
Energy-Aware Distributed
Simulation for Mobile

Platforms: An Empirical Study

By

Fahad Maqbool

00000117243

Supervisor

Dr. Asad W. Malik

Department of Computing

A thesis submitted in partial fulfillment of the requirements for the degree

of MSCS

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(May 2018)

Approval

It is certified that the contents and form of the thesis entitled “Energy-

Aware Distributed Simulation for Mobile Platforms: An Empirical

Study” submitted by Fahad Maqbool have been found satisfactory for the

requirement of the degree.

Advisor: Dr. Asad W. Malik

Signature:

Date:

Committee Member 1: Dr. Mian Muhammad Hamayun

Signature:

Date:

Committee Member 2: Dr. Imran Mahmood

Signature:

Date:

Committee Member 3: Dr. Anis ur Rahman

Signature:

Date:

i

Acceptance Certificate

Certified that final copy of MS/MPhil thesis written by Mr. Fahad Maqbool,

Reg no. 00000117243, of SEECS has been vetted by undersigned, found

complete in all respects as per NUST Statutes/Regulations, is free of pla-

giarism, errors and mistakes and is accepted as partial fulfillment for award

of MS/M Phil degree. It is further certified that necessary amendments as

pointed out by GEC members of the scholar have also been incorporated in

the said thesis.

Signature:

Name of Supervisor:

Date:

Signature (HOD):

Date:

Signature (Dean/Principal):

Date:

ii

Abstract

The rapid increase of the computing power on embedded and handheld de-

vices has made these devices attractive for many applications including sim-

ulation systems. There are a number of Parallel Discrete Event Simulation

(PDES) frameworks that exists but most of these are designed for traditional

cluster systems and are not suitable for battery operated devices where en-

ergy and power consumption are among the major concerns. A new PDES

framework is thus required that takes into account the typical constraints of

the mobile devices. However, before designing a new PDES framework that is

specifically aimed for mobile devices, it is helpful to analyze the performance

of existing frameworks. In this work, well-known Rensselaer’s Optimistic

Simulation System (ROSS) framework has been instrumented for a detailed

analysis of its performance in terms of CPU usage, memory consumption,

and energy and power requirements. This profiling helps in many ways. For

example, one can select the most appropriate synchronizations algorithm for

running the PDES frameworks on the mobile devices. Additionally, identifi-

cation of resource intensive modules within the framework can be extremely

useful in redesign/optimization of these frameworks while being ported to the

heterogeneous environments. Based on these observations, a new simulation

framework is proposed that is specifically designed for running on handheld

iii

iv

devices. The simulation framework, that is called SEECSSim1, is the first

one designed keeping in mind the characteristics and the constraints that are

typical of mobile devices. SEECSSim includes the support for a number of

state-of-the-art synchronization protocols and, thanks to its flexible design,

the users can easily integrate any other simulation model/synchronization

algorithm of their choice. The performance of SEECSSim has been studied

using a well-known simulation model (i.e. PHOLD) for different synchroniza-

tion algorithms.

Keywords — Parallel and Distributed Computing, Discrete Event Simula-

tion (DES), Performance Analysis, Simulations, PHOLD, Mobile Computing

1Acronym for School of Electrical Engineering and Computer Science Simulator

Dedication

Dedicated to my mother, Zahida Maqbool, who taught me to persevere and

prepared me to face the challenges with faith and humility. She was constant

source of inspiration to my life. Although she is not here to give me strength

and support, I always feel her presence that used to urge me to strive to

achieve my goals in life.

v

Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational

institute, except where due acknowledgement has been made in the thesis.

Any contribution made to the research by others, with whom I have worked

at NUST SEECS or elsewhere, is explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product

of my own work, except for the assistance from others in the project’s de-

sign and conception or in style, presentation and linguistics which has been

acknowledged.

Author Name: Fahad Maqbool

Signature:

vi

Acknowledgment

First of all, I am very thankful to Allah for His countless blessings and His

Prophet Muhammad (S.A.W), who taught us true meaning of life. Secondly,

I would like to thank my father for his silent support that always inspired

me to achieve my goals in life. And I would like to specially thank and pay

my regards to my advisor, Dr. Asad W. Malik, for his invaluable guidance

and immense help in every possible way.

vii

Table of Contents

1 Introduction 1

1.1 Problem Statement . 6

1.2 Thesis Outline . 7

2 Background 9

2.1 Parallel Discrete Event Simulation (PDES) 9

2.2 Rensselaer's Optimistic Simulation System (ROSS) 12

2.3 PHOLD Benchmark Model . 12

2.4 Instrumentation Tools . 13

2.4.1 Performance Profiling – Intel PIN tool 13

2.4.2 CPU Usage – Intel Vtune Amplifier 13

2.4.3 CPU Cores Temperature – Intel® SoC Watch 14

2.4.4 Energy, Memory Consumption – Allinea MAP 14

2.4.5 Energy, Memory Consumption for Android – Trepn

Profiler . 14

3 Literature Review 15

4 Instrumentation of ROSS 21

4.1 Execution Time . 22

4.2 Memory Consumption . 22

viii

TABLE OF CONTENTS ix

4.3 Efficiency, GVT computation, Fossil Collection and Rollbacks 24

4.4 Wait Time . 27

4.5 Average CPU Usage . 28

4.6 Energy Consumption . 29

4.7 Power Consumption . 29

4.8 CPU Temperature . 31

4.9 Functional Level Execution Time 32

4.10 Discussion - ROSS Framework 35

5 SEECSSim – Proposed Simulation Suite 37

5.1 Architecture of SEECSSim . 37

5.2 Time-Stepped Model . 38

5.3 Synchronous Conservative Model 40

5.4 Asynchronous Conservative Model 41

5.5 Optimistic Model . 42

6 Result & Discussions 45

6.1 Results – Benchmark Application Over Mobile Device 45

6.2 Results – Mobile Device Resource Utilization 49

6.2.1 CPU Usage . 50

6.2.2 Memory Consumption 51

6.2.3 Energy Consumption 52

6.2.4 Total Execution Time 54

6.2.5 Function Level Execution Time 55

6.3 Discussion . 58

7 Conclusion 59

7.1 Future Work . 60

List of Figures

1.1 Types of Synchronization Algorithms 3

4.1 Memory usage analysis . 23

4.2 Wait Time Analysis for PHOLD model 27

4.3 Average CPU usage for PHOLD model 28

4.4 Energy consumption analysis 30

4.5 Power consumption analysis 30

4.6 CPU temperature statistics 31

5.1 The SEECSSim Architecture 39

6.1 Simulation topology of the PHOLD benchmark 45

6.2 PHOLD with Time-Stepped synchronization on the mobile

platform . 46

6.3 PHOLD with CMB NULL messages synchronization on the

mobile platform . 47

6.4 PHOLD with Time Warp synchronization on the mobile plat-

form . 48

6.5 Event rate for different synchronization algorithms 49

6.6 Average CPU usage for different synchronization algorithms . 50

6.7 Memory consumption for different synchronization algorithms 51

x

LIST OF FIGURES xi

6.8 Energy consumption for different synchronization algorithms . 52

6.9 Energy Consumption – Time Warp vs. Time Warp with Wolf

Calls . 53

6.10 Total Execution Time – Tree Barrier, Time Warp and Time

Warp with Wolf Calls . 54

6.11 Total Execution Time for different synchronization algorithms 55

List of Tables

2.1 Commonly Used PDES Frameworks 11

4.1 Results - Serial Execution of PHOLD with Varying Number

of LPs . 25

4.2 Results - Parallel Conservative Execution of PHOLD with

Varying Number of LPs . 25

4.3 Results - Parallel Optimistic Execution of PHOLD with Vary-

ing Number of LPs . 25

4.4 Functional Level Execution Time for the Serial Version of ROSS 32

4.5 Functional Level Execution Time for the Parallel Conservative

Version of ROSS . 33

4.6 Functional Level Execution Time for the Parallel Optimistic

Version of ROSS . 34

4.7 Summary of Results (average) for Serial, Parallel Conservative

and Parallel Optimistic Algorithms 36

6.1 Embedded System Specification 46

6.2 Functional Level Execution Time for the Time Stepped Syn-

chronization Algorithm . 56

6.3 Functional Level Execution Time for the Tree Barrier Syn-

chronization Algorithm . 56

xii

LIST OF TABLES xiii

6.4 Functional Level Execution Time for the CMB NULL Mes-

sages Synchronization Algorithm 57

6.5 Functional Level Execution Time for the Time Warp Synchro-

nization Algorithm . 57

6.6 Summary of the Average Resource Utilization for synchroniza-

tion algorithms in SEECSSim 58

Chapter 1

Introduction

Field of Parallel and Discrete Event Simulation (PDES) system has evolved

significantly since its birth in 1970s and 80s [1]. However, it still remains an

active area of research because of its applications in domains ranging from

military, manufacturing, communication networks, computer systems, VLSI

design, design automation, to air traffic and road traffic systems. Simulation

of a system may have several objectives, including: (i) understanding be-

havior of a system; (ii) obtaining estimates of performance of a system; (iii)

guiding the selection of design parameters; (iv) validation of a model. The

availability of low cost microcomputers has introduced simulation to many

real life applications.

