact, 

at a freedom to formulate his own model (algorithm) for the manufacturing problem at hand. 

Contrary to the extreme view of making manufacturing systems completely autonomous, there 

is going to be a need for a Human-In-The-Loop because a feedback to the newer instances can 

only be fed to the Reconfigurable Software after the intelligent approval of a human, for 

manufacturing systems are themselves dumb. There is a need for a human(s) who understands 

about the process going on behind the manufacturing because the manufacturing system itself 
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can break, and as such to give inputs to the RMS at the outset of accepting a new product 

order. 

4.5 For Unsupervised Machine Learning Path to improving Diagnosability 

The workflow of Unsupervised Machine Learning becomes, 

1. Preprocessing 

2. Choosing Validity Index 

3. Using clustering technique 

4. Performance on new data.  

4.6 The Feedback and Databases 

Algorithm other than the Machine Learning models are at work to continuously monitor the 

real-time changes taking place in the software environment and register them in ‘the 

databases’ for future references. In this way learning rate in RMS takes place at exponential 

rates, and algorithm being constantly improved giving more choices to Data-engineer or 

Process-engineer over time. 

4.7: The Confusion Matrix 

Confusion Matrix is used to evaluate the quality of the output of a classifier. Always a 

square matrix. Results from supervised Machine Learning in improving the Diagnosability of 

RMS will hence be represented in the form of ‘Confusion Matrix’. 

A symbolic example of Confusion Matrix with 5 classes A, B, C, D, and E is, 

 PREDICTED 

A
C

T
U

A
L

 

 A B C D E 

A TPA EAB EAC EAD EAE 

B EBA TPB EBC EBD EBE 

C ECA ECB TPC ECD ECE 

D EDA EDB EDC TPD EDE 

E EEA EEB EEC EED TPE 

Table 4.1: A symbolic representation of a 5-Classes Confusion Matrix 
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Columns for the Predicted vales for that class, and rows are Actual values of that class. 

Diagonal elements of the Confusion Matrix called True Positives or Classification because 

they are correctly identified. The non-diagonal entries are misclassifications or errors (EAB 

reads A erroneously classified as B, EED as E erroneously classified as D, etc).  

We are interested in the following, 

The number of True Positives (the values in the diagonal), 

True Positives, TP = TPA + TPB + TPC + TPD +TPE 

The number of False Positives (incorrectly identified), 

False Positives, FP = Sum of all column elements except the TP 

 For Class D in the above illustration, FP = EAD + EBD + ECD + EED 

The number of True Negatives (correctly rejected), 

True Negatives, TN = Sum of all columns and rows excluding that class’s column 

and row 

 PREDICTED 

A
C

T
U

A
L

 

 A B C D E 

A TPA EAB  EAD EAE 

B EBA TPB  EBD EBE 

C      

D EDA EDB  TPD EDE 

E EEA EEB  EED TPE 

Table 4.2: The omission of row and column for calculating TN for class C. 

 For Class C in the above illustration, TN = TPA + EAB + EAD + EAE + EBA + 

TPB + EBD + EBE + EDA + EDB + TPD + EDE + EEA + EEB + EED + TPE 

The number of False Negatives (incorrectly rejected), 

False Negatives, FN = Sum of all row entries except TP  

For Class A in the above illustration, FN = EAB + EAC + EAD + EAE 

And the total number of Test Examples of any class would be the sum of the 

corresponding row, that is, the sum of True Positives and False Negatives for that class. 
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 Test Examples, TE = TP + FN 

  For Class E in the above illustration, TE = EEA + EEB + EEC + EED + TPE 

Interpreting the Confusion Matrix, 

 

Figure 4.5 Explanation of Confusion Matrix 

Calculations from Confusion Matrix are as follows, 

a. Accuracy 

Accuracy = Sum of correct classifications divided by the total number of 

classifications = TP / (Sum of all entries of Confusion Matrix) 

b. Error (or Misclassification Rate) 

Error = 100 – Accuracy 

c. Precision (or Positive Predictive Value) 

Precision = TP / (TP+FP) 

For Class B in the above illustration, Precision B = TPB / (EAB + TPB + ECB + 

EDB + EEB) 

d. Prevalence 

How often does ‘Yes’ happen in data? 

