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Abstract 

This project report describes a numerical modeling of explosively formed projectiles 

(EFP) passing through void and water. Explosively formed projectiles are being used for 

neutralizing sea mines. Penetration through water is studied by using copper, and 

Tungsten made liners. Copper made liners show poor performance in water as they 

eroded immediately on passing through water; however their length of penetration can be 

extended to some extent by changing liner thickness (contour type thickness) and by 

making solid final shape. Their penetration length can also be increased by replacing 

copper with tungsten from 4 to 8 times. Liner curvature is very sensitive parameter to its 

final shape and velocity. In this report a good exercise is done by varying liner curvature 

and optimum curvature for that particular design (theta=120 degree) is obtained. Effect of 

moving water on EFP performance is also studied and it is concluded that if water is 

moving in opposite direction, with normal river speed, then it has no pronounced effect 

on the EFP performance. Of all the available explosives HMX shows better results as it 

has higher density and detonation velocity. EFP devices are similar to a shaped charge, 

except the apex angle of the liner, which is greater than or equal to 120° (depending upon 

material used). EFPs are low-velocity devices as compared to shaped charges and have a 

tip velocity of 2-3 km/s(7-12km/s in case of shaped charges). However, they generate 

large diameter, high mass projectiles and produce large holes in the target material.  

Underwater mines clearance is a difficult and demanding task. Under water munitions 

cannot be defused, neutralized or transported to any other places. If the velocity of 

explosively formed projectile (EFP) is low enough and the hole it creates in the casing of 

the underwater munitions is large enough, explosive charge contained in it will burn 

without detonation thus ensuring that mine has safely defused. 
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INTRODUCTION 

An explosively formed projectile (EFP) devices are like shaped charges, apex 

angle separate these two categories of devices. For EFP it is greater than 120° greater. 

EFPs typically are low-velocity devices (as compared to shaped charges) and have a 

velocity of 2-3 km/s. However, they generate large diameter, high mass projectiles and 

produce large holes in the target material.  

Under water mines clearance, are cumbersome and of demanding task. 

Underwater munitions in many cases cannot be defused, neutralized or transported to any 

other places for their destruction, and the only way out may be their destruction by 

detonation in situ. For large munitions, this involves a great risk of severe damage to the 

surroundings, so a less hazardous procedure would be desirable. If the velocity of 

explosively formed projectile (EFP) is low enough and the hole it creates in the casing of 

the underwater munitions is large enough, a burn out of explosive charge contained in it 

without detonation or deflagration may ensure. 

Detonation initiations conditions for various explosives for EFPs and shaped 

charges have been studied by Chick et al in 1981, 1989[19, 20]. The optimized critical 

velocity of jet to cause initiation of detonation of the explosive of the sea mine is 

dependent on several factors, one of which is the presence of the casing. The casing can 

reduce the sensitivity of the penetrator due to the pre-compression of explosive contained 

by the formation of the critical pressure wave. If the velocity of the EFP is less than the 

critical value, the phenomenon of detonation will not occur. 

As the jets or the EFPs passes through the water their temperature becomes lowered and 

the hot remnant of the shaped charges and an EFP can cause low order burning in the 

explosive. If there is less or no chance of escaping the combustion products, the pressure 

builds up and can cause deflagration. If the munitions is under ground or located 

underwater, the damage may be quite severe. Especially in case of underwater greater 

energy goes into the bubble pulses than in case of detonation. When the explosive charge 
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detonates, it is instantaneously converted into gas. The produced gas at extremely high 

temperature at first occupies the same volume as that of the explosive. The pressure of 

the suddenly produced gasses products is so high and creates bubbles which will have an 

internal pressure of 20% of the detonation pressure of explosive, of the order of 5 Giga 

Pascal (G pa). 

It is therefore required to design a suitable device that can cause the low order 

burning and creates relatively large hole in the munitions casings to allow the escape of 

the combustion products. The escape of the gaseous products avoids the pressure build up 

and resulting in violent deflagration. EFPs offer a possible solution to this problem. 

Here, our main interest is to find out the effective use of an EFP as a stand-off sea 

mine device for underwater mine neutralization. The device should neutralize underwater 

munitions in low water without detonating them. The standard EFP produces a relatively 

thin projectile, which erodes rapidly and is thus unsuitable for the task. An ideal EFP 

should possess sufficient mass to reduce the effect of erosion, a large diameter hole to 

create in the casing of sea mine for high pressure gas venting and a relatively low 

velocity to prevent excessive shock transmitted to the explosive of sea mine on impact. 

Penetration behavior of explosively formed projectiles (EFP) passing through 

water is of great military significance of use, although very few investigations have been 

reported in this aspect. We must realize that the water will behave as a target or as a part 

of the target having density of 1000 Kg. m-3 that causes the projectile slowing down and 

is being eroded as it passes through water. This effect has been shown for fast moving 

shaped charge jets by Zernow in 1987 [22] in their study of soft capture of shaped charge 

jet particles using low density foamed liquids. The  study of the performance of EFPs in 

water by Janzon (1993) [23] investigated that EFPs fired at high velocities, greater than 

1700 ms-1, were decelerated faster than that of with lesser initial velocities. At 

penetration greater than 100 mm (1.6 CD), the EFPs with the higher initial velocities 

actually had lower velocities than did EFPs with lower initial velocities. They also 

showed that the head of the EFP was eroded and subsequently penetration was stopped 

when water entered the hollow core of the projectile. For increased penetration in water it 
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is necessary to form a solid projectile rather than the hollow one. This would be done by 

changing the liner geometry, liner material and the confinement. 

EFP formation process depends on liner apex angle and mass distribution of the 

liner if EFP configuration including parameters like liner thickness, outer casing, 

explosive, liner material etc. remains same. When we consider use of an explosively 

formed projectile for under water applications, the interaction b/w water and the EFPs is 

an important feature to consider. As the water behaves like small density armour or a part 

of the target for high speed projectiles, the efficiency of the formed projectile in water 

can be significantly reduced. Numerical simulation is performed in order to draw as well 

as optimized EFPs design and its penetration 

EFP design has in the past dependent on an experimental trial and error methods 

and the lack of reliable finite element, volume and difference codes. The designs at start 

were expensive and time consuming. The presence of different finite element, volume 

and difference codes called hydrocodes now made the design of different problem in this 

regard easy and cost effective. The Dyna2D hydrocode is one among many codes 

developed to make the work more efficient and cost effective. This report describes the 

application Autodyn 2D finite element Code to numerically model the formation and 

penetration of the projectile formed in water and the experimental verification of the 

model with flash radiography. 

