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Abstract 

Path planning is one of the most critical aspects of developing and employing mobile robots. 

Apart from finding a suitable path, there is a great concern regarding quality of path as well. 

Among others, distance traversed from start point to goal is an important measure of quality and 

so is the safety of robot while adopting this path. Depending upon applications, the requirements 

from path planners are varying and sometimes conflicting, it is therefore a great deal of research 

is focused in this field including this one. 

This research is an effort to develop a hybrid path planner by integrating visibility graph as 

global and artificial potential field as local path planner. The development of hybrid path planner 

by integration of global and local path planners focuses at exploiting their advantages and 

mitigating their shortcomings. This hybrid path planner, not only generates a near optimal path 

but also keeps robot safe as it ensures that throughout the course, it does not touches any obstacle 

or comes closer to it than a user defined distance. The work is also about making hybrid planner 

robust, flexible and reactive.  

 

 

Key Words: Autonomous robots; Autonomous path planning; Hybrid path planning; Intelligent 

systems; Motion planning; Integration of global and local path planners; Visibility graph and 

artificial potential field
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CHAPTER 1: INTRODUCTION 

 
The research work presented in this dissertation is about developing a hybrid path 

planning technique for indoor autonomous robots by integrating global and local path planner. 

The thesis has been organized into chapters. Chapter 1 develops a background about different 

categories of path planners by briefly narrating their methods, advantages and disadvantages. 

Chapter 2 presents literature review of relevant researches as regards to this thesis. Chapter 3 is 

about selection of suitable global and local path planner for the purpose of integration. Chapter 4 

presents architecture and methodology of proposed hybrid path planner. Chapter 5 presents the 

ways and scenarios in which proposed hybrid path planner has been implemented and also the 

results and chapter 6 which is also the last chapter, concludes this thesis. 

1.1 Path Planning – Background 

Path planning is, probably, the most focused area of research in the field of mobile 

robotics. It is known as the art of finding an optimized collision-free path from the starting 

location toward the predefined destination [1]. Path planning is defined in another way by 

Siegwart and Nourbakhsh [2] as a trajectory through a map with which a robot can reach a  

well-known location (goal) from its starting location. It is important to mention that it is not only 

about finding a path to goal location, the concern about quality of path that is found by a path 

planner is equally important. The definition of quality regarding path is relative and keeps 

varying depending upon robots and their applications. Sometimes it is about finding shortest path 

and at others, concern is about safety of robot. Sometimes measure of quality is time taken by 

robot to reach its goal and at others, it is power consumption. We also want to keep 

computational and memory requirements of path planners to a certain limit. In attempts to meet 

varying and sometimes conflicting requirements, many path planners have been proposed by 

researchers. These path planning methods have also been categorized and this categorization is 

mainly based on two aspects. First aspect of classification is completeness i.e. exact or heuristic 

and the second aspect is their scope i.e. global or local [3].  
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1.2 Classification of Path Planning Methods Based on Completeness 

Completeness of path planner is an important measure and can never be over emphasized. 

A path planning method basing on its capability of finding solution can be classified as complete, 

probabilistic complete, resolution complete or heuristic. Considering their completeness, path 

planning algorithms can be broadly classified in two categories which are given in succeeding 

paragraphs [3]. 

1.2.1 Classical Methods 

The methods which are well established and had proven their exactness are known as 

classical methods. If there exists a solution to a given path planning problem, classical methods 

would find it otherwise they would indicate non availability of path in the given problem.  

These methods are characterized by their computational intensiveness and inability to 

handle variations and uncertainties inherent with real world environments. It is because of these 

characteristics that their use in real world applications is greatly restricted. Following methods 

are generally categorized as classical methods [4]: - 

 Road Maps 

 Cell Decomposition (CD) 

 Artificial Potential Field (APF) 

 Sub goal Network (SN) 

1.2.2 Heurist – Based Methods 

Heuristic-based methods are also called in literature as population-based and  

behavior-based methods [5, 6]. These methods suggest the use of behavioral-based approach to 

address the constraints of real world environments [7]. In behavioral-based approaches a set of 

simple, predefined behaviors would be designed in a way to solve complex scenarios. Being 

dependent on the current state and a set of behavioral rule for that state and not on localization 

and mapping, the heuristic-based methods are capable of handling dynamic environments. 

Although these methods have performed reasonably well in dynamic environments, they have 

limitations with regards to uncertainties which sometimes result in dead lock and robot fails to 

choose next state [7].  
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Heuristic-based methods can not always find a solution but it is for sure that if they found 

one, it would be found in much shorter time as compared to classical methods [8]. It is also 

pertinent to mention that solution found by these methods may not be optimal. One of the 

greatest advantages of these methods is their capability of coping with combinatorial explosion 

and local minima [8]. 

Heuristic-based methods include following [4]: -  

 Artificial Neural Network (ANN) 

 Genetic Algorithm (GA) 

 Particle Swarm Optimization (PSO) 

 Ant Colony Optimization (ACO) 

 Fuzzy Logic (FL) 

1.3 Classification of Path Planning Methods Based on Scope 

Basing on scope of path planning, these methods can be classified as global path planners 

and local path planners [3, 4]. The detail of these planners is given in succeeding paragraphs. 

1.3.1 Global Path Planners 

Global path planners are the planners which require complete information of environment 

before planning a path. Since global planners have knowledge of environment before planning a 

path therefore, path generated by them is often optimal. Global path planners are also efficient in 

finding path. These planners, however, have limitations as well. Since their planning is based on 

accurate information of strictly static environment therefore these planners can not handle any 

variation in environment, no matter how small it may be. For a real world environment, 

assumption of environment being static does not seem logical therefore these planners are really 

challenged in real world applications. Global path planners, despite all their strengths, are 

seriously devoid of robustness and flexibility. These path planners can be grouped and listed as 

follows: - 

 Road Maps 

 Visibility Graph 

 Voronoi Diagram 

 



4 
 

 Cell Decomposition Methods 

 Exact Cell Decomposition Method 

 Approximate Cell Decomposition Method 

 Modified Exact Cell Decomposition Method 

 Probabilistic Cell Decomposition Method 

 Probabilistic or Sampling-Based Methods 

 Probabilistic Road Maps (PRM) 

 Rapidly Exploring Random Trees (RRTs) 

1.3.1.1 Road Maps 

The road map methods are also called skeleton, highway or retraction methods. A road 

map is actually a collection of paths such that each path is a set of collision-free configurations 

between two points which can be used for path planning [9]. The roadmap once created can be 

used for multiple path planning assignments. The road map generated in a given environment 

can not only be used for multiple different tasks in the same environment but can also be used by 

multiple agents employed in the similar environment. Generating a road map is the main part of 

these methods. After generating a road map, start point and goal are connected to corresponding 

nearest nodes on the map and then a graph search algorithm is used to find path on road map.  

The principles of generating a road map may differ from each other and so would be 

generated road map. Among different methods available for generating road maps, visibility 

graph and voronoi diagram are most known and used [4]. 

1.3.1.1.1 Visibility Graph 

Visibility Graph is a collection of lines in free space such that each line connects a feature 

of an obstacle to another visible feature of the same or different obstacle or in other words these 

features are vertices of obstacles that can see each other. It is also important to note that start 

point and goal are also part of this graph. After development of road map i.e. visibility graph, a 

graph search technique, commonly A* algorithm is applied to find shortest path from start point 

to goal on this graph. This method was used for robot motion planning in [10]. 
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Figure 1.1: Visibility graph and path from start point to goal [11]. 

Since visibility graph is generated on the principle of visibility therefore path generated 

using this method is optimal in terms of distance so resulting in minimum length solution [11]. It 

is worth nothing that some of the lines in visibility graph are actually the edges of obstacles 

therefore moving on this optimal path generated by visibility graph is not a safe proposition for 

robot. While optimal path length is the main advantage of visibility graph, its complexity in 

densely cluttered environment and safety of robot are major concerns. 

1.3.1.1.2 Voronoi Diagram 

Voronoi diagram is another road map method used for robot motion planning [12, 13]. 

This road map is generated by including points which are at the similar distance from two or 

more obstacles or workspace boundary. In voronoi diagram, start point and goal are not part of 

graph as in case of visibility graph. The next step, after generating voronoi diagram, is to 

ascertain accessibility and deportability with regards to start point and goal. Accessibility means 

start point can access the road map generated by voronoi diagram and deportability is that a node 

on voronoi diagram can connect to goal. A suitable connection strategy is to be employed for 

connecting start point and goal to respective nodes on voronoi diagram. As a last step, graph 

search technique is to be employed for finding path from start point to goal. 

 It is important to note that as this method tends to maximize the distance from all the 

involved obstacles therefore the road map is safe for robot but may not be optimal in terms of 

distance involved [12]. 
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Figure 1.2: Voronoi Diagram [12] 

1.3.1.2 Cell Decomposition Methods 

Cell Decomposition (CD) methods are another well known and used class of path 

planning algorithms. With some variations, in all these methods space is decomposed in smaller 

cells so as they can be segregated as occupied i.e. obstacle cells and free cells. After division, a 

graph of free cells is generated based on their connections. A graph search method is then used to 

find series of mutually connected cells from start cell to goal cell. Start cells and goal cell are the 

free cells containing start point and goal and sequence of mutually connected cells in between 

are the cells robot can use from start point to reach goal [14].  

 Assuming that robot motion planning problem has been reduced to a point moving in free 

space, Seda [15] suggests following step to implement cell decomposition methods:- 

 Divide free space into connected cells 

 Generate a graph of adjacent cells such that nodes of graph are free cells and connecting 

edges indicate mutual boundary between cells. 

 Identify start cell and goal cell containing start point and goal and search sequence of 

cells from start cell to goal in graph generated in previous step. 

 Find path by connecting center points (centroid) of boundary of cells. 
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Figure1.3: Cell Decomposition [15] 

 

Cell decomposition methods have been implemented in variety of ways. Three main sub 

categories of these methods have been identified as follows [4]: -  

 Exact cell decomposition [16, 17, 18]. 

 Approximate Cell decomposition [19, 20, 21]. 

 Probabilistic cell decomposition [22, 23]. 

 

Exact cell decomposition decomposes the work space in such a way that union of all the 

decomposed cells is exactly equal to workspace. Moreover exact cell decomposition is based on 

the features of obstacles and workspace. Since exact cell decomposition is an effort to find an 

exact solution therefore it is time consuming and less efficient with respect to time. Modified 

exact cell decomposition is little different from exact CD in that it differs in as what point of 

boundary between adjacent cells would be used as crossing places [24]. 

In approximate cell decomposition workspace is so decomposed that union of 

decomposed cells does not necessarily makes entire workspace. In this method boundary of 

decomposed cells does not indicate any physical meaning related to workspace or obstacles. 

Since it is an approximation method therefore it is comparatively faster than exact cell 

decomposition. Moreover because of being an approximation its completeness depends upon the 
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resolution of approximation. The method, despite being fast and easy to implement is not very 

efficient for path planning [22].  

Probabilistic CD (PCD) is actually a combination of CD and probabilistic methods. It is 

another method of cell decomposition that approximates workspace in a way not much different 

from approximate CD. In probabilistic CD methods, cells have a predefined shape and cell 

boundaries are not based on physical obstacles. The method is fast and easy to implement but in 

an environment where free space is much smaller as compared to occupied, the reliability of 

method is seriously challenged [22].  

1.3.1.3 Probabilistic or Sampling Based Methods 

The path planning methods which try to represent the workspace precisely and attempt to 

find an exact solution are exhaustive in computation and time consuming. These methods have 

manifested sufficiently satisfactory performance in problems involving limited dimensions but 

with the increase in dimensions of problem their complexity increase exponentially and they tend 

to suffer from combinatorial explosion. This is why sampling-based or probabilistic path 

planning approaches have been proposed which work well in high dimensional problems.  

