Developing a Technique for Organic Waste Composting at Engro

Ahsun Ali	Regn. No NUST-2012-02158BSCME99112F
Waqas Ahmed	Regn. No. NUST-2012-00123BSCME99112F
Abdullah Butt	Regn. No. NUST-2012-00280BSCME99112F

This report is submitted as a FYP thesis in partial fulfillment of the requirement for the degree of (BE in Chemical Engineering) Supervisor: Dr. Erum Pervaiz

Department of Chemical Engineering School of Chemical and Materials Engineering National University of Sciences and Technology

June, 2016

Certificate

This is to clarify that work in this thesis has been carried out by Ahsun Ali, Waqas Ahmed Siddiqui and Abdullah Butt, and completed under my supervision at School of Chemical and Materials Engineering, National University of Science and technology, H-12, Islamabad, Pakistan.

Supervisor: Dr. Erum Pervaiz Department of Materials Engineering School of Chemical & Materials Engineering, National University of Sciences and Technology, Islamabad

Submitted through:

HoD:	Dean:		
Department of Materials Engineering	Department of Materials Engineering		
School of Chemical & Materials	School of Chemical & Materials		
Engineering,	Engineering,		
National University of Sciences and	National University of Sciences and		
Technology, Islamabad	Technology, Islamabad		

Dedication

Dedicated to our beloved Ma'am Amna Chaudhry (late).

Acknowledgements

Thanks to Almighty ALLAH who has helped us in our endeavor and gave us the ability to conclude this project successfully.

It is a genuine pleasure to express our deep sense of thanks and gratitude to our mentor and guide Dr. Erum Parvez, Assistant Professor chemical engineering department SCME; NUST. Her dedication and keen interest above all her overwhelming attitude to help her students had been solely and mainly responsible for completing our work. Her timely advice, scrutiny, scholarly advice and scientific approach have helped us to a very great extent to complete this project.

We owe gratitude to Col.Safdar.Deputy Director Administration SCME, for providing us space to place our project's prototype in SCME backyard.

We will also like to extend our appreciation to ENGRO FERTILIZERS, Daharki; Sindh for providing us the opportunity to work on a problem they were facing. We would also like to thank the health and hygiene engineer Saliha Akram for assisting us and providing us the pertaining data for our project.

We would also like to thank Mr. Azhar Sami for providing us data about the market prices of the things we needed in our project.

Contents

1.	Bac	kground	2
1.2	W	Vhat is Composting?	3
1.3	A	dvantages of composting	3
2.1	B	asic Concepts of Composting	5
2	2.2.1	C/N Ratio:	5
2	2.2.2	Temperature:	5
2	2.2.3	Moisture Content:	6
2	2.2.4	Aeration:	6
2.2	С	omposing Facility	6
2	2.2.1	Waste Arrival and Pre-Screening	8
2	2.2.2	Feed Stock Preparation	8
2	2.2.3	Composting Tumblers	8
2	2.2.4	Active composting	8
2	2.2.5	Curing	8
2	2.2.6	leachate Retention pond	9
2	2.2.7	Screening	9
2	2.2.8	Storage Departing and packaging	9
3.1	Was	te generation at Engro Colony	.10
Ma	ss Ba	lance	.11
1	. M	Iass Balance:	.11
The	e com	posting process	.14
1	. Sl	hredding:	.16
2	2. T	umbler/Reactor:	.18
3	5. A	rea & Volume calculations for Static aerated piles:	.22
4.1	Facil	lity Design	.35
4.2	Cost	ing and Project Evaluation	.39
4	.2.1	The Purchased Equipment cost	.39
4	.2.2	Operating cost	.42

4.2.3 Project Evaluation	43
HAZOP Analysis:	44
Equipment—Shredder:	45
Equipment—Blower:	45
Equipment—Tumbler:	46
EquipmentScreen:	47
References:	50
Plagiarism Report	51

List of Figures

Figure 1.1: Birds eye view of Engro Fertilizers setup at Dharaki, (google.maps)	pg.2
Figure 2.1: Change in temperature and CO2 during composting	pg.6
Figure 2.2: Composting Site Concept	pg.7
Figure 3.1: Process Flow Diagram of composting	pg.15
Figure 3.2: Shredder design	pg.17
Figure 3.3: Tumbler model	pg.19
Figure 3.4: Heat duty	pg.21
Figure 3.5: Inlet steam	pg.21
Figure 3.6: Outlet stream	pg.22
Figure 3.7: Aerated Static Pile	pg.23
Figure 3.8: Leachate detention pond	pg.29
Figure 3.9 Pump flow diagram	pg.31
Figure 4.1: Site area Calculations	pg.35
Figure 4.2: Engro Composting Facility Layout	pg.38

List of Tables

Table 3.1: Colony Data Input	pg.10
Table 3.2: Daily waste produced	pg.10
Table 3.3: Typical Waste Generation	pg.11
Table 3.4: Compost Recipe	pg.12
Table 3.5: Component property Relation	pg.13
Table 3.6: Material Properties	pg.14
Table 3.7: Shredder Design	pg.18
Table 3.8: Static Aerated Pile Volume & Aeration Calculations	pg.24
Table 3.9: Aeration Requirement for cell	pg.25
Table 3.10: Curing Pile Volume Calculations	pg.27
Table 3.11: Storage Pile Volume Calculations	pg.28
Table 3.12: Screening	pg.29
Table 4.1: Required Area	pg.36
Table 4.2 Material Characteristics	pg.36
Table 4.3 Feed property	pg.36
Table 4.4 Equipment cost	pg.39
Table 4.5: Physical Plant Cost	pg.40
Table 4.6: Labor Cost	pg.42
Table 4.7 Electricity cost	pg.43
Table 4.8: Tractor Operating cost	pg.43

Abstract

Engro is currently incinerating all the waste generated from its residential colony. Due to emission of hazardous and toxic gases, an environment friendly solution is required. Composting is that alternative which not only avoids the deleterious incineration method, but also yields a nutrient rich and marketable product—compost. Composting can be done in multiple ways but an efficient and cost effective solution is required that is suitable for Engro Colony Dharki to adopt.

1. Introduction

1. Background

Engro colony Daharki is found next to Engro fertilizer plant. Engro colony houses a population of 2,500. The residential colony generates a total of 3,600 pounds of waste every day that is disposed of by waste incineration. Waste incineration causes pollution of the environment. Air pollution is most dominantly a result. Ash residue from burning waste may pollute the land and water. This has overall bad effect on human health and environment. Engro Fertilizers is encouraged to change this waste disposal method by a environmental friendly process, Composting.

The aerial map below (figure 1.1) represents area of our interest. Green boarder marks the Engro colony area. All the waste of this colony is collected and sent to the incinerators as shown in the figure 1.1. Other than environmental concerns a problem Engro Colony

Figure 1.1: Birds eye view of Engro Fertilizers setup at Dharaki, (google.maps)

is facing is high moisture content of the waste that is to be incinerated. Due to presence of high percentage of organic food waste. The red zone in the map marks the land available for composting.

1.2 What is Composting?

Composting is a natural and aerobic process of breaking down organic substances e.g. grass clippings, yard waste, food leftover, fruits & vegetables, sawdust etc. by using microorganisms such as protozoa, fungi and bacteria to simple carbon and nitrogen compounds which can be readily absorbed by plant soil if used as in farming.

Composting practices dates back to the Roman and Greek Empire. Over hundreds of years the process has improves. Traditional composting techniques were simple. Many farmers stack plant cuttings in a heap or pile. This is natural composting without any modern aid. The natural process may take more than a year to fully produce mature compost.