One kind of discrete simulation is the fixed time increment, or the time-

stepped approach, the other kind is discrete-event method. At the basic

level, a Discrete Event Simulation (DES) consists of an ordered list of events

called event-list, event execution function and state variables that represent

the state of the system being modeled. DES Algorithm repeatedly performs

the following steps: (1) removes the event with the minimum simulation time

from the event-list; (2) evaluates the event message and executes the event

1

CHAPTER 1. INTRODUCTION 2

execution function accordingly; (3) it modifies the state variables and (4)

generates further events.

Traditional simulation systems are sequential, however, many practical

simulations, e.g. in engineering applications, consume several of hours (and

even days) on a sequential machine. Parallel and distributed computing envi-

ronments can be used to reduce execution time of such simulation programs.

Parallel and Discrete Event Simulation (PDES) reduces the overall execution

time of a simulation by executing it on a parallel or distributed computers.

Thus, Parallel and distributed simulation systems have emerged with the

concept of utilizing high-performance computing infrastructure to efficiently

execute the complex simulations models [2]. PDES is a collection of processes

running in parallel that interact through messages. These messages are used

to encapsulate the events and they are used to drive the simulation among

different processes. Events that simultaneously run on multiple computing

systems need to be synchronized. Synchronization (or Time management)

algorithms are used to ensure that events are processed in correct order ad-

hering local causality constraint. Local causality constraint ensures that a

parallel or distributed simulation produces the same results as a sequential

execution.

Fig. 1.1, shows the classification of traditional synchronization algorithms.

There are two basic categories of time flow management:

� Time stepped approach, where the simulation time is evenly spaced

along a sequence of equal sized time steps or intervals.

� Event driven approach, where the simulation time does not progress in

time steps but only when something interesting happens that is referred

to as an “event.”

CHAPTER 1. INTRODUCTION 3

Time stepped approaches are only limited to specific applications. PDES

community widely adopted event driven approaches that are categorized as

two famous synchronization mechanisms, (1) conservative and (2) optimistic.

In conservative approach causality error is strictly avoided by applying strate-

gies to determine when it is safe to process an event. Whereas, in optimistic

approach simulation continues until causality error is detected and then the

error is handled by applying rollback mechanism for recovery and later re-

execution of rollback events. There are two types of conservative mechanisms

that are synchronous and asynchronous. Synchronous algorithms require

global synchronization to compute Lower Bound on Timestamp (LBTS) thus

all LPs proceed in synchronous fashion. On the other hand, asynchronous

algorithms do not use global synchronization mechanism and LPs proceeds

asynchronously.

Figure 1.1: Types of Synchronization Algorithms

The field of parallel & distributed simulations have been strongly influ-

enced by emerging technologies. These technologies include massive parallel

systems, Cloud computing, GPU computing, embedded computing systems

and sensor networks. With the development of technology, use of electronic

devices is growing rapidly. Applications and services are hosted inside the

CHAPTER 1. INTRODUCTION 4

Cloud and can be accessed through any device connected to the internet. In

addition, with the inception of internet-of-things (IoT), heterogeneous de-

vices can become part of grid network. Consequently, available computation

platforms have changed as compared to the conventional cluster environment.

This advancement in technology introduced new challenges for research com-

munity. In Cloud computing environment, the workload on a single node can

affect the whole simulation process executing on the system. This can cause

longer wait time for event execution that can give rise to the straggler mes-

sage problem [3–5].

Similarly, with IoT, where any computing device can become a part of a

network to share its computing resources and store data. Conventional sim-

ulation protocols fail to perform efficiently on such network or devices. Most

of the sensors and smart-phones are resource constrained, cannot keep a large

amount of data and perform large computations. Furthermore, the sending

and receiving of data also costs in terms of energy and data transfer rate.

Because of ever growing demand for mobile devices and embedded systems in

microelectronics market, many modern applications are particularly designed

to execute on mobile platforms. Overall performance in terms of energy con-

sumption is the primary design factor for such applications. Therefore, to

improve the performance and energy efficiency of modern computing appli-

cations and platforms, it is important to accurately estimate their power and

energy consumption and identify critical parameters and modules for further

optimizations.

Execution of large-scale distributed simulation over mobile and embedded

devices opens new research areas that need to be explored. Such research

fields include energy-aware distributed simulation and dynamic data-driven

applications. Many aspects of such applications have already been focused in

CHAPTER 1. INTRODUCTION 5

research community. These systems can be useful in many applications such

as manufacturing, telecommunications, preparation for inclement weather,

defense, intelligent transportation systems and crisis management systems.

In battery operated systems, energy consumption is a major concern;

however, minimizing power consumption may not always result in low energy

consumption. Decreasing the frequency at which the CPU operates results in

low power consumption but it increases the total time required to complete

the task. Thus, computations require more time to complete. The problem

becomes more complex in an environment where heterogeneous devices are

participating in distributed simulations.

In traditional parallel and distributed simulation, logical processes (LPs)

are mapped onto different systems or processing cores. These LPs communi-

cate with each other by exchanging timestamped messages. However, process

mapping on heterogeneous devices or resource constraint devices can affect

the performance of entire simulation. Some simulation algorithms need sig-

nificantly large storage capacity to store the history of processed events and

more computation is required to undo out-of-order execution. Therefore, it

increases the number of memory accesses, sending and receiving new event

messages and execution of events; that requires significant amount of energy.

Thus, resource constraint devices are not suitable for traditional simulation

algorithms.

Traditional PDES protocols are very well tested and designed for dis-

tributed systems and Cloud infrastructure but still they need to be tested

for handheld, mobile and IoT devices. Moreover, traditional frameworks are

not designed to support mobile or handheld devices that have memory and

energy constraints. Therefore, thorough analysis of traditional PDES frame-

works are required to migrate resource hungry modules to the cloud and to

CHAPTER 1. INTRODUCTION 6

be accessed through well-defined services.

As a case study, an initial instrumentation of a PDES framework (Rens-

selaer's Optimistic Simulation System - ROSS) is performed on a desktop

computing environment to measure power, CPU usage energy and memory

consumption using PHOLD benchmark. This case study includes the results

of serial, parallel conservative and parallel optimistic approaches. This al-

lows us to understand resource utilization of simulation approaches before

adopting the best synchronization model for handheld embedded and IOT

devices. The objective is to precisely identify the modules that are resource

hungry, so those can be executed on cloudlets and traditional frameworks.

Accurately identifying these modules allows simulations to be adapted to

handheld devices with little modification.

Using these results, SEECSSim – a distributed simulation suite designed

to work on mobile and embedded devices is proposed. It includes the core

synchronization algorithms as classified in fig. 1.1. The proposed suite in-

cludes Chandy-Misra-Bryant CMB NULL message algorithm, Time-Stepped,

Tree Barrier, Time Warp and Time Warp with Wolf algorithm (wolf calls).

SEECSSim, will help researchers in selecting suitable algorithms for mobile

and embedded systems. A correctly selected energy efficient algorithm can

exploit the true potential of embedded systems for highly scalable parallel

and distributed simulation.

1.1 Problem Statement

In battery operated systems, energy consumption is a major concern; how-

ever, minimizing power consumption may not always result in low energy

consumption. Decreasing the frequency at which the CPU operates results

CHAPTER 1. INTRODUCTION 7

in low power consumption but it increases the total time required to complete

the task. Thus, computations require more time to complete. The problem

becomes more complex in an environment where heterogeneous devices are

participating in distributed simulations.

Traditional PDES protocols are very well tested and designed for dis-

tributed systems and Cloud infrastructure but still they need to be tested

for handheld, mobile and IoT devices. Moreover, traditional frameworks are

not designed to support mobile or handheld devices that have memory and

energy constraints. Therefore, thorough analysis of traditional PDES frame-

works are required to migrate resource hungry modules to the cloud and to

be accessed through well-defined services.

1.2 Thesis Outline

Chapter 2, presents a brief background about the parallel and distributed

discrete event simulation and provides a brief about different existing frame-

works while specially focusing on ROSS simulation framework, it also lists

various tools and techniques that are used to perform this study. Chapter 3 is

about the literature review of energy aware computing in the domain of High

Performance Computing (HPC), mobile computing and sensor networks. It

also includes the literature about different profiling methods, techniques and

tools. Chapter 4 presents the instrumentation results of ROSS and discusses

about various aspects of the performance analysis. Chapter 5 presents the

main contribution of this thesis. It includes the discussion about the pro-

posed simulation framework for mobile devices and different algorithms that

are included in this framework. Chapter 6 discusses the results of PHOLD

benchmark application over mobile device and investigates the performance

CHAPTER 1. INTRODUCTION 8

of different algorithms. Finally, chapter 7 concludes this thesis and presents

possible future directions.

