
1

Controlling UAV by an Embedded Controller

Submitted by:

Hamid Saeed Khan

Supervised by:

Dr. Muhammad Bilal Kadri

THESIS

Submitted to:

Department of Electronic and Power Engineering

Pakistan Navy Engineering College, Karachi

National University of Science and Technology, Islamabad Pakistan

In fulfillment of requirement for the award of the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

With Specialization in Control Engineering

2

3

Abstract

The UAV is an acronym for Unmanned Aerial Vehicle, which is an aircraft with no pilot on

board. UAVs can be remote controlled aircraft (e.g. flown by a pilot at a ground control station)

or can fly autonomously based on pre-programmed flight plans or more complex dynamic

automation systems.

Quadrotor UAV is selected for thesis work. Quadrotor is a rotorcraft that has four lift-generating

propellers. Two of the propellers spin clockwise and the other two spin counter-clockwise.

Control of the machine can be achieved by varying relative speed of the propellers. Quadrotor

concept is not new, however, availability of high speed brushless motors and high power to

weight ratio Li-polymer battery technology, quadrotors can be successfully designed and

fabricated. A quadrotor offers a challenging control problem due to its highly unstable nature. An

effective control methodology is therefore needed for such a unique airborne vehicle.

This thesis work presents the mathematical model and PID control of quadrotor. The PID

controller is also implemented on embedded system (PSOC device). This embedded controller is

tested on quadrotor model with the use of hardware in loop simulation technique. PID controller

is a feedback controller, widely used in controls systems. It calculates the error (difference

between set point and plant output) and attempts to minimize this error by adjusting the control

signal.

This thesis work also presents the non-linear model predictive control of quadrotor. Model

Predictive Control is an advanced control strategy, widely used in industries. It is an optimal

control strategy that works on the principle of receding horizon. It predicts the plant output for

the prediction horizon by using the dynamic model of the plant and attempts to find the optimal

control signal with the help of optimization scheme.

4

Acknowledgement

First and foremost, I am very much grateful to ALLAH, the Almighty, who showers his

blessings upon us and enable me to complete my research work.

I am deeply grateful to my research supervisor Dr. Muhammad Bilal Kadri, Assistant Professor,

Department of Electronic and Power Engineering, Pakistan Navy Engineering College, NUST. I

feel much honored to have him as my supervisor. His support and guidance helped me a lot

throughout the research work. Without him, I would have never been able to complete my

research work.

I am also very grateful to my GEC committee, comprises of the following faculty members, for

providing guidance throughout my research period:

 Cdr Dr. Attaullah Memon PN

 Cdr Dr. Syed Sajjad Haider Zaidi PN

 Cdr Dr. Tariq Mairaj Rasool Khan PN

I also want to thank my family, especially my mother, for their prayers, love, and

encouragement.

5

Contents
1 Introduction ... 7

1.1 Background .. 7

1.2 Objectives of thesis .. 9

1.3 Organization of thesis... 9

2 Literature Review .. 11

2.1 Quadrotor Control .. 11

2.1.1 Linear Control ... 11

2.1.2 Non-Linear Control ... 12

2.2 Hardware in loop Simulation ... 12

2.3 Summary .. 13

3 PID Control of Quadrotor .. 14

3.1 Quadrotor Dynamics .. 14

3.2 PID Controller .. 16

3.2.1 Continuous PID Controller ... 17

3.2.2 Discrete PID Controller .. 18

3.3 Inner Loop Control of Quadrotor ... 19

3.3.1 Results ... 20

3.4 Outer Loop Control of Quadrotor .. 25

3.4.1 Results ... 26

3.5 Summary .. 32

4 Embedded Control of Quadrotor ... 33

4.1 DC Motor Speed Control ... 33

4.1.1 Control Strategy .. 34

4.1.2 Microcontroller Implementation ... 35

4.1.3 PSOC Implementation .. 37

4.1.4 Experimental Setup ... 37

4.1.5 Simulation Results .. 38

4.1.6 Conclusion .. 40

4.2 Quadrotor Control .. 41

4.2.1 Simualtion Results .. 41

6

4.3 Summary .. 49

5 MPC Control of Quadrotor .. 50

5.1 MPC Control Technique .. 50

5.2 Discrete Model of Quadrotor ... 51

5.3 System Identification of Quadrotor .. 53

5.4 MPC Control of Quadrotor .. 61

5.4.1 Results ... 62

5.5 Summary .. 74

6 Conclusion of Thesis ... 75

6.1 Future Recommendations ... 76

7 References ... 77

8 Appendix A.. 80

8.1 Discrete PI Controller in Assembly Language ... 80

8.2 Discrete PI Controller in C Language .. 82

8.3 Quadrotor Control Strategy on C Language .. 83

7

1 Introduction

1.1 Background
Unmanned air vehicle, commonly known as UAV, is a flying machine, which requires no pilot

on board. It is controlled by using remote control from the ground station or it can be pre-

programmed for the autonomous flight. The UAVs are mostly used for the military purposes, i.e.

surveillance and also for attacking the enemy on ground. But UAVs have also been started for

the use of civil purposes like in fire fighting operations, for surveillance of important

installations.

There are two types of UAVs exist.

1. Fixed Wing UAVs

2. Rotary Wing UAVs

Fixed wing UAVs are like airplanes controlled from the ground station through radio link as

shown in figure 1.1.

Figure 1.1: MQ-9 Reaper UAV

MQ-9 Reaper UAV is a fixed wing uav used by US airforce as discussed in [1].

INTRODUCTION
CHAPTER 1 INTRODUCTION

8

Rotary wing UAVs are like helicopters without pilot on board, controlled by ground station

using radio link as shown in figure 1.2. Rotary wing UAVs are capable of vertical take-off

and landing (VTOL), requires no runway to fly.

Figure 1.2: MQ-8 Fire Scout

MQ-8 fire scout is a rotary wing UAV used by US Navy [2].

For this thesis, quadrotor is selected for research work. Quadrotor is a rotary wing uav,

capable of vertical take-off and landing (VTOL) as shown in figure 1.3.

Figure 1.3: Parrot AR Drone

Parrot AR Drone is a commercially available quadrotor at [3].

As shown in figure 1.3, quadrotor has four lift generating propellers. Two of these propellers

rotates clockwise and the other two rotates counter clockwise. By varying the speed of these

propellers, the quadrotor attitude (roll angle, pitch angle and yaw angle), altitude and position

9

can be controlled. Due to the MIMO structure and very fast and complex dynamics, quadrotor

controlling is a very challenging task and it requires a very sophisticated control scheme, which

can also be embed on some embedded device.

1.2 Objectives of thesis

The main objectives of the thesis are to develop the controller of quadrotor, implement this

controller on PSOC embedded device. The following are the sub-objectives for the thesis.

 In depth study of PSOC embedded device, hardware in loop simulation technique, system

identification and model predictive controls.

 Mathematical modeling of quadrotor.

 PID control of quadrotor.

 Implement discrete PI controller on 8051 micro-controller and PSOC device.

 Test these embedded controllers on DC motor speed model with hardware-in-loop

simulation technique.

 Implement PID controller of quadrotor on PSOC device and test this controller on

quadrotor plant model with hardware-in-loop simulation technique.

 System identification and non-linear MPC control of quadrotor.

1.3 Organization of thesis

The thesis has been organized into seven chapters.

Chapter 1: presents the introductory background, objectives and organization of the thesis.

Chapter 2: presents the literature review related to control of quadrotor, hardware in loop

simulation technique.

Chapter 3: presents the discrete PID control strategy for both inner loop and outer loop control of

quadrotor.

Chapter4: presents the implementation of simple discrete PI controller on microcontroller and

PSOC device and test on DC motor plant model with HIL. It also presents the outer loop control

strategy of quadrotor implementation on PSOC and test on quadrotor plant model with HIL.

10

Chapter 5: presents the system identification and non-linear MPC control of quadorotor.

Chapter 6: presents the conclusion of the thesis.

11

2 Literature Review
This chapter presents the research findings already carried out on quadrotor control and hardware

in loop simulations.

2.1 Quadrotor Control

Quadrotor is an unstable system and many control techniques have been applied on it’s

controlling. Some of the techniques only stabilizes the quadrotor by controlling the attitude (roll

angle, pitch angle and yaw angle). This type of control is called the “inner loop” control of

quadrotor. Some techniques also control the position of the quadrotor in 3-dimensional space.

This type of control is called the “outer loop” control of quadrotor. The majority of the quadrotor

work is on simulations but some of the works also have been implemented on actual quadrotor

hardware. These control techniques include linear, non-linear and also the artificial intelligence

techniques like neural networks and fuzzy logic. Some of the research findings are discussed

below.

2.1.1 Linear Control

In [4], linear control successfully stabilizes the prototype quadrotor X-4 Flyerhad, attached to a

test platform, in the presence of step disturbances. Later a new Mark II prototype was tested by

the same group without disturbances [5]. STARMAC-II prototype achieved free flight hovering

using PID controls [6]. The control of this flight cause to fail in the presence of wind

disturbances. Later the STARMAC-II team achieved outdoor path following [7]. Another

prototype achieved autonomous flight with linear control, in the presence of small disturbances

[8]. PID and LQ controllers were implemented and regulate the system in [9]. In [10], PD
2

feedback control is proposed with quaternion based feedback for the exponential attitude

stabilization of quadrotor. In [11], switching model predictive attitude controller was

implemented. It uses the piecewise affine models of the quadrotor and linear MPC controllers

were computed for each piecewise affine model. The switching between these controllers was

CHAPTER 2
LITERATURE

REVIEW

12

governed by rate of rotation angles. The results were good on experimental test bed in the

presence of wind disturbances.

2.1.2 Non-Linear Control

Linear control techniques are capable of stabilizing the quadrotor but non-linear control

techniques can expand the region of angles that can be achieved for quadrotor. In [13], HMX-4

quadrotor used feedback linearization technique to achieve control. It uses state inputs from the

camera. Integral sliding mode control with reinforcement learning is used to achieve multi agent

control of quadrotor [14]. [15, 16] achieved the formation control by sliding mode controller and

focused on obstacle avoidance by extracting state variables from Kalman filter. [17] developed

backstepping controller with observer for quadrotor. [18] proposed a vision based control

scheme which performs visual servo control by using a fixed target camera for hovering the

quadrotor. In [19], Draganfly II quadrotor uses a pre-trained neural network for stabilizing the

quadrotor in hover state without disturbances. Adaptive neural network controls have also

successfully stabilized the quadrotor in simulations [20, 21].

