Controlling UAV by an Embedded Controller

Submitted by:
Hamid Saeed Khan

Supervised by:
Dr. Muhammad Bilal Kadri

THESIS

Submitted to:
Department of Electronic and Power Engineering
Pakistan Navy Engineering College, Karachi

National University of Science and Technology, Islamabad Pakistan

In fulfillment of requirement for the award of the degree of
MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

With Specialization in Control Engineering

A

/

‘J

,%,*’ .

/ ~

K

In the Name of Allah, the Most Gracious, the Most Merciful

Abstract

The UAYV is an acronym for Unmanned Aerial Vehicle, which is an aircraft with no pilot on
board. UAVs can be remote controlled aircraft (e.g. flown by a pilot at a ground control station)
or can fly autonomously based on pre-programmed flight plans or more complex dynamic
automation systems.

Quadrotor UAYV is selected for thesis work. Quadrotor is a rotorcraft that has four lift-generating
propellers. Two of the propellers spin clockwise and the other two spin counter-clockwise.
Control of the machine can be achieved by varying relative speed of the propellers. Quadrotor
concept is not new, however, availability of high speed brushless motors and high power to
weight ratio Li-polymer battery technology, quadrotors can be successfully designed and
fabricated. A quadrotor offers a challenging control problem due to its highly unstable nature. An
effective control methodology is therefore needed for such a unique airborne vehicle.

This thesis work presents the mathematical model and PID control of quadrotor. The PID
controller is also implemented on embedded system (PSOC device). This embedded controller is
tested on quadrotor model with the use of hardware in loop simulation technique. PID controller
is a feedback controller, widely used in controls systems. It calculates the error (difference
between set point and plant output) and attempts to minimize this error by adjusting the control
signal.

This thesis work also presents the non-linear model predictive control of quadrotor. Model
Predictive Control is an advanced control strategy, widely used in industries. It is an optimal
control strategy that works on the principle of receding horizon. It predicts the plant output for
the prediction horizon by using the dynamic model of the plant and attempts to find the optimal
control signal with the help of optimization scheme.

Acknowledgement

First and foremost, | am very much grateful to ALLAH, the Almighty, who showers his
blessings upon us and enable me to complete my research work.

| am deeply grateful to my research supervisor Dr. Muhammad Bilal Kadri, Assistant Professor,
Department of Electronic and Power Engineering, Pakistan Navy Engineering College, NUST. |
feel much honored to have him as my supervisor. His support and guidance helped me a lot
throughout the research work. Without him, | would have never been able to complete my
research work.

I am also very grateful to my GEC committee, comprises of the following faculty members, for
providing guidance throughout my research period:

e Cdr Dr. Attaullah Memon PN
e Cdr Dr. Syed Sajjad Haider Zaidi PN
e Cdr Dr. Tarig Mairaj Rasool Khan PN

| also want to thank my family, especially my mother, for their prayers, love, and
encouragement.

Contents

R 111 oo 11 Tox {To] 4 TSRS P PP PRSP 7
00 R = - Yod 1 |01 oo PR PR 7
1.2 ODJECHIVES OF ThESIS ..eeuvieiiiiiieie et 9
1.3 Organization Of thESIS........ccueiiiiieiiciece et 9

2 LITErature REVIEWcouiiiiieiiecie ettt bbbttt bbbt enenneas 11
% N O TN T o 0] (o] gl @0 o 1 (o] ISP U RSP ST PR 11

2.1.1 LINEAr CONLIOL....c.iiiiiiiiiiiicieee e bbb 11
2.1.2 NON-LINar CONLIOL.......cccviiiiiiiieiesie st 12
2.2 Hardware in 100p SIMUIALIONccveiiiiiee e 12
2.3 SUIMIMEIY .ottt b bbbt b e et n b e b e b e b e e s e 13

3 PID Control of QUAAIOTON.........ciuieieiiesieeie ettt sreenre e sreennas 14
3.1 QUAAIOOr DYNAIMICS ...cuviiiiiieiieieiete sttt bbbttt sb b bbb ene s 14
KT | I @0 11 (0] | [T PSR 16

3.21 ContinUOUS PID CONLIOIIEN ..ot 17
3.2.2 Discrete PID CONIOIIEEc.ooiiiiecieece et 18
3.3 Inner Loop Control of QUACIOLONeiiiiiiiieieere e 19
TR 00 N -1 |1 £ 20
3.4 Outer Loop Control of QUAAIOTONoiiiiiiiiiieiee e 25
Bt N -1 |1 £ S PR 26
KRS S TU 1 11 -V YRR 32

4 Embedded Control of QUAAIOLOFc.coiiiiiiiiieiie ettt rees 33

4.1 DC Motor Speed CONLIOLcoviiiiiiiiiece et 33
I R @0 0|1 (0] IR 1 -1 (<10 PSPPSR 34
4.1.2 Microcontroller Implementation.............ccccvveviriii i 35
4.1.3 PSOC IMPIEMENLALIONveiiiiciie et 37
4.1.4 EXPerimental SEIUPcoiiiiiieiie ettt 37
415 SIMUIALION RESUILS ..o e 38
41,6 CONCIUSION ...ttt ettt et r et et sreenteenee e 40

A O 1V T [0 [(o) (o] g OX0] o1 {0 IR OO PRRRUPRTRRT 41
421 SIMUAIION RESUILS ..o e 41

4.3 SUMIMAIY ..ottt ettt ettt ekt e et e e s bt e e s b e e be e esbe e ebe e e mbeesbeeenbeenbeeanbeeabeeanneen 49

5 MPC Control OF QUAAIOTON.......cuiiieiiirieeie ettt et st sneeneas 50
51 MPC Control TECANIQUEcc.viiiiiiiiieii e 50
5.2 Discrete Model of QUAAIOTONcceiiiiieiiiie e 51
5.3 System Identification of QUAArOTOr...........cooiiiiiiiiieie e 53
54 MPC Control of QUAAIOTONcceeiuiiieiieiii et eas 61
DAL RESUIS .ot bbb bbb 62

0.5 SUIMMAIY .ttt e s b bt e e s b b e e e bt e e e nab e e e nbb e e e nbne e e e 74

6 CONCIUSION OF TNESIS ...vevveiiieitesit ettt sbe st b nneeneas 75
6.1 Future RECOMMENUALIONS.cuviiiieiiiiesiesie sttt sneereas 76

T RETEIBNCES ..ttt bbbt b et e e R et e bbb b nnenre s 77
ST Y o] o 1= o | SRS 80
8.1 Discrete Pl Controller in Assembly Language...........ccevveieieeiieiie i 80
8.2 Discrete Pl Controller in C LangUAGEecveevverieeieiieie ettt se e 82
8.3 Quadrotor Control Strategy 0N C LANQUAGEccveeveireeiieeieiieeiie et sie e sve e sree s 83

APTER INTRODUCTION

1 Introduction

1.1 Background

Unmanned air vehicle, commonly known as UAV, is a flying machine, which requires no pilot
on board. It is controlled by using remote control from the ground station or it can be pre-
programmed for the autonomous flight. The UAVs are mostly used for the military purposes, i.e.
surveillance and also for attacking the enemy on ground. But UAVs have also been started for
the use of civil purposes like in fire fighting operations, for surveillance of important
installations.

There are two types of UAVs exist.

1. Fixed Wing UAVs
2. Rotary Wing UAVs

Fixed wing UAVs are like airplanes controlled from the ground station through radio link as
shown in figure 1.1.

Figure 1.1: MQ-9 Reaper UAV

MQ-9 Reaper UAYV is a fixed wing uav used by US airforce as discussed in [1].

Rotary wing UAVs are like helicopters without pilot on board, controlled by ground station
using radio link as shown in figure 1.2. Rotary wing UAVs are capable of vertical take-off
and landing (VTOL), requires no runway to fly.

Figure 1.2: MQ-8 Fire Scout

MQ-8 fire scout is a rotary wing UAV used by US Navy [2].

For this thesis, quadrotor is selected for research work. Quadrotor is a rotary wing uav,
capable of vertical take-off and landing (VTOL) as shown in figure 1.3.

Figure 1.3: Parrot AR Drone

Parrot AR Drone is a commercially available quadrotor at [3].

As shown in figure 1.3, quadrotor has four lift generating propellers. Two of these propellers
rotates clockwise and the other two rotates counter clockwise. By varying the speed of these
propellers, the quadrotor attitude (roll angle, pitch angle and yaw angle), altitude and position

8

can be controlled. Due to the MIMO structure and very fast and complex dynamics, quadrotor
controlling is a very challenging task and it requires a very sophisticated control scheme, which
can also be embed on some embedded device.

1.2 Objectives of thesis

The main objectives of the thesis are to develop the controller of quadrotor, implement this
controller on PSOC embedded device. The following are the sub-objectives for the thesis.

e In depth study of PSOC embedded device, hardware in loop simulation technigue, system
identification and model predictive controls.

e Mathematical modeling of quadrotor.

e PID control of quadrotor.

e Implement discrete PI controller on 8051 micro-controller and PSOC device.

e Test these embedded controllers on DC motor speed model with hardware-in-loop
simulation technique.

e Implement PID controller of quadrotor on PSOC device and test this controller on
quadrotor plant model with hardware-in-loop simulation technique.

e System identification and non-linear MPC control of quadrotor.

1.3 Organization of thesis

The thesis has been organized into seven chapters.
Chapter 1: presents the introductory background, objectives and organization of the thesis.

Chapter 2: presents the literature review related to control of quadrotor, hardware in loop
simulation technique.

Chapter 3: presents the discrete PID control strategy for both inner loop and outer loop control of
quadrotor.

Chapter4: presents the implementation of simple discrete Pl controller on microcontroller and
PSOC device and test on DC motor plant model with HIL. It also presents the outer loop control
strategy of quadrotor implementation on PSOC and test on quadrotor plant model with HIL.

Chapter 5: presents the system identification and non-linear MPC control of quadorotor.

Chapter 6: presents the conclusion of the thesis.

10

LITERATURE
CHAPTER REVIEW

2 Literature Review
This chapter presents the research findings already carried out on quadrotor control and hardware
in loop simulations.

2.1 Quadrotor Control

Quadrotor is an unstable system and many control techniques have been applied on it’s
controlling. Some of the techniques only stabilizes the quadrotor by controlling the attitude (roll
angle, pitch angle and yaw angle). This type of control is called the “inner loop” control of
quadrotor. Some techniques also control the position of the quadrotor in 3-dimensional space.
This type of control is called the “outer loop” control of quadrotor. The majority of the quadrotor
work is on simulations but some of the works also have been implemented on actual quadrotor
hardware. These control techniques include linear, non-linear and also the artificial intelligence
techniques like neural networks and fuzzy logic. Some of the research findings are discussed
below.

2.1.1 Linear Control

In [4], linear control successfully stabilizes the prototype quadrotor X-4 Flyerhad, attached to a
test platform, in the presence of step disturbances. Later a new Mark Il prototype was tested by
the same group without disturbances [5]. STARMAC-II prototype achieved free flight hovering
using PID controls [6]. The control of this flight cause to fail in the presence of wind
disturbances. Later the STARMAC-II team achieved outdoor path following [7]. Another
prototype achieved autonomous flight with linear control, in the presence of small disturbances
[8]. PID and LQ controllers were implemented and regulate the system in [9]. In [10], PD?
feedback control is proposed with quaternion based feedback for the exponential attitude
stabilization of quadrotor. In [11], switching model predictive attitude controller was
implemented. It uses the piecewise affine models of the quadrotor and linear MPC controllers
were computed for each piecewise affine model. The switching between these controllers was

11

governed by rate of rotation angles. The results were good on experimental test bed in the
presence of wind disturbances.