Chapter 2

Background

A brief description of Parallel and Distributed Simulation platforms specially

Rensselaer's Optimistic Simulation System (ROSS) is presented in this sec-

tion. ROSS simulation framework is selected to present a case study for the

instrumentation of PDES systems with different synchronization algorithms.

Some Important features of ROSS framework are discussed and explained.

Moreover, the software tools and the main techniques used for performing

instrumentation and power consumption analysis are also discussed in this

section. In Table 2.1, different PDES frameworks are briefly explained to

have an understanding of how some of these frameworks have be designed

previously.

2.1 Parallel Discrete Event Simulation (PDES)

A Discrete Event Framework is a system where state changes (events) happen

at discrete occurrences in time, and events take zero time to happen. It is

accepted that nothing (interesting) happens between two continuous events,

that means, no state change happened in the system between the events.

9

CHAPTER 2. BACKGROUND 10

Such frameworks that can be categorized as Discrete Event Frameworks can

be modeled using Discrete Event Simulation (DES) Systems.

A Discrete Event Simulation (DES) comprises of events and Logical Pro-

cesses (LPs). LPs are agent entities in a simulation system and store the

simulation system states using state variables. A DES continues the execu-

tion by sending event messages between LPs to communicate state changes.

It is important to execute events while adhering local causality constraint.

It means if the simulation system does not respect causal ordering, causality

error occurs. This causality error is a logical error that occurs if an event

with higher value of time-stamp is executed before an event with smaller

time-stamp [6]. In a discrete event simulation, a scheduler is the core part

of the simulation engine. Hence, performance of a discrete event simulation

is directly influenced by the working of scheduler. The DES can be imple-

mented using sequential and parallel techniques. in a sequential approach

events are executed in time-stamp order in a serial manner. In this simplest

approach main focus is to execute a simulation model without concerning the

performance in terms of fast execution. While there can be many Logical

Processes (LPs) in sequential DES, all events are stored in a single priority

queue ordered by their virtual timestamp and executed one by one like an

ordered sequence [7].

Similarly, Distributed and Parallel Discrete Event Simulation (PDES),

provides the capability of executing a single discrete event simulation pro-

gram on multiple cores using parallel computing [8]. There are two main

categories of time management/scheduling mechanisms that PDES widely

follow; conservative and optimistic. In conservative approach causality er-

rors are strictly avoided by applying strategies to determine when it is safe

to process an event. While in optimistic approach simulation continues until

CHAPTER 2. BACKGROUND 11

a causality error is detected and this situation is recovered by means of a

rollback mechanism and later re-execution of rolled-back events.

Table 2.1: Commonly Used PDES Frameworks

S. No.
OS PDES
Frameworks

Language
Simulation
Model

Description

1
GloMoSim
(Qualnet)

C-based
PARSEC

Hybrid

Developed at the University of California, Los Angeles, Global Mobile system
Simulator (GloMoSim) is a set of library modules, developed for parallel execution
of wireless network simulations [9]. It is an extensible simulator implemented on
shared memory and distributed memory system.

2 DaSSF
C++
Java

Conservative

DaSSF (Dartmouth Scalable Simulation Framework) is a Scalable Simulation
Framework (SSF) for discrete-event simulation [10].The SSF is designed to achieve
interoperability with other SSF compliant frameworks. DaSSF is capable of
simulating very large-scale network with tens of thousands of complex nodes.

3
ARTIS+
GAIA

C with
Java
bindings

Hybrid

ARTIS (Advanced RTI System) is a middleware for Parallel and Distributed
Simulation (PADS) that can simulate complex systems [11]. It provides a set of
simple services to simulate massively populated system models. ARTIS uses
an adaptive approach and makes use of physical allocation of LPs for efficient
execution and communication. It supports different communication systems
such as shared memory, MPI and network communication. GAIA (Generic
Adaptive Interaction Architecture), built on th top of ARTIS, is also an adaptive
middleware that dynamically reallocates the LPs to optimize the simulation
execution [12]. GAIA uses a migration policy to partition and allocate the
interacting components over many LPs dynamically.

4 LUNES C Conservative

LUNES (Large Unstructured NEtwork Simulator) is an agent-based simulator
to model complex large-scale networks [13]. Its modular approach separates
the phases of topology creation, protocol simulation and performance analysis.
LUNES uses dynamic model partitioning and simulation middle-ware services
provided by GAIA and ARTIS frameworks respectively.

5 ScipySim Python Conservative

ScipySim is a distributed simulator to simulate heterogeneous systems developed
using SciPy scientific computing platform [14]. It is based on the generalized
Kahn theory of heterogeneous system semantics. It was designed to provide
basic simulation capability to develop simulations using Python.

6 ROOT-Sim C Optimistic

ROOT-Sim (The ROme OpTimistic Simulator) is a MPI based parallel simulation
platform developed using C/POSIX technology [15]. To achieve high scalability
and performance it uses a set of optimized protocols to minimize the run-time
overhead.

7 Spades/JAVA Java Optimistic

SPaDES/Java (Structured Parallel Discrete-event Simulation in Java) is a
process oriented parallel simulation [16]. It was designed to isolate the
synchronization and parallelization implementation details. It supports both
sequential and parallel simulations.

8 ErlangTW Erlang Optimistic

ErlangTW is a parallel and distributed simulator based on Time Warp
synchronization [17]. Erlang is a concurrent programming language specifically
designed to build distributed systems. ErlangTW simulation model can be
executed on single-core processors, shared memory multiprocessors and
distributed memory clusters.

9 GO-Warp GO Optimistic

GO-Warp simulator, implemented using GO programming language, is also
based on Time Warp synchronization [18]. It uses Samadi's algorithm for Global
Virtual Time (GVT) computation. Using concurrent execution and inter-process
communication mechanisms of GO, LPs are allowed to proceed execution
without blocking.

CHAPTER 2. BACKGROUND 12

2.2 Rensselaer's Optimistic Simulation Sys-

tem (ROSS)

In this study, ROSS, a PDES framework is used that is based on Message

Passing Interface (MPI). ROSS is a high performance and extremely modular

PDES system that uses small (and constant) amount of memory to keep

state variables and execute events [19]. Its modular implementation, use of

reverse computation, Kernel Processes and Fujimoto's GVT (Global Virtual

Time) algorithm makes it a state of the art simulation system to perform

experimental studies. Continuous analysis shows that ROSS outperforms the

famous GTW (Georgia-Tech Time Warp) System. In this study, performance

and power consumption of the ROSS simulation implementation is analyzed

under classical PHOLD simulation model benchmark. While ROSS is based

on optimistic scheduling approach it also provides implementation for both

conservative and sequential approaches. Our study includes performance and

power consumption analysis of all sequential, conservative and optimistic

approaches.

2.3 PHOLD Benchmark Model

PHOLD is one of the commonly used benchmark models used to analyze

the performance of synchronization algorithms designed for parallel and dis-

tributed simulations. It is the parallel version of HOLD model, initially used

for the performance analysis of sequential event list algorithms. PHOLD

model consists of N connected logical processes (LPs). On receiving and

processing an event message, LPs sends an event to its neighboring LP, thus

a fixed message population circulates throughout the model. The message

CHAPTER 2. BACKGROUND 13

size, message population size, timestamp increment and the message routing

probabilities can be varied to test the simulation.

2.4 Instrumentation Tools

Various tools have been employed for carrying out an extensive analysis of

the PDES frameworks. These include tools developed by Intel such as PIN-

based tool, Vtune Amplifier and SoC Watch [20] as well as profiling tool

Allinea Forge Map (renamed as Arm Map) from Arm [21] and Trepn. A

more detailed description of each tool along with its usage follows.

2.4.1 Performance Profiling – Intel PIN tool

PIN-tools provide a dynamic memory instrumentation framework to perform

instrumentation on both IA-32 and x86-64 architectures. The PIN framework

can be used to analyze applications running in the user-space and to perform

instrumentation on compiled binary files.

2.4.2 CPU Usage – Intel Vtune Amplifier

Intel® VTune� Amplifier is a profiling tool used for analyzing the code

for better performance by profiling the system CPU usage. It provides a

user-friendly interface to analyze and obtain results using enriched perfor-

mance insights. It helps the application developers to write code that is

more threaded, scalable, vectorized and tuned. VTune� amplifier is used to

check the average CPU usage and the amount of time that ROSS spends

on locks and waits in a parallel setup. The results are used to estimate the

speedup that can be obtained by parallel version with respect to the serial

execution.

CHAPTER 2. BACKGROUND 14

2.4.3 CPU Cores Temperature – Intel® SoC Watch

Intel SoC is a command-line utility designed by Intel [20] to study the tem-

perature profiles of CPU cores. SoC watch is used to study the behavior of

ROSS with an increasing load on each LP.

