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Abstract 

The aim of our research is to develop a prosthetic hand that is as natural and easy to use as a 

person’s organic extremity, without the need for invasive surgical procedures, an autonomous 

hand capable of determining the most suitable grasping pattern for griping an object and 

executing that best grasping pattern with minimum human effort. By using machine vision 

techniques a system is developed for fully automatic object recognition and reconstruction of 

3D objects from multiple images taken from single camera embedded in the palm of the hand. 

We assume that the objects or scenes are rigid. A camera Matrix is associated for each image, 

which is parameterized by rotation, translation and focal length. For Feature matching between 

all images we use Speeded-Up Robust Features (SURF) and by using the RANSAC algorithm 

noisy matches are eliminated and find those matches that are consistent with the fundamental 

matrix. Objects are recognized as subsets of matching images. From 3D reconstruction we can 

estimate the perimeters i.e. length, width and Height of detected object and by using thresh 

holding function that is defined by different experimentation on human hand we execute the 

best grasping pattern for the griping the detected object. 

Key Words: Prosthetic Hand, 3D Reconstruction, Grasping Pattern 
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Chapter 1: Introduction 

1.1. Introduction 

Within the field of medicine, a prosthesis is defined as an artificial device that replaces a 

missing body part lost through trauma, disease, or congenital conditions. A prosthesis that 

replaces a part of the arm between the elbow and wrist is called a trans radial prosthesis, also 

referred to as a “BE” prosthesis for below-elbow. These devices can be functional or simply 

cosmetic depending on their intended use. An amputee who does a lot of manual labor and 

needs a device that is durable, dependable, and strong may choose to have a simpler prosthesis 

such as a hook. On the other hand, an individual who is willing to sacrifice functionality for a 

prosthesis that looks more natural may choose to get a cosmetic prosthesis, also known as a 

cosmesis, as one shown in figure 1. 

 

Figure 3.1.1: Personalized Cosmetic Prosthetic Hand by Sophie de Oliveira Barata [17] 

We developed an a prosthetic hand that is as natural and easy to use as a person’s organic 

extremity capable of determining the most suitable grasping pattern for griping an object and 

executing that grasping pattern with minimal human input without the need for invasive 

surgical procedure.  

Functional Trans radial prostheses are available in two main types, body powered and 

externally powered. Body powered prosthetic limbs are controlled using cables connected to a 

harness or strap mounted elsewhere on the user’s body. When the user moves their body in 

certain ways they pull on 4 the cables to cause motion in the prosthesis. The simple nature of 

these devices makes them very light but also means they are typically incapable of executing 
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complex tasks. A common terminal device for body powered prostheses is a pincer like 

mechanism called a split-hook, illustrated in the diagram below, though many other’s exist for 

more specific tasks like fishing or cooking 

 

Figure 1.1.4: Typical Body Powered Trans radial Prosthesis [17] 

Externally powered prostheses are devices that receive their power from sources other than the 

user’s body. Usually electrically powered, modern devices are able to utilize multiple electric 

motors and other electrical components to achieve more complex grips and functionality than 

can be accomplished with a simple body powered device. The additional use of on board 

microcontrollers and sensors allow for these prostheses to be controlled in a variety of ways.  

One common technique for controlling an externally powered prosthetic device is the switch 

control method. This method allows the user to move their prosthetic device by toggling 

switches or buttons. A user can toggle the switches using another part of their body such as 

their opposite shoulder, or with the remaining muscle in their residual limb. Since these devices 

are typically able to perform such a wide variety of grips, the user can often use different 

sequences of switch toggles to alternate between different grip modes.  

Another, more advanced method of controlling an externally powered prosthetic device is 

through the use of electrodes. When placed on the surface of the skin, these sensors are capable 

of detecting the small electrical signals generated by muscle contractions in the user’s residual 

limb. In most applications additional software and circuitry are used to make these analog 

devices behave like switches. The user is then able to control their device in a similar manor to 

the switch control method. Devices that utilize this technology are called myoelectric 

prostheses. Some examples of commercially available myoelectric prosthetic limbs are the 

Bebionic hand and the i-Limb. Each device is an advanced externally powered prosthetic limb 

and is currently considered top of the line in commercially available trans radial prostheses 

("Myoelectric Prosthetics.", 2014). 
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1.2.  Non-anthropomorphic prosthetic devices 

 One of the most common non-anthropomorphic terminal devices used on upper body 

prostheses today is the split-hook; a simple device primarily comprises of two hooks which are 

jointed together at the base by a hinge. This design enables the hooks to open and close in a 

pincer like fashion allowing for basic grip functionality. The curved shape of this prosthesis 

offers a fair bit of functionality as well, so long as there is a hole, handle, or divot for the hook 

to fit into. These devices are typically body powered though externally powered versions are 

available. Relative to other more versatile prosthetics, what the split-hook lacks in functionality 

it makes up for with durability and a low cost ("Prosthetic Devices.", 2014) 

 

Figure 1.2.1: Common Split-Hook Terminal Prosthetic Devices [17] 

Custom Non-anthropomorphic prostheses are also developed for more specific tasks such as 

cooking or fishing, or even for sports like basketball, climbing, or golf. It is not uncommon for 

an individual to own several functional prostheses intended for different tasks as well as a 

cosmesis for social events. 

1.3.  Anthropomorphic Prosthetic Devices 

 On the other side of the trans radial prosthetic spectrum are devices such as the i-LIMB and 

the bebionic hand. This new generation of externally powered robotic prostheses combines 

functionality with a natural, anthropomorphic appearance. The inclusion of an opposable 

thumb and four independently actuated fingers allows for not only more human like movement 

but also a wider range of grip patterns. Sensors in the device allow for system feedback 

resulting in better performance, and in some cases even user feedback through the use of lights, 

vibrating motors, or other interfaces. The prostheses are typically myoelectric. To operate the 
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device the user preforms combinations of muscle contraction that will initiate one of the 

preloaded grip patterns. 

 

Figure 1.3.1: Anthropomorphic Prosthetic Hands i-LIMB Ultra Revolution & i-LIMB Cosmetic Cover 

[24] 

Though these devices have a lot of advantages over earlier, simpler prosthetics, the additional 

weight caused by the onboard electronics can cause them to be uncomfortable to use for long 

periods of time. Another drawback of these devices is their high price. Peaking at about 

$100,000 after fitting and training, it is difficult for many potential users to afford one even 

with insurance 

 

1.4. Problem Statement: 

One of the unique creations in the human body is the hand which enables the human to grasp 

and manipulate objects. In both cases, people can sense and understand the environment. 

Unluckily, the people with upper limb disability cannot perform daily routine tasks properly 

which led them to the physical and psychological pressure. 

 Though the prosthesis industry has experienced a great revolution in upper body prostheses 

with the introduction of advanced myo electric grippers [1]. But the Users are still far from 

being able to perform their daily routine tasks with same level of ease as they could.  

There are many products available in the market such as Bebionics The Hand and i-Limb ultra 

but these products have many complaints. Complaints of available products includes difficulty 

in performing daily tasks due to complex user interface and high market costs. Due to high 

market costs every one cannot purchase these products. The current statistics includes average 

of 18,496 upper-extremity amputations every year, compared to 113,702 of the lower 

extremity. Of those, only 1900 are above the wrist. Among upper-limb amputees, typically 

fewer than half wear prosthetic arms. An estimated number of 541,000 Americans were living 
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with some form of upper limb loss in 2005 and this number is projected to more than double 

with an aging and growing population by 2050. [1] When a person becomes a limb amputee, 

he or she is faced with staggering emotional and financial lifestyle changes. The amputee 

requires a prosthetic device(s) and services which become a life-long event. 

These issues can be overcome by the implementation of a digital vision subsystem 

embedded in the prosthetic that will allow our device to determine the shape of the object the 

user is reaching for as shown in figure 1. The hand will then be able to take this information 

and automatically adjust to an appropriate grip. The end goal is that the user will only need to 

reach for an object and tell the device when to close. The process of selecting and executing a 

particular grasping pattern will be taken care of automatically, much like what is done naturally 

in our subconscious. 

 

Figure 1.4.1: Pro E model Pro E model of Prosthetic hand with camera embedded in the palm of hand 

Recognition and Reconstruction of object are two long standing issues in machine vision. The 

structure and movement (SAM) issue has achieved a level of development, with a few several 

commercial offerings [10] [22] in addition to comprehensive research literature [17] [8] [13]. 

Object Recognition is likewise very concentrated however; late advances in image features and 

probabilistic displaying have roused already unexplored territories, for example, object class 

recognition [7]. Invariant local features have developed as a precious device in handling the 

pervasive image correspondence issue. By utilizing descriptors that are invariant to translation, 

as well as to rotation [16] scale [9] and relative distorting [3] 12] [11], invariant features give 

a great deal stronger coordinating than past connection based techniques.  