2.1.2 Non-Linear Control

Linear control techniques are capable of stabilizing the quadrotor but non-linear control
techniques can expand the region of angles that can be achieved for quadrotor. In [13], HMX-4
quadrotor used feedback linearization technique to achieve control. It uses state inputs from the
camera. Integral sliding mode control with reinforcement learning is used to achieve multi agent
control of quadrotor [14]. [15, 16] achieved the formation control by sliding mode controller and
focused on obstacle avoidance by extracting state variables from Kalman filter. [17] developed
backstepping controller with observer for quadrotor. [18] proposed a vision based control
scheme which performs visual servo control by using a fixed target camera for hovering the
quadrotor. In [19], Draganfly 1l quadrotor uses a pre-trained neural network for stabilizing the
quadrotor in hover state without disturbances. Adaptive neural network controls have also
successfully stabilized the quadrotor in simulations [20, 21].

2.2 Hardware in loop Simulation

Hardware in loop simulation is a technique used in control systems for analyzing the behavior of
real hardware in close loop control. In HIL, there can be controller in simulation environment
with real plant hardware in actual world. This method is used for the tuning of controller
parameters on actual plant hardware. In other type of HIL, controller is on actual hardware (some
embedded processor) with plant dynamic model in simulation environment. This method is used
because sometimes the actual plant hardware is not available for testing or it is too costly. This
method helps the controller designers to test the behavior of their designed controller before
testing on actual plant hardware. Many researchers have used both type of HIL. Some of them
are discussed below.

In [22], hardware in simulation technique is used for online identification of squirrel cage
induction motor with using ARMA model and recursive least square algorithm. It also performed
online controller parameters tuning. HIL simulation is used for testing engine control system
hardware with dynamic model of diesel engine in simulation environment [23]. HIL simulation
is used for testing the actual controller hardware on automatic gearbox model of a passenger car
[24]. In [25], HIL simulation is used for controlling permanent magnet synchronous motor drive
model by controller on actual hardware. HIL simulation is used for designing pareto-optimal
controller for actual electric motor speed control with multi objective optimization algorithm
[26]. HIL simulation is used for online PID controller tuning and fuzzy logic controller designing
of DC motor motion control platform by using multi objective evolutionary methods [27].

12

2.3 Summary

In this chapter, a brief overview of the research work is presented related to the control of
quadrotor and hardware-in-loop simulations. Linear and non-linear control techniques for
quadrotor are discussed. It clearly explained the superiority of non-linear controls. Both type of
hardware-in-loop simulation work is presented.

13

PID Control of
CHAPTER Quadrotor

3 PID Control of Quadrotor

Quadrotor is an un-manned aerial vehicle, capable of vertical take-off and landing (VTOL) and
hover. It is an open loop unstable system and it requires some control strategy for its stable
flight. This chapter presents discrete PID control of quadrotor. It presents both inner loop and
outer loop control of quadrotor.

3.1 Quadrotor Dynamics

Figure 3.1: Quadrotor Diagram

As shown in figure 3.1 [34], Quadrotor has four lift generating propellers. Two propellers rotate
clockwise and the other two rotates counter-clockwise. Quadrotor control is achieved by varying
the propellers angular speed Q; (i =1, 2, 3, 4).

Let (a) the rotation angles of quadrotor are roll angle (g), pitch angle (8) and yaw angle () and
(b) the translational-vector movement of quadrotor centre of mass is [x, y, z].

14

The mathematical model of quadrotor [12] is:

T :
¢ =0y yyl ZZ+6?;]—'Y+ILU2
g=¢§wﬁ_¢gi1ﬁ+ﬁu3
l, I, L,
S -1
W =0p———2 yy+iU4
IZZ IZZ (3'1)
., (cosgsin@cosy +singsiny)
X = U,
M
. (cosgsin@siny —singcosy)
y= U,
M
1-_g+ (cosﬁ/(l:os 0) u,

Where M is the mass of the system, g is the acceleration due to gravity. U; (i=1, 2, 3, 4) and
Y are the control signals that are dependent on the propellers angular speed Q; (i = 1, 2, 3, 4).

The control signals are calculated as:

U, =bQ? +bQ3 +bQ: +bQ;

U, =bQ? —bQ

U, =bQZ —bQY? (3.2)
U, =d(Q -Q:+Q;-Q?)

Y=Q-Q,+Q,-Q,

The control signal U; is related to total thrust of the quadrotor. U,, U3 are related to roll angle (@)
and pitch angle (0) respectively. Uy is related to yaw angle (y). Y is the residual propeller
angular speed.

Table 3.1 defines the parameters used in model equations.

15

Parameter Symbols Parameter Description

x X-axis inertia component

Iy y-axis inertia component

N
N

z-axis inertia component

L Length of the quadrotor arm
M Mass of quadrotor

b Thrust co-efficient

d Drag co-efficient

J: Rotor inertia

Table 3.1: Quadrotor model parameters

The parameter values used here are given in table 3.2 [12]:

Parameter Value Units
M 0.8 Kg
L 0.3 m
J 6.01 x 10° Kg m’
L 15.67 x 107 Kg m’
lyy 15.67 x 10° Kg m’
I, 28.346 x 10° Kg m’
b 192.3208 x 107 N s°
d 4.003 x 107 Nm s?

Table 3.2: Quadrotor parameter values

3.2 PID Controller
PID controller is a linear feedback controller, which works on error (reference — plant output)
and tries to minimize this error as shown in figure 3.2 [35]. It is most widely used controller in

industry. PID controller exist both in continuous and discrete form. It can be implemented by
using both analog and digital electronic devices.

16

Y

P K el1)

A4

+ I
—Setpoint Error -» I Kr,j e(r)dr {Outpula
0

A

D «k, dil(tt)

Y

Figure 3.2: Continuous PID controller in close loop

3.2.1 Continuous PID Controller
As shown in figure 3.2, the control signal generated by PID controller is the sum of proportional,
Integrator and derivative terms. The time domain equation of PID controller is:

de(t)

- (3.3)

u®)=K,e+ Kij'e(r)dr + Ky

Where u(t) is the control signal, e(t) is the error signal, which is difference in reference signal
and output. Kp, K; and Ky are the proportional, integrator and differentiator gains respectively.
These gains need to be tuned for required performance of close loop system. The laplace domain
equation of PID controller is:

K.E(s)

U(s) =K, E(s)+ + K,SE(S) (3.4)

The Pl and PD controllers are also used. The PI controller equations are:
t

u() = K,e()+K, [e(z)d, (3.5)
0

K.E(s)

U(s)=K,E(s) + (3.6)

17

The PD controller equations are:

u(t) = K e(t) +K, % (3.7)

U(s) =K, E(s) + K SE(s) (3.8)

3.2.2 Discrete PID Controller

As discussed above, the PID controller can be implemented on digital device with its discrete
time equations. These equations are obtained by applying Forward Euler’s method [36] on
continuous PID equations.

The discrete PID controller equations are:

ulk]= (K, + Ky N)e[k]+(NT, K, + K; T,—2K; N-2K)e[k-1]+ (K, - K, NT;

3.9
—K, T,+ K, NT?+ K, N)e[k—2]—(NT,—2) u[k-1]— (- NT,) uk—2] (3.9)
U@2)=K,E(@)+K, TSLE(Z)+Kd 1 E(2) (3.10)
z-1 1+NT, —
z-1
The discrete PI controller equations are:
ulk]= K, e[K]+(K; T,—K,)e[k—1] +u[k-1] (3.12)
U(z) =K E(2)+K, TSﬁE(z) (3.12)
The discrete PD controller equations are:
ulk]= (K, + K, N)e[k]+(NT, K —K; N=K)e[k—1]-(NT,-1) u[k—1] (3.13)
U(@) =K, E(2)+K, 1 E(2) (3.14)
1+ NT, 21
Z J—

18

Equations 3.9, 3.11, 3.13 represents the controllers in time domain and equations 3.10, 3.12, 3.14
are in frequency domain (Z-domain). Ts is the sampling time and N is the filter coefficient.

3.3 Inner Loop Control of Quadrotor
This section presents the inner loop control of quadrotor i.e. roll angle, pitch angle and yaw
angle. Figure 3.3 shows the simulation layout.

[
|D| 'P| roll_sngle
f_roll_engls
Scope roll_sngle
! ref_roll_sngle 2
f roll_angle! L B
2541
From
itch_angle|
orapace! Transfer Fon PD Rall Angle
I_ pitch_angle
if_pitch_ang| D
1 f pitch_ang|] T
E_p\tnh_euu.} »y — ELp e b)¥ Foe)
2541 Scope? yaw_sngle
From Transfer Fen2 PD Fitch Angle
WorspaceZ 9
L] D ¥_distance
I (]
Ic3 -El -
> y_distance
Ramy Soope?
P PID Yaw Angle
Rl angle|
T Rator 1 angular speed
e Fitch angle (ot
"g' P Rotor 2 anguir speed Yauang
"
Add1 x di
_@ P Rotor 3 anguiar speed y dis
== »
M -
Add2 -
z
; ref_z_distance n
25+
From Transfal F D2 Dista FlZvel Add2 z_distance
Worispsce e eneE oclty Quadrotor Plant Mode!

Figure 3.3: Inner loop control of quadrotor

Z distance and Z velocity control is part of outer loop control but it needs to be included here.
Achieving inner loop control is baseless without hover the quadrotor at some height.

As shown in figure 3.3, PD control is used for roll angle and pitch angle controlling and PID is
used for yaw angle controlling. r; (i=1, 2, 3, 4) are the control signals generated by controllers

19

and these signals form the final propeller angular speed signals for quadrotor input with

following relations.

Q=r-r+r,
Q,=n-r,-1,
Q,=r+r,+r,
Q4:'-1‘*"’2_[‘4

(3.15)

rl is related to vertical distance control of quadrotor from ground. r2, r3 and r4 are related to roll

angle, pitch angle and yaw angle control respectivel
controllers are given in table 3.3.

y. The gains and other parameters used in

Controller Parameters
Roll angle PD Controller K;=5, K4=5, N=100, T;=0.01sec
Pitch angle PD Controller K;=5, K4=5, N=100, T;=0.01sec
Yaw angle PID Controller K,= 0.5, K4=2, K;=0.01, N=100, T=0.01sec

Z velocity Pl Controller

Ky= 5, Ki=5, T,=0.01sec

Z distance PD Controller

Ky=20, K¢=20, N=100, T,=0.01sec

Table 3.3: Inner loop controller’s parameters

3.3.1 Results

Z Distance

20

T
Reference
Z distance

15

[
o

Z distance(m)

(9]

150 200 250

Time(sec)

50 100

300 350 400 450 500

Figure 3.4: Height control of quadrotor

20

Roll angle(rad)

Pitch angle(rad)

-0.2

-0.2

Roll Angle

1.2 r T

Reference
Roll angle

0.8

0.6

5

0.2 k
0

0 50 100 150 200 250 300 350 400 450
Time(sec)

Figure 3.5: Roll angle control of quadrotor

Pitch Angle

500

1.2 r T

Reference
Pitch angle

0.8

0.6

0.2

0 50 100 150 200 250 300 350 400 450
Time(sec)

Figure 3.6: Pitch angle control of quadrotor

21

500

Yaw Angle
5 T T

Reference
Yaw angle

4.5

3.5

25

Yaw angle(rad)

15

0.5

0 50 100 150 200 250 300 350 400 450 500
Time(sec)