Nowadays Industrial composting practices are very common. Composting is being done for a large number of feedstocks: sewage sludge, manure, dead animal, food waste, yard waste, domestic waste (such as paper), industrial wastes, and military wastes. It is an exceptional method of disinfection of wastes. Bacteria, viruses, and parasites that resides within the waste are completely destroyed and becomes disinfected. If waste is properly composted it can be used for production of crops.

1.3 Advantages of composting

The advantages of developing compost

- Decomposes organic waste
- Environmentally beneficial process
- Reduces the need of landfills
- Produces a useable product compost that increases the fertility of soil

The numerous advantages of using compost are as followed

• Soil bulk density is reduced

- Increases the water holding, hence requires less irrigation of water. Improves water infiltration and drought tolerance.
- It has beneficial synergy when used with Chemical Fertilizer (more efficiency, less chemical fertilizer are required).
- Improves nutrients holding capacity of soil.
- Provides plants both with macronutrients of Nitrogen Phosphorus, and Potash (NPK) along with a number of micronutrients.
- Increases soil fertility and hence ease of cultivation.
- Improves root growth and yields.
- Protects plants from diseases.
- Reduces and kills weed seeds and degrades pesticides.
- Helps in reclamation of saline land.

2. Literature Review

Composting is a very broad technique and can span from as little as one month to up to two years. Therefore, it becomes imperative to use the apposite conditions to accelerate this process to commercialize and market compost as an agricultural product.

2.1 Basic Concepts of Composting

Following are some of the factors that are crucial to efficient composting process:

2.2.1 C/N Ratio:

C/N ratio means the ratio of total carbon present to the total nitrogen present. Normally, a C/N ratio between 20 and 40 is suitable for efficient composting. If it's too high, the microorganisms cannot utilize the carbon and break it down at a fast rate. In contrast to it, if the C/N ratio is too low, the microorganisms literally starve to death due to the lack of carbon diet and consequently anaerobic respiration starts. Due to anaerobic respiration, odor generates attracting parasitic flies and rodents.

2.2.2 Temperature:

Temperature is another basic parameter that contributes towards proper composting. There are two temperature zones in which the entire process occurs. The first, **mesophilic**, temperature range is prevalent in the starting and curing stage and spans from 20 to 45 degree Celsius. The second, **thermophilic**, is more short spanned and generally stays for two to three days. In the latter temperature range, all the pathogens and weed seeds are destroyed. In the former, the actual process of degrading complex organic substances occurs. Figure 2.1 shows the two temperature region and carbon dioxide respiration during composting.

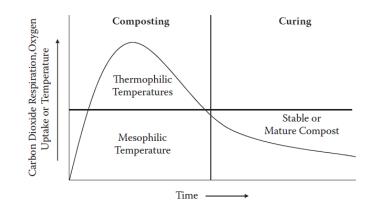
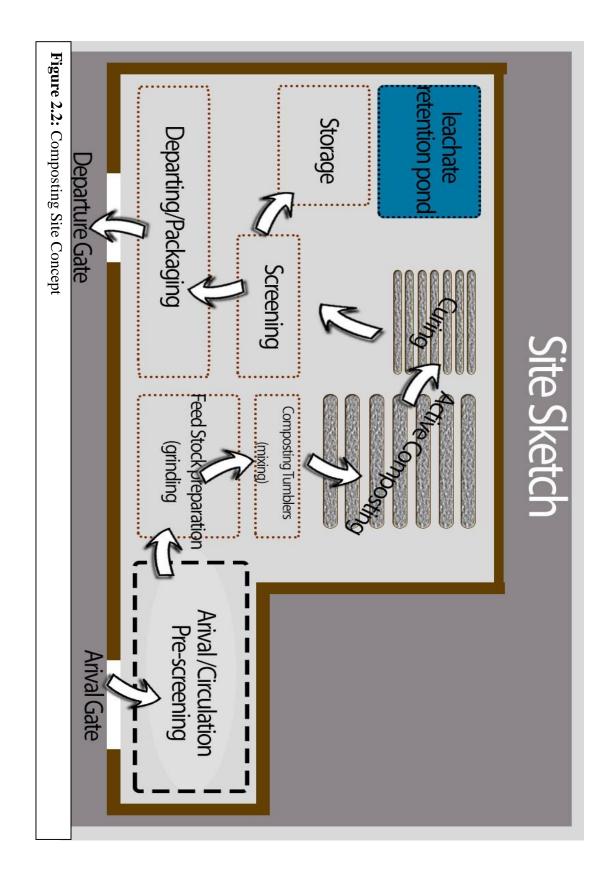


FIGURE 2.1 Changes in temperature and carbon dioxide respiration during composting.

2.2.3 Moisture Content:

Maintaining proper moisture is a difficult and an important task. If there is too little moisture, the microbes don't efficiently act on the feed and the entire process is delayed. The opposite i.e. too much moisture reduces the porosity of the feed and causes poor aeration. Normally, moisture is maintained between 40-65 % to ensure proper composting.


2.2.4 Aeration:

Proper aeration is maintained to ensure there is surplus amount of oxygen present for the aerobic process to occur. If inadequate amount of air passes through the feed, the aerobic microbes will perish leading to anaerobic process. On the other hand, if too much air is passed, the temperature drops and pathogens may not be thoroughly killed leading to detrimental consequences if the finished product is used on plant soil.

2.2 Composing Facility

A composting facility is the site where composting process takes place.y. A proper facility planning is required to establish a well-design composting site. The following are the key factors that are needed to be addressed.

- Facility location and area
- Technology choice
- Environmental management, such as odor control
- Potential Market of final compost

The site sketch repersents concept of our composting sight. It is composed of several zone as described below.

2.2.1 Waste Arrival and Pre-Screening

Feedstock arrives at the site through waste trolleys that collect the waste from the colony. As it arrives it is pre-screened manually by labor. Chunks of plastics, metals, rubber and other non-compostable materials are handpicked and separated. The compostable waste is also sorted in one of the following category

- Food Scraps
- Paper
- Cardboard
- Yard Waste
- others

2.2.2 Feed Stock Preparation

Feed stock is prepared by using the right ratio of each category to give the optimum Carbon to Nitrogen ratio. In this area testing of feedstock is also conducted. Testing include bulk density measurements, moisture content, PH and toxicity testing.

2.2.3 Composting Tumblers

After feedstock is prepared it is then send to our composting tumblers. These are rotating composting tumblers. It serves two primary function. First is mixing of the feed. Secondly it offers a more controllable environment to for active composting. The feed is kept here for 10 days ensuring that it is kept at the required temperature, moisture and oxygen.

2.2.4 Active composting

This area is composed of aerated piles for composting. Piles are sorted in to rows of specific width and length. Details are covered in the next topic.

2.2.5 Curing

After active composting, curing phase is required to achieve a stable product that is properly and thoroughly decomposed. The compost from active composting area is transferred to the curing area. Composted is piled and it is turned once a week.

2.2.6 leachate Retention pond

As most of the feed we are handling is very moist. Leachate will be released. The pond is designed to hold runoff from the entire composting area. This water has high pathogens that should not be allowed to seep into ground or mix with other water drainage system. A leachate retention pond is designed to hold any run off of leachate coming from either active composting area or curing area.