The main object of any missile or projectile is to damage a target to a 

considerable extent. An EFP is potentially used because it is an effective way of 

increasing the amount of damaging energy obtainable to the system at the time of 

engagement and it improves the coupling of the energy to the target. It also allows the 

destructive effect to be better matched to the likely response of the target (it gives a 

choice of lethal mechanism) [14]. 
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Chapter 1:  EFPs and Sea-mine Neutralization  

 Underwater mines are a huge threat to oceanic life. Their elimination by 

transportation or neutralization is not safe neither easy. These mines are very sensitive 

and their handling is also very critical. We have to avoid detonation rather we prefer 

burning of the explosive. In burning combustion reaction rate is subsonical.in detonation 

combustion reaction rate are supersonic. So we prefer burning instead of detonation

 Under-water mines can be defused by using either an EFP or a shaped charge 

projectile. Disposal of both expired and unexploded weaponry having highly sensitive 

nitro-methane formulation by using shaped charge jet has been examined in [26]. High 

explosive can either be deflagrated or exploded by tuning the jet-tip geometry [27]. It 

also depends on critical energy which in turn related to the ratio of jet tip velocity to its 

diameter. Therefore an EFP, owing to its configuration, conveys suitable amount of 

energy to cause deflagration and avoids detonation. 

 An EFP or shaped charge jet has to penetrate through water and underwater 

mine’s casing before transmitting its remaining energy to the explosive contents. In this 

condition, water acts as a target material having density 1.0g/cm3. Jet penetration through 

foam liquid having low density has been inspected to obtain jet structure data using “soft” 

jet recovery technique and flash x-ray diffraction by Zernow et al [3]. By using this 

structure data kinetic energy density of the shaped charge jet can be calculated at any 

time. Faster EFPs are retarded faster than those having smaller initial velocities. this 

effect of EFPs is studied by Janzon et al in 1993 [23]. Effect of critical energy has been 

studied by Walker et al. He confirmed that encased explosive requires critical energy 

(V2/d) to initiate [28]. Where ‘V’ is the jet velocity and‘d’ is the jet diameter. Effect of 

critical power density has been studied by Lee et al. He confirmed that the critical power 

density to detonate the explosive charge is equivalent to V3/d [29]. They both concluded 

that comparatively low velocity and having jet with large diameter is desirable for 

deflagration. 
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 As explained above the critical energy density of the shaped charge jet depends 

upon its tip velocity and diameter. A smaller tip dimension is the indications of high 

kinetic energy density which leads to detonation, moreover small dimension diameter in 

the underwater mine’s casing does not allow the gaseous products to escape and hence 

detonation process occurs. Thus for deflagration a slower jet tip velocity with larger 

diameter of the jet is required. Thus EFP configuration is more suitable. Thus an EFP 

which have these two qualities and an additional large standoff is the best candidate for 

underwater mine’s clearance. 

 Initiation conditions for detonation of different kinds of explosives by EFPs and 

shaped charge jets have been investigated by Chick et al in 1981, 1989 [19]. The critical 

energy density of a jet to cause detonation of the explosive in underwater munitions is 

dependent on several factors including EFP diameter, material, standoff, casing material, 

casing thickness etc. 

 The effective use of an EFP as a stand-off underwater mine’s clearance has been 

investigated in the present study. Liner Material optimization is done for better 

penetration and at the same time to meet the other parameters requirements for 

deflagration.  

1.1 HYDROCODE MODELING AND SIMULATION SCHEME 

 The experimental cost of an underwater mine’s neutralization is very high. Many 

hydro codes has been developed for the simulation of EFPs and shaped charges. With the 

help of these codes cost and time saved. AUTODYNE is one of them. Here this code is 

used to study the effect of EFPs and shaped charges numerically [30]. The formation and 

efficiency of the EFPs have been judged by using this code. The AUTODYN uses both 

Lagrangian and Euler techniques. The AUTODYN is an efficient code as reported in the 

literature. In this work ANSYS AUTODYN-2D V 12.0 has been used for the 

optimization of EFPs through the water. 

  



 6

Chapter 2:  Conventional Devices 

 The part of arming system used to destroy or damaging the enemies territory is 

called a warhead. Conventional warheads are of two types 

a) Kinetic Energy devices 

b) Chemical Energy devices 

2.1  KINETIC ENERGY DEVICES 

 In these devices the propellant is used to accelerate the metallic plate often called 

projectile to a very high velocity [2]. The main purpose of a warhead device is to damage 

the target. The destruction is possible only when there are  excessive stress on the target 

structure, and consequently failure of the target structure. The amount of energy which is 

transferred into the target causes the damage or Behind Armor Effects (BAE).These are 

old devices used to defeat armored targets .It remains the most important system for a 

long time. Modern KE projectile can trace their roots to the armor piercing shot 

developed by Palliser to attack iron clad ships in the 1860s. Today most KE projectiles 

contain no explosive charge, but rely on other mechanisms to inflict damage on the 

targets. All forms of KE attack rely on imparting sufficient energy to a penetrator so that 

at the end of its trajectory it has enough residual energy to overmatch the target and 

penetrate and still cause damage within the tank. The KE devices will usually use 

materials with high density and a high length to diameter ratio. Consequently maximize 

the KE density at target. Example of KE warheads are rigid and non-rigid Armor Piercing 

Composite Rigid (APCR) projectiles, etc. [14]. 

2.2  CHEMICAL ENERGY DEVICES 

In these devices explosives energy is used for the destruction of the target by  

accelerating the metal to form EFP or shaped charge or simply blastThe family of high 

explosives, conventional warheads is divided into two main categories as depicted in the 

classification chart figure 2.1 [2]. 
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2.2.1.2. Blast 

In blast no metal pieces it is only the shock wave pressure that causes the 

destruction to the target. [2].it is the cheapest and the simplest explosive device. Its 

strength lies in the strength of shock wave produced by the detonation of the explosive. 

[14].These devices also cause Damage up to a limited distance. 

2.2.2. Directed Energy Chemical Energy Devices 

 In these devices the explosive energy is focused into one direction so that 

maximum penetration can be achieved. They are used for the attack on armor [14] and 

energy of the explosive is focused on a cavity called liner. The liner is shaped and 

accelerated to a specific direction and the amount of kinetic energy is 15-20% of the total 

explosive chemical energy its way to the target [2]. Directed energy devices are 

subdivided into: 

2.2.2.1  High Explosive Squash Head (HESH) Devices 

 It is the unidirectional energy warhead type device. Its principle is shown in figure 

2.2. it is used against building and tank armor.it is also used against modern era  armors, 

such as spaced armor, composite armors and explosive reactor armor (ERA), it is much 

less effective as a guided weapon warhead it has been superseded. large amount of  

explosive is used in it for operation of the device. These are very heavy weight so 

transportation at the target is a bit issue. 

When explosive mass is detonated shock waves are produced. These shock waves travel 

towards the metal plate and passes through it as a compressive waves. These waves when 

reaches the other end of the plate there is a medium change. Some part of the wave 

reflected from the rear side of the plate as a tensile wave.at a point where compression 

and tensile wave intersect a huge stress zone is created so a scab of material is detached 

as shown in figure 2.2 having velocity range of 100-250 m/s. [14]. 
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and the P-charge, the EFP warhead is made up of a metallic liner and case, an explosive 

section and an initiation train. Very often there is also a retaining ring to position and 

hold the liner-explosive subassembly in place. After detonation, the explosive products 

create enormous pressures that accelerate the liner while simultaneously reshaping it into 

a rod or some other desired shape. The EFP then hits the target at speeds in excess of 

2000 m/s, delivering billions of watts of mechanical power [2]. 

