
FPGA IMPELMENTATION OF BASEBAND

PROCESSING MODULE FOR TELECOMMAND

RECEIVER

Submitted by:

Salman S/O Sadruddin

2011-NUST-MS Phd-Elec(Comm-N)-14

Supervisor:

Dr. Arshad Aziz

Thesis Submitted:

In Partial Fulfillment of the Requirements for the Degree of Master of

Science in Electrical Engineering with Specialization in Communications

at the Department of Electronic and Power Engineering

Pakistan Navy Engineering College, Karachi

National University of Sciences and Technology

H-12, Islamabad, Pakistan

December 2013

II

© Copyright by Salman Sadruddin

December 2013

All Rights Reserved

III

DEDICATED TO MY PARENTS

IV

Acknowledgement

All praise is for Almighty Allah alone. I would like to express immense gratitude to my

supervisor Dr. Arshad Aziz for his valuable guidance and support which enabled me to

complete my research. I am also grateful to my GEC members; Dr. Pervez Akhtar, Dr.

Khawaja Bilal Ahmed Mahmood and Dr. Sameer Hashmat Qazi.

I am also thankful to Mr. Muhammad Kashan Mobeen and Mr. Zeeshan Jawaid of Pakistan

Space and Upper Atmosphere Research Commission (SUPARCO) for their thoughtful

suggestions which helped me to improve my work.

I am extremely grateful to my beloved parents for their continuous support throughout my

work.

Finally, I offer my sincere thanks to my friends and colleagues who motivated me during my

work.

V

Abstract

This work presents a resource efficient baseband module implementation of a LEO satellite

telecommand receiver using FPGA. The adopted scheme uses a digital Costas loop for carrier

recovery and an improved early late gate timing recovery algorithm for bit synchronization.

Loop filter is designed and implemented without using embedded multipliers. The Bit Error

Rate (BER) performance of the designed receiver is almost identical to theoretical values

with negligible difference due to implementation losses. The optimized receiver module has

BER performance identical to theoretical, with minor degradation due to implementation

losses.

A new method for software defined radiation hardening of a baseband module for a LEO

satellite telecommand receiver is proposed. FPGAs in space are subject to single event upsets

(SEUs) due to high radiation environment. Traditionally, triple modular redundancy (TMR)

is used for mitigating Single Event Upsets (SEUs). The drawback of using TMR is that it

consumes a lot of hardware resources and requires more power. Reduced precision

redundancy (RPR) can be a viable alternative of TMR in digital systems for arithmetic

operations. This work uses the combination of RPR and TMR for mitigating SEUs.

The designed system consumes less resources when compared to a BPSK receiver having

same specification. It compensates frequency shifts up to ± 200 KHz due to Doppler effect.

The hybrid software defined radiation hardening technique consumes 26% less area than a

customary TMR protected receiver.

VI

Table of Content

Acknowledgement ... IV

Abstract ... V

Table of Content .. VI

List of Figures .. IX

List of Tables ... XI

CHAPTER 1 INTRODUCTION .. 1

1.1 Background ... 1

1.2 Survey of Related Work .. 2

1.3 Aim .. 2

1.4 Thesis Outline ... 3

CHAPTER 2 SATELLITE COMMUNICATION ... 4

2.1 Introduction ... 4

2.2 Types of satellite ... 4

2.2.1 Navigation .. 4

2.2.2 Weather .. 4

2.2.3 Communication .. 5

2.2.4 Earth Observation .. 5

2.3 Communication subsystem ... 5

2.3.1 Modem ... 6

2.4 Modulation and Demodulation techniques ... 7

2.4.1 Binary Phase Shift Keying (BPSK) ... 7

2.4.2 Audio Frequency Shift Keying (AFSK) .. 8

2.4.3 Quadrature Phase Shift Keying (QPSK) .. 8

CHAPTER 3 TELECOMMAND RECEIVER DESIGN... 10

3.1 Design Specifications .. 10

3.2 Possible Design Approaches ... 10

VII

3.2.1 Coherent Receiver .. 10

3.2.2 Non-Coherent Receiver ... 11

3.3 Reasons for selecting the approach ... 12

3.4 Telecommand Receiver ... 13

3.4.1 Carrier Recovery .. 13

3.4.2 Integrator .. 16

3.4.3 Bit Synchronizer .. 16

3.4.4 Data Sampler .. 17

CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAYS ... 18

4.1 Introduction ... 18

4.2 Functional Overview ... 18

4.3 FPGA vs. DSP ... 18

4.4 FPGA in Space .. 19

4.5 Reduced Precision Redundancy .. 20

4.6 Xilinx FPGA ... 21

4.6.1 Overview of Spartan 3E Family .. 22

4.6.2 Overview of Virtex 4 Family ... 22

CHAPTER 5 DESIGN METHODOLOGY ... 24

5.1 High level Simulation.. 24

5.2 Hardware Co-Simulation... 26

5.3 Simulation with Simulink and System Generator ... 27

CHAPTER 6 IMPLEMENTATION .. 29

6.1 BPSK Modulator ... 29

6.2 Telecommand Receiver ... 30

6.2.1 Carrier Recovery .. 30

6.2.2 Integrator .. 38

6.2.3 Bit Synchronizer and Data Sampler ... 41

VIII

6.2.3.1 Peak Detector ... 41

6.2.3.2 Data Sampler .. 45

6.2.3.3 Preamble Match.. 47

6.3 SEU Mitigation ... 54

CHAPTER 7 RESULTS AND COMPARISON .. 57

7.1 Comparison ... 57

7.2 SEU Mitigation ... 60

CHAPTER 8 CONCLUSION AND FUTURE WORK ... 63

8.1 Conclusion ... 63

8.2 Future Work .. 63

8.3 Publication ... 63

REFERENCES .. 64

IX

List of Figures

Figure 2.1: A general overview of the communication subsystem .. 6

Figure 2.2 : Ideal QPSK constellation ... 9

Figure 3.1: Block diagram of a coherent receiver.. 11

Figure 3.2: Block diagram of a DBPSK receiver .. 12

Figure 3.3: Error probability of coherent PSK, DPSK, and coherent FSK 12

Figure 3.4: Telecommand Receiver Architecture .. 13

Figure 3.5: Costas Loop ... 14

Figure 3.6: Sampling Instances for Early late gate Synchronization 17

Figure 4.1: Block diagram of an n- bit FIR filter protected with k-bit RP modules 20

Figure 4.2: (a) Xilinx FPGA (b) Xilinx CLB (c) Simplified View of Xilinx Logic Cell 21

Figure 4.3: FPGA Nomenclature ... 22

Figure 5.1: System design flow ... 24

Figure 5.2: Implementation of the design process for Hardware Co-simulation 27

Figure 6.1: BPSK Modulator ... 29

Figure 6.2: BSPK Modulator Output ... 29

Figure 6.3: Costas Loop ... 30

Figure 6.4: Input Interface of Telecommand receiver ... 30

Figure 6.5: (a) BPSK Modulated signal with AWGN (b) ADC_in output (c) Level Shifted

signal .. 31

Figure 6.6: Architecture of NCO ... 32

Figure 6.7: DDS Compiler internal Configuration a) Basic b) Implementation 34

Figure 6.8: DDS compiler 4.0 .. 34

Figure 6.9: NCO Outputs (a) Sine wave (b) Cosine wave (c) ready signal 35

Figure 6.10: Low Pass Filter Architecture ... 36

Figure 6.11: (a) Phase Detector Output (b) Loop Filter Output .. 37

Figure 6.12: Loop Filter ... 37

Figure 6.13: (a) I channel Mixer Out (b) I channel Out (c) Q channel mixer Out (d) Q channel

Out.. 38

Figure 6.14: Integrator block ... 38

Figure 6.15: Internal logic of Integrator .. 39

Figure 6.16: Accumulator Configuration ... 39

Figure 6. 17: (a) Cast input (b) Timing circuit output (c) Integrator Out (d) Threshold Out .. 40

X

Figure 6.18: Bit Synchronizer and Data Sampler module ... 41

Figure 6.19: Peak detector ... 42

Figure 6.20: Absolute value computation .. 42

Figure 6.21: MSB slice .. 43

Figure 6.22: Bottom bits slice .. 43

Figure 6.23: (a) Enable signal (b) Integrated Signal (c) MSB (d) Sliced LSB (e) Negate Out

(f) ABS out ... 44

Figure 6.24: (a) Early Sample (b) Present sample (c) Late sample (e) Early late gate sampler

out (f) Peak detect out .. 45

Figure 6.25: Data Sampler ... 46

Figure 6.26: (a) Demodulated Signal (b) Peak detect in (c) Counter Out (d) Relational Output

(d) Register Out.. 46

Figure 6.27: Preamble Check module .. 47

Figure 6.28: Preamble check internal logic ... 47

Figure 6.29: ROM configuration (a) Basic (b) Output .. 48

Figure 6.30: Counter configuration .. 49

Figure 6.31: (a) Enable Signal (b) Peak Detect IN (c) Sampled Data (d) ROM Output (e)

Relational Out (f) Counter Divide Out (f) Preamble match Out ... 50

Figure 6.32: Bit Synchronizer and Data Sampler Sub-modules .. 50

Figure 6.33: Bit Synchronizer and Data sampler internal signals ... 51

Figure 6.34: Implementation of Telecommand Receiver .. 52

Figure 6.35: Simulation Results of Telecommand Receiver ... 53

Figure 6.36: Telecommand Receiver annotated for RPR+TMR mitigation 54

Figure 7.1: Hardware Co-simulated model of Telecommand Receiver 57

Figure 7.2: Output of Scope a) Sys_gen_SynLock b) Sys_gen_Received_Bit c)

Transmitted_Bits d) HWCOSIM_Received_Bits e) HWCOSIM_SynLock 58

Figure 7.3: Loop Filter Output with incoming signal at 4.2 MHz ... 58

Figure 7.4: Loop Filter Output with incoming signal at 3.8 MHz ... 59

Figure 7.5: BER of Telecommand Receiver .. 59

Figure 7.6: SEU effect on BER performance .. 61

Figure 7.7: Hardware Co-simulated model of SEU Mitigation ... 62

Figure 7.8: SEU mitigated using RPR+TMR .. 62

XI

List of Tables

Table 3.1: Design input parameters of Telecommand receiver ... 10

Table 6.1: Truth Table ... 48

Table 7.1: Resource Comparison of Proposed Receiver Module and Maya, J et.al [4] on

Spartan 3e... 60

Table 7.2: Resource Comparison of TMR and RPR+TMR on Virtex 4 62

1

CHAPTER 1 INTRODUCTION

1.1 Background

The Satellite industry has progressed dramatically in the last five decades. Satellites in the

early ages were big in size and heavier in weight. But after the birth of microcontrollers, the

trend of size and mass of satellites splits into two categories: large satellites and small

satellites. Small satellites are recently gaining more interest and attention all over the world

due to their attractive applications. Their fast and cost effective development process makes

them a suitable platform for technology evaluation and demonstration missions. But Small

space craft increase the constraints of limited available power, size and mass for the satellite

payload. Field programmable gate arrays offer this solution to these limitations. There small

size, light weight and high computational capabilities makes them a preferred choice over

other digital systems. FPGA’s also provide adaptability and reconfigurability which are the

trending feature of modern space technology. The ability to remotely reconfigure FPGA with

an updated functionality reduces the hardware requirement in space craft [1].

