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Abstract 

This work presents a resource efficient baseband module implementation of a LEO satellite 

telecommand receiver using FPGA. The adopted scheme uses a digital Costas loop for carrier 

recovery and an improved early late gate timing recovery algorithm for bit synchronization. 

Loop filter is designed and implemented without using embedded multipliers. The Bit Error 

Rate (BER) performance of the designed receiver is almost identical to theoretical values 

with negligible difference due to implementation losses. The optimized receiver module has 

BER performance identical to theoretical, with minor degradation due to implementation 

losses. 

A new method for software defined radiation hardening of a baseband module for a LEO 

satellite telecommand receiver is proposed. FPGAs in space are subject to single event upsets 

(SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR) 

is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it 

consumes a lot of hardware resources and requires more power. Reduced precision 

redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic 

operations. This work uses the combination of RPR and TMR for mitigating SEUs. 

The designed system consumes less resources when compared to a BPSK receiver having 

same specification. It compensates frequency shifts up to ± 200 KHz due to Doppler effect. 

The hybrid software defined radiation hardening technique consumes 26% less area than a 

customary TMR protected receiver.  
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CHAPTER 1 INTRODUCTION 

1.1 Background 

The Satellite industry has progressed dramatically in the last five decades. Satellites in the 

early ages were big in size and heavier in weight. But after the birth of microcontrollers, the 

trend of size and mass of satellites splits into two categories: large satellites and small 

satellites. Small satellites are recently gaining more interest and attention all over the world 

due to their attractive applications. Their fast and cost effective development process makes 

them a suitable platform for technology evaluation and demonstration missions. But Small 

space craft increase the constraints of limited available power, size and mass for the satellite 

payload. Field programmable gate arrays offer this solution to these limitations. There small 

size, light weight and high computational capabilities makes them a preferred choice over 

other digital systems. FPGA’s also provide adaptability and reconfigurability which are the 

trending feature of modern space technology. The ability to remotely reconfigure FPGA with 

an updated functionality reduces the hardware requirement in space craft [1]. 

Communication modem is one of the key subsystems of a satellite. It establishes the 

communication channel between satellite and the control center on the earth. Its function is to 

transmit the telemetry data of the satellite to ground station and to receive the telecommand 

data from ground station. It operates during all the phases of mission. Conventionally, 

telemetry and telecommand unit is made using discrete electronic components. This makes 

the unit large and bulky which is well suited for large satellites. But when it comes to 

resource constraint environment of small satellites, its size and weight becomes a serious 

concern. FPGA based transceivers consume less space and have light weight. They also offer 

the flexibility and last minute modification freedom which is not possible in discrete 

hardware based transceivers. 

However, FPGA’s face some severe problems in the space environment. Space contains high 

energy particles and ionizing radiations which can cause malfunctioning in integrated 

circuits. The effects of these subatomic particles on integrated circuit are referred as Single 

Event Effect (SEE). The high energy particles in space may interact with the memory cells 

within an integrated circuit which can change their logic state [2]. This alteration may disrupt 

the operation of a digital system defined by memory cells. This phenomenon is called as 

Single Event Upset (SEU). FPGAs contain large array of memory cells which makes them 
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more susceptible to SEUs. In the past, radiation effects have been treated as a part of 

hardware problem and they are mitigated by shielding and radiation hardened processors. 

Shielding makes the module heavy and doesn’t provide protection against high energy 

particles such as heavy ions. Radiation hardened processors require large lead time, consume 

more power and are very costly.  

Software defined radiation hardening techniques are proving to be a viable solution to these 

problems. This approach enables the use of COTS hardware in space. There exist a huge 

performance gap between commercial and space grade hardware. COTS will provide a 

drastic increase in performance capability while also reducing the cost by many folds.  

1.2 Survey of Related Work 

In Z. Zhao., et al., [3] the BPSK Modem is implemented as a part of software defined radio. 

The authors of [3] have used BPSK modulation and recovered the modulated carrier using 

Costas loop. The modulation and demodulation are simulated on MATLAB.  But there 

design did not have bit synchronization. Maya, J.A., et al., [4] presents the BPSK receiver for 

high data rates and high dynamic applications. The Carrier recovery is achieved by using 

Costas loop. Loop filters were realized by analog to discrete time conversion. Gardner 

algorithm is used for timing recovery of the demodulated signal.  

Traditionally, Triple Modular Redundancy (TMR) has been used for SEU mitigation. The 

drawback of using TMR is that it consumes a lot of hardware resources and requires more 

power [5]. Thus; there has been a constant effort to find an alternative to the TMR technique. 

Shim, et al. [6] introduced Reduced Precision Redundancy (RPR) as part of a power-

reduction technique for ASIC-based systems, Snodgrass [7] demonstrated variation of RPR 

on FPGA to limit high magnitude errors of arithmetic operations in high radiation 

environment. Pratt, B., et al [8] has presented the hybrid approach using RPR and TMR for 

FPGA based communication systems. 

1.3 Aim 

This thesis presents a highly efficient design of a software defined radiation tolerant module 

for a LEO satellite telecommand receiver. During literature review, it was found that the 

BPSK receiver of Maya, J.A., et al [4] and our design has same technical specifications. So it 

was taken as a bench mark for fair resource utilization. The designed module consumes less 
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resources and its Bit Error Rate (BER) is approaching to 10-6. The designed module uses the 

combination of RPR and TMR for SEU mitigation. To the best of author’s knowledge, this 

hybrid approach is not being implemented to a satellite telecommand receiver module using 

Binary Phase Shift Keying (BPSK) modulation. The research work also evaluates the effect 

of SEUs on the BER performance of a telecommand receiver. 

1.4 Thesis Outline 

The rest of the thesis report is organized as follows: 

 Chapter 2 deals with the introduction to satellite architecture and its communication 

system 

 Chapter 3 describes the detailed architecture of telecommand receiver 

 Chapter 4 presents the advantages of FPGA and SEU mitigation technique  

 Chapter 5 explains the design methodology adopted 

 Chapter 6 gives the implementation of the system using high level tools  

 Chapter 7 presents the Hardware Co-simulation and SEU mitigation results of 

designed receiver  

 Chapter 8 concludes the report and suggests future work  
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CHAPTER 2 SATELLITE COMMUNICATION 

2.1 Introduction 

A satellite is an object that revolves or orbits around another object. For example, the Moon 

revolves around the earth so it’s a natural satellite of Earth, in the same way Earth is a natural 

satellite of the Sun. In context of space flight, satellites are manmade objects that are 

positioned in the earth orbit on purposely. They are also called as artificial satellites in order 

to differentiate them from natural satellites. They are launched from earth in a Satellite 

launching vehicle (SLV) and are placed in orbit at a predetermined location according to the 

mission requirements. There are hundreds of satellites currently in orbiting the earth. 

Satellite size and shapes vary according to their scope of application. The first manmade 

satellite was launched by former Soviet Union in the year 1957 called ―Sputnik‖ and was the 

size of a basketball. Its purpose was simply to send a Morse code signal repeatedly. In 

contrast, modern day satellites can transmit, receive and process thousands of signals at the 

same time, from simple digital data to complex television programs. Nowadays, satellites are 

being used in wide variety of applications, such as Internet communications, television 

broadcasting, radio communications, Global Positioning Systems (GPS) and weather 

forecasting. 

2.2 Types of satellite 

2.2.1 Navigation 

Navigation satellites are the artificial satellites in space that are used for navigation purpose. 

In modern day, navigation has become one of the most important parameter. In daily life, it is 

used by people to reach up to their destinations. Navigation is the backbone of aerospace 

industry, which uses navigation parameters to locate their current position. The most common 

navigation systems are GPS (Global Positioning System) launched by USA and GLONASS 

launched by Russia. 

2.2.2 Weather 

The first weather satellite was launched in the year 1960. Several satellite missions were 

launched during the 1970s and 1980s from which different meteorological observation have 

been made. The purpose of the weather satellites is to analyze the current state of atmosphere 
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and provide this valuable information to ground. This information is then used by the 

scientists to observe the changes in the global atmosphere such as global warming etc. and is 

also used by for weather forecasting. Different sensors in the weather satellites allow the 

scientists to estimate the moisture, cloud cover, wind speed and direction which are then used 

in different fields of science.   

2.2.3 Communication 

A communications satellite is a manmade satellite placed in space for the purposes of 

telecommunications. Today’s communication satellites are stationed in geosynchronous 

orbits, Molniya orbits or low Earth orbits. Major applications of communication satellites are 

Telephony, Television, radio, mobile satellite technology and satellite broad band. 