The idea of EFP is not new one .in 1936 R. W. Wood designed an experiment by 

using some detonators with shallow cavities in the explosives. Copper liner is used at the 

cavities ends. Wood explained that when detonation occurs, copper in each cavity formed 

a pellet that was projected at a very high velocity and that traveled long distances in a 

coherent fashion. The explosive formation of a projectile later became known as the 

Misznay-Schardin effect. Misznay demonstrated this effect in Germany with a 400-mm 

diameter charge and a 300-mm diameter iron liner in July 1944 [2]. 

During the early 1970s, EFP technology escalated significantly, primarily because 

of three simultaneous developments: 1)the success of hydrocode simulation techniques to 

model EFP device, 2) the progress in high precision computer numerical control (CNC) 

manufacturing techniques and 3) a number of system concepts sponsored by both the US 

Army and U.S. Air Force that used EFP technology. The first gave designer the ability to 

achieve improved EFP shape rapidly, the second allowed complex liner shapes to be 

made with precision, and the system project provided the funding base and a specific 

requirement to allow a significant focus on EFP technology.  

The final shape and velocity of an explosively formed projectile (EFP) is very 

sensitive to its initial parameters. EFP undergoes very high plastic deformation. So the 

design of optimum EFP is therefore very complicated. The process of formation of an 

EFP comprises essentially super plastic strains up to 300%, at strain rates of the order of 

104per second, with a resulting adiabatic temperature rise of up to 1000k or more. 

Conventional theories cannot explain such type of super plastic behavior that only use 

dislocation generation and arrangements to accommodate strain [10]. 
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Mechanism of explosively formed projectiles (EFPs) is the same as that of shaped 

charges; hence the liner does not separate into high velocity jet and a low velocity slug. 

The liner simply folds into a fragment moving off with high velocity. When a detonation 

wave acts on the liner material, as the liner material is not completely surrounded by 

explosive, liner is not fragmented, but is expelled by the high pressure gases and is 

deformed remaining one piece, and moves in the direction of the detonation wave with 

considerable velocity. In general thinner is the liner the higher is the velocity to which it 

is accelerated [14]. 

The self-forging fragment uses the mechanism of explosive forming of a metal 

liner into a single compact fragment, and projecting it with sufficient velocity to defeat 

armor at the required extremely long standoffs. 

The penetration mechanism is essentially hypervelocity impact. The liner is 

usually of a curved shape although wide angle conical liners have been considered. The 

formation of the fragment takes place either by inverting the liner, or by a process 

basically comparable to shaped charge jet formation but with little or no velocity gradient 

[18]. 

3.4  MAJOR COMPONENTS 

A typical EFP charge is depicted in Figure 3.5. The device consists of an initiator 

or detonator a booster and explosive charge encased in charge body with a plate at one 

end and a hollow metal liner on the other. 
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are adopted. Explosive type plays its own roll. HMX gives the largest L/D ratio among 

all the explosives. Liner thickness types play a very important role in final shape and 

velocity. [4] 

3.6  PARAMETERS AFFECTING THE EFP CHARACTERISTICS 

 There are several basic parameters in the warhead configuration that affect the 

projectile shape and performance. These can broadly be classified as geometrical factors 

and material factors [10]. These factors influence the formation of EFP which include 

velocity behavior during the flight but also it include affecting its shape, its stability, its 

velocity and attenuating the velocity profile which is different depending on whether the 

material is brittle or ductile. 

3.6.1 Geometrical Factors 

 Contours type liners (having variable thickness (thicker in the center as compared 

with edges)), apex angle of the liners, Explosive charge dimension, confinement 

configurations, axial thickness and explosive initiation technique are some of the 

geometrical factors that affect the shape of the EFP [10]. 
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3.6.3 Case Confinement 

 The casing offers a shielding housing (confinement) for the charge and liner, but 

more important the mass of the casing provides confinement for the explosive. The 

increasing of mass of the casing increases the duration of the explosive impulse and 

hence the total energy delivered to the liner [2]. The body may be tapered to create a 

localized high-pressure effect, called tamping, or it may be uniform, to uniformly 

increase the detonation pressure or tapered to regulate the velocities of the liner and the 

confinement. 

 EFP performance can be improved by changing cylindrical charge to a taper-

backed charge and thinning the casing. Mass of charge is also reduced in this case. [4]. 

 Asymmetric casing severely distorted the final shape of the EFP. This effect was 

studied by Yiu . [2]. If the charge and the liner material were surrounded by a two-piece 

caseing made of 180 of steel and 180 of epoxy. This will be the asymmetric casing. An 

uneven venting of the explosive products produce distorted shape of EFP.Liner gets 

unbalanced force. Casing thickness play role in the final shape thicker casing produce 

solid final shape than thinner casing. In another study [10], it was reported that increasing 

the casing thickness may break the EFP [10]. 

3.6.4 Explosive Configurations 

 The physical dimension of the explosive charge is also of major importance. The 

length to diameter ratio (LID) is also important. Because of overall system constraints, 

the explosive charge head height or the length is usually limited. As the charge L/D ratio 

is increased, the kinetic energy of the EFP increases until to a point of diminishing 

returns is reached. [2]. 

3.6.5 Explosive Initiation Technique 

 Explosive initiation technique also play very important role. Point detonation and 

line detonation produce different final shape and velocity. Central and off-centre 

detonation is also very sensitive parameters. Off-center detonation is studied by Johnson 
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3.7 MATERIAL FACTORS 

 The material factors include liner material its structure type and its mechanical 

properties. Similarly casing material and explosive type also included. Processing 

conditions during manufacturing of liner. [1O]. 

3.7.1 Liner material 

 The physical and mechanical properties of the liner that are very important are its 

high density, high melting point, ductility, and these properties are necessary for good 

dynamic EFP formation process. Copper (cu), tantalum (Ta), iron (Fe) and tungsten (W) 

exhibit these properties and are the potential candidates for liner material choice. Grain 

size and hardness of the starting material are also important [10]. The liner material play 

very important role on the final shape and velocity. Copper liners eroded by passing 

through water while tungsten made liner show better results.  

3.7.2 Casing material 

 The casing material also plays an important role in the performance of EFP. The 

casing material should exhibit properties such as high density, high melting point, closed 

pack crystal structure, good stretch property and no toxicity. The best choice is the steel.it 

has low cost, high strength and high density. [2]. 

3.7.3 Explosive material 

 The important explosive properties are 

(1) Density of the explosive.  