2.2.7 Screening

During screening, particle size is reduced to from 3 to 9.5 mm (0.125 to 0.375 inch) using rotary screening trommel. Screening is best achieved when the compost has a moisture content of 40 to 45%. At higher moisture contents, it is difficult to properly screen. At moisture contents below 40%, the material is dusty. In screening area, we are also refining our product by typically removes glass, metals, wood, film plastic, hard plastic, and other physical contaminants. Air classifiers can achieve separation along with magnets.

2.2.8 Storage Departing and packaging

Screen product is ready for use. It can be sent to storage or any other area for use.

2.2.9 Quality and testing

The following the final compost must be test and quality must fall in the following ranges

Final compost is test for presence of metals (property Table) and pathogens E.coil < 1000 MPN/g)

C/N Ratio:	< 15
Moisture:	< 75% (normal 5%)
Stones % of dry weight	<5% of <5 mm size
Plastics, glass, metals	<1% total
Odor free	Earthly smell

3. Proposed Solution/Methodology:

3.1 Waste generation at Engro Colony

In order to estimate the daily waste we need to know the population of the Engro colony. The details for housing is given in the table "Colony Data Input". This data was given to us by Engro. We estimated that 532 houses of Engro colony will host about 2,500 people as shown by **Table 3.1:** Colony Data Input.

Table 3.1: Colony Data Input					
Colony Data	# of Houses	Average number of people per house	Total No. of people		
Employees	340	5.0	1700.0		
Management	146	4.0	584.0		
Others	46	5.0	230.0		
Engro Colony (total)	532	4.7	2482.67		

Waste estimation: Estimated was of a person ranges from 0.5 lb to 2 lb per day (According to Government of Pakistan census average Pakistani produces 0.3 lb to 1.3 lb per day). For our better calculation we took the average waste generated by a person to be 1.433 lb per day. Likewise, the total population of Engro generates 3,558 lb waste/day. This include both compostable and non-compostable waste.

Table 3.2: Daily waste produced			
Average waste (Ib/person) Daily Waste produced (Ib/day)			
1.433	33 3557.666		

Not all of the waste that is generated is compostable. However, to properly design our composting facility we need to estimate the compostable waste. The table below shows the composition for waste production of a house hold. Forexample, a house in engro management colony would generate 23.9% food scraps, 16.4% paper waste, 12.40% plastic waste and so on. "Rubber, Leather, Textile", Plastics, Metals and glass are not well suited for composting. Hence in our calculation we only use those waste components that can be easily biodegraded. This waste was found out to be 1995.8 lb/day. Using bulk density of individual components, we also calculated the volume of waste that is generated daily.

Table 3.3: Typical Waste Generation					
Typical Compostable Waste Production Generation per day					
	Waste Production*	Waste Prod.	Comp- waste	Vol Comp-Waste	
Feed Material	%	(lb/day)	(lb/day)	(ft ³ /day)	
Food Scraps	23.90%	850.3	850.3	47.2	
Paper	16.40%	583.5	583.5	32.4	
Cardboard	2.00%	71.2	71.2	7.9	
Yard Waste*	13.40%	476.7	476.7	39.7	
Wood	0.40%	14.2	14.2	0.7	
Rubber,leather					
Textile	8.40%	298.8	0.0	0.0	
Plastics	12.40%	441.2	0.0	0.0	
Metals	9.00%	320.2	0.0	0.0	
Glass	4.60%	163.7	0.0	0.0	
Other	9.50%	338.0	0.0	0.0	
Total	100.00%	3557.7	1995.8	128.0	

3.2 Mass Balance

3.3.1. Mass Balance:

The process proposed by our group is inherently a batch process. This is because the feed used is not of constant composition and there are different operating conditions required

for different constituents. The mass balance mainly involves determining the volume of all the organic matter present in the feed according to various classifications such as food, grass clippings, sawdust etc. the combined volume of all the mixture is then converted into mass by multiplying the individual volumes of organic matter with their respective bulk densities. The total mass represents the net weight of the entire mixture to be composted. There is a provision for entering the properties i.e. the bulk density, the volume, C/N ratio and the nitrogen percentage on dry basis of a substance that isn't present in the list shown in the figure. The mass balance has been conceived

Table 3.4: Compost Recipe(Volume & Mass of material coming in daily)				
Material	Bulk Density(lb/ft ³)	Volume(ft ³ /day)	Mass(lb/day)	
Wood Chips	20.0	0.7	14.0	
Straw	8.0	0.0	0.0	
Corn Stalks	1.0	0.0	0.0	
Food Waste	18.0	47.2	849.6	
Paper				
(shredded)	18.0	32.4	583.2	
Cardboard	9.0	7.9	71.1	
Yard Waste	12.0	39.7	476.4	
Grass Clippings	20.0	0.0	0.0	
Leaves	11.0	0.0	0.0	
Shrub				
Trimmings	16.0	0.0	0.0	
Tree Trimmings	48.0	0.0	0.0	
Paper Pulp	52.0	0.0	0.0	
Other	0.0	0.0	0.0	
Total 127.9 1994.3				

to be able to handle any substance that is used for composting. The properties of commonly used substances have already been incorporated by literature review.

In order to achieve an efficient composting process, it is necessary to ensure certain parameters are in a suitable range. These parameters are:

- Bulk Density $< 40 \text{ lb/ft}^3$
- C/N ratio between 20 & 40
- Moisture content between 40 & 65

The mass balance calculation process takes into account these parameters and the aforementioned parameters can be varied by adding appropriate amounts of bulking agents to bring these properties within the desirable range. The main worksheet also informs about the effects of adding various substances i.e. the change in C/N ratio, bulk density, moisture content. This information proves useful in combining the various organic substances to achieve the suitable compost feed.

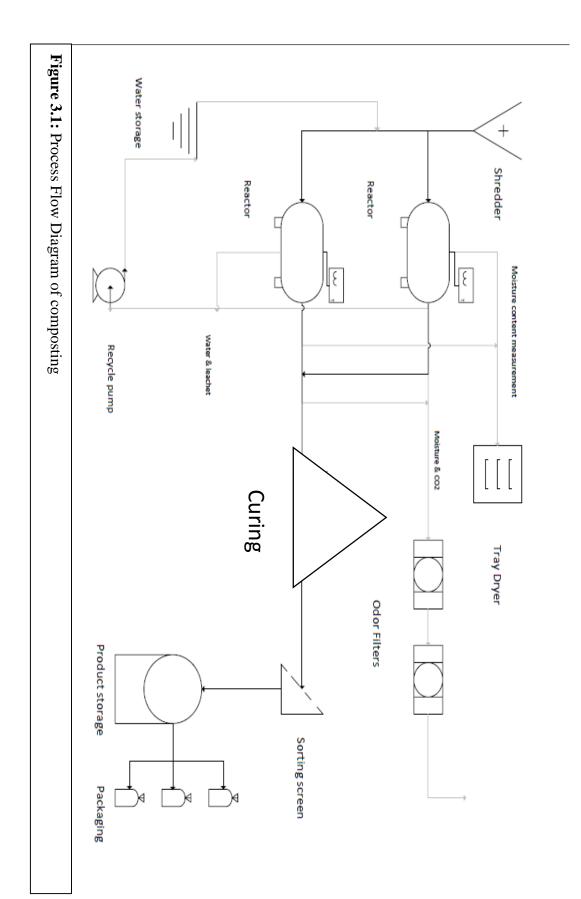

Table 3.5: Component property Relation				
Material	%Moisture	C/N	Bulk	
		Ratio	Density	
Food Waste	↑	\downarrow	\downarrow	
Paper (shredded)	\downarrow	↑ (\downarrow	
Cardboard	\downarrow	↑	\downarrow	
Yard Waste	-	↑	\downarrow	
Grass Clippings	↑	\downarrow	\downarrow	
Leaves	-	1	\downarrow	
Shrub Trimmings	\downarrow	1	\downarrow	
Tree Trimmings	↑	\downarrow	1	
Paper Pulp	↑	↑ (1	
Bulking Agents	%Moisture	C/N	Bulk	
		Ratio	Density	
Wood Chips	Ļ	↑	\downarrow	
Straw	Ļ	↑	\downarrow	
Corn Stalks	\downarrow	1	\downarrow	