Recently algorithms have been developed that operate in an unsupervised manner on an image 

dataset. We operate in an unsupervised setting on an unordered image dataset and pose. Feature 

between all images are matched by using Speeded-Up Robust Features (SURF) and by using 

the RANSAC algorithm noisy matches are eliminated and find those matches that are 

consistent with the fundamental matrix.  
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1.5. Aims & Objective of the Thesis: 

The aim of our research is, to develop a prosthetic hand that do not require complex circuitry 

to grasp an object. A hand that has a camera embedded in the palm of the Hand and capable 

of determining the most suitable grasping pattern for griping an object. A hand that requires 

minimum human input. 

The objective include 

 Single object Recognition using stereo vision 

 Determination of Suitable Grasping Pattern in order to hold the object. 

Our Research work has two parts; the first part of our research is 3D reconstruction of 

scene/ object from multiple input images taken from the camera. The second part of our 

research includes calculation of perimeter of detected object in world co-ordinates from 3D 

reconstruction and execution of best grasping pattern for the griping the detected object. 

Chapter 06 demonstrates results of object 3D reconstruction and best grasping patterns for the 

detected object.  

1.6. Thesis Overview 

Chapter 2 – Advanced Myo Electric Commercial & Vision Based Research Prototype Hands  

The chapter will give a brief overview of the background of the advanced myo electric grippers 

available in the market and Research prototype hands that have digital vision system embedded 

in the palm of the hand. 

Chapter 3 – Methodology 

The modules of our system i.e. image acquisition, basic image processing operation, noise 

reduction, camera calibration techniques , step of camera calibration, feature extraction 

methods, feature matching techniques, image matching, rejection of outliers, object 

recognition, and object reconstruction are discussed in detail in this chapter. 

Chapter 4 – Object Identification and Execution of Best Gripping Features 

In this chapter calculation of perimeters of the object, Human Hand Anthropometry and 

execution of best gripping features for the detected object is in detail.. 

Chapter 5 – 3D Model Based Validation 



7 

 

. In this chapter we will discuss how to create a 3D model, creating a dialog box to rotate 3D 

object at any angle and capture images at different angles, 3D object reconstruction and 

execution of best gripping feature for detected object in detail. 

Chapter 6 - Experimental Results and Comparison with Actual Perimeters of the object 

In this chapter experimental results of different objects are shown, comparison of experimental 

results along with the software calculated results are compared and execution of best gripping 

pattern are shown in the chapter 

Chapter 7 – Conclusion & Future Work 

The research will be concluded with theses chapters followed with the future recommendations 
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Chapter 2: Advanced Myo Electric Commercial & Vision Based Upper 

Limb Prosthetic Hands 

2.1 Advanced Myo Electric Commercial Hands 

2.1.1 Bebionics Myo Electric Prosthetic Hand 

The Bebionic Myoelectric Prosthetic hand is one of the most developed prostheses that 

have intelligence in it. The hand itself has two different sizes. The medium size is based off of 

the size of an average adult male’s hand while the large is just slightly bigger. This system has 

independent motors for each finger which allows for each finger to have its own unique 

configuration to the others. This allows for a large amount of varying grip types since each 

finger is able to move on its own. Two of these grips include power grip and a static hook grip. 

The time it takes to go from an open hand to power grip is 0.5 seconds and the maximum grip 

force that can be applied on an object is 140.1 Newton’s. The power grip can be used to throw 

a ball, eat a piece of fruit or grip other spherical objects. The maximum static load that the hook  

grip is able to hold for the whole hand is 45 kg while an individual finger in hook grip can hold 

up to 25 kg. The hook grip can be used to carry something like a grocery bag or even grasp a 

door handle. Currently in order to change the thumb from an opposed position to a non-opposed 

position, the user must manually move it. Though to move from grip to grip, electrodes are 

used to allow the user to use their muscles to control the opening and closing of the fingers. 

The manner at which they apply these signals (short bursts, quick rising stimulus, slow falling 

stimulus) determines what grip is chosen. In addition to having separate finger control, there 

are three different wrist attachments available for the bebionic3 myoelectric prosthetic which 

can be seen in figure  

 

Figure 2.1.1.1: Bebionic Wrist Options (small, medium and Large) [23] 
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The electric quick disconnect wrist (left) allows the wearer to quickly rotate and remove the 

hand to interchange with other terminal devices. This particular wrist only allows for a rotation 

using powered wrist rotators. The multi-flex wrist (right) allows the wearer movement in all 

directions giving it 3 degrees-of-freedom in all rotational directions and in addition to control 

or the roll, pitch and yaw of the wrist, the wrist can lock in 30 degree flexion, 30 degree 

extension or a neutral position. This allows the user to be able to perform daily tasks while not 

having to worry about the hand slipping or rotating in any direction. This more sophisticated 

version of the EQD wrist also still has the ability to be interchanged with other terminal devices. 

The final wrist type that the user has the ability to choose from is the short wrist (middle). This 

offers a reduced build height to accommodate for those amputees with amputations closer to 

the wrist and would not otherwise be able to support either other wrists naturally without 

leaving that particular arm long. This wrist choice only allows for rotation around the arm 

though not the other two degrees of freedom allowed from the multi-flex wrist.  

This sophisticated prosthetic even allows users to decide whether they want a glove to give a 

natural look and feel made of silicone. This silicone is made using multiple layers similar to 

human skin. 

2.1.2 i-Limb ultra 

The i-Limb made by Touch Bionics is another example of an anthropomorphic myoelectric 

prosthetic device for hand amputees. Though it is very similar to the bebionic3, each finger is 

individually powered. The thumb must be manually rotated in order to achieve various grips. 

One key feature of the i-Limb is its proportional control. Like the bebionic3, this i-Limb is 

electrode controlled. The stronger the input signal that the electrode receives, the faster the 

fingers will move. This gives the user complete control over the speed at which the fingers both 

close and open their grip. In addition to this, if the user pulses the input, the group can increase 

the amount of force it has on the object though there is no real feedback that the user gets 

indicated how much force it is actually applying. The i-Limb is made of an aluminum chassis 

for increased durability and long life span. There are two available sizes, one corresponding to 

the average size of an adult male’s hand, and one corresponding to the average size of an adult 

female’s hand. One useful feature is that after long periods of inactivity, the hand will 

automatically move from whatever grip configure it may have been in to a natural position.  

One key feature that truly sets the i-Limb apart from the bebionic3 is the ability to customize 

the configurations of the hand. Using the my “i-Limb” app that can be downloaded to any 

phone or computer for free, the user has the ability to not only customize the types of grips 
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most frequently used, but even customize specific gestures that are commonly used. This app 

can also control the performance output of the hand, the different grips in use at that moment, 

all the way down to the exact position of each individual finger. Two pictures from the mobile 

app of picking a grip as well as changing the finger position can be seen in figure  

 

Figure 2.1.2.1: i-Limb Mobile App for interfacing [23] 

 

In addition to these features, the i-Limb also has multiple available coverings. These coverings 

are to ensure that the user can use their device while handling dust as well as water and neither 

will affect the internal circuitry. Two popular non-human like coverings that the i-Limb have 

are the active skin and the active TS. These are made of semi-transparent, clear or black 

materials that are computer modelled to fit perfectly on the device. The difference between the 

two is that the TS version includes a conductive tip on the index finger making it compatible 

for touch screens on smartphones or tablets. 

2.2 Vision Based Upper Limb Prosthetic Hands 

2.2.1 The IRIS hand (2014) 

Mounting a camera in the robotic/prosthetic hand is not a novel idea [17]. The IRIS hand 

that was developed in 2014 by WPI smart robotics lab (US) has a camera embedded in the palm 

of the hand as shown in figure. 
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            (a)                    (b) 

Figure 2.2.1.1: (a) shows the 3D print model (b) shows the CAD model of IRIS hand [17] 

The object recognition of IRIS hand includes three steps Edge matching, Hough Transformation 

and SURF detection. Most essential edges from the input image are detected by edge matching 

object detection technique. Hough line transformation is performed on the image that generates 

a set of vectors that defines the edges and lines of the object [17].  

SURF (Speeded Up Robust Features) Detection, works to detect similarities between two 

images by identifying unique features. Reference images are supplied, and the unique features 

are extracted. These features are then searched in the test image independent of the poses of the 

features in the image. The invariance of pose and scaling creates a very exceptional use of this 

technique, which allows the reference image to be identified in the test image along with its 

location in 2 dimensions, its potential distance from the camera, and its rotation and angle 

relative to the frame of the image.  