Communication modem is one of the key subsystems of a satellite. It establishes the

communication channel between satellite and the control center on the earth. Its function is to

transmit the telemetry data of the satellite to ground station and to receive the telecommand

data from ground station. It operates during all the phases of mission. Conventionally,

telemetry and telecommand unit is made using discrete electronic components. This makes

the unit large and bulky which is well suited for large satellites. But when it comes to

resource constraint environment of small satellites, its size and weight becomes a serious

concern. FPGA based transceivers consume less space and have light weight. They also offer

the flexibility and last minute modification freedom which is not possible in discrete

hardware based transceivers.

However, FPGA’s face some severe problems in the space environment. Space contains high

energy particles and ionizing radiations which can cause malfunctioning in integrated

circuits. The effects of these subatomic particles on integrated circuit are referred as Single

Event Effect (SEE). The high energy particles in space may interact with the memory cells

within an integrated circuit which can change their logic state [2]. This alteration may disrupt

the operation of a digital system defined by memory cells. This phenomenon is called as

Single Event Upset (SEU). FPGAs contain large array of memory cells which makes them

2

more susceptible to SEUs. In the past, radiation effects have been treated as a part of

hardware problem and they are mitigated by shielding and radiation hardened processors.

Shielding makes the module heavy and doesn’t provide protection against high energy

particles such as heavy ions. Radiation hardened processors require large lead time, consume

more power and are very costly.

Software defined radiation hardening techniques are proving to be a viable solution to these

problems. This approach enables the use of COTS hardware in space. There exist a huge

performance gap between commercial and space grade hardware. COTS will provide a

drastic increase in performance capability while also reducing the cost by many folds.

1.2 Survey of Related Work

In Z. Zhao., et al., [3] the BPSK Modem is implemented as a part of software defined radio.

The authors of [3] have used BPSK modulation and recovered the modulated carrier using

Costas loop. The modulation and demodulation are simulated on MATLAB. But there

design did not have bit synchronization. Maya, J.A., et al., [4] presents the BPSK receiver for

high data rates and high dynamic applications. The Carrier recovery is achieved by using

Costas loop. Loop filters were realized by analog to discrete time conversion. Gardner

algorithm is used for timing recovery of the demodulated signal.

Traditionally, Triple Modular Redundancy (TMR) has been used for SEU mitigation. The

drawback of using TMR is that it consumes a lot of hardware resources and requires more

power [5]. Thus; there has been a constant effort to find an alternative to the TMR technique.

Shim, et al. [6] introduced Reduced Precision Redundancy (RPR) as part of a power-

reduction technique for ASIC-based systems, Snodgrass [7] demonstrated variation of RPR

on FPGA to limit high magnitude errors of arithmetic operations in high radiation

environment. Pratt, B., et al [8] has presented the hybrid approach using RPR and TMR for

FPGA based communication systems.

1.3 Aim

This thesis presents a highly efficient design of a software defined radiation tolerant module

for a LEO satellite telecommand receiver. During literature review, it was found that the

BPSK receiver of Maya, J.A., et al [4] and our design has same technical specifications. So it

was taken as a bench mark for fair resource utilization. The designed module consumes less

3

resources and its Bit Error Rate (BER) is approaching to 10-6. The designed module uses the

combination of RPR and TMR for SEU mitigation. To the best of author’s knowledge, this

hybrid approach is not being implemented to a satellite telecommand receiver module using

Binary Phase Shift Keying (BPSK) modulation. The research work also evaluates the effect

of SEUs on the BER performance of a telecommand receiver.

1.4 Thesis Outline

The rest of the thesis report is organized as follows:

 Chapter 2 deals with the introduction to satellite architecture and its communication

system

 Chapter 3 describes the detailed architecture of telecommand receiver

 Chapter 4 presents the advantages of FPGA and SEU mitigation technique

 Chapter 5 explains the design methodology adopted

 Chapter 6 gives the implementation of the system using high level tools

 Chapter 7 presents the Hardware Co-simulation and SEU mitigation results of

designed receiver

 Chapter 8 concludes the report and suggests future work

4

CHAPTER 2 SATELLITE COMMUNICATION

2.1 Introduction

A satellite is an object that revolves or orbits around another object. For example, the Moon

revolves around the earth so it’s a natural satellite of Earth, in the same way Earth is a natural

satellite of the Sun. In context of space flight, satellites are manmade objects that are

positioned in the earth orbit on purposely. They are also called as artificial satellites in order

to differentiate them from natural satellites. They are launched from earth in a Satellite

launching vehicle (SLV) and are placed in orbit at a predetermined location according to the

mission requirements. There are hundreds of satellites currently in orbiting the earth.

Satellite size and shapes vary according to their scope of application. The first manmade

satellite was launched by former Soviet Union in the year 1957 called ―Sputnik‖ and was the

size of a basketball. Its purpose was simply to send a Morse code signal repeatedly. In

contrast, modern day satellites can transmit, receive and process thousands of signals at the

same time, from simple digital data to complex television programs. Nowadays, satellites are

being used in wide variety of applications, such as Internet communications, television

broadcasting, radio communications, Global Positioning Systems (GPS) and weather

forecasting.

2.2 Types of satellite

2.2.1 Navigation

Navigation satellites are the artificial satellites in space that are used for navigation purpose.

In modern day, navigation has become one of the most important parameter. In daily life, it is

used by people to reach up to their destinations. Navigation is the backbone of aerospace

industry, which uses navigation parameters to locate their current position. The most common

navigation systems are GPS (Global Positioning System) launched by USA and GLONASS

launched by Russia.

2.2.2 Weather

The first weather satellite was launched in the year 1960. Several satellite missions were

launched during the 1970s and 1980s from which different meteorological observation have

been made. The purpose of the weather satellites is to analyze the current state of atmosphere

5

and provide this valuable information to ground. This information is then used by the

scientists to observe the changes in the global atmosphere such as global warming etc. and is

also used by for weather forecasting. Different sensors in the weather satellites allow the

scientists to estimate the moisture, cloud cover, wind speed and direction which are then used

in different fields of science.

2.2.3 Communication

A communications satellite is a manmade satellite placed in space for the purposes of

telecommunications. Today’s communication satellites are stationed in geosynchronous

orbits, Molniya orbits or low Earth orbits. Major applications of communication satellites are

Telephony, Television, radio, mobile satellite technology and satellite broad band.

2.2.4 Earth Observation

Earth observation satellites are used for understanding and analyzing the global environment

conditions which are essential for safety and quality of life. The data gathered by these

satellites enables us to understand the processes and changes in land masses, oceans, and

atmosphere. It allows monitoring the Earth’s natural resources and to predict or detect the

environmental disasters in a timely manner. The data acquired is used for different

applications such as agriculture, geology, forestry, cartography, risk management, defense

and environmental studies.

2.3 Communication subsystem

A communication sub-system is a very critical part of the satellite. It is the only link between

ground and the satellite. It has three primary functions (1) to transmit a tracking signal, (2)

download telemetry to a ground station and (3) to receive telecommand from an earth station.

The communication subsystem is also referred as a TT&C (Tracking, Telemetry and

Command) system because of its functionality. The communication between the satellite and

the ground station is known as data link, is a two way communication channel where the

uplink is the data commands transmitted from the ground station to the satellite and the

downlink is the telemetry data or the beacon transmitted from the satellite to the ground

station [9].

The Figure 2.1 depicts the block diagram of the communication subsystem and its

communication with the ground station. The modem converts the signals received from the

6

ground station and forwards the data to the OBDH (On-Board Data Handling subsystem).

The satellite sends the telemetry signal to earth station via its Telemetry transmitter. The

earth station receives these signals and in return issue some telecommand signals which are

received by the telecommand signal on the satellite. This thesis deals with the efficient design

of telecommand receiver.

OBDH

MODEM

TX/RX

Antenna

PC

TNC

TX/RX

Antenna

Radio Link

Satellite Ground

Figure 2.1: A general overview of the communication subsystem

2.3.1 Modem

Modem is a combination of modulator and demodulator. At the transmitting end, Modem acts

as a device that accepts binary data from a data source which is modulated to create a signal

that is suitable for transmission and at the receiving end it acts as complementary for

transmitting end [10]. Modems are classified based on the amount of data transferring

capability which is measured in terms of bits per second (bps) or baud rate. In order to encode

and decode the data we need to have a proper modulation and demodulation technique. The

designing of modem which can establish a good communication link between the Satellite

and ground station with the available transmitter power is constrained by these above

7

mentioned power and size factors [11]. In this thesis we would design a resource efficient

design and implementation of a telecommand receiver on FPGA which is the main module in

the communication subsystem.

2.4 Modulation and Demodulation techniques

Modulation is process of imposing the properties of a message signal onto a high frequency

carrier signal. Modulation schemes are mainly classified into Analog modulation methods

and Digital modulation methods. Analog modulation techniques are further classified based

on amplitude, frequency and phase modulation techniques. Digital modulation schemes are

further classified based on type of keying. The elementary digital modulation techniques are

Amplitude shift keying (ASK), Frequency shift keying (FSK), Phase shift keying (PSK) and

Quadrature amplitude modulation (QAM). Demodulation is process of retrieving back the

original information from the modulated signal. In this thesis we are going to use BPSK

(Binary Phase Shift Keying) modulation and AFSK (Audio Frequency Shift Keying)

demodulation.

2.4.1 Binary Phase Shift Keying (BPSK)

BPSK is one of three binary modulation techniques. BPSK modulation is a technique where

the phase of a carrier sinusoidal signal changes abruptly by 180° or phase reversal occurs for

every transition of modulating binary sequence (input bit) [12]. The general form of the

BPSK signal is based on the equation (2.1). The binary data is represented by two signals

with different phases in BPSK. 𝑆1 𝑡 and 𝑆2 𝑡 are the two signals at point of time t.