2.2 Hardware in loop Simulation

Hardware in loop simulation is a technique used in control systems for analyzing the behavior of

real hardware in close loop control. In HIL, there can be controller in simulation environment

with real plant hardware in actual world. This method is used for the tuning of controller

parameters on actual plant hardware. In other type of HIL, controller is on actual hardware (some

embedded processor) with plant dynamic model in simulation environment. This method is used

because sometimes the actual plant hardware is not available for testing or it is too costly. This

method helps the controller designers to test the behavior of their designed controller before

testing on actual plant hardware. Many researchers have used both type of HIL. Some of them

are discussed below.

In [22], hardware in simulation technique is used for online identification of squirrel cage

induction motor with using ARMA model and recursive least square algorithm. It also performed

online controller parameters tuning. HIL simulation is used for testing engine control system

hardware with dynamic model of diesel engine in simulation environment [23]. HIL simulation

is used for testing the actual controller hardware on automatic gearbox model of a passenger car

[24]. In [25], HIL simulation is used for controlling permanent magnet synchronous motor drive

model by controller on actual hardware. HIL simulation is used for designing pareto-optimal

controller for actual electric motor speed control with multi objective optimization algorithm

[26]. HIL simulation is used for online PID controller tuning and fuzzy logic controller designing

of DC motor motion control platform by using multi objective evolutionary methods [27].

13

2.3 Summary

In this chapter, a brief overview of the research work is presented related to the control of

quadrotor and hardware-in-loop simulations. Linear and non-linear control techniques for

quadrotor are discussed. It clearly explained the superiority of non-linear controls. Both type of

hardware-in-loop simulation work is presented.

14

3 PID Control of Quadrotor
Quadrotor is an un-manned aerial vehicle, capable of vertical take-off and landing (VTOL) and

hover. It is an open loop unstable system and it requires some control strategy for its stable

flight. This chapter presents discrete PID control of quadrotor. It presents both inner loop and

outer loop control of quadrotor.

3.1 Quadrotor Dynamics

Figure 3.1: Quadrotor Diagram

As shown in figure 3.1 [34], Quadrotor has four lift generating propellers. Two propellers rotate

clockwise and the other two rotates counter-clockwise. Quadrotor control is achieved by varying

the propellers angular speed Ωi (i = 1, 2, 3, 4).

Let (a) the rotation angles of quadrotor are roll angle (ø), pitch angle (θ) and yaw angle (ψ) and

(b) the translational-vector movement of quadrotor centre of mass is [x, y, z].

CHAPTER 3
PID Control of

Quadrotor

15

The mathematical model of quadrotor [12] is:

2

3

4

1

1

1

1

(cos sin cos sin sin)

(cos sin sin sin cos)

(cos cos)

yy zz r

xx xx xx

zz xx r

yy yy yy

xx yy

zz zz

I I J L
U

I I I

I I J L
U

I I I

I I
U

I I

x U
M

y U
M

z g U
M

  

  

 

    

    

 


   


   


 







  

 (3.1)

Where M is the mass of the system, g is the acceleration due to gravity. Ui (i = 1, 2, 3, 4) and

 are the control signals that are dependent on the propellers angular speed Ωi (i = 1, 2, 3, 4).

The control signals are calculated as:

2 2 2 2

1 1 2 3 4

2 2

2 4 2

2 2

3 3 1

2 2 2 2

4 1 2 3 4

1 2 3 4

()

U b b b b

U b b

U b b

U d

       

   

   

    

     

 (3.2)

The control signal U1 is related to total thrust of the quadrotor. U2, U3 are related to roll angle (ø)

and pitch angle (θ) respectively. U4 is related to yaw angle (ψ).  is the residual propeller

angular speed.

Table 3.1 defines the parameters used in model equations.

16

Parameter Symbols Parameter Description
Ixx x-axis inertia component

Iyy y-axis inertia component

Izz z-axis inertia component

L Length of the quadrotor arm

M Mass of quadrotor

b Thrust co-efficient

d Drag co-efficient

Jr Rotor inertia

Table 3.1: Quadrotor model parameters

The parameter values used here are given in table 3.2 [12]:

Parameter Value Units
M 0.8 Kg

L 0.3 m

Jr 6.01 x 10
-5

 Kg m
2

Ixx 15.67 x 10
-3

 Kg m
2

Iyy 15.67 x 10
-3

 Kg m
2

Izz 28.346 x 10
-3

 Kg m
2

b 192.3208 x 10
-7

 N s
2

d 4.003 x 10
-7

 Nm s
2

Table 3.2: Quadrotor parameter values

3.2 PID Controller
PID controller is a linear feedback controller, which works on error (reference – plant output)

and tries to minimize this error as shown in figure 3.2 [35]. It is most widely used controller in

industry. PID controller exist both in continuous and discrete form. It can be implemented by

using both analog and digital electronic devices.

17

Figure 3.2: Continuous PID controller in close loop

3.2.1 Continuous PID Controller

As shown in figure 3.2, the control signal generated by PID controller is the sum of proportional,

Integrator and derivative terms. The time domain equation of PID controller is:

0

(t)
(t) (t) ()

t

p i d

de
u K e K e d K

dt
   (3.3)

Where u(t) is the control signal, e(t) is the error signal, which is difference in reference signal

and output. KP, Ki and Kd are the proportional, integrator and differentiator gains respectively.

These gains need to be tuned for required performance of close loop system. The laplace domain

equation of PID controller is:

(s)
(s) (s) (s)i

p d

K E
U K E K sE

s
   (3.4)

The PI and PD controllers are also used. The PI controller equations are:

0

(t) (t) ()

t

p iu K e K e d   (3.5)

(s)
(s) (s) i

p

K E
U K E

s
  (3.6)

18

The PD controller equations are:

(t)
(t) (t)p d

de
u K e K

dt
  (3.7)

(s) (s) (s)p dU K E K sE  (3.8)

3.2.2 Discrete PID Controller

As discussed above, the PID controller can be implemented on digital device with its discrete

time equations. These equations are obtained by applying Forward Euler’s method [36] on

continuous PID equations.

The discrete PID controller equations are:

2

[k] (N)e[k] (NT T 2 N 2)e[k 1] (NT

T NT N)e[k 2] (NT 2)u[k 1] (1 NT)u[k 2]

p d s p i s d p p p s

i s i s d s s

u K K K K K K K K

K K K

        

         
 (3.9)

1 N
(z) (z) T (z) (z)

11
1 NT

1

p i s d

s

U K E K E K E
z

z

  





 (3.10)

The discrete PI controller equations are:

[k] e[k] (T)e[k 1] u[k 1]p i s pu K K K      (3.11)

1
(z) (z) T (z)

1
p i sU K E K E

z
 


 (3.12)

The discrete PD controller equations are:

[k] (N)e[k] (NT N)e[k 1] (NT 1)u[k 1]p d s p d p su K K K K K         (3.13)

N
(z) (z) (z)

1
1 NT

1

p d

s

U K E K E

z

 




 (3.14)

19

Equations 3.9, 3.11, 3.13 represents the controllers in time domain and equations 3.10, 3.12, 3.14

are in frequency domain (Z-domain). Ts is the sampling time and N is the filter coefficient.

3.3 Inner Loop Control of Quadrotor
This section presents the inner loop control of quadrotor i.e. roll angle, pitch angle and yaw

angle. Figure 3.3 shows the simulation layout.

Figure 3.3: Inner loop control of quadrotor

Z distance and Z velocity control is part of outer loop control but it needs to be included here.

Achieving inner loop control is baseless without hover the quadrotor at some height.

As shown in figure 3.3, PD control is used for roll angle and pitch angle controlling and PID is

used for yaw angle controlling. ri (i=1, 2, 3, 4) are the control signals generated by controllers

20

and these signals form the final propeller angular speed signals for quadrotor input with

following relations.

1 1 3 4

2 1 2 4

3 1 3 4

4 1 2 4

r r r

r r r

r r r

r r r

   

   

   

   

 (3.15)

r1 is related to vertical distance control of quadrotor from ground. r2, r3 and r4 are related to roll

angle, pitch angle and yaw angle control respectively. The gains and other parameters used in

controllers are given in table 3.3.

Controller Parameters
Roll angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec

Pitch angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec

Yaw angle PID Controller Kp= 0.5, Kd=2, Ki=0.01, N=100, Ts=0.01sec

Z velocity PI Controller Kp= 5, Ki=5, Ts=0.01sec

Z distance PD Controller Kp=20, Kd=20, N=100, Ts=0.01sec

Table 3.3: Inner loop controller’s parameters

3.3.1 Results

Figure 3.4: Height control of quadrotor

0 50 100 150 200 250 300 350 400 450 500
-5

0

5

10

15

20

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

21

Figure 3.5: Roll angle control of quadrotor

Figure 3.6: Pitch angle control of quadrotor

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

Reference

Roll angle

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

Reference

Pitch angle

22

Figure 3.7: Yaw angle control of quadrotor

Figure 3.4 - 3.7 clearly shows the effectiveness of controller. It can be seen that the controller is

able to track different level of reference signals for roll angle, pitch angle, yaw angle and height

of quadrotor. The control signals (propellers angular speed) generated by control strategy are

given below:

Figure 3.8: Propeller 1 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

Y
a
w

 a
n
g
le

(r
a
d
)

Yaw Angle

Reference

Yaw angle

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

Time(sec)

A
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

23

Figure 3.9: Propeller 2 Angular Speed

Figure 3.10: Propeller 3 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

Time(sec)

A
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

Time(sec)

A
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

24

Figure 3.11: Propeller 4 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

1200

Time(sec)

A
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

25

3.4 Outer Loop Control of Quadrotor
This section presents the outer loop control of quadrotor i.e. X-distance, Y-distance and Z-

distance (Height). Figure 3.12 shows the simulation layout.