Features are identified in the reference images by performing a series of Gaussian functions and 

detecting the differences following each subsequent Gaussian transformation. Areas that contain 

little to no change in appearance following each transformation are not considered as features 

in the reference image. Areas that demonstrate considerable contrast are blurred again in order 

to further determine the likelihood of features being present. These features, once identified in 

the original reference image, are searched for in the test image. Hough transformations are used 

(in a manner described similarly before) to determine potential clusters of features. Clusters of 

a specific feature with higher probabilities (determined by their location relative to other clusters 

of specific features) are granted a higher weight and likelihood of being present. The greatest 
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set of clusters, with a higher probability relative to each other cluster, is used to identify the 

object’s presence and orientation in the image. Additionally, if the reference is image is scaled 

to a known size, the size of that reference image in the test image can be used to determine its 

distance from the camera.  

From this method and the use of reference images, SURF detection can be used to identify 

known objects or images within other scenes. When compared to SIFT detection, SURF is much 

more robust and quick. This is largely due to the use of reference images to reduce computation 

time and increase the understanding of desired features. This method is useful for identifying 

complex flat images with great accuracy. However, it is not capable of understanding the 3D 

shape of objects given its 2D reference images. The object can only be identified given the 

specific angle and positioning in the reference image. For example, it can only understand a 

single perspective of a cube and has no understanding of what is on the other side of a cube. As 

such, without another reference image to fully describe the other side of the cube, it would not 

be able to properly identify it. In essence, this algorithm is heavily dependent on the presence 

of comprehensive reference images [17]. 

2.2.2 IRIS Hand Electrical Architecture  

The IRIS hand electrical architecture involved a number of different pieces of hardware to achieve 

Communication between the different hardware, finger actuation, and object recognition.  

2.2.2.1 Communication  

At the highest level of the electrical system, the team used an Arduino Pro Micro board to 

communicate between the various components, and act as the brain of the system.[17] 

This board was responsible for sending signals that would actuate the motors, read in motor 

positions for positional control and force control, and interpret data from the object detection 

system. The Pro Micro communicated directly with a 16 channel Analog Multiplexer (MUX) which 

was capable of reading and writing to 16 analog inputs or outputs using only 5 pins from the 

Arduino.  

Similar to the MUX, a 16 channel PWM driver was used to send out a total of 16 Pulse-Width 

Modulated (PWM) signals to the motor drivers which can then use those signals to drive the motors. 

The PWM driver allowed for these 16 signals to be sent simultaneously using only two pins on the 

Pro Micro that setup an I2C communication using features of the Arduino IDE.  
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2.2.2.2 Finger Actuation  

Utilizing both the MUX and the PWM driver, the finger actuation was achieved. As mentioned the 

PWM driver was able to send out a total of 16 PWM signals. The dual motor driver was connected 

to four of the PWM Driver pins. In order to drive a single motor two of the pins needed to be 

connected to the motor inputs for one motor on the dual motor driver allowing for speed and 

directional control of that motor. 

 

The motors driven by the dual motor driver were the Pololu Micro-gear motors with a 1000:1 gear-

ratio, allowing for high torque output from compact motors. These motors drove the series-elastic-

actuated system by rotating the pulleys to actuate the four-bar linkages driving the fingers.  

Though communication with the motor driver through the PWM driver allowed for both the speed 

and directional control of an individual motor, the scope of the project required control of the 

position of the motor. To achieve this the team used rotary potentiometers which would vary their 

resistance based off of the angle that their shaft was rotated.  

These potentiometers were used in the series elastic actuation system to determine the position of 

the motor shaft and the spool connected to the finger allowing for calculations of the force on the 

fingers to be made based off of the offset between the two potentiometers.  

 

2.2.3 Limitations of IRIS Hand 

The limitations for of IRIS hand are that; 

 Edge matching technique is requires a comprehensive set of reference images that 

compare with the image from a camera. So, IRIS hand requires a lot of memory to save 

these reference images.  

 Best Gripping feature is decided on the base of number of detected lines. If detected 

lines are more than 10 lines then the object is unidentified. If detected lines are less than 

10 lines and more than 75% of lines are parallel or there are 3 or more parallel line 

groups then the object is cube.  

 If there are 2 lines parallel group and have the same length then object is cube, if not, 

then the object is cylinder.  
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 If less than 75% of lines are parallel with another line than perform Hough circle 

transformation, if image contains more than one circle then the object is a sphere. If not, 

the object is unidentified.  

 SURF detection is used to perform for determining the rotation and translation of the 

object from the camera.  

 IRIS hand is not capable of identifying complex shape identifying cube, cylindrical and 

spherical shapes. Another disadvantage of this system that it only executes tripod grip 

for each detected cube and power grip for each sphere.  

 Another disadvantage is that it only detect green color object.  

Different grasping features of IRIS hand are shown in figure given below; 

 
Figure 2.2.3.1: Different Grasps of IRIS Hand [17] 

2.2.4 Vision-based Intelligent Prosthetic Robotic Arm (2015) 

Prosthetic devices have been developed for many decades to assist and compensate 

people who have lost their limbs to accidents or pre-existing disabilities. Many prostheses have 

tackled problems on how to achieve similar if not parallel capabilities to those of human limbs. 

With increasing complexity and functionality of modern prostheses, control architectures have 

evolved to make operation of the device more intuitive and convenient for amputees in their 

daily routines. Examples of these control architectures include passive motion of the body and 

electrical signals sent to muscles. [23] 

The previous iteration of this project, the IRIS Hand, involved the development of a smart 

robotic prosthetic device that utilized object recognition with a camera embedded within the 

device to identify objects and autonomously determine grasps prior to manipulating those 
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objects. As a continuation of this technology, this project involves the realization of a prototype 

trans-radial prosthesis. This includes the redesign of the actuation system in the finger and the 

mechanical design for wrist’s motion. 

 

Figure 2.2.4.1: Vision Based Intelligent Prosthetic Robotic Arm [23]

 

Figure 2.2.4.2: Hand Case Design [23] 

2.2.4.1 System Overview 

Based on our previous research, it was decided the functionality of VIPeR Arm. Using 

the IRIS hand as a base design, a trans-radial prosthesis with six degrees-of-freedom in the 

palm and two degrees-of-freedom in the wrist was developed. The actuation of each finger was 

driven by a bevel gear system. One degree-of-freedom in the wrist used a belt and pulley while 

the other degree-of-freedom was actuated by a directly driven motor. We were able to measure 

the force exerted by each finger using the current spike from the motors. To achieve 

autonomous grip selection, a camera system located in the palm was used to detect AR markers 

corresponding to different objects.[23] 
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2.2.4.2 Analysis of IRIS Hand System  

The Iris Hand electrical system components all were logical choices for the desired 

task. One issue the team had with their motor drivers was that they would burn out when the 

motors stalled. Upon further investigation we learned that the stall current of the 1000:1 pololu 

micro motors was 1.6 amps which is greater than the free run current of their motor driver 

which was 1.2 amps with a peak of 1.5 amps. We theorized this discrepancy was the main 

reason for their motor drivers burning out. We also saw that the old camera used in the arm 

was no longer functional. Majority of the components in the electrical system were all still fully 

functional, so with the change of the motor driver, addition of some form of current sensing, 

replacement of the old camera, and the addition of a higher torque motor for the wrist roll 

rotation, we were able to create the electrical architecture for the VIPeR Arm.[23] 

 

2.2.4.3 Electrical Architecture  

One of the major focuses of the project was to develop an electrical architecture that allowed 

for force sensing based on the electrical current in the motors when torque was applied. In order 

to determine how to best incorporate this in our system, we started by analyzing the electrical 

components used in the project last year to see which components could be recycled for our 

system. [23] 

2.2.4.4 VIPeR Arm electrical Architecture  

Due to all of the electronics in our, system, the circuit requiring all of them to communicate 

involves multiple connections. The diagram below shows the number of connections involved 

in the circuit excluding power and ground which are connected to an external power supply 

that runs the system. 
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Figure 2.2.4.4.1: Electrical Architecture of VIPeR Arm [23] 

Each component integrates into our electrical system to create our control loop that actuates 

the fingers based off of the AR tag recognized the camera. The system diagram below shows 

the full functionality of the system driven by the Arduino main processor. 



18 

 

 

Figure 2.2.4.4.2: Flow Diagram of VIPeR Arm [23] 

2.2.4.5 Object Recognition Components  

Due to the large amount of time it takes to process data from a camera, the team last year 

decided to incorporate the use of a second device to process the camera data, and then send it 

to the main processor. The PcDuino was an ideal choice because, it was a mini computer able 

to Run Linux allowing for the PcDuino to download the necessary software to communicate 

with the computer and run edge detection algorithms for object recognition. The PcDuino 

communicated with the Pro Micro using serial communication pins on both boards.  
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The last component in the object recognition system was the camera which sent data over to 

the PcDuino to be interpreted. The camera was stripped down to allow for it to fit within the 

palm. 