𝑆𝑖 𝑡 =
𝑆1 𝑡 = −𝐴𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 , 𝑖𝑓0𝑇

𝑆2 𝑡 = +𝐴𝑠𝑖𝑛 2𝜋𝑓𝑐𝑡 , 𝑖𝑓1𝑇
 (2.1)

Where:

- A is the amplitude

- fc is the frequency of the carrier and

- T is the time.

The phase of the transmitted signal remains the same if a ―1‖ was transmitted and is shifted

by 180° if a ―0‖ is transmitted [13].

8

Advantages

 BPSK has fine spectrum efficiency, strong anti-interference performance, good

spectral characteristics and has high transfer rates [3].

 Due to its robustness it is extensively used in satellite communication systems.

Disadvantages

 It is simple to implement, but it is inefficient in terms of using available bandwidth.

2.4.2 Audio Frequency Shift Keying (AFSK)

AFSK is a modulation scheme in which the data is represented by changes in the frequency

of an audio tone. The changes in the frequency are between mark and space frequencies

represented by binary zero and one respectively.

Advantages

 AFSK encoded signals pass through AC-coupled links that are included in most

devices designed to carry music or speech.

 Implementing an audio modulation scheme allows us operate on many digital modes

that have been developed by amateurs.

Disadvantages

 AFSK is inefficient in terms of using available bandwidth and power.

2.4.3 Quadrature Phase Shift Keying (QPSK)

In QPSK, the data bits to be modulated are grouped into symbols, each containing two bits,

and each symbol can take on one of four possible values: 00, 01, 10, or 11. During each

symbol interval, the modulator shifts the carrier to one of four possible phases corresponding

to the four possible values of the input symbol. In the ideal case, the phases are each 90

degrees apart, and these phases are usually selected such that the signal constellation matches

the configuration shown in Figure 2.2.

9

Figure 2.2 : Ideal QPSK constellation

Advantages

 QPSK has excellent spectral efficiency and supports high data rates as compared to

BPSK.

Disadvantages

 QPSK is Susceptible to Phase disturbances.

10

CHAPTER 3 TELECOMMAND RECEIVER DESIGN

The telecommand data link for the proper control of various functions of the satellite is

established between the ground station transmitter and on-board telecommand receiver. This

receiver demodulates the telecommand data upon reception from the ground station and sends

it to OBDH unit which collects this data and issues command to various satellite sub-systems.

This Chapter explains the design and the functionality of a LEO satellite telecommand

receiver.

3.1 Design Specifications

The design input parameters are taken from a practical communication channel link of

satellite. The parameters are listed in Table 3.1:

Table 3.1: Design input parameters of Telecommand receiver

Carrier Frequency 4 MHz

Data Rate 1 Mbps

Modulation Type BPSK

Bit Error Rate 10
-6

Signal to Noise ratio (SNR) 48 dB

Maximum Doppler Shift Compensation ± 200 kHz

3.2 Possible Design Approaches

In PSK modulated transmission systems, the incoming modulated data pulses to the radio

receiver can be demodulated either coherently (synchronously) or non-coherently

(differentially). Based on this difference there are two basic types of receivers:

1. Coherent Receiver

2. Non-coherent Receiver

3.2.1 Coherent Receiver

In a coherent receiver the received RF signal is coherently demodulated by first multiplying it

with a local oscillator (LO) signal which exactly has the same frequency and phase as the

transmitted carrier signal. The information about the carrier frequency and phase is acquired

by recovering the carrier signal from the received modulated RF signal. This process is

11

commonly referred to as “Carrier Recovery” or “Carrier Synchronization”. After the

carrier is recovered, it is multiplied with the modulated RF signal by a product demodulator

to convert it directly to baseband. The baseband signal is then applied to an optimum binary

detector for timing synchronization and finally, data recovery. A generic block diagram of a

coherent receiver is shown in Figure 3.1.

Optimum

Binary

Detector

Modulated RF

signal, Xc(t)

Carrier

Synchronization

Sampled Data

Figure 3.1: Block diagram of a coherent receiver

Theoretically, coherent detection can be achieved by product demodulation. In practice it can

be quite difficult to implement. The crux of the problem is synchronization- synchronizing an

oscillator to a sinusoid that is not even present in the incoming signal if the carrier is

suppressed (as is the case in BPSK modulation). To facilitate the matter, suppressed-carrier

systems may have a small amount of carrier reinserted in the modulated signal at the

transmitter. This pilot carrier is picked off at the receiver by a narrow band pass filter,

amplified, and used to synchronize the receiver’s LO. Another approach is to recover the

carrier from the received modulated signal by employing techniques such as phase-locked

loops (PLL), Costas loops, squaring loops etc. In both cases, it adds complexity to the overall

system. Furthermore, perfect synchronism is rarely achieved and some degree of

asynchronism must be expected in synchronous detectors. Sometimes, even this small

amount of asynchronism can lead to a large degradation in the Bit Error Rate (BER).

3.2.2 Non-Coherent Receiver

In a non-coherent receiver there is no need to synchronize the locally generated carrier with

the transmitted carrier. Instead, the data pulses at the transmitter end are differentially

encoded prior to PSK modulation. The receiver thus accepts differentially encoded, PSK

modulated data centered at the carrier frequency. At the receiver end the data is differentially

demodulated using a delay-multiply loop. Thus this type of receiver is referred to as a ―Non-

12

coherent PSK‖ or ―Differentially coherent Phase Shift Keying (DPSK)‖ receiver. The block

diagram of a DBPSK receiver is shown in Figure 3.2.

Delay

Tb

Filtered DBPSK

signal down-

converted to

final IF

Differentially

demodulated data

pulses

Optium

Binary

Detector

Sampled Data

Figure 3.2: Block diagram of a DBPSK receiver

3.3 Reasons for selecting the approach

We selected the coherent approach for the telecommand receiver. Although, the coherent

receiver is more complex in design as compared to Non-coherent, but it uses PSK instead of

DPSK which offers various valuable advantages. PSK have low probability of bit error (Pb)

performance than DPSK receivers at a same Eb/N0, which is a very critical parameter in

satellite and other outer space applications. A typical plot of Pb vs. Eb/N0 for different

modulations is shown in Figure 3.3.

Figure 3.3: Error probability of coherent PSK, DPSK, and coherent FSK

It is also evident from the graph, that the PSK have good BER as compared to DPSK.

13

3.4 Telecommand Receiver

The architecture of the telecommand receiver is shown in Figure 3.4. It consists of carrier

Recovery, Integrator, Bit Synchronizer and Decision blocks. The description and working of

each block is presented in the following section.

LPF

LPF

NCO

Integrator

Loop

FIlter

Mixer 1

Mixer 2

Phase

Detector

Bit

Synch

Decision

Block

Data

Out

Carrier Recovery

Baseband

 signal

Figure 3.4: Telecommand Receiver Architecture

3.4.1 Carrier Recovery

 Coherent detection and demodulation needs synchronization measures for extracting the

carrier phase and frequency from the receivers signal. The synchronization schemes such as

Phase locked Loops (PLLs) use phase and frequency to extract the information from the

received signal. By adding few additional components in the PLL, we can directly obtain the

demodulated signal from it. But in suppressed carrier modulation technique, PLL suffers a

problem. In the absence of carrier, PLLs are not able to synchronize and track the incoming

signal [14]. Therefore, Costas Loop is used instead of PLL for demodulated suppressed

carrier modulated signal.

The Costas loop was first proposed by John Costas in 1956 to accomplish phase acquisition,

signal tracking, synchronization and demodulation of double-sideband suppressed-carrier

(DSB-SC) AM signals [15]. Although the original goal of the Costas loop was to track and

demodulate DSB-SC AM signals, it can also be used to demodulate various other suppressed-

carrier modulation. Costas loop is also readily used to demodulate the BPSK signals. This can

be done due to the fact that BPSK signals can be articulated and demodulated as a DSB-SC

AM signals [14].

14

Costas loop is a variation of phase locked loop and is used for carrier recovery. In actual, it is

a combination of two PLL’s operating in phase orthogonal to each other. The recovered

carrier is used to demodulate and extract the data from the received BPSK signal. It provides

an excellent performance for BPSK and is one of the most efficient binary data modulation

schemes in terms of noise immunity per unit bandwidth [16], [17].

The traditional Costas loop is severely affected by the phase imbalance between the in-phase

branch and the quadrature branch. There are some inherent problems of analog Costas loop

for instance direct current zero excursion and complexity to debug [18]. These shortcomings

of analog Costas loop can be overcome by using digital implementation of Costas loop [19].

The digital design of the system is realized by the transformation of analog components of

the Costas loop to its corresponding discrete time and digital domain [20], [21]. The Costas

loop used for BPSK demodulation is shown in Figure 3.5.

LPF

LPF

VCO
Loop

Filter

Mixer 1

Mixer 2

Phase

Detector

Input

 Signal

Figure 3.5: Costas Loop

It is composed of mixers (i.e. multipliers), Low Pass Filters (LPF), Voltage Controlled

Oscillator (VCO), Loop Filter (LF) and a Phase Detector (PD). The incoming BPSK

modulated signal is applied to the two mixers of the upper branch termed as in-phase channel

or I-Channel and the lower branch termed as quadrature phase channel or Q-Channel. The

VCO generates two orthogonal sinusoid signals (i.e. Sine and Cosine) for the mixers of I-

Channel and Q-Channel. The multiplier outputs of I and Q-channel are pass through a low

pass filters. The filtered signals are applied to the phase detector which calculates the phase

difference termed as ―Error signal‖ between the both channels. The loop filter smoothens the

15

error signal by filtering its high frequency components which is then used to control the

VCO’s output phase and frequency. Once the VCO’s output frequency and phase becomes

equal to the incoming signal’s phase and frequency, the demodulated signal is obtained from

the I-channel.

The input to the system shown in Figure 1 is 𝑥𝑖(𝑡) defined in equation (3.1) as a BPSK

sinusoidal signal with amplitude 𝐴𝑖 and a digital modulating signal 𝑚(𝑡). The sine wave has

a frequency 𝜔𝑖 and phase 𝜃𝑖 . 𝑥𝑜1(𝑡) as shown in equation (3.2) is the first output signal of

VCO that is in-phase with the incoming signal, whereas 𝑥𝑜2(𝑡) as shown in equation (3.3) is

in quadrature-phase to the incoming signal. 𝑥𝑖(𝑡) is multiplied to 𝑥𝑜1(𝑡) and 𝑥𝑜2(𝑡) at the

upper and lower-side mixers, respectively.