Sampling based methods do not try to represent workspace instead they generate random 

samples in entire space. Later these samples are checked using a collision detector whether they 

lie in free space or in / on obstacle. The samples which are not in free space are discarded and 

only sample from free space are used to generate a graph. The path planning problem is thus 

reduced to a graph search problem from start point to goal in generated graph. Though many 

variations of probabilistic methods exist most common are Probabilistic Road Map (PRM) and 

Rapidly Exploring Random Tree (RRT). 

1.3.1.3.1 Probabilistic Road Map (PRM) 

The probabilistic road map planner carries out sampling of the configuration space using 

an appropriate distribution, mostly uniform. From these samples, only those samples which are 

lying in free space as detected by collision detector are kept for further use and remaining are 

discarded. The samples lying in free space forms the nodes of graph. A local planner is used to 

connect each node of graph to a certain number of nearest neighboring nodes. For all those nodes 

which are connected to each other by local planner without any collision, an edge is added in the 

graph. Nodes of this graph are the land marks through which robot shall move and edges are the 
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roads which it would take to maneuver through these lands marks. It is very important to use 

such local planner which is very fast and simple without worrying about its failure. At most of 

the instances, the most suitable choice is straight line connector. The steps mentioned so far are 

part of construction phase of implementing PRM.  

Next step in implementation of PRM is to use graph generated in construction phase to 

find path from start point to goal. This step is called query phase. Start point and goal are added 

to graph and connected to it using local planner. Graph search method is then used to search path 

in terms of sequence of nodes from start point to goal. 

Variants of PRM have also been proposed by researchers. Lazy-PRM is a variant that 

delays detecting collision until very last moment of query phase [25]. Another variant is 

Obstacle-Based PRM that evaluates and suggest strategies for generating nodes in general and in 

difficult regions of configuration space in particular [26].     

1.3.1.3.2 Rapidly Exploring Random Tree (RRT) 

Rapidly Exploring Random Tree was first introduced in [27] as a data structure which 

was efficient and based on a sampling scheme. The algorithm is capable searching high 

dimensional space quickly and efficiently. The search space may have constraints as well. With 

reference to path planning these constraints could be algebraic which are because of obstacles 

and differential which are due to dynamics of the robot. The core idea behind this algorithm is to 

direct or bias the exploration in unsearched areas by sampling in those regions and incrementally 

pulling search tree towards goal.  

1.3.2 Characteristics of Global Path Planner 

After brief introduction of the global path planners it can be concluded that since method 

of planning of these global planners is mostly exhaustive and is based on complete information 

of the environment, therefore they manifest following strengths: - 

 Global planners generate optimized path. 

 These planners are efficient in finding path. 

Besides the advantages mentioned above, global path planner have some serious 

disadvantages and these are: - 

 Inability to plan or re-plan dynamically. 

 These methods fail in uncertain environment. 
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 They are not capable of avoiding collisions with unknown obstacles. 

 Performance is limited in presence of dynamic obstacles. 

 These methods fail in case of minor variations in layout of obstacles. 

1.3.3 Local Path Planners 

Reactive or local path planners, on the other hand require no prior knowledge of 

environment while planning a path. They plan their path dynamically through obstacles. Since 

their path to goal is guided on-line by information provided by their sensors, this is why these are 

good at collision avoidance and finding their path through dynamic or unknown obstacles. The 

path generated by these local planners however is more often than not is not optimal nor are 

these planners graded as efficient. Their main quality and strength is their robustness and 

flexibility in that they can avoid unknown or dynamic obstacles and can handle variations in 

environment. Most used and known local path planners are: - 

 Artificial potential field (APF) 

 Vector Field Histogram 

 Dynamic window approach 

1.3.3.1 Artificial Potential Field 

The method of virtually applying artificial potential fields to mobile robots for path 

planning was first introduced by Khatib [28]. This method suggests development of virtual 

potential fields by goal and obstacles present in environment. The field generated by goal is 

attractive whereas that of obstacles is repulsive. This is because of these forces that robot is 

guided to goal while avoiding obstacles in between its path as shown in figure 1.4.  

The method has great reactive and online planning capability and this is why it has been 

extensively used for obstacle and collision-avoidance. It is however pertinent to mention that it 

also has few shortcomings. Falling trapped in local minima is its most critical weakness. It is 

because of this weakness that robot in certain situations gets trapped and can not reach its goal. 

The other issue related with this approach is problem while moving through narrow corridors 

where because of repulsive forces robot starts oscillating and at times lose equilibrium.  
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Figure 1.4: Artificial potential field 

1.3.3.2 Vector Field Histogram (VFH)  

Vector field histogram (VFH) is a method that has the capability of dynamically 

detecting unknown obstacles and avoiding collision while maintaining its movement towards 

goal [29]. VHF uses two-dimensional Cartesian histogram which is updated online by the data 

received from the sensors of robot. Data reduction technique is then applied to this two-

dimensional histogram in two steps to eventually generate steering command signal to robot.  

In first step of data reduction, 2D Cartesian histogram is reduced to 1D polar histogram. 

The value corresponding to each sector in polar histogram represents density of obstacle in that 

direction. Higher the value, more is the obstacle density and vice versa.  

In second step of data reduction the each sector is evaluated and one the most suitable 

from the sectors having low polar density value is chosen and robot is directed to steer to chosen 

sector. 

Three steps involved in implementation of VFH are listed as follows [29, 30]: - 

 Develop a 2D Cartesian histogram to represent obstacles as in figure 1.5. 

 Considering an active window around robot current location and reduce Cartesian 

histogram to polar histogram of suitable resolution as in figure 1.6 

 By optimizing find velocity and steering angle. 
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Figure 1.5: 2D Cartesian histogram [30] 

 

Figure 1.6: 1D Polar histogram [30] 
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Figure 1.7: 1D Polar histogram as overlaying on 2D Cartesian histogram [30] 

VFH is a great method to minimize inaccuracies and errors from sensors data as this data 

is averaged while forming 2D Cartesian histogram which is further reduced in polar histogram. It 

is one of the reasons that instability as experienced by APF while moving across a narrow 

corridor is eliminated in this approach.  Moreover VFH does not suffer from issue of local 

minima however the greatest disadvantage of method is that it can lead the robot away from 

target location [30]. 

1.3.3.3 Dynamic Window Approach 

Dynamic window approach presented in [31] differs from other local or reactive path 

planners mentioned in previous paragraphs. It, as against APF and VFH, takes into account the 

kinematic and dynamic constraints of the robot i.e. velocity motion model. This approach 

assumes movement of robot in the form of circular arcs and each of these arcs is given by a pair 

of linear and angular velocities i.e. (v, ω).  Search space of velocity pairs is reduced by 

considering only those velocities which can be safely adopted. A velocity pair is safe if robot can 

stop before reaching the closest obstacle lying on arc corresponding to it. These velocities are 

called admissible velocities. An additional restriction is placed on admissible velocities by 

dynamic window and that is only those velocities which can be achieved in short interval of time 

considering acceleration of robot is reachable velocities.  

An objective function is used to evaluate the velocities from dynamic window. The 

objective function for the purpose is takes into account following three terms with adaptive 

weights [31]: - 

 Target heading which is an indication of movement towards goal. 
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 Clearance which is distance to closest obstacle on the arc corresponding to 

velocity pair being evaluated. 

 Velocity of robot. 

Dynamic window approach has manifested success by controlling a robot along a safe 

path at reasonably fast speed but it can face trap situations and does not guarantee to find a 

solution. 

1.3.4 Characteristics of Local Path Planners 

After having a brief introduction of different type of local path planners it is logical to 

mention that these planners are characterized by following strengths and advantages: - 

 Capable of planning and re-planning dynamically on the move. 

 Ability to detect obstacles and change direction in real-time to avoid collisions. 

 Effective in dynamic environment. 

 These methods are robust and can handle variations in environment.  

While reactive or local path planners have many strengths and advantages particularly 

with regards to online planning and performance in dynamic environment, they have some 

weaknesses as well:- 

 The path generated by these methods is not optimal. 

 These methods are not efficient. 

 These methods suffer from local minima so they are trapped in deal locks. 

 Inaccurate sensors and their inherent errors affect the performance of these 

methods. 

1.3.5 Motivation 

With sufficient background developed in this chapter about global and local path 

planners, their strengths and weaknesses it sounds logical to consider developing a hybrid planer 

by integrating a global and local path planner. These planners can be integrated to exploit 

advantages of each one of integrated planner and mitigate their disadvantages. 
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1.3.6 Research Objectives 

The research to develop a hybrid path planner by integrating global and local planner has 

following objectives:- 

 To optimize advantages and strengths of global and local path planners. 

 To mitigate shortcomings of integrated planners. 

 To make integration and connectivity of planners seamless. 

 To develop a hybrid planner capable of developing optimal path. 

 To ensure safety of robot by avoiding collision with obstacles. 

 To develop a planner capable of performing effectively and efficiently in static as 

well as dynamic environment. 

 To develop simple and easy to implement planner. 

 To develop a robust and flexible planner. 
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CHAPTER 2: LITERATURE REVIEW 

 
Like a light house that guides ships to home, literature review guides researchers through 

the length and breadth of field to discover and develop new ideas and methods. It is for the same 

reason that a great deal of research papers have been reviewed in detail to accomplish this 

research which lead to idea of developing hybrid path planner by integrating a global and local 

planner. Initially the literature was reviewed to identify an area of research and finalize research 

title and later attention was focused on understanding and analyzing research related to hybrid 

path planners. Although the breadth of literature reviewed is quite large but only the most 

relevant literature is reviewed in succeeding paragraphs.  

2.1 Hybrid of Distance Transform and Artificial Potential Field 

In 2002, L.C. Wang et al. presented the idea of developing a hybrid path planner by 

integrating distance transform method as global and artificial potential field as local planner [32]. 

They justified the need of developing hybrid planner on the argument that global path planners 

are good and capable of generating optimal path in static environment but are not capable of 

performing in environment with unknown or dynamic obstacles. On the other hand local 

planners are capable of handling dynamic environments with unknown or dynamic obstacles but 

are greatly inefficient specially in difficult and cluttered environments therefore a hybrid path 

planner capable of handling both kind of environments and with strengths of both planners may 

be developed.  

The research considered different planners both from global and local and finalized on 

using distance transform as global and artificial potential field as local planner. The distance 

transform method [33] was justified because it was easy to implement and unlike many other 

global planners it starts to find path from goal location therefore it has the flexibility of having 

any location in free space as start point. Besides above, another reason as mentioned in [32] was 

its potential to extend it for dynamic environments. Artificial potential field has been used as 

local planner because of its ease of implementation and integration without compromising on 

robustness of hybrid planner. 
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The hybrid planner proposed in research uses path generated by distance transform 

method as back bone and artificial potential field guides robot on this path through sub goals. 

Figure 2.1 indicates start point, goal and the path generated by distance transform. 

 

Figure 2.1: Path generated by distance transform method (global planner) [32] 

 

Hybrid path planner selects sub goals for artificial potential field by drawing a circle at 

current position of robot and intersection point of circle and global path are taken as sub goals. 

Figure 2.2 indicates sub goal at start point and figure 2.3 shows sub goal at an intermediate point. 

It is important to note that in cases where circle intersects global path at two locations, the 

intersection with lower distance value is selected. 

 

Figure 2.2: Selection of sub goal at start point [32] 
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Figure 2.3: Selection of sub goal at an intermediate point [32] 

 

The results of implementation as mentioned in [32] manifested that hybrid planner was 

able to avoid local minima which would have been otherwise encountered by artificial potential 

field in test environment. The robot was also able to navigate through narrow corridor using 

hybrid method however it is pertinent to mention that neither path generated by method is 

optimal nor any capability of hybrid planner with respect to dynamic or unknown obstacles have 

been manifested. 

2.2 Hybrid of Ant Colony Optimization and Artificial Potential Field 

In 2006, H. Mei et al. presented a hybrid ant colony optimization algorithm for path 

planning in dynamic environment [34]. The hybrid planner employs ant colony optimization as 

global and artificial potential field as local planner. The author discusses the reasons for the need 

of developing hybrid planner by mentioning the weaknesses and shortcomings of existing 

planners. Most of these reasons relate to inability of global planners to perform in dynamic 

environments and dead lock because of local minima for local planners as in case of artificial 

potential field. 