 

 

Figure 2.2.4.5.1: Digital Vision Module of VIPeR Arm [23] 

2.2.4.6 Limitations of VIPeR Arm 

• This system requires too much memory for storing reference images 

• We cannot predict the 3D model of the object. 

• We can execute the appropriate grip for grasping the object 

• All objects are required to use an AR tag, meaning that heavy environmental 

modifications will have to be made for prosthetic users to utilize the system as 

efficiently as a user with a healthy hand would. 

• It has a camera in the middle of the hand  so this system cannot work when grip is 

closed 

• This system cannot detect the objects of all colors. 

2.2.5 Robotic Grasping of Novel Objects 

Modern-day robots can be carefully hand-programmed or “scripted” to carry out many 

complex manipulation tasks, ranging from using tools to assemble complex machinery, to 

balancing a spinning top on the edge of a sword [Shin-ichi and Satoshi, 2000]. However, 

autonomously grasping a previously unknown object still remains a challenging problem [24] 
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Figure 2.2.5.1: Robotic Grasping of Novel Objects [24] 

2.2.5.1 Learning the Grasping Point 

We consider the general case of grasping objects—even ones not seen before—in 3-d 

cluttered environments such as in a home or office. To address this task, we will use an image 

of the object to identify a location at which to grasp it. Because even very different objects can 

have similar subparts, there are certain visual features that indicate good grasps, and that remain 

consistent across many different objects. 

For example, jugs, cups, and coffee mugs all have handles; and pens, white-board markers, 

toothbrushes, screwdrivers, etc. are all long objects that can be grasped roughly at their mid-

point.We propose a learning approach that uses visual features to predict good grasping points 

across a large range of objects. 

In our approach, we will first predict the 2-d location of the grasp in each image; more formally, 

we will try to identify the projection of a good grasping point onto the image plane. Then, given 

two (or more) images of an object taken from different camera positions, we will predict the 3-

d position of a grasping point. If each of these points can be perfectly identified in each image, 

then we can easily “triangulate” from these images to obtain the 3-d grasping point. (See 

Figure.) In practice it is difficult to identify the projection of a grasping point into the image 

plane (and, if there are multiple grasping points, then the correspondence problem—i.e., 

deciding which grasping point in one image corresponds to which point in another image—

must also be solved). This problem is further exacerbated by imperfect calibration between the 
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camera and the robot arm, and by uncertainty in the camera position if the camera was mounted 

on the arm itself. 

 

Figure 2.2.5.1.1: Intersection of Rays from images at Grasping point [24] 

To address all of these issues, we develop a probabilistic model over possible grasping points, 

and apply it to infer a good position at which to grasp an object 

2.2.5.2 Grasping Point 

For most objects, there is typically a small region that a human (using a two-fingered 

pinch grasp) would choose to grasp it; with some abuse of terminology, we will informally 

refer to this region as the “grasping point,” and our training set will contain labeled examples 

of this region. Examples of grasping points include the center region of the neck for a martini 

glass, the center region of the handle for a coffee mug, etc. (See Figure.) 
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Figure 2.2.5.2.1: The red points in each image show the locations most likely to be a grasping point [24] 

2.2.5.3 Results of Novel Objects 

Objects Error Success Rate 

Stapler 1.9 90% 

Duct Tape 1.8 100% 

Keys 1.0 100% 

Marker 1.1 100% 

Tooth Brush 1.1 100% 

Jug 1.7 75% 

Coiled Wire 1.4 100% 

Table 2.2.5.3.1: Illustrating the success rate of ‘Robotic Grasping of Novel Objects’ [24] 

 

2.2.5.4 Limitations  

 It can create the 3D model of the detected object but the problem is that it always tries to 

find out the region that has smallest area and execute pinch grip to grasp the object. 

 Another disadvantage is that it cannot execute other grasping features as humans do. 

 It can grasp heavy objects 

So to overcome these issues discuss in literature review we proposed a research idea to 

develop a prosthetic hand that has a digital vision system embedded in the palm of the hand 

at thenar muscle, that requires minimum human input, capable of determining the most 
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suitable gripping pattern for gripping the object, that can execute different grasping features 

as humans do, that has low processing time.  

 

 

2.2.6 PR2 Robot 

The PR2, a research robot built and developed by Willow Garage, commonly uses a Tabletop 

Object Recognition package that employs model database analysis. The PR2 is equipped with a 

Microsoft Kinect sensor, which houses an RGB camera, a depth sensor, and an infrared 

projector. Using this device, the PR2 can acquire a 3D image of the world before it. The Tabletop 

Object Recognition package is used primarily for identifying objects on a flat tabletop-like 

surface. Objects that protrude from this surface are isolated from the table surface. These objects 

are one-by-one compared to objects in the 3D model database using eigenvectors to determine 

position and orientation of the object. Objects with a high similarity to known 3D models are 

compared until a certain similarity threshold is passed. Once this happens, the object is identified 

as the same 3D model it with which it was matched. [25] 

However, this method does not work well with objects of an irregular shape or objects that do 

not match the known database.  

This method can be a rather effective solution to the object detection. Its effectiveness is 

limited by the number and variety of object models stored in the database, the thresholds used 

to compare objects meshes, the sensing capabilities of the 3D camera hardware and software, 

and the processing power of the device that drives it. Also, it can only operate in specific 

environments that allow for better segmentation of potentially identifiable objects. Additionally, 

3D cameras are often computationally expensive to operate at a useful frame rate, requiring a 

computer with more significant processing power. However, within it’s ideal environment and 

given the proper harder, with objects that do exist in its database, this system can reliably 

identify the object as well as determine its position and orientation relative to the camera 
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Figure 2.2.6.1: PR2 Robotic Hand [25] 
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Chapter 3: Methodology 

3.1 Overview 

In this section, algorithm and methodology of our system is discussed. The modules of our 

system i.e. image acquisition, basic image processing operation, noise reduction, camera 

calibration techniques , step of camera calibration, feature extraction methods, feature 

matching techniques, image matching, rejection of outliers, object recognition, and object 

reconstruction are discussed in detail in this chapter. 

3.2 Flow Diagram of Our System 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.1: Flow Diagram of our Research. 
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3.3 Modules 

There are two modules of our system shown in figure below 

 

.  

 

 

 

 

Figure 3.2.1: Modules of our Research 

 

3.4 Image Acquisition and Noise Reduction 

As Digital Image device (Camera) is embedded in the palm of a Prosthetic Hand that 

acquires multiple views of an object by using image acquisition toolbox built in MATLAB 

Software. 

 All input image are RGB images so for basic image processing first we convert all the RGB 

images into Gray scale images and then gray scale image to binary image. After converting all 

images into binary images we find number of connected regions in all the images. By applying 

thresh holding function we discard all those regions that have less than 1000 pixels as shown 

in figure given below. 

 

 

 

 

 

 

 

Figure 3.3.1: RGB input image taken from image Acquisition Tool Box 
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Figure 3.3.2: Conversion of RGB image to Binary Image 

 

 

 

 

 

Figure 3.3.3: Binary Image After Discarding unwanted  

 

3.5 The model of imaging geometry 

Consider an orthogonal inertial reference frame {0;X;Y;Z}, called the world frame. Co-

ordinates of a point p in the image the world frame can b written as [21] 

  3,, RzyxXw www 

 

Where Xw is the world frame 

In order to write the coordinates of the same point with respect to camera frame c the coordinates 

in the world frame and those in the camera frame are related by: 

 XcGXw w

c

 

Where 
w

cG
 is called the transformation matrix and it can be described as  

],[ w

c

w

c

w

c TRG 
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Where 
w

cR
is called the rotation matrix and 

w

cT
 is called translation intrinsic parameters 

In order to find intrinsic parameters of camera we specified x and y in terms of metric units and 

xs, ys coordinates of scaled version that correspond to the index of a particular pixel, then the 

xs

xG
can be described by a scaling matrix. Where 

xs

xG
called transformation matrix from x is 

coordinates to xs coordinates  



























y

x

sy

sx

y

x

s

s 0

0
 

  