2.2.4 Earth Observation 

Earth observation satellites are used for understanding and analyzing the global environment 

conditions which are essential for safety and quality of life.  The data gathered by these 

satellites enables us to understand the processes and changes in land masses, oceans, and 

atmosphere. It allows monitoring the Earth’s natural resources and to predict or detect the 

environmental disasters in a timely manner. The data acquired is used for different 

applications such as agriculture, geology, forestry, cartography, risk management, defense 

and environmental studies. 

2.3 Communication subsystem  

A communication sub-system is a very critical part of the satellite. It is the only link between 

ground and the satellite. It has three primary functions (1) to transmit a tracking signal, (2) 

download telemetry to a ground station and (3) to receive telecommand from an earth station. 

The communication subsystem is also referred as a TT&C (Tracking, Telemetry and 

Command) system because of its functionality. The communication between the satellite and 

the ground station is known as data link, is a two way communication channel where the 

uplink is the data commands transmitted from the ground station to the satellite and the 

downlink is the telemetry data or the beacon transmitted from the satellite to the ground 

station [9].  

The Figure 2.1 depicts the block diagram of the communication subsystem and its 

communication with the ground station. The modem converts the signals received from the 



6 

 

ground station and forwards the data to the OBDH (On-Board Data Handling subsystem). 

The satellite sends the telemetry signal to earth station via its Telemetry transmitter. The 

earth station receives these signals and in return issue some telecommand signals which are 

received by the telecommand signal on the satellite. This thesis deals with the efficient design 

of telecommand receiver. 

OBDH

MODEM

TX/RX

Antenna

PC

TNC

TX/RX

Antenna

Radio Link

Satellite Ground

 

Figure 2.1: A general overview of the communication subsystem 

2.3.1 Modem  

Modem is a combination of modulator and demodulator. At the transmitting end, Modem acts 

as a device that accepts binary data from a data source which is modulated to create a signal 

that is suitable for transmission and at the receiving end it acts as complementary for 

transmitting end [10]. Modems are classified based on the amount of data transferring 

capability which is measured in terms of bits per second (bps) or baud rate. In order to encode 

and decode the data we need to have a proper modulation and demodulation technique. The 

designing of modem which can establish a good communication link between the Satellite 

and ground station with the available transmitter power is constrained by these above 
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mentioned power and size factors [11]. In this thesis we would design a resource efficient 

design and implementation of a telecommand receiver on FPGA which is the main module in 

the communication subsystem.  

2.4 Modulation and Demodulation techniques  

Modulation is process of imposing the properties of a message signal onto a high frequency 

carrier signal. Modulation schemes are mainly classified into Analog modulation methods 

and Digital modulation methods. Analog modulation techniques are further classified based 

on amplitude, frequency and phase modulation techniques. Digital modulation schemes are 

further classified based on type of keying. The elementary digital modulation techniques are 

Amplitude shift keying (ASK), Frequency shift keying (FSK), Phase shift keying (PSK) and 

Quadrature amplitude modulation (QAM). Demodulation is process of retrieving back the 

original information from the modulated signal. In this thesis we are going to use BPSK 

(Binary Phase Shift Keying) modulation and AFSK (Audio Frequency Shift Keying) 

demodulation.  

2.4.1 Binary Phase Shift Keying (BPSK)  

BPSK is one of three binary modulation techniques. BPSK modulation is a technique where 

the phase of a carrier sinusoidal signal changes abruptly by 180° or phase reversal occurs for 

every transition of modulating binary sequence (input bit) [12]. The general form of the 

BPSK signal is based on the equation (2.1). The binary data is represented by two signals 

with different phases in BPSK. 𝑆1 𝑡  and 𝑆2 𝑡  are the two signals at point of time t.  

𝑆𝑖 𝑡 =  
𝑆1 𝑡 = −𝐴𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 , 𝑖𝑓0𝑇

𝑆2 𝑡 = +𝐴𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 , 𝑖𝑓1𝑇
                                          (2.1) 

Where:  

- A is the amplitude  

- fc is the frequency of the carrier and  

- T is the time.  

The phase of the transmitted signal remains the same if a ―1‖ was transmitted and is shifted 

by 180° if a ―0‖ is transmitted [13].  
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Advantages 

 BPSK has fine spectrum efficiency, strong anti-interference performance, good 

spectral characteristics and has high transfer rates [3].  

  Due to its robustness it is extensively used in satellite communication systems.  

Disadvantages 

 It is simple to implement, but it is inefficient in terms of using available bandwidth.  

2.4.2 Audio Frequency Shift Keying (AFSK)  

AFSK is a modulation scheme in which the data is represented by changes in the frequency 

of an audio tone. The changes in the frequency are between mark and space frequencies 

represented by binary zero and one respectively.  

Advantages 

 AFSK encoded signals pass through AC-coupled links that are included in most 

devices designed to carry music or speech.  

 Implementing an audio modulation scheme allows us operate on many digital modes 

that have been developed by amateurs.  

Disadvantages 

 AFSK is inefficient in terms of using available bandwidth and power.  

2.4.3 Quadrature Phase Shift Keying (QPSK)  

In QPSK, the data bits to be modulated are grouped into symbols, each containing two bits, 

and each symbol can take on one of four possible values: 00, 01, 10, or 11. During each 

symbol interval, the modulator shifts the carrier to one of four possible phases corresponding 

to the four possible values of the input symbol. In the ideal case, the phases are each 90 

degrees apart, and these phases are usually selected such that the signal constellation matches 

the configuration shown in Figure 2.2.  
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Figure 2.2 : Ideal QPSK constellation 

Advantages 

 QPSK has excellent spectral efficiency and supports high data rates as compared to 

BPSK.    

Disadvantages 

 QPSK is Susceptible to Phase disturbances.  
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CHAPTER 3 TELECOMMAND RECEIVER DESIGN 

The telecommand data link for the proper control of various functions of the satellite is 

established between the ground station transmitter and on-board telecommand receiver. This 

receiver demodulates the telecommand data upon reception from the ground station and sends 

it to OBDH unit which collects this data and issues command to various satellite sub-systems. 

This Chapter explains the design and the functionality of a LEO satellite telecommand 

receiver. 

3.1 Design Specifications 

The design input parameters are taken from a practical communication channel link of 

satellite. The parameters are listed in Table 3.1: 

Table 3.1: Design input parameters of Telecommand receiver 

Carrier Frequency 4 MHz 

Data Rate 1 Mbps 

Modulation Type BPSK 

Bit Error Rate 10
-6

 

Signal to Noise ratio (SNR) 48 dB 

Maximum Doppler Shift Compensation ± 200 kHz 

3.2 Possible Design Approaches 

In PSK modulated transmission systems, the incoming modulated data pulses to the radio 

receiver can be demodulated either coherently (synchronously) or non-coherently 

(differentially). Based on this difference there are two basic types of receivers: 

1. Coherent Receiver 

2. Non-coherent Receiver 

3.2.1 Coherent Receiver 

In a coherent receiver the received RF signal is coherently demodulated by first multiplying it 

with a local oscillator (LO) signal which exactly has the same frequency and phase as the 

transmitted carrier signal. The information about the carrier frequency and phase is acquired 

by recovering the carrier signal from the received modulated RF signal. This process is 
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commonly referred to as “Carrier Recovery” or “Carrier Synchronization”.  After the 

carrier is recovered, it is multiplied with the modulated RF signal by a product demodulator 

to convert it directly to baseband. The baseband signal is then applied to an optimum binary 

detector for timing synchronization and finally, data recovery. A generic block diagram of a 

coherent receiver is shown in Figure 3.1.  

Optimum 

Binary 

Detector

Modulated RF 

signal, Xc(t)

Carrier 

Synchronization

Sampled Data

 

Figure 3.1: Block diagram of a coherent receiver 

Theoretically, coherent detection can be achieved by product demodulation. In practice it can 

be quite difficult to implement. The crux of the problem is synchronization- synchronizing an 

oscillator to a sinusoid that is not even present in the incoming signal if the carrier is 

suppressed (as is the case in BPSK modulation). To facilitate the matter, suppressed-carrier 

systems may have a small amount of carrier reinserted in the modulated signal at the 

transmitter. This pilot carrier is picked off at the receiver by a narrow band pass filter, 

amplified, and used to synchronize the receiver’s LO. Another approach is to recover the 

carrier from the received modulated signal by employing techniques such as phase-locked 

loops (PLL), Costas loops, squaring loops etc. In both cases, it adds complexity to the overall 

system. Furthermore, perfect synchronism is rarely achieved and some degree of 

asynchronism must be expected in synchronous detectors. Sometimes, even this small 

amount of asynchronism can lead to a large degradation in the Bit Error Rate (BER). 