Table 3.6: Material Properties					
Material	Moisture Content (%)	C/N	Bulk Density(lb/ft ³)		
Wood Chips	30	600	20		
Straw	10	80	8		
Corn Stalks	10	65	1		
Food Waste	70	15	18		
Paper (shredded)	20	155	18		
Cardboard	10	565	9		
Yard Waste	45	40	12		
Grass Clippings	80	17	20		
Leaves	40	54	11		
Shrub Trimmings	15	53	16		
Tree Trimmings	70	16	48		
Paper Pulp	82	90	52		

The C/N ratio, bulk density and the moisture content of the mixture is calculated by first by individually calculating the carbon content of each substance present, the amount of water present and the mass. Then, the cumulative properties (C/N, moisture content, bulk density) are calculated and displayed.

3.3 The composting process

Following are the major unit operations involved in the composting process.

3.3.1. Shredding:

In order to increase the surface area for the microbes to biologically degrade the organic waste generated, it is important to shred the waste coming to a smaller size. The shredder is the most energy intensive unit operation in this entire process. But, it also plays an instrumental in improving the efficiency of the entire process. The shredder has been sized to handle 150 kg/hr of feed. All the design parameters have been followed according to the usual design practices. The main parameters to be determined are:

- the driver power required to generate the required torque in the shaft on which, the cutting blades are installed.
- Determining the shaft diameter according to the torque generated. This is important to ensure that the shaft doesn't bend or break during service and is able to handle the applied load.

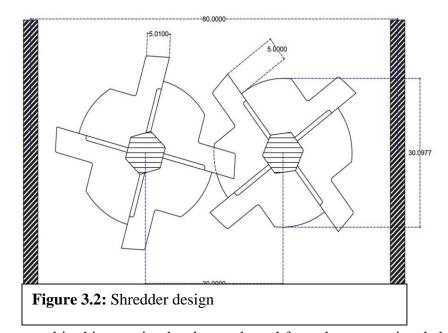
The power required has been calculated using the equation 1 :

$$P_R = P^* f_c$$

 P_R = Required power(KW)

P= Power of the motor/turbine(KW)

 f_c = correction factor


The power of the motor used in this equation has been adopted from the commercial shredders used for shredding MSW. The correction factor has been determined from literature. In order to determine the torque generated by the motor, the following equation is used ¹:

$T = 9.74*10^5 * P_R/n$

T = torque generated (Kg.mm)

 P_R = required power (KW)

n = RPM

Again, the rpm used in this equation has been adopted from the conventional shredders used for MSW. From the torque calculated, the shaft diameter is calculated. There will be a set of two shafts one rotating clockwise and the other one rotating anti-clock wise. This shaft set will be connected to the driver. It must be noted here that the power calculated is sufficient to drive both of these cutter fitted shafts. The shaft diameter has been calculated using the following equation:

$$\mathbf{D} = [5.1 / \mathbf{T} * \mathbf{f}_{d} * \mathbf{f}_{T} * \mathbf{T}]^{1/3}$$

- D = Diameter(mm)
- $f_d = Deflection \ factor$
- $f_T = Torque \ factor$
- T = Torque (kg.mm)

The design details along with the sizing calculations are shown below.

Table 3.7: Shredder Design				
Driver power	160	kw		
RPM	32			
Torque	5844000	kg.mm		
correction factor	1.2			
Power required	192	kw		
shaft diameter	300.96034	mm		
shear stress (avg.)	2.46	kg/mm^2		
cutter outward	5	cm		
projection				
Total width	80	cm		
cutter width	5	cm		
distance b/w	8	cm		
cutter				
Total length	130	cm		

The shredder will have ten cutters longitudinally with cutters of one shaft filling the gap between the two cutter of the other shaft. The shredder has been sized to handle even the toughest feed.

3.3.2. <u>Tumbler/Reactor:</u>

After the feed for composting is to be determined, the mixture is put into the tumbler for accelerating the natural decomposition process. The tumbler is rotated manually in the proposed design mainly to reduce operational expenditures. Air is blown through the cylindrical tumbler to provide ample oxygen for the aerobic process. The tumbler has been sized to minimize surface area for the handled volume. This reduces the material requirements and ultimately the cost. The surface area has been calculated using calculus.

Volume of feed handled daily (approx.): 126 ft³

Residence time of feed in tumbler according to standard practices: 10 days

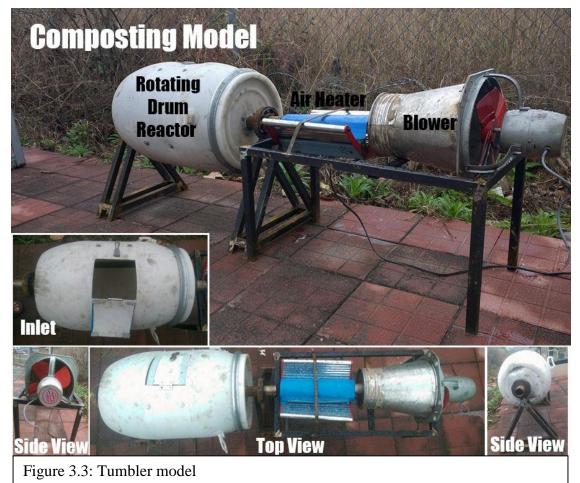
Total volume to be handled = 126 * 10 = 1260 ft³

Number of tumblers = 5

Volume of each tumbler required = $1260/5 = 252 \text{ ft}^3$

Now,

Volume of cylinder = $\pi r^2 h = 252$


Surface area = $2\pi rh + 2\pi r^2$

 $H = 252/\pi r^2$

Surface Area = $2\pi r (252/\pi r^2) + 2\pi r^2 = 504/r + 2\pi r^2$

Differentiating the surface area with respect to the radius, the equation becomes:

 $dA/dr = -504/r^2 + 4\pi r$

For extreme points, put the derivative of surface area equal to zero, after simplifying, the radius comes out to be:

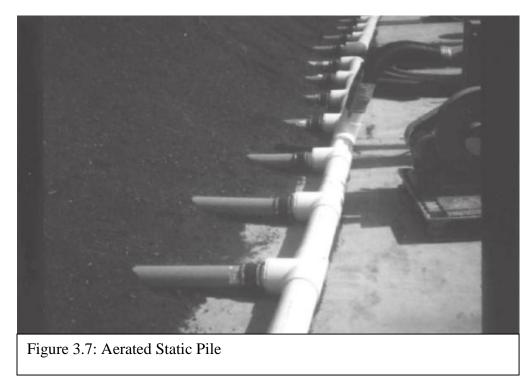
Radius = 3.422 ft

By putting the value of radius in the expression for height, the height comes out to be:

Height = 6.85 ft

Thus, using calculus, the minimum surface area is obtained for a cylinder when the ratio of height to radius is 2 to 1.