Figure 3.7: Yaw angle control of quadrotor

Figure 3.4 - 3.7 clearly shows the effectiveness of controller. It can be seen that the controller is
able to track different level of reference signals for roll angle, pitch angle, yaw angle and height
of quadrotor. The control signals (propellers angular speed) generated by control strategy are
given below:

Propeller 1 Angular Speed
1200

1000

800

600

Agular Speed(rad/sec)

400 Hhuﬁ

200

-200
0 50 100 150 200 250 300 350 400 450 500

Time(sec)

Figure 3.8: Propeller 1 Angular Speed

22

Agular Speed(rad/sec)

Agular Speed(rad/sec)

1200

1000

800

600

400

200

-200

Propeller 2 Angular Speed

1200
1000
800
600
200 'l
T T Y W A S
—
200
0
-200
0 50 100 150 200 250 300 350 400 450 500
Time(sec)
Figure 3.9: Propeller 2 Angular Speed
Propeller 3 Angular Speed
el '
L Fpp .]
0 50 100 150 200 250 300 350 400 450 500

Time(sec)

Figure 3.10: Propeller 3 Angular Speed

23

Agular Speed(rad/sec)

1200

1000

800

600

400

200

-200
0

Propeller 4 Angular Speed

50

100 150 200 250 300 350
Time(sec)

Figure 3.11: Propeller 4 Angular Speed

24

400

450

500

3.4 Outer Loop Control of Quadrotor
This section presents the outer loop control of quadrotor i.e. X-distance, Y-distance and Z-
distance (Height). Figure 3.12 shows the simulation layout.

|
|:|| -b| 1all_angle
ef_y_distan
Scope roll_angle
1 2
L y_distsnce) 1 ref y_distance »
25+
From " Gein itch_angle
Werispace’ Transfer Fenl PO Distance FD Roll Angle pitcn_ang
itch, |
(] —
1 ref_x_distance | 3 |
z n{re :
Worispece? Transfer Fen2 PD X Distance PO Pitch Angle
L] D| D x_distance
I (]
| -E y_distance
Ral
™ PID Yaw Angle Seoped
Rall angle
T Rotor 1 angular speed
Fitch angle p=
EB Rator 2 anguiar speed e
»
Add1 %
0
|| e [» Jangular speed v di
e »
Ade i =
e L
,_l ref_z_distance + Scopel
2 ditenc) o] >] + | Rotor 4 angular spesd ;i
— =1 i ! Add2 dista
From z_distance
Wotapace Transfer Fen FDZ Distance Pl Z Velocity Quadrotor Plant Model

Figure 3.12: Outer loop control of quadrotor

As shown in figure 3.12, the whole control strategy is similar to inner loop control, except the
two PD control loops for X-distance and Y-distance control.

The control signal of PD Y distance controller becomes the reference signal for PD roll angle
controller. There is a gain block of -1 value, due to opposite relation between Y distance and roll
angle i.e. if roll angle is positive, Y distance increase in negative and vice versa. The control
signal of PD X distance controller becomes the reference signal for PD pitch controller.

The gains and other parameters used in controllers are given in table 3.4.

25

Controller Parameters
Roll angle PD Controller Kp=5, K¢=5, N=100, T,=0.01sec
Pitch angle PD Controller K,=5, K4=5, N=100, T,=0.01sec
Yaw angle PID Controller K,= 0.5, K4=2, K;=0.01, N=100, T.=0.01sec
Z velocity PI Controller Ky= 5, Ki=5, T;=0.01sec
Z distance PD Controller K;=20, Kq=20, N=100, T;=0.01sec
Y distance PD Controller K,=0.01, K¢=0.05, N=100, T,=0.01sec
X distance PD Controller K,=0.01, K4=0.05, N=100, T=0.01sec

Table 3.4: Inner loop and Outer loop controller’s parameters

3.4.1 Results

The Y-distance, X-distance and Z-distance results are given below. As shown in figure 3.12, the
Y distance loop is link with roll angle loop and X distance loop is link with pitch angle loop.
This relation can also be seen in figures 3.14 and 3.16, where roll angle and pitch angle becomes
zero when Y distance and X distance becomes steady. Figures 3.13 — 3.17 clearly shows the
effectiveness of controller. The Y-distance, X-distance and Z-distance are achieved for their
given references.

Y Distance
5 T T

Reference
Y distance | |

JEEAN

IR

Ao

Y distance(m)

Pl \

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 3.13: Y distance control of quadrotor

26

Roll angle(rad)

Roll Angle

0.04
0.02 fH ﬂ
0 V
-0.02 §
-0.04
-0.06
-0.08
0 20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 3.14: Roll angle
X Distance
5 T T
Reference
X distance
4.5 /
4 !/ h
) (J \\
. 3
[
Q
g 25
@
=
) J \
! T
0.5
0
0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 3.15: X distance control of quadrotor

27

Pitch angle(rad)

Pitch Angle

Time(sec)

Figure 3.17: Z distance control of quadrotor

28

0.08
0.06
0.04
0.02 i
0 - {\
-0.04
0 20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 3.16: Pitch angle
Z Distance
4 T T
Reference
Z distance
3.5 /
| f \
2.5
g /
@
g
IS 2
A7)
k=l
N \
1.5 \
1 /f/
0.5 }
0
0 20 40 60 80 100 120 140 160 180 200

The control signals (propellers angular speed) are given below.

Propeller 1 Angular Speed

Figure 3.19: Propeller 2 Angular Speed
29

500
450
400
350
. o
3 v
& 300
g
5
g 250
1]
8
3 200
c
<
150
100
50
0
20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 3.18: Propeller 1 Angular Speed
Propeller 2 Angular Speed
600
500
400
5
[
@
Ee]
g .
B
g 300
%]
8
=]
(=)
c
<
200
100
0
0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Propeller 3 Angular Speed

Figure 3.21: Propeller 4 Angular Speed
30

600
500
400
m
[
@
®
= L N
8 300 -
g J
7]
8
=
(o))
=
<
200
100
0
20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 3.20: Propeller 3 Angular Speed
Propeller 4 Angular Speed
500
450
400
350 ‘
A NN
3
@ 300
=]
g
g
2 250
»
g
3 200
c
<
150
100
50
0
0 20 40 60 80 100 120 140 160 180 200
Time(sec)

This control strategy is able to move quadrotor to a given reference trajectory in 3-dimensional
space as shown in figure 3.22 and 3.23.

3D Plot of Quadrotor Control

Reference

6~ ' B
\ Quadrotor position
5+ i - T \ ~

Z distance(m)
w
;

Y distance(m)

X distance(m)

Figure 3.22: 3D Plot of Quadrotor Control

31

3D Plot of Quadrotor Control

Reference
. \ Quadrotor Position
- ,
4.
€3
[0}
[&]
c
8
2 2
N

) 1.5 .15
Y distance(m) X distance(m)

Figure 3.23: 3D Plot of Quadrotor Control

3.5 Summary
This chapter has presented the quadrotor mathematical model with the parameters used in

simulations. The continuous and discrete PD, Pl and PID controllers are also discussed. The
inner loop and outer loop control is presented with the use of discrete PD, Pl and PID controllers.
The simulation results have clearly shown the effectiveness of the controllers.

32

Embedded Control
CHAPTER of Quadrotor

4 Embedded Control of Quadrotor

Once the controller is designed, it needs to be implemented on some embedded device like
microprocessor, microcontroller or FPGA. Then this embedded controller runs in close loop with
plant. This chapter presents the implementation of simple discrete Pl controller on 8051
microcontroller and PSOC device, and these embedded controllers runs on DC motor speed plant
model by using hardware-in-loop simulation technique. The outer loop control strategy based on
discrete PI, PD and PID controllers is also implemented on PSOC device, and runs on quadrotor
simulink model by using hardware-in-loop simulation technique.

4.1 DC Motor Speed Control

The conventional controllers such as PD, Pl and PID have been widely used in industry and have
demonstrated good control performance for different industrial plants. These conventional
controllers have always been the very first choice for controlling any industrial plant due to its
simple structure. The conventional controllers have been implemented in industry by analog
circuits. These analog circuits impose some limitations, when there is a need for retuning the
controller. Sometimes, the complete hardware of the controller needs to be modified. Today, a
wide variety of embedded processors are available and these processors can be used to
implement the conventional controllers. This section presents an implementation of digital Pl
controller on an 8-bit microcontroller and PSOC device. These PI controllers are tested for the
plant model of DC motor by hardware-in-loop simulation technique. In these HIL simulations,
the PI controller is on implemented on a microcontroller or PSOC and the plant model is in
simulation environment.

33

4.1.1 Control Strategy
The control strategy for hardware-in-loop simulation is shown in figure 4.1.

On Microcontroller or On Simulink
PSOC

CONTROLLER PLANT

Figure 4.1: Block Diagram of close loop system

The left dotted part of figure 4.1 is implemented on 8-bit microcontroller hardware and PSOC
device, the right dotted part is in simulation environment i.e. Simulink. The plant used for
simulation is a linear model of DC motor speed plant [37][38]. The plant transfer function is

~ 2029.826
(s+26.29)(s + 2.296) (4.1)

G,(s)

The PI controller is used, due to its property of eliminating the steady state error and its simple
structure. To implement the controller on an embedded system, the digital version of PI
controller is used. The difference equation of digital Pl controller [39] is

U(nT)=U(nT -T)+G, xe(nT)-G,xe(nT-T) 4.2)
G =K+l (4.3)
2
K,T
G2 = Kp —T (44)

Equation (4.2) is implemented on microcontroller and PSOC with calculated values of G; and G,
from equations (4.3) and (4.4), respectively. Here Kp is proportional gain, K; is Integral gain and
T is the sampling time. T should be kept as smaller as possible because more T will cause more
overshoots in close loop system response [36]. Kp and K| should be chosen appropriately by any

34

of the PID tuning method [40] for the required close loop performance. Here, the both Kp and K,
values are taken “1”.

4.1.2 Microcontroller Implementation

The 8-bit microcontroller (ATMEL 8051) [41] is used for controller implementation. It has 128
bytes of RAM, 4K bytes of ROM, 2 timers, 6 interrupt sources and 1 serial port. There are more
advanced versions of 8051 are available but this basic one is enough for Pl controller
implementation due to the usage of only 153 bytes of ROM, 5 bytes of RAM and 1 serial port.
The plant is not present in real, so its mathematical model is used in simulation with controller in
real world. This HIL simulation is performed with serial communication between
microcontroller and Simulink. In this simulation, 9600 baud rate is used. The other baud rates
can also be used. The microcontroller receives the plant output value from Simulink, calculates
the error signal, then calculates the control signal by using equation (4.2) and sends it back to
Simulink. This process is implemented by the flowcharts shown in figure 4.2(a), 4.2(b).

| CONFIGURE SERIAL PORT |

i: 2

| RECEIVE PLANT OUTPUT FROM SERIAL PORT |

v

| CALCULATE ERROR |

v

NEGATIVE POSITIVE
ERROR

TAKE 2’S COMPLEMENT DIVIDE BY G; DENOMINATOR
DIVIDE BY G; DENOMINATOR MULTIPLY BY G; NUMINATOR
MULTIPLY BY G; NUMINATOR | SAVE TO REGISTER RO |

'

TAKE 2’S COMPLEMENT

4
| SAVE TO REGISTER RO |

®

Figure 4.2(a): Flowchart of PI controller implementation (connected to figure 4.2(b))

35

NEGATIVE PREVIOUS POSITIVE

ERROR

A 4

\ 4

TAKE 2’S COMPLEMENT DIVIDE BY G, DENOMINATOR
DIVIDE BY G, DENOMINATOR MULTIPLY BY G, NUMINATOR
MULTIPLY BY G, NUMINATOR | SAVE TO REGISTER R1 |

v

TAKE 2’S COMPLEMENT

| SAVE TO REGISTER R1 |

A 4
| SUBTRACT R1 FROM RO |

v

| ADD PREVIOUS CONTROL SIGNAL |

v

| SAVE TO REGISTER R3 |

v

| CHECK FOR LIMITS |

v

| SEND CONTROL SIGNAL TO SERIAL PORT |

v

SAVE CONTROL SIGNAL AS PREVIOUS CONTROLSIGNAL

Figure 4.2(b): Flowchart of PI controller implementation (connected to figure 4.2(a))

The “Check for limits” block receives the control signal save in register R3 and limits this
control signal within +1 and -1 value. This limitation may affect the system response to some
degree. This thing is called the saturation of control signal. The PI controller is implemented
using assembly language. The code is given in appendix A, section 8.1:

36

4.1.3 PSOC Implementation

PSOC (Programmable system on chip) [42] is an embedded device. PSOC 5 is used in this work.
PSOC 5 contains Cortex M3 ARM processor with analog and digital configurable blocks. These
configurable blocks make this device different from traditional microcontrollers. PSOC can used
to implement a complete system on a single chip. It is programmed by using C language. Here,
PSOC 5 is used to implement discrete PI controller. The C language code is given in appendix A,
section 8.2.