Figure 3.12: Outer loop control of quadrotor

As shown in figure 3.12, the whole control strategy is similar to inner loop control, except the

two PD control loops for X-distance and Y-distance control.

The control signal of PD Y distance controller becomes the reference signal for PD roll angle

controller. There is a gain block of -1 value, due to opposite relation between Y distance and roll

angle i.e. if roll angle is positive, Y distance increase in negative and vice versa. The control

signal of PD X distance controller becomes the reference signal for PD pitch controller.

The gains and other parameters used in controllers are given in table 3.4.

26

Controller Parameters
Roll angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec

Pitch angle PD Controller Kp=5, Kd=5, N=100, Ts=0.01sec

Yaw angle PID Controller Kp= 0.5, Kd=2, Ki=0.01, N=100, Ts=0.01sec

Z velocity PI Controller Kp= 5, Ki=5, Ts=0.01sec

Z distance PD Controller Kp=20, Kd=20, N=100, Ts=0.01sec

Y distance PD Controller Kp=0.01, Kd=0.05, N=100, Ts=0.01sec

X distance PD Controller Kp=0.01, Kd=0.05, N=100, Ts=0.01sec

Table 3.4: Inner loop and Outer loop controller’s parameters

3.4.1 Results

The Y-distance, X-distance and Z-distance results are given below. As shown in figure 3.12, the

Y distance loop is link with roll angle loop and X distance loop is link with pitch angle loop.

This relation can also be seen in figures 3.14 and 3.16, where roll angle and pitch angle becomes

zero when Y distance and X distance becomes steady. Figures 3.13 – 3.17 clearly shows the

effectiveness of controller. The Y-distance, X-distance and Z-distance are achieved for their

given references.

Figure 3.13: Y distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

Y
 d

is
ta

n
c
e
(m

)

Y Distance

Reference

Y distance

27

Figure 3.14: Roll angle

Figure 3.15: X distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

X
 d

is
ta

n
c
e
(m

)

X Distance

Reference

X distance

28

Figure 3.16: Pitch angle

Figure 3.17: Z distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

29

The control signals (propellers angular speed) are given below.

Figure 3.18: Propeller 1 Angular Speed

Figure 3.19: Propeller 2 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

30

Figure 3.20: Propeller 3 Angular Speed

Figure 3.21: Propeller 4 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

31

This control strategy is able to move quadrotor to a given reference trajectory in 3-dimensional

space as shown in figure 3.22 and 3.23.

Figure 3.22: 3D Plot of Quadrotor Control

0
1

2
3

4
5

6

-2

0

2

4

6

0

1

2

3

4

5

6

X distance(m)

3D Plot of Quadrotor Control

Y distance(m)

Z
 d

is
ta

n
c
e
(m

)

Reference

Quadrotor position

32

Figure 3.23: 3D Plot of Quadrotor Control

3.5 Summary
This chapter has presented the quadrotor mathematical model with the parameters used in

simulations. The continuous and discrete PD, PI and PID controllers are also discussed. The

inner loop and outer loop control is presented with the use of discrete PD, PI and PID controllers.

The simulation results have clearly shown the effectiveness of the controllers.

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0

1

2

3

4

5

X distance(m)

3D Plot of Quadrotor Control

Y distance(m)

Z
 d

is
ta

n
c
e
(m

)

Reference

Quadrotor Position

33

4 Embedded Control of Quadrotor
Once the controller is designed, it needs to be implemented on some embedded device like

microprocessor, microcontroller or FPGA. Then this embedded controller runs in close loop with

plant. This chapter presents the implementation of simple discrete PI controller on 8051

microcontroller and PSOC device, and these embedded controllers runs on DC motor speed plant

model by using hardware-in-loop simulation technique. The outer loop control strategy based on

discrete PI, PD and PID controllers is also implemented on PSOC device, and runs on quadrotor

simulink model by using hardware-in-loop simulation technique.

4.1 DC Motor Speed Control
The conventional controllers such as PD, PI and PID have been widely used in industry and have

demonstrated good control performance for different industrial plants. These conventional

controllers have always been the very first choice for controlling any industrial plant due to its

simple structure. The conventional controllers have been implemented in industry by analog

circuits. These analog circuits impose some limitations, when there is a need for retuning the

controller. Sometimes, the complete hardware of the controller needs to be modified. Today, a

wide variety of embedded processors are available and these processors can be used to

implement the conventional controllers. This section presents an implementation of digital PI

controller on an 8-bit microcontroller and PSOC device. These PI controllers are tested for the

plant model of DC motor by hardware-in-loop simulation technique. In these HIL simulations,

the PI controller is on implemented on a microcontroller or PSOC and the plant model is in

simulation environment.

CHAPTER 4
Embedded Control

of Quadrotor

34

4.1.1 Control Strategy

The control strategy for hardware-in-loop simulation is shown in figure 4.1.

Figure 4.1: Block Diagram of close loop system

The left dotted part of figure 4.1 is implemented on 8-bit microcontroller hardware and PSOC

device, the right dotted part is in simulation environment i.e. Simulink. The plant used for

simulation is a linear model of DC motor speed plant [37][38]. The plant transfer function is

2029.826
()

(26.29)(2.296)
pG s

s s


  (4.1)

The PI controller is used, due to its property of eliminating the steady state error and its simple

structure. To implement the controller on an embedded system, the digital version of PI

controller is used. The difference equation of digital PI controller [39] is

     1 2()U nT U nT T G e nT G e nT T       (4.2)

1
2

I
p

K T
G K  (4.3)

2
2

I
p

K T
G K  (4.4)

Equation (4.2) is implemented on microcontroller and PSOC with calculated values of G1 and G2

from equations (4.3) and (4.4), respectively. Here KP is proportional gain, KI is Integral gain and

T is the sampling time. T should be kept as smaller as possible because more T will cause more

overshoots in close loop system response [36]. KP and KI should be chosen appropriately by any

Ref
CONTROLLER PLANT

Output

On Microcontroller or

PSOC

On Simulink

35

of the PID tuning method [40] for the required close loop performance. Here, the both KP and KI

values are taken “1”.

4.1.2 Microcontroller Implementation

The 8-bit microcontroller (ATMEL 8051) [41] is used for controller implementation. It has 128

bytes of RAM, 4K bytes of ROM, 2 timers, 6 interrupt sources and 1 serial port. There are more

advanced versions of 8051 are available but this basic one is enough for PI controller

implementation due to the usage of only 153 bytes of ROM, 5 bytes of RAM and 1 serial port.

The plant is not present in real, so its mathematical model is used in simulation with controller in

real world. This HIL simulation is performed with serial communication between

microcontroller and Simulink. In this simulation, 9600 baud rate is used. The other baud rates

can also be used. The microcontroller receives the plant output value from Simulink, calculates

the error signal, then calculates the control signal by using equation (4.2) and sends it back to

Simulink. This process is implemented by the flowcharts shown in figure 4.2(a), 4.2(b).

Figure 4.2(a): Flowchart of PI controller implementation (connected to figure 4.2(b))

DIVIDE BY G1 DENOMINATOR

MULTIPLY BY G1 NUMINATOR

SAVE TO REGISTER R0

TAKE 2’S COMPLEMENT

CALCULATE ERROR

ERROR

POSITIVE NEGATIVE

DIVIDE BY G1 DENOMINATOR

MULTIPLY BY G1 NUMINATOR

TAKE 2’S COMPLEMENT

SAVE TO REGISTER R0

2

RECEIVE PLANT OUTPUT FROM SERIAL PORT

CONFIGURE SERIAL PORT

START

1

36

Figure 4.2(b): Flowchart of PI controller implementation (connected to figure 4.2(a))

The “Check for limits” block receives the control signal save in register R3 and limits this

control signal within +1 and -1 value. This limitation may affect the system response to some

degree. This thing is called the saturation of control signal. The PI controller is implemented

using assembly language. The code is given in appendix A, section 8.1:

DIVIDE BY G2 DENOMINATOR

MULTIPLY BY G2 NUMINATOR

SAVE TO REGISTER R1

TAKE 2’S COMPLEMENT

PREVIOUS

ERROR

POSITIVE NEGATIVE

DIVIDE BY G2 DENOMINATOR

MULTIPLY BY G2 NUMINATOR

TAKE 2’S COMPLEMENT

SAVE TO REGISTER R1

1

SUBTRACT R1 FROM R0

ADD PREVIOUS CONTROL SIGNAL

SAVE TO REGISTER R3

CHECK FOR LIMITS

SEND CONTROL SIGNAL TO SERIAL PORT

SAVE CONTROL SIGNAL AS PREVIOUS CONTROLSIGNAL

SAVE ERROR AS PREVIOUS ERROR

2

37

4.1.3 PSOC Implementation

PSOC (Programmable system on chip) [42] is an embedded device. PSOC 5 is used in this work.

PSOC 5 contains Cortex M3 ARM processor with analog and digital configurable blocks. These

configurable blocks make this device different from traditional microcontrollers. PSOC can used

to implement a complete system on a single chip. It is programmed by using C language. Here,

PSOC 5 is used to implement discrete PI controller. The C language code is given in appendix A,

section 8.2.

4.1.4 Experimental Setup

The experimental setup consist of hardware in loop simulation with DC motor plant in Simulink

and digital PI controller on microcontroller or PSOC device as shown in figure 4.1. The

Simulink block diagram is shown in figure 4.3.

Figure 4.3: Simulink Blocks of HIL simulation for 8051

The “query instrument” and “to instrument” blocks are from the “Instrument control toolbox” of

Matlab. The blocks are used for serial communication. It is assumed that plant step response will

remain between “0” to “2”. A constant “100” is used for scaling the signals. The scaling is

necessary in order to amplify the signals. The scaled signals enable them to be processed as

floating point numbers on 8-bit microcontroller till two spaces after the decimal point. In case of

PSOC HIL simulation, multiplying and dividing constants are kept “10,000” as shown in figure

4.4, to enabled signals to be processed till 4 decimal spaces. The signals are of 16-bit resolution

and PSOC is able to handle it due to its 32-bit ARM processor.