3.2.2 Non-Coherent Receiver 

In a non-coherent receiver there is no need to synchronize the locally generated carrier with 

the transmitted carrier. Instead, the data pulses at the transmitter end are differentially 

encoded prior to PSK modulation. The receiver thus accepts differentially encoded, PSK 

modulated data centered at the carrier frequency. At the receiver end the data is differentially 

demodulated using a delay-multiply loop. Thus this type of receiver is referred to as a ―Non-
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coherent PSK‖ or ―Differentially coherent Phase Shift Keying (DPSK)‖ receiver. The block 

diagram of a DBPSK receiver is shown in Figure 3.2. 

Delay

Tb

Filtered DBPSK 

signal down-

converted to 

final IF  

Differentially 

demodulated data 

pulses

Optium 

Binary 

Detector

Sampled Data

 

Figure 3.2: Block diagram of a DBPSK receiver 

3.3 Reasons for selecting the approach 

We selected the coherent approach for the telecommand receiver. Although, the coherent 

receiver is more complex in design as compared to Non-coherent, but it uses PSK instead of 

DPSK which offers various valuable advantages. PSK have low probability of bit error (Pb) 

performance than DPSK receivers at a same Eb/N0, which is a very critical parameter in 

satellite and other outer space applications. A typical plot of Pb vs. Eb/N0 for different 

modulations is shown in Figure 3.3.   

 

Figure 3.3: Error probability of coherent PSK, DPSK, and coherent FSK 

It is also evident from the graph, that the PSK have good BER as compared to DPSK.  
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3.4 Telecommand Receiver 

The architecture of the telecommand receiver is shown in Figure 3.4. It consists of carrier 

Recovery, Integrator, Bit Synchronizer and Decision blocks. The description and working of 

each block is presented in the following section. 
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Loop

FIlter

Mixer 1

Mixer 2

Phase
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Block  

Data 

Out

Carrier Recovery

Baseband

 signal  

 

Figure 3.4: Telecommand Receiver Architecture 

3.4.1 Carrier Recovery 

 Coherent detection and demodulation needs synchronization measures for extracting the 

carrier phase and frequency from the receivers signal. The synchronization schemes such as 

Phase locked Loops (PLLs) use phase and frequency to extract the information from the 

received signal. By adding few additional components in the PLL, we can directly obtain the 

demodulated signal from it. But in suppressed carrier modulation technique, PLL suffers a 

problem. In the absence of carrier, PLLs are not able to synchronize and track the incoming 

signal [14]. Therefore, Costas Loop is used instead of PLL for demodulated suppressed 

carrier modulated signal. 

The Costas loop was first proposed by John Costas in 1956 to accomplish phase acquisition, 

signal tracking, synchronization and demodulation of double-sideband suppressed-carrier 

(DSB-SC) AM signals [15]. Although the original goal of the Costas loop was to track and 

demodulate DSB-SC AM signals, it can also be used to demodulate various other suppressed-

carrier modulation. Costas loop is also readily used to demodulate the BPSK signals. This can 

be done due to the fact that BPSK signals can be articulated and demodulated as a DSB-SC 

AM signals [14]. 
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Costas loop is a variation of phase locked loop and is used for carrier recovery. In actual, it is 

a combination of two PLL’s operating in phase orthogonal to each other. The recovered 

carrier is used to demodulate and extract the data from the received BPSK signal.  It provides 

an excellent performance for BPSK and is one of the most efficient binary data modulation 

schemes in terms of noise immunity per unit bandwidth [16], [17]. 

The traditional Costas loop is severely affected by the phase imbalance between the in-phase 

branch and the quadrature branch. There are some inherent problems of analog Costas loop 

for instance direct current zero excursion and complexity to debug [18]. These shortcomings 

of analog Costas loop can be overcome by using digital implementation of Costas loop [19]. 

The digital design of the system is realized by the transformation of analog components of 

the Costas loop to its corresponding discrete time and digital domain [20], [21]. The Costas 

loop used for BPSK demodulation is shown in Figure 3.5.  

LPF

LPF

VCO
Loop

Filter

Mixer 1

Mixer 2

Phase

Detector

Input

 Signal  

 
Figure 3.5: Costas Loop 

It is composed of mixers (i.e. multipliers), Low Pass Filters (LPF), Voltage Controlled 

Oscillator (VCO), Loop Filter (LF) and a Phase Detector (PD). The incoming BPSK 

modulated signal is applied to the two mixers of the upper branch termed as in-phase channel 

or I-Channel and the lower branch termed as quadrature phase channel or Q-Channel. The 

VCO generates two orthogonal sinusoid signals (i.e. Sine and Cosine) for the mixers of I-

Channel and Q-Channel. The multiplier outputs of I and Q-channel are pass through a low 

pass filters. The filtered signals are applied to the phase detector which calculates the phase 

difference termed as ―Error signal‖ between the both channels. The loop filter smoothens the 
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error signal by filtering its high frequency components which is then used to control the 

VCO’s output phase and frequency. Once the VCO’s output frequency and phase becomes 

equal to the incoming signal’s phase and frequency, the demodulated signal is obtained from 

the I-channel. 

The input to the system shown in Figure 1 is  𝑥𝑖(𝑡) defined in equation (3.1) as a BPSK 

sinusoidal signal with amplitude 𝐴𝑖  and a digital modulating signal 𝑚(𝑡). The sine wave has 

a frequency 𝜔𝑖  and phase 𝜃𝑖 . 𝑥𝑜1(𝑡) as shown in equation (3.2) is the first output signal of 

VCO that is in-phase with the incoming signal, whereas 𝑥𝑜2(𝑡) as shown in equation (3.3) is 

in quadrature-phase to the incoming signal. 𝑥𝑖(𝑡)  is multiplied to 𝑥𝑜1(𝑡) and 𝑥𝑜2(𝑡) at the 

upper and lower-side mixers, respectively. 

𝑥𝑖 𝑡 = 𝐴𝑖𝑚(𝑡) sin(𝜔𝑖𝑡 + 𝜃𝑖)                                             (3.1) 

𝑥𝑜1 𝑡 = 𝐴0 𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜃0)                                                   (3.2) 

𝑥𝑜2 𝑡 = 𝐴0 cos(𝜔𝑖𝑡 + 𝜃0)                                                   (3.3) 

The signals after multiplications can be obtained by using trigonometric identities as shown 

in equation (3.4) and (3.5). 

𝑥𝑑1 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 𝜃𝑖 − 𝜃0 −

𝐴𝑖𝐴0

2
𝑚(𝑡) sin 2𝜔𝑖𝑡 + 𝜃𝑖 + 𝜃0                      (3.4) 

𝑥𝑑2 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 𝜃𝑖 − 𝜃0 +

𝐴𝑖𝐴0

2
𝑚(𝑡) sin 2𝜔𝑖𝑡 + 𝜃𝑖 + 𝜃0                      (3.5) 

The high frequency components of equations (3.4) and (3.5) are effectively removed by the 

low pass filters of I and Q channel to get the signals 𝑥𝐼(𝑡) and 𝑥𝑄(𝑡) as shown in equation 

(3.6) and (3.7) respectively, which are multiplied to obtain  𝑥𝑑(𝑡) as mentioned in equation 

(3.8). 

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 𝜃𝑖 − 𝜃0                                                 (3.6) 

𝑥𝑄 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 𝜃𝑖 − 𝜃0                                                 (3.7) 

𝑥𝑑 𝑡 =
 𝐴𝑖𝐴0𝑚(𝑡) 2

8
sin[2(𝜃𝑖 − 𝜃0)]                                             (3.8) 

The signal 𝑥𝑑(𝑡) is passed through the loop filter to get the error signal 𝑥𝑓(𝑡) as shown in 

equation (3.9). 
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𝑥𝑓 𝑡 =
 𝐴𝑖𝐴0 2

8
sin[2(𝜃𝑖 − 𝜃0)]                                                (3.9) 

Replacing,  𝐴𝑖𝐴0 
2/8 with 𝑘𝑑  , the phase detector gain, and using small signal approximation 

equation (3.9) can be re-written as 

𝑥𝑓 𝑡 = 𝑘𝑑(𝜃𝑖 − 𝜃0)                                                      (3.10) 

Equation (3.10) implies that the Costas loop will successfully track the phase error when it is 

at or very close to the lock state. If all parameters are correctly estimated, the loop will be in 

locked state and the phase error will approach to zero. Then equation (3.6) and equation (3.7) 

becomes equation (3.11) and equation (3.12). 

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 0  

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡)                                                         (3.11) 

𝑥𝑄 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 0  

𝑥𝑄 𝑡 = 0                                                               (3.12) 

The equations above show, when the Costas loop is in the locked state, the required 

modulating signal 𝑚(𝑡) can be acquired from the I- Channel. 

3.4.2 Integrator 

The demodulated output from the I-Channel is applied to the Integrator module as shown in 

Figure 3.4. The integrator integrates the signal over one bit duration. This converts the 

demodulated signal into a triangular waveform. This waveform is then used by the bit 

synchronizer and sampling module for recovering the data bits. 