The research recommends some improvements in ant colony optimization method while 

integrating it with local planners. The first of suggested improvements is about initialization of 

pheromone value at the start of problem. It recommends that instead of assigning same value to 

all cells, pheromone value should be assigned on the basis of distance from obstacle i.e. if the 

distance of a cell from obstacle is more it should have higher pheromone value and vice versa. 
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            √             (2.1)



The second improvement is about modifying objective function by including  

obstacle-avoidance information and smoothness of path. The objective function is defined as 

follows and the path with smaller value is chosen as solution: - 
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              (2.2) 

 

 L is shortest path length from start point to goal 

  Lk is length of path of kth ant 

 T indicates number of the turns in respective path. 

 m indicates number of obstacles present in environment. 

 di is the distance between the ith obstacle and path of kth ant 

 W terms are weights. 

 

Moreover, the method also suggests change in the way pheromone value of cells is 

updated. It suggests that instead of updating all or the best solution, best one third of all solutions 

should be updated to ensure flexibility and faster convergence. The method proposed in [34] uses 

ant colony optimization method with suggested improvements to generate path from start point 

to goal.  

Local path planner in this hybrid approach is called only when needed i.e. to avoid 

collision with a dynamic obstacle which is located on the path planned by global planner or 

likely to interfere with the robot on its pre-planned path.  

The local planner which is artificial potential field in this case has also been modified. 

The first modification is about adding another attractive force other than that of goal. This force 

is because of pheromone concentration in the environment. After modification, forces acting on 

robot are given as follows:- 
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Where Fpheromone is proportional to concentrated pheromone and distance from closest 

obstacle and is given by 

 

                                   (2.4) 

 

The method also introduces use of taboo table to restrict robot from visiting already 

visited cells and thus it emphasizes that because of global information added into artificial 

potential function in the form of pheromone concentration and use of taboo table, the proposed 

method is not likely to be trapped into local minima. 

The success of the method has been manifested by implementing it in a simple and a 

complex environment. In figure 2.4, the “×”represents the path generated by global planner 

and small “ο” represent the path actually taken by robot after interference by local planner. 

 

Figure 2.4: Hybrid planner implemented in simple environment (left) complex 

environment (right) [34] 

On the basis of simulation results, it is claimed that proposed hybrid method can find a 

near optimal solution while avoiding collision with obstacles present in environment however as 

seen in case of simple environment, a more optimal path is still possible. 
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2.3 Hybrid of Voronoi diagram and D* Algorithm 

In 2012, Ming-Chih Lu et al. proposed hybrid path planning incorporating global and 

local search for mobile robot [35]. The method proposed to use voronoi diagram as global 

planner to generate a global path which was to later serve as backbone path for the map.  

D* algorithm is used to find shortest path from start point to goal while using path generated by 

voronoi diagram. 

In this hybrid scheme, n numbers of nodes are selected adjacent to both start point and 

goal. From these adjacent nodes, two optimal nodes corresponding to start point and goal are 

chosen. Optimality of nodes is ascertained by an evaluation function that minimizes the distance 

from start point to goal through nodes being evaluated. Later, D* algorithm is used to find 

shortest path from optimal node corresponding to start point and to that of goal and subsequently 

A* algorithm is used to find shortest path to connect these corresponding nodes to start point and 

goal respectively. 

The proposed algorithm has been implemented in an environment along with D* 

algorithm and generalized voronoi diagram for comparison. The proposed algorithm is time 

efficient and maintains maximum safety distance from obstacles as shown in figure 2.5. 

 

Figure 2.5: D* algorithm (left) voronoi diagram (center) and Hybrid (right) [35] 

 

2.4  Hybrid of Artificial Potential Field and Simulated Annealing 

In 2006, Qidan Zhu et al. proposed artificial potential field approach with simulated 

annealing [36]. The research is about getting rid of the greatest shortcoming of artificial potential 

field i.e. trapping in local minima, by integrating it with simulated annealing.  
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The research identifies local minima and other problem associated with artificial potential 

field as follows: - 

 Problem of passing through narrow corridors in between closely located 

obstacles. 

 Problems in maintaining equilibrium in narrow spaces and resultant oscillations 

and closed loop movements.  

 Problems in reaching goal located near obstacles. 

 

The research proposes to compliment artificial potential field with simulated annealing 

method to escape from local minima traps. Simulated annealing is applied to rescue robot only 

when it has been trapped. The research lists following steps of simulated annealing algorithm for 

local path planning: - 

 Set x = S (where x is trap location and is set as start point for simulated annealing 

method).  

 Choose parameters for annealing; Set T0 sufficiently high and set T = T0. 

 While T ≥ Tf (minimum temperature allowed for cooling) and still trapped, do: 

 Choose a random neighbor x‟ = x + Δx (Δx is uniformly distributed 

random distribution).  

 Calculate U(x'), the potential at x‟.  

 Set ΔU =U(x') −U(x).  

 If ΔU ≤ 0, set x = x‟ else set x = x' with probability P = e 
– Δ/ kT 

where k is 

Boltzmann constant. 

 If U(x') ≤U(x) , local minima has been escaped  

 If not escaped, then return failure, else escape. 

 

The method has been implemented in 2D static environment with convex polygonal 

obstacles and the results show that in circumstance where artificial potential field got trapped in 

local minima simulated annealing successfully helped robot to escape from it. It is however, 

important to note that method has not been manifested in the environment having unknown or 

dynamic obstacles. Figure 2.6 shows an environment in which robot got trapped in local minima 

while using artificial potential field whereas for the same environment and same start point and 



23 
 

goal, robot successfully reached goal while employing simulated annealing. The same kind of 

situation is shown in figure 2.7 but in a different environment. 

 

Figure 2.6: APF trapped in local minima (left) Simulated annealing rescued (right) [36] 

 

Figure 2.7: APF trapped in local minima (left) Simulated annealing rescued (right) [36] 

 

2.5 Hybrid of Steering Control and Improved Distance Propagating 

In 2012, Yan, Zh et al. proposed a hybrid path planner based on steering control and 

improved distance propagating [37]. The method is an attempt to integrate obstacle avoidance 

capability with optimization capability of local and global planners respectively. The method 

employs a variant of distance propagating method [38]. It uses grid points instead of grid for the 
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reasons [39]. Among others, the greatest advantage of using grid points in this method is the ease 

of implementation and integration of two planners.  

The proposed improved distance propagating method integrates obstacle information as 

against [39] which does not account for obstacles while planning path. The difference of results 

is manifested in implementation as shown in figure 2.8 where it can be noticed that by 

accounting for obstacle information, the path is kept at a distance from obstacles instead of going 

very close to them. 

 

Figure 2.8: Distance propagating (left) Improved distance propagating (right) [37] 

 

A steering control approach is proposed in the research for local planning in unknown 

cluttered environment. The method processes the range scanning data in three steps as follows: - 

 In first step, range histogram is created from sensor data. 

 In second step, histogram is converted into binary histogram based on suitable 

safety distance required to be maintained from obstacles. 

 In third step, obstacle free areas are found as candidate steering directions. 

 

The set of candidate directions is then evaluated as in [29] however, a modified 

evaluation function is proposed in this research for evaluation. After selection of steering angle, a 

suitable angular velocity is selected on the basis of rules proposed in this research. Besides above 

mentioned controls, an additional control strategy has also been proposed in the research which 

takes into account the width of robot as well and it ensures that robot maneuvers through 

obstacles safely. 
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The proposed method has been implemented in three different scenarios as shown in 

figure 2.9, 2.10 and 2.11. In figure 2.9, environment is simple and known priori and the proposed 

method finds a near optimal path. In figures 2.10 and 2.11 the environment is little complex but 

there is a difference in both these environments as in former case there is no unknown obstacle 

whereas in later case few unknown obstacles are placed on path of robot. The results show that 

proposed method safely guides robot to goal in both cases. It is, however, pertinent to mention 

that no dynamic obstacles are present in any scenario. 

 

Figure 2.9: Simple environment [37] 

 

Figure 2.10: Complex environment without any unknown obstacle [37] 
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Figure 2.11: Complex environment with unknown obstacles [37] 

 

2.6 Summary 

From the literature review presented in this chapter, it is evident that many attempts have 

been successfully made to develop hybrid path planners by integrating different existing 

planners. While each of the proposed hybrid planner has been successful in improving some 

aspects of path planning or resolving some issues, there is still room for further research in this 

area particularly with the focus to improve upon optimality of path and robustness vis-à-vis 

unknown and dynamic obstacles.  
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CHAPTER 3: SELECTION OF GLOBAL AND LOCAL PLANNER  

 
While developing a hybrid path planner, it is of prime importance to select suitable path 

planners from available global and local path planners. The selection is mainly dictated by the 

research objectives already narrated in Chapter 1. Among various considerations while choosing 

a planner, the most important is completeness. A planner must be able to find a solution if there 

exists any or it should return failure in reasonably limited time and it is particularly important for 

global planner. The application and the environment in which a planner has to be employed is 

also a major deciding factor. A path planner may be exceptional in a static environment by all 

measures but could disastrously fail in a dynamic environment. A static and deterministic 

environment could merely be a dream in real life. In real world an environment, at best, could be 

predictable that too with limited degree of certainty, therefore a planner must be robust enough to 

perform effectively in real world. Besides considerations mentioned above, there are many other 

measures to gauge the performance and suitability of path planners.   

 

3.1 Performance Measures for Path Planners  

There are many different measures and bench marks for gauging the performance of a 

path planner. Some of the important measures are discussed in succeeding paragraphs [40]. 

3.1.1 Path Length 

Path length is one of the most important parameter to gauge the performance of a planner 

as so many other parameters are directly proportional to path length. Ideally length of path from 

start point to goal, found by a planner should be shortest possible however due to different 

limitations, it is not always possible for a planner to find a shortest path so shorter is the better.    

3.1.2 Computation Time 

Total time taken by an algorithm in finding a path is its computation time and a serious 

constraint. The constraint really gets stringent for planners to be used for on-line path planning or 

for those being employed in environment with dynamic obstacles. Computation time of an 

algorithm depends upon: -  
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 Complexity of algorithm. 

 Number of calls to math library. 

 Capability of hardware. 

 Complexity of environment. 

 Type of environment i.e. static or dynamic. 

 No of obstacles. 

 Type of obstacles. 

 Density of obstacles. 

 Velocity of dynamic obstacles. 

3.1.3 Computation Time per Unit Travelled 

Computation time per meter travelled is a measure that weighs and balances path length 

with computation time taken to find that path. The advantage of finding shorter path is set void 

by this measure if time taken in finding this path is more.     

3.1.4 Orientation Changes 

The number of times robot has to change its orientation on its way from start point to 

goal while following a path should be as low as possible. This measure relates to quality of path. 

Time taken in traversing a given path by a robot is also affected by number of changes in 

orientation as each change results in deceleration. A longer path requiring fewer turns may be 

traversed in shorter time as compared to a shorter path with more turns. The changes in 

orientation dictated by hardware are not considered in this measure [40].     

3.1.5 Robustness 

Robustness of an algorithm is its capability to perform effectively and efficiently in the 

presence of undesirable errors and unforeseen and unpredictable changes in environment. No 

matter how good an algorithm may be by any measure, it would not be able to perform 

effectively in ever changing and unpredictable real world environment if it lacks robustness. 
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3.1.6 Memory Requirement 

The memory required by an algorithm to run should be as low as possible. Like other 

hardware requirements, memory is also eventually translated into cost and load, which is always 

a concern and must be kept as low as possible. 

3.1.7 Simplicity 

Simplicity is a measure of ease of implementation. Ease of implementation includes ease 

of architecting the software part and writing instruction to implement it. 