38

Figure 4.4: Simulink Blocks of HIL simulation for PSOC

4.1.5 Simulation Results

The simulation is performed with the values of KP, KI and T as 1, 1 and 0.01 sec, respectively.

These values are chosen for achieving the best possible control performance (least steady state

error). The calculated values of G1 and G2 are 1.005 and 0.995, respectively. In simulation, G1

and G2 are approximated to 1, for making the calculation possible on 8-bit microcontroller. This

approximation may cause a very small error in the close loop system performance. The plant

output, control signal and error plot for microcontroller implementation are shown in figure 4.5,

4.6 and 4.7 respectively.

The digital PI controller on microcontroller has good control performance with plant in HIL

simulation with some small steady state error and oscillations at steady state level. The main

reason of these oscillations and steady state error is the 8-bit wordlength of the microcontroller

registers. The finite wordlength contributes towards the poor control performance during the

steady state. The performance can be improved using registers with more number of bits like 16-

bit or 32-bit microcontrollers.

The PSOC implemented PI controller gave better performance than 8-bit microcontroller

because of 32-bit Cortex M3 ARM processor. The plant output, control signal and error plot for

PSOC implementation are also shown in figure 4.5, 4.6 and 4.7 respectively.

39

Figure 4.5: Step Response of close loop HIL simulation

Figure 4.6: Control Signal

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Time(sec)

A
m

p
lit

u
d
e

Step Response of DC Motor Speed Control

Reference

Plant Output with 8051

Plant Output with PSOC5

0 0.5 1 1.5 2 2.5 3
-0.5

0

0.5

1

Time(sec)

A
m

p
lit

u
d
e

Control Signals generated by 8051 and PSOC5

Control Signal of 8051

Control Signal of PSOC5

40

Figure 4.7: Error plot for HIL simulation

The error plot completely shows the better performance of PSOC than microcontroller. The root

mean square of error (RMSE) values of both simulations also confirms this. The RMSE value of

microcontroller simulation is “0.1157” and RMSE value of PSOC simulation is “0.1119”. The

RMSE value of PSOC simulation is less than microcontroller simulation.

4.1.6 Conclusion

This section has presented the discrete PI controller implementation on 8-bit microcontroller and

32-bit ARM processor device PSOC and tested both controllers on DC motor plant model by

using hardware in loop simulation technique. It is clearly visible from the results that PSOC

performance is better than microcontroller. It clearly eliminated the steady state error, whereas

the microcontroller was unable to eliminate.

0 0.5 1 1.5 2 2.5 3
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time(sec)

A
m

p
lit

u
d
e

Error Signal of DC Motor Speed Control

Error with 8051

Error with PSOC5

41

4.2 Quadrotor Control
This section presents the outer loop control strategy (discussed in section 3.4) implementation on

PSOC and runs this embedded controller on quadrotor plant model with hardware in loop

simulation. Quadrotor is a MIMO system and its control strategy is also a MIMO system. In HIL

simulation, PSOC receives the roll angle, pitch angle, yaw angle, x distance, y distance, z

distance and z velocity and gives the calculated all four rotors speed. The strategy is

implemented using C language. The code is given in appendix A, section 8.3. The experimental

setup is shown in figure 4.8.

Figure 4.8: Simulink Blocks of Quadrotor HIL Simulation

As discussed in previous section, the “To Instrument” and “Query Instrument” block are used for

serial communication between simulink and PSOC device. The constants are used to make points

calculation possible on PSOC board.

4.2.1 Simualtion Results

As discussed, this simulation is outer loop control of quadrotor. The X distance, Y distance and

Z distance are achieved for their respective references and Yaw angle is also achieved. The X

distance, Y distance, Z distance and Yaw angle results are given in figures 4.9, 4.11, 4.13 and

4.14 respectively. The results show the good performance of our embedded controller and gives

proof of successful implementation of control strategy on PSOC device.

42

Figure 4.9: X distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

X
 d

is
ta

n
c
e
(m

)

X Distance

Reference

X distance

43

Figure 4.10: Pitch Angle

Figure 4.11: Y distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(sec)

Y
 d

is
ta

n
c
e
(m

)

Y Distance

Reference

Y distance

44

Figure 4.12: Roll Angle

Figure 4.13: Z distance control of quadrotor

0 20 40 60 80 100 120 140 160 180 200
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

0 20 40 60 80 100 120 140 160 180 200
0

0.5

1

1.5

2

2.5

3

3.5

4

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

45

Figure 4.14: Yaw angle control of quadrotor

The PSOC board receives the quadrotor output signals and gives back the control signals, which

are propellers angular speed. The control signals are given below:

Figure 4.15: Propeller 1 angular speed of quadrotor

0 20 40 60 80 100 120 140 160 180 200
-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Time(sec)

Y
a
w

 a
n
g
le

(r
a
d
)

Yaw Angle

Reference

Yaw angle

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

46

Figure 4.16: Propeller 2 angular speed of quadrotor

Figure 4.17: Propeller 3 angular speed of quadrotor

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
0

100

200

300

400

500

600

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

47

Figure 4.18: Propeller 4 angular speed of quadrotor

As shown in figure 3.8, the outer loop control is link with inner loop control. The roll angle

effects Y distance and pitch angle effects X distance. The roll angle and pitch angle are shown in

figures 4.19 and 4.20 respectively.

Figure 4.19: Roll Angle in HIL Simulation

0 20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

400

450

500

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

0 20 40 60 80 100 120 140 160 180 200
-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

48

Figure 4.20: Pitch Angle in HIL Simulation

This outer loop control strategy implemented on PSOC is able to move quadrotor to a given

reference trajectory in 3-dimensional space as shown in figure 4.21 and 4.22.

Figure 4.21: 3D Plot of Quadrotor Control by PSOC

0 20 40 60 80 100 120 140 160 180 200
-0.04

-0.02

0

0.02

0.04

0.06

0.08

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

0
1

2
3

4
5

6

-2

0

2

4

6

0

1

2

3

4

5

6

X distance(m)

3D Plot of Quadrotor Control by PSOC

Y distance(m)

Z
 d

is
ta

n
c
e
(m

)

Reference

Quadrotor Position

49

Figure 4.22: 3D Plot of Quadrotor Control by PSOC

4.3 Summary
This chapter has presented the simple discrete PI controller implementation on microcontroller

and PSOC device and tested on DC motor speed model with hardware in loop simulation.

Results clearly showed the better performance of PSOC device. This chapter also presented the

quadrotor MIMO control strategy implementation on PSOC device. Results clearly showed the

successful implementation and good control performance. This makes the PSOC device, a good

choice for the implementation of control algorithms.

-1.5
-1

-0.5
0

0.5
1

1.5

-1.5

-1

-0.5

0

0.5

1

1.5

0

1

2

3

4

5

X distance(m)

3D Plot of Quadrotor Control by PSOC

Y distance(m)

Z
 d

is
ta

n
c
e
(m

)

Reference

Quadrotor Position

50

5 MPC Control of Quadrotor
Model predictive control (MPC) strategy is an advanced optimal control strategy widely used in

process industry. MPC is a digital control technique. The MPC requires the plant model in order

to find the control signals. Sometimes the accurate model parameters are not available, so it

needs to be found. This chapter presents the system identification applied on quadrotor plant

model to find the parameters and use these parameters in MPC to find control signals. This is

non-linear MPC because of non-linear model usage.

5.1 MPC Control Technique
The model predictive control technique includes the prediction of plant output up to some

prediction horizon Np and tries to find the control signals up to some control horizon Nc by using

some constrained optimization method as shown in figure 5.1. Thus gives the optimal control

signals and optimal control results.

Figure 5.1: MPC Algorithm

Time K

Measure Current Plant Output / States

Predict the plant output up to prediction horizon Np

Find optimal control signals up to control horizon Nc by optimization

method

Apply first sample of control signals to plant

Time K+1

CHAPTER 5
MPC Control of

Quadrotor

51

The prediction of plant output over prediction horizon is shown in figure 5.2[43].

Figure 5.2: Plant output Prediction

The plant output is predicted over prediction horizon and control signal is found but only first

sample is applied to plant and the whole process is repeated again on next sample instant.

5.2 Discrete Model of Quadrotor
In model predictive control, a plant model is required for prediction. Here, the plant model given

by equations 3.1 and 3.2 is used but it is discretized by using Newton Euler method [36]. The

symbols used in discrete model are:

Ø1 = Roll angle

Ø2 = Roll angle derivative

θ1 = Pitch angle

θ2 = Pitch angle derivative

ψ1 = Yaw angle

ψ2 = Yaw angle derivative

52

x1 = X distance

x2 = X distance derivative

y1 = Y distance

y2 = Y distance derivative

z1 = z distance

z2 = z distance derivative

The discrete plant model is given below:

 (5.1)

1 1 2

2 2 2

1 1 2

2 2 3

1 1 2

2 2

[k 1] [k] T [k]

[k 1] [k] T

[k 1] [k] T [k]

[k 1] [k] T

[k 1] [k] T [k]

[k 1] [k] T

s

yy zz r
s

xx xx xx

s

zz xx r
s

yy yy yy

s

xx yy

s

zz

I I J L
U

I I I

I I J L
U

I I I

I I

I

  

   

  

   

  

  

  

 
      

 

  

 
       

 

  


    4

1 1 2

2 2 1

1 1 2

2 2 1

1 1 2

2 2

1

[k 1] [k] T [k]

(cos sin cos sin sin)
[k 1] [k] T

[k 1] [k] T [k]

(cos sin sin sin cos)
[k 1] [k] T

[k 1] [k] T [k]

(cos cos)
[k 1] [k] T

zz

s

s

s

s

s

s

U
I

x x x

x x U
M

y y y

y y U
M

z z z

z z g

    

    

 

 
 
 

  

 
    

 

  

 
    

 

  

     1U
M

 
 
 

53

The U1, U2, U3 and U4 are:

2 2 2 2

1 1 2 3 4

2 2

2 4 2

2 2

3 3 1

2 2 2 2

4 1 2 3 4

1 2 3 4

()

U b b b b

U b b

U b b

U d

       

   

   

    

     

 (5.2)

5.3 System Identification of Quadrotor

This discrete model given by equation 5.1 and 5.2 can be used in MPC for output prediction and

parameters given in table 3.2 can also be used but most of the time these parameters are not

accurately known. So the equation 5.1 and 5.2 are modified as given below:

 

 

 

1 1 2

2 2 1 2 3 2

1 1 2

2 2 4 5 6 3

1 1 2

2 2 7 4

1 1 2

2 2 8

[k 1] [k] T [k]

[k 1] [k] T

[k 1] [k] T [k]

[k 1] [k] T

[k 1] [k] T [k]

[k 1] [k] T

[k 1] [k] T [k]

[k 1] [k] T (cos cos

s

s

s

s

s

s

s

s

P P PU

P P PU

PU

z z z

z z g P

  

   

  

   

  

 

 

  

     

  

     

  

  

  

     1)U

 (5.3)

The U1, U2, U3 and U4 are:

2 2 2 2

1 1 2 3 4

2 2

2 4 2

2 2

3 3 1

2 2 2 2

4 1 2 3 4

1 2 3 4

U

U

U

U

    

  

  

    

     

 (5.4)

The model given in equations 5.3 and 5.4 is used in MPC with calculated values of P1-P8. These

parameters P1-P8 are calculated by recursive least square algorithm (RLS) [44] and data obtain

from simulation of section 3.3. The data used for system identification is given below.