𝑥𝑖 𝑡 = 𝐴𝑖𝑚(𝑡) sin(𝜔𝑖𝑡 + 𝜃𝑖) (3.1)

𝑥𝑜1 𝑡 = 𝐴0 𝑠𝑖𝑛(𝜔𝑖𝑡 + 𝜃0) (3.2)

𝑥𝑜2 𝑡 = 𝐴0 cos(𝜔𝑖𝑡 + 𝜃0) (3.3)

The signals after multiplications can be obtained by using trigonometric identities as shown

in equation (3.4) and (3.5).

𝑥𝑑1 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 𝜃𝑖 − 𝜃0 −

𝐴𝑖𝐴0

2
𝑚(𝑡) sin 2𝜔𝑖𝑡 + 𝜃𝑖 + 𝜃0 (3.4)

𝑥𝑑2 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 𝜃𝑖 − 𝜃0 +

𝐴𝑖𝐴0

2
𝑚(𝑡) sin 2𝜔𝑖𝑡 + 𝜃𝑖 + 𝜃0 (3.5)

The high frequency components of equations (3.4) and (3.5) are effectively removed by the

low pass filters of I and Q channel to get the signals 𝑥𝐼(𝑡) and 𝑥𝑄(𝑡) as shown in equation

(3.6) and (3.7) respectively, which are multiplied to obtain 𝑥𝑑(𝑡) as mentioned in equation

(3.8).

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 𝜃𝑖 − 𝜃0 (3.6)

𝑥𝑄 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 𝜃𝑖 − 𝜃0 (3.7)

𝑥𝑑 𝑡 =
 𝐴𝑖𝐴0𝑚(𝑡) 2

8
sin[2(𝜃𝑖 − 𝜃0)] (3.8)

The signal 𝑥𝑑(𝑡) is passed through the loop filter to get the error signal 𝑥𝑓(𝑡) as shown in

equation (3.9).

16

𝑥𝑓 𝑡 =
 𝐴𝑖𝐴0 2

8
sin[2(𝜃𝑖 − 𝜃0)] (3.9)

Replacing, 𝐴𝑖𝐴0
2/8 with 𝑘𝑑 , the phase detector gain, and using small signal approximation

equation (3.9) can be re-written as

𝑥𝑓 𝑡 = 𝑘𝑑(𝜃𝑖 − 𝜃0) (3.10)

Equation (3.10) implies that the Costas loop will successfully track the phase error when it is

at or very close to the lock state. If all parameters are correctly estimated, the loop will be in

locked state and the phase error will approach to zero. Then equation (3.6) and equation (3.7)

becomes equation (3.11) and equation (3.12).

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) cos 0

𝑥𝐼 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) (3.11)

𝑥𝑄 𝑡 =
𝐴𝑖𝐴0

2
𝑚(𝑡) sin 0

𝑥𝑄 𝑡 = 0 (3.12)

The equations above show, when the Costas loop is in the locked state, the required

modulating signal 𝑚(𝑡) can be acquired from the I- Channel.

3.4.2 Integrator

The demodulated output from the I-Channel is applied to the Integrator module as shown in

Figure 3.4. The integrator integrates the signal over one bit duration. This converts the

demodulated signal into a triangular waveform. This waveform is then used by the bit

synchronizer and sampling module for recovering the data bits.

3.4.3 Bit Synchronizer

A digital communication system requires various timing control mechanisms for specific

purposes. For example, timing information is needed to identify the rate at which bits are

transmitted. It is also needed to identify the start and end instants of an information-bearing

symbol or a sequence of symbols. We have used Early-Late-Gate synchronizer due to its

simplicity in design and less sensitivity towards DC offset [22].

17

It takes three samples of signal with delays termed as early, late and present. The algorithm

used to determine the correct instant for sampling is as follows:

if |E| < |P| AND |L| < |P| AND |P| ≥ Th))

 Peak detect=1

Different instances of sampling are shown in Figure 3.6. After sampling the bit, it is

compared with the pre-stored preamble bits. If the incoming bit sequence is matched with the

pre-stored preamble sequence, the data sampler gets enabled.

Figure 3.6: Sampling Instances for Early late gate Synchronization

3.4.4 Data Sampler

The data sampler, samples the demodulated signal of carrier recovery on the basis of the

sampling instant provided by the bit-synchronizer.

18

CHAPTER 4 FIELD PROGRAMMABLE GATE ARRAYS

4.1 Introduction

A Field Programmable Gate Array (FPGA) is a digital programmable logic chip. FPGA

comprises of two dimensional arrays of logic cells and switches. These logic cells and

switched are connected through programmable interconnects. A logic cell is programmed to

perform certain actions via a Hardware descriptive Language (HDL). Once the desired logic

or function is written in HDL, it is dumped into FPGA by a simple adaptor provided by the

vendor. Verilog and VHDL (Very high speed integrated circuit HDL) are the most commonly

used hardware description languages. The FPGA are a cost effective solutions as compared to

ASICS. Unlike ASICS, FPGA can be updated with a new functionality by reprogramming.

The new design or algorithm is tested and validated very easily as compared to ASICS which

requires a long fabrication process.

4.2 Functional Overview

FPGA is composed of programmable logic component called ―logic blocks‖ which are joined

together in a fabric by reconfigurable interconnects. These logic blocks can be programmed

according to the design methodology to realize a variety of hardware functions. These logic

blocks also consist of memory elements, which can be a simple flip-flop or more complete

memory blocks such as Block RAMs or DSP slices [23].

4.3 FPGA vs. DSP

The implementation of a modem is a digital signal processing issue. Two types of

programmable platform could be used to realize the modem, i.e., a Digital Signal Processor

(DSP) or an FPGA.

The telecommand receiver is implemented in baseband domain using various Digital Signal

Processing (DSP) techniques. There are two types of devices that can be used for realizing

DSP algorithms. One is the Digital Signal Processor and other is the FPGA.

FPGA has an advantage of parallel processing when compared to a DSP which is a dedicated

processor. As a result of this multi-processing the performance of an FPGA is more than a

DSP. FPGA’s are enormously faster, flexible and less expensive.

19

4.4 FPGA in Space

Reconfigurability and adaptability are one of the most desirable features of modern space

technology. FPGA provides this flexibility along with good performance. They have become

an integral part of satellite systems for over a decade. Their high computational capacity

combined with small size and light weight makes them a preferable choice over other digital

systems. The ability to reconfigure FPGA with an updated functionality reduces the hardware

requirement in space craft [1].

However, FPGA’s face some severe problems in the space environment. The high energy

particles in space may interact with memory cells within an integrated circuit and can change

their logic state [2]. This alteration may disrupt the operation of a digital system defined by

memory cells. FPGAs contain large array of memory cells which makes them more

susceptible to single event upsets (SEUs).

In SRAM based FPGAs, a large area is composed of memory cells. These memory cells

contain both user data and circuit configuration data that defines the functionality of a

system. When high energy charged particles such as neutrons and alpha particles present in

the space environment interact with SRAM cells, they occasionally invert there logic state.

This phenomenon is called as SEU [2]. The inverted logic state can be both of user data or

configuration data and can cause unpredictability in systems behavior. The SEU directly

affects the bit error rate performance of a communication receiver. Four general classes of

SEUs are identified according to their effect on BER [8].

 In class 1 SEUs, lower order bits of arithmetic operations (such as output of

accumulator or coefficient of a filter) are affected. They are 30%-77% of the total

SEUs.

 In class 2 SEUs, middle order bits of arithmetic operations are affected. They are

17%-64% of the total SEUs.

 In class 3 SEUs, higher order bits of arithmetic operations are affected. They cause

severe degradation in circuit performance and are unacceptable. They constitute 3%-

4% of the total SEUs.

 In class 4 SEU, clock distribution, global reset signals MSB of filter or threshold

comparator are affected. They are termed as ―catastrophic‖ and reduced BER to ½.

They constitute 2%-4% of the total SEUs.

20

So class 3 and 4 SEUs are more critical and need to be mitigated proficiently. Various

techniques have been used in the past to mitigate class 3 and 4 SEUs, the most popular being

the TMR technique [8]. In TMR, three replicas of the same circuit are made and they are

connected to a voter block which selects the correct output among them. TMR, however,

consumes a lot of resources and power. On the other hand a resource efficient alternative to

TMR for arithmetic operations is ―RPR‖. In this thesis we have applied RPR to the arithmetic

operations involved in the design of a telecommand receiver.

4.5 Reduced Precision Redundancy

In RPR, the full precision (FP) module to be protected is replicated twice with reduced

precision (RP) as shown in Figure 4.1. The decision block uses the output of RP modules to

determine the error in FP module as follows:

if ((|FPout ― RP1out| > Th) AND (RP1out = RP2out))

output = RP2out

else

output = FPout

Threshold (Th) value is a very critical parameter in RPR. If Th is very small, false error

detection will occur and if Th value is high, error will not be detected. In order to avoid this

problem, the Th value is set equal to the difference between the FP and RP modules' outputs

as shown in equation (4.1) when there is no error.

Th = | FPout ― RPout | (4.1)

n-bit FIR

FP module

k-bit FIR

RP module

k-bit FIR

RP module

round

round

k

k

n

n

n

Decision

Block

Decision

Block

Decision

Block

Voter

n

n

n

n

IN OUT

FPout

RP2out

RP1out

Figure 4.1: Block diagram of an n- bit FIR filter protected with k-bit RP modules

21

The reduced precision redundancy factor (k) is a tradeoff between mitigation cost and SEU

performance [8]. Therefore, the size of RP modules and decision block must be chosen in

such a way that they consume less resource than TMR while mitigating SEUs. RPR can be

applied to arithmetic operations of any size and complexity. Whether, it is a simple FIR filter

or a complex receiver. Unlike TMR, RPR is not suited for every application. It is only

applicable to those arithmetic operations that can be approximated with a reduced precision.

4.6 Xilinx FPGA

The architecture of a FPGA is shown in Figure 4.2 below. In our thesis we have used two

FPGA’s. The first one is Spartan 3E, which is used for the efficient implementation of

telecommand receiver. The second FPGA is Virtex 4 which is used for the implementation of

the radiation hardened version of the telecommand receiver. Brief overview of both the

FPGA families is presented in the next section.