Using our calculation, we had also designed and prepared a model for the tumbler composter as shown in figure 3.3. It is composed of a tumbler that has lovers inside it that allows proper mixing for the waste. A heated fan system is also provided to control the temperature of the compost inside the tumbler. To achieve the temperature as required in the mesophilic we turn on the heater. If we want to decrease the temperature, we simply turn on the fan without the heater to remove the heat from the tumbler. The heat calculations and the energy inputs were found using HYSIS (figure 3.4 -.6).


Heater: E-100						-		×
Design Rating	Worksheet Perfo	rmance Dynamics						
Design	Delta P							
Connections Parameters	0.0000 kPa							
User Variables	Delta T		Duty					
Notes	56.00 C		1608.07 kJ/h					
		\rightarrow	>					
Delete								
			OK				I lanoi	red
Figure 3.4	Heat duty							
File Home Econ J Cut SI J Cupy = Image: Simple state s	nomics Dynamics V Process Utility Mana Adjust Manager Fluid Package Assoc Simulation	TOn Hold Workbook	Model Summary	Compressor		nent Design - 🖗	Pressure Relief Depressuring Flare System Safety Analysis	f
Simulation	< Economics		Energy		EDR Excl	anger Feasib	oility	
All Items	Material Stream: Co				Unknowr 0	ок 0	At Risk	
 UnitOps Streams 	Worksheet Attachme	ents Dynamics Stream Name	Cold A	ir Vapı	off	•		•
Stream Analysis	Conditions Properties	Vapour / Phase Fraction Temperature [C]	1.000 4.00	0				
Nodel Analysis	Composition Oil & Gas Feed	Pressure [kPa]	101.	3				
Data Tables	Petroleum Assay K Value	Molar Flow [kgmole/h] Mass Flow [kg/h]	28.9	15				
Case Studies	User Variables Notes	Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole]	3.291e-00 -601.					
Ly Data his	Cost Parameters Normalized Yields	Molar Entropy [kJ/kgmole-C] Heat Flow [kJ/h]	154. -601.					
	The second	Liq Vol Flow @Std Cond [m3/h]	<empty< td=""><td>></td><td></td><td></td><td>-</td><td></td></empty<>	>			-	
		Fluid Package Utility Type	Basis-		$\rightarrow \otimes$		eater	
		10 200			É-10	n Hot	Air	
					L-10	0		
Properties			۰ (III					
Simulation		OK						
Safety Analysis	Delete	Define from Stream	View Assay	+ +	-			
(0 -								
Figure 3.5	: Inlet stean	ı						

	Attachme	ents Dynamics		
Works	heet	Stream Name	Hot Air	Va
Conditio	ns	Vapour / Phase Fraction	1.0000	
Properties Temperature [C] Composition Pressure [kPa] Oil & Gas Feed		Temperature [C]	60.00	
			101.3	
	m Assay	Molar Flow [kgmole/h]	1.000	
K Value	III Assay	Mass Flow [kg/h]	28.95	
User Variables Notes Cost Parameters		Std Ideal Liq Vol Flow [m3/h]	3.291e-002	
		Molar Enthalpy [kJ/kgmole]	1007	
		Molar Entropy [kJ/kgmole-C]	159.8	
Normali	zed Yields	Heat Flow [kJ/h]	1007	
		Liq Vol Flow @Std Cond [m3/h]	<empty></empty>	
		Fluid Package	Basis-1	
		Utility Type		
			< [•
		OK	< [W	

The rate of aeration in the tumbler is the same as in the static aerated piles explained below.

3.3.3. <u>Area & Volume calculations for Static aerated piles:</u>

After the tumbler and before sending the compost over to the sorting screen, the tumbler output is stored in the form of cells to complete the decomposition process. The cells are provided with perforated pipes which are perpendicular to the length of the cells. The perforated pipes are connected to blowers which provide the air necessary for the aerobic process occurring. The dimensions of the cells are subject to availability of land area specified for composting. However, in the proposed design, the cell length and width can

be varied according to area available. By standard practice, the height of the cell equals the width. The time of storage in the form of static aerated piles can be specified as well. The calculations made determine the total volume of feed and the cells and provides the number of cells required. It must be noted here that the number of cells can come out to be in decimals. However, if it does happen, the number of cells should be rounded off to the nearest whole number in order to maintain simplicity in the formation of cells.

Table 3.8: Static Aerated Pile							
Volume & Aeration Calculations							
cell length	25	ft					
cell width	4	ft					
cell height	4	ft					
composting period	30	days					
Distance b/w cells	5	ft					
Access Distance	15	ft					
Total volume127.9 ft^3/day							
Cell volume	Cell volume 400 ft^3						
cells required	0.31975	1/day					

For the aeration requirement, certain rules of thumb have been adopted in order to simplify calculations. These adoptions play a trivial role in the overall design and can be used from literature directly. As already mentioned, the perforated pipes are perpendicular to the length of cells so that a single length of a pipe will pass through multiple cells.

Air flowrate required (approx.) = $130 \text{ m}^3/\text{tonne.hr}$

Pipe diameter = 6 inch

Distance between pipes = 6 inch

Length of pipe = dependent on the number of cells

Pipe perforation spacing = 4 inch

Perforation diameter = (pipe dia.² * hole spacing/ pipe length * 12)^{1/2}

From the above equation, the perforation diameter can be calculated for any length of the pipe. However, in general industrial practice, the length is specified and the perforations made before commissioning.

The volumetric flowrate of the air is calculated by the mass of the output coming out of the tumbler. The total land area required for the entire period of the static pile

configuration is determined by simply multiplying the area required for the output of the
tumbler each day by the total days for which the cells are to be made.

Table 3.9: Aeration Requirement for				
cell				
Pipe diameter	6	inch		
dist. b/w pipe	6	inch		
length of pipe	2.87775	ft		
hole spacing	4	inch		
hole diameter	5	inch		
Air volume	430.8287	M^3		
required		/hr		
Standard blower	138	M^3		
volume rate		/hr		
Total Blowers	3			
Required				

After tumblin	g pile sizin	g & Aeration	per day's feed
cell width	4	(Typically b/w 4-6 ft)	
cell height	4	Equal to width	
composting period	30	(At most 30 days)	
Aeration Required	515.2	M ³ /hr	
Standard Blowers req.	3		
Total Area Required for composting period mentioned	10125	ft ²	

3.3.4. Area & Volume calculations for Curing piles:

Similarly, we calculated the require area for curing phase. The curing phase usually lasts for 30 days. For 30 days we found the "total volume of curing compost" to be 1918.5 ft3 (table below). For pile height of 4 ft, width of 8 ft and length of 25 ft, we calculated the required no of rows and the area required.

	Land A	rea req	uiremen	t calcu	lation		
Total area occupied per cell	225	ft ²					
Total Area required per day feed	337.5	ft ²					

Volume of pile= 2/3 Length x Width x Height

The table shows the results of our calculation. The total area require for curing is 844 ft2.

Table 3.10 : Curing Pile Volume					
Calculations					
Vol of curing					
compost	63.95	ft3/day			
total volume of		ft3/curing			
curing compost	1918.5	period			
Height of Curing					
row	4	ft			
Width of Curing					
row	8	ft			
length of Curing					
row	25	ft			
distance b/w					
rows	5				
no of rows	3.597188				
Required Area	844.4375	ft2			

3.3.5. Area & Volume calculations for storage piles:

Table 3.11: Storage Pile Volume					
Calculations					
Storage Phase					
time	90	days			
Vol of curing					
compost	63.95	ft3/day			
total volume of		ft3/curing			
curing compost	3837	period			
Height of Curing					
row	8	ft			
Width of Curing					
row	12	ft			
length of Curing					
row	25	ft			
distance b/w rows	5				
no of rows	2.398125				
Required Area	844.4375	ft2			

Method used was same as for curing. Results are shown below.