2.4.4 Energy, Memory Consumption – Allinea MAP

Allinea MAP is a profiling tool designed for a wide range of applications in-

cluding parallel, single threaded and multi-threaded (Pthread, OpenMP, and

MPI) applications that are based on Fortran, C, and C++ [21]. It performs

a thorough analysis of any target application, pinpoints the bottlenecks in

the execution code and keeps logs for power, energy and memory consump-

tion traces. The Allinea forge MAP tool is used to get insight of the power,

energy and memory consumption of ROSS while running the PHOLD bench-

marking model [22,23] with a variable number of logical processes (LPs).

2.4.5 Energy, Memory Consumption for Android – Trepn

Profiler

Trepn profiler1, a product of Qualcomm, is a diagnostic tool that lets the

developers profile the performance of Android applications running on mo-

bile devices. It is a hardware sensor-based power profiler that can help in

optimizing code for CPU usage, frequency, memory statistics, energy con-

sumption and network usage. It can display data in real-time or store it

in a log file for a later off-line analysis. Trepn can analyze one particular

application, or the device as a whole.

1https://developer.qualcomm.com/software/trepn-power-profiler

Chapter 3

Literature Review

Despite the need of profiling power and performance of simulation protocols

and creating energy-aware PDES platforms, there are only few articles that

address this issue. There exists substantial literature work related to energy-

aware computing in the domain of High-Performance Computing (HPC),

mobile computing platforms and Wireless Sensor Networks (WSN). More-

over, different profiling methods, techniques, and tools have been proposed

over the years. In this section, brief discussion of some related contributions

is presented for performance analysis and energy-aware simulation for HPC

systems as well as mobile and embedded systems.

Many tools have been developed over the years for profiling performance

and power consumption to generate, analyze and visualize the data of sys-

tems and applications from functional components. Tuning and analysis

utilities [24], [25], [26], [27] and [28] provide support for instrumentation and

performance visualization of parallel applications. Isci et al. [29] presented an

approach to estimate power consumption using performance logs. Similarly,

authors in [30] provided a framework called PowerPack that can be used for

energy profiling and analysis of parallel applications on multi core proces-

15

CHAPTER 3. LITERATURE REVIEW 16

sors. Authors in [31] indicated that power profiles always correspond to the

characteristics of the application and increasing number of nodes results in

more power consumption and not always results in better performance. Au-

thors in [32] analyzed the power consumption in relationship with software

components. Their analysis shows that in different software scenarios, power

consumption on a general-purpose computer system can vary from 12% to

20%. Authors in [33] and [34] focused on low power embedded systems to

analyze and benchmark HPC applications for their energy consumption.

There is substantial work available in power-aware computing and various

techniques has been deployed to reduce the power consumption [35], [36]

and [37]. Computing energy consumed by each machine instructions is one

way to profile the energy consumption of all functional components. Tiwari

et al. [38] discussed that functional level profiles for energy consumption

obtained through computing energy consumed by each machine instruction.

However, the proposed work is only limited to function level energy marking.

Whereas, communication between processes is also holding a major portion

is parallel and distributed simulation. In a distributed simulation, different

techniques are used to reduce the communication delay between processes

[39]. One such approach is to utilize the different cores available in a physical

system [40]. However, the synchronization algorithms incurred overhead

which is difficult to reduce.

Most of the existing work on energy-efficient computing has been done for

HPC environment [41–44]; where different techniques are used to optimize

the use of energy such as DVFS, process migration, task consolidation and

Dynamic Power Management (DPM). R. Child et al. in [45] explored the

features of Dynamic Voltage and Frequency Scaling (DVFS) to enhance the

performance and reduce power consumption by repeatedly reducing the op-

CHAPTER 3. LITERATURE REVIEW 17

erating frequencies of the cores. The authors investigated energy efficiency

through DVFS while for Time Warp simulation algorithm. The proposed

study is conducted over physical systems using MPI version of wrapped TW

simulator.

Similarly, G. Tom et al. [46] described the integration of energy-aware

module to simulate the energy consumption of distributed systems. Authors

have provided an overview of energy-aware simulations and described DVFS

simulation tools required for obtaining accurate simulations in terms of power

consumptions. This work is mostly related to the energy of cloud systems;

therefore, authors have explored the DVFS and cloud simulators in detail.

Moreover, they have also added DVFS features in one of the cloud simulator.

Communication is a common performance bottleneck for fine grained par-

allel applications like ROSS,. Authors in [47] and [48] have discussed the tech-

niques for improving network performance by reducing lock contention and

overlapping communication. Jagtap et al. [49] analyzed the performance of

ROSS simulation framework on two different platforms and compared multi-

threaded implementation with MPI based implementation. Erazo et al. [50]

presented a case study to profile the energy consumption of distributed sim-

ulation tested it on their PRIME simulator [51]. The authors of PRIME Sim

concluded that using more nodes to achieve parallelism results in significant

increase in energy consumption.

In [52], Fujimoto shared future research challenges for PDES. These chal-

lenges include large-scale simulation of complex networks, exploiting GPU’s,

Cloud computing exploitation, composable simulation and energy consump-

tion of PDES. In PDES energy consumption is less explored with respect to

other aspects. The minimization of power consumption through change in

clock rate (DVFS) can eventually increase the overall energy required to com-

CHAPTER 3. LITERATURE REVIEW 18

plete the task. The schemes such as DVFS are more suited for data centers

and super computers. Therefore, for IoT, the power-aware and energy-aware

techniques are more important for design consideration of PDES over hand-

held devices as energy consumption is based on many factors such as network

communication, memory usage etc.

Traditional simulations are designed for cluster environment. With the

advancement of technology, easy availability of infrastructure-as-a-service of-

fers flexible computing environment on a pay-as-you-go model. New PDES

techniques are proposed for such cloud architectures. In [4] authors studied

the execution of conservative algorithm over various configurations of Ama-

zon EC2. The objective is to see the suitability of cloud platform for dis-

tributed discrete event simulation. For conservative algorithm, null messages

play a significant role in the performance of whole simulation system. There-

fore, the authors tested various variations of synchronization algorithms such

as Chandy−Misra−Bryant, time-out based null message sending, deadlock

avoidance based null message, on-demand null message, timeout protocols

etc. The results showed that timeout and blocking protocol performed bet-

ter in a cloud environment.

Cloud provides a multi-tenant paradigm, therefore, execution of opti-

mistic PDES over cloud results in a large number of rollbacks. This is because

systems are not equally loaded in terms of number of jobs. Moreover, some

tasks require more computation whereas other need more communication.

Similarly, Asad et al. [3] proposed a PDES model for cloud environment to

improve the performance of optimistic parallel simulation through dynam-

ically defining the barrier points, to reduce the total number of rollbacks.

The experimental section shows the significant gain in terms of performance

over traditional optimistic simulation.

CHAPTER 3. LITERATURE REVIEW 19

Similarly, Yihua Wu et al. [53] presented a BOINC based system for

Cloud environment to execute parallel and distributed simulation over pri-

vate cloud infrastructures. BOINC is a middle-ware developed for volunteer

and grid computing. It is an open-source framework designed to support

task distribution and result gathering in client server model. However, use

of private cloud is not a recommended option due to its cost and other man-

agement factors. The main reason for adopting private clouds is due to the

sensitive nature of simulations results.

In the context of distributed simulation over mobile/embedded devices,

Biswas et al. [54] discussed the techniques to create the power profiles. En-

ergy consumption of simulation model, engine, computations and communi-

cations is separated to understand the energy consumption of each aspect of

simulation. They have also presented the comparative analysis of energy con-

sumed by Chandy-Misra-Bryant and YAWNS algorithms. Similarly, Malik

et al. [55] have analyzed the energy consumption of Time Warp protocol over

smart phones. Moreover, on-line distributed simulation such as traffic pre-

diction system requires significant amount of energy. Neal et al. [56] analyzed

the energy consumption of data driven traffic simulations on mobile devices.

Online traffic prediction requires significant amount of energy therefore, un-

derstanding the energy consumption at various levels, helps in optimizing

the use of resources. The authors presented the empirical investigation of

modules such as data transmission, gathering and traffic computations. Fu-

jimoto et al. [57] has presented a detailed work on power efficient distributed

simulation. The authors have covered few conservative and optimistic syn-

chronization algorithms along with discussion on energy efficient distributed

simulations. The main objective of their work is to analyze the power con-

sumption of various distributed simulation techniques along with profiling

CHAPTER 3. LITERATURE REVIEW 20

of simulation engine, application, and communication. The experiments are

conducted on multiple configurations, such as Jetson TK1 development board

and quad-core LG Nexus 5 cellular phone.

In this study, a detailed study of existing traditional algorithms on hand

held devices is presented. The analysis includes the execution time, CPU,

memory usage, energy consumption and event rate. This article will serve

as a guideline for PDES community especially the new researchers, to help

them in selecting the right protocols for embedded systems keeping in view

the resource constraints.