Figure 4.2: (a) Xilinx FPGA (b) Xilinx CLB (c) Simplified View of Xilinx Logic Cell

22

4.6.1 Overview of Spartan 3E Family

Spartan-3 family of FPGAs is particularly designed to meet the needs of high volume, cost

sensitive consumer electronic applications. Since they are relatively cheap, Spartan-3 FPGAs

are appropriate to a wide range of consumer electronics applications such as home

networking, broadband access, digital television equipment and display/projection [24]. The

Spartan-3 family architecture consists of five fundamental building blocks:

 Configurable Logic Blocks (CLBs)

 Input/output Blocks (IOBs)

 Block RAM (BRAM)

 Multiplier blocks

 Digital Clock Manager (DCM)

These logic blocks can be joined together by a programmable interconnect architecture.

Spartan 3E FPGA is also consists of some dedicated functional blocks, such as Block

Random Access Memories (BRAMs) and Digital Signal Processors (DSPs). These

specialized blocks perform several flexible yet specific tasks, and provide a lot of ease to the

programmer. The device selection for our platform is XCS3E500 from Spartan 3E family.

The device nomenclature can be evaluated from the Figure 4.3: .

Figure 4.3: FPGA Nomenclature

The kit we have used for telecommand receiver implementation is Spartan 3E XCS3E500E-

4FG320.

4.6.2 Overview of Virtex 4 Family

The Virtex-4 family from Xilinx greatly enhances programmable logic design capabilities as

compared to previous Virtex and Spartan series and making it a powerful alternative to ASIC

technology. Virtex-4 FPGAs offer three platform families—LX, FX, and SX—offering

multiple feature choices and combinations to address all complex applications. The wide

array of Virtex-4 FPGA hard-IP core blocks includes the PowerPC processors, tri-mode

23

Ethernet MACs, 622 Mb/s to 6.5 Gb/s serial transceivers, dedicated DSP slices, high-speed

clock management circuitry, and source-synchronous interface blocks [25]. The software

defined radiation hardened version of the telecommand receiver is implemented using Virtex

4 XC4VSX55-10FF1148.

24

CHAPTER 5 DESIGN METHODOLOGY

The approach used to design, simulate and verify the complete system is shown in Figure 5.1.

First the system was designed in floating point environment using high level design tools

(MATLAB/Simulink). After simulating and verifying the algorithms. The design was

converted into fixed point. The fixed point system was simulated under system generator and

then the Verilog code was generated. The code was synthesized and implemented on FPGA

using Xilinx ISE.

Figure 5.1: System design flow

5.1 High level Simulation

The concepts and algorithms used in the receiver system can be modeled using high level

design tools (i.e. MATLAB/Simulink). These tools provide the flexibility to simulate, debug

and analyze the functionality of each working block. Moreover, they accelerate the design

process and assists in verifying the accuracy of the algorithms.

MATLAB is one of the most widely used software for Digital Signal Processing. It has

become an integral part of DSP algorithm design and development. MATLAB/Simulink

contains several toolboxes and functions for different applications such as aerospace,

communications, image processing, signal processing and wavelet processing. Besides so

many built-in functions present in MATLAB, the software package contains vector and

array-based waveform data at the core of algorithms, which is very appropriate for

applications such as image processing and wireless communications.

The Simulink provides a modular environment for multi-domain simulation and Model-

Based Design. It enables parallel processing, automatic code generation, simulation and

verification of DSP systems. Simulink contains graphical user interface tools, dedicated

libraries, and different types of simulation solvers for modeling dynamic systems. It runs with

MATLAB, which enables to integrate MATLAB’s algorithms into Simulink design and then

Floating
Point

Design

Fixed Point
Design

System
Generator

XILINX ISE

25

transfer these results to MATLAB for additional analysis. In our work, we have used

MATLAB/SIMULINK as a high level design and development tool.

Xilinx’s System Generator is a system-level modeling tool that extends Simulink capability

to provide FPGA hardware design. It offers high-level of abstractions (i.e. Xilinx System

Generator block sets) that can be automatically compiled into an FPGA. System Generator

can generate equivalent representations of the Simulink design, at the same or lower level of

abstraction. For example, from the functional domain it can generate a structural

representation, an HDL or NGC netlist, or a physical representation such as an FPGA

configuration bitstream. It can also to generate an equivalent high-level module that performs

a specific function in applications external to System Generator (ModelSim hardware co-

simulation) [23].

System Generator bridges the gap between Digital Signal Processing algorithms and its

FPGA realizations. System Generator is a very useful tool that enables the visualization of

data flow and is ideal for modeling and simulating FPGA based DSP algorithms, and enables

the designer to generate the VHDL code directly from the design model. It saves considerable

time of a DSP developer from rewriting the complete DSP system in Verilog/VHDL.

System Generator automates the design process by enabling debugging, implementation and

verification of the design on Xilinx-based FPGAs. It has built-in DSP libraries which enables

high level simulation and code generation. It also provides HDL Co-simulation environment,

system resource estimator and a hardware co-simulation interface for algorithm validation on

FPGA hardware.

System Generator offers mechanisms to:

 To import HDL code into a design. A configuration wizard can be used to associate

the HDL module to a Black Box block. The wizard creates an M-function that defines

the interface, the implementation and the simulation behavior of the black box block it

is associated with.

 To automatically generate an HDL testbench, including test vectors. Upon requested,

System Generator generates a testbench that produces files to allow comparisons of

simulation results between Simulink and ModelSim (HDL simulator). The testbench

is a wrapper that feeds the stimuli to the HDL for the design and compares HDL

results against expected ones.

26

 To perform hardware co-simulations, hardware run under the control of Simulink,

bringing the power of MATLAB and Simulink to bear for data analysis and

visualization. For hardware Co-Simulation, a bitstream is created and associated to a

block. When the design is simulated in Simulink, results for the compiled portion are

calculated in hardware.

 System Generator does not substitute hardware design, but permits to design less

critical portions with System Generator blocks and then combined them with the other

critical ones [24]. Therefore:

 Parts of the design are implemented using System Generator blocks. System

Generator employs libraries of intellectual property (IP) to automatically map

abstractions onto device primitives.

 Other parts are designed directly in the FPGA using basic functions (adders, registers,

memories) and a HDL language. The developed code (VHDL, Verilog) can be

imported using wrappers to create Black Boxes. Black boxes are wired into the

design, participate in simulations, and are compiled into hardware.

 The complete design is a combination of all the parts (System Generator blocks and

imported blocks) into a working whole.

5.2 Hardware Co-Simulation

Hardware co-simulation feature of system generator speed up the simulation and validation of

the design on FPGA hardware. Hardware-in-the-loop co-simulation capability eases the

design verification process by incorporating the processing power and analyzing tools of

MATLAB and Simulink [26].

By using MATLAB/Simulink in conjunction with Xilinx System Generator and the Xilinx

ISE synthesis and implementation tool, DSP designs can be implemented on FPGA. As a

plug-in to the MATLAB/Simulink software, the Xilinx System Generator creates a precise

model of FPGA circuits and automatically generates a synthesizable VHDL code along with

the test bench. This synthesized VHDL designs can be used for implementing the designed

system on the Xilinx’s FPGAs platform. Figure 5.2 shows the implementation of the design

process for Hardware Co-simulation.

When the Verilog code has been generated by the Xilinx System Generator software, it is

first synthesized and optimized for better implementation results. During the process of

27

synthesis, the generated HDL code is converted into a logical or physical form that will take

the place on FPGA. This implies, the operation of synthesis is to transform the design from

Hardware Descriptive Language into gate level. The Verilog modules can be exported to the

FPGA hardware by using Xilinx synthesis technology (XST) synthesis tool. The second step

is to place and route the design in order to verify that this design will get realize on the FPGA

or not. This is accomplished by using the Xilinx’s ISE implementation tools. The place and

route tool function is to place the synthesized modules into FPGA locations and makes

necessary connections between these modules, so that they can operate as an integrated

system.

Figure 5.2: Implementation of the design process for Hardware Co-simulation

Placing and routing operation is then followed by hardware verification. The designed

module is implemented on the FPGA. In hardware verification step, the module created in

high level simulation is checked whether it would work well on the desired FPGA. Test

signals are then used to check any difference between the simulation and the hardware

implementation.

5.3 Simulation with Simulink and System Generator

In our thesis, the algorithm is first designed and simulated on Simulink and then implemented

on Xilinx system generator. The designed receiver correctly demodulated the BPSK

modulated signal applied to it. The complete system is designed using basic Simulink

28

functional blocks instead of its customized blocks, in order to ease the migration from

Simulink to system generator.

29

CHAPTER 6 IMPLEMENTATION

This Chapter presents the Xilinx system generator realization of the Telecommand receiver

and its SEU mitigation.

6.1 BPSK Modulator

In order to simulate and verify our receiver design, BPSK modulated signal is generated in

MATLAB/SIMULINK. The BPSK modulation is achieved by multiplexing the two

sinusoidal signals having 180 degree phase shift in between them using a switch. The binary

data to be modulated is imported from workspace and is used as the select signal of switch as

shown in Figure 6.1.

Figure 6.1: BPSK Modulator

The output BPSK modulated waveform along with other signals is shown in Figure 6.2.

Figure 6.2: BSPK Modulator Output

30

The modulated signal is then passed through a AWGN Channel block to emulate the channel

degradation effects. Finally the modulated signal is multiplied with a fixed gain to achieve

the real voltage levels of ADC of the Spartan 3E kit.

6.2 Telecommand Receiver

6.2.1 Carrier Recovery

Carrier recovery is achieved by using Costas loop. Traditional analog Costas loop suffer from

several problems such as imbalance between in-phase and quadrature branch, direct current

zero excursion and difficulty to debug [18]. These problems can be avoided by using digital

version of Costas loop [27] as shown in Figure 6.3.

Figure 6.3: Costas Loop

The transmitted signal from Simulink is acquired in system generator environment by using

gateway in block labeled as ADC_In. The received signal is of 14 bits and having frequency

of 4MHz. It is sampled on 64 MHz and is level shifted to relax the computation requirements

as shown in Figure 6.4.

Figure 6.4: Input Interface of Telecommand receiver

31

The level shifted received signal as shown in Figure 6.5 is applied to the input of Costas loop

for carrier recovery and demodulation. Modulated signal is down sampled by a factor of 2.

This reduces the sampling frequency to half for the rest of the system thus drastically reduces

the logic utilization for the complete design especially for filters.

Figure 6.5: (a) BPSK Modulated signal with AWGN (b) ADC_in output (c) Level Shifted signal

The reference signals in the loop are generated by using Numerical Controlled Oscillator

(NCO). The NCO is implemented using Direct Digital Synthesizer compiler 4.0 (DDS V4.0)

which produces two orthogonal sinusoids. The architecture of NCO is shown in Figure 6.6 it

has two distinct parts. First, a phase accumulator accumulates the phase increment and adds

in the phase offset. In this stage, an optional internal dither signal can also be added. The

NCO output is then calculated by quantizing the results of the phase accumulator section and

using them to select values from a lookup table.

