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Abstract 

The UAV is an acronym for Unmanned Aerial Vehicle, which is an aircraft with no pilot on 

board. UAVs can be remote controlled aircraft (e.g. flown by a pilot at a ground control station) 

or can fly autonomously based on pre-programmed flight plans or more complex dynamic 

automation systems. 

 

Quadrotor UAV is selected for thesis work. Quadrotor is a rotorcraft that has four lift-generating 

propellers. Two of the propellers spin clockwise and the other two spin counter-clockwise. 

Control of the machine can be achieved by varying relative speed of the propellers. Quadrotor 

concept is not new, however, availability of high speed brushless motors and high power to 

weight ratio Li-polymer battery technology, quadrotors can be successfully designed and 

fabricated. A quadrotor offers a challenging control problem due to its highly unstable nature. An 

effective control methodology is therefore needed for such a unique airborne vehicle. 

 

This thesis work presents the mathematical model and PID control of quadrotor. The PID 

controller is also implemented on embedded system (PSOC device). This embedded controller is 

tested on quadrotor model with the use of hardware in loop simulation technique. PID controller 

is a feedback controller, widely used in controls systems. It calculates the error (difference 

between set point and plant output) and attempts to minimize this error by adjusting the control 

signal. 

 

This thesis work also presents the non-linear model predictive control of quadrotor. Model 

Predictive Control is an advanced control strategy, widely used in industries. It is an optimal 

control strategy that works on the principle of receding horizon. It predicts the plant output for 

the prediction horizon by using the dynamic model of the plant and attempts to find the optimal 

control signal with the help of optimization scheme. 
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1 Introduction 

1.1 Background 
Unmanned air vehicle, commonly known as UAV, is a flying machine, which requires no pilot 

on board. It is controlled by using remote control from the ground station or it can be pre-

programmed for the autonomous flight. The UAVs are mostly used for the military purposes, i.e. 

surveillance and also for attacking the enemy on ground. But UAVs have also been started for 

the use of civil purposes like in fire fighting operations, for surveillance of important 

installations. 

There are two types of UAVs exist. 

1. Fixed Wing UAVs 

2. Rotary Wing UAVs 

Fixed wing UAVs are like airplanes controlled from the ground station through radio link as 

shown in figure 1.1. 

 

Figure 1.1: MQ-9 Reaper UAV 

MQ-9 Reaper UAV is a fixed wing uav used by US airforce as discussed in [1]. 

 

INTRODUCTION 
CHAPTER 1 INTRODUCTION 
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Rotary wing UAVs are like helicopters without pilot on board, controlled by ground station 

using radio link as shown in figure 1.2. Rotary wing UAVs are capable of vertical take-off 

and landing (VTOL), requires no runway to fly. 

 

Figure 1.2: MQ-8 Fire Scout 

MQ-8 fire scout is a rotary wing UAV used by US Navy [2]. 

 

For this thesis, quadrotor is selected for research work. Quadrotor is a rotary wing uav, 

capable of vertical take-off and landing (VTOL) as shown in figure 1.3. 

 

Figure 1.3: Parrot AR Drone 

Parrot AR Drone is a commercially available quadrotor at [3]. 

As shown in figure 1.3, quadrotor has four lift generating propellers. Two of these propellers 

rotates clockwise and the other two rotates counter clockwise. By varying the speed of these 

propellers, the quadrotor attitude (roll angle, pitch angle and yaw angle), altitude and position 
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can be controlled. Due to the MIMO structure and very fast and complex dynamics, quadrotor 

controlling is a very challenging task and it requires a very sophisticated control scheme, which 

can also be embed on some embedded device. 

 

1.2 Objectives of thesis 

The main objectives of the thesis are to develop the controller of quadrotor, implement this 

controller on PSOC embedded device. The following are the sub-objectives for the thesis. 

 In depth study of PSOC embedded device, hardware in loop simulation technique, system 

identification and model predictive controls. 

 Mathematical modeling of quadrotor. 

 PID control of quadrotor. 

 Implement discrete PI controller on 8051 micro-controller and PSOC device. 

 Test these embedded controllers on DC motor speed model with hardware-in-loop 

simulation technique. 

 Implement PID controller of quadrotor on PSOC device and test this controller on 

quadrotor plant model with hardware-in-loop simulation technique. 

 System identification and non-linear MPC control of quadrotor. 

 

1.3 Organization of thesis 

The thesis has been organized into seven chapters. 

Chapter 1: presents the introductory background, objectives and organization of the thesis. 

Chapter 2: presents the literature review related to control of quadrotor, hardware in loop 

simulation technique. 

Chapter 3: presents the discrete PID control strategy for both inner loop and outer loop control of 

quadrotor. 

Chapter4: presents the implementation of simple discrete PI controller on microcontroller and 

PSOC device and test on DC motor plant model with HIL. It also presents the outer loop control 

strategy of quadrotor implementation on PSOC and test on quadrotor plant model with HIL. 
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Chapter 5: presents the system identification and non-linear MPC control of quadorotor. 

Chapter 6: presents the conclusion of the thesis. 
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2 Literature Review 
This chapter presents the research findings already carried out on quadrotor control and hardware 

in loop simulations. 

 

2.1 Quadrotor Control 

Quadrotor is an unstable system and many control techniques have been applied on it’s 

controlling. Some of the techniques only stabilizes the quadrotor by controlling the attitude (roll 

angle, pitch angle and yaw angle). This type of control is called the “inner loop” control of 

quadrotor. Some techniques also control the position of the quadrotor in 3-dimensional space. 

This type of control is called the “outer loop” control of quadrotor. The majority of the quadrotor 

work is on simulations but some of the works also have been implemented on actual quadrotor 

hardware. These control techniques include linear, non-linear and also the artificial intelligence 

techniques like neural networks and fuzzy logic. Some of the research findings are discussed 

below. 

 

2.1.1 Linear Control 

In [4], linear control successfully stabilizes the prototype quadrotor X-4 Flyerhad, attached to a 

test platform, in the presence of step disturbances. Later a new Mark II prototype was tested by 

the same group without disturbances [5]. STARMAC-II prototype achieved free flight hovering 

using PID controls [6]. The control of this flight cause to fail in the presence of wind 

disturbances. Later the STARMAC-II team achieved outdoor path following [7]. Another 

prototype achieved autonomous flight with linear control, in the presence of small disturbances 

[8]. PID and LQ controllers were implemented and regulate the system in [9]. In [10], PD
2
 

feedback control is proposed with quaternion based feedback for the exponential attitude 

stabilization of quadrotor. In [11], switching model predictive attitude controller was 

implemented. It uses the piecewise affine models of the quadrotor and linear MPC controllers 

were computed for each piecewise affine model. The switching between these controllers was 

CHAPTER 2 
LITERATURE 

REVIEW 
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governed by rate of rotation angles. The results were good on experimental test bed in the 

presence of wind disturbances. 

 

2.1.2 Non-Linear Control 

Linear control techniques are capable of stabilizing the quadrotor but non-linear control 

techniques can expand the region of angles that can be achieved for quadrotor. In [13], HMX-4 

quadrotor used feedback linearization technique to achieve control. It uses state inputs from the 

camera. Integral sliding mode control with reinforcement learning is used to achieve multi agent 

control of quadrotor [14]. [15, 16] achieved the formation control by sliding mode controller and 

focused on obstacle avoidance by extracting state variables from Kalman filter. [17] developed 

backstepping controller with observer for quadrotor. [18] proposed a vision based control 

scheme which performs visual servo control by using a fixed target camera for hovering the 

quadrotor. In [19], Draganfly II quadrotor uses a pre-trained neural network for stabilizing the 

quadrotor in hover state without disturbances. Adaptive neural network controls have also 

successfully stabilized the quadrotor in simulations [20, 21]. 