4.1.4 Experimental Setup

The experimental setup consist of hardware in loop simulation with DC motor plant in Simulink
and digital PI controller on microcontroller or PSOC device as shown in figure 4.1. The
Simulink block diagram is shown in figure 4.3.

Scope

Query

P
Instrument >‘< > 2028828] » To
= <2408 5885460 3618 Instrument

Product

L d
i
|

¥

Query Instrument Divide =
DC Motor Plant To Instrument

Je=plant_sutput]

Jerontrol_signa

To Workspace1

To Workspace 100 100 —

Constanti Constant

Figure 4.3: Simulink Blocks of HIL simulation for 8051

The “query instrument” and “to instrument” blocks are from the “Instrument control toolbox™ of
Matlab. The blocks are used for serial communication. It is assumed that plant step response will
remain between “0” to “2”. A constant “100” is used for scaling the signals. The scaling is
necessary in order to amplify the signals. The scaled signals enable them to be processed as
floating point numbers on 8-bit microcontroller till two spaces after the decimal point. In case of
PSOC HIL simulation, multiplying and dividing constants are kept “10,000” as shown in figure
4.4, to enabled signals to be processed till 4 decimal spaces. The signals are of 16-bit resolution
and PSOC is able to handle it due to its 32-bit ARM processor.

37

A 4

Scope
Query L—P X . 2029.826 | X o To
Instument k2 | s2+28.5865+60 3618 L d Instrument
roduct
Query Insrument Divide DC M otor Plant To Ingrument
Pplant_output
Pontrol_signa _
To Workspace1
To Workspace 10000} 10000—

Constant1 Constant

Figure 4.4: Simulink Blocks of HIL simulation for PSOC

4.1.5 Simulation Results

The simulation is performed with the values of Kp, K; and T as 1, 1 and 0.01 sec, respectively.
These values are chosen for achieving the best possible control performance (least steady state
error). The calculated values of G; and G, are 1.005 and 0.995, respectively. In simulation, G,
and G, are approximated to 1, for making the calculation possible on 8-bit microcontroller. This
approximation may cause a very small error in the close loop system performance. The plant
output, control signal and error plot for microcontroller implementation are shown in figure 4.5,
4.6 and 4.7 respectively.

The digital PI controller on microcontroller has good control performance with plant in HIL
simulation with some small steady state error and oscillations at steady state level. The main
reason of these oscillations and steady state error is the 8-bit wordlength of the microcontroller
registers. The finite wordlength contributes towards the poor control performance during the
steady state. The performance can be improved using registers with more number of bits like 16-
bit or 32-bit microcontrollers.

The PSOC implemented Pl controller gave better performance than 8-bit microcontroller
because of 32-bit Cortex M3 ARM processor. The plant output, control signal and error plot for
PSOC implementation are also shown in figure 4.5, 4.6 and 4.7 respectively.

38

Amplitude

Amplitude

Step Response of DC Motor Speed Control

1.6 14 T
Reference
| Plant Output with 8051
1.4 Plant Output with PSOCS5
1.2

o
©

0.6

0.4
0.2
0
0 0.5 1 15 2 2.5 3
Time(sec)

Figure 4.5: Step Response of close loop HIL simulation

Control Signals generated by 8051 and PSOC5

T T
Control Signal of 8051
Control Signal of PSOC5

0.5

0.5 1 15 2 25 3
Time(sec)

Figure 4.6: Control Signal

39

Error Signal of DC Motor Speed Control
1 r
Error with 8051
Error with PSOC5

0.8

Amplitude

-0.6
0 0.5 1 15 2 2.5 3

Time(sec)

Figure 4.7: Error plot for HIL simulation

The error plot completely shows the better performance of PSOC than microcontroller. The root
mean square of error (RMSE) values of both simulations also confirms this. The RMSE value of
microcontroller simulation is “0.1157”” and RMSE value of PSOC simulation is “0.1119”. The
RMSE value of PSOC simulation is less than microcontroller simulation.

4.1.6 Conclusion

This section has presented the discrete PI controller implementation on 8-bit microcontroller and
32-bit ARM processor device PSOC and tested both controllers on DC motor plant model by
using hardware in loop simulation technique. It is clearly visible from the results that PSOC
performance is better than microcontroller. It clearly eliminated the steady state error, whereas
the microcontroller was unable to eliminate.

40

4.2 Quadrotor Control

This section presents the outer loop control strategy (discussed in section 3.4) implementation on
PSOC and runs this embedded controller on quadrotor plant model with hardware in loop
simulation. Quadrotor is a MIMO system and its control strategy is also a MIMO system. In HIL
simulation, PSOC receives the roll angle, pitch angle, yaw angle, x distance, y distance, z
distance and z velocity and gives the calculated all four rotors speed. The strategy is
implemented using C language. The code is given in appendix A, section 8.3. The experimental

setup is shown in figure 4.8.

- m“__En:IE
r
Query % Rall angls rell_sngle
Instrument r
: Rotar 1 angular speed pitch_angle
Query Instrument Divide
Pitch angle pitcn_sngle
Query v, — ;aw_angle
Instrument A r2 “Yaw angle snge
+ Rotar 2 angular speed
Query Instrument1 Divide1
» ditan x_distance -
3 : Instrument
A y_distance
Query -
x
g 3 : Teo Instrument
Instrument . Rotor 3 angulsr speed, orap ;_distance
Query Instrument2 Divide2
z_distance
2 disten z_distance
r4
ouen »>
x !
Instrument A r4 Rotor 4 angulsr speed
= z_velocity
— z velocil
Query Instrument3 Divide2 t
Quadrotor Plant Model Product®

000 |1DDDI

Constanti Constant

Figure 4.8: Simulink Blocks of Quadrotor HIL Simulation

As discussed in previous section, the “To Instrument” and “Query Instrument” block are used for
serial communication between simulink and PSOC device. The constants are used to make points
calculation possible on PSOC board.

4.2.1 Simualtion Results

As discussed, this simulation is outer loop control of quadrotor. The X distance, Y distance and
Z distance are achieved for their respective references and Yaw angle is also achieved. The X
distance, Y distance, Z distance and Yaw angle results are given in figures 4.9, 4.11, 4.13 and
4.14 respectively. The results show the good performance of our embedded controller and gives
proof of successful implementation of control strategy on PSOC device.

41

X distance(m)

4.5

3.5

w

N
o

N

=
3

0.5

X Distance

Figure 4.9: X distance control of quadrotor

42

AN
i
-
]
R
J |
\/
/

Pitch angle(rad)

Y distance(m)

Pitch Angle

0.08
0.06
0.04
0.02 i
0 N AN
-0.02 U v
-0.04
0 20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 4.10: Pitch Angle
Y Distance
5 14 T
Reference
45 / Y distance
L /1]
T 1
IIRIRR |
T [
I \\
1 L
1
0.5
0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 4.11: Y distance control of quadrotor

43

Roll angle(rad)

Roll Angle

200

0.04
0.02 H\ ﬂ
0 i \// \\‘v Vﬁ
-0.02 ¢
-0.04
-0.06
-0.08
0 20 40 60 80 100 120 140 160 180
Time(sec)
Figure 4.12: Roll Angle
Z Distance
4 T T
Reference
Z distance
3.5 /
| f \
2.5
g f
[
2
8 2
2
el
N
1.5 K
1
0.5
0
20 40 60 80 100 120 140 160 180
Time(sec)

Figure 4.13: Z distance control of quadrotor

44

200

Yaw Angle
0.8 T T

Reference
Yaw angle

0.7

0.6 /
0.5

/
0.3

0.2 /

0.1

Yaw angle(rad)

-0.1

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 4.14: Yaw angle control of quadrotor

The PSOC board receives the quadrotor output signals and gives back the control signals, which
are propellers angular speed. The control signals are given below:

Propeller 1 Angular Speed

500

450

400

300 [t

250

200

Angular Speed(rad/sec)

150

100

50

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 4.15: Propeller 1 angular speed of quadrotor

45

Angular Speed(rad/sec)

Propeller 2 Angular Speed

600

500

400 A
3 WWWWMWWM«MWM«W e LN A
S 300t !
2]
k-
g

200

100

O0 20 40 60 80 100 120 140 160 180 200
Time(sec)
Figure 4.16: Propeller 2 angular speed of quadrotor
Propeller 3 Angular Speed
600
500

400

Py~

300

200

100

20 40 60 80 100 120 140 160
Time(sec)

Figure 4.17: Propeller 3 angular speed of quadrotor

46

180

200

Propeller 4 Angular Speed

500

450

400

350
| [T

e

w
o
o

N
o
o

Angular Speed(rad/sec)
N
a
o

150

100

50

0 20 40 60 80 100 120 140 160 180 200
Time(sec)

Figure 4.18: Propeller 4 angular speed of quadrotor

As shown in figure 3.8, the outer loop control is link with inner loop control. The roll angle
effects Y distance and pitch angle effects X distance. The roll angle and pitch angle are shown in
figures 4.19 and 4.20 respectively.

Roll Angle
0.04

T

-0.02 ¢

Roll angle(rad)

-0.04

-0.06

-0.08
0 20 40 60 80 100 120 140 160 180 200

Time(sec)

Figure 4.19: Roll Angle in HIL Simulation

47

Pitch Angle

0.08

0.06

0.04

Pitch angle(rad)
o
8
?;

-0.04
0 20 40 60 80 100 120 140 160 180 200

Time(sec)

Figure 4.20: Pitch Angle in HIL Simulation

This outer loop control strategy implemented on PSOC is able to move quadrotor to a given
reference trajectory in 3-dimensional space as shown in figure 4.21 and 4.22.

3D Plot of Quadrotor Control by PSOC

Reference
Quadrotor Position

6 /I
/

4) ’//
%3 // -
14

Y distance(m) X distance(m)

Figure 4.21: 3D Plot of Quadrotor Control by PSOC

48

3D Plot of Quadrotor Control by PSOC

) S

4.

Reference
Quadrotor Position

w
/

Z distance(m)
N
/

) -15 .15
Y distance(m) X distance(m)

Figure 4.22: 3D Plot of Quadrotor Control by PSOC

4.3 Summary

This chapter has presented the simple discrete PI controller implementation on microcontroller
and PSOC device and tested on DC motor speed model with hardware in loop simulation.
Results clearly showed the better performance of PSOC device. This chapter also presented the
quadrotor MIMO control strategy implementation on PSOC device. Results clearly showed the
successful implementation and good control performance. This makes the PSOC device, a good
choice for the implementation of control algorithms.