Chapter 4

Instrumentation of ROSS

This chapter presents an in-depth discussions of the results obtained from

the analysis of the ROSS framework. The results reported in this section are

obtained averaging multiple independent simulations runs over the specified

system while using the profiling tools discussed in Section ??. The PHOLD

simulation model is used to benchmark the ROSS framework. In order to

determine the adaptability of the different synchronization algorithms (serial,

conservative and parallel) to mobile devices, these algorithms are compared

in terms of their CPU usage, memory consumption, total execution time,

and energy and power consumption.

For this study, a 4th generation Intel® Core� i7-4790 processor (Intel

Haswell family) 3.6 GHz (Hyper-Threading) with 4 cores, 8 threads, 8 MB

Cache, 8 GB RAM, 5 GT/s DMI2 and Ubuntu 14.04.3 operating system with

kernel version 3.19 is used.

21

CHAPTER 4. INSTRUMENTATION OF ROSS 22

4.1 Execution Time

Results for the PHOLD benchmark for serial/sequential, conservative and

optimistic approaches running on top of the ROSS framework are presented

in Tables 4.1, 4.2 and 4.3 respectively. In all simulations, a linear mapping

between the Logical Processes (LPs) and the physical processors has been

used. The total number of events is kept constant while also works as stop-

ping condition for the simulation. Results show that as expected, the serial

execution takes more time as compared with parallel conservative and par-

allel optimistic approaches. Using 1024 LPs, the sequential simulation took

34.827 seconds to complete whereas the conservative and optimistic parallel

approaches took 21.4 and 24.7 seconds respectively. Further increasing the

number of LPs to 524288, the sequential execution took 8.72 hours whereas

parallel conservative took 4.04 hours and parallel optimistic execution 5.99

hours. Results shows that the conservative simulation execution outperforms

the other techniques across the range of LPs. As discussed earlier, in opti-

mistic simulation, there are out of order event executions that cause some

events to rollback and then re-executed. Thus the total number of events is

larger than the number of committed events and that results in performance

reduction when compared to the conservative approach. Moreover, functions

such as GVT computations, fossil collection and reverse computation that are

required by the optimistic simulator are among the reasons of the increased

execution time.

4.2 Memory Consumption

In this section, the memory usage results for the PHOLD execution on the

ROSS framework are presented. Using 1024 LPs, the parallel conservative

CHAPTER 4. INSTRUMENTATION OF ROSS 23

Figure 4.1: Memory usage analysis

used 11,528 MBs and the optimistic used 29,768 MBs. The memory us-

age with 524,288 LPs, the parallel conservative used 105,552 MBs and the

optimistic 123,792 MBs to complete a simulation run. Comparing the con-

servative and optimistic approaches in Figure 4.1, a similar trend is observed

in memory usage with conservative approach requiring the least amount of

memory. Optimistic approach requires more memory as every LP must im-

plement the rollback mechanism, therefore, the LPs need to maintain the

history of all the processed events to be able to handle transient and anti-

messages. The memory usage is also based on execution time. The serial

execution is taking the maximum execution time as reported in Table 4.1,

thus, the memory usage reported for serial is more for large number of LPs

e.g. for 524288 LPs the memory usage is around 388176 MBs.

CHAPTER 4. INSTRUMENTATION OF ROSS 24

4.3 Efficiency, GVT computation, Fossil Col-

lection and Rollbacks

These important metrics for simulation synchronization schemes are reported

in Tables 4.1, 4.2 and 4.3. The term efficiency is defined as the ratio between

the number of committed events to the total number of events. Since there

is no rollback mechanism in serial and parallel conservative approaches, both

approaches show a 100% efficiency. On the other hand, in the optimistic

approach, the committed events are always less than the total number of

events (due to the rollback mechanism); therefore, the efficiency of parallel

optimistic synchronization is always lower than 100%. The total amount of

events processed in all three approaches ranged from 0.102 to 52,432 billion

events with an increasing number of LPs. Another important factor to mea-

sure the performance efficiency of the simulation system is the processing

rate of events. As specified by the PHOLD model, increasing number of LPs

leads to an increase in the number of events to be processed and thus the

communication overhead increases, resulting in decreased event rate. The

event rate (measured as number of events per second) is the lowest in serial

execution (ranging from 2.94 to 1.67 millions events/second) and the highest

for the conservative approach (ranging from 4.78 to 3.60 millions events/sec-

ond), while optimistic lies in the middle (ranging from 4.14 to 2.42 millions

events/second). The reason behind this decreasing of the event rate while

increasing the total number of LPs is due to the scheduling and communi-

cation overhead between the LPs. Comparison results for above-mentioned

parameters suggests that the conservative approach outperforms the other

options.

In parallel optimistic simulation, the Global Virtual Time (GVT) acts

CHAPTER 4. INSTRUMENTATION OF ROSS 25

Table 4.1: Results - Serial Execution of PHOLD with Varying Number of
LPs

LPs
1024 2048 4096 8192 16348 32768 65536 131072 262144 524288

Running Time (seconds) 34.827 72.272 148.343 303.874 658.453 1556.235 3516.398 7768.777 3730.151 31381.415

Event Rate (million events/sec) 2.94 2.83 2.76 2.70 2.49 2.11 1.86 1.69 1.76 1.67

Memory Allocated (MB) 12080 12816 14288 17232 23120 34896 58448 105552 258448 388176

Memory Wasted (MB) 533 341 469 213 213 213 213 212 213 210

Total Events Processed (billions) 0.102 0.205 0.410 0.819 1.638 3.277 6.554 13.107 6.554 52.428

Efficiency (%) 100 100 100 100 100 100 100 100 100 100

Table 4.2: Results - Parallel Conservative Execution of PHOLD with Varying
Number of LPs

LPs
1024 2048 4096 8192 16348 32768 65536 131072 262144 524288

Running Time (seconds) 21.432 42.233 83.687 169.071 375.403 770.323 1598.350 3513.903 7212.069 14542.773

Event Rate (millions events/sec) 4.78 4.85 4.89 4.85 4.36 4.25 4.100 3.73 3.63 3.60

Memory Allocated (MB) 11528 11712 12080 12816 12873 17232 23120 34896 58448 105552

Memory Wasted (MB) 677 629 533 341 469 213 213 213 213 212

Total Events Processed (billions) 0.102 0.205 0.410 0.819 1.638 3.277 6.554 13.107 26.214 52.428

Total LBTS Computations (millions) 0.200 0.300 0.500 0.900 1.700 3.300 6.504 12.920 25.751 51.394

Efficiency (%) 100 100 100 100 100 100 100 100 100 100

as a barrier point in the past for rollback guaranteeing that no process can

rollback to a timestamp that is smaller than the current GVT value. The

GVT used in optimistic simulation is similar to the Lower Bound Timestamp

(LBTS) in the conservative approach [58]. The results show that the total

number of GVT computations in optimistic (ranging from 0.10 up to 51.20

millions of computations) are slightly less than in the conservative approach

(ranging from 0.20 up to 51.40 millions of computations). This due to the

Table 4.3: Results - Parallel Optimistic Execution of PHOLD with Varying
Number of LPs

LPs
1024 2048 4096 8192 16348 32768 65536 131072 262144 524288

Running Time (seconds) 24.727 50.468 100.051 216.820 510.869 1197.870 2287.070 5065.395 10401.267 21598.115

Event Rate (millions events/sec) 4.141 4.058 4.094 3.778 3.207 2.735 2.760 2.588 2.520 2.427

Memory Allocated (MB) 29768 29952 30320 31056 32528 35472 35472 53136 76688 123792

Memory Wasted (MB) 869 821 725 533 149 405 405 405 405 404

Fossil Collect Attempts (millions) 0.408 0.808 1.609 3.210 6.410 12.811 25.611 51.212 102.410 204.811

Total Events Processed (billions) 0.104 0.207 0.412 0.822 1.641 3.280 3.280 13.110 26.217 52.432

Total GVT Computations (millions) 0.102 0.202 0.402 0.802 1.603 3.203 3.203 12.803 25.603 51.203

Total Roll Backs 133218 79114 45681 23980 12143 5983 5970 1665 716 421

PrimaryRoll Backs 105890 63101 35860 19571 10561 5541 5448 1578 681 398

SecondaryRoll Backs 27328 16013 9821 4409 1582 442 522 87 35 23

Efficiency (%) 98.13 98.96 99.43 99.69 99.84 99.90 99.92 99.98 99.99 99.99

CHAPTER 4. INSTRUMENTATION OF ROSS 26

fact that in the conservative approach a large number of LBTS computations

is performed to avoid causality errors. Moreover, for optimistic synchroniza-

tion, the simulation frameworks typically store event histories to proactively

resolve issues due to the causality errors. Storing the event histories increases

the memory usage over time and therefore the memory must be reclaimed

periodically (to reduce the runtime memory requirements of the simulation

framework). This reclamation process is commonly known as fossil collection

and add a relevant overhead to the simulation execution. The high memory

wastage is also made evident by a large number of fossil collection attempts

in optimistic execution to reclaim memory.