 

2.2 Hardware in loop Simulation 

Hardware in loop simulation is a technique used in control systems for analyzing the behavior of 

real hardware in close loop control. In HIL, there can be controller in simulation environment 

with real plant hardware in actual world. This method is used for the tuning of controller 

parameters on actual plant hardware. In other type of HIL, controller is on actual hardware (some 

embedded processor) with plant dynamic model in simulation environment. This method is used 

because sometimes the actual plant hardware is not available for testing or it is too costly. This 

method helps the controller designers to test the behavior of their designed controller before 

testing on actual plant hardware. Many researchers have used both type of HIL. Some of them 

are discussed below. 

 

In [22], hardware in simulation technique is used for online identification of squirrel cage 

induction motor with using ARMA model and recursive least square algorithm. It also performed 

online controller parameters tuning. HIL simulation is used for testing engine control system 

hardware with dynamic model of diesel engine in simulation environment [23]. HIL simulation 

is used for testing the actual controller hardware on automatic gearbox model of a passenger car 

[24]. In [25], HIL simulation is used for controlling permanent magnet synchronous motor drive 

model by controller on actual hardware. HIL simulation is used for designing pareto-optimal 

controller for actual electric motor speed control with multi objective optimization algorithm 

[26]. HIL simulation is used for online PID controller tuning and fuzzy logic controller designing 

of DC motor motion control platform by using multi objective evolutionary methods [27]. 
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2.3 Summary 

In this chapter, a brief overview of the research work is presented related to the control of 

quadrotor and hardware-in-loop simulations. Linear and non-linear control techniques for 

quadrotor are discussed. It clearly explained the superiority of non-linear controls. Both type of 

hardware-in-loop simulation work is presented. 
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3 PID Control of Quadrotor 
Quadrotor is an un-manned aerial vehicle, capable of vertical take-off and landing (VTOL) and 

hover. It is an open loop unstable system and it requires some control strategy for its stable 

flight. This chapter presents discrete PID control of quadrotor. It presents both inner loop and 

outer loop control of quadrotor. 

 

3.1 Quadrotor Dynamics 

 

Figure 3.1: Quadrotor Diagram 

 

As shown in figure 3.1 [34], Quadrotor has four lift generating propellers. Two propellers rotate 

clockwise and the other two rotates counter-clockwise. Quadrotor control is achieved by varying 

the propellers angular speed Ωi (i = 1, 2, 3, 4). 

 

Let (a) the rotation angles of quadrotor are roll angle (ø), pitch angle (θ) and yaw angle (ψ) and 

(b) the translational-vector movement of quadrotor centre of mass is [x, y, z]. 

CHAPTER 3 
PID Control of 

Quadrotor 
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The mathematical model of quadrotor [12] is: 
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        (3.1) 

 

Where M is the mass of the system, g is the acceleration due to gravity. Ui (i = 1, 2, 3, 4) and  

  are the control signals that are dependent on the propellers angular speed Ωi (i = 1, 2, 3, 4).  

 

The control signals are calculated as: 
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2 2
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2 2
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( )

U b b b b

U b b
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          (3.2) 

The control signal U1 is related to total thrust of the quadrotor. U2, U3 are related to roll angle (ø) 

and pitch angle (θ) respectively. U4 is related to yaw angle (ψ).   is the residual propeller 

angular speed.  

 

Table 3.1 defines the parameters used in model equations. 
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Parameter Symbols Parameter Description 
Ixx x-axis inertia component 

Iyy y-axis inertia component 

Izz z-axis inertia component 

L Length of the quadrotor arm 

M Mass of quadrotor 

b Thrust co-efficient 

d Drag co-efficient 

Jr Rotor inertia 

Table 3.1: Quadrotor model parameters 

 

The parameter values used here are given in table 3.2 [12]: 

 

Parameter Value Units 
M 0.8 Kg 

L 0.3 m 

Jr 6.01 x 10
-5

 Kg m
2
 

Ixx 15.67 x 10
-3

 Kg m
2
 

Iyy 15.67 x 10
-3

 Kg m
2
 

Izz 28.346 x 10
-3

 Kg m
2
 

b 192.3208 x 10
-7

 N s
2
 

d 4.003 x 10
-7

 Nm s
2 

Table 3.2: Quadrotor parameter values 

 

 

3.2 PID Controller 
PID controller is a linear feedback controller, which works on error (reference – plant output) 

and tries to minimize this error as shown in figure 3.2 [35]. It is most widely used controller in 

industry. PID controller exist both in continuous and discrete form. It can be implemented by 

using both analog and digital electronic devices. 
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Figure 3.2: Continuous PID controller in close loop 

 

3.2.1 Continuous PID Controller 

As shown in figure 3.2, the control signal generated by PID controller is the sum of proportional, 

Integrator and derivative terms. The time domain equation of PID controller is: 

0

(t)
(t) (t) ( )

t

p i d

de
u K e K e d K

dt
            (3.3) 

 

Where u(t) is the control signal, e(t) is the error signal, which is difference in reference signal 

and output. KP, Ki and Kd are the proportional, integrator and differentiator gains respectively. 

These gains need to be tuned for required performance of close loop system. The laplace domain 

equation of PID controller is: 

(s)
(s) (s) (s)i

p d

K E
U K E K sE

s
            (3.4) 

 

The PI and PD controllers are also used. The PI controller equations are: 

0
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t
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(s)
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K E
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The PD controller equations are: 

(t)
(t) (t)p d

de
u K e K

dt
           (3.7) 

(s) (s) (s)p dU K E K sE           (3.8) 

 

3.2.2 Discrete PID Controller 

As discussed above, the PID controller can be implemented on digital device with its discrete 

time equations. These equations are obtained by applying Forward Euler’s method [36] on 

continuous PID equations. 

 

The discrete PID controller equations are: 

2
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The discrete PI controller equations are: 

[k] e[k] ( T )e[k 1] u[k 1]p i s pu K K K             (3.11) 

1
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z
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The discrete PD controller equations are: 
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Equations 3.9, 3.11, 3.13 represents the controllers in time domain and equations 3.10, 3.12, 3.14 

are in frequency domain (Z-domain). Ts is the sampling time and N is the filter coefficient. 

 

3.3 Inner Loop Control of Quadrotor 
This section presents the inner loop control of quadrotor i.e. roll angle, pitch angle and yaw 

angle. Figure 3.3 shows the simulation layout. 

 

 

Figure 3.3: Inner loop control of quadrotor 

 

Z distance and Z velocity control is part of outer loop control but it needs to be included here. 

Achieving inner loop control is baseless without hover the quadrotor at some height. 

 

As shown in figure 3.3, PD control is used for roll angle and pitch angle controlling and PID is 

used for yaw angle controlling. ri (i=1, 2, 3, 4) are the control signals generated by controllers 
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and these signals form the final propeller angular speed signals for quadrotor input with 

following relations. 