3.3.6. Leachate Detention Pond Design:

The pond is designed to hold runoff from the entire composting area. In order to calculate the require volume and surface area we used the following formulas.

Pond Volume (yd³) = 1.2 (depth) * 1/2 Annual Rainfall (in) * (1 ft / 12 in) * Pad Area (ft2) * (1 yd3 / 27 ft3)

Surface Area (ft2) = (Pond Volume * (27 ft3 / 1 yd3)) / Pond Depth

Inputs are results are ase followed

Figure 3.8 Leachet Detention Pond Calculations							
	\sim	~		20% freeb	oard		
		5		Depth (ft)			
				total De	pth (ft)	6	
		(i.e., /)	(10	•		
Mean annual		-	n)	10	in		
Pond volume	9617.969	ft3					
S.A	1602.995	ft2					

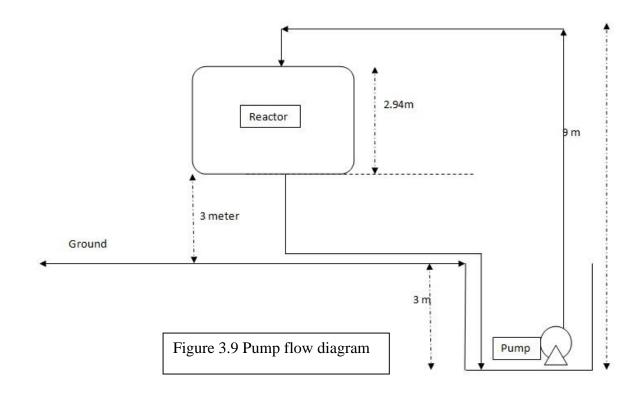
3.3.7. Screening design:

Area required is same as for storage

Land Required for screening/strorage period						
Land Required for						
storage/screeing	844.4375	ft2				

For our operations the screening capacity required was 48 ft3/hr. We found the following model trammel screen to be suitable for our purpose. It is also able to handle larger amounts of feed.

Table 3.12: Screening			Vol of cureo	TROM	
Require Capacity	47.9625	ft2/hr	avaiable for screening per week 4		406
	·		Type of		
Company	Model		Screen	Capacity (ft3/hr)	Cost
USA Screen	TROM		Trommel	200	3,000,000


3.3.8. <u>PUMP deisgn:</u>

We will use a centrifugal pump for leachate handling as there will be solid particles present in the water. Therefore centrifugal pumps are best to handle these types of fluids. They use the centrifugal force to convert electrical energy to kinetic energy of the water.

There are 6 parts of pump:

- 1. Impeller
- 2. Casing
- 3. Shaft and bearing assembly
- 4. Shaft sleeve
- 5. Shaft seal

Impeller can be made by using an elastomeric or high chrome material as there will be solid particles so impeller should be strong enough to reduce wear and tear. Casing shape is semi-volute or concentric and casing halves of cast containing wear lines to make it operate under high pressure conditions. The diameter of shaft should be large with short overhung to reduce vibration. Corrosion resistant sleeves with mechanical seals protect the shaft at both ends.

We will use energy balance equation for the calculation of work and power of the pump.

Assumptions:

Consider the depth of the storage pond for leachate is 3 meters. Also consider the height of the reaction vessel from the ground level is 3 meters. Consider the outflow of the leachate from the pump is 2 cubic meter per seconds. Length of pipe above vessel is 0.6 meter.

DATA:

SUPPOSE: $V = 2 \text{ m}^3/\text{s}$

 $Z_1 = 0$

Total volume of feed calculated = $60m^3$

We are making three equal sized vessels = 20 m^3

Radius of each vessel = 1.47 m (calculated)

Dia of each vessel = $2 \times 1.47 = 2.94$ m

 Z_2 = height of the vessel above the ground + diameter of the vessel + depth of the pond

= 3 + 2.94 + 3 + 0.6 = 9 m

 $\Delta P = 0$

 $\rho = 998.2 \text{ kg/m}^3$

$$g = 9.8 \text{ m/s}^2$$

Equation used:

$$\frac{\Delta P}{\rho g} + \Delta z + \frac{v^2}{2g} + w = 0$$

By putting the values of the variables and constants we have

W = 11.78 watt

Now for power we will use the formula

$$P = \frac{\dot{m} \times w}{\eta}$$

where

$$m = \rho v d$$
 a

Required Head:

$$\frac{\Delta P_f}{\partial} - \frac{\Delta P}{\partial} - \Delta z = Required Head$$

$$\Delta P_f = 4fL \,\partial \, u^2 / D_i$$

Roughness = 0.046mm

Relative roughness = $(0.046 \times 10^{-3})/0.0254$

$$= 0.0018$$

Friction factor = f = 0.00285

As there are four standard 90 degree elbows are being used so it will be equivalent length slightly more than the original one

$$L = 12.6 + 4 \times 40 \times 10^{-3}$$

L = 12.604 m

Velocity = u = V/A

Velocity = u = 3.94 m/s

Reynolds number = $Re = \frac{\partial uD}{\mu}$

Re = 11253.7

By putting the values in the formula we will get:

$$\Delta P_f = 87660.22 \ n/m^2$$

Head = 87660.22/ (998.23×9.8) - (-9)

Head = 17.94 m

 $NPSH = P/\rho g + H - P_f/\rho g - P_v/\rho g$

Here we have H = 0 m because pump is at bottom and at suction level height is zero.

$$P = 1$$
 atm

 $P_v = 23.8 \text{ torr} = 3173.72 \text{ n/m}^2$

NPSH = 1.08m

$$g\Delta z + \Delta P/\rho g - \Delta P_f/\rho g = w$$

 $w = (-9) \times 9.8 - 8.96 \times 9.8$

w= -176.008 J

$$P = \frac{m \times w}{\eta}$$

 $\eta = 0.6$ for pumps

m = 1.99 kg/s

w = 176.008 joule

by putting the values

P = 583.76 watts

4. Results

4.1 Facility Design

Engro had already specifed area for its composting activits. Using "google maps" we calculated the area of this land, that was found out to be 9.9 kanal. This area proves to be enough for composting activities.

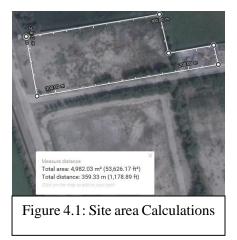


Table 4.1 tablulates the results of all the areas required for cetain composting activity. The total area that is required os 7,600 ft square. However since the area avaiable to us is much more then this we have rescaled out site design accordingly to accommodate any changes in feeds. Our plant will be able to run 7 times more feed then that is generated in engro. The cost of upsizing is relatively less because there is not much investment required to build up compost piles. Main cost is assiated with shredderr and other machenical equipments.

Table 4.1: Required Area	Minimum Area ft2
Active Composting Area	2158
Curing Area	1169
Screening	1019
Storage	1019
Leachate Detention Pond	2235
Total	7600

We have generated an excel file that will automatically calculated the required area sizing and properties for the feed . Table 4.1, 4.2 and 4.3 gives such results for our current sample.