3.2 Additional Considerations for Selection of Planners for Integration 

Basing on parameters listed in previous paragraphs, any algorithm can graded and best 

one can be selected for implementation in a given environment for a particular application. The 

selection of planners from available global and local planners for integration however, demands 

subtle and additional considerations. The integration of these planners should exploit and 

maximize advantages and merits of each one of them and mitigate their shortcomings. These 

additional considerations are given in succeeding paragraphs. 

3.2.1 Need for Integration 

The most important factor to consider before selecting planners is answer to question that 

why an integration of planners is needed? This is basically about exactly knowing and 

understanding the need. It is also about precisely comprehending the environment for which a 

hybrid planner is being designed by integrating existing planners. Development of a hybrid 

planner is like finding a customize solution by balancing various parameters and therefore due 

attention is required to be given to following: - 

 Understanding of environment including static and dynamic obstacles and 

uncertainties. 

 Desired characteristics of required path i.e. optimal, safe, involving least number 

of orientation changes etc. 

 Desired characteristics of hybrid planner i.e. complete, time efficient, hardware 

requirement etc. 

 Acceptable compromises. 
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3.2.2 Ease of Integration 

While considering two different planners for integration the most important factor after it 

has been established that they serve the requirement is the ease of their integration. Ease of 

integration is highly desirable and other factors listed in succeeding paragraphs are also dictated 

by it therefore an effort should be made two select planners which can be readily integrated 

without any additional computation or hardware burden. 

3.2.3 Seamless Connectivity 

The integrated planners should be so seamlessly connected that at no point during 

implementation and running of resultant hybrid planner, switching from one to other or vice 

versa is noticed. The path generated by hybrid planner should be continuous and should be 

continuously updated without any interruptions in case of on-line path planning. 

3.2.4 Additional Parameters and Computational Requirement 

The ease of integration is eventually translated in this requirement. If two planners can be 

readily integrated then definition of additional parameters and computation shall not be required. 

3.2.5 Additional Hardware Requirements 

Requirement of additional hardware should be considered and must be weighed vis-à-vis 

effectiveness and performance hybrid planner. 

3.2.6 Synergic Effect 

Synergic effect is an effect arising or resulting from combination of two or more planners 

and is greater than the sum their individual effects. Hybrid planner developed by integrating two 

different existing planners, therefore, should be superior to each of integrated planners by 

performance measure listed in the beginning of this chapter. Apart from satisfying performance 

measures, it must be able to perform to desired standard for the application it has been 

developed. 

3.3 Selection of Global and Local Planner  

Basing on background developed regarding global and local path planners and their 

characteristics in introductory chapter of this thesis, research objectives and factors considered 
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earlier in this chapter, it is logical to conclude that a global path planner which is complete and 

generates optimal path efficiently can be integrated with a local path planner which has the 

capability to perform in dynamic environment. Optimality of path and capability to perform in 

dynamic environments are core research objectives. Basing on these requirements and factors 

discussed earlier in this chapter it is logical to consider visibility graph and artificial potential 

field from global and local path planners respectively for integration. Visibility graph is known 

for its optimal path and artificial potential field has established dynamic performance and on-line 

planning capability. 

3.3.1 Visibility Graph 

After reasons discussed in previous paragraphs, it is logical to use visibility graph among 

global path planners when distance involved from start point to goal is major concern. Visibility 

graph seems to be best choice for two reasons. Firstly; it is complete and ends up finding a path 

if there exists any secondly; it provides an optimal solution in terms of distance traversed by the 

robot to reach its goal [41]. Visibility graph is implemented in configuration space that is work 

space obstacles are swollen by the size of robot and boundary of work space is squeezed in. After 

these changes in work space, robot is assumed to reduce to a point in configuration space [41]. 

After transformation of work space into configuration space, visibility graph is generated. 

Visibility graph lists all vertices visible to each other. While generating visibility graph, each 

node or vertex of obstacle is considered one by one so as to evaluate what all other vertices of 

configuration space are visible to it. 

A* algorithm is, then used to find shortest path efficiently from start point to goal through 

the nodes of visibility graph. A* algorithm is the best choice because of following two  

reasons [42]: -  

 A* is admissible, that is it finds the shortest path from start point to goal. 

 A* is minimal, that is it searches minimum number of nodes to find solution. 

 

Inputs to A* algorithm are start node, goal node and visibility graph, as already found in 

previous step. A* algorithm being based on heuristic, requires a heuristic to be defined for 

selecting which node to move to from a given home node. The heuristic should be so defined that 
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in our problem of finding shortest path to goal, distance traveled from start point to goal is 

minimized. 

In this research it is assumed that basic step of transforming work space into 

configuration space and reducing robot to a point has already been performed [32]. Figure 3.1 

shows a configuration space of 300 x 260 with its lower left edge on the origin. It has three 

disjointed concave polygonal obstacles tagged as A, B and C. The vertices of these obstacles are 

numbered from lower left corner to its adjacent vertex in counter clockwise direction. The 

obstacles A, B and C have 1-24, 25-30 and 31-36 vertices respectively. Some of these vertices 

are also indicated for ease of reference. Figure 3.1 also indicates start point (105, 235) as red dot 

and goal (25, 35) as green. This configuration space features concave obstacles to highlight the 

problem of local minima which shall be emphasized later part of this thesis. 

 

Figure 3.1: Configuration space 

 

After having configuration space available, visibility graph can be generated using plane 

sweep algorithm [10]. A* search algorithm is used to find the shortest path from start point to 

goal through nodes of visibility Graph. Figure 3.2 shows the path in green from start point to 

goal searched from visibility graph using A * algorithm. The path starts from start point, moves 

through node 33, 13, 12, 11 and finally reaches goal. It is worth noting that path is not only the 

shortest possible in given configuration space but also unique, as well. As far as quality of path is 

concerned it is well established that visibility graph always provides shortest path.  It is however, 
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worth noting that while traversing from node 13 to node 11, robot moves along / on the edges of 

obstacles. The question is how safe or unsafe this proposition is from the perspective of robot 

safety? In many applications, the main strength of visibility graph, i.e. optimality of path is 

abandoned because of safety concerns. From this point onward, begins the main essence of this 

research and that is to propose a simple yet effective solution which not only ensures safety of 

robot while moving along edges of obstacles but also does not compromise on optimality of path 

beyond a certain degree. 

 

Figure 3.2: Path generated by visibility graph 

 

 The solution being proposed in this thesis is based on the idea of complimenting 

visibility graph with a local path planner that guides the robot from node to node on path 

generated by visibility graph. The hybrid technique, developed by integrating visibility graph 

with a local planner is aimed at finding solution to safety concerns. The fundamental idea that 

could be used to ensure safety of robot along obstacle edges is to repel it from obstacles just as 

much as required to ensure safety without compromising much on its optimality. The solution 

lies in using a simplified potential function. 

3.3.2 Artificial Potential Field 

Artificial potential field is well established solution for path planning problems requiring 

reactive capability. It is however, another established fact that artificial potential field suffers 
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from problem of local minima. The method, because of using gradient decent, ends up at critical 

points which may not be goal. Robots using these methods, while navigating through obstacles, 

get stuck at local minima and can not reach goal. To overcome local minima problem, methods 

have also been proposed which may help potential field planner to escape from local minima 

however hybrid method proposed in this thesis not only overcomes local minima problem 

associated with artificial potential field but also make generates a near optimal path. 

The potential function being used here is rather over simplified. It is, like many other 

potential functions, a combination of attractive and repulsive potentials as give in equation 3.1. 

F netF attractive F repulsive    

3.3.2.1 Attractive Potential 

The attractive potential is quite simple. If robot knows its current position and also knows 

its target location, i.e. location of goal, it can be attracted towards goal with gradient potential 

U attractive ζ (q – q goal ) / d(q, qgoal)    

The terms in equation 3.2 are explained as follows:- 

 U attractive is attractive gradient. 

 ζ is scaling factor. 

 q is current configuration of robot. 

 q goal is goal configuration. 

 d(q, qgoal)  is Euclidian distance between robot and goal configuration.  

 The term, ζ / d(q, qgoal)  in equation 3.2 serves as a scaling factor. It scales U 

attractive down when robot is far away from goal, and when it is closer, gradient is 

scaled up thus ensuring constant velocity of robot throughout the course. 

 

The attractive gradient in equation 3.2 is directed in opposite direction of goal, so in order 

to move towards the goal the robot has to move in direction opposite to this gradient. 
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3.3.2.2 Repulsive Potential 

The repulsive function has been simplified for the purpose of integration. Instead of 

considering cumulative effect of repulsive forces of all obstacles in configuration space, it just 

takes into account the effect of nearest obstacle. The repulsive gradient is given by 

  

 U repulsive =   (q – c) / d (q,c),     for d(q,c) < d
*
     (3.3) 

 

The terms in equation 3.3 are explained as follows:- 

 U repulsive is repulsive gradient. 

  is repulsive gain. 

 q is current configuration of robot. 

 c is the closest point on the edge of nearest obstacle. 

 d (q,c) is Euclidian distance from robot to point c 

  d
*
 is minimum distance of robot from obstacle for repulsive forces to take effect. 

 

The repulsive gradient in equation (3.3) points away from the nearest point c so by 

moving along this direction, the robot moves away from obstacle. 

 

 

Figure 3.3: Path generated by proposed artificial potential field alone 
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In figure 3.3, a point robot is tasked to move from start point (105, 235) shown in red to 

node 11 (170, 20) using proposed potential function.  The robot is however, stuck at local 

minima at point (170, 102.98) and fails to reach goal. Figure 3.3 emphasizes upon two issues 

related with potential function. Firstly it fails to find solution because of local minima secondly; 

if, at all, it succeeds in reaching goal, the path is not optimal in terms of distance. It is however 

worth noticing that artificial potential field always keeps robot away from obstacles and at no 

point throughout the course of maneuvering through obstacles, it touches any obstacle or comes 

closer than a defined distance. The best part is about artificial potential field is that safety 

distance is a user defined parameters and can be set to suit the safety requirements and 

applications. 

Apart from providing flexibility to user for selecting and defining safety distance, 

potential function has many other flexible parameters which can be selected and tuned to suit 

varying requirements of applications and environment. There are options available for attractive 

potential function. One can choose from quadratic or conical potential function to be used for 

generating attractive potential filed. Similarly there is a choice in deciding whether to consider 

repulsive forces of all the obstacles or of only those in a given range. Another choice could be to 

consider repulsive force of only nearest obstacle or just nearest obstacle in one scenario or 

multiple obstacles in another scenario. Reactive capabilities of algorithm are already well 

established. Artificial potential function is easy to implement and less demanding for 

computational hardware. Path generated by artificial potential field is also smoother than most of 

other algorithms. The only disadvantage of the algorithm in our present context of developing a 

hybrid path planner is its inability to deliver in certain situations because of local minima for 

which a solution shall be proposed in succeeding chapter. 

3.4 Summary 

From the discussion in this chapter, it is evident that visibility graph and artificial 

potential field are the most suitable choices from global and local planners respectively for the 

purpose of integration. It is therefore, a hybrid path planner integrating these two is proposed in 

succeeding chapter. 
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CHAPTER 4: HYBRID PATH PLANNER – VISIBILTY GRAPH AND 

ARTIFICIAL POTENTIAL FIELD 

 
The path planning methods global as well as local have their strengths as well as 

weaknesses. The hybrid of these techniques however, optimizes their strengths and mitigates 

their weaknesses. This hybrid technique is integration of visibility graph and potential function 

described in previous chapter. Shortest path generated by visibility graph serves as a backbone to 

this technique and potential function compliments it by keeping robot sufficiently away from 

edges of obstacles to ensure its safety. Since robot is moving from node to node on path 

generated by visibility graph, the path despite use of potential function is still near to optimal. 

The problem of local minima is also mitigated to single identified situation. The solution to this 

situation is also proposed in succeeding paragraphs.   

 

4.1 Architecture 

The hybrid path planner being proposed here is basically composed of a global and local 

path planner. In this thesis visibility graph is chosen to be used as global path planner and 

artificial potential field as reactive / local planner. 