1 1 3 4

2 1 2 4

3 1 3 4

4 1 2 4

r r r

r r r

r r r

r r r
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   

   

   

           (3.15) 

r1 is related to vertical distance control of quadrotor from ground. r2, r3 and r4 are related to roll 

angle, pitch angle and yaw angle control respectively. The gains and other parameters used in 

controllers are given in table 3.3. 

Controller Parameters 
Roll angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec 

Pitch angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec 

Yaw angle PID Controller Kp= 0.5, Kd=2, Ki=0.01, N=100, Ts=0.01sec 

Z velocity PI Controller Kp= 5, Ki=5, Ts=0.01sec 

Z distance PD Controller Kp=20, Kd=20, N=100, Ts=0.01sec 

Table 3.3: Inner loop controller’s parameters 

 

3.3.1 Results 

 

Figure 3.4: Height control of quadrotor 
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Figure 3.5: Roll angle control of quadrotor 

 

 

Figure 3.6: Pitch angle control of quadrotor 
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Figure 3.7: Yaw angle control of quadrotor 

Figure 3.4 - 3.7 clearly shows the effectiveness of controller. It can be seen that the controller is 

able to track different level of reference signals for roll angle, pitch angle, yaw angle and height 

of quadrotor. The control signals (propellers angular speed) generated by control strategy are 

given below: 

 

Figure 3.8: Propeller 1 Angular Speed 
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Figure 3.9: Propeller 2 Angular Speed 

  

Figure 3.10: Propeller 3 Angular Speed 
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Figure 3.11: Propeller 4 Angular Speed 
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3.4 Outer Loop Control of Quadrotor 
This section presents the outer loop control of quadrotor i.e. X-distance, Y-distance and Z-

distance (Height). Figure 3.12 shows the simulation layout. 

 

 

Figure 3.12: Outer loop control of quadrotor 

 

As shown in figure 3.12, the whole control strategy is similar to inner loop control, except the 

two PD control loops for X-distance and Y-distance control.  

 

The control signal of PD Y distance controller becomes the reference signal for PD roll angle 

controller. There is a gain block of -1 value, due to opposite relation between Y distance and roll 

angle i.e. if roll angle is positive, Y distance increase in negative and vice versa. The control 

signal of PD X distance controller becomes the reference signal for PD pitch controller. 

 

The gains and other parameters used in controllers are given in table 3.4. 
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Controller Parameters 
Roll angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec 

Pitch angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec 

Yaw angle PID Controller Kp= 0.5, Kd=2, Ki=0.01, N=100, Ts=0.01sec 

Z velocity PI Controller Kp= 5, Ki=5, Ts=0.01sec 

Z distance PD Controller Kp=20, Kd=20, N=100, Ts=0.01sec 

Y distance PD Controller Kp=0.01, Kd=0.05, N=100, Ts=0.01sec 

X distance PD Controller Kp=0.01, Kd=0.05, N=100, Ts=0.01sec 

Table 3.4: Inner loop and Outer loop controller’s parameters 

 

3.4.1 Results 

The Y-distance, X-distance and Z-distance results are given below. As shown in figure 3.12, the 

Y distance loop is link with roll angle loop and X distance loop is link with pitch angle loop. 

This relation can also be seen in figures 3.14 and 3.16, where roll angle and pitch angle becomes 

zero when Y distance and X distance becomes steady. Figures 3.13 – 3.17 clearly shows the 

effectiveness of controller. The Y-distance, X-distance and Z-distance are achieved for their 

given references. 

 

 

Figure 3.13: Y distance control of quadrotor 
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Figure 3.14: Roll angle 

 

Figure 3.15: X distance control of quadrotor 
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Figure 3.16: Pitch angle 

 

Figure 3.17: Z distance control of quadrotor 
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The control signals (propellers angular speed) are given below. 

 

Figure 3.18: Propeller 1 Angular Speed 

 

Figure 3.19: Propeller 2 Angular Speed 
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Figure 3.20: Propeller 3 Angular Speed 

 

Figure 3.21: Propeller 4 Angular Speed 
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This control strategy is able to move quadrotor to a given reference trajectory in 3-dimensional 

space as shown in figure 3.22 and 3.23. 

 

Figure 3.22: 3D Plot of Quadrotor Control 
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Figure 3.23: 3D Plot of Quadrotor Control 

 

3.5 Summary 
This chapter has presented the quadrotor mathematical model with the parameters used in 

simulations. The continuous and discrete PD, PI and PID controllers are also discussed. The 

inner loop and outer loop control is presented with the use of discrete PD, PI and PID controllers. 

The simulation results have clearly shown the effectiveness of the controllers. 
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4 Embedded Control of Quadrotor 
Once the controller is designed, it needs to be implemented on some embedded device like 

microprocessor, microcontroller or FPGA. Then this embedded controller runs in close loop with 

plant. This chapter presents the implementation of simple discrete PI controller on 8051 

microcontroller and PSOC device, and these embedded controllers runs on DC motor speed plant 

model by using hardware-in-loop simulation technique. The outer loop control strategy based on 

discrete PI, PD and PID controllers is also implemented on PSOC device, and runs on quadrotor 

simulink model by using hardware-in-loop simulation technique. 

 

4.1 DC Motor Speed Control 
The conventional controllers such as PD, PI and PID have been widely used in industry and have 

demonstrated good control performance for different industrial plants. These conventional 

controllers have always been the very first choice for controlling any industrial plant due to its 

simple structure. The conventional controllers have been implemented in industry by analog 

circuits. These analog circuits impose some limitations, when there is a need for retuning the 

controller. Sometimes, the complete hardware of the controller needs to be modified. Today, a 

wide variety of embedded processors are available and these processors can be used to 

implement the conventional controllers. This section presents an implementation of digital PI 

controller on an 8-bit microcontroller and PSOC device. These PI controllers are tested for the 

plant model of DC motor by hardware-in-loop simulation technique. In these HIL simulations, 

the PI controller is on implemented on a microcontroller or PSOC and the plant model is in 

simulation environment. 

  

CHAPTER 4 
Embedded Control 

of Quadrotor 
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4.1.1 Control Strategy 

The control strategy for hardware-in-loop simulation is shown in figure 4.1. 

 

Figure 4.1: Block Diagram of close loop system 

 

The left dotted part of figure 4.1 is implemented on 8-bit microcontroller hardware and PSOC 

device, the right dotted part is in simulation environment i.e. Simulink. The plant used for 

simulation is a linear model of DC motor speed plant [37][38]. The plant transfer function is 

2029.826
( )

( 26.29)( 2.296)
pG s

s s


           (4.1) 

 

The PI controller is used, due to its property of eliminating the steady state error and its simple 

structure. To implement the controller on an embedded system, the digital version of PI 

controller is used. The difference equation of digital PI controller [39] is 
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Equation (4.2) is implemented on microcontroller and PSOC with calculated values of G1 and G2 

from equations (4.3) and (4.4), respectively. Here KP is proportional gain, KI is Integral gain and 

T is the sampling time. T should be kept as smaller as possible because more T will cause more 

overshoots in close loop system response [36]. KP and KI should be chosen appropriately by any 

Ref 
CONTROLLER PLANT 

Output 

On Microcontroller or 

PSOC 

On Simulink 
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of the PID tuning method [40] for the required close loop performance. Here, the both KP and KI 

values are taken “1”. 