54

The Quadrotor input signals, which are propellers angular speed, are:

Figure 5.3: Propeller 1 Angular Speed

Figure 5.4: Propeller 2 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

55

Figure 5.5: Propeller 3 Angular Speed

Figure 5.6: Propeller 4 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

0 50 100 150 200 250 300 350 400 450 500
-200

0

200

400

600

800

1000

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

56

The Quadrotor output signals, which are roll angle, roll angle derivative, pitch angle, pitch angle

derivative, yaw angle derivative and z distance derivative, are:

Figure 5.7: Roll Angle

Figure 5.8: Roll Angle Derivative

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time(sec)

R
o
ll

a
n
g
le

 d
e
ri
v
a
ti
v
e
(r

a
d
/s

e
c
)

Roll Angle Derivative

57

Figure 5.9: Pitch Angle

Figure 5.10: Pitch Angle Derivative

0 50 100 150 200 250 300 350 400 450 500
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

0 50 100 150 200 250 300 350 400 450 500
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Time(sec)

P
it
c
h
 a

n
g
le

 d
e
ri
v
a
ti
v
e
(r

a
d
/s

e
c
)

Pitch Angle Derivative

58

Figure 5.11: Yaw Angle Derivative

Figure 5.12: Z Distance Derivative

0 50 100 150 200 250 300 350 400 450 500
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

Time(sec)

Y
a
w

 a
n
g
le

 d
e
ri
v
a
ti
v
e
(r

a
d
/s

e
c
)

Yaw Angle Derivative

0 50 100 150 200 250 300 350 400 450 500
-6

-4

-2

0

2

4

6

8

Time(sec)

Z
 d

is
ta

n
c
e
 d

e
ri
v
a
ti
v
e
(m

/s
e
c
)

Z Distance Derivative

59

The RLS algorithm equations are:

1 1 1 1

1 1

1

1 1 1 1

(k) (k 1) (k)(y(k) (k) (k 1))

K(k) P(k) (k)

(k) (k 1) (k 1) (k) (1 (k) P(k 1) (k)) (k) (k 1)

T

n n n n

n n n n

T T

n n n n n n n n n n n n n n

K

P P P P





   

   

  



        

      



      

 (5.5)

Here
1(k)n is the required parameters vector. “n” is the number of parameters to be found.

P(k)n n
 is the covariance matrix, usually initialize with identity matrix of size “n” multiplied

with a large number like 100.
1(k)n 
 is a vector dependent on model and signals used for

identification. y(k) is model output signal also dependent on model and signals used for

identification. The sampling time Ts is 0.01sec.

To find P1, P2 and P3:

n=3.

1

3 1 2

3

2 2

3 1 2

2

2 2

(k)

[k 1] [k 1]

(k) [k 1] [k 1]

[k 1]

[k] [k 1]
(k)

s

P

P

P

U

y
T

 

 

 





 
 

 
 
  

  
 

   
 
  

 


 (5.6)

At k=0,

3 1

3 3

0

(k 1) 0

0

100 0 0

(k 1) 0 100 0

0 0 100

P





 
 

  
 
  

 
 

 
 
  

 (5.7)

60

To find P4, P5 and P6:

n=3.

4

3 1 5

6

2 2

3 1 2

3

2 2

(k)

[k 1] [k 1]

(k) [k 1] [k 1]

[k 1]

[k] [k 1]
(k)

s

P

P

P

U

y
T

 

 

 





 
 

 
 
  

  
 

    
 
  

 


 (5.8)

At k=0,

3 1

3 3

0

(k 1) 0

0

100 0 0

(k 1) 0 100 0

0 0 100

P





 
 

  
 
  

 
 

 
 
  

 (5.9)

To find P7:

n=1.

1 1 7

1 1 4

2 2

(k)

(k) [k 1]

[k] [k 1]
(k)

s

P

U

y
T



 





 

 

 


 (5.10)

At k=0,

1 1

1 1

(k 1) 0

(k 1) 100P





  

 
 (5.11)

61

To find P8:

n=1.

1 1 8

1 1 1 1 1

2 2

(k)

(k) cos([k 1])cos([k 1]) [k 1]

[k] [k 1] g
(k) s

s

P

U

z z T
y

T

  





 

   

  


 (5.12)

At k=0,

1 1

1 1

(k 1) 0

(k 1) 100P





  

 
 (5.13)

The P1-P8 values are found by RLS with the help of given data. The values are:

Parameters found by RLS Parameters Values

P1 -0.2676

P2 0.0032

P3 0.0004

P4 0.2626

P5 -0.0601

P6 0.0004

P7 1.4119*10
-5

P8 2.4036*10
-5

Table 5.1: Parameters found by RLS

5.4 MPC Control of Quadrotor
As discussed in section 5.1, the MPC algorithm requires a plant model for future output

prediction, so the model given in equations 5.3 and 5.4 are used with parameters given in table

5.1. The MPC algorithm also requires some constrained optimization method, which can

minimize the following cost function and find control signals, which gives optimal output. The

lower limit of control signal is “0rad/sec” and upper limit is “400rad/sec”. The cost function is:

2 2 2 2

1Ref 1 1Ref 1 1Ref 1 1Ref 1([i] [i]) ([i] [i]) ([i] [i]) (z [i] [i])
pk N

i k

j z     




        (5.14)

62

The “sequential programming” optimization method is used with the help of Matlab

Optimization toolbox command “fmincon”. The prediction horizon is taken “Np= 20” and

control horizon is taken “Nc= 2”. The sampling time for MPC is “Ts= 0.1sec”.

5.4.1 Results

The roll angle, pitch angle, yaw angle and Z distance are achieved as given below. Multiple

simulations are performed.

Simulation 1:

Quadrotor is initially at ground and it has to move at z distance (height) of “1m” with achieving

yaw angle of “1rad”. Roll angle and Pitch angle has to remain at “0rad”.

Figure 5.13: Z Distance

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

63

Figure 5.14: Yaw Angle

Figure 5.15: Roll Angle

0 1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Time(sec)

Y
a
w

 a
n
g
le

(r
a
d
)

Yaw Angle

Reference

Yaw angle

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10
x 10

-5

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

Reference

Roll angle

64

Figure 5.16: Pitch Angle

The control signals generated by MPC are:

Figure 5.17: Propeller 1 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
-5

-4

-3

-2

-1

0

1

2
x 10

-5

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

Reference

Pitch angle

0 1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

65

Figure 5.18: Propeller 2 Angular Speed

Figure 5.19: Propeller 3 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
220

240

260

280

300

320

340

360

380

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

66

Figure 5.20: Propeller 4 Angular Speed

Simulation 2:

Quadrotor is initially at ground and it has to move at z distance (height) of “2m” with achieving

yaw angle of “2rad”. Roll angle and Pitch angle has to remain at “0rad”.

Figure 5.21: Z Distance

0 1 2 3 4 5 6 7 8 9 10
220

240

260

280

300

320

340

360

380

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

67

Figure 5.22: Yaw Angle

Figure 5.23: Roll Angle

0 1 2 3 4 5 6 7 8 9 10
0

0.5

1

1.5

2

2.5

Time(sec)

Y
a
w

 a
n
g
le

(r
a
d
)

Yaw Angle

Reference

Yaw angle

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5
x 10

-3

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

Reference

Roll angle

68

Figure 5.24: Pitch Angle

The control signals generated by MPC are:

0 1 2 3 4 5 6 7 8 9 10
-5

0

5

10

15

20
x 10

-3

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

Reference

Pitch angle

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

69

Figure 5.25: Propeller 1 Angular Speed

Figure 5.26: Propeller 2 Angular Speed

Figure 5.27: Propeller 3 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
50

100

150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

70

Figure 5.28: Propeller 4 Angular Speed

Simulation 3:

Quadrotor is initially at height of “1m” and it has to maintain “1m” height with yaw angle at

“0rad”. Roll angle and Pitch angle are to be achieved at “0.5rad”.

Figure 5.29: Roll Angle

0 1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time(sec)

R
o
ll

a
n
g
le

(r
a
d
)

Roll Angle

Reference

Roll angle

71

Figure 5.30: Pitch Angle

Figure 5.31: Z Distance

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Time(sec)

P
it
c
h
 a

n
g
le

(r
a
d
)

Pitch Angle

Reference

Pitch angle

0 1 2 3 4 5 6 7 8 9 10
0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

Time(sec)

Z
 d

is
ta

n
c
e
(m

)

Z Distance

Reference

Z distance

72

Figure 5.32: Yaw Angle

The control signals generated by MPC are:

Figure 5.33: Propeller 1 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
0

0.005

0.01

0.015

0.02

0.025

0.03

Time(sec)

Y
a
w

 a
n
g
le

(r
a
d
)

Yaw Angle

Reference

Yaw angle

0 1 2 3 4 5 6 7 8 9 10
220

240

260

280

300

320

340

360

380

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 1 Angular Speed

73

Figure 5.34: Propeller 2 Angular Speed

Figure 5.35: Propeller 3 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 2 Angular Speed

0 1 2 3 4 5 6 7 8 9 10
290

300

310

320

330

340

350

360

370

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 3 Angular Speed

74

Figure 5.36: Propeller 4 Angular Speed

3 different simulations are conducted to show the effectiveness of MPC controller in different

scenarios and different references. In all simulations, results have shown good control

performance and reference tracking.