(2) Detonation velocity 

, (3) Explosive energy 

Johnson has studied the outcome of a variable density explosive [14] on the EFP 

formation. As likely, the denser part of the charge imparted a higher velocity to the liner 

resulting in an angular velocity. Figure 3.8 shows the predicted effects of typical 

explosive type on the projectile profile [14]. 
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 The density of explosive has a significant effect on the symmetry of the formed 

projectile. If density was higher over one half of the liner relative to the other, it would 

have much the same effect as the asymmetric confinement described above, with an 

unbalanced detonation velocity causing the liner to distorted. Furthermore, if voids were 

filled in the explosive fill, the liner might be distorted or even torn [2]. 

3.8 PROCESSING CONDITIONS OF LINER 

 Faccini and Woodbury studied the reasons for undesirable variance [14] in the 

performance of Ta EFPs. They investigated the effect of initial annealing, amount of pre 

strain prior to the initial annealing, amount of Ta removed from the diameter prior to 

forging, forging temperature, forging rate, liner annealing temperature, and lot using 

other quality characteristics. They found that different sets of factors affecting different 

quality characteristics but the material lot, forging temperature and the amount of pre 

strain were major factors affecting the maximum number of quality characteristics [14]. 

It is therefore quite apparent that there are many factors that affect the shape and 

performance of an EFP. EFP efficiency has improved over the years. However things are 

still to be addressed for the further improvements in the performance of an EFP. [14]. 

3.9  STANDOFF 

 The distance travelled by an EFP before it attains stable velocity and shape is 

called Standoff. Standoff is expressed in charge diameter (CD). It is necessary for an EFP 

to attain this distance for optimal penetration otherwise there will be less penetration in 

the target. Optimal penetration (at the appropriate standoff) is usually about one to two 

charge diameters into steel. Casing and explosive quantity play their role too. At large 

standoffs, the EFP splits into pieces and hence lesser penetration. [7]. 
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3.10  USES OF EFP 

 Explosively formed projectiles (EFPs) are related to shape charges but form a 

fragment rather than a jet. Their long range and high mass and energy make them useful 

in the following military and civilian applications 

 For demolition purposes such as to destroy the building structures and other 

objects 

 Military purposes like linear self-forging anti-armor weapons to defeat the armor 

at a long standoff in top attack mode. 

 To dispose of explosive mines, bombs etc. 

 In mining and petroleum industry  

 Demolition/Construction Work 

 Steel mill furnace tapping 

 Glacier blasting, Tree cutting, Hole drilling 

 Explosive engraving 

 Cutting charges, Safety destruct systems 

 To neutralize the sea mines without detonating the explosive encased in them. 

3.11 PENETRATION 

3.11.1 Mechanisms for defeating armor 

 When a warhead, such as, kinetic energy (KE) device attack on an armor target, 

then the behavior of the armor target is calculated by the parameter KE density. At low 

KE density the target materials respond as solids and the material strength model is 

responsible for interactions. The most common way of failure is brittle fracture, plastic 

deformation and plugging. However, for high KE density typically at penetrator 

velocities in excess of 1000m/s, the resulting stresses are high in comparison to the 

strength of the target and EFP and therefore behave as fluids.  
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3.11.2 Long rod warhead penetration 

 Velocity of the long rod penetration defines its penetration behavior. If it is 

greater than 1150m/s the hydrodynamic behavior of penetration begins to appear. If less 

than this plastic deformation behavior. Long rods exhibit both as they have velocities of 

1500m/s to 1700m/s. 

3.11.3 Shaped charges jet warhead penetration 

 Shaped charge jet devices have velocities higher than 10,000 m/s, and. therefore, 

target penetration is always via hydrodynamic flow [24]. 

3.11.4 EFP warhead Penetration 

 EFPs and shaped charges are the types of chemical energy devices but they both 

have different characteristics. Both are used in different applications. EFPs are moderate 

velocity (1-3km/s) as compared to shaped charges (8-11 km/s). [31]) and evidence has 

shown that their penetrative performance is much similar to that of long rods [25]. 

 The following equation for hydrodynamic theory can be applied as a an 

approximation of EFPs 

/efp tP L    

Where 

P is the Penetration length, L is the Length of EFP, efp  is the Density of EFP, 

t   is the Density of target material 

Gehring and Christman [32] decided that penetration depends upon velocity of EFP and 

target material strength. The Gehring and Christman give the following relation. 

1 2 1
22 3 3

1 efp p
p

t t t

D D V
P k

L L B

 


 
              

      
 

Where 
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D is the diameter of EFP, Bt=Brinell hardness of the target material, V is the Velocity of 

EFP and k is the constant. 

 The above model allows the final penetration length comes out to be larger than 

that expected by one dimensional hydrodynamic theory. 

Buchholz and Doyle [33] established the following relation. 

1 1 1

2 3 30.13
1 efp efp t

t t t

EP D

L L L B

 
 

              
      

 

Where 

E is the Energy in joules during the last part (caliber) of the EFP. 

 They say that in the first part behavior is like shaped charge and in the last part 

behavior is like. Hence the two part equation is established. 

 EFPs have very much lower velocity than that of shaped charges. EFP penetrative 

is like long rods penetration. Partial hydrodynamic behavior begins to appear from 1000 

m/s and increases regularly. Long rod penetration behavior is described by the Tate and 

Alekseevkii formula, in which the strengths of the EFP and target material are prominent 

factors. Experimental evidence has shown EFPs to exhibit long rod penetrator 

characteristics [34] 

 The Tate and Alekseevkii equation is  

 221 1

2 2t t efp efpU V U        

Where 

V is the Projectile velocity, U is the Penetration velocity, t  is the Target strength, 

efp  is the Penetrator strength 

 Above Equation suggests that EFP and target material strength play very crucial 

role in penetration of EFP into the target. However, Tate [29] has shown for t p   then 

high velocity both the EFP and target material show hydro-dynamical behavior up to 

deceleration. When t p   no penetration. If target strength increases penetration 
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decreases. This is demonstrated by Weimann et al [30] who has shown that if we increase 

the target strength from 700 to 1400 MPa reduce penetration by up to 30%. Conversely it 

would be expected that increases in p  increases penetration. 

 The most features cited in all above penetration equation same. These suggest that 

for better penetration 

(1) High length to diameter ratio of EFP,  

(2) High density of EFP,  

(3) High velocity of EFP  

(4) High strength of EFP. 

3.12  CONCLUSION 

 The classification of warhead types are presented in this chapter, since our main 

focus is on the explosively formed projectiles so it is described in detail, including the 

concept origin, its formation mechanism, its major components and different parameters 

affecting its performance. The review of regarding material is also given. In the next 

chapter, the computational aspect of codes developed on the basis of theory related to 

explosive metal interactions, the set of governing equations involved the computation as 

well as explosive and liner material properties described in the present chapter, will be 

outlined. Different problem formulation techniques will also be given. 
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Chapter 4 System of Governing equations and solution techniques for 

Explosive Metal Interactions 

4.1  INTRODUCTION 

 The terminal ballistic problems are characterized by intense dynamic loads that 

are generated by impact or by explosive detonation and that act over time period 

measured in microseconds. Therefore, inertial effects are dominant in the initial stages, 

and wave propagation must be adequately simulated. 