4.1.2 Microcontroller Implementation 

The 8-bit microcontroller (ATMEL 8051) [41] is used for controller implementation. It has 128 

bytes of RAM, 4K bytes of ROM, 2 timers, 6 interrupt sources and 1 serial port. There are more 

advanced versions of 8051 are available but this basic one is enough for PI controller 

implementation due to the usage of only 153 bytes of ROM, 5 bytes of RAM and 1 serial port. 

The plant is not present in real, so its mathematical model is used in simulation with controller in 

real world. This HIL simulation is performed with serial communication between 

microcontroller and Simulink. In this simulation, 9600 baud rate is used. The other baud rates 

can also be used. The microcontroller receives the plant output value from Simulink, calculates 

the error signal, then calculates the control signal by using equation (4.2) and sends it back to 

Simulink. This process is implemented by the flowcharts shown in figure 4.2(a), 4.2(b). 

 

Figure 4.2(a): Flowchart of PI controller implementation (connected to figure 4.2(b)) 

DIVIDE BY G1 DENOMINATOR 

MULTIPLY BY G1 NUMINATOR 

SAVE TO REGISTER R0 

TAKE 2’S COMPLEMENT 

CALCULATE ERROR 

ERROR 

POSITIVE NEGATIVE 

DIVIDE BY G1 DENOMINATOR 

MULTIPLY BY G1 NUMINATOR 

TAKE 2’S COMPLEMENT 

SAVE TO REGISTER R0 

2 

RECEIVE PLANT OUTPUT FROM SERIAL PORT 

CONFIGURE SERIAL PORT 

START 

1 



36 

 

 

Figure 4.2(b): Flowchart of PI controller implementation (connected to figure 4.2(a)) 

 

The “Check for limits” block receives the control signal save in register R3 and limits this 

control signal within +1 and -1 value. This limitation may affect the system response to some 

degree. This thing is called the saturation of control signal. The PI controller is implemented 

using assembly language. The code is given in appendix A, section 8.1: 
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4.1.3 PSOC Implementation 

PSOC (Programmable system on chip) [42] is an embedded device. PSOC 5 is used in this work. 

PSOC 5 contains Cortex M3 ARM processor with analog and digital configurable blocks. These 

configurable blocks make this device different from traditional microcontrollers. PSOC can used 

to implement a complete system on a single chip. It is programmed by using C language. Here, 

PSOC 5 is used to implement discrete PI controller. The C language code is given in appendix A, 

section 8.2. 

 

4.1.4 Experimental Setup 

The experimental setup consist of hardware in loop simulation with DC motor plant in Simulink 

and digital PI controller on microcontroller or PSOC device as shown in figure 4.1. The 

Simulink block diagram is shown in figure 4.3. 

 

Figure 4.3: Simulink Blocks of HIL simulation for 8051 

 

The “query instrument” and “to instrument” blocks are from the “Instrument control toolbox” of 

Matlab. The blocks are used for serial communication. It is assumed that plant step response will 

remain between “0” to “2”. A constant “100” is used for scaling the signals. The scaling is 

necessary in order to amplify the signals. The scaled signals enable them to be processed as 

floating point numbers on 8-bit microcontroller till two spaces after the decimal point. In case of 

PSOC HIL simulation, multiplying and dividing constants are kept “10,000” as shown in figure 

4.4, to enabled signals to be processed till 4 decimal spaces. The signals are of 16-bit resolution 

and PSOC is able to handle it due to its 32-bit ARM processor. 
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Figure 4.4: Simulink Blocks of HIL simulation for PSOC 

 

4.1.5 Simulation Results 

The simulation is performed with the values of KP, KI and T as 1, 1 and 0.01 sec, respectively. 

These values are chosen for achieving the best possible control performance (least steady state 

error). The calculated values of G1 and G2 are 1.005 and 0.995, respectively. In simulation, G1 

and G2 are approximated to 1, for making the calculation possible on 8-bit microcontroller. This 

approximation may cause a very small error in the close loop system performance. The plant 

output, control signal and error plot for microcontroller implementation are shown in figure 4.5, 

4.6 and 4.7 respectively.  

 

The digital PI controller on microcontroller has good control performance with plant in HIL 

simulation with some small steady state error and oscillations at steady state level. The main 

reason of these oscillations and steady state error is the 8-bit wordlength of the microcontroller 

registers. The finite wordlength contributes towards the poor control performance during the 

steady state. The performance can be improved using registers with more number of bits like 16-

bit or 32-bit microcontrollers. 

 

The PSOC implemented PI controller gave better performance than 8-bit microcontroller 

because of 32-bit Cortex M3 ARM processor. The plant output, control signal and error plot for 

PSOC implementation are also shown in figure 4.5, 4.6 and 4.7 respectively. 
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Figure 4.5: Step Response of close loop HIL simulation 

 

 

Figure 4.6: Control Signal 
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Figure 4.7: Error plot for HIL simulation 

The error plot completely shows the better performance of PSOC than microcontroller. The root 

mean square of error (RMSE) values of both simulations also confirms this. The RMSE value of 

microcontroller simulation is “0.1157” and RMSE value of PSOC simulation is “0.1119”. The 

RMSE value of PSOC simulation is less than microcontroller simulation. 

  

4.1.6 Conclusion 

This section has presented the discrete PI controller implementation on 8-bit microcontroller and 

32-bit ARM processor device PSOC and tested both controllers on DC motor plant model by 

using hardware in loop simulation technique. It is clearly visible from the results that PSOC 

performance is better than microcontroller. It clearly eliminated the steady state error, whereas 

the microcontroller was unable to eliminate. 
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4.2 Quadrotor Control 
This section presents the outer loop control strategy (discussed in section 3.4) implementation on 

PSOC and runs this embedded controller on quadrotor plant model with hardware in loop 

simulation. Quadrotor is a MIMO system and its control strategy is also a MIMO system. In HIL 

simulation, PSOC receives the roll angle, pitch angle, yaw angle, x distance, y distance, z 

distance and z velocity and gives the calculated all four rotors speed. The strategy is 

implemented using C language. The code is given in appendix A, section 8.3. The experimental 

setup is shown in figure 4.8. 

 

Figure 4.8: Simulink Blocks of Quadrotor HIL Simulation 

 

As discussed in previous section, the “To Instrument” and “Query Instrument” block are used for 

serial communication between simulink and PSOC device. The constants are used to make points 

calculation possible on PSOC board. 

 

4.2.1 Simualtion Results 

As discussed, this simulation is outer loop control of quadrotor. The X distance, Y distance and 

Z distance are achieved for their respective references and Yaw angle is also achieved. The X 

distance, Y distance, Z distance and Yaw angle results are given in figures 4.9, 4.11, 4.13 and 

4.14 respectively. The results show the good performance of our embedded controller and gives 

proof of successful implementation of control strategy on PSOC device. 
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Figure 4.9: X distance control of quadrotor 
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Figure 4.10: Pitch Angle 

 

Figure 4.11: Y distance control of quadrotor 
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Figure 4.12: Roll Angle 

 

Figure 4.13: Z distance control of quadrotor 
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Figure 4.14: Yaw angle control of quadrotor 

The PSOC board receives the quadrotor output signals and gives back the control signals, which 

are propellers angular speed. The control signals are given below: 

 

Figure 4.15: Propeller 1 angular speed of quadrotor 
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Figure 4.16: Propeller 2 angular speed of quadrotor 

 

Figure 4.17: Propeller 3 angular speed of quadrotor 
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Figure 4.18: Propeller 4 angular speed of quadrotor 

As shown in figure 3.8, the outer loop control is link with inner loop control. The roll angle 

effects Y distance and pitch angle effects X distance. The roll angle and pitch angle are shown in 

figures 4.19 and 4.20 respectively. 