For a desired frequency F0, the phase increment value can be calculated with the following

equation

𝑃ℎ𝑎𝑠𝑒 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
(𝐹0. 2𝑁)

𝐹𝑆

32

Where N is the accumulator word length and

𝐹𝑆 =
1

𝑇𝑆
=

1

𝑆𝑎𝑚𝑝𝑙𝑒 𝑇𝑖𝑚𝑒

The frequency resolution of NCO is defined by

∆𝑓 =
1

𝑇𝑠 . 2𝑁
𝐻𝑧

Figure 6.6: Architecture of NCO

The desired phase offset (in radians) can be set by following formula

𝑃ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡 =
2𝑁 . 𝑑𝑒𝑠𝑖𝑟𝑒𝑑 𝑝ℎ𝑎𝑠𝑒 𝑜𝑓𝑓𝑠𝑒𝑡

2𝜋

The spurious free dynamic range (SFDR) is estimated as follows for a lookup table with 2
P

entries, where P is the number of quantized accumulator bits:

𝑆𝐹𝐷𝑅 = 6𝑃 𝑑𝐵 𝑊𝑖𝑡ℎ𝑜𝑢𝑡 𝐷𝑖𝑡ℎ𝑒𝑟

𝑆𝐹𝐷𝑅 = 6𝑃 + 12 𝑑𝐵 (𝑊𝑖𝑡ℎ 𝐷𝑖𝑡ℎ𝑒𝑟)

This block uses a quarter-wave lookup table technique that stores table values from 0 to π/2.

Our desired parameters for NCO calculations are:

 Desired output frequency: F0 = 4 MHz

 Accumulator word length: N= 18

 Spurious free dynamic range: SFDR ≥ 90 dB

 Sample period: TS= 1/32e6 s

33

 Desired phase offset: 0

By using above mentioned formula, phase increment comes out to be,

𝑃ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 =
4𝑒6 ∗ 218

32𝑒6

𝑃ℎ𝑎𝑠𝑒 𝑖𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 32768

Calculating the number of quantized accumulator bits from the equation for spurious free

dynamic range,

𝑆𝐹𝐷𝑅 = 6𝑃 + 12 𝑑𝐵

96 𝑑𝐵 = 6𝑃 + 12 𝑑𝐵

𝑃 = 14

Now selecting the number of dither bits. In general, a good choice for the number of dither

bits is the accumulator word length minus the number of quantized accumulator bits; in this

case 4. After calculating all the parameters for NCO, we configured the DDS Compiler 4.0 of

Xilinx system generator. In the basic tab of DDS as shown in Figure 6.7(a) system clock is

set to be 32 MHz, Noise shaping is set to “Phase_Dithering”. In hardware parameter option,

Phase width is set 18 bits and output signal width is set to be 14 bits. Output selection mode

is configured to “Sine_and_Cosine”. In the implementation tab, the memory type is selected

to be “Block ROM” because it is fast and optimized. The Optimization goal is set to area, in

order to aim resource efficient implementation. Latency is selected to be 1. The optional pin

“rdy” is checked because it provides the enable signal to the Mixer’s when the DDS output is

ready. Sample time for the DDS compiler is set to be 1/32e6 in explicit period. Since the

frequency of the DDS will be determined by an external data coming from the loop, phase

increment programmability is set to “Programmable” in the output frequency tab. The

summary of configuration settings for DDS is shown in Figure 6.7(b).

The DDS compiler 4.0 data input range is from 0 to 1. Therefore the incoming data word is

divided by 18 before applying it to DDS block as shown in Figure 6.8. The division operation

is achieved by shift right operator. The write enable pin “we” is set to high.

34

Figure 6.7: DDS Compiler internal Configuration a) Basic b) Implementation

Figure 6.8: DDS compiler 4.0

The Sine, Cosine and ready signal as shown in Figure 6.9 are applied to the Mixer1 and

Mixer 2 of both the arms of costas loop.

35

Figure 6.9: NCO Outputs (a) Sine wave (b) Cosine wave (c) ready signal

The arm in which sine wave is applied is called as in-phase (I) arm and where cosine wave is

applied is called as quadrature arm (Q). The mixer’s are realized by using 14 x 14 bit

multipliers. After multiplication, two frequency components are generated. The high

frequency components are filtererd by the fifth order Low Pass Filter (LPF). The filter is

designed using Direct form symmetric architecture as shown in Figure 6.10. This architecture

takes the advantage of symmetry in the coefficients of FIR filter and uses half the multipliers

and adders than the conventional approach. The architecture is realized using discrete system

generator blocks. This approach enables the in depth optimization of each block thus

resulting a very efficient implementation. Moreover, one of the filters coefficients is

implemented through binary shift operation which further reduces resource consumption. The

low pass filters in each channel are designed wide enough to pass the data modulation

without distortion [28]. All the adders used are of 14 bits and two coefficient implemented

with “cmult” block are of 16 bits. Complete architecture of the filter is pipelined for

maximum performance.

36

Figure 6.10: Low Pass Filter Architecture

The 16 bits output of I and Q channel filters are applied to the phase detector block. It is

implemented by using a 18 x 18 bit multiplier block. It computes the phase error between the

I and Q channel and generates the coresponding error signal. This error signal is applied at

the input of loop filter. Loop filter removes the high frequency leakages of the phase detector.

It provides a smooth and stable 18-bit control word to the NCO for modifying its output

frequency and phase with respect to input signal as shown in Figure 6.11. The designing of

loop filter is a very sensitive task as it determines the bandwidth of the loop and controls

NCO’s output. The loop filter is a first order Butterworth IIR filter and is entirely

implemented by binary shift registers without using embedded multipliers as shown in Figure

6.12. The incoming error signal is first multiplied with a coefficient, this is achieved by shift

left operation and then it is added to the reference word by a 18 bit adder.

37

Figure 6.11: (a) Phase Detector Output (b) Loop Filter Output

Figure 6.12: Loop Filter

NCO modifies its output frequency with respect to the provided data word. When the NCO’s

generated carrier frequency and phase gets synchronized with the incoming signals frequency

and phase, the demodulated signal is produce at the I channel as shown in Figure 6.13. Our

designed Costas loop can demodulate input signal with Doppler shifts up to 10 percent of the

carrier frequency.

38

Figure 6.13: (a) I channel Mixer Out (b) I channel Out (c) Q channel mixer Out (d) Q channel Out

6.2.2 Integrator

The demodulated signal from the Costas loop is applied at the input of Integrator block as

shown in Figure 6.14.

Figure 6.14: Integrator block

This block performs two tasks: it integrates the coming signal over one bit duration and it

determines the threshold value which is used by later stages of the design. First, the input data

type is converted from 16 bits to 10 bits as shown on Figure 6.15. This reduces the logic

consumption of the proceeding blocks.

39

Figure 6.15: Internal logic of Integrator

The demodulated signal samples are added in an accumulator which gets reset after one bit

duration. The accumulator operation is selected to add and the number bits are set to be 13.

Optional ports of synchronous reset and enable are also checked. The internal configuration

of the accumulator block is shown in Figure 6.16.

Figure 6.16: Accumulator Configuration

The resetting logic consists of a counter, a constant and a relational operator. There are 32

samples in one bit duration. The counter starts counting from 0 and when it value reaches up

to 31, the relational operator equates it with the constant value and generates “1” at the its

output. This “1” resets the accumulator backs to zero. In order to avoid synchronization

40

issues due to computational delays, the accumulator and the resetting logic is enables after

the delays of 9 samples which is the processing time of carrier recovery loop. The resultant

waveform is of triangular in shape. This reduces the Inter-Symbol-Interference (ISI) and

provides to the peak detecting module.

Before the resetting of accumulator, the peak value is captured in a register. The peak value is

divided by two by using shift right operation. The divided value is used as a ―Threshold‖

value by decision blocks used in the later stages of the design. All the internal and external

signals of integrator are shown in Figure 6. 17.

Figure 6. 17: (a) Cast input (b) Timing circuit output (c) Integrator Out (d) Threshold Out

41

6.2.3 Bit Synchronizer and Data Sampler

The bit synchronizer and data sampler module has two inputs i.e. integrated signal and

threshold, and one output port i.e. Data as shown in Figure 6.18.

Figure 6.18: Bit Synchronizer and Data Sampler module

It performs three major tasks: peak detection, preamble matching and data sampling. As

mentioned in the previous section, the signal from the integrator is a triangular waveform.

The signal is first fed into the peak detect module. This block detects the sampling instant for

the wave. After that, the signal is passed on to the preamble match block and data sampler

block. Data sampler starts sampling the signal once it receives the peak detect “1”. The

sampled data is sent to preamble match module, where data is compared with the pre-stored

preamble sequence. If the recovered data sequence is matched with the pre-stored, peak

detect and preamble match modules are disabled using “Register1” and “inverter” and also

an enable signal is sent to the “Register2” which routes the sampled data to the output port.

The detail design and functional description of each sub-module is presented in the following

sections.

6.2.3.1 Peak Detector

The peak detector block determines the sampling instant for the integrated signal. In case of a

triangular wave, it is the peak of signal. That’s why this module is named as peak detector.

The internal logic of the module is shown in Figure 6.19.

42

Figure 6.19: Peak detector

It uses the improved early late gate sampling algorithm for determining the peak of the signal.

The algorithm is implemented by using relational operators rather than arithmetic operators in

order to avoid any floating point arithmetic. This approach saves considerable FPGA

resource logic. The incoming signal has a zero mean value i.e. it has a positive peak value

and the negative peak value. So in order to apply this algorithm, absolute (abs) function is

applied to the incoming signal values. Since the Xilinx system generator does not provide abs

function block, we created our own functional module. The abs sub-module contains a

multiplexer, a slice and a negate block as shown in Figure 6.20.

Figure 6.20: Absolute value computation

The Most Significant Bit (MSB) is sliced off the incoming signal and used as the select pin of

Mux. The internal setting is shown in Figure 6.21. The incoming signal is of 13 bit wide

having binary point on 6. In order to take the MSB, the width of slice bit is set to 1 and offset

of bottom bit is set to 12. For the remaining bits, slice_bits setting is shown in Figure 6.22.

43

The width of slice bit is 7 and offset bottom bit is set to 6 because of the binary point

position.