Hybrid path planner requires two inputs from environment. First input is a global map 

composed of static and immoveable obstacles. It is important to note that known dynamic 

obstacles are not to be included in this map as these would seriously affect the optimality of path 

and efficiency of planner. The second input from environment is sensing of local environment of 

robot through it laser sensors. Global map of environment is provided to global component of 

hybrid path planner i.e. visibility graph and local sensor data is provided to local path planning 

component of hybrid planner i.e. artificial potential field. 

Basing on global map, visibility graph by employing A* search, efficiently generates an 

optimal path for robot in current environment from start point to goal. This optimal path is, then, 

fed to local path planner which uses this path as reference for guiding robot in steps from node to 

node to eventually reach its goal. The architecture of proposed hybrid planner is shown in  

figure 4.1. 
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Figure 4.1: Architecture of proposed hybrid planner 

 

Figure 4.1 also shows that artificial potential field being local component of hybrid path 

planner is provided with two inputs. First input is one time static input which is reference path 

generated by visibility graph whereas second input is continuously changing local map around 

robot which is updated simultaneously with the change in robot configuration and changes in 

environment. Both of these inputs are very important for the ultimate performance of hybrid path 

planner. Utilization of reference map by artificial potential field ensures that while navigating 

through dynamic obstacles and dynamically re-planning to avoid obstacles optimality of path is 

not compromised beyond minimum essential. Local sensing is the core input for artificial 

potential field as it provides reactive capabilities to this local planner. Therefore basing on these 

inputs local planner generates a near optimal path while avoiding collision with unknown and 

dynamic obstacles. The local sensing and reactive capability of local planner also make hybrid 

planner robust enough to negotiate and handle any disturbances or variation in layout of 

immoveable obstacles. 
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4.2 Methodology and Description  

The path generated by visibility graph and A * algorithm is a sequence of nodes / vertices 

starting from start point, traversing through n nodes / vertices of obstacles and terminating at 

global goal. These nodes of path are passed to potential function as start points and sub-goals one 

by one. On reaching first sub goal, potential function takes it as start point for next step and next 

node in path is fed into potential function as new sub-goal.  

Let Path visibility graph = [SP, Ni , Nj , Nk , … Nn , Goal] where  

 SP is global start point. 

 Ni is first node after SP. 

 Nj, Nk, … is sequence of nodes in between. 

 Nn  is last node before global goal. 

 Goal is global goal.  

 

In current case, SP and Ni are start point and sub-goal respectively for first step of 

potential function. For second step, Ni becomes start point and Nj becomes sub-goal. This process 

continues until robot reaches global goal. For a path involving n number of nodes in between SP 

and Goal, (n+1) steps, local start point and sub-goal for each step is listed in  

table 4-1. 

Table 4-1: Local start point (LSP) and sub-goals for steps of local planner (APF) 

 

Step LSP Sub-goal 

1  SP  N
i
  

2  N
i
  N

j
  

3  N
j
  N

k
 

..  .. .. 

…  … …  

n + 1 N
n
  Goal  
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4.2.1 Use of Tolerance -  

It is important to note that since nodes of path are actually vertices of obstacles we do not 

want our robot to touch; therefore we define a region of tolerance as shown in figure 4.2. The 

local planner assumes that robot has reached its goal when it reaches in region of tolerance. 

Introduction of tolerance in reaching goal is also necessary for the purpose of convergence. 

 

Figure 4.2: Use of tolerance -  

4.2.2 Local Start Point for Subsequent Steps 

In proposed method, potential function terminates when robot reaches within defined 

region of tolerance to sub-goal assuming that it has reached its goal therefore the last 

configuration of robot at which potential function terminates, is used as start point for next step 

as indicated in figure 4.3. It is important not to use nodes as start points to ensure that robot does 

not touch any node at any time to ensure its safety. The use of last configuration of robot as start 

point is also necessitated by the need of continuity in path. 

 

Figure 4.3: Last configuration of robot as local start point for subsequent steps of APF 

4.2.3 Addressing Local Minima 

Local minima problem, deeply associated with artificial potential field employed in 

environment with concave obstacles, is not likely to arise in proposed hybrid technique except 

for special situations given below: - 



41 
 

xs – xg 0     

ys – yg 0     

 

Let local start point  be LSP (xs, ys), sub-goal be SG (xg, yg) and last configuration of robot 

at which potential function terminated in previous step be q (xq, yq) then if any of the conditions 

given in equation 4.1 or 4.2 is satisfied, robot is stuck at local minima and can not reach  

its SG. Local minima conditions are also indicated in figure 4.4. 

 

Figure 4.4: Local minima conditions 

 

The issue can be simply resolved by introducing a check before feeding local start points 

and sub-goals to potential function and if any of the conditions give in equation 4.1 or 4.2 is true, 

potential function can be directed to a pre sub-goal and it is only after reaching this  

pre-sub-goal, that robot is directed towards sub-goal. Pre-sub-goals in such cases are found as 

follows:- 

U local(LSP – q)     

pre-sub-goal LSP + U local     

 

 

Figure 4.5: Introduction of pre-sub-goal to avoid local minima 
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Now robot moves from q to pre-sub-goal first as shown in figure 4.5 and then it moves 

from pre-sub-goal to goal. The above mentioned step conveniently resolves the issue of local 

minima for intermediate cases however, for cases involving global start point and goal it is 

assumed that these are neither a vertex of obstacle nor lie on any edge. This should be specially 

ensured for global start point. 

4.2.4 Summary 

This chapter introduces the proposed hybrid path planning. In the beginning the 

architecture of proposed planner is presented and then the methodology. This chapter also 

explains the technique in detail along with reasons so as to why a particular step was needed. 
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CHAPTER 5: IMPLEMENTATION AND RESULTS  

 
This chapter deals with the way proposed hybrid path planner has been implemented to 

validate and manifest its capabilities. It also provides the results of implementing proposed 

hybrid path planner in five different scenarios in a reasonably complex environment. Moreover, 

it has also been implemented in environments as used in [37] to benchmark its performance. 

5.1 Implementation 

The tools and parameters which have been used in implementation of proposed hybrid 

path planner are listed in following paragraphs. 

5.1.1 Implementation Tools 

Implementation tools and their specifications are as follows: -  

 MATLAB R2013a. 

 32-bit, Intel® Core™ 2 Duo system. 

 2.20 GHz processor. 

 4.00 GB Ram. 

5.1.2 Implementation Parameters 

Parameters used for implementing artificial potential function as component of hybrid 

path planners for test scenarios are listed below: -   

 Tolerance  = 4. 

 Range of repulsive function d
* 

= 3. 

 Attractive gain ζ = 2 (inversely scaled with d(q, qgoal)). 

 Repulsive gain   = 2.  

5.1.3 Implementation Scenarios 

Hybrid path planner has been implemented to prove its capabilities in five different test 

scenarios and three benchmarking scenarios. Each of the test scenarios have been deliberately 

conceived for testing hybrid planner so as if the research objectives and expectations from the 

planner have been met or otherwise.  It is important to highlight that configuration space for all 
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the test scenarios is the same as in [32] and so are the start point and goal however for 

benchmark scenarios it is different and has been taken as in [37]. The motive behind keeping the 

same environment, start point and goal for test scenarios is to set a standard for comparison and 

gauging performance in different scenarios. The detail of each scenario along with the research 

objective it tests is given in succeeding paragraphs. 

5.1.3.1 Test Scenario No. 1 

In this scenario, the same configuration space is used as already described. It is important 

to mention that it is a static environment where all obstacles are known priori and no dynamic 

obstacle is present. This scenario tests whether hybrid path planner can ensure safety of robot by 

keeping it away from vertices and edges of static obstacles without compromising much on 

optimality or not.  

5.1.3.2 Test Scenario No. 2 

In this scenario configuration space is the same as in previous one. All obstacles are 

known priori and no dynamic obstacle is present however obstacle „C‟ has been disturbed 3 units 

along horizontal and 1 unit along vertical axis. The scenario is conceived to test robustness and 

reactive capability of path planner while keeping the optimality of path.  

5.1.3.3 Test Scenario No. 3 

Configuration space is the same as in previous cases. No dynamic obstacle is present in 

environment however, while moving from node 33 to 13 robot encounters an unknown obstacle 

right on the reference path generated by global component of hybrid planner. The scenario tests 

robustness and reactive capability of planner and also gauges increase in distance traveled while 

negotiating this unknown obstacle.  

5.1.3.4 Test Scenario No. 4 

Configuration space is the same as in previous cases however a dynamic obstacle is 

introduced right on the path generated by global planner. The dynamic obstacle follows the slope 

of reference path but in opposite direction of robot movement i.e. from node 13 to node 33. The 

step size of obstacle is 1.05 units per unit time (0.92 along horizontal and 0.5 along vertical axis). 



45 
 

The scenario tests capability of planner to avoid dynamic obstacles and ability to perform in 

dynamic environment.  

5.1.3.5 Test Scenario No. 5 

This scenario is same as scenario No. 4 apart from the movement of dynamic obstacle. In 

this scenario step size of obstacle is same i.e. 1.05 units per unit time however it follows a 

different slope i.e. translation along horizontal axis is 0.5 and along vertical axis it is 0.92. 

Purpose of the scenario is the same as in previous one. 

5.1.3.6 Benchmarking Scenarios 

To validate and benchmark the performance of proposed hybrid path planner it, has also 

been tested in two different environments with three different situations. Implementation and 

environment of [37] has been set as benchmark to gauge the performance of method proposed in 

this thesis in comparison with one proposed in [37]. 

 

5.2 Results 

The results obtained during development of planner and its implementation can be 

grouped in two categories. First category of results is in which some issues regarding hybrid 

planner were highlighted and resolved during course of development. This category is named as 

accidental results. The other category of results is the one in which fully developed path planner 

was tested in test scenarios. Both categories of results are presented in succeeding paragraph 

under different headings. It is also relevant to mention that in all figures of simulation green line 

indicates the reference path generated by global component and red circles indicate path 

generated by reactive component of hybrid planner. 

5.2.1 Accidental Results 

There are two different unexpected results encountered during course of developing 

hybrid path planner which are worth mentioning. Both of these results featured local minima 

issue which has been highlighted along with its solution in previous chapter. The first one was 

encountered while robot got stuck at point (210, 61.72) while moving from node 13 to 12 as 

shown in figure 5.1. It is because that from node13-12, there is no gradient along horizontal axis. 
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The same problem as shown in figure 5.2 is faced while moving from node 12-11 in which 

gradient along vertical axis is zero. 

If the technique of introducing pre-sub-goal given in previous chapter is employed, the 

robot does not get stuck in local minima and reaches successfully to node 12. It is however, 

again stuck at point (212.62, 20) as gradient between node 12 and 11 along vertical axis is zero. 

The problem however, is resolved for both steps by introducing pre-sub-goal technique given in 

previous chapter. It is based on this result that pre-sub-goal technique was developed for hybrid 

path planner. 

 

Figure 5.1: Hybrid planner (without using pre-sub-goal technique) stuck at local minima around 

node 13  
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Figure 5.2: Hybrid planner (without using pre-sub-goal technique) stuck at local minima around 

node 12  

 

5.2.2 Experimental Results 

The results of implementing proposed hybrid path planner in all test scenarios are really 

encouraging. In all cases hybrid path planner successfully reached its goal while avoiding 

collision with all the obstacles. Besides avoiding collision with static, disturbed, unknown or 

dynamic obstacles, the robot never came in 1 unit range of any obstacle at any time throughout 

its course in reaching goal.  

5.2.2.1 Results – Test Scenarios 

Table 5-1 lists shortest possible path, path length in each case, percentage increase with 

respect to shortest path and time taken for the test scenarios N0. 1 to 5. 