 

Figure 4.19: Roll Angle in HIL Simulation 
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Figure 4.20: Pitch Angle in HIL Simulation 

This outer loop control strategy implemented on PSOC is able to move quadrotor to a given 

reference trajectory in 3-dimensional space as shown in figure 4.21 and 4.22. 

 

Figure 4.21: 3D Plot of Quadrotor Control by PSOC 
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Figure 4.22: 3D Plot of Quadrotor Control by PSOC 

 

4.3 Summary 
This chapter has presented the simple discrete PI controller implementation on microcontroller 

and PSOC device and tested on DC motor speed model with hardware in loop simulation. 

Results clearly showed the better performance of PSOC device. This chapter also presented the 

quadrotor MIMO control strategy implementation on PSOC device. Results clearly showed the 

successful implementation and good control performance. This makes the PSOC device, a good 

choice for the implementation of control algorithms. 
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5 MPC Control of Quadrotor 
Model predictive control (MPC) strategy is an advanced optimal control strategy widely used in 

process industry. MPC is a digital control technique. The MPC requires the plant model in order 

to find the control signals. Sometimes the accurate model parameters are not available, so it 

needs to be found. This chapter presents the system identification applied on quadrotor plant 

model to find the parameters and use these parameters in MPC to find control signals. This is 

non-linear MPC because of non-linear model usage. 

5.1 MPC Control Technique 
The model predictive control technique includes the prediction of plant output up to some 

prediction horizon Np and tries to find the control signals up to some control horizon Nc by using 

some constrained optimization method as shown in figure 5.1. Thus gives the optimal control 

signals and optimal control results. 

 

Figure 5.1: MPC Algorithm 
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The prediction of plant output over prediction horizon is shown in figure 5.2[43]. 

 

Figure 5.2: Plant output Prediction 

 

The plant output is predicted over prediction horizon and control signal is found but only first 

sample is applied to plant and the whole process is repeated again on next sample instant. 

 

5.2 Discrete Model of Quadrotor 
In model predictive control, a plant model is required for prediction. Here, the plant model given 

by equations 3.1 and 3.2 is used but it is discretized by using Newton Euler method [36]. The 

symbols used in discrete model are: 

 

Ø1 = Roll angle 

Ø2 = Roll angle derivative 

θ1 = Pitch angle 

θ2 = Pitch angle derivative 

ψ1 = Yaw angle 

ψ2 = Yaw angle derivative 
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x1 = X distance 

x2 = X distance derivative 

y1 = Y distance 

y2 = Y distance derivative 

z1 = z distance 

z2 = z distance derivative 

 

The discrete plant model is given below: 
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The U1, U2, U3 and U4 are: 

2 2 2 2

1 1 2 3 4

2 2

2 4 2

2 2

3 3 1

2 2 2 2

4 1 2 3 4

1 2 3 4

( )

U b b b b

U b b
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U d

       

   

   

    

     

 (5.2) 

 

5.3 System Identification of Quadrotor 

This discrete model given by equation 5.1 and 5.2 can be used in MPC for output prediction and 

parameters given in table 3.2 can also be used but most of the time these parameters are not 

accurately known. So the equation 5.1 and 5.2 are modified as given below: 
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       (5.3) 

 

The U1, U2, U3 and U4 are: 

2 2 2 2

1 1 2 3 4

2 2

2 4 2

2 2

3 3 1

2 2 2 2

4 1 2 3 4
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    

     

         (5.4) 

The model given in equations 5.3 and 5.4 is used in MPC with calculated values of P1-P8. These 

parameters P1-P8 are calculated by recursive least square algorithm (RLS) [44] and data obtain 

from simulation of section 3.3. The data used for system identification is given below. 
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The Quadrotor input signals, which are propellers angular speed, are: 

 

Figure 5.3: Propeller 1 Angular Speed 

 

Figure 5.4: Propeller 2 Angular Speed 
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Figure 5.5: Propeller 3 Angular Speed 

 

Figure 5.6: Propeller 4 Angular Speed 
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The Quadrotor output signals, which are roll angle, roll angle derivative, pitch angle, pitch angle 

derivative, yaw angle derivative and z distance derivative, are: 

 

Figure 5.7: Roll Angle 

 

Figure 5.8: Roll Angle Derivative 
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Figure 5.9: Pitch Angle 

 

Figure 5.10: Pitch Angle Derivative 
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Figure 5.11: Yaw Angle Derivative 

 

Figure 5.12: Z Distance Derivative 
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The RLS algorithm equations are: 

1 1 1 1

1 1

1

1 1 1 1
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      



      

  (5.5) 

Here 
1(k)n is the required parameters vector. “n” is the number of parameters to be found.  

P(k)n n
 is the covariance matrix, usually initialize with identity matrix of size “n” multiplied 

with a large number like 100. 
1(k)n 
 is a vector dependent on model and signals used for 

identification. y(k)  is model output signal also dependent on model and signals used for 

identification. The sampling time Ts is 0.01sec. 

 

To find P1, P2 and P3: 

n=3. 
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At k=0, 
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        (5.7) 
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To find P4, P5 and P6: 

n=3. 
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To find P7: 

n=1. 
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At k=0, 
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To find P8: 

n=1. 
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At k=0, 

1 1
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(k 1) 100P
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          (5.13) 

 

The P1-P8 values are found by RLS with the help of given data. The values are: 

Parameters found by RLS Parameters Values 

P1 -0.2676 

P2 0.0032 

P3 0.0004 

P4 0.2626 

P5 -0.0601 

P6 0.0004 

P7 1.4119*10
-5

 

P8 2.4036*10
-5

 

Table 5.1: Parameters found by RLS 

 

5.4 MPC Control of Quadrotor 
As discussed in section 5.1, the MPC algorithm requires a plant model for future output 

prediction, so the model given in equations 5.3 and 5.4 are used with parameters given in table 

5.1. The MPC algorithm also requires some constrained optimization method, which can 

minimize the following cost function and find control signals, which gives optimal output. The 

lower limit of control signal is “0rad/sec” and upper limit is “400rad/sec”. The cost function is: 

2 2 2 2
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pk N

i k

j z     




          (5.14) 
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The “sequential programming” optimization method is used with the help of Matlab 

Optimization toolbox command “fmincon”. The prediction horizon is taken “Np= 20” and 

control horizon is taken “Nc= 2”. The sampling time for MPC is “Ts= 0.1sec”. 

 

5.4.1 Results 

The roll angle, pitch angle, yaw angle and Z distance are achieved as given below. Multiple 

simulations are performed. 

Simulation 1: 

Quadrotor is initially at ground and it has to move at z distance (height) of “1m” with achieving 

yaw angle of “1rad”. Roll angle and Pitch angle has to remain at “0rad”. 

 

Figure 5.13: Z Distance 
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Figure 5.14: Yaw Angle 

 

Figure 5.15: Roll Angle 
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Figure 5.16: Pitch Angle 

The control signals generated by MPC are: 

 

Figure 5.17: Propeller 1 Angular Speed 
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Figure 5.18: Propeller 2 Angular Speed 

 

Figure 5.19: Propeller 3 Angular Speed 
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Figure 5.20: Propeller 4 Angular Speed 

Simulation 2: 

Quadrotor is initially at ground and it has to move at z distance (height) of “2m” with achieving 

yaw angle of “2rad”. Roll angle and Pitch angle has to remain at “0rad”. 