Now, projection model is combined with scaling matrix and translation matrix we get a 

transformation matrix. That transformation matrix transforms homogenous coordinates of 3D 

point with respect to camera frame.  Homogeneous coordinates of its image expressed in terms 

of pixels can be written as: 
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Where, 

 f is called the focal length of camera, fsx is called size of the focal length in horizontal pixels,  

fsy is called size of the focal length in vertical pixels,  [xim; yim]T  are called the image 

coordinates [21]. The intrinsic Matrix of camera is  

𝒇 =  [
𝟔𝟖𝟒. 𝟒 𝟎 𝟑𝟏𝟕

𝟎 𝟔𝟖𝟓. 𝟖 𝟐𝟒𝟔
𝟏 𝟎 𝟏

] 

3.6 Camera Calibration 

From the above discussion it shows that the geometry of the camera that depends upon 

number of factors such as focal length, position of principle point and intrinsic parameters of 

the camera. In case the internal parameters of the camera are available, given two views of the 
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scene and number of corresponding points in both views, the Euclidean structure of the scene 

as well as displacements between the views can be recovered. This chapter will again strive for 

the recovery of the Euclidean structure of the world and camera pose in the absence of 

knowledge of internal parameters of the camera.[21] 

The natural starting point is the development of techniques for estimating the internal parameters 

of the camera and reducing the problem to the one described in the previous chapter. Hence we 

first review the most common technique for camera calibration, by using a known object (a so-

called calibration rig"). Since this technique requires a calibration object it is suitable only for 

laboratory environments, where both the camera taking the images as well as the calibration 

object are available. The second class of techniques for estimating camera parameters does not 

have this requirement, and involves estimating intrinsic parameters as well as scene structure 

and camera pose directly from image measurements; hence, it is called camera self-calibration. 

As we will see, given the richness and the difficulty of the problem, there are several avenues 

to pursue. We first focus on the so-called intrinsic approach to the problem of self-calibration 

which leads to analysis, algorithms and sufficient and necessary conditions for the recovery of 

the all the unknowns based on intrinsic constraints only. For the cases when the conditions are 

not satisfied we will characterize the associated ambiguities and suggest practical ways to 

resolve them. If we could measure metric coordinates of points on the image plane (as opposed 

to pixel coordinates).  

⋌ 𝑥 = 𝑃𝑔𝑋 

Where P = [I,0] and g is the pose of the camera in the world reference frame. In practice, 

however, calibration parameters are not known ahead of time and, therefore, a more realistic 

model of the geometry of the image formation process takes the form 

⋌ 𝑥′ = 𝐴𝑃𝑔𝑋 

where A is the camera calibration matrix that collects the unknown parameters. 

𝐴 = [
𝑓𝑠𝑥 𝑓𝑠𝜃 𝑜𝑥

0 𝑓𝑠𝑦 𝑜𝑦
0 0 1

] 

When we don’t have any knowledge of internal parameters of camera, Camera calibration is 

used for the recovery of world structure and position of the camera.  
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The most common technique is calibration Rig so we used calibration Rig technique in our 

research. 

3.6.1  Camera Calibration with Rig 

For this type of technique camera calibration is done by using checker board patterns fixed on 

one or more planes. For calibration we used camera calibration application built in MATLAB 

R2014b software. By using this camera calibration application we convert the pixel information 

into the world structure and also find out the camera position and orientation as shown in figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.6.1.1: Steps of camera calibration with Rig 
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3.6.2 Results of Camera Calibration  

For camera calibration the checker board we used is shown in figure below and size of one 

side of each checker board square is =23mm 

 

 

 

 

 

 

Figure 3.6.2.1: Steps 01: Detection of Checker board square 

 

Chapter 4: Under Actuated Drive Mechanism 

. 

 

 

Figure 3.6.2.2: Steps 02: Generation of World points 

 

 

 

 

 

 

Figure 3.6.2.3: Step 03: Extrinsic Perimeter Visualization   
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3.7 Object Recognition Methods 

Object recognition is an application of computer vision. Video recorded from a camera is parsed 

through a recognition algorithm to generate useful data, generally lines, geometry or points 

associated with objects within the camera’s view. Recognition can be divided into two major 

categories: specific and generic. The generic method utilizes categorical traits of a type of item, 

and compares the image read against these categories to determine the type of object being 

viewed. The specific category, however, attempts to categorize an object as a specific item, such 

as a particular person’s face or a particular structure; the bounds of the recognition are more 

strictly defined to determine the likelihood of the object being identified (Grauman, 2011).  

For our robotic prosthesis, object recognition will be used to identify objects and determine 

appropriate grasps to lift or grasp the items that the arm is expected to interact with. To do this, 

further research would need to be done into the various recognition algorithms to determine the 

most appropriate direction. [23] 

There are two major methods of object recognition:  

 Appearance Based Object Recognition Method 

 Feature Based Object Recognition Method. 

3.7.1 Appearance-based Recognition  

Appearance-based object recognition is the utilization of example images, which are used to 

compare against the live data set pulled from the camera input to determine likelihood of 

identification.  

3.7.1.1 Direct Correlation Method  

The direct correlation, or template matching, method is a comparison algorithm that utilizes 

stored images and compares the captured image data to that particular image. This data in some 

instances can be converted to a vector and directly compared to a vector generated from the 

templates (Heseltine, 2013). Through this, image similarity can be obtained and if the threshold 

of the algorithm for the difference in the two image vectors is not surpassed, the object is 

identified.  
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Some of the more primary concerns of the algorithm are variances due to lighting, orientation 

of the object, or distortion due to viewpoint or illumination. This can be accounted for through 

the use of multiple template images to correlate to different instances, or through applying a 

Gaussian blur to the template image to allow for a more coarse comparison (Berg, 2005).  

3.7.1.2 Edge Detection  

Edge detection is used to determine edges within a captured image of an object. These edges 

can be used in software to simplify a digital image grabbed from a camera or file system down 

to a collection of pixels representing edges, to put through additional filters. One of the more 

commonly used edge detection methods is the Canny Edge detection algorithm (Karla, 2009). 

The focus of the Canny edge detection is to maximize the detection of real edge points and 

lowering the probability of detecting non-edge points (false positives), and only detecting one 

edge per real edge in the image (Karla, 2009).  

The approach to a Canny edge detection algorithm is as follows:  

1. Initial conversion of the image to grayscale. Histogram-stretching to utilize full gray-

scale range (this step may not be completely necessary depending on the tuning of the 

constants in your algorithm).  

2. Application of a Gaussian filter, or blur, in order to reduce potential noise from the 

system.  

3. Calculation of the gradients of the image. This is done through the use of the Sobel-

operator, which performs a 2-D spatial gradient measurement (Karla, 2009). This can 

be used to determine direction of changes in the gradient.  

4. Non-maximum suppression. All local maxima within the gradient image are preserved, 

while removing other values. The thick approximate lines generated from the gradient 

calculation are thinned to finer edge approximations.  

5. Double thresh holding. Two thresholds are used to mark strong, weak, and negligible 

edges. Only strong and weak edges are preserved, while negligible edges are deleted.  

6. Edge tracking by hysteresis. Only weak edges connected to strong edges are preserved, 

while isolated weak edges are removed from the model.  

From this, the image has been refined and isolated to only a collection of edges, which can be 

used by the device for further analysis. Canny edge detection is often used in conjunction with 

other imaging software to simplify input images for comparison to templates with reductions 
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in effects from illumination or noise. This edge detection model is useful due to the use of two 

thresholds to determine important lines, which allows for more refined parsing of the image.  

3.7.2    Feature-based Recognition  

Feature based object recognition is the extraction of features from the contours and data of an 

image. These features are comprised of lines, arcs and lobes, which can be refined further and 

combined to make larger features (Howarth, 2009). From this reduction an input image can be 

reduced to a series of shapes or features, which can be used to determine the geometry of an 

object. These can generally be used in conjunction with appearance based recognition methods 

and a database of images and templates to determine the most likely object held within the 

image.  

3.7.2.1 SIFT Detection  

Scale-Invariant Feature Transformation, or SIFT, is a descriptor that is calculates points of 

interest within an image, utilizing directions of local gradients. At each of these points of 

interest, image descriptors are calculated, which are normalized to be scale-invariant and 

rotation-invariant. These points of interest are then used to compare and match to points of 

interest generated within other images.  

From here, local image descriptors between two images can be matched to perform object 

recognition using existing templates; these matches can be visualized as a line between each 

match, which takes into account changes in scale or orientation of the item within the image. 

An example of two images being compared. There are a few methods for determining point 

matches within two images, such as the application of a Best-Bin-First (BFF) algorithm to scale 

for larger numbers of image descriptors (Lindeberg, 2012). 