49

MPC Control of
CHAPTER Quadrotor

5 MPC Control of Quadrotor

Model predictive control (MPC) strategy is an advanced optimal control strategy widely used in
process industry. MPC is a digital control technique. The MPC requires the plant model in order
to find the control signals. Sometimes the accurate model parameters are not available, so it
needs to be found. This chapter presents the system identification applied on quadrotor plant
model to find the parameters and use these parameters in MPC to find control signals. This is
non-linear MPC because of non-linear model usage.

5.1 MPC Control Technique
The model predictive control technique includes the prediction of plant output up to some
prediction horizon N and tries to find the control signals up to some control horizon N by using
some constrained optimization method as shown in figure 5.1. Thus gives the optimal control
signals and optimal control results.

>[Time K]

\4

[Measure Current Plant Output / States]

v

[Predict the plant output up to prediction horizon Np]

!

[Find optimal control signals up to control horizon Nc by optimization]

\ 4

[Apply first sample of control signals to plant]

I

[Time K+1]

Figure 5.1: MPC Algorithm

50

The prediction of plant output over prediction horizon is shown in figure 5.2[43].

PAST FUTURE

A

Reference Trajectory
Predicted Output
Measured Output
Predicted Control Input
Past Control Input

Ea— Prediction Horizon
< >

| | I | | |
I I | I I I
k|

—t—t—>
Sample Tir::le
k k+1 k+2 K+p

Figure 5.2: Plant output Prediction

The plant output is predicted over prediction horizon and control signal is found but only first
sample is applied to plant and the whole process is repeated again on next sample instant.

5.2 Discrete Model of Quadrotor

In model predictive control, a plant model is required for prediction. Here, the plant model given
by equations 3.1 and 3.2 is used but it is discretized by using Newton Euler method [36]. The
symbols used in discrete model are:

@1 = Roll angle
@, = Roll angle derivative
6, = Pitch angle
6, = Pitch angle derivative
w1 = Yaw angle
w2 = Yaw angle derivative

51

x1 = X distance

x2 = X distance derivative
yl =Y distance

y2 =Y distance derivative
z1 = z distance

z2 = z distance derivative

The discrete plant model is given below:
glk+1] =g [k]+ T, 4,[k]
J L

&, [k+1] :¢2[k]+TS[6'h/) 'WI_ s +9—fY+|—u2j

XX XX XX

O[k+1] =6, [k]+ T, 6,[K]

O+ =0K+T, [W ol —éf—fn,ius]

Yy yy vy

wilk+1]=w [K]+ T, y,[K]

vk 1=y K]+ T, (écz%'“l;'ywliw]

7z 7z

X [k+ 1] = X [K] + T, %, [K]

X, [k+1] = %, [I]+ T, ((cosqﬁsm HCOT\AW +singsiny) Ulj

Yilk+1] = y,[K]+ T, y,[K]

B (cosgsin@siny —singcosy)
pllcrtl= T, v)

Zl[k+ 1= Zl[k] + Ts Z, [k]

7,[k+1] = 2,[K]+ T, (—g +(C"S‘iﬂﬂulj

52

(5.1)

The U1, U2, U3 and U4 are:

U, =bQ? +bQ +bQZ +bQ2

U, =bQZ —bQ’

U, =bQ?Z —bQ? (5.2)
U, =d(Q -Q2+0Q%-Q2)

Y=0Q,-Q,+Q,-Q,

5.3 System Identification of Quadrotor

This discrete model given by equation 5.1 and 5.2 can be used in MPC for output prediction and
parameters given in table 3.2 can also be used but most of the time these parameters are not
accurately known. So the equation 5.1 and 5.2 are modified as given below:

¢i[k+1]= g [K]+ T ¢,[K]

#,[k+1]= 4 [K]+ T, (yR + 6P,y + PU,)
O,[k+1] = O[]+ T, 6,[K]
0,[k+11=6,[K]+ T, (dy'P, - R, Y + RU;)
yilk+1] =y [K]+ Ty, [K]

w,[k+1] =y, [Kl+T,(PU,)

2,[k+1] = 7,[K]+ T, 7,[K]

z,[k+1] = 7,[K]+ T, (—g + P, (cos g cos O)U,)

(5.3)

The U1, U2, U3 and U4 are:

U, =+ Q2+ Q% + O

U,=0Q%-0Q}

U, =0 -7 (5.4)
U, =Q'-Q2+0Q2-QF

Y=0,-Q,+Q,-Q,

The model given in equations 5.3 and 5.4 is used in MPC with calculated values of P1-Pg. These
parameters P;-Pg are calculated by recursive least square algorithm (RLS) [44] and data obtain
from simulation of section 3.3. The data used for system identification is given below.

53

The Quadrotor input signals, which are propellers angular speed, are:

Propeller 1 Angular Speed

1000
800
600
E
§ 400 - -
5 . s
o] FLL Hau
g
200
0
-200
0 50 100 150 200 250 300 350 400 450
Time(sec)
Figure 5.3: Propeller 1 Angular Speed
Propeller 2 Angular Speed
1000
800
600
?;i
5 w0 - -
NN s E
g
200
0

-200
0 50 100 150 200 250 300 350 400 450

Time(sec)

Figure 5.4: Propeller 2 Angular Speed

54

Angular Speed(rad/sec)

Angular Speed(rad/sec)

1000

800

600

400

Propeller 3 Angular Speed

200
0
-200
0 50 100 150 200 250 300 350 400 450 500
Time(sec)
Figure 5.5: Propeller 3 Angular Speed
Propeller 4 Angular Speed
1000
800
600
400 [_LJ/J— Ibiﬁ
200
0
-200
0 50 100 150 200 250 300 350 400 450 500
Time(sec)

Figure 5.6: Propeller 4 Angular Speed

55

The Quadrotor output signals, which are roll angle, roll angle derivative, pitch angle, pitch angle
derivative, yaw angle derivative and z distance derivative, are:

Roll Angle

12

: \
1
|

Roll angle(rad)

0
-0.2
0 50 100 150 200 250 300 350 400 450 500
Time(sec)
Figure 5.7: Roll Angle
Roll Angle Derivative
0.4
0.3
0.2
o
b
s 01
g
T
2
®
2 0
5]
kel
E V
f=2)
=
S 01
[=}
14
-0.2
-0.3
-0.4
0 50 100 150 200 250 300 350 400 450 500

Time(sec)

Figure 5.8: Roll Angle Derivative

56

Pitch angle(rad)

Pitch angle derivative(rad/sec)

Pitch Angle

1.2

0.8

0.6

0.4

0.2

0.4

0.3

0.2

0.1

50 100 150 200 250 300 350 400 450 500
Time(sec)
Figure 5.9: Pitch Angle
Pitch Angle Derivative
50 100 150 200 250 300 350 400 450 500
Time(sec)

Figure 5.10: Pitch Angle Derivative

57

Z distance derivative(m/sec)

Yaw angle derivative(rad/sec)

0.016

0.014

0.012

Yaw Angle Derivative

Figure 5.12: Z Distance Derivative

58

0.01 \/
0.008 \\/
0.006
0.004 f
0.002 f
0 50 100 150 200 250 300 350 400 450 500
Time(sec)
Figure 5.11: Yaw Angle Derivative
Z Distance Derivative
L ﬂ
(v - v
0 50 100 150 200 250 300 350 400 450
Time(sec)

500

The RLS algorithm equations are:

OK)yq = Ok=1),,1 + KK)YK) — 9" (K),., O(-1),,)
K(k)nxl = P(k)nxn ¢(k)nx1 (55)
P(K) 5 = P(k=1) iy = P(k=1) . 0(K) 0 1+ @ (K} P(K=1) 1y 2(K)) 00" (K, P(K=D),,

Here ©(K), ,is the required parameters vector. “n” is the number of parameters to be found.
P(K),., is the covariance matrix, usually initialize with identity matrix of size “n” multiplied
with a large number like 100. ¢(k),, is a vector dependent on model and signals used for

identification. y(k) is model output signal also dependent on model and signals used for
identification. The sampling time Ty is 0.01sec.

To find P4, P, and Ps3:

n=3.
R
O(K)y, =| P,
P
O, [k—1Jy, [k-1]
P(K)3q =| O[k-1]YTk-1] (5.6)
U,[k-1]

y(k) — ¢2 [k] _T¢2 [k_l]

S

At k=0,
0
®(k_1)3><1: O
0
- (5.7)
100 O 0
P(k-1),,=| 0 100 0
0 0 100

59

To find Py, Ps and Pg:

n=3.

P,
0(K),, =| B
R

¢y [k=1]y,[k-1]
P(K)zq = | ~[k=1]YTk-1]

U,[k-1]
y(k) — 92 [k] _Tez [k_l]
At k=0,

0
O(k-1);, = 0]

0
100 0 0
P(k-1),,=| 0 100 O
| 0 0 100
To find P5:
n=1.
®(k)lxl:P7

@(K)p, =U,[k-1]
_yolKl-y,[k-1]
y(k) = =

S

At k=0,

O(k-1),, =0
P(k—1),, =100

60

(5.8)

(5.9)

(5.10)

(5.11)

To find Pg:

n=1.

®(k)1x1 = PS

@(K),,, = cos(g [k—1]) cos(d,[k-1])U,[k-1]
_ ,[K] = 27,[k-1]+gT,

Y = 2=

S

At k=0,

O(k-1),, =0
P(k-1),, =100

(5.12)

(5.13)

The P1-Pg values are found by RLS with the help of given data. The values are:

Parameters found by RLS

Parameters Values

P1 -0.2676
P2 0.0032
P3 0.0004
P4 0.2626
P5 -0.0601
P6 0.0004
P7 1.4119*10°
P8 2.4036*10°

Table 5.1: Parameters found by RLS

5.4 MPC Control of Quadrotor

As discussed in section 5.1, the MPC algorithm requires a plant model for future output
prediction, so the model given in equations 5.3 and 5.4 are used with parameters given in table
5.1. The MPC algorithm also requires some constrained optimization method, which can
minimize the following cost function and find control signals, which gives optimal output. The
lower limit of control signal is “Orad/sec” and upper limit is “400rad/sec”. The cost function is:

k+N,

i= Z (et (1= A1) +(Orger [11 - OLID* + Wiger [11 =92 [11)* + (21 [11 - 2i[1])°

61

(5.14)

The “sequential programming” optimization method is used with the help of Matlab
Optimization toolbox command “fmincon”. The prediction horizon is taken “Np= 20" and
control horizon is taken “N¢=2". The sampling time for MPC is “Ts= 0.1sec”.

5.4.1 Results
The roll angle, pitch angle, yaw angle and Z distance are achieved as given below. Multiple

simulations are performed.
Simulation 1:

Quadrotor is initially at ground and it has to move at z distance (height) of “1m” with achieving
yaw angle of “Irad”. Roll angle and Pitch angle has to remain at “Orad”.