 

Figure 5.21: Z Distance 
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Figure 5.22: Yaw Angle 

 

Figure 5.23: Roll Angle 
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Figure 5.24: Pitch Angle 

The control signals generated by MPC are: 
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Figure 5.25: Propeller 1 Angular Speed 

 

Figure 5.26: Propeller 2 Angular Speed 

 

Figure 5.27: Propeller 3 Angular Speed 
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Figure 5.28: Propeller 4 Angular Speed 

Simulation 3: 

Quadrotor is initially at height of “1m” and it has to maintain “1m” height with yaw angle at 

“0rad”. Roll angle and Pitch angle are to be achieved at “0.5rad”. 

 

Figure 5.29: Roll Angle 
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Figure 5.30: Pitch Angle 

 

Figure 5.31: Z Distance 
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Figure 5.32: Yaw Angle 

The control signals generated by MPC are: 

 

Figure 5.33: Propeller 1 Angular Speed 
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Figure 5.34: Propeller 2 Angular Speed 

 

Figure 5.35: Propeller 3 Angular Speed 
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Figure 5.36: Propeller 4 Angular Speed 

 

3 different simulations are conducted to show the effectiveness of MPC controller in different 

scenarios and different references. In all simulations, results have shown good control 

performance and reference tracking. 

 

5.5 Summary 
This chapter has presented discrete non-linear model of quadrotor and system identification of 

the model by using recursive least squares algorithm. This discrete non-linear model with 

identified parameters, found by RLS, is used in model predictive control strategy. The main 

advantage of the proposed scheme lies in system identification. Most of the time, the accurate 

parameters are not known. This makes the practical implementation very difficult. Proposed 

scheme finds the parameters directly from quadrotor data. The MPC is an optimal control 

strategy, so output will always be at optimal performance. The proposed controller has shown 

good performance of quadrotor. 
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6 Conclusion of Thesis 
The main focus of the thesis is on quadrotor controlling. Quadrotor is unstable system and it can 

not fly in open loop. In order to operate quadrotor, a close loop control strategy is required. This 

thesis has presented two control strategies for quadrotor controlling. One strategy is based on 

discrete PID control. This strategy uses discrete PD, PI and PID controllers. This PID based 

scheme is able to control both inner loop control (roll angle, pitch angle and yaw angle) of 

quadrotor and also outer loop control of quadrotor (a specific point in 3-dimensional space). This 

PID scheme is chosen to be discrete, so it can be implemented on any digital embedded system, 

like processor. 

 

The outer loop control strategy is implemented on PSOC device, which contain 32-bit ARM 

processor. The implemented control strategy is tested on quadrotor dynamic model by using 

hardware in loop simulation. The results have shown the satisfactory performance of this 

embedded controller. In thesis, a simple discrete PI controller is also implemented on 8051 

microcontroller by using assembly language and on PSOC by using C language. This controller 

is tested on DC motor speed model with hardware in loop simulation. This also has shown 

satisfactory performance. 

 

The PID control scheme is able to control quadrotor but its results are not optimal. This thesis 

has also presented model predictive control (MPC) of quadrotor, which is optimal in nature. 

MPC scheme requires a plant model, so quadrotor non-linear model is discretized and used. 

Quadrotor model has some parameters, which needs to be accurate for good performance but 

these parameters are not always known. This thesis has presented the system identification of 

these parameters from data obtained by PID control of quadrotor. MPC uses discrete non-linear 

model with identified parameters. MPC find the optimal control signals with the help of 

constrained optimization method like sequential programming and gives the optimal control 

performance. The results have shown good performance. 

 

Conclusion of 

Thesis CHAPTER 6 
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6.1 Future Recommendations 

 The designed embedded PID controller needs to be tested on real quadrotor hardware. 

 In MPC, branch and bound optimization method has to be included. It makes the control 

scheme, parallel in nature and its sampling time will be reduced. So for practical 

implementation, it will not require a very high speed processor but it will require device 

capable of doing parallel processing like FPGA. 
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8 Appendix A 

8.1 Discrete PI Controller in Assembly Language 
The assembly language code for the implementation of discrete PI controller discussed in section 

4.1.2 is given below: 

ERRORC EQU 30H 

ERRORP EQU 31H 

CSIGC  EQU 32H 

CSIGP  EQU 33H 

OUTPUT EQU 34H 

 

  ORG 0H 

 

  MOV ERRORC,#0 

  MOV ERRORP,#0 

  MOV CSIGC,#0 

  MOV CSIGP,#0 

  MOV OUTPUT,#0 

 

  MOV TMOD,#20H 

  MOV TH1,#-3 

  MOV SCON,#50H 

  SETB TR1 

 

HERE:  JNB RI,HERE 

  MOV A,SBUF 

  CLR RI 

 

  MOV OUTPUT,A 

  MOV A,#100 

  CLR C 

  SUBB A,OUTPUT 

  MOV ERRORC,A 

 

  JB ACC.7,L1 

Appendix A 
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  MOV B,#1 

  DIV AB 

  MOV B,#1 

  MUL AB 

  MOV R0,A 

  JMP L2 

 

L1:  CPL A 

  INC A 

  MOV B,#1 

  DIV AB 

  MOV B,#1 

  MUL AB 

  CPL A 

  INC A 

  MOV R0,A 

 

L2:  MOV A,ERRORP 

  JB ACC.7,L3 

  MOV B,#1 

  DIV AB 

  MOV B,#1 

  MUL AB 

  MOV R1,A 

  JMP L4 

 

L3:  CPL A 

  INC A 

  MOV B,#1 

  DIV AB 

  MOV B,#1 

  MUL AB 

  CPL A 

  INC A 

  MOV R1,A 

 

L4:  MOV A,R0 

  CLR C 

  SUBB A,R1 

  ADD A,CSIGP 

  MOV R3,A 

 

  CJNE A,#100,NEXT 

NEXT:  JC H1 

  MOV A,#100 

  JMP H2 
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H1:  CJNE A,#-100,NEXT1 

NEXT1: JNC H2 

  MOV A,#-100 

 

H2:  MOV CSIGC,A 

 

  CLR TI 

  MOV SBUF,CSIGC 

HERE1: JNB TI,HERE1 

  CLR TI 

 

  MOV ERRORP,ERRORC 

  MOV CSIGP,CSIGC 

 

  JMP HERE 

 

  END 

 

8.2 Discrete PI Controller in C Language 
The C language code for the implementation of discrete PI controller discussed in section 4.1.3 is 

given below: 

#include <device.h> 

 

void main() 

{    

    uint8 a2,a1,num=0;/*Error Current*/   /*Little Endian a2,a1*/ 

    uint8 c2,c1;/*Control Signal Current*/ 

    uint16 aa2,aa1,aa,l; 

    int16 cc,cc2,cc1; 

    float errorc=0,errorp=0,csigc=0,csigp=0,output=0; 

     

         

    UART_Start(); 

    isr_1_Start(); 

    isr_2_Start(); 

    LCD_Start(); 

 

    for(;;) 

    {   if (UART_GetRxBufferSize()!=0 && num==0) 

        {a1=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==1) 