3.4.3 Bit Synchronizer  

A digital communication system requires various timing control mechanisms for specific 

purposes. For example, timing information is needed to identify the rate at which bits are 

transmitted. It is also needed to identify the start and end instants of an information-bearing 

symbol or a sequence of symbols. We have used Early-Late-Gate synchronizer due to its 

simplicity in design and less sensitivity towards DC offset [22].  
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It takes three samples of signal with delays termed as early, late and present. The algorithm 

used to determine the correct instant for sampling is as follows: 

if   |E| < |P|  AND  |L| < |P|  AND  |P| ≥ Th)) 

  Peak detect=1 

Different instances of sampling are shown in Figure 3.6. After sampling the bit, it is 

compared with the pre-stored preamble bits. If the incoming bit sequence is matched with the 

pre-stored preamble sequence, the data sampler gets enabled.  

 

Figure 3.6: Sampling Instances for Early late gate Synchronization 

3.4.4 Data Sampler  

The data sampler, samples the demodulated signal of carrier recovery on the basis of the 

sampling instant provided by the bit-synchronizer.  
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CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAYS 

4.1 Introduction 

A Field Programmable Gate Array (FPGA) is a digital programmable logic chip. FPGA 

comprises of two dimensional arrays of logic cells and switches. These logic cells and 

switched are connected through programmable interconnects. A logic cell is programmed to 

perform certain actions via a Hardware descriptive Language (HDL). Once the desired logic 

or function is written in HDL, it is dumped into FPGA by a simple adaptor provided by the 

vendor. Verilog and VHDL (Very high speed integrated circuit HDL) are the most commonly 

used hardware description languages. The FPGA are a cost effective solutions as compared to 

ASICS. Unlike ASICS, FPGA can be updated with a new functionality by reprogramming. 

The new design or algorithm is tested and validated very easily as compared to ASICS which 

requires a long fabrication process. 

4.2 Functional Overview  

FPGA is composed of programmable logic component called ―logic blocks‖ which are joined 

together in a fabric by reconfigurable interconnects. These logic blocks can be programmed 

according to the design methodology to realize a variety of hardware functions. These logic 

blocks also consist of memory elements, which can be a simple flip-flop or more complete 

memory blocks such as Block RAMs or DSP slices [23].  

4.3 FPGA vs. DSP  

The implementation of a modem is a digital signal processing issue. Two types of 

programmable platform could be used to realize the modem, i.e., a Digital Signal Processor 

(DSP) or an FPGA.  

The telecommand receiver is implemented in baseband domain using various Digital Signal 

Processing (DSP) techniques. There are two types of devices that can be used for realizing 

DSP algorithms. One is the Digital Signal Processor and other is the FPGA. 

FPGA has an advantage of parallel processing when compared to a DSP which is a dedicated 

processor. As a result of this multi-processing the performance of an FPGA is more than a 

DSP. FPGA’s are enormously faster, flexible and less expensive.  
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4.4 FPGA in Space 

Reconfigurability and adaptability are one of the most desirable features of modern space 

technology. FPGA provides this flexibility along with good performance. They have become 

an integral part of satellite systems for over a decade. Their high computational capacity 

combined with small size and light weight makes them a preferable choice over other digital 

systems. The ability to reconfigure FPGA with an updated functionality reduces the hardware 

requirement in space craft [1]. 

However, FPGA’s face some severe problems in the space environment. The high energy 

particles in space may interact with memory cells within an integrated circuit and can change 

their logic state [2]. This alteration may disrupt the operation of a digital system defined by 

memory cells. FPGAs contain large array of memory cells which makes them more 

susceptible to single event upsets (SEUs). 

In SRAM based FPGAs, a large area is composed of memory cells. These memory cells 

contain both user data and circuit configuration data that defines the functionality of a 

system. When high energy charged particles such as neutrons and alpha particles present in 

the space environment interact with SRAM cells, they occasionally invert there logic state. 

This phenomenon is called as SEU [2]. The inverted logic state can be both of user data or 

configuration data and can cause unpredictability in systems behavior. The SEU directly 

affects the bit error rate performance of a communication receiver. Four general classes of 

SEUs are identified according to their effect on BER [8].  

 In class 1 SEUs, lower order bits of arithmetic operations (such as output of 

accumulator or coefficient of a filter) are affected. They are 30%-77% of the total 

SEUs. 

 In class 2 SEUs, middle order bits of arithmetic operations are affected. They are 

17%-64% of the total SEUs.   

 In class 3 SEUs, higher order bits of arithmetic operations are affected. They cause 

severe degradation in circuit performance and are unacceptable. They constitute 3%-

4% of the total SEUs. 

 In class 4 SEU, clock distribution, global reset signals MSB of filter or threshold 

comparator are affected. They are termed as ―catastrophic‖ and reduced BER to ½. 

They constitute 2%-4% of the total SEUs. 
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So class 3 and 4 SEUs are more critical and need to be mitigated proficiently. Various 

techniques have been used in the past to mitigate class 3 and 4 SEUs, the most popular being 

the TMR technique [8]. In TMR, three replicas of the same circuit are made and they are 

connected to a voter block which selects the correct output among them. TMR, however, 

consumes a lot of resources and power. On the other hand a resource efficient alternative to 

TMR for arithmetic operations is ―RPR‖. In this thesis we have applied RPR to the arithmetic 

operations involved in the design of a telecommand receiver. 

4.5 Reduced Precision Redundancy 

In RPR, the full precision (FP) module to be protected is replicated twice with reduced 

precision (RP) as shown in Figure 4.1. The decision block uses the output of RP modules to 

determine the error in FP module as follows: 

if ((|FPout ― RP1out| > Th) AND (RP1out = RP2out)) 

output = RP2out 

else 

output = FPout 

Threshold (Th) value is a very critical parameter in RPR. If Th is very small, false error 

detection will occur and if Th value is high, error will not be detected. In order to avoid this 

problem, the Th value is set equal to the difference between the FP and RP modules' outputs 

as shown in equation (4.1) when there is no error. 

Th = | FPout ― RPout |                                                         (4.1) 
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Figure 4.1: Block diagram of an n- bit FIR filter protected with k-bit RP modules 



21 

 

The reduced precision redundancy factor (k) is a tradeoff between mitigation cost and SEU 

performance [8].  Therefore, the size of RP modules and decision block must be chosen in 

such a way that they consume less resource than TMR while mitigating SEUs. RPR can be 

applied to arithmetic operations of any size and complexity. Whether, it is a simple FIR filter 

or a complex receiver. Unlike TMR, RPR is not suited for every application. It is only 

applicable to those arithmetic operations that can be approximated with a reduced precision.   

4.6 Xilinx FPGA 

The architecture of a FPGA is shown in Figure 4.2 below. In our thesis we have used two 

FPGA’s. The first one is Spartan 3E, which is used for the efficient implementation of 

telecommand receiver. The second FPGA is Virtex 4 which is used for the implementation of 

the radiation hardened version of the telecommand receiver. Brief overview of both the 

FPGA families is presented in the next section.  

 

Figure 4.2: (a) Xilinx FPGA (b) Xilinx CLB (c) Simplified View of Xilinx Logic Cell 
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4.6.1 Overview of Spartan 3E Family  

Spartan-3 family of FPGAs is particularly designed to meet the needs of high volume, cost 

sensitive consumer electronic applications. Since they are relatively cheap, Spartan-3 FPGAs 

are appropriate to a wide range of consumer electronics applications such as home 

networking, broadband access, digital television equipment and display/projection [24]. The 

Spartan-3 family architecture consists of five fundamental building blocks: 

 Configurable Logic Blocks (CLBs)  

 Input/output Blocks (IOBs)  

 Block RAM (BRAM)  

 Multiplier blocks  

 Digital Clock Manager (DCM)  

These logic blocks can be joined together by a programmable interconnect architecture. 

Spartan 3E FPGA is also consists of some dedicated functional blocks, such as Block 

Random Access Memories (BRAMs) and Digital Signal Processors (DSPs). These 

specialized blocks perform several flexible yet specific tasks, and provide a lot of ease to the 

programmer. The device selection for our platform is XCS3E500 from Spartan 3E family. 

The device nomenclature can be evaluated from the Figure 4.3: . 

 

Figure 4.3: FPGA Nomenclature 

The kit we have used for telecommand receiver implementation is Spartan 3E XCS3E500E-

4FG320. 