A mechanism called rollback is necessary in the optimistic simulation

approach whenever a causality error is detected. Extensive rollbacks affect

the efficiency of the simulation engine. More in detail, there are two different

types of rollbacks, the primary rollbacks and secondary ones. A primary

rollback occurs whenever a LP receives an event with a time-stamp that

is lower than its local time. The primary rollbacks transitively propagate

secondary rollbacks to other LPs to revert the effects of the previously sent

messages [59]. The results of the optimistic setup show that as the number

of LPs increases there is a considerable decrease in rollbacks (ranging from

133,218 to only 421 rollbacks for 1024 LPs and 524,288 LPs respectively).

This is due to the fact that the executions slow down caused by the increased

number of LPs also decreases the number of causality errors and therefore

the number of rollback invocations.

CHAPTER 4. INSTRUMENTATION OF ROSS 27

Figure 4.2: Wait Time Analysis for PHOLD model

4.4 Wait Time

The wait time is another interesting metric that can be used for studying the

performance of a system. It is defined as the time spent on locks and waits in

a parallel execution. Wait time for the serial simulation execution is negligible

as the maximum wait time is 0.007 secs. This is due to the fact that the

sequential execution do not have to wait for the completion of other processes.

For parallel approaches, the results show that the optimistic execution spends

more time on locks and waits than the conservative techniques as shown in

the Figure 4.2. This increase in the wait time for the optimistic execution (as

the number of LPs is increased), is caused by the rollbacks that increase with

the number of total events to be processed. Greater is the number of pending

events, higher is the synchronization and scheduling overhead. It is worth

noting that the difference between the wait time for parallel conservative and

parallel optimistic approaches is less than 80 secs.

CHAPTER 4. INSTRUMENTATION OF ROSS 28

Figure 4.3: Average CPU usage for PHOLD model

4.5 Average CPU Usage

The average CPU usage defines the CPU utilization that depends on the total

number of processor cores being used for running the simulation. Moreover, it

gives some information on the concurrency level of the code being executed.

In the case of the serial execution the average CPU usage is constant as

only one processor core is used; whereas the results for parallel versions are

presented in Figure 4.3. The results indicate that the average CPU usage for

optimistic simulation is higher as compared with the conservative approach.

This is exactly what the optimistic approach aims for, due to the optimism

that allows the LPs to execute events on availability. Moreover, the optimistic

approach also utilizes more CPU due to the fossil collection mechanism and

the need of dealing with straggler and anti-messages.

The results in terms of CPU usage, energy and power consumption are

reported in Figure 4.3-4.5. The power and energy are related concepts; how-

ever, the energy consumption and power consumption are not the same. It is

possible to simply define the power as the energy consumed per unit of time

(rate of energy consumption) as given in Equation 4.1.

CHAPTER 4. INSTRUMENTATION OF ROSS 29

Power = Energy/T ime (4.1)

Desktop systems and similar devices have a constant power supply, while the

mobile devices and the other battery operated devices are energy constraint.

For this reason, the results for both energy and power consumption have

been collected and reported with a varying number of LPs.

4.6 Energy Consumption

The results collected by the Allinea forge’s Map utility in terms of CPU en-

ergy consumption are reported while the PHOLD model was running. Fig-

ure 4.4 shows the energy consumption results for sequential, parallel conser-

vative and optimistic executions (varying number of LPs ranging from 1024

to 524,288). The optimistic execution results show the highest energy con-

sumption due to its usage of all the available physical cores and the extra

computations that are needed with respect to the conservative approach. In-

terestingly, the results show that the sequential execution uses a single CPU

but still consumes a large amount of energy due to its longer execution time

(with respect to the other approaches).

4.7 Power Consumption

The CPU power consumption (measured in Watts) is a significant portion

of the overall power consumed. It is a combination of the electrical energy

used by CPU while performing various tasks per unit time and the energy

dissipated in the form of heat during the course of execution. Figure 4.5 shows

that for low number of LPs in the simulation, the CPU power consumption

CHAPTER 4. INSTRUMENTATION OF ROSS 30

Figure 4.4: Energy consumption analysis

Figure 4.5: Power consumption analysis

for both conservative and optimistic approaches are almost similar while the

optimistic approach showing slightly better performance for higher numbers

of LP. On the other hand, the CPU power consumption of serial is very low

as compared with both parallel versions. This is due to the fact it uses a

single CPU core instead of multiple cores.

CHAPTER 4. INSTRUMENTATION OF ROSS 31

Figure 4.6: CPU temperature statistics

4.8 CPU Temperature

The average temperature statistics for each CPU core, while the PHOLD

simulation model is being executed, are presented in Figure 4.6. For serial

execution, the temperature of the specific CPU core is higher with respect to

the another cores. This is obvious, since the serial approach is able to use only

a single core. In the parallel executions (both conservative and optimistic)

the temperature increases on all the four CPU cores that are available. This

is due to the parallelism in conservative and optimistic execution since both

approaches are able to utilize all the available CPU cores. In conservative,

the minimum and maximum average temperature are 52.0°C and 73.2°C

respectively. Similarly, in optimistic they are 52.5°C and 73.2°C.

It is evident from the temperature results that increasing the number of

CPU cores in use, more energy is dissipated as heat and thus the average

CPU temperature increases. The maximum average temperature of the se-

rial version is comparable to the minimum average temperature of parallel

versions. The maximum average temperature of parallel versions was 18.8°C

higher than the serial one. The reason behind the high energy consumption

CHAPTER 4. INSTRUMENTATION OF ROSS 32

Table 4.4: Functional Level Execution Time for the Serial Version of ROSS

LP’s

Functions (% Time) 1024 2048 32768 262144 524288

tw run

tw scheduler sequential

phold event handler

tw rand exponential

tw event new

rng gen val

tw event send

Others

Others

Others

100

100

89

35

21

14

12

7

11

0

99.9

99.9

86

33

21

14

11

7

14

0.1

99.9

99.9

76

23

20

15

13

5

24

0.1

100

100

77

22

19

19

11

6

23

0

99.9

99.9

80

21

20

18

15

6

20

0.1

Execution Time (sec) 34.8 72.3 1556.2 3730.2 31381.4

for optimistic and conservative execution is that a significant part of the

energy is dissipated in the form of heat.

4.9 Functional Level Execution Time

The execution time of the core functions for the serial, parallel conservative

and optimistic simulation execution has been measured and is reported in

Tables 4.4, 4.5 and 4.6. These tables list the functional hierarchy and the

time spent on the execution of the main functions and their corresponding in-

dividual sub-functions. In all three simulation approaches, the total number

of events is kept constant.

The functional level percentage time for each sequential simulation exe-

cution (for different numbers of LPs) is reported in Table 4.4. The results

show that the serial simulation with 1024 LPs took 34.8 seconds while in-

creasing the number of LPs to 524,288 it required 8.72 hours to complete.

The texitittw scheduler sequential is the main executing function since it re-

sponsible for the event processing, memory management and virtual time

CHAPTER 4. INSTRUMENTATION OF ROSS 33

Table 4.5: Functional Level Execution Time for the Parallel Conservative
Version of ROSS

LP’s

1024 2048 32768 262144 524288

Functions (% Time) Total MPI Total MPI Total MPI Total MPI Total MPI

tw run

tw scheduler conservative

phold event handler

tw event send

tw rand exponential

tw event new

rng gen val

Others

tw net read

service queues

Others

tw gvt step2

MPI Allreduce

Others

Others

Others

99.7

99.5

59

21

15

14

6

3

17

17

0

14

13

1

9.5

0.3

43

43

14

14

-

-

-

-

15

15

-

14

13

1

-

-

99.8

99.8

64

22

16

15

8

3

17

17

0

9

8

1

9.8

0.2

40

40

14

14

-

-

-

-

14

14

0

12

11

1

-

-

99.9

99.9

55

18

13

14

8

2

16

16

0

10

10

0

18.9

0.1

32

32

12

12

-

-

-

-

12

12

0

8

8

-

-

-

100

100

58

19

12

11

13

3

16

16

0

6

5

1

20

0

27

27

10

10

-

-

-

-

11

11

0

6

5

1

-

-

100

100

58

21

11

12

12

2

16

16

0

6

5

1

20

0

27

27

11

11

-

-

-

-

11

11

0

5

5

-

-

-

Execution Time (sec) 21.4 42.2 770.3 7212.1 14542.8

computation.