        {a2=UART_ReadRxData();num++;} 

        if (num==2) 

        { 

        aa1=(uint16)a1; 

        aa2=(uint16)a2; 

        aa2=(aa2<<8)&0xff00; 
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        aa=aa2|aa1; 

        LCD_ClearDisplay(); 

        LCD_Position(0,0); 

        LCD_PrintNumber(aa); 

         

        output=(float)aa; 

        errorc=10000-output; 

        csigc=csigp+1.005*errorc-0.995*errorp; 

        if (csigc>=10000) 

        {csigc=10000;} 

        else if(csigc<=-10000) 

        {csigc=-10000;} 

        errorp=errorc; 

        csigp=csigc; 

         

        cc=(int16)csigc; 

        l=(uint16)cc; 

        LCD_Position(1,0); 

        LCD_PrintNumber(l); 

         

        cc1=cc;cc2=cc; 

        cc2=(cc2>>8)&0x00ff; 

        c2=(uint8)cc2;     

        cc1=cc1&0x00ff; 

        c1=(uint8)cc1; 

         

        UART_WriteTxData(c1); 

        UART_WriteTxData(c2); 

        num=0; 

        }  

         

    } 

} 

 

/* [] END OF FILE */ 

 

8.3 Quadrotor Control Strategy on C Language 
The C language code for the implementation of quadrotor control strategy discussed in section 

4.2 is given below: 

#include <device.h> 

#include <math.h> 

 

void main() 

{ 

    uint8 a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,num=0; 

    uint16 

aa2,aa1,aaa12,aa4,aa3,aaa34,aa6,aa5,aaa56,aa8,aa7,aaa78,aa10,aa9,aaa910,aa12,

aa11,aaa1112,aa14,aa13,aaa1314,sample=0; 

    int16 ac12,aa34,aa56,aa78,aa910,aa1112,aa1314; 

    int32 vvv1,vv1,vv2,vv1a,vv2a; 

    uint8 v1,v2,v1a,v2a,v3,v4,v3a,v4a,v5,v6,v5a,v6a,v7,v8,v7a,v8a; 

    double T=0.01,N=100,r1,r2,r3,r4,time; 
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    double 

roll_angle,ref_roll_angle,e_roll_angle,ep_roll_angle=0,u_roll_angle,up_roll_a

ngle=0,P_roll_angle=5,D_roll_angle=5; 

    double 

pitch_angle,ref_pitch_angle,e_pitch_angle,ep_pitch_angle=0,u_pitch_angle,up_p

itch_angle=0,P_pitch_angle=5,D_pitch_angle=5; 

    double 

yaw_angle,ref_yaw_angle,e_yaw_angle,ep_yaw_angle=0,epp_yaw_angle=0,u_yaw_angl

e,up_yaw_angle=0,upp_yaw_angle=0,P_yaw_angle=0.5,I_yaw_angle=0.01,D_yaw_angle

=2; 

    double 

x_distance,ref_x_distance,e_x_distance,ep_x_distance=0,u_x_distance,up_x_dist

ance=0,P_x_distance=0.01,D_x_distance=0.05; 

    double 

y_distance,ref_y_distance,e_y_distance,ep_y_distance=0,u_y_distance,up_y_dist

ance=0,P_y_distance=0.01,D_y_distance=0.05; 

    double 

z_distance,ref_z_distance,e_z_distance,ep_z_distance=0,u_z_distance,up_z_dist

ance=0,P_z_distance=20,D_z_distance=20; 

    double 

z_velocity,ref_z_velocity,e_z_velocity,ep_z_velocity=0,u_z_velocity,up_z_velo

city=0,P_z_velocity=5,I_z_velocity=5; 

    UART_Start(); 

    isr_1_Start(); 

    isr_2_Start(); 

 

     

    for(;;) 

    { 

    if (UART_GetRxBufferSize()!=0 && num==0) 

        {a1=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==1) 

        {a2=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==2) 

        {a3=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==3) 

        {a4=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==4) 

        {a5=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==5) 

        {a6=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==6) 

        {a7=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==7) 

        {a8=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==8) 

        {a9=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==9) 

        {a10=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==10) 

        {a11=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==11) 

        {a12=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==12) 

        {a13=UART_ReadRxData();num++;} 

        if (UART_GetRxBufferSize()!=0 && num==13) 

        {a14=UART_ReadRxData();num++;} 
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        if(num==14) 

        { 

        aa1=(uint16)a1; 

        aa2=(uint16)a2; 

        aa2=(aa2<<8)&0xff00; 

        aaa12=aa2|aa1; 

        ac12=(int16)aaa12; 

        roll_angle=(double)ac12; 

        roll_angle=roll_angle/1000; 

         

        aa3=(uint16)a3; 

        aa4=(uint16)a4; 

        aa4=(aa4<<8)&0xff00; 

        aaa34=aa4|aa3; 

        aa34=(int16)aaa34; 

        pitch_angle=(double)aa34; 

        pitch_angle=pitch_angle/1000; 

         

        aa5=(uint16)a5; 

        aa6=(uint16)a6; 

        aa6=(aa6<<8)&0xff00; 

        aaa56=aa6|aa5; 

        aa56=(int16)aaa56; 

        yaw_angle=(double)aa56; 

        yaw_angle=yaw_angle/1000; 

         

        aa7=(uint16)a7; 

        aa8=(uint16)a8; 

        aa8=(aa8<<8)&0xff00; 

        aaa78=aa8|aa7; 

        aa78=(int16)aaa78; 

        x_distance=(double)aa78; 

        x_distance=x_distance/1000; 

         

        aa9=(uint16)a9; 

        aa10=(uint16)a10; 

        aa10=(aa10<<8)&0xff00; 

        aaa910=aa10|aa9; 

        aa910=(int16)aaa910; 

        y_distance=(double)aa910; 

        y_distance=y_distance/1000; 

         

        aa11=(uint16)a11; 

        aa12=(uint16)a12; 

        aa12=(aa12<<8)&0xff00; 

        aaa1112=aa12|aa11; 

        aa1112=(int16)aaa1112; 

        z_distance=(double)aa1112; 

        z_distance=z_distance/1000; 

         

        aa13=(uint16)a13; 

        aa14=(uint16)a14; 

        aa14=(aa14<<8)&0xff00; 

        aaa1314=aa14|aa13; 

        aa1314=(int16)aaa1314; 

        z_velocity=(double)aa1314; 

        z_velocity=z_velocity/1000; 
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        time=sample*T; 

        if(time>=0 && time<25) 

        {ref_x_distance=1-exp(-time/2); 

        ref_y_distance=1-exp(-time/2); 

        ref_z_distance=1-exp(-time/2);} 

        else if(time>=25 && time<50) 

        {ref_x_distance=3-3*exp(-(time-25)/2)+1; 

        ref_y_distance=3-3*exp(-(time-25)/2)+1; 

        ref_z_distance=3-3*exp(-(time-25)/2)+1;} 

        else if(time>=50 && time<75) 

        {ref_x_distance=2*exp(-(time-50)/2)+2; 

        ref_y_distance=2*exp(-(time-50)/2)+2; 

        ref_z_distance=2*exp(-(time-50)/2)+2;} 

        else if(time>=75 && time<100) 

        {ref_x_distance=1-exp(-(time-75)/2)+2; 

        ref_y_distance=1-exp(-(time-75)/2)+2; 

        ref_z_distance=1-exp(-(time-75)/2)+2;} 

        else if(time>=100 && time<125) 