 

Table 5-1: Test results in 5 test scenarios 

 

Test Scenario Path Length %age Increase in Path Length Time 

Shortest possible Path 430.43 - - 

Scenario No. 1 447.19 3.89 2.1  

Scenario No. 2 449.39 4.40 2.98  
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Scenario No. 3 455.93 5.92 3.42 

Scenario No. 4 453.99 5.47 7.91  

Scenario No. 5 448.33 4.15 8.63  

 

Figure 5.3 displays path taken by robot by adopting hybrid planner in test scenario No. 1. 

It is obvious from figure the robot slightly deviates from reference or optimal path and that too 

only when necessary to ensure its safety. In areas away from obstacles it almost precisely follows 

the reference path. 

Figure 5.4 displays path taken by robot in test scenario No. 2 where it successfully 

respond to avoid displaced obstacle. It is also worth highlighting that while avoiding this 

displaced obstacles increase in distance from shortest path is only 4.40 percent. 

Figure 5.5 displays path taken by robot in test scenario No. 3 where it successfully avoids 

an unknown obstacle encountered right on the reference path. The increase in distance in this 

case is 5.92 percent. 

 

Figure 5.3: Hybrid planner in test scenario No. 1 
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Figure 5.6 displays path taken by robot in test scenario No. 4 where it successfully 

negotiated a dynamic obstacle moving right against its direction on reference path. Increase in 

distance while avoiding this dynamic obstacle is only 5.47 percent. 

  

 

Figure 5.4: Hybrid planner in test scenario No. 2 

 

 

 

Figure 5.5: Hybrid planner in test scenario No. 3 
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Figure 5.7 displays path taken by robot in test scenario No. 5 where it successfully 

negotiated another dynamic obstacle. Increase in distance in this case is 4.15 percent. 

 

 

Figure 5.6: Hybrid planner in test scenario No. 4 

 

 

Figure 5.7: Hybrid planner in test scenario No. 5 
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5.2.2.2 Results – Test Scenarios 

Results of three different benchmarking scenarios are presented in figure 5.8 to figure 

5.11. It is however important to mention that location of obstacles, their size and location of start 

point and goal have been approximated by using images as this detail was not available in [37]. 

In above mentioned figures path by red circles is path proposed by [37] and path in blue is that of 

hybrid planner proposed in this thesis. 

  

Figure 5.8: Comparison with hybrid planner of [37] 

 

Figure 5.9: Comparison with hybrid planner of [37] 
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It is evident from figure 5.8 that planner proposed in this thesis not only successfully 

reached goal but the path generated by it is also shorter in length as compared to path generated 

by planner proposed in [37]. 

Similarly for environment shown in figure 5.9 the robot successfully finds its way to goal 

taking turn from door and passing through corridor. It is however important to note that there are 

no unknown obstacles present in this environment.  

In figure 5.10 however, where the environment has been cluttered with unknown static 

obstacles, the robot successfully negotiates first four obstacles but is stuck around fifth obstacle. 

There are two reasons for failure in this case. Firstly, there is not enough space between known 

and unknown obstacle to allow robot to pass through secondly, since repulsive potential function 

employs repulsive force of only one i.e. nearest obstacle therefore it can not maneuver around 

unknown obstacle in this case. 

 

 

Figure 5.10: Comparison with hybrid planner of [37] 

 

5.3 Discussion 

It is very encouraging to notice that both objectives i.e. keeping robot away from edges 

and nodes of obstacles and not compromising much on optimality of path are achieved. Robot 

during its movement from global start point to goal never touches any obstacle and a safety 

distance is maintained by d * thus resolving the safety issue associated with visibility graph.  
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It is also worth noting that length of path generated by visibility graph is 430.43 units 

where as length of path actually taken by robot using hybrid technique is 447.19 units. Increase 

in distance by using hybrid technique is only 3.93 % of shortest distance i.e. path of visibility 

graph. 

It is also worth highlighting that hybrid technique overcomes usual local minima issue 

associated with concave obstacles and potential field method. Had robot been using potential 

field alone in our configuration space, it would have faced local minima around node 34 while 

moving from start point to goal. The hybrid technique also helped robot to navigate a tight space 

between node 29 and 33. 

The path generated by hybrid technique around node 33, between nodes 13 – 12 and 

between nodes 12 – 11 is staggered. These are the path segments where potential function is 

keeping robot away from edges and nodes of obstacles while guiding it to goal. It is however, a 

matter of concern as such behavior results in undesirable and futile directional changes 

consuming power and time. 

The proposed planner also manifests its robustness and reactive capabilities in test 

scenario No. 2 where it safely maneuvered around a disturbed obstacle. It has also manifested its 

reactive capabilities in test scenarios No. 3 to 5, where it safely avoided collision with unknown 

static and dynamic obstacles. Hence it is logical to mention that proposed hybrid planner is 

almost optimal, safe, robust and capable of planning on-line to perform in dynamic and uncertain 

environment. 
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CHAPTER 6: CONCLUSION AND FUTURE WORK 

 
A hybrid path planner is proposed in this research for indoor autonomous robots 

developed by integrating global and local path planners. To validate the proposed hybrid planner, 

it has been extendedly tested in really challenging and testing environments and conditions. The 

results show that proposed hybrid technique not only finds a near optimal path in terms of 

distance but safety of robot is also ensured by keeping it away from obstacles using potential 

function. The results of implementation also manifest robustness of proposed hybrid planner as it 

successfully negotiates already existing obstacle which has been slightly displaced. The planner 

also handles unknown static as well as dynamic obstacles by avoiding collision with them to find 

its path to goal thus claiming on-line planning capability.  

On the basis of results, it is logical to conclude that proposed hybrid technique is capable 

of finding almost an optimal path and keeping robot safe. Since the path found by proposed 

technique is almost shortest it is, therefore, a logical assumption that time taken would also be 

close to optimal and so would be power consumption. It is pertinent to mention that in proposed 

method, safety distance of robot from obstacles is proportional to increase in distance travelled. 

Farther a robot is kept from obstacle, longer would be the distance travelled from start point to 

goal. 

Results also indicate that proposed method finds a path in reasonably complex 

environment and robot does not get locked in local minima typically associated with concave 

obstacles despite presence of multiple concave obstacles in known environment. In cluttered 

environment, however, it has been challenged and that too for an unknown obstacle that does not 

have space on the side where goal is placed. It is also notified that robot takes a staggering path 

while moving along or parallel to edges of obstacle and as already mentioned this behavior is not 

desirable and should be improved upon.  

On the basis of results and discussion in preceding paragraphs, it is proposed that future 

work may be directed to resolve the issue regarding unknown obstacles cluttering the 

environment. Since planner is principally conceived for indoor environment therefore a simple 

option could be defining rules which allow necessary space for movement of robot on both sides 

of unknown obstacles. Considering repulsive forces of all obstacles in range rather than that of 

only nearest obstacle may be an option or as the researchers may think appropriate. Similarly to 
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avoid staggering behavior, an attempt could be made to estimate contour of obstacle by utilizing 

range sensors and basing on this estimate robot may be kept from following a staggering path. 

While concluding, it is pertinent to mention that proposed hybrid planner has manifested 

enough strength however like everything else, it also has room for improvement and future work 

may be directed to improve it as suggested in previous paragraph. 
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APPENDIX A 

Matlab Code for Test Scenario No.1 

clc; 
clear all; 
axis([0 300 0 260]) 
hold on; 
grid on 
tic 
ver_list=[1 0 70; 1 130 70; 1 130 60; 1 140 60; 1 140 50; 1 150 50; 1 150 40; 

1 160 40; 1 160 30; 1 170 30;1 170 20; 1 210 20; 1 210 60; 1 200 60; 1 200 

70; 1 190 70; 1 190 80; 1 180 80; 1 180 90; 1 170 90; 1 170 100; 1 160 100; 1 

160 130; 1 00 130;2 220 110; 2 280 110; 2 280 260; 2 140 260; 2 140 200; 2 

220 200;3 30 140; 3 140 140; 3 140 190; 3 80 190; 3 80 250; 3 30 250]; 
for i=1:length(ver_list(:,1)) 
 if i == 1 

  last_ver = 24;% first obs has 24 ver 
            first_ver = 1;  
      elseif i > 24 && i < 31 
  last_ver = 30; 

      first_ver = 25;  
  elseif i > 30 && i < 37 
  last_ver = 36; 

      first_ver = 31;  
  end 
      if i < last_ver 
line([ver_list(i,2) 

ver_list(i+1,2)],[ver_list(i,3)ver_list(i+1,3)],'Marker','.','LineStyle',''); 
      elseif i == last_ver 
line([ver_list(i,2) ver_list(first_ver,2)],[ver_list(i,3)  

 ver_list(first_ver,3)],'Marker','.','LineStyle','-'); 
      end 
end 
fill(ver_list(1:24,2), ver_list(1:24,3),'b'); 
fill(ver_list(25:30,2), ver_list(25:30,3),'b'); 
fill(ver_list(31:36,2), ver_list(31:36,3),'b'); 
for k=1:24 
 if k < 24 
   obs1(k,[1 2]) = ver_list(k,[2 3]); 
   obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
  else 
   obs1(k,[1 2]) = ver_list(k,[2 3]); 

  obs1(k,[3 4]) = ver_list(1,[2 3]); 
  end 
 end 
 for k=25:30 
  if k < 30 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
         obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
      else 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
           obs1(k,[3 4]) = ver_list(25,[2 3]); 
      end 
 end 
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for k=31:36 
        if k < 36 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
          else 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(31,[2 3]); 
        end 
 end 
line([105 105], [235 235],'marker','o','Color','r','LineWidth',8);%start pt 
line([25  25],[35 35],'marker','o','Color','g','LineWidth',8);%Goal pt 
line([105 ver_list(33,2)],[235 

ver_list(33,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(33,2) ver_list(13,2)],[ver_list(33,3) 

ver_list(13,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(13,2) ver_list(12,2)],[ver_list(13,3) 

ver_list(12,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(12,2) ver_list(11,2)],[ver_list(12,3) 

ver_list(11,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(11,2) 25],[ver_list(11,3) 

35],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
  % dist travelled in bench mark paper 
  path_dist_bm = eu_dist([105 235],[215 125]) + eu_dist([215 125],[215 15]) + 

eu_dist([215 15],[175 15]) + eu_dist([175 15],[155 35])+ eu_dist([ 25 35 

],[155 35]) 
     std_vis_dist = eu_dist([105 235], ver_list(33,[2 3])) + 

eu_dist(ver_list(13,[2 3]), ver_list(33,[2 3])) + eu_dist(ver_list(13,[2 3]), 

ver_list(12,[2 3])) + eu_dist(ver_list(12,[2 3]), ver_list(11,[2 3]))+ 

eu_dist([25 35], ver_list(11,[2 3])) 
g_pt = [25 35]; % 25 35 
start_pt = [105 235]; 

obs = obs1; 

[cp dist1] = fn_potential_func_multiple_obs( start_pt, ver_list(33,[2 3]), 

obs1, 1,1,1) ; 

[cp dist2] = fn_potential_func_multiple_obs(cp, ver_list(13,[2 3]),obs1, 

1,1,1) ; 

z = ver_list(13,[2 3]) - cp; 
cp1 = ver_list(13,[2 3])+z; 
[cp dist3] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1);  
[cp dist4] = fn_potential_func_multiple_obs(cp, ver_list(12,[2 3]),obs1, 

1,1,1);  
 z = ver_list(12,[2 3]) - cp; 
cp1 = ver_list(12,[2 3])+z; 
[cp dist5] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1) ; 
[cp dist6] = fn_potential_func_multiple_obs(cp, ver_list(11,[2 3]),obs1, 