4.6.2 Overview of Virtex 4 Family  

The Virtex-4 family from Xilinx greatly enhances programmable logic design capabilities as 

compared to previous Virtex and Spartan series and making it a powerful alternative to ASIC 

technology. Virtex-4 FPGAs offer three platform families—LX, FX, and SX—offering 

multiple feature choices and combinations to address all complex applications. The wide 

array of Virtex-4 FPGA hard-IP core blocks includes the PowerPC processors, tri-mode 
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Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed 

clock management circuitry, and source-synchronous interface blocks [25]. The software 

defined radiation hardened version of the telecommand receiver is implemented using Virtex 

4 XC4VSX55-10FF1148. 
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CHAPTER 5 DESIGN METHODOLOGY 

The approach used to design, simulate and verify the complete system is shown in Figure 5.1. 

First the system was designed in floating point environment using high level design tools 

(MATLAB/Simulink). After simulating and verifying the algorithms. The design was 

converted into fixed point. The fixed point system was simulated under system generator and 

then the Verilog code was generated. The code was synthesized and implemented on FPGA 

using Xilinx ISE. 

 

Figure 5.1: System design flow 

5.1 High level Simulation 

The concepts and algorithms used in the receiver system can be modeled using high level 

design tools (i.e. MATLAB/Simulink). These tools provide the flexibility to simulate, debug 

and analyze the functionality of each working block. Moreover, they accelerate the design 

process and assists in verifying the accuracy of the algorithms.  

MATLAB is one of the most widely used software for Digital Signal Processing. It has 

become an integral part of DSP algorithm design and development. MATLAB/Simulink 

contains several toolboxes and functions for different applications such as aerospace, 

communications, image processing, signal processing and wavelet processing. Besides so 

many built-in functions present in MATLAB, the software package contains vector and 

array-based waveform data at the core of algorithms, which is very appropriate for 

applications such as image processing and wireless communications.  

The Simulink provides a modular environment for multi-domain simulation and Model-

Based Design. It enables parallel processing, automatic code generation, simulation and 

verification of DSP systems. Simulink contains graphical user interface tools, dedicated 

libraries, and different types of simulation solvers for modeling dynamic systems. It runs with 

MATLAB, which enables to integrate MATLAB’s algorithms into Simulink design and then 
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transfer these results to MATLAB for additional analysis. In our work, we have used 

MATLAB/SIMULINK as a high level design and development tool.  

Xilinx’s System Generator is a system-level modeling tool that extends Simulink capability 

to provide FPGA hardware design. It offers high-level of abstractions (i.e. Xilinx System 

Generator block sets) that can be automatically compiled into an FPGA. System Generator 

can generate equivalent representations of the Simulink design, at the same or lower level of 

abstraction. For example, from the functional domain it can generate a structural 

representation, an HDL or NGC netlist, or a physical representation such as an FPGA 

configuration bitstream. It can also to generate an equivalent high-level module that performs 

a specific function in applications external to System Generator (ModelSim hardware co-

simulation) [23].  

System Generator bridges the gap between Digital Signal Processing algorithms and its 

FPGA realizations. System Generator is a very useful tool that enables the visualization of 

data flow and is ideal for modeling and simulating FPGA based DSP algorithms, and enables 

the designer to generate the VHDL code directly from the design model. It saves considerable 

time of a DSP developer from rewriting the complete DSP system in Verilog/VHDL. 

System Generator automates the design process by enabling debugging, implementation and 

verification of the design on Xilinx-based FPGAs. It has built-in DSP libraries which enables 

high level simulation and code generation.  It also provides HDL Co-simulation environment, 

system resource estimator and a hardware co-simulation interface for algorithm validation on 

FPGA hardware. 

System Generator offers mechanisms to: 

 To import HDL code into a design. A configuration wizard can be used to associate 

the HDL module to a Black Box block. The wizard creates an M-function that defines 

the interface, the implementation and the simulation behavior of the black box block it 

is associated with. 

 To automatically generate an HDL testbench, including test vectors. Upon requested, 

System Generator generates a testbench that produces files to allow comparisons of 

simulation results between Simulink and ModelSim (HDL simulator). The testbench 

is a wrapper that feeds the stimuli to the HDL for the design and compares HDL 

results against expected ones. 
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 To perform hardware co-simulations, hardware run under the control of Simulink, 

bringing the power of MATLAB and Simulink to bear for data analysis and 

visualization. For hardware Co-Simulation, a bitstream is created and associated to a 

block. When the design is simulated in Simulink, results for the compiled portion are 

calculated in hardware. 

 System Generator does not substitute hardware design, but permits to design less 

critical portions with System Generator blocks and then combined them with the other 

critical ones [24]. Therefore: 

 Parts of the design are implemented using System Generator blocks. System 

Generator employs libraries of intellectual property (IP) to automatically map 

abstractions onto device primitives. 

 Other parts are designed directly in the FPGA using basic functions (adders, registers, 

memories) and a HDL language. The developed code (VHDL, Verilog) can be 

imported using wrappers to create Black Boxes. Black boxes are wired into the 

design, participate in simulations, and are compiled into hardware. 

 The complete design is a combination of all the parts (System Generator blocks and 

imported blocks) into a working whole. 

5.2 Hardware Co-Simulation 

Hardware co-simulation feature of system generator speed up the simulation and validation of 

the design on FPGA hardware. Hardware-in-the-loop co-simulation capability eases the 

design verification process by incorporating the processing power and analyzing tools of 

MATLAB and Simulink [26].  

By using MATLAB/Simulink in conjunction with Xilinx System Generator and the Xilinx 

ISE synthesis and implementation tool, DSP designs can be implemented on FPGA. As a 

plug-in to the MATLAB/Simulink software, the Xilinx System Generator creates a precise 

model of FPGA circuits and automatically generates a synthesizable VHDL code along with 

the test bench. This synthesized VHDL designs can be used for implementing the designed 

system on the Xilinx’s FPGAs platform. Figure 5.2 shows the implementation of the design 

process for Hardware Co-simulation. 

When the Verilog code has been generated by the Xilinx System Generator software, it is 

first synthesized and optimized for better implementation results. During the process of 
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synthesis, the generated HDL code is converted into a logical or physical form that will take 

the place on FPGA. This implies, the operation of synthesis is to transform the design from 

Hardware Descriptive Language into gate level. The Verilog modules can be exported to the 

FPGA hardware by using Xilinx synthesis technology (XST) synthesis tool. The second step 

is to place and route the design in order to verify that this design will get realize on the FPGA 

or not. This is accomplished by using the Xilinx’s ISE implementation tools. The place and 

route tool function is to place the synthesized modules into FPGA locations and makes 

necessary connections between these modules, so that they can operate as an integrated 

system. 

 

Figure 5.2: Implementation of the design process for Hardware Co-simulation 

Placing and routing operation is then followed by hardware verification. The designed 

module is implemented on the FPGA. In hardware verification step, the module created in 

high level simulation is checked whether it would work well on the desired FPGA. Test 

signals are then used to check any difference between the simulation and the hardware 

implementation. 

5.3 Simulation with Simulink and System Generator  

In our thesis, the algorithm is first designed and simulated on Simulink and then implemented 

on Xilinx system generator. The designed receiver correctly demodulated the BPSK 

modulated signal applied to it. The complete system is designed using basic Simulink 
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functional blocks instead of its customized blocks, in order to ease the migration from 

Simulink to system generator.   
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CHAPTER 6 IMPLEMENTATION 

This Chapter presents the Xilinx system generator realization of the Telecommand receiver 

and its SEU mitigation.  

6.1 BPSK Modulator 

In order to simulate and verify our receiver design, BPSK modulated signal is generated in 

MATLAB/SIMULINK. The BPSK modulation is achieved by multiplexing the two 

sinusoidal signals having 180 degree phase shift in between them using a switch. The binary 

data to be modulated is imported from workspace and is used as the select signal of switch as 

shown in Figure 6.1. 

 

Figure 6.1: BPSK Modulator 

The output BPSK modulated waveform along with other signals is shown in Figure 6.2. 

 

Figure 6.2: BSPK Modulator Output 
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The modulated signal is then passed through a AWGN Channel block to emulate the channel 

degradation effects. Finally the modulated signal is multiplied with a fixed gain to achieve 

the real voltage levels of ADC of the Spartan 3E kit.   

6.2 Telecommand Receiver 

6.2.1 Carrier Recovery 

Carrier recovery is achieved by using Costas loop. Traditional analog Costas loop suffer from 

several problems such as imbalance between in-phase and quadrature branch, direct current 

zero excursion and difficulty to debug [18]. These problems can be avoided by using digital 

version of Costas loop [27] as shown in Figure 6.3.  

 

Figure 6.3: Costas Loop 

The transmitted signal from Simulink is acquired in system generator environment by using 

gateway in block labeled as ADC_In. The received signal is of 14 bits and having frequency 

of 4MHz. It is sampled on 64 MHz and is level shifted to relax the computation requirements 

as shown in Figure 6.4. 