Prevalence = Actual number of Yes / Total number of Yes 

e. False Negative Rate 
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False Negative Rate = FN / (TP + FN) 

f. False Positive Rate 

How many times does it incorrectly predict a ‘No as a ‘Yes.’ 

FPR = FP / (FP + TN) 

g. Sensitivity (or Recall or True Positive Rate) 

How many times does it correctly predict a ‘Yes’ as a ‘Yes.’ 

Sensitivity = TP / (TP+FN) 

For class E in the above illustration, Sensitivity E = TPE / (TPE + EEA + EEB + 

EEC + EED) 

h. Specificity (or True Negative Rate) 

How many times does it correctly predict a ‘No’ as a ‘No.’ 

Specificity = TN/(TN+FP) 

For class D in the above illustration, Sensitivity D = (TPA + EAB + EAC + EAE + 

EBA + TPB + EBC + EBE + ECA + ECB + TPC + ECE + EEA + EEB + EEC + 

TPE ) / (TPA + EAB + EAC + EAE + EBA + TPB + EBC + EBE + ECA + ECB + 

TPC + ECE + EEA + EEB + EEC + TPE + EAD + EBD + ECD + EED) 

The sum of FP in the above equation is underlined for Class D. 

4.8  The Concurrent Engineering Perspective 

Changes in the market conditions drive the modern manufacturing to decide on to 

produce a certain item or halt its production. The Framework has been rendered for Concurrent 

Engineering practices in the industry where the entire production team needs to communicate 

and be updated about the production process real-time. Costs of production and changes in 

design can then be implemented at an earlier stage saving cost and production times. This is 

one of the advantages of the proposed framework. 

A massive capital can be saved by accelerating development and doing a better job on 

it increasing the quality and development before the manufacturing system gets to the 

production because in development the design is flexible and changes can be made. A similar 

scenario can be faced at the time of production as in how the system is used to prevent line 

down the process flow. 
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Figure 4.6: The Concurrent Engineering aspect to Reconfigurable Manufacturing Systems 

4.9 The Framework 

The final shape Framework assumes is as follow, 
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Figure 4.7: The Flowchart of Machine Learning Framework for improving Diagnosability of an 

RMS 
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Figure 4.8 Delineation proper of Machine Learning environment, and Reconfigurable Software 

environment on the Framework. 

 

4.10 Summary 

The broader overview of the scheme of the proposed framework is depicted in 

Figure 4.9. 
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Figure 4.9 A broader understanding of the Framework 
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CHAPTER 5: CASE STUDIES 

It was found that due to commercial sensitivities, manufacturing organizations were 

reluctant to share or donate their datasets. Subject to their availability, two datasets were 

chosen to implement the framework for the proposed methodology, the datasets were tested 

against five models producing the most accuracy, and results were reported in detail. 

5.1 Case Study 1: Predicting Machine Failures 

Machines can fail due to plethora of reasons among them can be power failure, tool 

breakage, temperature, humidity etc. The tested dataset for machine failures had two classes. 

Confusion matrix will be a 2x2 matrix. 

Following are the models the dataset was tested against and at the splits mentioned. 

The actionable model for the case of  

5.1.1 Logistic Function (Sigmoid Function) 

Because Logistic Regression would work for continuous values, the model is modified to 

work for discrete values to get Logistic model. 

If there are k classes for n instances with m attributes, the parameter matrix B to be calculated 

will be an m*(k-1) matrix. 

The probability for class j with the exception of last class is 

𝑃𝑗(𝑋𝑖) =
𝑒(𝑋𝑖𝐵𝑗)

∑(𝑋𝑖 ∗ 𝐵𝑗) + 1
 

The last class has probability, 

1 − (∑[𝑗 = 1… (𝑘 − 1)]𝑃𝑗(𝑋𝑖)) =
1

∑(𝑋𝑖 ∗ 𝐵𝑗) + 1
 

Pseudocode of the Logistic Function, 

 

Following results are obtained from WEKA [11], 
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@ 60 % Split 

The Confusion Matrix, 

 YES NO 

YES 3482 0 

NO 12 20 

 