1,1,1) ; 
[cp dist7] = fn_potential_func_multiple_obs(cp, g_pt,obs1, 1,1,1) ; 
dist = dist1 + dist2 + dist3 + dist4 + dist5 + dist6 + dist7 
toc 
 

function [q_new, dist] = fn_potential_func_multiple_obs(sp, goal, obs, 

tolerence, att_gain, rep_gain, j, result) 
q = sp; 
tolerence= 4; 
i =1; 
dist = 0; 
distq_goal = 100; 
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 while distq_goal > tolerence %i < 100   

      if i ~=1 

       q = q_new; 
       end 
      if i == 1000 
          i = i+1; 
            break 
       end 
for k=1:length(obs(:,1)) 
    [s_dist(k,1) n_pt(k,:)] = pt_line_dist(q, obs(k,[1 2]), obs(k,[3 4])); 
end 
     [d_q_c ind_c] = min(s_dist(:,1)); 
     c = n_pt(ind_c,[1 2]); 
           if d_q_c < 3 
                     if d_q_c < 1 
                             pause; 
                   end 
              change2 = (2 *(q -c))/d_q_c; 
           else 
              change2 = 0; 
           end 
            distq_goal = eu_dist(q,goal); 
            delta_q = [q - goal]; 
            change1 = (2*delta_q)/distq_goal; 
            q_new = q + change2 - change1; 
            error = eu_dist(q_new,goal); 
           distq_goal =  eu_dist(q_new,goal); 
           dist = dist + eu_dist(q,q_new); 
            i = i+1; 
plot(q_new(1,1), 

q_new(1,2),'o','LineWidth',2,'MarkerEdgeColor','r','MarkerSize',3); 
        drawnow; 
        hold on; 
        clear s_dist 
        clear n_pt 
        clear ind_c 
        clear d_q_c 
        clear c 
         end 
 cp = q_new; 
 end 
 

function [eucledian_dist]= eu_dist (pt_1,pt_2)% [pt_1]=[x y] & [pt_2]=[x y] 
eucledian_dist = sqrt((pt_1(1)-pt_2(1))^2 + (pt_1(2)-pt_2(2))^2); 
end 
 

function [ s_dist, n_pt ] = pt_line_dist( pt, s_line, e_line ) 
d_se = norm(s_line - e_line); 
d_s_pt = norm(s_line - pt); 
d_e_pt = norm(e_line - pt); 
      if dot(s_line - e_line, pt - e_line) * dot(e_line - s_line, pt - 
s_line) >= 0 %if min dist pt is pt between sp end end pt or not? 
         a = [s_line,1; e_line,1; pt,1]; 
         s_dist = abs(det(a))/d_se; 

       else 
s_dist = min(d_s_pt, d_e_pt);% shortest dist between line segment and ref pt 
    end 
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sp_dist = eu_dist(s_line, pt); 
        ep_dist = eu_dist(e_line, pt); 
        if s_dist == sp_dist 
 n_pt = s_line;          % nearest pt n_pt 
        elseif s_dist == ep_dist 
            n_pt = e_line;          % nearest pt n_pt 
        else 
        slope_line = (e_line(1,2) - s_line(1,2))/ (e_line(1,1) - 

s_line(1,1));  % slope of line segment 
          [dist angle] = range_bearing(s_line, e_line); 

             theta_line = angle; 
             if theta_line < 0 
                theta_line = 2*pi + theta_line; 
             end 
 slope_pt_line = (pt(1,2) - s_line(1,2))/ (pt(1,1) - s_line(1,1));        %  
             [dist angle]  = range_bearing(s_line, pt); 
             theta_pt_line = angle; 
            if theta_pt_line < 0 
               theta_pt_line = 2*pi + theta_pt_line; 
           end 
             dist_pt_line = eu_dist(pt,s_line);                                        
            if theta_pt_line > theta_line 
               theta_bw = theta_pt_line-theta_line;                            

dx = dist_pt_line * cos(theta_bw);           %dist on line from sp 
x = s_line(1,1) + (dx * cos (theta_line));   % x coord of n_pt on line 
                y = s_line(1,2) + (dx * sin (theta_line));                        

n_pt= [x y];          % nearest pt n_pt 
             else 
                theta_bw = theta_line - theta_pt_line;                      

dx = dist_pt_line * cos(theta_bw); 
x = s_line(1,1) + (dx * cos (theta_line));  % x coord of n_pt on line 
y = s_line(1,2) + (dx * sin (theta_line));  % y coord of n_pt on line 
n_pt= [x y];                                % nearest pt n_pt 
            end 
        end 
end 
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APPENDIX B 

Matlab Code for Test Scenario No.2 

clc; 
clear all; 
axis([0 300 0 260]); 
hold on; 
grid on; 
tic 
ver_list=[1 0 70; 1 130 70; 1 130 60; 1 140 60; 1 140 50; 1 150 50; 1 150 40; 

1 160 40; 1 160 30; 1 170 30;1 170 20; 1 210 20; 1 210 60; 1 200 60; 1 200 

70; 1 190 70; 1 190 80; 1 180 80; 1 180 90; 1 170 90; 1 170 100; 1 160 100; 1 

160 130; 1 00 130;2 220 110; 2 280 110; 2 280 260; 2 140 260; 2 140 200; 2 

220 200;3 30 140; 3 140 140; 3 140 190; 3 80 190; 3 80 250; 3 30 250]; 
for i=1:length(ver_list(:,1)) 
       if i == 1 
              last_ver = 24;     % first obs has 24 ver 
              first_ver = 1;  
       elseif i > 24 && i < 31 
      last_ver = 30;% first obs has 24 ver, 25 to 30 ver correspond to obs #2 
              first_ver = 25;  
      elseif i > 30 && i < 37 
      last_ver = 36; % first 2 obs have 30 ver, 31 to 36 correspond to obs #3 
              first_ver = 31;  
       end 
       if i < last_ver  
           line([ver_list(i,2) ver_list(i+1,2)],[ver_list(i,3)    
ver_list(i+1,3)],'Marker','.','LineStyle','-'); 
       elseif i == last_ver 
              line([ver_list(i,2) ver_list(first_ver,2)],[ver_list(i,3)   

ver_list(first_ver,3)],'Marker','.','LineStyle','-'); 
       end 
 end 
  fill(ver_list(1:24,2), ver_list(1:24,3),'b'); 
  fill(ver_list(25:30,2), ver_list(25:30,3),'b'); 
  fill(ver_list(31:36,2), ver_list(31:36,3),'b'); 
  j=1 
for i=31:36 
      nver(j,:) =transpose( [1 0 3; 0 1 1; 0 0 1]* 

[ver_list(i,2);ver_list(i,3);1]); 
      j=j+1; 
end 
for i=1:6 
       if i < 6 
line([nver(i,1) nver(i+1,1)],[nver(i,2) nver(i+1,2)],'color', 

'k','linewidth', 2); 
      elseif i == 6 
line([nver(i,1) nver(1,1)],[nver(i,2) nver(1,2)],'color','k', 'linewidth',2); 
         end 
 end 
for k=1:24 
      if k < 24 
             obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(k+1,[2 3])   
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       else 

             obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(1,[2 3]); 
        end 
 end 

             
 for k=25:30 
        if k < 30 
             obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
          else 
             obs1(k,[1 2]) = ver_list(k,[2 3]); 
             obs1(k,[3 4]) = ver_list(25,[2 3]); 
          end 
 end 
for k=31:36 
          if k < 36 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
               obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
         else 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
           obs1(k,[3 4]) = ver_list(31,[2 3]);  
             end 
end 
line([105 105], [235 235],'marker','o','Color','r','LineWidth',8); %start pt 
  line([25  25],[35 35],'marker','o','Color','g','LineWidth',8);%Goal pt%   
  line([105 ver_list(33,2)],[235 

ver_list(33,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(33,2) ver_list(13,2)],[ver_list(33,3) 

ver_list(13,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(13,2) ver_list(12,2)],[ver_list(13,3) 

ver_list(12,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(12,2) ver_list(11,2)],[ver_list(12,3) 

ver_list(11,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(11,2) 25],[ver_list(11,3) 

35],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
  path_dist_bm = eu_dist([105 235],[215 125]) + eu_dist([215 125],[215 15]) + 

eu_dist([215 15],[175 15]) + eu_dist([175 15],[155 35])+ eu_dist([ 25 35 

],[155 35]) 
std_vis_dist = eu_dist([105 235], ver_list(33,[2 3])) + 

eu_dist(ver_list(13,[2 3]), ver_list(33,[2 3])) + eu_dist(ver_list(13,[2 3]), 

ver_list(12,[2 3])) + eu_dist(ver_list(12,[2 3]), ver_list(11,[2 3]))+ 

eu_dist([25 35], ver_list(11,[2 3])) 
g_pt = [25 35]; % 25 35 
start_pt = [105 235]; 
obs = obs1; 
   obs1(31:36,:) = []; 
   i = 1 
for k=31:36 
           if k < 36 
                obs1(k,[1 2]) = nver(i,[1 2]); 
                obs1(k,[3 4]) = nver(i+1,[1 2]); 
                i=i +1 
           else 
             obs1(k,[1 2]) = nver(i,[1 2]); 
               obs1(k,[3 4]) = nver(1,[1 2]); 
         end 
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 end 
[cp dist1] = fn_potential_func_multiple_obs( start_pt, ver_list(33,[2 3]), 

obs1, 1,1,1) ; 
[cp dist2] = fn_potential_func_multiple_obs(cp, ver_list(13,[2 3]),obs1, 

1,1,1) ; 
z = ver_list(13,[2 3]) - cp; 
cp1 = ver_list(13,[2 3])+z; 
[cp dist3] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1);  
[cp dist4] = fn_potential_func_multiple_obs(cp, ver_list(12,[2 3]),obs1, 

1,1,1) ; 
z = ver_list(12,[2 3]) - cp; 
cp1 = ver_list(12,[2 3])+z; 
[cp dist5] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1) ; 
[cp dist6] = fn_potential_func_multiple_obs(cp, ver_list(11,[2 3]),obs1, 

1,1,1);  
[cp dist7] = fn_potential_func_multiple_obs(cp, g_pt,obs1, 1,1,1) ; 
dist = dist1 + dist2 + dist3 + dist4 + dist5 + dist6 + dist7 
toc 
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APPENDIX C 

Matlab Code for Test Scenario No.3 

clc; 
clear all; 
axis([0 300 0 260]); 
hold on; 
grid on; 
tic  
ver_list=[1 0 70; 1 130 70; 1 130 60; 1 140 60; 1 140 50; 1 150 50; 1 150 40; 

1 160 40; 1 160 30; 1 170 30;1 170 20; 1 210 20; 1 210 60; 1 200 60; 1 200 

70; 1 190 70; 1 190 80; 1 180 80; 1 180 90; 1 170 90; 1 170 100; 1 160 100; 1 

160 130; 1 00 130;2 220 110; 2 280 110; 2 280 260; 2 140 260; 2 140 200; 2 

220 200;3 30 140; 3 140 140; 3 140 190; 3 80 190; 3 80 250; 3 30 250]; 
for i=1:length(ver_list(:,1)) 
      if i == 1 
            last_ver = 24;     % first obs has 24 ver 
              first_ver = 1;  
     elseif i > 24 && i < 31 
   last_ver = 30;% first obs has 24 ver, 25 to 30 ver    correspond to obs #2 
              first_ver = 25;  
     elseif i > 30 && i < 37 
   last_ver = 36; % first 2 obs have 30 ver, 31 to 36 correspond to obs #3 
              first_ver = 31;  
      end 
      if i < last_verline([ver_list(i,2) ver_list(i+1,2)],[ver_list(i,3)          

ver_list(i+1,3)],'Marker','.','LineStyle','-'); 
      elseif i == last_verline([ver_list(i,2) 

ver_list(first_ver,2)],[ver_list(i,3) 

ver_list(first_ver,3)],'Marker','.','LineStyle','-'); 
      end 
end 
  fill(ver_list(1:24,2), ver_list(1:24,3),'b'); 
  fill(ver_list(25:30,2), ver_list(25:30,3),'b'); 
  fill(ver_list(31:36,2), ver_list(31:36,3),'b'); 
  for k=1:24 
        if k < 24 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
               obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
         else 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
               obs1(k,[3 4]) = ver_list(1,[2 3]); 
         end 
  end 
  for k=25:30 
        if k < 30 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
               obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
          

           else     
                  obs1(k,[1 2]) = ver_list(k,[2 3]); 
                  obs1(k,[3 4]) = ver_list(25,[2 3]) 

           end 
    end 
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for k=31:36 
            if k < 36 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
                  obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
            else 
               obs1(k,[1 2]) = ver_list(k,[2 3]); 
                  obs1(k,[3 4]) = ver_list(31,[2 3]); 
            end 
    end 
   line([105 105], [235 235],'marker','o','Color','r','LineWidth',8);     