The general continuum mechanics, used to simulate these phenomena is based upon the 

conservation or balance equations of mass, momentum, and energy along with response 

functions describing the behavior of materials. The formulation is completed by 

specifying initial and boundary conditions appropriate to the problem of interest. The 

resulting system of partial differential equations is nonlinear and analytic solutions are 

not usually possible because of the complexity of the initial value problem. Approximate 

numerical techniques are among the best methods currently available for obtaining 

complete solutions to these unsteady codes, wave propagation codes, hydrodynamic 

codes or hydro codes [2]. 

Hydro codes have emerged as important design tool in the field of warhead engineering. 

Their use is most effective when integrated directly into the design iteration cycle. For 

example, the preliminary design of an explosively formed projectile (EFP) can be 

developed from hydro code calculations that predict the shape and velocity of the 

projectile. This preliminary design can be built and tested, and flash x ray pictures can 

reveal the final shape and velocity of the projectile. The test result may differ from the 

simulation and the desired performance probably will not be achieved by the initial 

design. At this point the analyst may choose to modify the computational model to obtain 

better agreement with the test results. Modifications are usually made by adjusting the 

constants in the material models or by changing the initial setup of the problem [2]. 
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In this chapter, we first review the two types of problems in the impact loading 

phenomena, the basic principles and associated equation of continuum mechanics that are 

solved by the hydro codes. Then, a brief review of numerical solution techniques for 

partial differential equations is presented. The flavor of different problem formulation 

techniques used in many hydro codes are then given. The hydro code like Autodyn that 

have been used for warhead simulations is described towards the end of the chapter. 

4.2 EXPLOSIVE METAL INTERACTION 

The interaction of detonating explosive with a material in contact with it are in 

close proximity is extremely complex, since it involves detonation waves, shock waves, 

expanding gases, and their interrelationships. For a simple one dimensional geometry, the 

sequence of events is qualitatively depicted in figure. 4. 0. A small segment of an infinite 

explosive slab placed against to a metal plate is imagined in the figure 4.0 (a). The 

initiation is starting simultaneously over the entire surface of explosive as shown in 

figure 4.0 (b), producing a pressure pulse that leads to detonation. As the detonation 

propagates, the greater and greater amount of detonation products accumulating in the 

left hand side results in a gradual increase of the duration of the pressure pulse, whereas 

the peak pressure remains constant. This is shown in figure 4.0 (b) & (c). When the 

detonation front encounters the metal, an interaction will occur and a pressure pulse is 

transferred to metal depicted in figure 4.0 (d). The peak pressure of this pulse is 

determined by using the impedance matching technique. Let us assume that P2 > P1. At 

the same time, the reflected wave is transmitted into the explosive detonation products. 

This is shown in figure 4.0 (e). When the shock wave in metal encounters the free 

surface, it accelerates it at a velocity of 2Up1 and reflects back a release wave. 

This reflected wave will encounter the back face of metal (explosive metal interface) and 

produce, by interaction, a pressure change figure 4.0 (f). A new shock wave is sent 

through the metal figure 4.0 (g) that will, in turn, drive the free surface to a velocity that 

is increased by 2 Up2. The process continues with successive reflections, Up1> Up2 > 

Up3. As the successive reflections take place, the explosive gases continue their 
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experiments and material characterization at high strain rates. They are effective tool in 

achieving cost effective design without excessive computation, testing or material 

evaluation. Problems or phenomenon to which these codes can be applied are of two 

types, described below. 

4.3.1 Structural dynamic problems 

Structure dynamic problems are characterized by loading and response times in 

milliseconds and where the geometry of the overall structure plays a significant role in 

determining the response of the system to external stimuli (e.g. safe demolition of pre-

stressed concrete structure; the transportation safety of hazardous material; 

crashworthiness of vehicles and protection of their occupants and cargo) [3]. These are 

also termed as low velocity phenomenon. 

4.3.2 Impact or wave propagation problems 

These are characterized by impact or explosive loads where both loadings and 

response times are in sub millisecond regime Deformation resulting from such loading 

will be highly localized and determined principally by the constitution and properties of 

the colliding materials. Representative problem areas include the design of lightweight 

armor systems, including fabric body armors for protection of police officers and military 

personnel; protection of spacecraft from meteoroid impact; explosive forming and 

welding of metals, explosive formation of jets and slugs and jet penetration. These are the 

high velocity phenomenon [3]. 

Yet, in both cases there is a common origin since both types can be described 

mathematically by the wave equation, which in simplest form is 

2 ( , )
xx tt xx tt

c u u f u u    

Where, u represents a displacement vector, f is a generalized function and subscripts 

denotes the derivatives with respect to special x or temporal t quantities. In high velocity 

impact situations, loading and response time are typically measured in nanoseconds to 
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By using standard indicial notation, these three functions can be written more compactly 

as 

( , )
i i j

x x a t
     

 4.2 

Where i =1, 2and 3 and j = 1, 2and 3. These mapping functions are numerically 

determined in Lagrangian hydrocodes calculations. Above equation can be inverted to 

give the initial position of a particle in terms its current position 

( , )
i i j

a a x t
    

 4.3 

When the dependent variables of the problem are expressed as function of the 

independent variable a1, a2, a3 and t, the description is called material or Lagrangian and 

when the independent variables x1, x2, x3 and t are used, the description is called spatial 

or Eulerian. The velocity components vi of a particle (al, a2, a3) are defined by 

( ) ( , )
i a i j

v v a t
t



 4.4 

Where the partial time derivative is taken with the aj held constant. The acceleration vi is 

defined by 

( ) ( , )
i a i j

v x a t
t

  

 4.5 

4.4.2 Conservation Equations 

Conservation equations used in the computations including mass, momentum and energy 

are described below. 

4.4.2.1 Conservation of Mass 

Let 
0

 (X, t) and  (X, t) denotes the densities of the body in the reference 

configuration and current configuration, respectively. The principle of mass conservation 

may be expressed as 
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 0 0
               4.6dV dV    

  
 

Where 1 2 3
0 0

 dV  = dx  dX  dX  and dV = J dV and alternatively, this may 

be written as 

d 0
dt

i

i

v
x

   
  

 4.7 

d
dt

Is materials time derivative. 