Accuracy = 99.6585 % 

Error = 0.3415 % 

Sensitivity = 0.9966 

Specificity = 1.0000 

@ 70 % Split 

The Confusion Matrix, 

 YES NO 

YES 2611 0 

NO 8 16 

 

Accuracy = 99.6964 % 

Error = 0.3036 % 

Sensitivity = 0.9969 

Specificity = 1.0000 

@ 80 % Split 

The Confusion Matrix, 

 YES NO 

YES 1740 0 

NO 6 11 

 

Accuracy = 99.6585 % 
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Error = 0.3415 % 

Sensitivity = 0.9966 

Specificity = 1.0000 

5.1.2 Classification Via Regression 

In this model, the class is binarized and one regression model is built for each class 

value. 

Following results are obtained from Weka, 

@ 60 % Split 

The Confusion Matrix, 

 YES NO 

YES 3482 0 

NO 9 23 

 

Accuracy = 99.7439 % 

Error = 0.2561 % 

Sensitivity = 0.9974 

Specificity = 1.0000 

@ 70 % Split 

The Confusion Matrix, 

 YES NO 

YES 2611 0 

NO 6 18 

 

Accuracy = 99.7723 % 

Error = 0.2277 % 

Sensitivity = 0.9977 
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Specificity = 1.0000 

@ 80 % Split 

The Confusion Matrix, 

 YES NO 

YES 1740 0 

NO 3 14 

 

Accuracy = 99.8293 % 

Error = 0.1707 % 

Sensitivity = 0.9982 

Specificity = 1.0000 

5.1.3 Bayes Net 

It is a base class for Bayesian Network classifier which is formed on algorithms like 

K2 and B. 

@ 60 % Split 

The Confusion Matrix, 

 YES NO 

YES 3480 2 

NO 8 24 

 

Accuracy = 99.7154 % 

Error = 0.2846 % 

Sensitivity = 0.9977 

Specificity = 0.9230 

@ 70 % Split 

The Confusion Matrix, 
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 YES NO 

YES 2607 4 

NO 4 20 

 

Accuracy = 99.6964 % 

Error = 0.3036 % 

Sensitivity = 0.9984 

Specificity = 0.8333 

@ 80 % Split 

The Confusion Matrix, 

 YES NO 

YES 1738 2 

NO 2 15 

 

Accuracy = 99.7723 % 

Error = 0.2277 % 

Sensitivity = 0.9988 

Specificity = 0.8832 

5.1.4 Random Forest 

Random Forest builds many small decision-trees in parallel. All of these small 

decision-trees have few features which can be combined to get a strong learning model. This 

is a cost effective computational model. 

Pseudocode of the Random Forest model, 
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@ 60 % Split 

The Confusion Matrix, 

 YES NO 

YES 3481 1 

NO 8 24 

 

Accuracy = 99.7439 % 

Error =  0.2561 % 

Sensitivity = 0.9977 

Specificity = 0.9600 

@ 70 % Split 

The Confusion Matrix, 

 YES NO 

YES 2611 0 

NO 5 19 

 

Accuracy = 99.8102 % 

Error = 0.1898 % 

Sensitivity = 0.9980 

Specificity = 1.0000 

@ 80 % Split 

The Confusion Matrix, 
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 YES NO 

YES 1740 0 

NO 2 15 

 

Accuracy = 99.8862 % 

Error = 0.1138 % 

Sensitivity = 0.9988 

Specificity = 1.0000 

5.1.5 Comparison of the performance of the models 

Graph-plots of results, 

 

5.1.6 The Final choice of the model 

Comparison of models and the final choice of model according to decision relevance is as 

follows 

Model Split Accuracy Sensitivity Specificity Sum 

Logistic 

Regression 

60 99.6585  0.9966 1.0000 101.6551 

70 99.6964 0.9969 1.0000 101.6933 

80 99.6585 0.9966 1.0000 101.6551 

Classification via 

Regression 

60 99.7439  0.9974 1.0000 101.7413 

70 99.7723  0.9977 1.0000 101.77 

80 99.8293  0.9982 1.0000 101.8275 

Bayes Net 60 99.7154  0.9977 0.9230 101.6361 

70 99.6964  0.9984 0.8333 101.5281 

80 99.7723  0.9988 0.8832 101.6543 

Random Forest 60 99.7439  0.9977 0.9600 101.7016 

70 99.8102  0.9980 1.0000 101.8082 

80 99.8862  0.9988 1.0000 101.885 

Table 5.1: Comparison of models and the final choice of model 
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The above results shows that Random Forest model gives the optimum results a 

data-engineer can base his decisions on. Classification via Regression follows closely with 

Random Forest. 