Figure 6.21: MSB slice

Figure 6.22: Bottom bits slice

44

The first input of the MUX “d0” is connected with sliced bits and the second input “d1” is

connected with the negated sliced bits. If MSB is “0” means the incoming signal is positive,

“d0” is routed to the output. If MSB is “1” means the incoming signal is negative, “d1” is

routed to the output. The internal signals of abs block are shown in Figure 6.23.

Figure 6.23: (a) Enable signal (b) Integrated Signal (c) MSB (d) Sliced LSB (e) Negate Out (f) ABS out

The output of abs block is then split into three samples as shown in Figure 6.19. They are

termed as early sample (without delay), present sample (3 sample delay) and late sample (6

sample delay). They are applied to the inputs of two relational operators. These operators

identify the peak among three samples. Once the peak is identified, its value is sampled and is

compared with the threshold value. If it is greater than that, peak detect output goes high “1”,

else it remains low “0”. The complete algorithm is presented as follow:

if ((|E| < |P|) AND (|L| < |P|) AND (|P| ≥ Th))

Peak detect=1

Else

Peak detect=0

45

The internal signals of peak detector and its output are shown in Figure 6.24.

Figure 6.24: (a) Early Sample (b) Present sample (c) Late sample (e) Early late gate sampler out (f) Peak detect

out

6.2.3.2 Data Sampler

The data sampler block has two inputs: one is the demodulated signal from the Costas loop

and other is the peak detect signal from peak detect module. It consists of inverter, counter,

registers and constant blocks as shown in Figure 6.25. The peak detect serve as an enable

signal for the counter. Once the peak detect signal is asserted, counter starts counting and

when it reaches the count 31, relational operator compares it with the no. of sample value and

produce a “1” at the output. This “1” enables the register which captures the value and sends

it to relational operator which compares it with “0”. If the value is greater than “0”, the

output turned to “1” otherwise it remains “0”.

46

Figure 6.25: Data Sampler

The internal signals and there logic levels are shown in Figure 6.26.

Figure 6.26: (a) Demodulated Signal (b) Peak detect in (c) Counter Out (d) Relational Output (d) Register Out

(e) Data Out

47

6.2.3.3 Preamble Match

This module has three input ports: In (which takes the peak detect signal from peak detector),

en (which takes the enable input) and Sampled_In (which takes the sampled data bits from

data sampler) as shown in Figure 6.27.

Figure 6.27: Preamble Check module

This module contains counters, registers, ROM, relational and logical operators as shown in

Figure 6.28.

Figure 6.28: Preamble check internal logic

The enable signal is connected to the enable input of all the blocks. The sampled data bit

“Sampled_In” is sent to relational operator “Relational3”. Since the relational operator does

not accept Boolean data type, cast block is used to convert Boolean into unsigned data type.

The relational block compares the sampled data bits with the pre-stored preamble bits in

ROM. The preamble size is of 8 bits and memory for ROM is selected to be Block RAM as

shown in Figure 6.29(a). The output of ROM is set to be unsigned type of 1 bit as shown in

Figure 6.29(b).

48

Figure 6.29: ROM configuration (a) Basic (b) Output

If the recovered data bit is equal to the output of ROM, “Relational3” output goes high “1”

otherwise remains “0”. The output of “Relational3” is connected to the reset pin of counter

which function’s as an enable signal to it.

Initially counter needs to be hold to its initial position, it will count only when incoming bit is

matched with the stored bit at the output of ROM. For this function there were two options,

whether to use xor operation or xnor on “Relational3” output. Truth table of both the logical

functions is given in Table 6.1.

Table 6.1: Truth Table

XOR XNOR

A B C A B C

0 0 0 0 0 1

0 1 1 0 1 0

1 0 1 1 0 0

1 1 0 1 1 1

49

After the analysis, xnor operation is selected instead of xor because even if there is no peak

detected and no data bit is matched, output of xor will give a “0” at counter reset port. This

would start the counter which is not desired. So xnor operation is performed on the output of

“Relational3” and “In” signal i.e. the peak detect signal. When both the inputs of xnor are

same, output is “1” otherwise it is “0”. The output of xnor block is connected to the counter.

The function of this counter is to provide address bits to the ROM for changing its preamble

bit. Since preamble size is of 8-bits, 3 bit counter should have been used. But in order to

avoid sampling time errors, 8 bit counter is used with max value of 224 as shown in figure

30. The output of counter is divided by 32 by using shift right operation. The divided output

is connected to the address port of ROM and input of relational operator “Relational4”. It

compares the divide output with a constant number “7”.

When the count reaches to 7 i.e. the complete preamble is matched with the recovered bit

sequence, Relational operator will output 1 at “Pr_match” port or otherwise it will maintain

“0”. The “Pr_match” is used as the enable signal for the register “Register2” as shown in

Figure 6.30. When the ―Pr_match‖ goes high ―1‖, it enables the ―Register2‖ which routes the

recovered data bits of data sampler to the output port “Data”.

Figure 6.30: Counter configuration

50

The internal signals at different stages discussed and block output is shown in Figure 6.31.

Figure 6.31: (a) Enable Signal (b) Peak Detect IN (c) Sampled Data (d) ROM Output (e) Relational Out (f)

Counter Divide Out (f) Preamble match Out

The internal architecture of the bit synchronizer and data sampler block is shown in Figure

6.32. The different signals within it are shown in Figure 6.33

Figure 6.32: Bit Synchronizer and Data Sampler Sub-modules

51

Figure 6.33: Bit Synchronizer and Data sampler internal signals

The complete telecommand receiver implementation of system generator is shown in Figure

6.34. The waveforms of various stages as discussed earlier along with the final recovered data

bits are shown in Figure 6.35.

52

Figure 6.34: Implementation of Telecommand Receiver

53

Figure 6.35: Simulation Results of Telecommand Receiver

54

6.3 SEU Mitigation

As mentioned earlier, RPR is not suited to all types of applications and designs. For

applications comprising of arithmetic and non-arithmetic operations, combination of both

RPR and TMR is the best approach for mitigating SEUs [8]. The baseband processing

module of a telecommand receiver is composed of arithmetic and non- arithmetic operations.

The designed system was analyzed to identify the potential areas where RPR application

would cause significant reduction in resource consumption for the complete system. It was

observed that the low pass filters and mixers of I and Q channel consists bulk of arithmetic

operations. In fact they constitute more than half of the total design resources. This makes

them ideal contenders for RPR. Phase detector comprises of multiplication operation, which

is better suited for RPR then TMR [29]. Loop filter is composed of binary shift registers

which makes RPR ineffective. The decision block contains no arithmetic operation so it

cannot be protected using RPR. Experimentally, it was determined that due to the high cost of

RPR decision blocks, it is more efficient to apply TMR to NCO, integrator and to the bit

synchronization module. The diagram of a telecommand receiver module is shown in Figure

6.36 with annotations indicating the type of mitigation technique applied to each system

block.

LPF

LPF

NCO

Integrator

Loop

FIlter

Mixer 1

Mixer 2

Phase

Detector

Bit

Sync

Decision

Block

Data

Out

Carrier Recovery

RPR

TMR

Baseband

 signal

Figure 6.36: Telecommand Receiver annotated for RPR+TMR mitigation

The suitable value of RPR factor (k=7) is determined which reduces the size of RPR module

while ensuring good SEU mitigation. The Threshold value (Th) is set to be the maximum

difference between FP and RP modules. The RPR mitigated low pass filter with the internal

implementation RPR algorithm is shown in Figure 6.37. The difference in the word length

55

between an unmitigated and mitigated low pass filter is shown in Figure 6.38. It can be

observed from the figure, the precision of the LPF internal word length have been reduced.

The TMR protected numerically controlled oscillator is shown in Figure 6.39.

1

Figure 6.37: RPR Mitigated Low pass filter

Figure 6.38: (a) Unmitigated LPF (b) Mitigated LPF

56

Figure 6.39: TMR Mitigated NCO

57

CHAPTER 7 RESULTS AND COMPARISON

This chapter presents the implementation results of telecommand receiver and impact of SEU

mitigation on receivers BER performance.

7.1 Comparison

The proposed design of the telecommand receiver module is implemented on Xilinx System

generator. The module was hardware co-simulated using Spartan 3E XCS3E500E-4FG320

FPGA as shown in Figure 7.1. Hardware Co-simulation incorporates FPGA hardware into the

simulation and automates the data exchange process between hardware and software. The

data is processed in FPGA and the results are displayed in System generator.

Figure 7.1: Hardware Co-simulated model of Telecommand Receiver

Results from graphs shown in Figure 7.2 confirms that, the Sync_lock signal (a) and received

data bits (b) from Xilinx System generator simulation are identical to the Sync_lock signal

(d) and data received bits (e) results from hardware co-simulation. The designed system was

tested with frequency shifts up to ± 200 KHz. In first case, the Incoming signal’s frequency

was first shifted to 4.2 MHz, while the NCO was running on 4.0 MHz. In second case, the

incoming signal was shifted to 3.8 MHz. In both the cases NCO successfully tracked the

incoming signal frequency in less than 10 us as shown in Figure 7.3 and Figure 7.4.

BER analysis of the receiver module is performed using ―bertool‖ provided in MATLAB.

The BER performance of the overall designed system is calculated using Monte Carlo

simulation. Figure 7.5 presents a comparison between the BER of the proposed system and

the ideal BPSK receiver in AWGN channel. It can be seen that the proposed systems BER is

58

almost identical to the BER of the ideal receiver. The slight degradation in BER graph of the

designed module is due to the implementation losses.

Figure 7.2: Output of Scope a) Sys_gen_SynLock b) Sys_gen_Received_Bit c) Transmitted_Bits d)

HWCOSIM_Received_Bits e) HWCOSIM_SynLock

Figure 7.3: Loop Filter Output with incoming signal at 4.2 MHz

59

Figure 7.4: Loop Filter Output with incoming signal at 3.8 MHz

Figure 7.5: BER of Telecommand Receiver

The proposed module’s logic utilization on FPGA and its comparison with Maya, J.A., et al

[4] is presented in Table 7.1. It can be seen that the designed system consumes 50% less

multipliers, 1% less slices and 5% less 4- input LUTS as compared to [4]. The timing

recovery unit of the proposed system consumes almost 60% less slices as compared to [4]

and uses no multiplier.