3.7.3 Fiducial Markers  

Fiducial are small markers that are used in both human sight applications and computer vision 

systems to obtain data of an object or environment (Fiala, 2004). For computer vision, a code 

base utilizing a computer vision library such as OpenCV can read in the image and parse for 

the desired information. Fiducial markers are used in several industries, such as for industrial 

use, commercial use and other position tracking systems. An example of some types of marker 

patterns can be seen in figure 
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Figure 3.7.3.1: Several Types of Planar Pattern Marker Systems (Fiala, 2004) 

 

Using custom fiducial patterns, it is possible to store information that can be queued or utilized 

by a fiducial. One such application of this feature is augmented reality. Through processing of 

the image for the fiducial, orientation and position of the fiducial with respect to the camera 

can be determined (Fiala, 2004).  

The ARTag system is an example of a fiducial marker system utilized for generation of 

augmented reality (Fiala, 2004). This system utilizes a 36-bit code through use of a 6-by-6 grid 

within a bounding area. The values of the grid can be parsed and read in as a 32-bit value. The 

ARTag is first parsed using a form of object recognition, where after a quad is generated 

denoting the position and orientation of the identified fiducial (Fiala, 2004). From this, the 

value of the tag is stored at that location in the camera. A main application of this software is 

3D model localization for augmented reality software. However, this could be applied to a 

prosthesis or robotic arm to determine the position and orientation of an object stored in the 

system.  

ARToolkit is another fiducial-based marker system, utilizing a more varied set of input 

markers, such as symbols, letters and more abstract fiducial patterns.  

The advantage of this system is that many assumptions about the object that we are visualizing 

can be made based off of the orientation and position of the fiducial tag with respect to the 

camera. This means that computer generated graphics could be rendered in real time overlayed 

in a recorded environment. This could also be used to approximate the position of an object 

given that the robotic system reading the tag can pull the associated object from a database. 

One potential issue with the markers in this use case is that, while accurate in finding the tags, 

there are still many assumptions being made on the system; it is assuming that the object always 
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has a consistent geometry and does not deform. Though a safe assumption depending on the 

object being identified, this would limit the mechanism’s capabilities of what types of object it 

could handle. If used in conjunction with more appearance-based, or feature-based, recognition 

systems, non-standard objects could be accounted for. However, that would require testing of 

the system to understand the feasibility. 

3.7.4 SURF Feature Extraction  

After image acquisition and performing basic image process the next task is to extract SURF 

features from the input images. 

Speeded Up Robust Features (SURF) is a local feature detector and descriptor which is 

partially motivated from the Scale-Invariant Transform (SIFT) that can be used for recognition 

of the object, classification, finding correspondence points between multiple images of same 

scene or objects and object reconstruction [17]. 

3.7.4.1 Steps of SURF Feature Extraction and matching  

Following are the steps for extracting SURF (speeded Up Robust Features) and 

feature matching shown in figure below. 

 

Figure 3.7.4.1.1: Steps for SURF Feature Extraction and Matching 

 

 

Selection of 
Interest Point

Feature vector 

Feature Matching  
by using KNN 

algorithm       
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There are three steps for finding image correspondence points. The first step is selection of at 

`interest points' at different locations in the image, such as corners, blobs, and T-junctions. The 

repeatability of interest point detector is valuable because it tells us the reliability of a detector 

for finding the same physical interest points under different viewing conditions.  

The second step is to represent a feature vector of every nearby interest points. This 

descriptor has to be distinctive and at the same time robust to noise, detection displacements and 

geometric and photometric deformations. For this we use very basic Hessian based 

approximation.  Finally step is the matching between the descriptor vectors of different images. 

3.7.4.2 Results of SURF Feature Extraction and matching  

 

 

 

 

 

 

Figure 3.7.4.1.2: Step 01: Selection of 600 SURF Feature Points 

 

 

 

 

 

 

 

Figure 3.7.4.2.2: Step 03: Feature Matching by using KNN Algorithm  
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When features have been extracted from all n images, they should be matched. Since different 

images may view the same point in the world, by utilizing the k-d tree algorithm each feature is 

matched to k nearest neighbors. (For our case we select k = 4) [2] 

 

3.7.5 Comparison of SIFT & SURF Features. 

 The efficiency and accuracy of the matching algorithm was compiled into two bar graphs 

depicting the successful match percentage for each algorithm, and number of correct pattern 

extractions in the database, respectively. Figure depicts the first graph that depicts the 

efficiency of each algorithm, which was measured by the number of correct matches of the 

Harbor Seal over the number of matching attempts. [25] 

 
Figure 3.7.5.1: Efficiency of SIFT and SURF for Feature Matching 

The x-axis represents the Algorithm, while the y-axis depicts the successful match percentage. 

The SIFT algorithm was the most successful algorithm in terms of efficiency in matching the 

database, with a match rate of 82%. SURF matched at an approximately 78.4% matching rate 

when compared with the same database as SIFT. Moreover, the ORB algorithm came in last 

with a successful matching rate of only about 54.4% under the same database SIFT and SURF 

used. Moreover, the I3s Software that was tested only matched with a rate of 38.8% when 

compared with the same database. The hypothesis is affirmed based on the results of this graph. 
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Figure 3.7.5.2: Accuracy of SIFT and SURF for Feature Extraction [26] 

For the Accuracy of the Pattern Extraction Algorithm, which was measured by the 

number of mismarked points within each perspective group, the x-axis was the Seal-

identification within each image set, and the y-axis is the number of correct pattern extractions. 

Likewise, the SIFT algorithm had the most amount of correct pattern extractions in each 

perspective, as it nearly outscored the other two formulas in every identification group. SURF 

and ORB follow the same general trend, with SURF ranking second in most of the 

identification groups, and ORB ranking last in every identification group in terms of the 

number of pattern extractions in each Seal ID. The hypothesis is supported that the SIFT 

operator is the more efficient software with SURF and ORB coming in second and third, 

respectively. 

Biometric Analysis FAR (False Acceptance Rate) and FRR (False Rejection Rate) were then 

tested to see which program was efficient and significant in a field study. FAR is the number 

of false acceptances over the number of comparison attempts, and FRR is the number of false 

rejections over the number of comparison attempts. Based on David Lowe's paper, the value to 

be deemed significant and efficient was less than .05, or 5%. In both FAR and FRR, only the 

SIFT Developed program was deemed efficient and significant, with values less than .05 for 

both FAR and FRR.  

As the SIFT has high accuracy of extracting the features as compared to SURF Features but 

the efficiency of SIFT and SURF algorithms for matching is almost same. SURF has another 
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advantage in that it take less computational power and processing time as compared to SIFT as 

shown in figure below [ref] 

 

Table 3.7.5.1: Processing Time of SIFT and SURF for Feature Matching [26] 

Its means that SIFT requires three times more processing time as compared to SURF, 

so, we choose SURF feature extraction method for our case. 

In MATLAB software we set a metric thresh hold = 600 which means we detect 600 

interest point in all the images. The reason for choosing 600 interest points are that the time 

taken by the processor is lowest at 600 interest points as shown in figure below. If we choose 

less than or greater than 600 interest points than the processor will require high computational 

power as well as the processing time.  

 

Figure 3.7.5.3: Graph between Selection of interest Points and processing time 
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The above graph shows clearly that the processing time at 400 Points and 600 points is low. At 

400 the processing time is about 2.24 seconds while at 600 we have processing time of 2.25 

seconds.  

 

Figure 3.7.5.4: Graph between Selection of interest Points and Accuracy of Correct matches 

As the graph clearly shows that accuracy at 600 is about 90% while accuracy at 400 is 

about 70%. So we select 600 interest points for feature extraction. 

As the processing time at 600 interest points is low and accuracy of correct matches at 

these points is high so we extract 600 feature points from all the input images. 

When features have been extracted from all n images, they should be matched. Since 

different images may view the same point in the world, by utilizing the k-d tree algorithm each 

feature is matched to k nearest neighbors. (For our case we select k = 4) [2].  

3.8 Rejection of Outliers Features 

In correct/ noisy matched features are removed by the rejecting the outlier features. It 

has been found that comparing the distance of potential match and best in correct match is 

effective strategy for rejecting outliers. So it is used to eliminate matches that correspond to 
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points that do not lie on an epipolar line. For this we set a epipolar threshold = 0.003 it means 

that any matched point that is has distance greater than thresh hold is not on the epipolar line, 

then it can be safely discarded as an outlier. Mathematically, 

 

𝐸𝑚𝑎𝑡𝑐ℎ

𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟
> 0.003    

Where 𝐸𝑚𝑎𝑡𝑐ℎ is, the distance of potential correct match and 𝐸𝑜𝑢𝑡𝑙𝑖𝑒𝑟 is the match distance 

as it is best matching outlier. 

3.9 Image Matching 

At this stage, our goal is to find all matching images that have common subset of 3D 

points that point will late become a 3D model. 