 

Figure 6.4: Input Interface of Telecommand receiver 
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The level shifted received signal as shown in Figure 6.5 is applied to the input of Costas loop 

for carrier recovery and demodulation. Modulated signal is down sampled by a factor of 2. 

This reduces the sampling frequency to half for the rest of the system thus drastically reduces 

the logic utilization for the complete design especially for filters.  

 

Figure 6.5: (a) BPSK Modulated signal with AWGN (b) ADC_in output (c) Level Shifted signal 

The reference signals in the loop are generated by using Numerical Controlled Oscillator 

(NCO). The NCO is implemented using Direct Digital Synthesizer compiler 4.0 (DDS V4.0) 

which produces two orthogonal sinusoids. The architecture of NCO is shown in Figure 6.6 it 

has two distinct parts. First, a phase accumulator accumulates the phase increment and adds 

in the phase offset. In this stage, an optional internal dither signal can also be added. The 

NCO output is then calculated by quantizing the results of the phase accumulator section and 

using them to select values from a lookup table.  

For a desired frequency F0, the phase increment value can be calculated with the following 

equation 

𝑃ℎ𝑎𝑠𝑒 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
(𝐹0. 2𝑁)

𝐹𝑆
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Where N is the accumulator word length and  

𝐹𝑆 =
1

𝑇𝑆
=

1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑇𝑖𝑚𝑒
 

The frequency resolution of NCO is defined by 

∆𝑓 =
1

𝑇𝑠 . 2𝑁
𝐻𝑧 

 

Figure 6.6: Architecture of NCO 

The desired phase offset (in radians) can be set by following formula 

𝑃ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 =
2𝑁 . 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡

2𝜋
 

The spurious free dynamic range (SFDR) is estimated as follows for a lookup table with 2
P
 

entries, where P is the number of quantized accumulator bits: 

𝑆𝐹𝐷𝑅 =  6𝑃  𝑑𝐵           𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑖𝑡ℎ𝑒𝑟  

𝑆𝐹𝐷𝑅 =  6𝑃 + 12  𝑑𝐵       (𝑊𝑖𝑡ℎ 𝐷𝑖𝑡ℎ𝑒𝑟) 

This block uses a quarter-wave lookup table technique that stores table values from 0 to π/2. 

Our desired parameters for NCO calculations are: 

 Desired output frequency: F0 = 4 MHz 

 Accumulator word length: N= 18 

 Spurious free dynamic range: SFDR  ≥ 90 dB 

 Sample period: TS= 1/32e6 s 
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 Desired phase offset: 0 

By using above mentioned formula, phase increment comes out to be, 

𝑃ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
4𝑒6 ∗ 218

32𝑒6
 

𝑃ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 32768 

Calculating the number of quantized accumulator bits from the equation for spurious free 

dynamic range, 

𝑆𝐹𝐷𝑅 =  6𝑃 + 12 𝑑𝐵 

96 𝑑𝐵 =  6𝑃 + 12 𝑑𝐵 

𝑃 = 14  

Now selecting the number of dither bits. In general, a good choice for the number of dither 

bits is the accumulator word length minus the number of quantized accumulator bits; in this 

case 4. After calculating all the parameters for NCO, we configured the DDS Compiler 4.0 of 

Xilinx system generator. In the basic tab of DDS as shown in Figure 6.7(a) system clock is 

set to be 32 MHz, Noise shaping is set to “Phase_Dithering”. In hardware parameter option, 

Phase width is set 18 bits and output signal width is set to be 14 bits. Output selection mode 

is configured to “Sine_and_Cosine”. In the implementation tab, the memory type is selected 

to be “Block ROM” because it is fast and optimized. The Optimization goal is set to area, in 

order to aim resource efficient implementation. Latency is selected to be 1. The optional pin 

“rdy” is checked because it provides the enable signal to the Mixer’s when the DDS output is 

ready. Sample time for the DDS compiler is set to be 1/32e6 in explicit period. Since the 

frequency of the DDS will be determined by an external data coming from the loop, phase 

increment programmability is set to “Programmable” in the output frequency tab. The 

summary of configuration settings for DDS is shown in Figure 6.7(b). 

The DDS compiler 4.0 data input range is from 0 to 1. Therefore the incoming data word is 

divided by 18 before applying it to DDS block as shown in Figure 6.8. The division operation 

is achieved by shift right operator. The write enable pin “we” is set to high. 
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Figure 6.7: DDS Compiler internal Configuration a) Basic b) Implementation 

 

Figure 6.8: DDS compiler 4.0 

The Sine, Cosine and ready signal as shown in Figure 6.9 are applied to the Mixer1 and  

Mixer 2 of both the arms of costas loop.  
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Figure 6.9: NCO Outputs (a) Sine wave (b) Cosine wave (c) ready signal 

The arm in which sine wave is applied is called as in-phase (I) arm and where cosine wave is 

applied is called as quadrature arm (Q). The mixer’s are realized by using 14 x 14 bit 

multipliers. After multiplication, two frequency components are generated. The high 

frequency components are filtererd by the fifth order Low Pass Filter (LPF). The filter is  

designed using Direct form symmetric architecture as shown in Figure 6.10. This architecture 

takes the advantage of symmetry in the coefficients of FIR filter and uses half the multipliers 

and adders than the conventional approach. The architecture is realized using discrete system 

generator blocks. This approach enables the in depth optimization of each block thus 

resulting a very efficient implementation. Moreover, one of the filters coefficients is 

implemented through binary shift operation which further reduces resource consumption. The 

low pass filters in each channel are designed wide enough to pass the data modulation 

without distortion [28]. All the adders used are of 14 bits and two coefficient implemented 

with “cmult” block are of 16 bits. Complete architecture of the filter is pipelined for 

maximum performance. 
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Figure 6.10: Low Pass Filter Architecture 

The 16 bits output of I and Q channel filters are applied to the phase detector block. It is 

implemented by using a 18 x 18 bit multiplier block. It computes the phase error between the 

I and Q channel and generates the coresponding error signal. This error signal is applied at 

the input of loop filter. Loop filter removes the high frequency leakages of the phase detector. 

It provides a smooth and stable 18-bit control word to the NCO for modifying its output 

frequency and phase with respect to input signal as shown in Figure 6.11. The designing of 

loop filter is a very sensitive task as it determines the bandwidth of the loop and controls 

NCO’s output. The loop filter is a first order Butterworth IIR filter and is entirely 

implemented by binary shift registers without using embedded multipliers as shown in Figure 

6.12. The incoming error signal is first multiplied with a coefficient, this is achieved by shift 

left operation and then it is added to the reference word by a 18 bit adder. 
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Figure 6.11: (a) Phase Detector Output (b) Loop Filter Output 

 

Figure 6.12: Loop Filter 

NCO modifies its output frequency with respect to the provided data word. When the NCO’s 

generated carrier frequency and phase gets synchronized with the incoming signals frequency 

and phase, the demodulated signal is produce at the I channel as shown in Figure 6.13. Our 

designed Costas loop can demodulate input signal with Doppler shifts up to 10 percent of the 

carrier frequency. 
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Figure 6.13: (a) I channel Mixer Out (b) I channel Out (c) Q channel mixer Out (d) Q channel Out 

6.2.2 Integrator 

The demodulated signal from the Costas loop is applied at the input of Integrator block as 

shown in Figure 6.14.  

 

Figure 6.14: Integrator block 

This block performs two tasks: it integrates the coming signal over one bit duration and it 

determines the threshold value which is used by later stages of the design. First, the input data 

type is converted from 16 bits to 10 bits as shown on Figure 6.15. This reduces the logic 

consumption of the proceeding blocks. 
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Figure 6.15: Internal logic of Integrator 

The demodulated signal samples are added in an accumulator which gets reset after one bit 

duration. The accumulator operation is selected to add and the number bits are set to be 13. 

Optional ports of synchronous reset and enable are also checked. The internal configuration 

of the accumulator block is shown in Figure 6.16. 

 

Figure 6.16: Accumulator Configuration 

The resetting logic consists of a counter, a constant and a relational operator. There are 32 

samples in one bit duration. The counter starts counting from 0 and when it value reaches up 

to 31, the relational operator equates it with the constant value and generates “1” at the its 

output. This “1” resets the accumulator backs to zero. In order to avoid synchronization 
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issues due to computational delays, the accumulator and the resetting logic is enables after 

the delays of 9 samples which is the processing time of carrier recovery loop. The resultant 

waveform is of triangular in shape. This reduces the Inter-Symbol-Interference (ISI) and 

provides to the peak detecting module. 

Before the resetting of accumulator, the peak value is captured in a register. The peak value is 

divided by two by using shift right operation. The divided value is used as a ―Threshold‖ 

value by decision blocks used in the later stages of the design. All the internal and external 

signals of integrator are shown in Figure 6. 17. 