Z Distance
1.4 T T
Reference
Z distance

1.2

©
©

Z distance(m)
o
[«

0.4

0.2

0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.13: Z Distance

62

Yaw Angle

1.4 T T
Reference
Yaw angle
1.2
1 —
-
8 0.8
3
2
@
2
S 06
04l
i
0.2 /
0
0 1 2 3 4 5 6 8 9 10
Time(sec)
Figure 5.14: Yaw Angle
x 10° Roll Angle
10 14 T
Reference
Roll angle
|
|
|
|
|
|
n
| |
5 i
|
_ |
g /
T |
2 N
5
3 /
& /
/ /
/
0 —
,/ /\/
\
\
-5
0 1 2 3 4 5 6 8 9 10

Time(sec)

Figure 5.15: Roll Angle

63

Pitch angle(rad)

Figure 5.16: Pitch Angle

The control signals generated by MPC are:

Angular Speed(rad/sec)

Propeller 1 Angular Speed

400

350

300

250

200

150
0

2 3 4 5 6 7 8
Time(sec)

Figure 5.17: Propeller 1 Angular Speed

64

x 10° Pitch Angle
Reference
Pitch angle
\ |
V| A |
\ ‘ ‘ |
L L/ \ /]
\/ " \\ \ v
\ \/ \ /
L \
I I
/ “‘ /
/
-
|
sv’
0 2 3 4 5 6 7 9 10
Time(sec)

Angular Speed(rad/sec)

Angular Speed(rad/sec)

400

380

360

340

320

300

280

260

240

220

Propeller 2 Angular Speed

A0 0 A0

1

OAAA

n

) i
2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.18: Propeller 2 Angular Speed

Propeller 3 Angular Speed

400

350

300

250

200

150
0

2 3 4 5
Time(sec)

Figure 5.19: Propeller 3 Angular Speed

65

10

Propeller 4 Angular Speed

400

380

360

340 -

320 ILLHIH n N AN A-An0annm._mnnnnm. o
oy ooy gt pubiuy— Qo

300

Angular Speed(rad/sec)

280

260

240 J

220
3 4 5 6 7 8 9 10
Time(sec)

Figure 5.20: Propeller 4 Angular Speed

Simulation 2:

Quadrotor is initially at ground and it has to move at z distance (height) of “2m” with achieving
yaw angle of “2rad”. Roll angle and Pitch angle has to remain at “Orad”.

Z Distance
25 T T
Reference
Z distance
2 ——
-
15
E /
@ /
2 /
< I
S
2 f
S /
N /
!]
/
/
/
/
/
/
05~
/
/
/
0
0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.21: Z Distance

66

Yaw Angle
2.5

T T
Reference
Yaw angle
2 /,/ —
__ 15
8
T
2
s /
E /
1 /
0.5 /
0
0 1 2 3 4 5 6 7 8 9 10
Time(sec)
Figure 5.22: Yaw Angle
x 10 Roll Angle
2.5 T T
Reference
K Roll angle
|
[
1
\
|
|
g N
53
2 [\
2 1]
@ \
3 |
14 |
\
0 — = —
-0.5
0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.23: Roll Angle

67

x10° Pitch Angle

20 T T
Reference
Pitch angle
h
I
Il
& i
[
[
Il
Il
||
|
|
_ 10 =
8 ||
I [|
2 |
|
© ‘ |
- |
S |\
T 5 ‘\
o
0 T~
-5
0 1 2 3 4 5 6 7 8 9 10

Time(sec)

Figure 5.24: Pitch Angle

The control signals generated by MPC are:

Propeller 1 Angular Speed
400

350

300
250 H"
200 —‘

150

Angular Speed(rad/sec)

100

50
0

1 2 3 4 5 6 7 8 9 10
Time(sec)

68

Angular Speed(rad/sec)

Figure 5.25: Propeller 1 Angular Speed

Propeller 2 Angular Speed

400
i P |
o[IR R TR THHTI RTNT
300
250
200 J
150
0 1 2 3 4 5 6 7 10
Time(sec)
Figure 5.26: Propeller 2 Angular Speed
Propeller 3 Angular Speed
400
350
L NN U = U U UL U Uy
300 il
% 250 ’JIH
% 200 U
<
150
100 =
50
0 1 2 3 4 5 6 7 8 10

Time(sec)

Figure 5.27: Propeller 3 Angular Speed

69

Propeller 4 Angular Speed

400
350 JTLH_LL\I
i M|
— 1 Ul YU U UL UL

§ 300
2 L
i=1

3

&

8

3 250

c

<

200 J
1500 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.28: Propeller 4 Angular Speed

Simulation 3:
Quadrotor is initially at height of “1m” and it has to maintain “1m” height with yaw angle at

“Orad”. Roll angle and Pitch angle are to be achieved at “0.5rad”.

Roll Angle
0.5 —
Reference
0.45 Roll angle
0.4 /
/
/
0.35 1
/
[
/
0.3
g |
5 |
S 0.25
5]
3 |
14 |
0.2 “
|
0.15 I
|
0.1
0.057
|
|
0
0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.29: Roll Angle
70

Z distance(m)

0.5

0.45

0.4

0.35

Pitch angle(rad)
o
IS N o
N (53] w

o
i
(%]

0.1

0.05

Pitch Angle

r

Reference
Pitch angle

3 4 5 6
Time(sec)

Figure 5.30: Pitch Angle

Z Distance

1.04

T

Reference
Z distance

0.98 \

0.96 \
0.94

0.92 \

0.9

0.88

0.86

3 4 5 6
Time(sec)

Figure 5.31: Z Distance

71

10

Yaw Angle

14

0.03
Reference
/\ Yaw angle
0.025 f
[
| \
| \
I
L
0.02-——
\
\
8 |
T
2 0.015[
S
g |
>
\
0.01 ‘}
|
|
|
0.005‘1
| \
N
0
0 1 2 3 4 5 6 7 8 9 10
Time(sec)

Figure 5.32: Yaw Angle

The control signals generated by MPC are:

Propeller 1 Angular Speed

380

360

340]

320

Angular Speed(rad/sec)
w
o
o

260

240

220
0

Time(sec)

Figure 5.33: Propeller 1 Angular Speed

72

10

Angular Speed(rad/sec)

Angular Speed(rad/sec)

400

350

300

200

150

100

50

370

360

350

340

330

320

310

300

290
0

Propeller 2 Angular Speed

Propeller 3 Angular Speed

5
Time(sec)

Figure 5.34: Propeller 2 Angular Speed

10

ﬁjﬂ—”—\fﬁ—

Figure 5.35: Propeller 3 Angular Speed

5
Time(sec)

73

10

Propeller 4 Angular Speed

400

350

300

250

Angular Speed(rad/sec)

200

150
0

Time(sec)

Figure 5.36: Propeller 4 Angular Speed

3 different simulations are conducted to show the effectiveness of MPC controller in different
scenarios and different references. In all simulations, results have shown good control
performance and reference tracking.

5.5 Summary

This chapter has presented discrete non-linear model of quadrotor and system identification of
the model by using recursive least squares algorithm. This discrete non-linear model with
identified parameters, found by RLS, is used in model predictive control strategy. The main
advantage of the proposed scheme lies in system identification. Most of the time, the accurate
parameters are not known. This makes the practical implementation very difficult. Proposed
scheme finds the parameters directly from quadrotor data. The MPC is an optimal control
strategy, so output will always be at optimal performance. The proposed controller has shown
good performance of quadrotor.

74

Conclusion of
CHAPTER Thesis

6 Conclusion of Thesis

The main focus of the thesis is on quadrotor controlling. Quadrotor is unstable system and it can
not fly in open loop. In order to operate quadrotor, a close loop control strategy is required. This
thesis has presented two control strategies for quadrotor controlling. One strategy is based on
discrete PID control. This strategy uses discrete PD, Pl and PID controllers. This PID based
scheme is able to control both inner loop control (roll angle, pitch angle and yaw angle) of
quadrotor and also outer loop control of quadrotor (a specific point in 3-dimensional space). This
PID scheme is chosen to be discrete, so it can be implemented on any digital embedded system,
like processor.

The outer loop control strategy is implemented on PSOC device, which contain 32-bit ARM
processor. The implemented control strategy is tested on quadrotor dynamic model by using
hardware in loop simulation. The results have shown the satisfactory performance of this
embedded controller. In thesis, a simple discrete Pl controller is also implemented on 8051
microcontroller by using assembly language and on PSOC by using C language. This controller
is tested on DC motor speed model with hardware in loop simulation. This also has shown
satisfactory performance.

The PID control scheme is able to control quadrotor but its results are not optimal. This thesis
has also presented model predictive control (MPC) of quadrotor, which is optimal in nature.
MPC scheme requires a plant model, so quadrotor non-linear model is discretized and used.
Quadrotor model has some parameters, which needs to be accurate for good performance but
these parameters are not always known. This thesis has presented the system identification of
these parameters from data obtained by PID control of quadrotor. MPC uses discrete non-linear
model with identified parameters. MPC find the optimal control signals with the help of
constrained optimization method like sequential programming and gives the optimal control
performance. The results have shown good performance.

75

6.1 Future Recommendations

e The designed embedded PID controller needs to be tested on real quadrotor hardware.

e In MPC, branch and bound optimization method has to be included. It makes the control
scheme, parallel in nature and its sampling time will be reduced. So for practical
implementation, it will not require a very high speed processor but it will require device
capable of doing parallel processing like FPGA.

76

References

7 References
[1] "Fact Sheet Display: MQ-9 Reaper". United States Air Force. 18 August 2010. Retrieved 27 September 2013.

[2] http://www.bga-aeroweb.com/Defense/MQ-8-Fire-Scout.html.
[3] http://ardrone2.parrot.com.

[4] Pounds P, Mahony R, Hynes P, Roberts J. Design of a four-rotor aerial robot. In: Australasian conference on
robotics & automation, Auckland, New Zealand; 2002. p. 145-50.

[5] Pounds P, Mahony R, Corke P. Modelling and control of a quad-rotor robot. In: Proceedings of the Australasian
conference on robotics & automation, Auckland, New Zealand; 2006.

[6] Hoffmann G, Huang H, Waslander S, Tomlin C. Quadrotor helicopter flight dynamics and control: theory and
experiment. In: Proceedings of the AIAA guidance, navigation & control conference, Hilton Head, SC, USA, 2007
[alAA Paper Number 2007-6461].

[7] Hoffmann G, Waslander S, Tomlin C. Quadrotor helicopter trajectory tracking control. In: Proceedings of the
AIAA guidance, navigation & control conference, Honolulu, HI, USA; 2008 [alAA Paper Number 2008-7410].

[8] Bouabdallah S, Siegwart R. Field and service robotics. Springer tracts in advanced robotics. Berlin/Heidelberg:
Springer; 2006. p. 429-40 [chapter: Towards intelligent miniature flying robots].

[9] S. Bouabdallah, A. Noth, R. Siegwart, PID vs LQ control techniques applied to an indoor micro quadrotor, in:
Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, April, (2005), pp.
2259-2264.

[10] A. Tayebi, S. McGilvray, Attitude stabilization of a VTOL quadrotor aircraft, IEEE Transactions on Control
Systems Technology 14 (May (3)) (2006).

[11] Kostas Alexis, George Nikolakopoulos, Anthony Tzes, Switching model predictive attitude control for a
quadrotor helicopter subject to atmospheric disturbances, Control Engineering Practice 19 (2011) 1195-1207.

[12] Mehmet Onder Efe, Neural network assisted computationally simple PI*D* control of a quadrotor UAV, IEEE
Transactions on Industrial Informatics, Vol. 7, No. 2, May 2011.

[13] Altug E, Taylor C. Vision-based pose estimation and control of a model helicopter. In: Proceedings of the 2004
IEEE international conference on mechatronics, Istanbul, Turkey; 2004.

77

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104470/mq-9-reaper.aspx

[14] S.L. Waslander, G. Hoffmann, J.S. Jang, C.J. Tomlin, Multi-agent X4-flyer testbed control design: integral
sliding mode vs. reinforcement learning, in: IEEE/RSJ International Conference on Intelligent Robots and Systems,
2005, 468-473.