60

Table 7.1: Resource Comparison of Proposed Receiver Module and Maya, J et.al [4] on Spartan 3e

Logic

Utilization

Carrier Recovery Timing Recovery

Total

Available

Utilization

Used Used Percentage %

This

Work
[4]

This

Work
[4]

This

Work
[4]

Slice 553 607 155 387 4,656 15 16

Slice Flip flops 759 732 158 651 9,312 9 13

4-input LUTS 677 973 136 503 9,312 8 13

RAM16s 1 2 1 0 20 10 10

MULT18x18s 3 2 0 4 20 15 30

BUFGMUXs 1 1 1 1 24 4 8

7.2 SEU Mitigation

The SEU effect is emulated by inverting a bit in the design [30]. For this purpose, loop filter

is selected because it plays a critical role of keeping the demodulator and receiver in the

desired working area and an upset in it would have a major impact on receiver’s performance.

Class 1 SEU, is introduced by inverting the LSB of the loop filter. Class 2 SEU is simulated

by flipping the middle order bit of the loop filter. Higher order bit is flipped for class 3 SEU.

The MSB of the loop filter is inverted for class 4 SEU. The effect of SEU on BER

performance with respect to different classes is shown in Figure 7.6.

61

Figure 7.6: SEU effect on BER performance

It can be observed from Figure 7.6 that all classes of SEUs have different impact on BER

performance. Class 1 and 2 SEUs cause minor degradation in BER and are not critical. These

errors can be corrected using standard techniques. Class 3 and 4 SEUs have a devastating

impact on BER; redundancy must be used in order to enhance the BER.

TMR and RPR application increases the overall size of the designed system by introducing its

replica’s. Therefore, a different FPGA platform was required that can meet the resource

requirements. We decided to implement TMR and the combination of RPR and TMR using

Virtex 4 XC4VSX55-10FF1148 FPGA as shown in Figure 7.7. Both methods mitigate SEUs

successfully as shown in Figure 7.8. Their resource comparison is presented in Table 7.2. The

results show that the hybrid approach is more efficient in terms of resources as compared to

TMR. The combination of RPR and TMR consumes 26% less slices, 42% less slice flip-flops

and almost 18% less 4-input LUTS as compared to TMR.

62

Figure 7.7: Hardware Co-simulated model of SEU Mitigation

Figure 7.8: SEU mitigated using RPR+TMR

Table 7.2: Resource Comparison of TMR and RPR+TMR on Virtex 4

Logic Utilization
TMR

RPR

+

TMR
Available

Resource

Reduction

(%)
Used Used

Slice 2,572 1,901 24,576 26.08

Slice Flip Flops 3,149 1,817 49,152 42.29

4-input LUTS 2,721 2,240 49,152 17.68

63

CHAPTER 8 CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this research, we presented the resource efficient implementation of a BPSK satellite

telecommand receiver using FPGA. The adopted scheme uses a resource efficient

implementation of Costas loop for carrier recovery and early late gate sampling algorithm for

timing recovery. The optimized receiver module has BER performance identical to

theoretical, with minor degradation due to implementation losses. Our designed system

consumes 50% less multipliers, 1% less slices and 5% less 4- input LUTS as compared to [4].

The timing recovery unit of the proposed system consumes almost 60% less slices as

compared to [4] and uses no multiplier.

A new technique for software defined radiation tolerance of baseband module for a LEO

satellite telecommand receiver is also implemented. The combination of RPR and TMR is

used in the receiver module for SEU mitigation. This hybrid approach has shown to be very

effective and consumes far less resource than a customary TMR protected receiver. It has

been concluded that by focusing on targeted implementation of RPR in systems involving

arithmetic operations, a lot of resources can be saved as compared to complete TMR system.

8.2 Future Work

As a Scope for future work, this design can be implemented using RF Front end connected

with the FPGA hardware to perform real - time measurements. The RPR redundancy factor

(k) can be changed to evaluate its impact on systems BER performance.

8.3 Publication

Salman Sadruddin and Arshad Aziz, ―Reduced Precision Redundancy for Satellite

Telecommand Receiver Module on FPGA‖, Hindawi Publishing Corporation, Chinese

Journal of Engineering, Article ID 453872, Volume 2013.

64

REFERENCES

[1] Caffrey, M., ―A space-based reconfigurable radio,‖ Proceedings of the International

Conference on Engineering of Reconfigurable Systems and Algorithms (ERSA ’02),

LasVegas, NV, pp. 49-53, June 2002.

[2] P.E. Dodd and L, W. Massengill, ―Basic mechanisms and modeling of single-event

upset in digital microelectronics,‖ IEEE Transactions on Nuclear Science, vol. 50, no.

3, pp. 583-602, June 2003.

[3] Z. Zhao, Y. Shen, and Y. Bai, ―Design and Implementation of the BPSK Modem

Based on Software Defined Radio,‖ in 2011 First International Conference on

Instrumentation, Measurement, Computer, Communication and Control (IMCCC

2011), pp. 780–784, , Los Alamitos, CA, USA, 21-23 Oct. 2011.

[4] Maya, J.A., et al., ―A high data rate BPSK receiver implementation in FPGA for high

dynamics applications,‖ 2011 VII Southern Conference on Programmable Logic

(SPL), Cordoba, Spain, pp. 233-238, April 2011.

[5] C. Carmichael, ―Triple module redundancy design techniques for Virtex FPGAs,‖

Tech. Rep. XAPP197 (v1.0), Xilinx Corporation, 2001.

[6] Shim, B. and Shanbhag, N., ―Reduced precision redundancy for low-power digital

filtering,‖ Conference Record of the Thirty-Fifth Asilomar Conference on Signals,

Systems and Computers, vol. 1, Pacific Grove, CA, pp. 148-152, November 2001.

[7] Snodgrass, J. ―Low-power fault tolerance for spacecraft FPGA-based numerical

computing,‖ Ph.D. dissertation, Dept. of Electrical and Computer Engineering, Naval

Postgraduate School, Monterey, CA, September 2006.

[8] Pratt B. et al., ―Reduced-Precision Redundancy for Reliable FPGA Communications

Systems in High-Radiation Environments,‖ IEEE Transaction on Aerospace and

Electronic Systems vol. 49, no. 1, pp. 369-380, January 2013.

[9] J. L. Tresvig, ―Design of a Prototype Communication System for the CubeSTAR

Nano-satellite,‖ University of Oslo, Oslo, Norway.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5771182

65

[10] J. Bingham, B. Cohrssen, and C. H. Powell, ―The theory and practice of modem

design,‖ Recherche, vol. 67, pp. 02, 1988.

[11] W. Traussnig, ―Design of a Communication and Navigation Subsystem for a

CubeSat Mission,‖ Karl Franzens University of Graz, Graz, Austria.

[12] J. Proakis, Digital Communications, 4th ed. McGraw-Hill

Science/Engineering/Math, 2000.

[13] S. O. Popescu, A. S. Gontean, and G. Budura, ―Simulation and implementation of a

BPSK modulator on FPGA,‖ in Applied Computational Intelligence and Informatics

(SACI), 2011 6th IEEE International Symposium, pp. 459 –463, 2011.

[14] Shamla, B. and Gayathri Devi, K.G., ―Design and Implementation of Costas loop for

BPSK Demodulator‖, Annual IEEE India Conference (INDICON) , Kochi, India, pp

785-789, December 2012.

[15] J. Costas, ―Synchronous Communications,‖ Proceedings of the IEEE, vol. 44, p.

1713-1718, 1956.

[16] J. Proakis, Digital Communications, 4th ed. McGraw-Hill, pp. 356–357 2001.

[17] B. P. Lathi, Modern Digital and Analog Communication Systems, 3rd ed. Oxford

University Press, pp. 187–188, 1998.

[18] Jeff Feigin, ―Practical Costas loop design‖, RF design, pp.2036, January 2002.

[19] Mitchell G. and Guichon T, ―Digital Costas loop design for coherent microsatellite

transponders‖, IEEE Aerospace Conference Proceedings, vol.3, pp.1197-1209, 2002.

[20] Martin Kumm, Harald Klingbeil, and Peter Zipf, ―An FPGA-Based Linear All-

Digital Phase-Locked Loop‖, IEEE Transactions on Circuits and Systems—I: Regular

Papers, Vol. 57, No. 9, September 2010.

[21] ―A z-Domain Model and Analysis of Phase-Domain All-Digital Phase-Locked

Loops‖ by Stefan Mendel and Christian Vogel, Proceedings of the IEEE Norchip

Conference, Aalborg (Denmark), 2007.

http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6420723&tag=1
http://ieeexplore.ieee.org/xpl/abstractAuthors.jsp?arnumber=6420723&tag=1
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6410222

66

[22] ―Design and Implementation of Early-Late Gate Bit Synchronizer for Satellite

Communication‖ by P.N.Ravichandran, Satish Sharma, Sunil Kulkarni and

P.Lakshminarsimhan, NCC2009, IIT Guwahati, India, January16-18 2009.

[23] Clive Maxfield, book, "The Design Warrior's Guide to FPGAs"; Published by

Elsevier, 2004. ISBN 0750676043, 9780750676045.

[24] Spartan-3 FPGA Family Data Sheet, DS099, December 2009, available at

http://www.xilinx.com/support/documentation/data_sheets/ds099.pdf

[25] Virtex4 FPGA Family Data Sheet, DS112, August 2010, available at

http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf

[26] Sanket Prakash Joshi, ―Integrating FPGA with Multi-core SDR Development

Platform to Design Wireless Communication System‖, A graduate project submitted

in partial fulfillment of the requirements for the degree of Masters of Science in

Electrical Engineering., Dept. of Electrical Engineering, California State University,

Northridge, May 2012.

[27] Mitchell G. and Guichon T, ―Digital Costas loop design for coherent microsatellite

transponders‖, IEEE Aerospace Conference Proceedings, vol.3, pp.1197-1209, 2002.

[28] Liu Zhi, Jiang Zhou, Li Qing and Zeng Xiaoyang, ―Efficient Carrier Recovery for

High Order QAM,‖ International Conference on Consumer Electronics, pp.1-2,

January 2007.

[29] Sullivan, M. A., ―Reduced precision redundancy applied to arithmetic operations in

field programmable gate arrays for satellite control and sensor systems‖, Master’s

thesis, Dept. of Mechanical and Astronautical Engineering and Dept. of Electrical and

Computer Engineering, Naval Postgraduate School, Monterey, CA, December 2008.

[30] Salman Sadruddin and Arshad Aziz, ―Reduced Precision Redundancy for Satellite

Telecommand Receiver Module on FPGA‖, Hindawi Publishing Corporation,

Chinese Journal of Engineering, Article ID 453872, Volume 2013.

	OLE_LINK3
	OLE_LINK4
	OLE_LINK1
	OLE_LINK2