From the feature matching, we observed that large number of feature matching between 

all images. Since each image could potentially match every other one, this problem appears in 

number of images. However, we have found it necessary to match each image only to a small 

number of neighboring images in order to get good solutions for the camera positions. We 

consider four images that have greatest number of feature matches to the current image. There 

are 7 parameters for our camera. These parameters are as follows,  

 Rotation vector R  

o Rotation about x axis 

o Rotation about y axis 

o Rotation about z axis 

 Translation Vector  

o Translation about x axis  

o Translation about y axis 

o Translation about z axis 

 Calibration Matrix  

 

3.10 3D Reconstruction  

In the absence of a calibration grid, one view is clearly not sufficient to determine all 

the unknowns. Hence, we revisit here the intrinsic geometric relationship between two views 
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as shown in figure. In order to obtain the relationship between the two un calibrated views 

related by the displacement (R; T), consider the first the rigid body motion between two views: 

 

Figure 3.10.1: Relationship of Two Views [21] 

𝐹𝑖𝑗 = 𝐾𝑖
−𝑇𝑅𝑖[𝑅𝑗

𝑇𝑡𝑗 − 𝑅𝑖
𝑇𝑡𝑖] ×  𝑅𝑗

𝑇𝐾𝑗
−1 

Where Fij  is called Fundamental Matrix 

Image matching involves strong estimation of the fundamental matrix Fij. Strong 

estimation of Fundamental Matrix means to create a strong relationship between all the views 

taken by the camera. For Strong estimation of F we use RANSAC method. It finds a set of 

inliers that have consistent epipolar geometry. If the number of RANSAC inliers Einliers > Ematch, 

the image match is declared.  Where Einliers the minimum number of matches and 𝐸𝑚𝑎𝑡𝑐ℎ𝑒𝑑 is 

a constant. All the inliers are then connected to each other to construct a 3D point cloud of the 

detected object. 

 

 

l 

 

 

Figure 3.10.2: Result of 3D Reconstruction of object 
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Chapter 4: Object identification & Execution of best gripping features 

4.1 Overview: 

From the 3D reconstruction of the object as discussed in pervious chapter we can calculate the 

perimeters of the object such as length, width and depth of the object. In this chapter calculation 

of perimeters of the object, Human Hand Anthropometry and execution of best gripping 

features for the detected object is discussed in detail. 

4.2 Object Identification: 

Object identification is done by finding the perimeter so the object. The perimeters of the 

object can be calculated from the 3D reconstructed point cloud of the object. 

For perimeters calculation is done by using distance formula as shown below 

𝑫𝒊𝒔𝒕𝒂𝒏𝒄𝒆 =  √(𝑳𝒎𝒂𝒙 − 𝑳𝒎𝒊𝒏)𝟐 + (𝑾𝒎𝒂𝒙 − 𝑾𝒎𝒊𝒏)𝟐 + (𝑯𝒎𝒂𝒙 − 𝑯𝒎𝒊𝒏)𝟐 

 

Where, 

𝑳𝒎𝒂𝒙  is the maximum value of matched featured in world co-ordinates along x axis. 

𝑳𝒎𝒊𝒏  is the minimum value of matched featured in world co-ordinates along x axis. 

𝑾𝒎𝒂𝒙  is the maximum value of matched featured in world co-ordinates along y axis. 

𝑾𝒎𝒊𝒏  is the minimum value of matched featured in world co-ordinates along y axis. 

𝑯𝒎𝒂𝒙  is the maximum value of matched featured in world co-ordinates along z axis. 

𝑯𝒎𝒊𝒏  is the minimum value of matched featured in world co-ordinates along z axis. 

4.2.1 Length of the object: 

Length of the object is calculated by the following formula 

𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝑳𝒎𝒂𝒙 − 𝑳𝒎𝒊𝒏)𝟐 + (𝟎)𝟐 + (𝟎)𝟐 
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𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝑳𝒎𝒂𝒙 − 𝑳𝒎𝒊𝒏)𝟐 

 

𝑳𝒆𝒏𝒈𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  𝑳𝒎𝒂𝒙 − 𝑳𝒎𝒊𝒏 

4.2.2 Width of the object: 

Width of the object is calculated by the following formula 

𝑾𝒊𝒅𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝟎)𝟐 + (𝑾𝒎𝒂𝒙 − 𝑾𝒎𝒊𝒏)𝟐 + (𝟎)𝟐 

 

𝑾𝒊𝒅𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝑾𝒎𝒂𝒙 − 𝑾𝒎𝒊𝒏)𝟐 

 

𝑾𝒊𝒅𝒕𝒉 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  𝑾𝒎𝒂𝒙 − 𝑾𝒎𝒊𝒏 

4.2.3 Depth of the object: 

Height of the object is calculated by the following formula 

𝑯𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝟎)𝟐 + (𝟎)𝟐 + (𝑯𝒎𝒂𝒙 − 𝑯𝒎𝒊𝒏)𝟐 

 

𝑯𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  √(𝑯𝒎𝒂𝒙 − 𝑯𝒎𝒊𝒏)𝟐 

 

𝑯𝒆𝒊𝒈𝒉𝒕 𝒐𝒇 𝒕𝒉𝒆 𝒐𝒃𝒋𝒆𝒄𝒕 =  𝑯𝒎𝒂𝒙 − 𝑯𝒎𝒊𝒏 

4.3 Execution of Best Gripping Feature: 

Execution of Best Gripping Feature is decided on the base of thresh holding function. 

Thresh holding function is set after literature and by doing no. of experimentations on 

different peoples hand. 

4.3.1 Human Hand Anthropometry  

Human Hand Anthropometry is shown in table given below [27] 
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4.3.1.1 Length of the Human Hand 

 

Figure 4.3.1.1.1: Human Hand Anthropometry [27] 

Length of the Human hand is measure from the base of the hand at the wrist 

crease to tip of the middle finger. Length of the human hand (men and women) is 

shown in table 4.3.1.1.1. 

Sr. #  sample  Percentile  

1
st
    5

th
                                                                                                50

th
  95

th
  99

th
  

1.  Men  173mm  179mm  193mm  211mm  220mm  

2.  Women  159mm  165mm  180mm  197mm  205mm  

Table 4.3.1.1.1: Length of Human Hand 

4.3.1.2 Breadth/Width of the Human Hand 

The Breadth of the Human Hand is measured across the ends of metacarpal 

bones. Breadth of the human hand (men and women) is shown in table 4.3.1.1.1. 

Sr. #  sample  Percentile  

1
st
    5

th
                                                                                                50

th
  95

th
  99

th
  

1.  Men  81mm  84mm  90mm  98mm  100mm  
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2.  Women  71mm  73mm  79mm  86mm  89mm  

Table 4.3.1.1.1: Breadth of Human Hand 

 

The Human Hand Anthropometry shows that the human hand can grip any object whose 

length is 220mm or less so for best execution of gripping feature like human do, many 

xperiments are performed on 10 different peoples to check when human executes different 

grasping features from grasping different objects. From experimentation we observed the 

following 

 Whenever the width of object is about 90mm to 150mm and the height of the object 

is about 25mm to 60mm, a human executes power grip to grip the object.  

 A human hand also execute power grip when the length and width of object is about 

50mm to 90mm and height is greater than 150mm.  

 Whenever the width of object is about 10mm to 75mm and the height of the object 

is about 15mm to 25mm, a human executes tripod grip to grip the object.  

 A human hand also execute pinch grip when width of object is about 10mm to 

30mm and height is greater than 15mm to 25mm.  
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Chapter 5: 3D Model Based Validation 

5.1 Overview: 

After the detailed discussion on human hand anthropometry and execution of best gripping 

feature in pervious chapter, we performed 3D model based validation. In this chapter we will 

discuss how to create a 3D model, creating a dialog box to rotate 3D object at any angle and 

capture images at different angles, 3D object reconstruction and execution of best gripping 

feature for detected object in detail. 

5.2 Steps of 3D Model Based Validation: 

Following are steps of 3D model based Validation 

 

 

Figure 5.2.1: Steps of 3D model based Validation 

Find Camera 
Matrix

3D 
Reconstruction 

of 3D model

Find 
Perimeters of 

the model

Execute Best 
Grip Feature 
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For 3D Model Based Validation the first step is to create a 3D model by using 3D world 

Editor or by using Mesh Lab Software. An example of 3D world model is shown in figure 

below. 