Table 4.5 reports the execution time for the simulation functions in case

of parallel conservative approach. The functional time reported in Table is in

percentage of total execution time. The total execution time of the simulation

run with 1024 LPs was 21.4 seconds out of which the parallel execution part

was of 9.2 seconds. Similarly, when the number of LPs increases, the total

execution time was about 4.04 hours with a parallel execution part of 1.09

hours. This gives an idea on the degree of parallelism that MPI based ROSS

provides when compared to the sequential execution – the execution time is

decreased to half with the use of a parallel conservative executions. It is worth

noting that for the parallel version, the degree of parallelism tends to decrease

as the number of LPs is increased. This can be attributed to the earliest time

tag GVT or (LBTS in the case of conservative synchronization) associated

to the unprocessed pending events. The GVT/LBTS computations need to

CHAPTER 4. INSTRUMENTATION OF ROSS 34

Table 4.6: Functional Level Execution Time for the Parallel Optimistic Ver-
sion of ROSS

LP’s

1024 2048 32768 262144 524288

Functions (% Time) Total MPI Total MPI Total MPI Total MPI Total MPI

tw run

tw scheduler optimistic

tw sched batch

phold event handler

tw event send

tw event new

rng gen val

tw rand exponential

Others

tw gvt step2

tw pe fossil collect

MPI Allreduce

Others

tw net read

service queues

test q

recv begin

Others

tw kp rollback to

tw event rollback

Others

Others

Others

Others

99.8

99.6

60

52

18

11

7

13

3

18

7

10

1

20

20

9

11

0

1.4

1.2

0.2

0

1.6

0.2

37

37

13

13

13

-

-

-

-

11

0

10

1

12

12

2

10

-

0.6

0.6

-

-

-

0

99.9

99.7

58

51

18

11

5

14

3

20

8

11

1

21

21

9

12

0

0.8

0.8

0

0

0.7

0.1

38

38

13

13

13

-

-

-

-

12

0

11

1

13

13

2

11

-

0.2

0.2

-

-

-

0

99.9

99.9

54

39

13

9

7

9

1

28

19

8

1

17

17

9

9

0

<0.1

<0.1

0

0

0.9

0.1

26

26

8

8

8

-

-

-

-

8

-

8

0

9

9

0.8

8

0.2

<0.1

<0.1

0

0

1

0

99.9

99.9

52

37

13

8

7

8

0

28

20

7

0

20

20

12

8

0

<0.1

<0.1

0

0

0

0.1

23

23

7

7

7

-

-

-

-

7

0

7

0

8

8

1.2

7.1

0

<0.1

<0.1

0

0

1

0

99.9

99.9

50

38

13

8

8

7

1

29

20

7

2

21

21

13

8

0

<0.1

<0.1

0

0

0

0.1

23

23

7

7

7

-

-

-

-

8

0

7

1

9

9

1

7

1

<0.1

<0.1

0

1

0

0

Execution Time (sec) 24.7 50.5 1197.9 10401.3 21598.1

be done in a sequential fashion essentially for rollbacks, as no process can

rollback to a timestamp smaller than the GVT value [58]. This trend can

be seen in the Tables 4.5 and 4.6, as the number of LPs increases there

is decrease in the parallel execution time of GVT calculation function thus

spending more time in sequential GVT calculation due to rollbacks.

Table 4.6 contains the functional level percentage execution time results

for the parallel optimistic simulation with a different numbers of LPs. The

total execution time of the simulation model with 1024 LPs was 24.7 sec-

onds out of which the parallel execution part was 9.14 seconds. Similarly, for

524,288 LPs, the total execution time was about 6 hours with parallel exe-

CHAPTER 4. INSTRUMENTATION OF ROSS 35

cution part near to 1.38 hours. Similarly, the GVT computations (that need

to be performed in a sequential manner) are used to find a time in the past

for which it is guaranteed that there will be no rollbacks. For this reason, in

Tables 4.5 – 4.6, it can be seen that there is a considerable increase in the

computation time of the tw gvt step function as the number of LPs increases.

Increasing the frequency of rollbacks increases the amount of overhead due

to reverse computation. In parallel discrete event simulation, the reverse

computation is used for reducing the amount of state saving (that is very

memory consuming). For energy constrained systems, the excessive amount

of rollbacks can cause a longer execution time. Sometimes, it results in a cas-

cading effect – the primary rollbacks cause secondary rollbacks transitively,

to reverse the effect of previously sent messages [59]. On the other hand, in

conservative simulation, the causality errors are avoided by performing more

LBTS computations and this is the reason for a better execution time in the

conservative approach.

4.10 Discussion - ROSS Framework

The in-depth instrumentation results for the serial, parallel conservative and

optimistic approaches have been presented in this section. Table 4.7 sum-

marize the average results obtained for all the LPs for each technique. The

conservative approach is shown to perform better in most of the parameters.

The results can help the research community to determine what are the criti-

cal parameters that need to be focused on while designing PDES frameworks

for mobile platforms. A serial execution of the simulation model consumed

fewer resources than the other approaches but it has a longer execution time.

Thus, it is possible to conclude that this technique is not efficient and ef-

CHAPTER 4. INSTRUMENTATION OF ROSS 36

Table 4.7: Summary of Results (average) for Serial, Parallel Conservative
and Parallel Optimistic Algorithms

Simulation Algorithm
Execution
Time
(Seconds)

Memory
Consumption
(MBs)

Efficiency
(%)

Wait time
(Seconds)

Average
CPU Usage
(%)

Power
Consumption
(Watt)

Energy
Consumption
(J)

CPU
Temperature
(C)

Serial Approach 4917.07 25.75 100 0.005 25 25.97 74859 45.23
Conservative Approach 2756.09 28.63 100 796.05 73.25 57.77 76785 68.21
Optimistic Approach 4035.26 29.12 99.58 1572.75 77.00 56.18 108241 68.51

fective for usage on mobile devices. The serial execution model can be used

effectively only for models that are less computation intensive. For parallel

conservative and optimistic simulation models, a good strategy can be to

migrate resource extensive functions (or modules) to cloudlets for their ex-

ecution. On this aspects, the execution time of core functions are reported

in Tables 4.4, 4.5 and 4.6. Parallel optimistic approach provides the most

opportunities in this regard as there are more modules consuming higher

execution times as compared with conservative approach.

In our view, the detailed analysis of the various PDES execution models

is the first step towards the design and implementation of new simulation

frameworks for mobile handheld devices. Moreover, it is also necessary to

determine the migration cost of each simulation module before moving the

compute-intensive code at cloudlets. In fact, the decision of migrating a

whole or a partial module is based on a number of factors and some of

them can be unknown or unpredictable before running the simulation or

at the initial stage. For this reason, heuristic approaches for the dynamic

(and adaptive) re-allocation of these modules is an area that require further

exploration.

Chapter 5

SEECSSim – Proposed

Simulation Suite

In this section, a new simulation framework is presented that is specifically

aimed for mobile devices that include support for various synchronization al-

gorithms. SEECSSim is designed for running efficiently on handheld devices,

more specifically SEECSSim version 1.0 supports Android devices.

5.1 Architecture of SEECSSim

The SEECSSim architecture is shown in Figure 5.1. At the top, there is

the application layer, that supports users in building their own applications.

The application layer communicates with the core functionalities of SEEC-

SSim through an Application Programming Interface (APIs). To bench-

mark the proposed simulation framework, we rely on the PHOLD simulation

model implemented at the application layer. The SEECSSim Simulation En-

gine (SSE) is the main module that manages all the PDES related tasks.

These include data distribution, scheduling and synchronization algorithms

37

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 38

(e.g. time-stepped, synchronous conservative, asynchronous conservative and

optimistic). The SSE includes the serial, conservative and optimistic synchro-

nization approaches. The users can select one of these approaches through a

configuration file before launching their application. Moreover, the modular

design of SEECSSim allows users to easily incorporate their own synchro-

nization algorithms. The data distribution module is designed to facilitate

the data distribution format and communication between LPs that are exe-

cuting on same or different mobile devices. One of the main characteristics

of SSE is that it is resource-aware, this means that it keeps track of the avail-

able resources and its usage. The reported usage of the resources is taken in

account by SSE to tune the simulation parameters such as aggregate com-

munication, frequency of GVT computation, thus, it balance the usage. The

communication layer provides abstraction to underlying available communi-

cation protocols such as TCP and UDP transmission protocols. Proposed

simulation suite covers different types of distributed simulation algorithms

that are; Time-stepped approach, ii). Synchronous conservative, iii). Asyn-

chronous conservative and iv). Optimistic simulation. A brief description of

the synchronization algorithms and techniques supported by SSE follows in

this section.

5.2 Time-Stepped Model

In a time-stepped simulation model, time advances in fixed intervals, that is

provided to all the logical processes or to the one requesting for the time in-

terval value. At any interval in wall clock time all the logical processes are at

the same logical time in the simulation. Typically, the entire simulation time

is divided into time steps to equal size. This simulation model also requires

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 39

Figure 5.1: The SEECSSim Architecture

a barrier synchronization mechanism to ensure that all processes complete

their execution in a time step before going forward to the next time time step

by fixed interval ∆t. Time-stepped algorithm is presented as Algorithm 5.1.