[15] G. Hoffmann, D.G. Rajnarayan, S.L. Waslander, D. Dostal, J.C. Jang, C.J. Tomlin, The stanford testbed of
autonomous rotorcraft for multi-agent control (STARMAC), in: Proceedings of the 23rd Digital Avionics System
Conference, Salt Lake City, UT, November, 2004.

[16] G. Hoffmann, S.L. Waslander, Distributed cooperative search using information— theoretic costs for particle
filters, with quadrotor applications, in: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,
CO, August, 2006.

[17] L. Mederreg, F. Diaz, N.K. M’sirdi, Nonlinear backstepping control with observer design for a 4 rotors
helicopter, in: AVCS’04, International Conference on Advances in Vehicle Control and Safety, Genova, Italy,
October, (2004), pp. 28-31.

[18] T. Hamel, R. Mahony, Pure 2D Visual Servo control for a class of under-actuated dynamic systems, in:
Proceedings of the 2002 IEEE International Conference on Robotics and Automation, New Orleans, LA, (2004), pp.
2229-2235.

[19] Dunfied J, Tarbouchi M, Labonte G. Neural network based control of a four rotor helicopter. In: Proceedings of
the 2004 IEEE international conference on industrial technology, Hammamet, Tunisia; 2004. p. 1543-8.

[20] Cesareo Raimundez J, Fernandez Villaverde A. Adaptive tracking control for a quad-rotor. In: Proceedings of
ENOC-2008, Saint Petersburg, Russia; 2008.

[21] Dierks T, Jagannathan S. Neural network output feedback control of a quadrotor UAV. In: Proceedings of the
2008 IEEE conference on decision and control, Cancun, Mexico; 2008. p. 3633-9.

[22] Ashraf Saleem, Rateb Issa, Tarek Tutuni, “Hardware-in-the-loop for on-line identification and control of three-
phase squirrel cage induction motors,” Simulation Modelling Practice and Theory 18 (2010) 277-290.

[23] R. Isermann, J. Schaffnit, S. Sinsel, “Hardware-in-the-loop simulation for the design and testing of engine-
control systems,” Control Engineering Practice 7 (1999) 643}653.

[24] Schlegel C., Bross M., Beater P., “HIL Simulation of the hydraulics and mechanics of an automatic gearbox,”
2nd International Modelica conference, proceedings, PP. 67-75.

[25] Masaya Harakawa, Hisanori Yamasaki, Tetsuaki Nagano, Simon Abourida, Christian Dufour, Jean Bélanger,
“Real-Time Simulation of a Complete PMSM Drive at 10 ps Time Step,” Paper presented at the 2005 International
Power Electronics Conference, Niigata, Japan (IPEC-Niigata 2005).

[26] Piotr Wozniak, “Preferences in multi-objective evolutionary optimization of electric motor speed control with
hardware in the loop”, Applied Soft Computing 11 (2011) 49-55.

[27] P. Stewart, D.A.Stone, P.J.Fleming, “Design of robust fuzzy logic control systems by multi-objective
evolutionary methods with hardware in the loop”, Engineering Applications of Artificial Intelligence 17 (2004) 275-
284.

[28] Dukelow, S. G., The Control of Boilers, 2nd ed. Instrument Society of America, 1991.

[29] Shinskey, F. G., Averaging level control. Chem. Eng. Process. 60 ~9!, 58 ~19971.

78

[30] Eborn, J., Panagopoulos, H., and Astro'm, K. J., Robust PID control of steam generator water level. IFAC’99
14th World Congress of IFAC. Beijing, P. R. China, 1999.

[31] Panagopoulos, H., Astro'm, K. J., and Ha’'gglund, T., Design of PID controllers based on constrained
optimization. 1999 American Control Conference. San Diego, California, 1999.

[32] David Cartes, Lei Wu, “Experimental evaluation of adaptive three-tank level control”, ISA Transaction 44
(2005) 283-293.

[33] A. Boubakir, F.B., C. Boubakir and S.Laboid, A fuzzy sliding mode controller using nonlinear sliding surface
applied to coupled tanks system International Journal of Fuzzy Systems, 2008. 10(2).

[34] http://lucasamor.im/wp-content/uploads/2014/01/quadrotor_diagram.jpg
[35] http://radhesh.files.wordpress.com/2008/05/pid.jpg

[36] Franklin, G.F., Powell, D.J., and Workman, M.L., “Digital Control of Dynamic Systems (3rd Edition)” Prentice
Hall, 1997.

[37] Kuo, B. C. (1987). Automatic control systems. Englewood Cliffs, NJ: Prentice Hall. Ch4.

[38] Tipsuwan, Y., & Chow, M.-Y., 1999. Fuzzy logic microcontroller implementation for DC motor speed control.
The 25th annual conference of the IEEE industrial electronics society (IECON 99), Vol. 3 (pp. 1271-1276). San
Jose, CA.

[39] Guanrong chen, Trung Tat Pham, “Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems,” CRC
Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

[40] Aidan O'Dwyer (Dublin Institute of Technology, Ireland), “Handbook Of PI And PID Controller Tuning
Rules,” 3rd Edition, ISBN: 978-1-84816-242-6.

[41] ATMEL 8051 Microcontroller hardware manual.
[42] http://www.cypress.com/psoc5Ip/?source=CY-ENG-HEADER

[43] http://upload.wikimedia.org/wikipedia/commons/thumb/1/11/MPC_scheme_basic.svg/434px
MPC_scheme_basic.svg.png

[44] Karl J. Astrom, Bjorn Wittenmark, Adaptive control, 2" Ed, Addison-Wesley Publishing Company, Inc.

79

Appendix A

8 Appendix A

8.1 Discrete PI Controller in Assembly Language
The assembly language code for the implementation of discrete PI controller discussed in section
4.1.2 is given below:

ERRORC EQU 30H
ERRORP EQU 31H
CSIGC EQU 32H
CSIGP EQU 33H
OUTPUT EQU 34H

ORG OH

MOV ERRORC,#0
MOV ERRORP,#0
MOV CSIGC,#0
MOV CSIGP#0
MOV OUTPUT #0

MOV TMOD,#20H
MOV TH1#-3
MOV SCON,#50H
SETB TR1

HERE: JNB RI,HERE
MOV A,SBUF
CLR RI

MOV OUTPUT,A
MOV A#100
CLR C

SUBB A,OUTPUT
MOV ERRORCA

JB ACC.7,L1

80

L1:

L2:

L3:

L4:

NEXT:

MOV
DIV
MOV
MUL
MOV
JMP

CPL
INC
MOV
DIV
MOV
MUL
CPL
INC
MOV

MOV
JB
MOV
DIV
MOV
MUL
MOV
JMP

CPL
INC
MOV
DIV
MOV
MUL
CPL
INC
MOV

MOV
CLR

B #1
AB

B #1
AB
RO,A
L2

A

A
B#1
AB
B#1
AB
A

A
RO,A

A ,ERRORP
ACC.7,L3
B#1

AB

B#1

AB

RLA

L4

A

A

B #1
AB

B #1
AB
A

A
R1A

ARO
C

SUBB AR1

ADD
MOV

A,CSIGP
R3,A

CINE A#100,NEXT

JC
MOV
JMP

H1
A #100
H2

81

H1: CINE A#-100,NEXT1
NEXT1: JNC H2

MOV A#-100
H2: MOV CSIGC,A
CLR TI
MOV SBUF,CSIGC
HEREL: JNB TIHERE1
CLR TI

MOV ERRORP,ERRORC
MOV CSIGP,CSIGC

JMP HERE

END

8.2 Discrete PI Controller in C Language
The C language code for the implementation of discrete P1 controller discussed in section 4.1.3 is
given below:

#include <device.h>

void main ()
{
uint8 a2,al,num=0;/*Error Current*/ /*Little Endian a2,al*/
uint8 c2,cl;/*Control Signal Current*/
uintlé aa2,aal,aa,l;
intl6 cc,cc2,ccl;
float errorc=0,errorp=0,csigc=0,csigp=0,output=0;

UART Start ()
isr 1 Start

()7
isr 2 Start();

LCD_Start()

for(;;)

{ if (UART_GetRxBufferSize() !=0 && num==0)
{al=UART ReadRxData () ;num++;}
if (UART_GetRxBufferSize() !=0 && num==1)

{a2=UART ReadRxData () ;num++;}
if (num==2)

{

aal=(uintlo)al;
aa2=(uintlo)a2;

aal2=(aa2<<8) &0x£f£f00;

82

aa=aaZ2laal;
LCD_ClearDisplay ()
LCD _Position(0,0);
LCD_PrintNumber (aa) ;

output=(float)aa;

errorc=10000-output;
csigc=csigp+1.005%errorc-0.995%errorp;
if (csige>=10000)

{csigc=10000;}

else 1f(csigc<=-10000)

{csigc=-10000;}

errorp=errorc;

csigp=csigc;

cc=(intl6)csigc;
1=(uintl6)cc;
LCD_Position(1,0);
LCD_PrintNumber (1) ;

ccl=cc;cc2=cc;
cc2=(cc2>>8) &0x00f£f;
c2=(uint8)cc2;
ccl=ccl&0x00£ff;
cl=(uint8)ccl;

UART WriteTxData(cl);
UART_WriteTXData (c2);
num=0;

}

}

/* [] END OF FILE */

8.3 Quadrotor Control Strategy on C Language
The C language code for the implementation of quadrotor control strategy discussed in section
4.2 is given below:

#include <device.h>
#include <math.h>

void main ()
{

uint8 al,a2,a3,ad4,ab5,a6,a7,a8,a9,al0,all,al2,al3,ald, num=0;

uintlé
aa2,aal,aaal2,aad,aal3,aaal3d,aab,aab,aaab6,aal8,aa’7,aaa’78,aall0,aa%,aaaf%10,aal?2,
aall,aaalll2,aald,aal3,aaal3ld, sample=0;

intl6 acl2,aa34,aab56,aa78,aa9%910,aalll2,aall3l4;

int32 wvvvl,vvl,vv2,vvla,vv2a;

uint8 vl1,v2,vla,v2a,v3,v4,v3a,vda,v5,v6,vba,vea,v7,v8,v7a,v8a;

double T=0.01,N=100,r1,r2,r3,r4,time;

83

double
roll angle,ref roll angle,e roll angle,ep roll angle=0,u roll angle,up roll a
ngle=0,P roll angle=5,D roll angle=5;

double
pitch angle,ref pitch angle,e pitch angle,ep pitch angle=0,u pitch angle,up p
itch angle=0,P pitch angle=5,D pitch angle=5;

double
yaw_angle,ref yaw angle,e yaw angle,ep yaw angle=0,epp yaw angle=0,u yaw angl
e,up yaw angle=0,upp yaw angle=0,P yaw angle=0.5,I yaw angle=0.01,D yaw angle
=2;

double
x distance,ref x distance,e x distance,ep x distance=0,u x distance,up_x dist
ance=0,P x distance=0.01,D x distance=0.05;

double
y _distance,ref y distance,e y distance,ep y distance=0,u y distance,up_y dist
ance=0,P y distance=0.01,D y distance=0.05;

double
z distance,ref z distance,e z distance,ep z distance=0,u z distance,up z dist
ance=0,P z distance=20,D z distance=20;

double
z velocity,ref z velocity,e z velocity,ep z velocity=0,u z velocity,up z velo
city=0,P_z velocity=5,I z velocity=5;

UART Start();

isr 1 Start();

isr 2 Start()

’

for (;;)