	Table 4.2: Material Characteristics								
Material	Moisture	Water	C/N	Nitrogen	Nitrogen	Carbon	Total	Volume(ft	-
	Content(%)	mass(lb/day)		Content(%	mass(lb/day)	mass(lb/day)	mass(lb/day	³/day)	Density(lb/ft ³
Wood Chips	30.0	4.2	600.0	0.1	0.0	2.0	14.0	0.7	20.0
Straw	10.0	0.0	80.0	0.7	0.0	0.0	0.0	0.0	8.0
Corn Stalks	10.0	0.0	65.0	0.7	0.0	0.0	0.0	0.0	1.0
Food Waste	70.0	594.7	15.0	2.4	6.1	91.8	849.6	47.2	18.0
Paper (shredded)	20.0	116.6	155.0	0.2	0.9	144.6	583.2	32.4	18.0
Cardboard	10.0	7.1	565.0	0.1	0.1	36.2	71.1	7.9	9.0
Yard Waste	45.0	214.4	40.0	1.8	4.7	188.7	476.4	39.7	12.0
Grass Clippings	80.0	0.0	17.0	3.4	0.0	0.0	0.0	0.0	20.0
Leaves	40.0	0.0	54.0	0.9	0.0	0.0	0.0	0.0	11.0
Shrub Trimmings	15.0	0.0	53.0	1.0	0.0	0.0	0.0	0.0	16.0
Tree Trimmings	70.0	0.0	16.0	3.1	0.0	0.0	0.0	0.0	48.0
Paper Pulp	82.0	0.0	90.0	0.6	0.0	0.0	0.0	0.0	52.0
Other	25.0	0.0	30.0	2.0	0.0	0.0	0.0	0.0	0.0
Total	47.0	937.1	39.1	1.1	11.8	463.2	1994.3	127.9	15.6

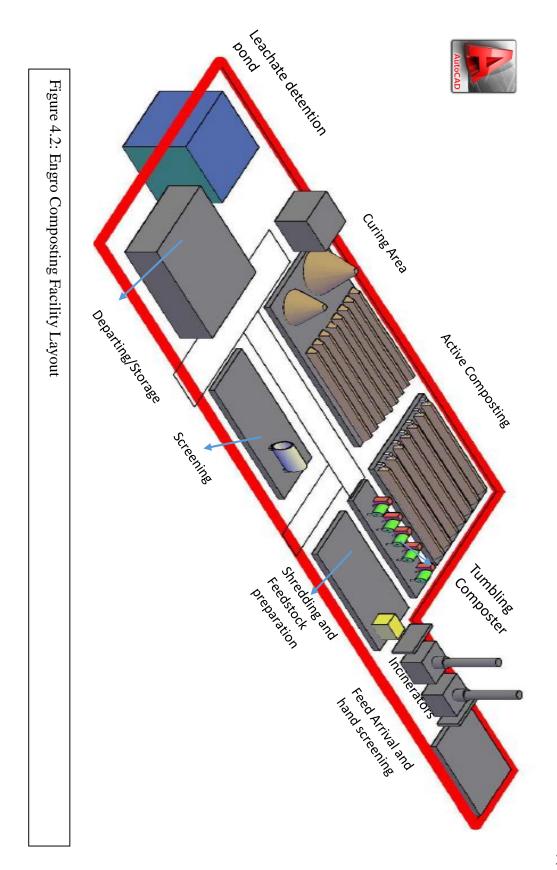

Table 4.3 Feed property				
Bulk Density (Net) C/N (Net) Moisture Cont.				
15.6	39.1	47.0		

Figure 4.2 is the final purposed plant layout for our technique of composting. Waste arrives at "Feed Arrival and hand screening" area. When the feed is hand sorted for non-biodegradable material.

Feed preparation area: feed is shredded and right proportion of waste components are added to give the appropriate Carbon to nitrogen ratio, moisture content and bulk density.

Waste is decomposed in the composting areas: Tumbling Composter, Active Composting and Curing Area.

Mature compost is screen and departed or stored.

4.2 Costing and Project Evaluation

The method we use for costing is **Detailed factorial estimates.** (Richard and Coulson vol.6)

4.2.1 The Purchased Equipment cost

Table 4.4

Equipment Cost							
Equipment	Company	Model	Туре	quantity	Purchased Cost		
Shredder	SUNY	ZY-SS800	organic waste shredder	1	PKR 2,000,000.00		
Bedminster	Custom	Custom	Platic	5	PKR 10,000.00		
Pump	OLDEN WATER PUMP	DD 1600	Centrifugal Pump	1	PKR 4,500.00		
Blowers			Virtual Sun 6" Inline	3	PKR 6,000.00		
Screening	USA Screen	TROM 406	Trommel	1	PKR 3,000,000.00		
Tractor	Massi-260	Massi-260	with bucket	1	PKR 800,000.00		
				total	PKR 5,872,500.00		

The total purchased cost of equipment is Rs 5,872,500.

We Calculate the total physical plant cost (PPC), using the factors given in Table 6.1

PPC = PCE (1 + sum of PEC factors)

Table 4.5: Phys	Table 4.5: Physical Plant Cost				
Operation	PEC factors				
Equipment					
erection	0.2				
Piping	0.1				
Electrical	0.1				
Buildings, process	0.05				
Utilities	0.1				
Storages	0.25				
Site development	0.05				
Ancillary buildings	0.01				
Total	1.86				
	PKR				
РРС	10,922,850.00				

Physical plant cost or the capital investment required was found to be 10,922,850 Rs. This include the cost of set up equipment, utilities , piping , storages, developing site and other ancillary buildings.

		Process type	
Item	Fluids	Fluids- solids	Solids
1. Major equipment, total purchase			
cost	PCE	PCE	PCE
f_1 Equipment erection	0.4	0.45	0.50
f ₂ Piping	0.70	0.45	0.20
f 3 Instrumentation	0.20	0.15	0.10
f_4 Electrical	0.10	0.10	0.10
f 5 Buildings, process	0.15	0.10	0.05
* f 6 Utilities	0.50	0.45	0.25
*f ₇ Storages	0.15	0.20	0.25
*f 8 Site development	0.05	0.05	0.05
*f 9 Ancillary buildings	0.15	0.20	0.30
2. Total physical plant cost (PPC) $PPC = PCE (1 + f_1 + \dots + f_9)$			
$=$ PCE \times	3.40	3.15	2.80
f_{10} Design and Engineering	0.30	0.25	0.20
f_{11} Contractor's fee	0.05	0.05	0.05
f ₁₂ Contingency	0.10	0.10	0.10
Fixed capital = PPC $(1 + f_{10} + f_{11} + f_{12})$			
$= PPC \times$	1.45	1.40	1.35

Table 6.1. Typical factors for estimation of project fixed capital cost

*Omitted for minor extensions or additions to existing sites.

4.2.2 Operating cost

Please note that there are no acquiring and delivery cost of martials involved. The feedstock is simply free of cost.

The table below gives the requires costs to calculate the operating cost.

Cost of compost (PRK/Ib)		20
Labour Cost per hour	PKR	75.00
Available Labour hour per week (hr)		40
electricity cost per Kwh		20
Cost of diesel/ liter	PKR	70.00

Labor cost:

This plant will be operated by 5 unskilled workers. All engineering staff will be provided by Engro. The labor cost per day is calculated as follows.