4.4.2.2 Conservation of Momentum 

Let  be the Cauchy stress tensor (referred to and measured with respect to the spatial 

coordinates
i

x ), and let f be the body force per unit mass. The local form of the principle 

of linear momentum is [3] 

d
dt

iji
i

i

v f
x


 


 
   

 4.8 

4.4.2.3 Conservation of Energy 

Let q denotes rate of heat flow per unit area across the surface of body …, the rate of 

internal heat generation per unit mass, and T be specific internal energy. Then the local 

form of the conservation energy may be written as 

de ( )
dt

i
ji i i i

i i

qv s f v
x x

      
 

  

 4.9 
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The form of conservation equations is similar for Lagrangian (grid fixed in material and 

distorted with it) and Eulerian (grid fixed in space with material flowing through it) mesh 

description. The differences occur because of definition of 

d
dt i

i

v
t x
  
 

   

 4.10 

This derivative known as material derivative, substantial derivative or total time 

derivative is used in Euler approach in calculating quantities that are transported between 

cells since they are associated with the mass flow. Thus, conservation equation for an 

Eulerian system, neglecting heat source and sink, would be [3]  

( ) 0
i

i

v
t x
   
 

   

 4.11 

1 jii i
j i

j j

v vv f
t x x



   

  
  4.12 

1 ( )
i i i ij i

i j

e ev f v v
t x x




    
  

 4.13 

4.4.3 Jump Equations 

These relationship are derives from the fact that we must conserve mass, momentum and 

energy across the shock front are called Rankine — Hugoniot Jump equations. [5] These 

are summaries as 

              0
( )

s s p
U U u       4.14 

0 0
( )

s p
p p U u               4.15 

0 0
0

1 11 ( )
2

I I p p
 

      
  4.16 
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Where,  (density), P (Pressure),
s

U  (Shock velocity), 
p

u (particle velocity) and I is 

specific internal energy. v = 1/  , is the specific volume and vₒ = 1/ , The subscript ₒ 

and 1 refer to the state just in front of and just behind the shock front respectively [5]. 

4.4.4 Constitutive Equations 

The conservation laws apply to any continuous material body without regard to its 

physical constitution. Thus additional relationships that govern both the high pressure 

(volumetric) and deformation (deviatoric) behavior of body under applied loads are 

needed. Since impact loading is a very rapid process, we will assume that it is adiabatic 

(no heat is transferred from the system). 

A few additional quantities need to be introduced first. The stress tensor 
ij

 can be 

expressed as the sum of hydrodynamic component, 
ij

p  and a deviatoric stress, 
ij

S  

ij ij ij
p S      4.17 

Where, iiS =0: and 
ii

 =3 ( , )p I  

P is obtained from an equation of state. The strain rate tensor and spin tensor are given by 

1
2

v ji
ij

x ij

v

x

  
   

   
,  4.18 

1
2

v ji
ij

x ij

v

x


  
  

      4.19 

The deviatoric strain rate tensor is defined as: [3] 

1 ,.......... 0
3ij ij kk ij kk

d d       4.20 
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Johnson-Cook Model is used as a strength model in the simulation for Eulerian 

formulations; it expresses flow stresses in terms of equivalent plastic strain, plastic strain 

rate and homologous temperature. The yield stress   is given by equation given bellow 

= [A+ B ] [1+C ln *] [1-T ]n m
H

    4.21 

The expression in the first bracket gives the stress as a function of strain; expressions in 

second and third brackets represent the effect of strain rate and temperature respectively. 

Where n  is the effective plastic strain and dimensionless * strain rate. A is yield 

stress constant, B is strain hardening coefficient, n is strain hardening exponent, C is 

strain rate dependence coefficient and m is temperature dependence exponent. TH is 

homologous temperature and is given by equation given below 

ref melt ref
T  =(T-T )/ (T - T )

H
   4.22 

Heat is generated in an element by plastic work and the resulting rise in temperature is 

computed using specific heat for the material. 

Zerilli-Armstrong constitutive equation can also be used as a strength model in the 

simulation for Eulerian or Lagrangian formulations. The yield stress   is given by 

following equations for both face centered cubic (FCC) and body centered cubic (BCC) 

crystals: 

Zerihi-Armstrong (FCC) 

1
2

0 2 3 4 = + C  exp[-C T + C Tlog ]       4.23 

Zerihi-Armstrong (BCC) 

0 1 3 4 5 = + C exp[-C T + C Tlog ] +c n      4.24 

Where 1 2 3 4 5C  , C  , C  , C  and C  are the hardening constants number 1, 2, 3, 4 and 5 

respectively, is the effective plastic strain and n is strain hardening exponent. 
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4.5 NUMERICAL METHODS AND SOLUTION TECHNIQUES 

A computer program that uses finite difference, finite volume or finite element 

techniques to solve non-linear problems is often referred to as a “hydrocode” [8]. The 

method most commonly employed by hydrocodes is the method of finite differences. In 

its simplest form, derivatives occurring in the differential equations are replaced by 

difference approximations. This replacement produces a system of algebraic equations 

that can be solved for the dependent variables at the node points, or lattice points of a 

finite difference mesh [2]. 

The phenomena to be studied with such a program, in the scope of this literature review, 

can be characterized as highly lime dependent with large strains and stresses (geometric 

non-linearity) and plasticity, failure, hardening and softening, and multiphase equation of 

state (material non-linearity) [7]. 

A key interest in developing advanced simulation tools (computer codes and material 

models) is to examine a range of parameter variation of a protection configuration 

(materials, spacing, layers and threat) [9], even at impact velocities too great for 

experimental studies. Analysis and simulation with hypervelocity impacts are required 

for space vehicles [7]. 

Simulation of explosive loading phenomenon and high velocity penetration is based on a 

continuum mechanics formulation using the equation of mass, momentum and energy 

conservation, together with appropriate description of material behavior. The formulation 

is completed by specifying initial boundary conditions appropriate to the problem of 

interest. The resulting system of partial differential equations is non-linear; hence the 

need for numerical evaluation is needed in situations where simplifications are not 

appropriate. The problems addressed by such computations involve intense dynamic 

loads generated by impact or explosive detonation acting over extremely short time 

periods (nanoseconds to microseconds). Inertial effects dominate initial stages and the 

interaction of stress wave with material boundaries, geometric boundaries and each other 

must be adequately simulated [3]. 
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4.5.1 Important Concepts in Numerical Simulations 

There are a few expressions that often occur in connection to numerical simulations. 

Short descriptions of some of these expressions are given in the following section. 

4.5.1.1 The Finite Element Method 

The finite element method is a numerical procedure for analyzing structures and continua 

[34], which originated as a method of stress analysis. Today it is also used to analyze 

problems of heat transfer, fluid flow, electric and magnetic fields and many more. A 

definition of the finite element method may be [9]: “a method of piecewise 

approximation in which the approximating function is formed by connecting simple 

functions ɸ, each defined over a small region (element). A finite element is a region in 

Space in which a function ɸ is interpolated from nodal values of ɸ on boundary of the 

Region in such a way that inter element continuity of ɸ tends to be maintained in the 

Assemblage”. 