        {ref_x_distance=2*exp(-(time-100)/2)+1; 

        ref_y_distance=2*exp(-(time-100)/2)+1; 

        ref_z_distance=2*exp(-(time-100)/2)+1;} 

        else 

        {ref_x_distance=1; 

        ref_y_distance=1; 

        ref_z_distance=1;} 

         

         

        if (time>=125) 

        {ref_yaw_angle=0.01*(time-125);} 

        else {ref_yaw_angle=0;} 

         

        //y_distance(PD) 

        e_y_distance=ref_y_distance-y_distance; 

        

u_y_distance=(P_y_distance+D_y_distance*N)*e_y_distance+(P_y_distance*N*T-

P_y_distance-D_y_distance*N)*ep_y_distance-(N*T-1)*up_y_distance; 

         

        //roll_angle(PD) 

        ref_roll_angle=-u_y_distance; 

        e_roll_angle=ref_roll_angle-roll_angle; 

        

u_roll_angle=(P_roll_angle+D_roll_angle*N)*e_roll_angle+(P_roll_angle*N*T-

P_roll_angle-D_roll_angle*N)*ep_roll_angle-(N*T-1)*up_roll_angle; 

         

        //x_distance(PD) 

        e_x_distance=ref_x_distance-x_distance; 

        

u_x_distance=(P_x_distance+D_x_distance*N)*e_x_distance+(P_x_distance*N*T-

P_x_distance-D_x_distance*N)*ep_x_distance-(N*T-1)*up_x_distance; 

         

        //pitch_angle(PD) 

        ref_pitch_angle=u_x_distance; 

        e_pitch_angle=ref_pitch_angle-pitch_angle; 

        

u_pitch_angle=(P_pitch_angle+D_pitch_angle*N)*e_pitch_angle+(P_pitch_angle*N*

T-P_pitch_angle-D_pitch_angle*N)*ep_pitch_angle-(N*T-1)*up_pitch_angle; 
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        //yaw_angle(PID) 

        e_yaw_angle=ref_yaw_angle-yaw_angle; 

        

u_yaw_angle=(P_yaw_angle+D_yaw_angle*N)*e_yaw_angle+(N*T*P_yaw_angle+I_yaw_an

gle*T-2*D_yaw_angle*N-2*P_yaw_angle)*ep_yaw_angle+(P_yaw_angle-

P_yaw_angle*N*T-I_yaw_angle*T+I_yaw_angle*N*T*T+D_yaw_angle*N)*epp_yaw_angle-

(N*T-2)*up_yaw_angle-(1-N*T)*upp_yaw_angle; 

         

        //z_distance(PD) 

        e_z_distance=ref_z_distance-z_distance; 

        

u_z_distance=(P_z_distance+D_z_distance*N)*e_z_distance+(P_z_distance*N*T-

P_z_distance-D_z_distance*N)*ep_z_distance-(N*T-1)*up_z_distance; 

         

        //z_velocity(PI) 

        ref_z_velocity=u_z_distance; 

        e_z_velocity=ref_z_velocity-z_velocity; 

        u_z_velocity=P_z_velocity*e_z_velocity+(I_z_velocity*T-

P_z_velocity)*ep_z_velocity+up_z_velocity; 

         

        r1=-u_pitch_angle+u_z_velocity+u_yaw_angle; 

        r2=-u_roll_angle+u_z_velocity-u_yaw_angle; 

        r3=u_pitch_angle+u_z_velocity+u_yaw_angle; 

        r4=u_roll_angle+u_z_velocity-u_yaw_angle; 

         

        ep_roll_angle=e_roll_angle; 

        up_roll_angle=u_roll_angle; 

         

        ep_pitch_angle=e_pitch_angle; 

        up_pitch_angle=u_pitch_angle; 

         

        epp_yaw_angle=ep_yaw_angle; 

        ep_yaw_angle=e_yaw_angle; 

        upp_yaw_angle=up_yaw_angle; 

        up_yaw_angle=u_yaw_angle; 

         

        ep_x_distance=e_x_distance; 

        up_x_distance=u_x_distance; 

         

        ep_y_distance=e_y_distance; 

        up_y_distance=u_y_distance; 

         

        ep_z_distance=e_z_distance; 

        up_z_distance=u_z_distance; 

         

        ep_z_velocity=e_z_velocity; 

        up_z_velocity=u_z_velocity; 

         

        r1=r1*10000; 

        r2=r2*10000; 

        r3=r3*10000; 

        r4=r4*10000; 

         

        vvv1=(int32)r1; 

        vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1; 

        vv2a=(vv2a>>24)&0x000000ff; 
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        v2a=(uint8)vv2a; 

        vv1a=(vv1a>>16)&0x000000ff; 

        v1a=(uint8)vv1a; 

        vv2=(vv2>>8)&0x000000ff; 

        v2=(uint8)vv2; 

        vv1=vv1&0x000000ff; 

        v1=(uint8)vv1; 

         

        vvv1=(int32)r2; 

        vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1; 

        vv2a=(vv2a>>24)&0x000000ff; 

        v4a=(uint8)vv2a; 

        vv1a=(vv1a>>16)&0x000000ff; 

        v3a=(uint8)vv1a; 

        vv2=(vv2>>8)&0x000000ff; 

        v4=(uint8)vv2; 

        vv1=vv1&0x000000ff; 

        v3=(uint8)vv1; 

         

        vvv1=(int32)r3; 

        vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1; 

        vv2a=(vv2a>>24)&0x000000ff; 

        v6a=(uint8)vv2a; 

        vv1a=(vv1a>>16)&0x000000ff; 

        v5a=(uint8)vv1a; 

        vv2=(vv2>>8)&0x000000ff; 

        v6=(uint8)vv2; 

        vv1=vv1&0x000000ff; 

        v5=(uint8)vv1; 

         

        vvv1=(int32)r4; 

        vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1; 

        vv2a=(vv2a>>24)&0x000000ff; 

        v8a=(uint8)vv2a; 

        vv1a=(vv1a>>16)&0x000000ff; 

        v7a=(uint8)vv1a; 

        vv2=(vv2>>8)&0x000000ff; 

        v8=(uint8)vv2; 

        vv1=vv1&0x000000ff; 

        v7=(uint8)vv1; 

         

        UART_WriteTxData(v1); 

        UART_WriteTxData(v2); 

        UART_WriteTxData(v1a); 

        UART_WriteTxData(v2a); 

        num++; 

        } 

        if (UART_GetTxBufferSize()==0 && num==15) 

        { 

        UART_WriteTxData(v3); 

        UART_WriteTxData(v4); 

        UART_WriteTxData(v3a); 

        UART_WriteTxData(v4a); 

        num++; 

        } 

        if (UART_GetTxBufferSize()==0 && num==16) 

        { 
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        UART_WriteTxData(v5); 

        UART_WriteTxData(v6); 

        UART_WriteTxData(v5a); 

        UART_WriteTxData(v6a); 

        num++; 

        } 

        if (UART_GetTxBufferSize()==0 && num==17) 

        { 

        UART_WriteTxData(v7); 

        UART_WriteTxData(v8); 

        UART_WriteTxData(v7a); 

        UART_WriteTxData(v8a); 

        num=0; 

        sample++; 

        } 

         

    } 

} 

 

/* [] END OF FILE */ 
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