5.2 Case Study 2: Identifying Faults in Steel Plates 

The dataset for this case has seven classes, a 7x7 matrix will result. Following are the 

details of classes (dependent variables), 

a = Pastry 

b = Z_Scratch 

c = K_Scatch 

d = Stains 

e = Dirtiness 

f = Bumps 

g = Other_Faults 

5.2.1 Logistic Function (Sigmoid Function) 

@ 60 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 38  4 1 0 1 10 19 

b 0  73 2 0 0 4 5 

c 1 0 129 1 0 1 6 

d 0 1 0 28 0 0 6 

e 0 0 0 0 11 1 13 

f 1 1 1 2 0 93 55 

g 12 9 12 1 3 56 173 

 

Accuracy =  70.6186 % 

Error =  29.3814 % 
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 Sensitivity Specificity 

a = Pastry 0.521 0.731 

b = Z_Scratch 0.869 0.830 

c = K_Scatch 0.935 0.884 

d = Stains 0.800 0.933 

e = Dirtiness 0.440 0.733 

f = Bumps 0.612 0.564 

g = Other_Faults 0.654 0.629 

Weighted Avg 0.706 0.710 

  

@ 70 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 32 4 0 0 0 8 15 

b 0 56 2 0 0 5 4 

c 1 0 100 1 0 1 3 

d 0 1 0 19 0 0 4 

e 0 0 0 0 6 1 11 

f 1 1 1 2 0 73 41 

g 3 8 6 3 2 35 132 

 

Accuracy = 71.8213 % 

Error =  28.1787 % 

 Sensitivity Specificity 

a = Pastry 0.542 0.865 

b = Z_Scratch 0.836 0.800 

c = K_Scatch 0.943 0.917 

d = Stains 0.792 0.760 

e = Dirtiness 0.333 0.750 

f = Bumps 0.613 0.593 
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g = 

Other_Faults 

0.698 0.629 

Weighted Avg 0.718 0.727 

@ 80 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 25 2 0 0 1 4 5 

b 0 44 1 0 0 2 4 

c 1 0 71 0 0 0 1 

d 0 1 0 14 0 0 1 

e 1 0 0 0 3 0 7 

f 1 2 0 1 0 48 27 

g 2 2 4 2 2 26 83 

 

Accuracy =  74.2268 % 

Error =  25.7732 % 

 Sensitivity Specificity 

a = Pastry 0.676 0.833 

b = Z_Scratch 0.863 0.863 

c = K_Scatch 0.973 0.934 

d = Stains 0.875 0.824 

e = Dirtiness 0.273 0.500 

f = Bumps 0.608 0.600 

g = Other_Faults 0.686 0.648 

Weighted Avg 0.742 0.741 

 

5.2.2 Classification Via Regression 

@ 60 % Split 

The Confusion Matrix, 
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 a b c d e f g 

a 36 7 0 0 1 9 20 

b 0 81 2 0 0 0 1 

c 0 0 132 1 1 2 2 

d 0 0 0 33 0 1 1 

e 0 0 0 0 17 4 4 

f 1 4 1 1 0 95 50 

g 7 11 6 0 3 69 173 

 

Accuracy =  73.067 % 

Error =  26.933 % 

 Sensitivity Specificity 

a = Pastry 0.493 0.818 

b = Z_Scratch 0.964 0.786 

c = K_Scatch 0.957 0.936 

d = Stains 0.943 0.943 

e = Dirtiness 0.680 0.773 

f = Bumps 0.625 0.528 

g = Other_Faults 0.643 0.689 

Weighted Avg 0.731 0.738 

@ 70 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 25 7 0 0 1 5 21 

b 0 63 2 0 0 0 2 

c 0 0 101 0 0 2 3 

d 0 0 0 23 0 0 1 

e 0 0 0 0 11 0 7 

f 2 1 1 1 0 75 39 

g 3 9 2 0 3 40 132 
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Accuracy =  73.8832 % 