The power of the finite element method is its versatility. The method can be applied to 

various physical problems and it has a close physical resemblance between the actual 

structure and its finite element model. The numerical methods also have disadvantages. A 

specific numerical result is found for a specific problem: it provides no closed-form 

solution that permits analytical study of the effects of changing parameters. Experience 

and good engineering judgments are needed in order to define a good model; the 

extensive documentation of a general purpose program cannot be ignored. Depending on 

the unknowns and dependent variables the method can be qualified with words like 

displacement, force and hybrid or mixed [7]. 

4.5.1.2 The Finite Difference Method 

The finite difference method is a method in which a numerical solution of the differential 

equation for displacement or stress resultant is obtained for chosen points on the 
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structure, referred to as nodes or pivotal points. The numerical solution is then obtained 

from differential equations which are applicable to the actual continuous structure. This is 

different from the finite-element method, in which the actual continuous structure is 

idealized into an assembly of discrete elements. The numerical solution by finite 

differences generally requires replacing the derivatives of a function by difference 

expressions of the function at the nodes. The differential equation governing the 

displacement (or stress) is applied in a difference form at each node, relating the 

displacement at the given node and nodes in its vicinity to the external applied load. The 

finite-difference coefficients of the equations applied at nodes on, or close to, the 

boundary have to be modified compared to the coefficients used at interior points, in 

order to satisfy the boundary conditions. Therein lies one of the difficulties of the method 

and a disadvantage in its use compared with the finite element method [7]. 

4.5.1.3 The Finite Volume Method 

This is a numerical model for solving partial differential equations that calculates the 

values of the conserved variables averaged across the volume. It does not require a 

structured mesh which is an advantage over the finite difference method. The values of 

the conserved variables are located within the volume element, not at the surfaces or 

nodes. This makes it possible that boundary conditions can be applied no invasively [12]. 

These kinds of methods are powerful in calculations where the mesh moves to track 

interfaces of shocks [7]. 

4.5.2 Problem Formulation Techniques 

A formulation technique must be chosen when a problem is defined in a hydrocode if the 

code allows more than one technique. Many codes allow the user to use different 

techniques in different parts of the problem definition. 
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4.5.2.2 Eulerian formulation 

In Eulerian codes the material flows through the mesh as depicted in figure 2.4. This is 

often done in two steps or phases. In the first step (Lagrangian phase), the mesh is 

allowed do deform as the problem is advanced in lime and then, in the second step 

(advection phase), the distorted mesh is remapped back to the original mesh. The material 

interfaces are not well defined in Eulerian codes, as seen in Figure 8, due to the material 

flow through the mesh. The interface between two dissimilar materials is known at best 

to within some fraction of a cell dimension. These interface cells contain materials of 

both the bodies involved in contact and therefore are designated as “mixed cells”. 

Today most Eulerian hydrocodes use a material interface reconstruction scheme. Even 

with a perfect material reconstruction algorithm, problems may occur when two material 

boundaries of the same material come in contact. In this case the interface can simply 

disappear, and the materials behave as one material [1 1]. 

4.5.2.3 Advantages and disadvantages of Lagrange and Euler formulation 

A summary of advantages and disadvantages with Lagrangian and Eulerian formulations 

is given. Advantages of lagrange: (1) Material boundaries and interfaces are clearly 

defined and donot mix. (2) information of load histry (3) sharper mapping of shock 

waves. (4) simple program code (5) shorter calculation time. Disadvantages of lagrange 

(1) sever element cell distortion and hence longer calculation time. (2) cell distortion may 

cause the simulation to stop and program to abort. 

Advantages of Euler: (1) no grid distortion and stoping of simulation. (2) larger 

deformation possible (3) possibility of material mixture. (4) flow calculation possible. (5) 

requires more calculation time. Disadvantages. (1) needs finner mesh. (2) less adequate 

description of strength variation in time. 

4.5.2.4 ALE (Arbitrary Lagrangian-Euler) 

The ALE method is an extension of the Lagrangian method that, via additional 

computational steps, moves the grid and remaps the solution onto a new grid [1 1]. One 
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promise of this technique is that the freedom in dynamically defining the mesh 

configuration should allow a combination of the best features of both Lagrange and Euler 

[7]. 

4.5.2.5 SPH (Smooth Particle Hydrodynamics) formulation 

The SPH technique uses no grid; it is a pure Lagrangian particle method. (Libersky 1993) 

The absence of a mesh and the calculation of interactions among particles based on their 

separation alone means that large deformations can be computed. 

A foundation of the SPH technique is interpolation theory. The conservation laws are 

transformed from partial differential equations into integral equations through the use of 

an interpolation function that gives the “kernel estimate” of the field variables at a point. 

(Libersky 1993) The reason why an underlying grid is not needed is that functions are 

evaluated using their values at the discrete points (particles) and an interpolation kernel 

[7]. Following figure 2.5 shows the Undeformed (left) and deformed (right) bodies in 

SPH formulation. 

4.5.2.6 Molecular Dynamics 

Despite differences in computer realization, both Lagrangian and Eulerian techniques 

concern the same physical model based on the Navier-Stokes equations (Dzwinel 1996). 

The principal assumptions of this model are: mass, momentum and energy flow 

continuity and thermodynamic equilibrium in differential volume. These assumptions fail 

for at least two important cases: 

1. Investigations of microscopic mechanical properties of materials. 

2. When the material considered is brittle, porous and the kinetic energy of the projectile 

is transferred mainly into mechanical energy of the target not changing the material 

properties. 

These problems can be reduced by using the molecular dynamics approach. In the micro 

scale the material has to be seen as an ensemble of separate particles. In this scale the 

assumptions concerning matter, momentum and energy flow continuity and 
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Thermodynamic equilibrium in differential volumes are no longer valid (Dzwinel 1996). 

Instead of Navier-Stokes based models, molecular dynamics have to be used. The 

Principles and assumptions of one (Dzwinel 1996) computational model with molecular 

Dynamics (MD) can be summarized as: 

1. Both target and projectile are composed of particles. 

2. Particles interact via short range potential. 

3. Particle moves according to the Newtonian laws. 

4. The model is two-dimensional. 

With MD it is possible to simulate discontinuities like cracks and fragmentation of 

Matter,in a way that is not allowed by continuous hydrocodes (Dzwinel, 1996) [7]. 

4.5.3 Equation of State (EOS) 

Hydrocodes utilize differential equations for material dynamic motion to express the 

local conservation of mass, momentum and energy. To be able to obtain a complete 

solution, also considering initial boundary conditions, it is necessary to define a further 

relation between the flow variables. This can be found from a material model which 

relates stress to deformation and internal energy. It is, in most cases, possible to separate 

the stress tensor into a uniform hydrostatic pressure and a stress deviatoric tensor 

associated with the resistance of the material to shear distortion. This relation between the 

hydrostatic pressure, the local density (or specific volume) and local specific energy (or 

temperature) is known as an equation of state (EOS) [8]. 

The equation of state for a metal is based on two parts the hydrostat, which describe the 

volumetric variation with pressure and energy, and the constitutive relations, which 

describes the stress strain behavior of the material. It must be realized, however, that 

strictly the Mie-Gruneisen equation of state only applies to states close to the reference 

curve, because of the definition of the Gruneisen Gamma. 