5.5 Summary
This chapter has presented discrete non-linear model of quadrotor and system identification of

the model by using recursive least squares algorithm. This discrete non-linear model with

identified parameters, found by RLS, is used in model predictive control strategy. The main

advantage of the proposed scheme lies in system identification. Most of the time, the accurate

parameters are not known. This makes the practical implementation very difficult. Proposed

scheme finds the parameters directly from quadrotor data. The MPC is an optimal control

strategy, so output will always be at optimal performance. The proposed controller has shown

good performance of quadrotor.

0 1 2 3 4 5 6 7 8 9 10
150

200

250

300

350

400

Time(sec)

A
n
g
u
la

r
S

p
e
e
d
(r

a
d
/s

e
c
)

Propeller 4 Angular Speed

75

6 Conclusion of Thesis
The main focus of the thesis is on quadrotor controlling. Quadrotor is unstable system and it can

not fly in open loop. In order to operate quadrotor, a close loop control strategy is required. This

thesis has presented two control strategies for quadrotor controlling. One strategy is based on

discrete PID control. This strategy uses discrete PD, PI and PID controllers. This PID based

scheme is able to control both inner loop control (roll angle, pitch angle and yaw angle) of

quadrotor and also outer loop control of quadrotor (a specific point in 3-dimensional space). This

PID scheme is chosen to be discrete, so it can be implemented on any digital embedded system,

like processor.

The outer loop control strategy is implemented on PSOC device, which contain 32-bit ARM

processor. The implemented control strategy is tested on quadrotor dynamic model by using

hardware in loop simulation. The results have shown the satisfactory performance of this

embedded controller. In thesis, a simple discrete PI controller is also implemented on 8051

microcontroller by using assembly language and on PSOC by using C language. This controller

is tested on DC motor speed model with hardware in loop simulation. This also has shown

satisfactory performance.

The PID control scheme is able to control quadrotor but its results are not optimal. This thesis

has also presented model predictive control (MPC) of quadrotor, which is optimal in nature.

MPC scheme requires a plant model, so quadrotor non-linear model is discretized and used.

Quadrotor model has some parameters, which needs to be accurate for good performance but

these parameters are not always known. This thesis has presented the system identification of

these parameters from data obtained by PID control of quadrotor. MPC uses discrete non-linear

model with identified parameters. MPC find the optimal control signals with the help of

constrained optimization method like sequential programming and gives the optimal control

performance. The results have shown good performance.

Conclusion of

Thesis CHAPTER 6

76

6.1 Future Recommendations

 The designed embedded PID controller needs to be tested on real quadrotor hardware.

 In MPC, branch and bound optimization method has to be included. It makes the control

scheme, parallel in nature and its sampling time will be reduced. So for practical

implementation, it will not require a very high speed processor but it will require device

capable of doing parallel processing like FPGA.

77

7 References
[1] "Fact Sheet Display: MQ-9 Reaper". United States Air Force. 18 August 2010. Retrieved 27 September 2013.

[2] http://www.bga-aeroweb.com/Defense/MQ-8-Fire-Scout.html.

[3] http://ardrone2.parrot.com.

[4] Pounds P, Mahony R, Hynes P, Roberts J. Design of a four-rotor aerial robot. In: Australasian conference on

robotics & automation, Auckland, New Zealand; 2002. p. 145–50.

[5] Pounds P, Mahony R, Corke P. Modelling and control of a quad-rotor robot. In: Proceedings of the Australasian

conference on robotics & automation, Auckland, New Zealand; 2006.

[6] Hoffmann G, Huang H, Waslander S, Tomlin C. Quadrotor helicopter flight dynamics and control: theory and

experiment. In: Proceedings of the AIAA guidance, navigation & control conference, Hilton Head, SC, USA, 2007

[aIAA Paper Number 2007-6461].

[7] Hoffmann G, Waslander S, Tomlin C. Quadrotor helicopter trajectory tracking control. In: Proceedings of the

AIAA guidance, navigation & control conference, Honolulu, HI, USA; 2008 [aIAA Paper Number 2008-7410].

[8] Bouabdallah S, Siegwart R. Field and service robotics. Springer tracts in advanced robotics. Berlin/Heidelberg:

Springer; 2006. p. 429–40 [chapter: Towards intelligent miniature flying robots].

[9] S. Bouabdallah, A. Noth, R. Siegwart, PID vs LQ control techniques applied to an indoor micro quadrotor, in:

Proceedings of the IEEE International Conference on Robotics and Automation, Barcelona, Spain, April, (2005), pp.

2259–2264.

[10] A. Tayebi, S. McGilvray, Attitude stabilization of a VTOL quadrotor aircraft, IEEE Transactions on Control

Systems Technology 14 (May (3)) (2006).

[11] Kostas Alexis, George Nikolakopoulos, Anthony Tzes, Switching model predictive attitude control for a

quadrotor helicopter subject to atmospheric disturbances, Control Engineering Practice 19 (2011) 1195-1207.

[12] Mehmet Onder Efe, Neural network assisted computationally simple PI
λ
D

µ
 control of a quadrotor UAV, IEEE

Transactions on Industrial Informatics, Vol. 7, No. 2, May 2011.

[13] Altug E, Taylor C. Vision-based pose estimation and control of a model helicopter. In: Proceedings of the 2004

IEEE international conference on mechatronics, Istanbul, Turkey; 2004.

References

http://www.af.mil/AboutUs/FactSheets/Display/tabid/224/Article/104470/mq-9-reaper.aspx

78

[14] S.L. Waslander, G. Hoffmann, J.S. Jang, C.J. Tomlin, Multi-agent X4-flyer testbed control design: integral

sliding mode vs. reinforcement learning, in: IEEE/RSJ International Conference on Intelligent Robots and Systems,

2005, 468–473.

[15] G. Hoffmann, D.G. Rajnarayan, S.L. Waslander, D. Dostal, J.C. Jang, C.J. Tomlin, The stanford testbed of

autonomous rotorcraft for multi-agent control (STARMAC), in: Proceedings of the 23rd Digital Avionics System

Conference, Salt Lake City, UT, November, 2004.

[16] G. Hoffmann, S.L. Waslander, Distributed cooperative search using information— theoretic costs for particle

filters, with quadrotor applications, in: AIAA Guidance, Navigation, and Control Conference and Exhibit, Keystone,

CO, August, 2006.

[17] L. Mederreg, F. Diaz, N.K. M’sirdi, Nonlinear backstepping control with observer design for a 4 rotors

helicopter, in: AVCS’04, International Conference on Advances in Vehicle Control and Safety, Genova, Italy,

October, (2004), pp. 28–31.

[18] T. Hamel, R. Mahony, Pure 2D Visual Servo control for a class of under-actuated dynamic systems, in:

Proceedings of the 2002 IEEE International Conference on Robotics and Automation, New Orleans, LA, (2004), pp.

2229–2235.

[19] Dunfied J, Tarbouchi M, Labonte G. Neural network based control of a four rotor helicopter. In: Proceedings of

the 2004 IEEE international conference on industrial technology, Hammamet, Tunisia; 2004. p. 1543–8.

[20] Cesareo Raimundez J, Fernandez Villaverde A. Adaptive tracking control for a quad-rotor. In: Proceedings of

ENOC-2008, Saint Petersburg, Russia; 2008.

[21] Dierks T, Jagannathan S. Neural network output feedback control of a quadrotor UAV. In: Proceedings of the

2008 IEEE conference on decision and control, Cancun, Mexico; 2008. p. 3633–9.

[22] Ashraf Saleem, Rateb Issa, Tarek Tutuni, “Hardware-in-the-loop for on-line identification and control of three-

phase squirrel cage induction motors,” Simulation Modelling Practice and Theory 18 (2010) 277-290.

[23] R. Isermann, J. Schaffnit, S. Sinsel, “Hardware-in-the-loop simulation for the design and testing of engine-

control systems,” Control Engineering Practice 7 (1999) 643}653.

[24] Schlegel C., Bross M., Beater P., “HIL Simulation of the hydraulics and mechanics of an automatic gearbox,”

2nd International Modelica conference, proceedings, PP. 67-75.

[25] Masaya Harakawa, Hisanori Yamasaki, Tetsuaki Nagano, Simon Abourida, Christian Dufour, Jean Bélanger,

“Real-Time Simulation of a Complete PMSM Drive at 10 μs Time Step,” Paper presented at the 2005 International

Power Electronics Conference, Niigata, Japan (IPEC-Niigata 2005).

[26] Piotr Wozniak, “Preferences in multi-objective evolutionary optimization of electric motor speed control with

hardware in the loop”, Applied Soft Computing 11 (2011) 49-55.

[27] P. Stewart, D.A.Stone, P.J.Fleming, “Design of robust fuzzy logic control systems by multi-objective

evolutionary methods with hardware in the loop”, Engineering Applications of Artificial Intelligence 17 (2004) 275-

284.

[28] Dukelow, S. G., The Control of Boilers, 2nd ed. Instrument Society of America, 1991.

[29] Shinskey, F. G., Averaging level control. Chem. Eng. Process. 60 ~9!, 58 ~1997!.

79

[30] Eborn, J., Panagopoulos, H., and Åstro¨m, K. J., Robust PID control of steam generator water level. IFAC’99

14th World Congress of IFAC. Beijing, P. R. China, 1999.

[31] Panagopoulos, H., Åstro¨m, K. J., and Ha¨gglund, T., Design of PID controllers based on constrained

optimization. 1999 American Control Conference. San Diego, California, 1999.