Error =  26.1168 % 

 Sensitivity Specificity 

a = Pastry 0.424 0.833 

b = Z_Scratch 0.940 0.788 

c = K_Scatch 0.953 0.953 

d = Stains 0.958 0.958 

e = Dirtiness 0.611 0.733 

f = Bumps 0.630 0.615 

g = Other_Faults 0.698 0.644 

Weighted Avg 0.739 0.746 

@ 80 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 21 2 0 0 0 2 12 

b 0 47 1 0 0 1 2 

c 0 0 70 0 0 1 2 

d 0 0 0 15 0 0 1 

e 0 0 0 0 6 1 4 

f 1 0 0 1 0 59 18 

g 1 5 0 0 0 29 86 

 

Accuracy =  78.3505 % 

Error =  21.6495 % 

 Sensitivity Specificity 

a = Pastry 0.568 0.913 

b = Z_Scratch 0.922 0.870 

c = K_Scatch 0.959 0.986 

d = Stains 0.938 0.938 

e = Dirtiness 0.545 1.000 
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f = Bumps 0.747 0.634 

g = Other_Faults 0.711 0.688 

Weighted Avg 0.784 0.798 

 

5.2.3 Bayes Net 

@ 60 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 43             7 0 0 6 11   6 

b 1      71   0 0         0 7 5 

c 0             0 125 1 0 1 11 

d 0               0 0 33 0 1 1 

e 3       0 0   0        17 2 3 

f 10           1 0 1 0 102 38 

g 29           8 4 5 1 72 150 

 

Accuracy = 69.7165 % 

Error =  30.2835 % 

 Sensitivity Specificity 

a = Pastry 0.589 0.500 

b = Z_Scratch 0.845 0.816 

c = K_Scatch 0.906 0.969 

d = Stains 0.943 0.825 

e = Dirtiness 0.680 0.708 

f = Bumps 0.671 0.520 

g = Other_Faults 0.558 0.701 

Weighted Avg 0.697 0.713 

@ 70 % Split 

The Confusion Matrix, 
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 a b c d e f g 

a 36            7 0   0 1 10 5 

b 1          58    0   0 0   4 4 

c 0            0 96   0   0   1 9 

d 0              0 0 22   0 0 2 

e 2                 0 0 0 11 2 3 

f 3          0 0 1 1   86   28 

g 18           7 3 2 0 45 114 

 

Accuracy =  72.6804 % 

Error =  27.3196 % 

 Sensitivity Specificity 

a = Pastry 0.610 0.600 

b = Z_Scratch 0.866 0.806 

c = K_Scatch 0.906 0.970 

d = Stains 0.917 0.880 

e = Dirtiness 0.611 0.846 

f = Bumps 0.723 0.581 

g = Other_Faults 0.603 0.691 

Weighted Avg 0.727 0.736 

@ 80 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 25            3 0 0 1 4 4 

b 0     44 0 0   0 3 4 

c 0        0 66 0 0   0 7 

d 0   0 0 15 0 0 1 

e 0  0     0 0   7 0   4 

f 3     0 0   1   0 62 13 

g 15       1 2 1 0 32 70 
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Accuracy =  74.4845 % 

Error =  25.5155 % 

 Sensitivity Specificity 

a = Pastry 0.676 0.581 

b = Z_Scratch 0.863 0.917 

c = K_Scatch 0.904 0.971 

d = Stains 0.938 0.882 

e = Dirtiness 0.636 0.875 

f = Bumps 0.785 0.614 

g = Other_Faults 0.579 0.680 

Weighted avg 0.745 0.757 

 

5.2.4 Random Forest 

@ 60 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 32                 4 0 0 0 9 28 

b 0             74   1   0 0 1 8 

c 0    0 135   0     0 0    3 

d 0            0 0 32   0 1 2 

e 0               0 0 0 21   2 2 

f 1          1 0   1 0 107 42 

g 4             9 4 3 0 48 201 

 