Labor cost = no of workers x labor hours per day x labor cost per hour

Table 4.6: Labor Cost						
No of unskilled	labor hours		Labor			
Workers	per day	labor cost/ hr	cost(PKR/day)			
5	8	75	3000			

Electricity Cost:

Electricity cost= Quantity x Power rating x Operating hours per day * electricity cost per

kwh

Table 4.7 Electricity cost

Electricity cost							
Equipment	quantity		power rating(kwh)	operating hour per day	cost (PKR/day)		
Shredder		1	190	4	15200		
Pump		1	0.1178	8	18.848		
Blowers		3	0.138	8	66.24		
Screening		1	45	2	1800		
	Total 17085.088						

Tractor operating cost:

The tractor will use about 10 liters per day. Driver is included in unskilled worker. The cost calculated as followed

Tractor operating cost = price of diesel/ liter x no of liters use per day

Table 4.8: Tractor Operating cost		
Fuel requirement		
(liters)	10	
cost (PKR/day)	700	

Total operating cost is 21785 PRK/day

4.2.3 Project Evaluation

Daily Sale of compost	29914.5	PKR/day
Daily operational cost	21785.088	PKR/day
Daily net profit	8129.412	PKR/day

Payback period	1343.621162 days
----------------	------------------

The project initial investment will be recovered in 3 years and 6 months

HAZOP Analysis:

HAZOP analysis refers to the study of hazards and operability of chemical processes. It is associated with the Health, safety and environment division of chemical plants. In order to avoid any accident and ensure smooth operation of the plant, HAZOP analysis is performed. It also helps in identifying and correcting any fault in troubleshoot situation. In order to simplify and plausibly organize the HAZOP study, there are seven guide words recommended by CIA. In addition to the guide words, there are other words which are provided by their exact definitions. These guide words are as follow:

Intention: the intention defines how the particular part of the process was intended to operate; the intention of the designer.

Deviations: these are departures from the designer's intention which are detected by the systematic application of the guide words.

Causes: reasons why, and how, the deviations could occur. Only if a deviation can be shown to have a realistic cause is it treated as meaningful.

Consequences: the results that follow from the occurrence of a meaningful deviation.

Guide Word	Meaning
NO/NOT	The complete negation of the intention
MORE / LESS	Quantitative increase/ decrease
AS WELL AS	A Qualitative increase
PART OF	A Qualitative decrease
REVERSE	The logical opposite of the intention
OTHER THAN	Complete substitution of the intention

Hazards: consequences that can cause damage (loss) or injury.

Using the technique jotted above, we performed the HAZOP study on our plant scale composting solution that we designed. Following is the analysis performed on each equipment that can potentially malfunction or cause a safety hazard.

Equipment—Shredder:

Intention: Rotate the blades at the designed RPM to handle the design capacity of feed.

Guide word	Deviation	Cause	Consequences & Actions
NO/NOT	Rotation	Jamming, Driver	Possible failure of driver,
		failure, power outage	risk of blade shaft bending:
			check driver to ensure
			power transmission.
MORE	Feed	Feed screen rupture,	Overload of driver and
		deviation from design	potential failure, risk of
		input protocol	damaging blades: add feed
			according to design
			conditions
LESS	Rotation	Jammed gear	Less feed processing,
		mechanism, fault in	driver overload, increased
		power transmission	power consumption

Equipment—Blower:

Intention: To provide the required air flow for the aerobic process to proceed.

Guide word	Deviation	Cause	Consequences & Actions
NO/NOT	Flow	Blower failure, power	Temperature increase in
		outage, open power	tumbler and pile, anaerobic
		circuit	reaction initiation, odor
			generation: Check power
			connections and blower
			driver
LESS	Flow	Blower discharge	Gradual Temperature
		partially blocked, less	increase in tumbler & piles,
		power input	delayed product formation,
			risk of anaerobic
			respiration: check blower
			discharge, check power
			connections
MORE	Flow	Increased power to	More power consumption
		driver	costs, possible driver
			failure, temperature
			decrease in tumbler and
			piles: install a valve at
			blower discharge, check
			power output to blower
			driver.

Equipment—Tumbler:

Intention: To maintain the temperature of the feed and aerate it properly.

Guide word	Deviation	Cause	Consequences & Actions
NO/NOT	Flow	Blower failure, air	Excessive
		channel blocked	temperature increase,
			anaerobic process
			initiation, odor
			generation: check
			blower operation,
			check to see if there
			is any blockage in air
			channel.
MORE	Flow	Less feed input,	Temperature decrease
		increased power	slowing the reaction
		output to blower,	and potentially
		control valve stuck	stopping it, risk of
		open	blower driver failure:
			check power output
			to blower, ensure the
			feed input is in accord
			with design capacity.

Equipment--Screen:

Intention: To separate oversized and non-degradable waste from the finished compost.

Guide word	Deviation	Cause	Consequences & Actions
------------	-----------	-------	---------------------------

NO/NOT	Operation	Power failure,	Product processing
		Equipment driver	delay, product
		failure	contamination:
			check power
			connection, check
			driver to ensure it
			is operational
LESS	Flow	Screen blockage	Reduced
			efficiency,
			increased
			equipment load:
			stop equipment
			operation to clear
			blockage, inspect
			screen for any weir
			and if so, attend to
			the damages.

Conclusion

The design proposed in this paper emphasizes on obtaining an agricultural product while at the same time handling the problem of waste generation. Using this technique, another new product line can be launched alongside the main fertilizers marketed by Engro fertilizers. This study is not simply proposing a waste disposal solution. But, it takes a step further and suggests a solution that transforms seemingly useless substances into a useful and marketable product.

References:

[1] Eliot Epstein, Industrial Composting (2011)

[2] Archer H. Christian, Gregory K. Evanylo, James W. Pease, On-farm composting handbook (1992)

[3] National Resource Conservation Service US, Engineering Field Handbook, chapter 2: composting (2010)

[4] Paredes C., M.P. Bernal, J. Cegarra, A. Roig, A.F. Navaro, Nitrogen transformation during the composting of different organic wastes (1996)

[5] <u>http://www.biosmarttechnologies.com/compost-activator-and-maker.htm</u> (cited 2015)

[6] <u>http://compost.css.cornell.edu/microorg.html</u> (cited 2015)

[7] Robert D. Raabe, The Rapid Composting Method (cited 2015)

ORIGIN	ALITY REPORT	
SIMILA	0% 7% 5% 6%	PAPERS
PRIMAR	Y SOURCES	
1	Submitted to Higher Education Commission Pakistan Student Paper	2
2	www.slideshare.net	1
3	compost.css.cornell.edu Internet Source	1
4	env.uregina.ca	1
5	Epstein, . "The Composting Process", Industrial Composting Environmental Engineering and Facilities Management, 2011. Publication	1
6	Submitted to Universiti Teknologi MARA Student Paper	1
7	Submitted to International Islamic University Malaysia Student Paper	1

cwmi.css.cornell.edu

8	Internet Source	<1%
9	ijates.com Internet Source	<1%
10	donnegeometra.it	<1%
11	Submitted to University of Birmingham Student Paper	<1%
12	Submitted to Laguna Creek High School Student Paper	<1%
13	articlestok.com	<1%
14	Submitted to University of the West Indies Student Paper	<1%
15	Process and Plant Safety, 2015. Publication	<1%
16	ethesis.nitrkl.ac.in Internet Source	<1%
17	www.co.portage.wi.us	<1%
18	www.coursehero.com	<1%
19	Yadav, Nishtha; Talyan, Vikash and Kaushik, C.	<1%

P.. "Co-composting of pressmud and flyash with distillery effluent", International Transactions in Applied Sciences, 2012.

EXCLUDE QUOTES OFF EXCLUDE OFF BIBLIOGRAPHY EXCLUDE MATCHES OFF