[32] David Cartes, Lei Wu, “Experimental evaluation of adaptive three-tank level control”, ISA Transaction 44

(2005) 283-293.

[33] A. Boubakir, F.B., C. Boubakir and S.Laboid, A fuzzy sliding mode controller using nonlinear sliding surface

applied to coupled tanks system International Journal of Fuzzy Systems, 2008. 10(2).

[34] http://lucasamor.im/wp-content/uploads/2014/01/quadrotor_diagram.jpg

[35] http://radhesh.files.wordpress.com/2008/05/pid.jpg

[36] Franklin, G.F., Powell, D.J., and Workman, M.L., “Digital Control of Dynamic Systems (3rd Edition)” Prentice

Hall, 1997.

[37] Kuo, B. C. (1987). Automatic control systems. Englewood Cliffs, NJ: Prentice Hall. Ch4.

[38] Tipsuwan, Y., & Chow, M.-Y., 1999. Fuzzy logic microcontroller implementation for DC motor speed control.

The 25th annual conference of the IEEE industrial electronics society (IECON 99), Vol. 3 (pp. 1271–1276). San

Jose, CA.

[39] Guanrong chen, Trung Tat Pham, “Introduction to fuzzy sets, fuzzy logic, and fuzzy control systems,” CRC

Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

[40] Aidan O'Dwyer (Dublin Institute of Technology, Ireland), “Handbook Of PI And PID Controller Tuning

Rules,” 3rd Edition, ISBN: 978-1-84816-242-6.

[41] ATMEL 8051 Microcontroller hardware manual.

[42] http://www.cypress.com/psoc5lp/?source=CY-ENG-HEADER

[43] http://upload.wikimedia.org/wikipedia/commons/thumb/1/11/MPC_scheme_basic.svg/434px

MPC_scheme_basic.svg.png

[44] Karl J. Astrom, Bjorn Wittenmark, Adaptive control, 2
nd

 Ed, Addison-Wesley Publishing Company, Inc.

80

8 Appendix A

8.1 Discrete PI Controller in Assembly Language
The assembly language code for the implementation of discrete PI controller discussed in section

4.1.2 is given below:

ERRORC EQU 30H

ERRORP EQU 31H

CSIGC EQU 32H

CSIGP EQU 33H

OUTPUT EQU 34H

 ORG 0H

 MOV ERRORC,#0

 MOV ERRORP,#0

 MOV CSIGC,#0

 MOV CSIGP,#0

 MOV OUTPUT,#0

 MOV TMOD,#20H

 MOV TH1,#-3

 MOV SCON,#50H

 SETB TR1

HERE: JNB RI,HERE

 MOV A,SBUF

 CLR RI

 MOV OUTPUT,A

 MOV A,#100

 CLR C

 SUBB A,OUTPUT

 MOV ERRORC,A

 JB ACC.7,L1

Appendix A

81

 MOV B,#1

 DIV AB

 MOV B,#1

 MUL AB

 MOV R0,A

 JMP L2

L1: CPL A

 INC A

 MOV B,#1

 DIV AB

 MOV B,#1

 MUL AB

 CPL A

 INC A

 MOV R0,A

L2: MOV A,ERRORP

 JB ACC.7,L3

 MOV B,#1

 DIV AB

 MOV B,#1

 MUL AB

 MOV R1,A

 JMP L4

L3: CPL A

 INC A

 MOV B,#1

 DIV AB

 MOV B,#1

 MUL AB

 CPL A

 INC A

 MOV R1,A

L4: MOV A,R0

 CLR C

 SUBB A,R1

 ADD A,CSIGP

 MOV R3,A

 CJNE A,#100,NEXT

NEXT: JC H1

 MOV A,#100

 JMP H2

82

H1: CJNE A,#-100,NEXT1

NEXT1: JNC H2

 MOV A,#-100

H2: MOV CSIGC,A

 CLR TI

 MOV SBUF,CSIGC

HERE1: JNB TI,HERE1

 CLR TI

 MOV ERRORP,ERRORC

 MOV CSIGP,CSIGC

 JMP HERE

 END

8.2 Discrete PI Controller in C Language
The C language code for the implementation of discrete PI controller discussed in section 4.1.3 is

given below:

#include <device.h>

void main()

{

 uint8 a2,a1,num=0;/*Error Current*/ /*Little Endian a2,a1*/

 uint8 c2,c1;/*Control Signal Current*/

 uint16 aa2,aa1,aa,l;

 int16 cc,cc2,cc1;

 float errorc=0,errorp=0,csigc=0,csigp=0,output=0;

 UART_Start();

 isr_1_Start();

 isr_2_Start();

 LCD_Start();

 for(;;)

 { if (UART_GetRxBufferSize()!=0 && num==0)

 {a1=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==1)

 {a2=UART_ReadRxData();num++;}

 if (num==2)

 {

 aa1=(uint16)a1;

 aa2=(uint16)a2;

 aa2=(aa2<<8)&0xff00;

83

 aa=aa2|aa1;

 LCD_ClearDisplay();

 LCD_Position(0,0);

 LCD_PrintNumber(aa);

 output=(float)aa;

 errorc=10000-output;

 csigc=csigp+1.005*errorc-0.995*errorp;

 if (csigc>=10000)

 {csigc=10000;}

 else if(csigc<=-10000)

 {csigc=-10000;}

 errorp=errorc;

 csigp=csigc;

 cc=(int16)csigc;

 l=(uint16)cc;

 LCD_Position(1,0);

 LCD_PrintNumber(l);

 cc1=cc;cc2=cc;

 cc2=(cc2>>8)&0x00ff;

 c2=(uint8)cc2;

 cc1=cc1&0x00ff;

 c1=(uint8)cc1;

 UART_WriteTxData(c1);

 UART_WriteTxData(c2);

 num=0;

 }

 }

}

/* [] END OF FILE */

8.3 Quadrotor Control Strategy on C Language
The C language code for the implementation of quadrotor control strategy discussed in section

4.2 is given below:

#include <device.h>

#include <math.h>

void main()

{

 uint8 a1,a2,a3,a4,a5,a6,a7,a8,a9,a10,a11,a12,a13,a14,num=0;

 uint16

aa2,aa1,aaa12,aa4,aa3,aaa34,aa6,aa5,aaa56,aa8,aa7,aaa78,aa10,aa9,aaa910,aa12,

aa11,aaa1112,aa14,aa13,aaa1314,sample=0;

 int16 ac12,aa34,aa56,aa78,aa910,aa1112,aa1314;

 int32 vvv1,vv1,vv2,vv1a,vv2a;

 uint8 v1,v2,v1a,v2a,v3,v4,v3a,v4a,v5,v6,v5a,v6a,v7,v8,v7a,v8a;

 double T=0.01,N=100,r1,r2,r3,r4,time;

84

 double

roll_angle,ref_roll_angle,e_roll_angle,ep_roll_angle=0,u_roll_angle,up_roll_a

ngle=0,P_roll_angle=5,D_roll_angle=5;

 double

pitch_angle,ref_pitch_angle,e_pitch_angle,ep_pitch_angle=0,u_pitch_angle,up_p

itch_angle=0,P_pitch_angle=5,D_pitch_angle=5;

 double

yaw_angle,ref_yaw_angle,e_yaw_angle,ep_yaw_angle=0,epp_yaw_angle=0,u_yaw_angl

e,up_yaw_angle=0,upp_yaw_angle=0,P_yaw_angle=0.5,I_yaw_angle=0.01,D_yaw_angle

=2;

 double

x_distance,ref_x_distance,e_x_distance,ep_x_distance=0,u_x_distance,up_x_dist

ance=0,P_x_distance=0.01,D_x_distance=0.05;

 double

y_distance,ref_y_distance,e_y_distance,ep_y_distance=0,u_y_distance,up_y_dist

ance=0,P_y_distance=0.01,D_y_distance=0.05;

 double

z_distance,ref_z_distance,e_z_distance,ep_z_distance=0,u_z_distance,up_z_dist

ance=0,P_z_distance=20,D_z_distance=20;

 double

z_velocity,ref_z_velocity,e_z_velocity,ep_z_velocity=0,u_z_velocity,up_z_velo

city=0,P_z_velocity=5,I_z_velocity=5;

 UART_Start();

 isr_1_Start();

 isr_2_Start();

 for(;;)

 {

 if (UART_GetRxBufferSize()!=0 && num==0)

 {a1=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==1)

 {a2=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==2)

 {a3=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==3)

 {a4=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==4)

 {a5=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==5)

 {a6=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==6)

 {a7=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==7)

 {a8=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==8)

 {a9=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==9)

 {a10=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==10)

 {a11=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==11)

 {a12=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==12)

 {a13=UART_ReadRxData();num++;}

 if (UART_GetRxBufferSize()!=0 && num==13)

 {a14=UART_ReadRxData();num++;}

85

 if(num==14)

 {

 aa1=(uint16)a1;

 aa2=(uint16)a2;

 aa2=(aa2<<8)&0xff00;

 aaa12=aa2|aa1;

 ac12=(int16)aaa12;

 roll_angle=(double)ac12;

 roll_angle=roll_angle/1000;

 aa3=(uint16)a3;

 aa4=(uint16)a4;

 aa4=(aa4<<8)&0xff00;

 aaa34=aa4|aa3;

 aa34=(int16)aaa34;

 pitch_angle=(double)aa34;

 pitch_angle=pitch_angle/1000;

 aa5=(uint16)a5;

 aa6=(uint16)a6;

 aa6=(aa6<<8)&0xff00;

 aaa56=aa6|aa5;

 aa56=(int16)aaa56;

 yaw_angle=(double)aa56;

 yaw_angle=yaw_angle/1000;

 aa7=(uint16)a7;

 aa8=(uint16)a8;

 aa8=(aa8<<8)&0xff00;

 aaa78=aa8|aa7;

 aa78=(int16)aaa78;

 x_distance=(double)aa78;

 x_distance=x_distance/1000;

 aa9=(uint16)a9;

 aa10=(uint16)a10;

 aa10=(aa10<<8)&0xff00;

 aaa910=aa10|aa9;

 aa910=(int16)aaa910;

 y_distance=(double)aa910;

 y_distance=y_distance/1000;

 aa11=(uint16)a11;

 aa12=(uint16)a12;

 aa12=(aa12<<8)&0xff00;

 aaa1112=aa12|aa11;

 aa1112=(int16)aaa1112;

 z_distance=(double)aa1112;

 z_distance=z_distance/1000;

 aa13=(uint16)a13;

 aa14=(uint16)a14;

 aa14=(aa14<<8)&0xff00;

 aaa1314=aa14|aa13;

 aa1314=(int16)aaa1314;

 z_velocity=(double)aa1314;

 z_velocity=z_velocity/1000;