 

Figure 5.2.2: 3D Model created in 3D world Editor 

After creating a 3D model the next step is to open and view the 3D model. The 3D world can 

be viewed by virtual Viewer, MATLAB offers two ways to view 3D world 

• Internal viewer   (the default method) and 

• External viewer (integrated with your Web ser) 

We use Internal Viewer method to show 3D model as shown in figure below 

 

Figure 5.2.3: View of 3D Model 
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The dialog is used to interactively change field values of the VRML node referred to 

by the VRNODE object just created. This Dialog box is used to Rotate the 3D world at any 

angle about x axis, y axis, z axis. So our next step is to create a dialog box that rotate the 3D 

model from 0 to 360 degree about any axis. Dialog box is shown in figure below 

 

Figure 5.2.4: Dialog Box for Rotation of 3D Model 

In dialog box we have a slide bar that rotates the model from 0 to 360 degrees. We also 

have 3 check boxes name x, y and z.  

• If  we check x box then 3D world only rotates about x axis 

• If we check y box then 3D world only rotates about y axis 

• If we check z box then 3D world only rotates about z axis 

• If we check all boxes then 3d world rotates about all 3 axis. 

After creating dialog box the next step is to capture the image at any desire angle and 

any desire axis of the 3D model by using capture command i.e built in MATLAB. First 

image is captured when rotation angle about x, y and z axis =0rad (as we do in engineering 

drawing for front view). 2nd image is captured at an angle greater than 0 and less than pi/2 

rad about y axis (for side view).  

After capturing images we can find out the camera matrices in order to find 3D 

geometry to estimate the world points. Algorithm for camera matrix is shown below 
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5.2.1 Results of 3D model based Validation 

Model 01 

 

Figure 5.2.1.1: 3D Model 

 

Figure 5.2.1.2: 3D Reconstruction of 3D Model 

 

Figure 5.2.1.3: Best Gripping feature for grasping of 3D Model 
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Model 02 

 

Figure 5.2.1.4: 3D Model 

 

Figure 5.2.1.5: 3D Reconstruction of 3D Model 

 

Figure 5.2.1.6: Best Gripping feature for grasping of 3D Model 
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Model 03 

 

Figure 5.2.1.7: 3D Model 

 

Figure 5.2.1.8: 3D Reconstruction of 3D Model 

 

Figure 5.2.1.9: Best Gripping pattern for 3D model 
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5.2.2 Result 

 

Exp. 

No. 

Perimet

ers 

No. 

of 

trial

s 

Actual 

perimete

rs the  of 

Object 

(mm) 

Average 

Software 

Calculated 

Perimeter

s (mm) 

Output % 

Error 

1 

L 25 50 48 Tripod 

Grip 

4% 

W 50 47 6% 

H 125 120.8 3.36% 

2 

L 25 50 47 Tripod 

Grip 

6% 

W 50 47.6 5% 

H 50 46.8 6.4% 

3 
L 25 150 145 Power 

Grip 

3% 

W 150 145 3% 

H 80 77 4% 

 

Table 2.2.2.1: Result comparison of 3D model with software calculated values 
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Chapter 6: Experimental Results and Comparison with Actual Perimeters 

of the object 

6.1 Overview: 

In this chapter experimental results of different objects are shown, comparison of experimental 

results along with the software calculated results are compared and execution of best gripping 

pattern are shown in the chapter. 

6.2 Results 

Experiment 01: 
 

 
(a)         (b)  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  (c) 
Figure 6.2.1: (a) shows the input images taken from the camera (b) shows the 3D reconstruction of the 

object, (c) shows the best grasping feature for the griping the detected object 

 

 



57 

 

Experiment 02: 
 
 

  
 
 
 
 
 

 
 
 

(a)                                     (b) 
 
 
 
 
 
 
 

               
 
 
 
 

(c) 
Figure 6.2.2: (a) shows the input images taken from the camera at different angles, (b) shows the 3D 

reconstruction of the object, (c) shows the best grasping feature for the griping the detected object 

 
Experiment 03: 
 

 

 

 

 

 

 

 

(a)        (b) 
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(c) 
 

Figure 6.2.3: (a) shows the input images taken from the camera at different angles, (b) shows the 3D 
reconstruction of the object, (c) shows the best grasping feature for the griping the detected object 

 

 
 
Experiment 04: 

 

 
(a) (b) 

                 
 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 6.2.4: (a) shows the input images taken from the camera at different angles, (b) shows the 3D 

reconstruction of the object, (c) shows the best grasping feature for the griping the detected object 
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Experiment 05: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(a) (b) 

 
 
 
 
 
 
 
 
 
 
 

(c) 
Figure 6.2.5: (a) shows the input images taken from the camera, (b) shows the 3D reconstruction of the 

object, (c) shows the best grasping feature for the griping the detected object 

Experiment 06: 
 
 
 
 
 
  
 
  
 
 
 
 
 
 
 

(a) (b) 
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(c) 
Figure 6.2.6: (a) shows the input images taken from the camera, (b) shows the 3D reconstruction of the 

object, (c) shows the best grasping feature for the griping the detected  

 
Exp

. 

No. 

Perim

eters 

No. 

of 

tria

ls 

Actual 

perime

ters the  

of 

Object 

(mm) 

Average 

Software 

Calculat

ed 

Perimete

rs (mm) 

Output % 

Error 

1 

L 25 128 120.6 Power 

Grip 

6% 

W 122 118.5 3% 

H 50 45.7 8.6% 

2 

L 25 156 151.6 Tripod 

Grip 

3% 

W 41 36.05 12% 

H 38 33.8 10.5% 

3 
L 25 150 145 Tripod 

Grip 

3% 

W 74 64 13% 

H 10 9 10% 

4 
L 25 135 123 Pinch 

Grip 

9% 

W 10 8.9 11% 

H 10 9.7 3% 

5 
L 25 60 57.9 Tripod 

Grip 

4% 

W 10 11.7 17% 

H 100 97 3% 

6 
L 25 30 29 Pinch 

Grip 

3.33% 

W 15 13.7 8.6% 

H 8 6.8 15% 

 
Table 3.2.1: Comparison between Actual and Software calculated perimeters 
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Chapter 7: Conclusion & Future Work 

7.1 Comparative Study & Contributions 

 

Table 7.1.1: Comparison of our Research with other Recent Research 

6.3 Conclusion: 

A system that automatically detect the object and Construct a 3D scene from multiple 

input images taken from the camera embedded in the palm of hand.  From 3D 

Reconstruction we can determine the perimeters of the object i.e. Length, Width, 

Height/depth the user is reaching for. The only limitation is that the user will only need to 

reach for an object and tell the device when to close. It executes pinch grip, power grip and 

tripod grip for grasping complex shape objects. 

7.3 Future Work 

As our Research is limited to only three grasping features pinch grip, tripod grip and 

Power Grip, so in future we can upgrade our system to more gripping pattern for 

grasping of all kind of objects as human do, we will also reduce processing time for 

object recognition and 3D reconstruction of object.  

 

  

 Object 3D 

Reconstruction 

Detect objects 

of all colours 

Grip Features 

IRIS Hand 

(2014) 

No No Pinch, Tripod, 

Power 

Sexana (2014) No Yes Pinch Grip 

VIPeR  Arm 

(2015) 

No No Pinch, Tripod, 

Power 

Saqib (2016) Yes Yes Pinch, Tripod, 

Power 
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Appendix 

Pseudo Codes : 

1. 3D Reconstruction of the Object 

Camera Calibration 

//Calibration of camera is done by using Camera Calibration 

app of MATLAB Software 

input: Image Acquisition of object from Different Angles  

FOR all input images 

 Convert RGB images to Binary Image 

 Find Connected Regions of Binary Images 

 IF region has < 1000 pixels 

  Discard that region 

 END IF 

 Detect SURF Features from the input images 

 Initiate KD Tree Algorithm for matching  

 FOR every images 

select m matching images with maximum no. of matching features 

with images 

IF the distance between two matching point > 0.03 

  Eliminate that matching point 

      END IF 

Find the translation, rotation of camera of 3D geometry to 

estimate the world points 

 END FOR 

END FOR 

output: Reconstruction of 3D point Cloud 
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2. Execution of Best Gripping Features: 

input: Data of 3D Reconstructed Point cloud 

//All Dimensions are in millimetres  

IF  Length < 220 & 90<Width<150 & 25<Height<60 

 Execute Power Grip 

END IF 

IF Length < 220 & 30 < Width < 100 & 100 < Height < 250 

 Execute Power Grip 

END IF 

IF Length < 220 & 20 < Width < 70 & 12 < Height < 35 

 Execute Tripod Grip 

END IF 

 

IF Length < 100 & 10 < Width < 30 & 75 < Height < 125 

 Execute Tripod Grip 

END IF 

IF Length < 220 & 10 < Width < 30 & 10 < Height <25 

 Execute Pinch Grip 

END IF 

 

output: Best Grip Feature for Grasping the object 

 