Accuracy = 77.5773 % 

Error =  22.4227 % 

 Sensitivity Specificity 

a = Pastry 0.438 0.865 

b = Z_Scratch 0.881 0.841 
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c = K_Scatch 0.978 0.964 

d = Stains 0.914 0.889 

e = Dirtiness 0.840 1.000 

f = Bumps 0.704 0.637 

g = Other_Faults 0.747 0.703 

Weighted Avg 0.776 0.785 

@ 70 % Split 

The Confusion Matrix, 

 a b c d e f g 

a 26               2 0 0 0 8 23 

b 0            58 0 0 0 1   8 

c 0    0 103   0    0   0   3 

d 0         0 0     22   0 0   2 

e 0                 0 0 0 15 1 2 

f 2   0    0 1    0   91   25 

g 4           6 4 2 0   31 142 

 

Accuracy =  78.5223 % 

Error =  21.4777 % 

 Sensitivity Specificity 

a = Pastry 0.441 0.813 

b = Z_Scratch 0.866 0.879 

c = K_Scatch 0.972 0.963 

d = Stains 0.917 0.880 

e = Dirtiness 0.833 1.000 

f = Bumps 0.765 0.689 

g = Other_Faults 0.751 0.693 

Weighted Avg 0.785 0.792 

@ 80 % Split 

The Confusion Matrix, 
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 a b c d e f g 

a 23     0 0 0 0   1 13 

b 0   45 1   0   0 1   4 

c 0   0 70   0 0   0 3 

d 0  0   0 14 0 0   2 

e 0     0   0 0 11   0   0 

f 1        0 0 0 0 59 19 

g 1   2 3 0 0 20 95 

 

Accuracy = 81.701 % 

Error =  18.299 % 

 Sensitivity Specificity 

a = Pastry 0.622 0.920 

b = Z_Scratch 0.882 0.957 

c = K_Scatch 0.959 0.946 

d = Stains 0.875 1.000 

e = Dirtiness 1.000 1.000 

f = Bumps 0.747 0.728 

g = Other_Faults 0.785 0.699 

Weighted Avg 0.817 0.827 

 

5.2.5 Comparison of the performance of the models 

Graph-plots of results, 

 

5.2.6 The Final choice of the model 

Comparison of models and the final choice of model according to decision relevance 

is as follows 

Model Split Accuracy Sensitivity Specificity Sum 

60 70.6186 0.706 0.710 
72.0346 
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Logistic 

Regression 

70 71.8213 0.718 0.727 
73.2663 

80 74.2268 0.742 0.741 
75.7098 

Classification via 

Regression 

60 73.067 0.731 0.738 
74.536 

70 73.8832 0.739 0.746 
75.3682 

80 78.3505 0.784 0.798 
79.9325 

Bayes Net 60 69.7165 0.697 0.713 
71.1265 

70 72.6804 0.727 0.736 
74.1434 

80 74.4845 0.745 0.757 
75.9865 

Random Forest 60 77.5773 0.776 0.785 
79.1383 

70 78.5223 0.785 0.792 
80.0993 

80 81.701 0.817 0.827 
83.345 

Table 5.2 Comparison of models and the final choice of model 

The above results shows that Random Forest model gives the optimum results a data-

engineer can base his decisions on. Classification via Regression follows closely with Random 

Forest. 
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CHAPTER 6: CONCLUSION 

6.1 Advantages of research 

1. The solution of NP-complete problems is possible through Machine Learning 

approaches. 

2. Diagnosability has been rendered a three leg system. 

3. Error prediction which makes the predictive maintenance of manufacturing systems 

possible. 

4. Adds the Concurrent Engineering aspect to Reconfigurable Manufacturing System. 

5. A better rested workforce. 

The hallmark of research carried out in this thesis is the introduction of multi-data 

decision making through a machine learning algorithm that constantly improves itself as it 

learns more and more from its production experience. The research carried out in this 

introductory in the field of AI and Diagnosability, and as such can be carried forward along 

many lines. It is hoped that the technique presented in this research will prove to be an 

important step in the globalization of manufacturing practices. 