86

 time=sample*T;

 if(time>=0 && time<25)

 {ref_x_distance=1-exp(-time/2);

 ref_y_distance=1-exp(-time/2);

 ref_z_distance=1-exp(-time/2);}

 else if(time>=25 && time<50)

 {ref_x_distance=3-3*exp(-(time-25)/2)+1;

 ref_y_distance=3-3*exp(-(time-25)/2)+1;

 ref_z_distance=3-3*exp(-(time-25)/2)+1;}

 else if(time>=50 && time<75)

 {ref_x_distance=2*exp(-(time-50)/2)+2;

 ref_y_distance=2*exp(-(time-50)/2)+2;

 ref_z_distance=2*exp(-(time-50)/2)+2;}

 else if(time>=75 && time<100)

 {ref_x_distance=1-exp(-(time-75)/2)+2;

 ref_y_distance=1-exp(-(time-75)/2)+2;

 ref_z_distance=1-exp(-(time-75)/2)+2;}

 else if(time>=100 && time<125)

 {ref_x_distance=2*exp(-(time-100)/2)+1;

 ref_y_distance=2*exp(-(time-100)/2)+1;

 ref_z_distance=2*exp(-(time-100)/2)+1;}

 else

 {ref_x_distance=1;

 ref_y_distance=1;

 ref_z_distance=1;}

 if (time>=125)

 {ref_yaw_angle=0.01*(time-125);}

 else {ref_yaw_angle=0;}

 //y_distance(PD)

 e_y_distance=ref_y_distance-y_distance;

u_y_distance=(P_y_distance+D_y_distance*N)*e_y_distance+(P_y_distance*N*T-

P_y_distance-D_y_distance*N)*ep_y_distance-(N*T-1)*up_y_distance;

 //roll_angle(PD)

 ref_roll_angle=-u_y_distance;

 e_roll_angle=ref_roll_angle-roll_angle;

u_roll_angle=(P_roll_angle+D_roll_angle*N)*e_roll_angle+(P_roll_angle*N*T-

P_roll_angle-D_roll_angle*N)*ep_roll_angle-(N*T-1)*up_roll_angle;

 //x_distance(PD)

 e_x_distance=ref_x_distance-x_distance;

u_x_distance=(P_x_distance+D_x_distance*N)*e_x_distance+(P_x_distance*N*T-

P_x_distance-D_x_distance*N)*ep_x_distance-(N*T-1)*up_x_distance;

 //pitch_angle(PD)

 ref_pitch_angle=u_x_distance;

 e_pitch_angle=ref_pitch_angle-pitch_angle;

u_pitch_angle=(P_pitch_angle+D_pitch_angle*N)*e_pitch_angle+(P_pitch_angle*N*

T-P_pitch_angle-D_pitch_angle*N)*ep_pitch_angle-(N*T-1)*up_pitch_angle;

87

 //yaw_angle(PID)

 e_yaw_angle=ref_yaw_angle-yaw_angle;

u_yaw_angle=(P_yaw_angle+D_yaw_angle*N)*e_yaw_angle+(N*T*P_yaw_angle+I_yaw_an

gle*T-2*D_yaw_angle*N-2*P_yaw_angle)*ep_yaw_angle+(P_yaw_angle-

P_yaw_angle*N*T-I_yaw_angle*T+I_yaw_angle*N*T*T+D_yaw_angle*N)*epp_yaw_angle-

(N*T-2)*up_yaw_angle-(1-N*T)*upp_yaw_angle;

 //z_distance(PD)

 e_z_distance=ref_z_distance-z_distance;

u_z_distance=(P_z_distance+D_z_distance*N)*e_z_distance+(P_z_distance*N*T-

P_z_distance-D_z_distance*N)*ep_z_distance-(N*T-1)*up_z_distance;

 //z_velocity(PI)

 ref_z_velocity=u_z_distance;

 e_z_velocity=ref_z_velocity-z_velocity;

 u_z_velocity=P_z_velocity*e_z_velocity+(I_z_velocity*T-

P_z_velocity)*ep_z_velocity+up_z_velocity;

 r1=-u_pitch_angle+u_z_velocity+u_yaw_angle;

 r2=-u_roll_angle+u_z_velocity-u_yaw_angle;

 r3=u_pitch_angle+u_z_velocity+u_yaw_angle;

 r4=u_roll_angle+u_z_velocity-u_yaw_angle;

 ep_roll_angle=e_roll_angle;

 up_roll_angle=u_roll_angle;

 ep_pitch_angle=e_pitch_angle;

 up_pitch_angle=u_pitch_angle;

 epp_yaw_angle=ep_yaw_angle;

 ep_yaw_angle=e_yaw_angle;

 upp_yaw_angle=up_yaw_angle;

 up_yaw_angle=u_yaw_angle;

 ep_x_distance=e_x_distance;

 up_x_distance=u_x_distance;

 ep_y_distance=e_y_distance;

 up_y_distance=u_y_distance;

 ep_z_distance=e_z_distance;

 up_z_distance=u_z_distance;

 ep_z_velocity=e_z_velocity;

 up_z_velocity=u_z_velocity;

 r1=r1*10000;

 r2=r2*10000;

 r3=r3*10000;

 r4=r4*10000;

 vvv1=(int32)r1;

 vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1;

 vv2a=(vv2a>>24)&0x000000ff;

88

 v2a=(uint8)vv2a;

 vv1a=(vv1a>>16)&0x000000ff;

 v1a=(uint8)vv1a;

 vv2=(vv2>>8)&0x000000ff;

 v2=(uint8)vv2;

 vv1=vv1&0x000000ff;

 v1=(uint8)vv1;

 vvv1=(int32)r2;

 vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1;

 vv2a=(vv2a>>24)&0x000000ff;

 v4a=(uint8)vv2a;

 vv1a=(vv1a>>16)&0x000000ff;

 v3a=(uint8)vv1a;

 vv2=(vv2>>8)&0x000000ff;

 v4=(uint8)vv2;

 vv1=vv1&0x000000ff;

 v3=(uint8)vv1;

 vvv1=(int32)r3;

 vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1;

 vv2a=(vv2a>>24)&0x000000ff;

 v6a=(uint8)vv2a;

 vv1a=(vv1a>>16)&0x000000ff;

 v5a=(uint8)vv1a;

 vv2=(vv2>>8)&0x000000ff;

 v6=(uint8)vv2;

 vv1=vv1&0x000000ff;

 v5=(uint8)vv1;

 vvv1=(int32)r4;

 vv1=vvv1;vv2=vvv1,vv1a=vvv1;vv2a=vvv1;

 vv2a=(vv2a>>24)&0x000000ff;

 v8a=(uint8)vv2a;

 vv1a=(vv1a>>16)&0x000000ff;

 v7a=(uint8)vv1a;

 vv2=(vv2>>8)&0x000000ff;

 v8=(uint8)vv2;

 vv1=vv1&0x000000ff;

 v7=(uint8)vv1;

 UART_WriteTxData(v1);

 UART_WriteTxData(v2);

 UART_WriteTxData(v1a);

 UART_WriteTxData(v2a);

 num++;

 }

 if (UART_GetTxBufferSize()==0 && num==15)

 {

 UART_WriteTxData(v3);

 UART_WriteTxData(v4);

 UART_WriteTxData(v3a);

 UART_WriteTxData(v4a);

 num++;

 }

 if (UART_GetTxBufferSize()==0 && num==16)

 {

89

 UART_WriteTxData(v5);

 UART_WriteTxData(v6);

 UART_WriteTxData(v5a);

 UART_WriteTxData(v6a);

 num++;

 }

 if (UART_GetTxBufferSize()==0 && num==17)

 {

 UART_WriteTxData(v7);

 UART_WriteTxData(v8);

 UART_WriteTxData(v7a);

 UART_WriteTxData(v8a);

 num=0;

 sample++;

 }

 }

}

/* [] END OF FILE */

	1 Introduction
	1.1 Background
	1.2 Objectives of thesis
	1.3 Organization of thesis

	2 Literature Review
	2.1 Quadrotor Control
	2.1.1 Linear Control
	2.1.2 Non-Linear Control

	2.2 Hardware in loop Simulation
	2.3 Summary

	3 PID Control of Quadrotor
	3.1 Quadrotor Dynamics
	3.2 PID Controller
	3.2.1 Continuous PID Controller
	3.2.2 Discrete PID Controller

	3.3 Inner Loop Control of Quadrotor
	3.3.1 Results

	3.4 Outer Loop Control of Quadrotor
	3.4.1 Results

	3.5 Summary

	4 Embedded Control of Quadrotor
	4.1 DC Motor Speed Control
	4.1.1 Control Strategy
	4.1.2 Microcontroller Implementation
	4.1.3 PSOC Implementation
	4.1.4 Experimental Setup
	4.1.5 Simulation Results
	4.1.6 Conclusion

	4.2 Quadrotor Control
	4.2.1 Simualtion Results

	4.3 Summary

	5 MPC Control of Quadrotor
	5.1 MPC Control Technique
	5.2 Discrete Model of Quadrotor
	5.3 System Identification of Quadrotor
	5.4 MPC Control of Quadrotor
	5.4.1 Results

	5.5 Summary

	6 Conclusion of Thesis
	6.1 Future Recommendations

	7 References
	8 Appendix A
	8.1 Discrete PI Controller in Assembly Language
	8.2 Discrete PI Controller in C Language
	8.3 Quadrotor Control Strategy on C Language