{

if (UART GetRxBufferSize () !=0 && num==0)
{al=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize()!=0 && num==1)
{a2=UART_ReadRxData () ; num+t+; }
if (UART GetRxBufferSize() !=0 && num==2)
{a3=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize()!=0 && num==3)
{a4=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize() !=0 && num==4)
{a5=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize()!=0 && num==5)
{a6=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize () !=0 && num==6)
{a7=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize() !=0 && num==7)
{a8=UART ReadRxData () ;num++;}
if (UART GetRxBufferSize () !=0 && num==8)
{a9=UART ReadRxData () ;num++;}
if (UART_GetRxBufferSize() !=0 && num==9)
{al0=UART ReadRxData () ;num++; }
if (UART GetRxBufferSize()!=0 && num==10)
{all=UART ReadRxData () ;num++; }
if (UART GetRxBufferSize()!=0 && num==11)
{al2=UART ReadRxData () ;num++; }
if (UART_GetRxBufferSize() !=0 && num==12)
{al3=UART ReadRxData () ;num++; }
if (UART GetRxBufferSize()!=0 && num==13)
{al4=UART ReadRxData () ;num++; }

84

if (num==14)

{

aal=(uintle)al;
aa2=(uintloe)a2;
aal2=(aa2<<8) &0xff00;
aaal2=aa2laal;
acl2=(intlo)aaal2;

roll angle=(double)acl2;
roll angle=roll angle/1000;

aa3=(uintlo)a3;
aad=(uintlo)a4d;

aad=(aad<<8) &0xf£f00;
aaa34=aad|aa3;
aal34=(intlo)aaal3d;

pitch angle=(double)aa34;
pitch angle=pitch angle/1000;

aa5=(uintle)ab;
aab=(uintlo6)a6;
aab=(aab<<8) &0xff00;
aaabb=aa6|aab;
aa56=(intl6)aaabo6;
yaw_angle=(double)aab6;
yaw_angle=yaw angle/1000;

aa7=(uintlo)a’;
aa8=(uintlo6) a8;
aa8=(aa8<<8) &0xff00;
aaa’8=aa8|aa’;
aa78=(intl6)aaa’8;
x_distance=(double)aa’78;

x _distance=x_ distance/1000;

aa9=(uintlo6)a9;
aalO=(uintl6)all;
aall0=(aal0<<8)&0xff00;
aaa910=aalllaa9;
aa910=(intl6)aaaf%10;
y_distance=(double)aa910;

y distance=y distance/1000;

aall=(uintle6)all;
aal2=(uintle6)al?2;
aal2=(aal2<<8)&0xff00;
aaalll2=aal2|aall;
aalll2=(intl6)aaalll2;

z distance=(double)aalll2;
z distance=z_ distance/1000;

aal3=(uintl6)al3;
aald4=(uintloc)alid;
aald=(aald<<8) &0xff00;
aaal3l4=aald|aall3;
aal3l4=(intl6)aaal3l4;

z velocity=(double)aal3l4;
z velocity=z velocity/1000;

85

time=sample*T;

if (time>=0 && time<25)

{ref x distance=l-exp(-time/2);

ref y distance=l-exp(-time/2);

ref z distance=l-exp(-time/2);}

else 1f(time>=25 && time<50)

{ref x distance=3-3*exp (- (time-25)/2)+1;
ref y distance=3-3*exp (- (time-25)/2)+1;
ref z distance=3-3*exp (- (time-25)/2)+1;}
else 1f(time>=50 && time<75)

{ref x distance=2*exp (- (time-50)/2)+2;
ref y distance=2*exp (- (time-50)/2)+2;
ref z distance=2*exp (- (time-50)/2)+2;}
else 1f(time>=75 && time<100)

{ref x distance=l-exp (- (time-75)/2)+2;
ref y distance=l-exp (- (time-75)/2)+2;
ref z distance=l-exp (- (time-75)/2)+2;}
else 1f(time>=100 && time<125)

{ref x distance=2*exp (- (time-100)/2)+1;
ref y distance=2*%exp (- (time-100)/2)+1;
ref z distance=2*exp (- (time-100)/2)+1;}
else

{ref x distance=1;

ref y distance=1;

ref z distance=1;}

if (time>=125)
{ref yaw angle=0.01*(time-125);}
else {ref yaw angle=0;}

//y_distance (PD)
e y distance=ref y distance-y distance;

u_y distance=(P_y distance+D y distance*N)*e y distance+ (P _y distance*N*T-
P y distance-D y distance*N)*ep y distance- (N*T-1)*up y distance;

//roll angle (PD)
ref roll angle=-u y distance;
e roll angle=ref roll angle-roll angle;

u roll angle=(P_roll angle+D roll angle*N)*e roll angle+(P_roll angle*N*T-
P roll angle-D roll angle*N)*ep roll angle-(N*T-1)*up roll angle;

//x%_distance (PD)
e x distance=ref x distance-x distance;

u_x distance=(P_x distance+D x distance*N)*e x distance+(P_x distance*N*T-
P x distance-D x distance*N)*ep x distance- (N*T-1)*up x distance;

//pitch angle (PD)

ref pitch angle=u x distance;

e pitch angle=ref pitch angle-pitch angle;

u pitch angle=(P pitch angle+D pitch angle*N)*e pitch angle+ (P pitch angle*N*
T-P pitch angle-D pitch angle*N)*ep pitch angle- (N*T-1) *up pitch angle;

86

//yaw _angle (PID)
e yaw _angle=ref yaw angle-yaw angle;

u_yaw_angle=(P_yaw angle+D yaw angle*N)*e yaw angle+ (N*T*P yaw angle+I yaw an
gle*T-2*D yaw _angle*N-2*P yaw angle)*ep yaw angle+(P_yaw angle-

P yaw _angle*N*T-I yaw angle*T+I yaw angle*N*T*T+D yaw angle*N) *epp yaw angle-
(N*T-2) *up_yaw_angle- (1-N*T) *upp yaw angle;

//z_distance (PD)
e z distance=ref z distance-z distance;

u z distance=(P_z distance+D z distance*N)*e z distance+ (P z distance*N*T-
P z distance-D z distance*N)*ep z distance- (N*T-1)*up z distance;

//z velocity (PI)

ref z velocity=u z distance;

e z velocity=ref z velocity-z velocity;

u_z velocity=P z velocity*e z velocity+(I z velocity*T-
P z velocity)*ep z velocity+up z velocity;

rl=-u pitch angle+u z velocity+u yaw angle;
r2=-u_roll anglet+u z velocity-u yaw angle;
r3=u_pitch angle+u z velocity+u yaw angle;
r4=u _roll angle+u z velocity-u yaw angle;

ep roll angle=e roll angle;
up_roll angle=u roll angle;

ep pitch angle=e pitch angle;
up pitch angle=u pitch angle;

epp_vaw_angle=ep yaw angle;
ep yaw_angle=e yaw angle;
upp yaw_angle=up yaw_angle;
up_yaw_angle=u_yaw_ angle;

ep x distance=e x distance;
up x distance=u_x distance;

ep y distance=e y distance;
up y distance=u_y distance;

ep z distance=e z distance;
up z distance=u z distance;

ep z velocity=e z velocity;
up z velocity=u z velocity;

rl=r1*10000;
r2=r2*10000;
r3=r3*10000;
r4=r4+*10000;

vvvl=(int32)rl;

vvl=vvvl;vv2=vvvl,vvla=vvvl;vv2a=vvvl;
vv2a=(vv2a>>24) &0x000000£ff;

87

v2a=(uint8)vvla;
vvla=(vvla>>16) &0x000000ff;
vla=(uint8)vvla;
vv2=(vv2>>8) &0x000000£ff;
v2=(uint8)vv2;
vvl=vv1&0x000000£ff;
vl=(uint8)vvl;

vvvl=(int32)r2;
vvl=vvvl;vv2=vvvl,vvla=vvvl;vv2a=vvvl;
vv2a=(vv2a>>24) &0x000000£ff;
vda=(uint8)vvla;

vvla=(vvla>>16) &0x000000ff;
v3a=(uint8)vvla;

vv2=(vv2>>8) &0x000000£ff;
v4=(uint8)vv2;

vvl=vv1&0x000000ff;

v3=(uint8)vvl;

vvvl=(int32)r3;
vvl=vvvl;vv2=vvvl,vvla=vvvl;vv2a=vvvl;
vv2a=(vv2a>>24) &0x000000£ff;
vbea=(uint8)vvla;

vvla=(vvla>>16) &0x000000ff;
vha=(uint8)vvla;

vv2=(vv2>>8) &0x000000ff;
vo=(uint8)vv2;

vvl=vv1&0x000000£ff;

v5=(uint8)vvl;

vvvl=(int32)r4;
vvl=vvvl;vv2=vvvl,vvla=vvvl;vv2a=vvvl;
vv2a=(vv2a>>24) &0x000000£ff;
v8a=(uint8)vv2la;

vvla=(vvla>>16) &0x000000ff;
v7a=(uint8)vvla;

vv2=(vv2>>8) &0x000000£ff;
v8=(uint8)vv2;

vvl=vv1&0x000000£ff;

v7=(uint8)vvl;

’

UART WriteTxData (vl
UART WriteTxData (v2
UART WriteTxData (vl
UART WriteTxData (v2
num++;

}

if (UART GetTxBufferSize()==0 && num==15)
{

UART WriteTxData
UART WriteTxData
UART WriteTxData
UART WriteTxData
num++;

}

if (UART GetTxBufferSize()==0 && num==16)
{

’

)
)7
a);
a)

’

v3
v4
v3

4

)

)

a
via

—~ o~~~

)7
).

’

88

’

UART_WriteTxData(
UART_WriteTxData(
UART WriteTxData (
UART WriteTxData (
num++;

}

if (UART_GetTxBufferSize()==0 && num==17)
{

UART WriteTxData (v
UART_WriteTxData(v
UART_WriteTxData(v
UART_WriteTxData(v
num=0;

sample++;

}

v5)
v6) ;
vba);
vba) ;

I

}

/* [] END OF FILE */

89

	1 Introduction
	1.1 Background
	1.2 Objectives of thesis
	1.3 Organization of thesis

	2 Literature Review
	2.1 Quadrotor Control
	2.1.1 Linear Control
	2.1.2 Non-Linear Control

	2.2 Hardware in loop Simulation
	2.3 Summary

	3 PID Control of Quadrotor
	3.1 Quadrotor Dynamics
	3.2 PID Controller
	3.2.1 Continuous PID Controller
	3.2.2 Discrete PID Controller

	3.3 Inner Loop Control of Quadrotor
	3.3.1 Results

	3.4 Outer Loop Control of Quadrotor
	3.4.1 Results

	3.5 Summary

	4 Embedded Control of Quadrotor
	4.1 DC Motor Speed Control
	4.1.1 Control Strategy
	4.1.2 Microcontroller Implementation
	4.1.3 PSOC Implementation
	4.1.4 Experimental Setup
	4.1.5 Simulation Results
	4.1.6 Conclusion

	4.2 Quadrotor Control
	4.2.1 Simualtion Results

	4.3 Summary

	5 MPC Control of Quadrotor
	5.1 MPC Control Technique
	5.2 Discrete Model of Quadrotor
	5.3 System Identification of Quadrotor
	5.4 MPC Control of Quadrotor
	5.4.1 Results

	5.5 Summary

	6 Conclusion of Thesis
	6.1 Future Recommendations

	7 References
	8 Appendix A
	8.1 Discrete PI Controller in Assembly Language
	8.2 Discrete PI Controller in C Language
	8.3 Quadrotor Control Strategy on C Language