 

Figure 6. 17: (a) Cast input (b) Timing circuit output (c) Integrator Out (d) Threshold Out 
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6.2.3 Bit Synchronizer and Data Sampler 

The bit synchronizer and data sampler module has two inputs i.e. integrated signal and 

threshold, and one output port i.e. Data as shown in Figure 6.18.  

 

Figure 6.18: Bit Synchronizer and Data Sampler module 

It performs three major tasks: peak detection, preamble matching and data sampling. As 

mentioned in the previous section, the signal from the integrator is a triangular waveform. 

The signal is first fed into the peak detect module. This block detects the sampling instant for 

the wave. After that, the signal is passed on to the preamble match block and data sampler 

block. Data sampler starts sampling the signal once it receives the peak detect “1”. The 

sampled data is sent to preamble match module, where data is compared with the pre-stored 

preamble sequence. If the recovered data sequence is matched with the pre-stored, peak 

detect and preamble match modules are disabled using “Register1” and “inverter” and also 

an enable signal is sent to the “Register2” which routes the sampled data to the output port. 

The detail design and functional description of each sub-module is presented in the following 

sections. 

6.2.3.1 Peak Detector 

The peak detector block determines the sampling instant for the integrated signal. In case of a 

triangular wave, it is the peak of signal. That’s why this module is named as peak detector. 

The internal logic of the module is shown in Figure 6.19. 
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Figure 6.19: Peak detector 

It uses the improved early late gate sampling algorithm for determining the peak of the signal. 

The algorithm is implemented by using relational operators rather than arithmetic operators in 

order to avoid any floating point arithmetic. This approach saves considerable FPGA 

resource logic. The incoming signal has a zero mean value i.e. it has a positive peak value 

and the negative peak value. So in order to apply this algorithm, absolute (abs) function is 

applied to the incoming signal values. Since the Xilinx system generator does not provide abs 

function block, we created our own functional module. The abs sub-module contains a 

multiplexer, a slice and a negate block as shown in Figure 6.20.  

 

Figure 6.20: Absolute value computation 

The Most Significant Bit (MSB) is sliced off the incoming signal and used as the select pin of 

Mux. The internal setting is shown in Figure 6.21. The incoming signal is of 13 bit wide 

having binary point on 6. In order to take the MSB, the width of slice bit is set to 1 and offset 

of bottom bit is set to 12. For the remaining bits, slice_bits setting is shown in Figure 6.22. 
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The width of slice bit is 7 and offset bottom bit is set to 6 because of the binary point 

position.   

 

Figure 6.21: MSB slice 

 

Figure 6.22: Bottom bits slice 
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The first input of the MUX “d0” is connected with sliced bits and the second input “d1” is 

connected with the negated sliced bits. If MSB is “0” means the incoming signal is positive, 

“d0” is routed to the output. If MSB is “1” means the incoming signal is negative, “d1” is 

routed to the output. The internal signals of abs block are shown in Figure 6.23. 

 

Figure 6.23: (a) Enable signal (b) Integrated Signal (c) MSB (d) Sliced LSB (e) Negate Out (f) ABS out 

The output of abs block is then split into three samples as shown in Figure 6.19. They are 

termed as early sample (without delay), present sample (3 sample delay) and late sample (6 

sample delay). They are applied to the inputs of two relational operators. These operators 

identify the peak among three samples. Once the peak is identified, its value is sampled and is 

compared with the threshold value. If it is greater than that, peak detect output goes high “1”, 

else it remains low “0”. The complete algorithm is presented as follow: 

if ((|E| < |P|) AND (|L| < |P|) AND (|P| ≥ Th)) 

Peak detect=1 

Else  

Peak detect=0 
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The internal signals of peak detector and its output are shown in Figure 6.24. 

 

Figure 6.24: (a) Early Sample (b) Present sample (c) Late sample (e) Early late gate sampler out (f) Peak detect 

out 

6.2.3.2 Data Sampler 

The data sampler block has two inputs: one is the demodulated signal from the Costas loop 

and other is the peak detect signal from peak detect module. It consists of inverter, counter, 

registers and constant blocks as shown in Figure 6.25. The peak detect serve as an enable 

signal for the counter. Once the peak detect signal is asserted, counter starts counting and 

when it reaches the count 31, relational operator compares it with the no. of sample value and 

produce a “1” at the output. This “1” enables the register which captures the value and sends 

it to relational operator which compares it with “0”. If the value is greater than “0”, the 

output turned to “1” otherwise it remains “0”. 
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Figure 6.25: Data Sampler 

The internal signals and there logic levels are shown in Figure 6.26. 

 

Figure 6.26: (a) Demodulated Signal (b) Peak detect in (c) Counter Out (d) Relational Output (d) Register Out  

(e) Data Out 
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6.2.3.3 Preamble Match 

This module has three input ports: In (which takes the peak detect signal from peak detector), 

en (which takes the enable input) and Sampled_In (which takes the sampled data bits from 

data sampler) as shown in Figure 6.27. 

 

Figure 6.27: Preamble Check module 

This module contains counters, registers, ROM, relational and logical operators as shown in 

Figure 6.28. 

 

Figure 6.28: Preamble check internal logic 

The enable signal is connected to the enable input of all the blocks. The sampled data bit 

“Sampled_In” is sent to relational operator “Relational3”. Since the relational operator does 

not accept Boolean data type, cast block is used to convert Boolean into unsigned data type. 

The relational block compares the sampled data bits with the pre-stored preamble bits in 

ROM. The preamble size is of 8 bits and memory for ROM is selected to be Block RAM as 

shown in Figure 6.29(a). The output of ROM is set to be unsigned type of 1 bit as shown in 

Figure 6.29(b). 
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Figure 6.29: ROM configuration (a) Basic (b) Output 

If the recovered data bit is equal to the output of ROM, “Relational3” output goes high “1” 

otherwise remains “0”. The output of “Relational3” is connected to the reset pin of counter 

which function’s as an enable signal to it.  

Initially counter needs to be hold to its initial position, it will count only when incoming bit is 

matched with the stored bit at the output of ROM. For this function there were two options, 

whether to use xor operation or xnor on “Relational3” output. Truth table of both the logical 

functions is given in Table 6.1. 

Table 6.1: Truth Table 

XOR XNOR 

A B C A B C 

0 0 0 0 0 1 

0 1 1 0 1 0 

1 0 1 1 0 0 

1 1 0 1 1 1 
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After the analysis, xnor operation is selected instead of xor because even if there is no peak 

detected and no data bit is matched, output of xor will give a “0” at counter reset port. This 

would start the counter which is not desired. So xnor operation is performed on the output of 

“Relational3” and “In” signal i.e. the peak detect signal. When both the inputs of xnor are 

same, output is “1” otherwise it is “0”. The output of xnor block is connected to the counter. 

The function of this counter is to provide address bits to the ROM for changing its preamble 

bit. Since preamble size is of 8-bits, 3 bit counter should have been used. But in order to 

avoid sampling time errors, 8 bit counter is used with max value of 224 as shown in figure 

30. The output of counter is divided by 32 by using shift right operation. The divided output 

is connected to the address port of ROM and input of relational operator “Relational4”. It 

compares the divide output with a constant number “7”.  

When the count reaches to 7 i.e. the complete preamble is matched with the recovered bit 

sequence, Relational operator will output 1 at “Pr_match” port or otherwise it will maintain 

“0”. The “Pr_match” is used as the enable signal for the register “Register2” as shown in 

Figure 6.30. When the ―Pr_match‖ goes high ―1‖, it enables the ―Register2‖ which routes the 

recovered data bits of data sampler to the output port “Data”.  

 

Figure 6.30: Counter configuration 
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The internal signals at different stages discussed and block output is shown in Figure 6.31. 

 

Figure 6.31: (a) Enable Signal (b) Peak Detect IN (c) Sampled Data (d) ROM Output (e) Relational Out (f) 

Counter Divide Out (f) Preamble match Out 

The internal architecture of the bit synchronizer and data sampler block is shown in Figure 

6.32. The different signals within it are shown in Figure 6.33 

 

Figure 6.32: Bit Synchronizer and Data Sampler Sub-modules 
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Figure 6.33: Bit Synchronizer and Data sampler internal signals 

The complete telecommand receiver implementation of system generator is shown in Figure 

6.34. The waveforms of various stages as discussed earlier along with the final recovered data 

bits are shown in Figure 6.35. 
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Figure 6.34: Implementation of Telecommand Receiver 
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Figure 6.35: Simulation Results of Telecommand Receiver 
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6.3 SEU Mitigation 

As mentioned earlier, RPR is not suited to all types of applications and designs. For 

applications comprising of arithmetic and non-arithmetic operations, combination of both 

RPR and TMR is the best approach for mitigating SEUs [8]. The baseband processing 

module of a telecommand receiver is composed of arithmetic and non- arithmetic operations.  