Defines the position and responsibilities of a data-scientist/engineer in a 

Reconfigurable Manufacturing System. 

6.2 Future work 

By obtaining suitable datasets, and according to the strategies as delineated in the 

framework, the results for following cases should be demonstrated as part of the future work 

on the said framework. 

i) Regression-based Supervised Learning 

ii) Deep Learning 

Should the datasets not become available, simulation based manufacturing software be used 

to generate a random but realistic datasets to validate the study of Framework. Following areas 

have a promising research potential, 

1. Under the RMS lifecycle-considerations 

2. Optimizing Machine Learning for RMT Control System 

6.3 Inter-departmental Collaboration 
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A setting up of a Machine Learning laboratory in the Department of Mechanical 

Engineering of College of Electrical & Mechanical Engineering is suggested along with the 

collaboration with concerned departments to generate more research interests in the promising 

area of Machine Learning as applied to the latest manufacturing systems. The flow of funds 

is invariably related to the setting up, and working for such a laboratory. 
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APPENDIX-I 

Python actionable model for Machine Failure dataset  

 

import LogisticRegression 

 

# To predict probabilities fill the desired input_data 

# in next line. Numeric fields are compulsory if the model was not 

# trained with missing numerics. 

input_data = { 

    "Measure14": 1, 

    "Measure13": 1, 

    "Hours Since Previous Failure": 1, 

    "Measure15": 1, 

    "Measure12": 1, 

    "Measure10": 1, 

    "Measure11": 1, 

    "Measure8": 1, 

    "Measure9": 1, 

    "Measure7": 1, 

    "Date.hour": 1, 

    "Date.day-of-week": 1, 

    "Date.day-of-month": 1, 

    "Date.month": 1, 

    "Measure3": 0, 

    "Measure4": 1, 

    "Measure1": 1, 

    "Measure2": 2, 

    "Humidity": 1, 

    "Operator": Operator2, 

    "Date": 1, 

    "Temperature": 1, 

    "Measure5": 1, 

    "Measure6": 1 

} 

logisticregression.predict(input_data, full=True) 

 

# 

# input_data: dict for the input values 

# (e.g. {"petal length": 1, "sepal length": 3}) 

# full: if set to True, the output will be a dictionary that includes the 

# distribution of each class in the objective field, the predicted class 

and 

 

Python actionable model for Steel Plate Faults dataset  

import LogisticRegression 

 

# Downloads and generates a local version of the logistic regression, 

# if it hasn't been downloaded previously. 

 

 

# To predict probabilities fill the desired input_data 

# in next line. Numeric fields are compulsory if the model was not 

# trained with missing numerics. 

input_data = { 

    "LogOfAreas": 1, 

    "Outside_Global_Index": 1, 

    "Log_Y_Index": 1, 
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    "Log_X_Index": 1, 

    "Outside_X_Index": 1, 

    "Square_Index": 1, 

    "Edges_Y_Index": 1, 

    "Edges_X_Index": 1, 

    "Luminosity_Index": 1, 

    "Orientation_Index": 1, 

    "Empty_Index": 1, 

    "Steel_Plate_Thickness": 1, 

    "Edges_Index": 1, 

    "TypeOfSteel_A300": False, 

    "TypeOfSteel_A400": True, 

    "Length_of_Conveyer": 1, 

    "Y_Perimeter": 1, 

    "Sum_of_Luminosity": 1, 

    "Pixels_Areas": 1, 

    "X_Perimeter": 1, 

    "Y_Minimum": 1, 

    "Y_Maximum": 1, 

    "X_Minimum": 1, 

    "X_Maximum": 1, 

    "Minimum_of_Luminosity": 1, 

    "Maximum_of_Luminosity": 1, 

    "SigmoidOfAreas": 1 

} 

logisticregression.predict(input_data, full=True) 

 

# 

# input_data: dict for the input values 

# (e.g. {"petal length": 1, "sepal length": 3}) 

# full: if set to True, the output will be a dictionary that includes the 

# distribution of each class in the objective field, the predicted class 

and 

# its probability. 
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