In thermodynamics texts, equation of state means a relationship between P v and T, such 

as P V = RT or a more complicated relationship such as the Van der Walls equation of 

state. In the field of shock wave physics, the equation of state seems to mean whatever 
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information about the material properties will allow the user to proceed to a solution of 

the problem that is of interest at the moment [4]. Following are different equation of 

states: 

4.5.3.1 Ideal Gas equation of states 

The simplest equation of state to start with is ideal gas equation of state is the relation 

between pressure volume temperature and universal gas constant R [5]. 

PV =RT  4.24 

4.5.3.2 Noble Able equation of states 

It is simple modification in the ideal gas equation of state, where v is the co-volume and b 

is constant. 

P(v - b) = RT         4.25 

4.5.3.3 Tait Equation of State 

The Tait equation of state is of the form 

0 0
0

0 0

(p +a)v  (p+a)v
E-E = -  

 
   4.26 

Where a, is the pressure constant, p is pressure and v the specific volume and F0 is 

Gruneisen gamma. Tait equation of state is useful for treating solids and liquids, because 

it allows the sound velocity to be chosen to fit the experimental value at zero pressure [4]. 

4.5.3.4 BKW Equation of State 

The Becker-Kistiakowsky-Wilson (BKW) equation of state has been calibrated for 

estimating detonation properties. It has the form: 

PV
1 exp

RT ( ) ( )a a

b b

v T v T


 

 
     

  4.27 
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Where, B and b are constants, & is temperature constant in BKW equation of state, a is 

exponent in BKW equation of state, p is pressure, v the specific volume and T be the 

temperature [4]. 

4.5.3.5 JWL Equation of State 

For design of devices using high explosive, simple equation of state that can be easily 

recalibrated are needed [4]. 

The equation of state most commonly used to describe the behavior of the detonation 

products of explosives in applications of metal acceleration is the Jones-Wilkins-Lee 

(JWL) equation given by 

1 2

1 2

p 1 1R V R V
jwl jwlA e B e E

RV R V V

      
       

   
  4.28 

In this equation jwlA  , jwlB  , 1R  and   are constants for particular explosive, V is the 

relative volume (volume of products/volume of undetonated high explosive HE) and E is 

the relative internal energy(energy/volume of undetonated high explosive HE) [2]. 

4.5.3.6 Mie Gruneisen Equation of State 

The equation of state for inert solids is the Mie Gruneisen given by: 

( )H Hp p e e       4.29 

In the above equation F and e &e functions of density only, represent the pressure and 

internal energy on the principle Hugoniot curve, and  is Gruneisen parameter (gamma) 

defined by 

1

e

p

e
     

   4.30 

An EOS can be expressed either by an analytic equation (or several equations), or by a 

table of numbers. Parameters for the Mie Gruneisen Equation of State are summarized in 

table 2.6. 
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Much work has been done to describe models for different materials, since each material 

requires its own EOS. The more complex the material is, the more complex the model 

will become. There may be a need of a set of EOSs if the material may undergo phase 

changes during the simulation. 

1 . Shock response 

2. Material compaction (particularly in Nextel which is macroscopically porous) 

3 . Phase changes (particularly epoxy vaporization) 

4. Material anisotropy 

5. Anisotropic strength degradation 

6. Coupling of volumetric and deviatoric response. 

The anisotropy, porosity and complex failure mechanisms could be neglected if the 

material being modeled is aluminum [7]. 

The only practical way of obtaining data on the behavior of the material at high strain 

rates is to carry out well-characterized dynamic experiments [8]. 

4.5.4 Hydrocodes 

A short description of some of the hydrocodes that are used for simulations of behind 

amour debris will be given below. 

4.5.4.1 AUTODYN 

The AUTODYN programs are general-purpose engineering software packages that use 

finite difference, finite volume and finite element techniques to solve non linear problems 

in solid, gas and fluid dynamics [32 means 8]. AUTODYN are released in both 2D (from 

1986) and 3D versions (from 1991). AUTODYN employs a coupled methodology to 

allow a numerical solution for a given problem. Different domains of a physical problem 

can be modeled with different numerical techniques most appropriate for that domain. 

The code then couples these domains together in time and space to provide a solution. 

AUTODYN includes the following numerical processors [8]: 

1. Lagrange processor for modeling solid continua and structures. 
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2. Euler processor for modeling fluids, gases and large distortions. 

3. ALE (Arbitrary Lagrange Euler) processor for specialized flow models. 

4. Shell processor for thin structural elements 

5. SPH (Smooth Particle Hydrodynamics) 

All the numerical processors use explicit time integration. Libraries of material data are 

Included. AUTODYN is a product marketed by Century Dynamics [7]. 

4.6 CONCLUSION 

In this chapter, we presented the two types of the impact loading phenomena, the basic 

principles and associated equations of continuum mechanics that are used by the 

Hydrocodes. Then, a brief review of numerical solution techniques for partial differential 

equations is presented. The flavor of different problem formulation techniques used in 

many hydrocodes and Autodyn used for warhead simulations are given. In the proceeding 

chapter numerical techniques adopted for EFP simulations will be described. 
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as its velocity decreases from 1.61 to 0.55km/s as seen from figure 5.33.the equation of 

linear fit is given by 

1.57528 0.0008214V X 
 

Where ‘X’ is the penetration distance in water at any time ‘ V’ is the velocity of EFP at 

that time. 

Table 5.5 comparison of penetration distance in water when EFP has velocity 0.55km/s 

 

In above table velocity in km/s. the penetration is increased to about 240% as 

compared to reference results in case of copper liner deigns. In case of tungsten made 

liner the penetration is increased to about 90% as compared to reference results [24]. 
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5.8 SUMMARY AND CONCLUSIONS 

1. The final shape and velocity of an explosively formed projectile (EFP) is very 

sensitive to its initial parameters like liner curvature, liner thickness, liner type 

(uniform thickness or contour type), explosive type, etc. 

2. By optimizing Liner thickness stability and penetration can be increased  

3. Uniform thickness EFPs (in case of copper liner) eroded rapidly, while contour 

types liner shows less erosion of mass and hence some better penetration through 

water.in this case efficiency is increased to 240% than reference results.  

4. Liner material play very important role in the performance of EFP especially 

under water copper made liners show poor performance, while tungsten liner 

shows much better penetration and no erosion of mass as well. 

5. 90%  increase  in penetration in water as compared with reference results in case 

of tungsten liner 

6. Of all the available explosives HMX shows better results as it has higher density 

and detonation velocity. 

7. Normal river speed water not affecting the EFP performance. 

  

 

5.9 RECOMMENDATIONS 

 

1. Validation of simulation results by experiments 

2. Effect of Moving water with different directions on EFP performance 

3. 3D simulation 

4. Wave shaping concept for better efficiency 
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