The designed system was analyzed to identify the potential areas where RPR application 

would cause significant reduction in resource consumption for the complete system. It was 

observed that the low pass filters and mixers of I and Q channel consists bulk of arithmetic 

operations. In fact they constitute more than half of the total design resources. This makes 

them ideal contenders for RPR. Phase detector comprises of multiplication operation, which 

is better suited for RPR then TMR [29]. Loop filter is composed of binary shift registers 

which makes RPR ineffective. The decision block contains no arithmetic operation so it 

cannot be protected using RPR. Experimentally, it was determined that due to the high cost of 

RPR decision blocks, it is more efficient to apply TMR to NCO, integrator and to the bit 

synchronization module. The diagram of a telecommand receiver module is shown in Figure 

6.36 with annotations indicating the type of mitigation technique applied to each system 

block.

LPF
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Mixer 1
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Figure 6.36: Telecommand Receiver annotated for RPR+TMR mitigation 

The suitable value of RPR factor (k=7) is determined which reduces the size of RPR module 

while ensuring good SEU mitigation. The Threshold value (Th) is set to be the maximum 

difference between FP and RP modules. The RPR mitigated low pass filter with the internal 

implementation RPR algorithm is shown in Figure 6.37. The difference in the word length 
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between an unmitigated and mitigated low pass filter is shown in Figure 6.38. It can be 

observed from the figure, the precision of the LPF internal word length have been reduced. 

The TMR protected numerically controlled oscillator is shown in Figure 6.39. 

1

 

Figure 6.37: RPR Mitigated Low pass filter 

 

Figure 6.38: (a) Unmitigated LPF (b) Mitigated LPF 



56 

 

 

Figure 6.39: TMR Mitigated NCO 
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CHAPTER 7 RESULTS AND COMPARISON 

This chapter presents the implementation results of telecommand receiver and impact of SEU 

mitigation on receivers BER performance. 

7.1 Comparison 

The proposed design of the telecommand receiver module is implemented on Xilinx System 

generator. The module was hardware co-simulated using Spartan 3E XCS3E500E-4FG320 

FPGA as shown in Figure 7.1. Hardware Co-simulation incorporates FPGA hardware into the 

simulation and automates the data exchange process between hardware and software. The 

data is processed in FPGA and the results are displayed in System generator. 

 

Figure 7.1: Hardware Co-simulated model of Telecommand Receiver 

Results from graphs shown in Figure 7.2 confirms that, the Sync_lock signal (a) and received 

data bits (b) from Xilinx System generator simulation are identical to the Sync_lock signal 

(d) and data received bits (e) results from hardware co-simulation. The designed system was 

tested with frequency shifts up to ± 200 KHz. In first case, the Incoming signal’s frequency 

was first shifted to 4.2 MHz, while the NCO was running on 4.0 MHz. In second case, the 

incoming signal was shifted to 3.8 MHz. In both the cases NCO successfully tracked the 

incoming signal frequency in less than 10 us as shown in Figure 7.3 and Figure 7.4.  

BER analysis of the receiver module is performed using ―bertool‖ provided in MATLAB. 

The BER performance of the overall designed system is calculated using Monte Carlo 

simulation. Figure 7.5 presents a comparison between the BER of the proposed system and 

the ideal BPSK receiver in AWGN channel. It can be seen that the proposed systems BER is 
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almost identical to the BER of the ideal receiver. The slight degradation in BER graph of the 

designed module is due to the implementation losses. 

 

Figure 7.2: Output of Scope a) Sys_gen_SynLock b) Sys_gen_Received_Bit c) Transmitted_Bits d) 

HWCOSIM_Received_Bits e) HWCOSIM_SynLock  

 

 

Figure 7.3: Loop Filter Output with incoming signal at 4.2 MHz 
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Figure 7.4: Loop Filter Output with incoming signal at 3.8 MHz 

 

Figure 7.5: BER of Telecommand Receiver 

The proposed module’s logic utilization on FPGA and its comparison with Maya, J.A., et al 

[4] is presented in Table 7.1. It can be seen that the designed system consumes 50% less 

multipliers, 1% less slices and 5% less 4- input LUTS as compared to [4]. The timing 

recovery unit of the proposed system consumes almost 60% less slices as compared to [4] 

and uses no multiplier. 
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Table 7.1: Resource Comparison of Proposed Receiver Module and Maya, J et.al [4] on Spartan 3e 

Logic  

Utilization 

Carrier Recovery Timing Recovery 

Total 

Available 

Utilization 

Used Used Percentage % 

This 

Work 
[4] 

This 

Work 
[4] 

This 

Work 
[4] 

Slice 553 607 155 387 4,656 15 16 

Slice Flip flops 759 732 158 651 9,312 9 13 

4-input LUTS 677 973 136 503 9,312 8 13 

RAM16s 1 2 1 0 20 10 10 

MULT18x18s 3 2 0 4 20 15 30 

BUFGMUXs 1 1 1 1 24 4 8 

 

7.2 SEU Mitigation 

The SEU effect is emulated by inverting a bit in the design [30]. For this purpose, loop filter 

is selected because it plays a critical role of keeping the demodulator and receiver in the 

desired working area and an upset in it would have a major impact on receiver’s performance. 

Class 1 SEU, is introduced by inverting the LSB of the loop filter. Class 2 SEU is simulated 

by flipping the middle order bit of the loop filter. Higher order bit is flipped for class 3 SEU. 

The MSB of the loop filter is inverted for class 4 SEU. The effect of SEU on BER 

performance with respect to different classes is shown in Figure 7.6. 
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Figure 7.6: SEU effect on BER performance 

It can be observed from Figure 7.6 that all classes of SEUs have different impact on BER 

performance. Class 1 and 2 SEUs cause minor degradation in BER and are not critical. These 

errors can be corrected using standard techniques. Class 3 and 4 SEUs have a devastating 

impact on BER; redundancy must be used in order to enhance the BER.  

TMR and RPR application increases the overall size of the designed system by introducing its 

replica’s. Therefore, a different FPGA platform was required that can meet the resource 

requirements. We decided to implement TMR and the combination of RPR and TMR using 

Virtex 4 XC4VSX55-10FF1148 FPGA as shown in Figure 7.7. Both methods mitigate SEUs 

successfully as shown in Figure 7.8. Their resource comparison is presented in Table 7.2. The 

results show that the hybrid approach is more efficient in terms of resources as compared to 

TMR. The combination of RPR and TMR consumes 26% less slices, 42% less slice flip-flops 

and almost 18% less 4-input LUTS as compared to TMR. 
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Figure 7.7: Hardware Co-simulated model of SEU Mitigation 

 

Figure 7.8: SEU mitigated using RPR+TMR 

Table 7.2: Resource Comparison of TMR and RPR+TMR on Virtex 4 

Logic Utilization 
TMR 

RPR 

+ 

TMR 
Available 

Resource 

Reduction 

(%) 
Used Used 

Slice 2,572 1,901 24,576 26.08 

Slice Flip Flops 3,149 1,817 49,152 42.29 

4-input LUTS 2,721 2,240 49,152 17.68 
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CHAPTER 8 CONCLUSION AND FUTURE WORK 

8.1 Conclusion 

In this research, we presented the resource efficient implementation of a BPSK satellite 

telecommand receiver using FPGA. The adopted scheme uses a resource efficient 

implementation of Costas loop for carrier recovery and early late gate sampling algorithm for 

timing recovery. The optimized receiver module has BER performance identical to 

theoretical, with minor degradation due to implementation losses. Our designed system 

consumes 50% less multipliers, 1% less slices and 5% less 4- input LUTS as compared to [4]. 

The timing recovery unit of the proposed system consumes almost 60% less slices as 

compared to [4] and uses no multiplier. 

A new technique for software defined radiation tolerance of baseband module for a LEO 

satellite telecommand receiver is also implemented. The combination of RPR and TMR is 

used in the receiver module for SEU mitigation. This hybrid approach has shown to be very 

effective and consumes far less resource than a customary TMR protected receiver. It has 

been concluded that by focusing on targeted implementation of RPR in systems involving 

arithmetic operations, a lot of resources can be saved as compared to complete TMR system.  

8.2 Future Work 

As a Scope for future work, this design can be implemented using RF Front end connected 

with the FPGA hardware to perform real - time measurements. The RPR redundancy factor 

(k) can be changed to evaluate its impact on systems BER performance. 

8.3 Publication 

Salman Sadruddin and Arshad Aziz, ―Reduced Precision Redundancy for Satellite 

Telecommand Receiver Module on FPGA‖, Hindawi Publishing Corporation, Chinese 

Journal of Engineering, Article ID 453872, Volume 2013. 
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