%start pt 
    line([25  25],[35 35],'marker','o','Color','g','LineWidth',8);   %Goal pt 
    line([105 ver_list(33,2)],[235 

ver_list(33,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(33,2) ver_list(13,2)],[ver_list(33,3) 

ver_list(13,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(13,2) ver_list(12,2)],[ver_list(13,3) 

ver_list(12,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(12,2) ver_list(11,2)],[ver_list(12,3) 

ver_list(11,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(11,2) 

25],[ver_list(11,3)35],'Marker','.','Color','g','LineStyle','-

','LineWidth',2);  
path_dist_bm = eu_dist([105 235],[215 125]) + eu_dist([215 125],[215 15]) + 

eu_dist([215 15],[175 15]) + eu_dist([175 15],[155 35])+ eu_dist([ 2535],[155 

35]) 

std_vis_dist = eu_dist([105 235], ver_list(33,[2 3])) + 

eu_dist(ver_list(13,[2 3]), ver_list(33,[2 3])) + eu_dist(ver_list(13,[2 3]), 

ver_list(12,[2 3])) + eu_dist(ver_list(12,[2 3]), ver_list(11,[2 3]))+ 

eu_dist([25 35], ver_list(11,[2 3]))g_pt = [25 35]; % 25 35 
start_pt = [105 235]; 
obs1 = [obs1; [185 100 190 100]; [190 100 190 120]; [190 120 185 120]; [185 

120 185 100]];ui_obs = [185 100; 190 100; 190 120; 185 120; 185 100]; 
     line([185 190],[100 100], 'color','k'); 
     line([190 190],[100 120], 'color','k'); 
     line([190 185],[120 120], 'color','k'); 
     line([185 185],[120 100], 'color','k'); 
     fill(ui_obs(:,1), ui_obs(:,2),'k'); 
[cp dist1] = fn_potential_func_multiple_obs( start_pt, ver_list(33,[2 3]), 

obs1, 1,1,1) ; 
[cp dist2] = fn_potential_func_multiple_obs(cp, ver_list(13,[2 3]),obs1, 

1,1,1); 
z = ver_list(13,[2 3]) - cp; 
cp1 = ver_list(13,[2 3])+z; [cp dist3] = fn_potential_func_multiple_obs(cp, 
cp1,obs1, 1,1,1) ; 
[cp dist4] = fn_potential_func_multiple_obs(cp, ver_list(12,[2 3]),obs1, 

1,1,1) ; 
z = ver_list(12,[2 3]) - cp; 
cp1 = ver_list(12,[2 3])+z; 
 [cp dist5] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1) ; 
[cp dist6] = fn_potential_func_multiple_obs(cp, ver_list(11,[2 3]),obs1, 

1,1,1) ; 
[cp dist7] = fn_potential_func_multiple_obs(cp, g_pt,obs1, 1,1,1) ; 
dist = dist1 + dist2 + dist3 + dist4 + dist5 + dist6 + dist7 toc; 
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APPENDIX D 

Matlab Code for Test Scenario No. 4 and 5 

clc; 
clear all; 
axis([0 300 0 260]) 
hold on; 
grid on; 
ver_list=[1 0 70; 1 130 70; 1 130 60; 1 140 60; 1 140 50; 1 150 50; 1 150 40; 

1 160 40; 1 160 30; 1 170 30;1 170 20; 1 210 20; 1 210 60; 1 200 60; 1 200 

70; 1 190 70; 1 190 80; 1 180 80; 1 180 90; 1 170 90; 1 170 100; 1 160 100; 1 

160 130; 1 00 130;2 220 110; 2 280 110; 2 280 260; 2 140 260; 2 140 200; 2 

220 200;3 30 140; 3 140 140; 3 140 190; 3 80 190; 3 80 250; 3 30 250]; 
for i=1:length(ver_list(:,1)) 
     if i == 1 
            last_ver = 24;     % first obs has 24 ver 
            first_ver = 1;  
    elseif i > 24 && i < 31 
 last_ver = 30;     % first obs has 24 ver, 25 to 30 ver correspond to obs #2 
              first_ver = 25;  
   elseif i > 30 && i < 37 
 last_ver = 36;     % first 2 obs have 30 ver, 31 to 36 correspond to obs #3 
              first_ver = 31;  
    end 
   if i < last_ver line([ver_list(i,2) ver_list(i+1,2)],[ver_list(i,3) 
ver_list(i+1,3)],'Marker','.','LineStyle','-'); 
    elseif i == last_ver line([ver_list(i,2) 
ver_list(first_ver,2)],[ver_list(i,3) 

ver_list(first_ver,3)],'Marker','.','LineStyle','-'); 
     end 
 end 
  fill(ver_list(1:24,2), ver_list(1:24,3),'b'); 
  fill(ver_list(25:30,2), ver_list(25:30,3),'b'); 
  fill(ver_list(31:36,2), ver_list(31:36,3),'b'); 
  tic; 
for k=1:24 
      if k < 24 
        obs1(k,[1 2]) = ver_list(k,[2 3]); 
        obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
      else 
       obs1(k,[1 2]) = ver_list(k,[2 3]); 
       obs1(k,[3 4]) = ver_list(1,[2 3]); 
      end 
end 
for k=25:30 
      if k < 30 
         obs1(k,[1 2]) = ver_list(k,[2 3]); 
         obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
       else 
     obs1(k,[1 2]) = ver_list(k,[2 3]); 
     obs1(k,[3 4]) = ver_list(25,[2 3]); 
     end 
end 
for k=31:36 
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      if k < 36 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
         obs1(k,[3 4]) = ver_list(k+1,[2 3]); 
      else 
           obs1(k,[1 2]) = ver_list(k,[2 3]); 
          obs1(k,[3 4]) = ver_list(31,[2 3]); 
      end 
end 
line([105 105], [235 235],'marker','o','Color','r','LineWidth',8); 

line([25  25],[35 35],'marker','o','Color','g','LineWidth',8); 
line([105 ver_list(33,2)],[235 

ver_list(33,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(33,2) ver_list(13,2)],[ver_list(33,3) 

ver_list(13,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(13,2) ver_list(12,2)],[ver_list(13,3) 

ver_list(12,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(12,2) ver_list(11,2)],[ver_list(12,3) 

ver_list(11,3)],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
    line([ver_list(11,2) 25],[ver_list(11,3) 

35],'Marker','.','Color','g','LineStyle','-','LineWidth',2);  
  path_dist_bm = eu_dist([105 235],[215 125]) + eu_dist([215 125],[215 15]) + 

eu_dist([215 15],[175 15]) + eu_dist([175 15],[155 35])+ eu_dist([ 25 35 

],[155 35]) 
std_vis_dist = eu_dist([105 235], ver_list(33,[2 3])) + 

eu_dist(ver_list(13,[2 3]), ver_list(33,[2 3])) + eu_dist(ver_list(13,[2 3]), 

ver_list(12,[2 3])) + eu_dist(ver_list(12,[2 3]), ver_list(11,[2 3]))+ 

eu_dist([25 35], ver_list(11,[2 3])) 
g_pt = [25 35]; % 25 35 
start_pt = [105 235]; 
obs1 = [obs1; [185 100 190 100]; [190 100 190 120]; [190 120 185 120]; [185 

120 185 100]]; 
[cp dist1] = fn_potential_func_multiple_obs( start_pt, ver_list(33,[2 3]), 

obs1, 1,1,1) ; 
[cp dist2] = fn_potential_func_multiple_obs_dynamic(cp, ver_list(13,[2 

3]),obs1, 1,1,1);  
z = ver_list(13,[2 3]) - cp; 
cp1 = ver_list(13,[2 3])+z; 
[cp dist3] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1) ; 
[cp dist4] = fn_potential_func_multiple_obs(cp, ver_list(12,[2 3]),obs1, 

1,1,1) ; 
z = ver_list(12,[2 3]) - cp; 
cp1 = ver_list(12,[2 3])+z; 
[cp dist5] = fn_potential_func_multiple_obs(cp, cp1,obs1, 1,1,1);  
[cp dist6] = fn_potential_func_multiple_obs(cp, ver_list(11,[2 3]),obs1, 

1,1,1);  
[cp dist7] = fn_potential_func_multiple_obs(cp, g_pt,obs1, 1,1,1);  
dist = dist1 + dist2 + dist3 + dist4 + dist5 + dist6 + dist7 
toc; 

 

function [q_new, dist] = fn_potential_func_multiple_obs(sp, goal, obs, 

tolerence, att_gain, rep_gain, j, result) 
xdata = [obs(37,1) obs(38,1) obs(39,1) obs(40,1) obs(37,1)]; 
ydata = [obs(37,2) obs(38,2) obs(39,2) obs(40,2) obs(37,2)]; 
p1 = plot(xdata,ydata,'','LineWidth',2,'MarkerEdgeColor','r','MarkerSize',3); 
updated_obs = []; 
q = sp; 
tolerence= 4; 
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i =1; 
dist = 0; 
distq_goal = 100; 
 while distq_goal > tolerence %i < 100   
       if i ~=1 
            q = q_new; 
            obs = updated_obs; 
      end 
       if i == 1000 
          i = i+1; 
       break 
       end 
for k=1:length(obs(:,1)) 
[s_dist(k,1) n_pt(k,:)] = pt_line_dist(q, obs(k,[1 2]), obs(k,[3 4])); 
end 
[d_q_c ind_c] = min(s_dist(:,1)); 
c = n_pt(ind_c,[1 2]); 
     if d_q_c < 3 
          if d_q_c  < 1   
                accident = 1 
                pause; 
          end 
     change2 = (2 *(q -c))/d_q_c; 
     else 
           change2 = 0; 
     end 
          distq_goal = eu_dist(q,goal); 
            delta_q = [q - goal]; 
            change1 = (2*delta_q)/distq_goal; 
            q_new = q + change2 - change1; 
            error = eu_dist(q_new,goal); 
            distq_goal =  eu_dist(q_new,goal); 
            dist = dist + eu_dist(q,q_new); 
            i = i+1; 
plot(q_new(1,1),q_new(1,2),'o','LineWidth',2,'MarkerEdgeColor','r','MarkerSiz

e',3); 

       drawnow; 
       clear s_dist 
        clear n_pt 
        clear ind_c 
        clear d_q_c 
        clear c 
        if i > 25 
            updated_obs = func_update_dynamic_obs (obs); 
            obs = updated_obs; 
            xdata = [obs(37,1) obs(38,1) obs(39,1) obs(40,1) obs(37,1)]; 
            ydata = [obs(37,2) obs(38,2) obs(39,2) obs(40,2) obs(37,2)]; 
           set(p1, 'xdata', xdata, 'ydata',ydata)drawnow 
        else 
            updated_obs = obs; 
         end 
     end 
cp = q_new; 
end 
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function [ updated_obs ] = update_dynamic_obs( obs ) 
j=1; 
    for i=37:40    
nver(j,:) =transpose( [1 0 -0.92; 0 1 0.5; 0 0 1]* [obs(i,1);obs(i,2);1]); 
 j=j+1; 
    end 
        obs(37:40,:)= []; 
       i = 1; 
    for k=37:40 
     if k < 40 
         obs(k,[1 2]) = nver(i,[1 2]); 
         obs(k,[3 4]) = nver(i+1,[1 2]); 
        i=i +1; 
    else 
     obs(k,[1 2]) = nver(i,[1 2]); 
        obs(k,[3 4]) = nver(1,[1 2]); 
  

     end 
 end 
updated_obs = obs; 
end 
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