In this algorithm, each process maintains a process logical time Tp, the cur-

rent simulation time. This synchronization approach is most appropriate for

models where simulation events are frequent and dense. However, in sim-

ulation models where simulation events are less frequent, performance may

suffer as it might be difficult to define a correct time-step. For real-time

interactive systems, the optimization is achieved by maintaining some infor-

mation about the future events. The future event list is shared with the

destination node which can generate time advancement request based on its

future event list [60].

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 40

Algorithm 5.1 Time-Stepped algorithm

initialization Tp = 0
while Tp < Tend do

calculate state at Tp send self-generated output for Tp send output
complete marker request advance to Tp update time Tp repeat;

receive(message) if message 6= grant advance(Tend) then
receive all messages receive input complete marker process input
send output in response to this new input send output complete
marker

else
Simulation end time is reached

end
Tp ← Tp + ∆t

end

5.3 Synchronous Conservative Model

There are multiple centralized and decentralized algorithms in synchronous

conservative approach that implement global synchronization mechanism.

These algorithms include Distributed snapshot, Grid-based approach, Tree

barrier, Broadcast and Centralized barrier algorithms. A centralized tree

barrier approach is used, in which logical processes are organized as the

nodes of a binary tree. Each LP processes events until it reaches a barrier

point. Once an LP reaches a barrier point it sends a signal to its parent LP

only if it has received signal from both child processes (if they exist). The

processes continues until the root node receives the signal message. Once

root node receives the signal, it knows that each LP has reached at barrier

point. Once all LPs sync, root node (centralized node) broadcasts a message

to release the barrier [61] . In this way, a centralized control is achieved. The

algorithm for centralized tree barrier approach is presented as Algorithm 5.2.

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 41

Algorithm 5.2 Tree Barrier Algorithm

initialization Tp = 0 Ni = time of next event in LPi

LAi = lookahead of LPi while Tp < Tend do
Enqueue NewMessages(InQ) if IsMsg(InQ) ≤LBTS then

// process safe events Msg = Dequeue NextMsg(InQ) Process
Msg Barrier synchronization

else
No safe Event, Compute LBTS

end

end
Compute LBTS (Tree Barrier) LBTS = min(Ni + LAi) if Node =

Root then
send new LBTS to all LPs

else
send min(NextEventTime + LA)
to Parent Process

end

5.4 Asynchronous Conservative Model

Chandy-Misra-Bryant (CMB) algorithm is implemented as an asynchronous

conservative approach. In an asynchronous conservative model, LPs commu-

nicates through messages with increasing time-stamp. Each process main-

tains a separate queue for all of its incoming channels (C). Time-stamped

messages guarantee that at each LP, the time-stamp of the last message re-

ceived on an incoming link is the lower bound of any event message (E) that

can be received later. However, deadlock can occur if the time-stamp of

unprocessed events is greater than lower bound of an empty queue. In this

situation, there is no surety that either an event is safe to be processed or not.

However, null messages (special control messages) can be sent to other LPs

in order to recover from deadlock condition. On receiving a null message, an

LP can advance its local clock time, but null message will not cause an LP to

change state variables or generate new events [62]. Chandy−Misra−Bryant

(CMB) algorithm is presented as Algorithm 5.3. Each LP maintains a process

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 42

logical time Tp and a lower bound on every incoming channel Tch. Receiving

a null message with Tnm time-stamp from an LP, receiving LP is assured that

there will be no messages with time-stamp smaller than the time-stamp of

null message.

Algorithm 5.3 CMB Null Message Algorithm

initialization Tp = 0 while Tp < Tend do
forall Cin do

Enqueue NewMessages(InQ) Update channel time Tch

end
Select the incoming queue InQ with
smallest channel time Tch

if IsMsg(InQ) then
Eim = Dequeue NextMsg(InQ) Tp = Tim process Eim Enqueue
NewMessages(OutQ) forall Cout do

ReleaseMesssagesUpTo(Tp + Tcl) SendNullMessage(Tp + Tcl)
end

else
Simulation end time is reached

end

end

5.5 Optimistic Model

Famous optimistic Time Warp (TW) synchronization mechanism is included

in this proposed suite. In time warp mechanism, each LP starts event ex-

ecution independently without coordinating with other other LPs. Thus,

processes start to execute events without looking to synchronize initially un-

til they detect that there is out of order execution or causality error. Once it

is determined that there is some causality error, it is recovered using a roll-

back mechanism. Processes re-execute the rolled back events if thet are not

annihilated. On detecting the error, a process sends anti message to cancel or

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 43

roll back the execution of event message that is caused by out of order execu-

tion. Time Warp mechanism needs to keep the list of processed messages to

send anti messages, this uses extravagant amount of memory. To reclaim the

memory TW uses Global Virtual Time (GVT) mechanism to serve as a floor

for the virtual times to which any process can ever again roll back. Every

process reports its minimum time-stamp among all unprocessed events, par-

tially processed events and anti-messages to the coordinating process. After

GVT calculation, process reclaim the memory used to store processed events

having time-stamp smaller than the time-stamp of GVT [63]. Algorithm for

Time Warp mechanism is presented as Algorithm 5.4.

CHAPTER 5. SEECSSIM – PROPOSED SIMULATION SUITE 44

Algorithm 5.4 Time Warp Algorithm

initialization Tp = 0
while Tp < Tend do

unProcessedMsgQ.Enqueue (buffer.outAll) incomingMsg = unPro-
cessedMsgQ.Dequeue
switch incomingMsg.type do

case GVT Message: do
/ / GVT: Global Virtual Time / / LVT: Local Virtual

Time submit LVT and wait For GVT Computation sub-
mit LVT and wait For GVT Computation do FossileCollection

case anti Message: do
do process anti Message

end
case normal Message: do

if anti Message has already arrived then
do Annihilation

end
if incomingMsg is straggler then

do Rollback
end
else

set the LVT to incomingMsg.getTimeStamp
processedMsgQ.add(incomingMsg)
LP.execute(incomingMsg.getEvent) do StateSaving foreach
event in model.out do

outMsgQueue.Enqeue(newMessage(event)) sendMessages
end

end

end

end
Simulation end time is reached

end

Chapter 6

Result & Discussions

6.1 Results – Benchmark Application Over

Mobile Device

In order to benchmark the proposed SEECSSim framework, PHOLD has

been implemented. The simulation topology of the PHOLD model is shown

in Figure 6.1. The system specification of the mobile device used for running

the benchmark tests is listed in Table 6.1.

Figure 6.1: Simulation topology of the PHOLD benchmark

The results of Time-Stepped synchronization algorithm on the mobile

45

CHAPTER 6. RESULT & DISCUSSIONS 46

Table 6.1: Embedded System Specification

Parameters Values
CPU Quad-core 2.7 GHz
RAM 3GB
Storage 32GB
Operating System Android
OS version Marshmallow
Manufacturer Samsung
Chipset Qualcomm Snapdragon 805
Battery Li-lon - 3220 mAh

Figure 6.2: PHOLD with Time-Stepped synchronization on the mobile plat-
form

platform with a variable number of LPs are shown in Figure 6.2. The timestep

size is kept fixed for all the simulation runs. The figure shows the total

number of events processed along with the total number of timesteps (∆t)

that each simulation is able to complete.

The Tree Barrier synchronization algorithm work in a different way with

respect to the Time-Stepped approach as it computes a new barrier point each

time the LPs reach a barrier point. This means that the Tree Barrier takes

slightly more time to complete execution due to all these LBTS computations

that needs to be performed at each step. It is observed that the trend shown

CHAPTER 6. RESULT & DISCUSSIONS 47

Figure 6.3: PHOLD with CMB NULL messages synchronization on the mo-
bile platform

by the Tree Barrier (results not shown here) with an increasing number of

LPs is almost the same as the Time-Stepped approach.

The results of PHOLD with Chandy−Misra−Bryant NULL message syn-

chronization with a varying number of LPs are reported in Figure 6.3. The

figure shows the total number of events processed, total number of LBTS

computations along with the total number of NULL messages. The number

of NULL messages is almost equal to the total number of events processed

in the PHOLD execution. The total number of LBTS computations is very

close to the LBTS computations in the Tree Barrier. The CMB performed

better than the Tree Barrier and the Time Stepped approaches in terms of

execution time.

The results of PHOLD with with Time Warp (TW) synchronization and

a varying number of LPs are shown in Figure 6.4. The total number of

events processed, the number of rollback events and total number of GVT

computations are plotted for a varying number of LPs. With the increase

of the LPs, the total number of rollback events increases gradually. This is

CHAPTER 6. RESULT & DISCUSSIONS 48

Figure 6.4: PHOLD with Time Warp synchronization on the mobile platform

due to the fact that large number of LPs generates an increasing number of

events and the LP execution rate is slower than event input rate. Thus, the

rollback rate is slowed down.

The results comparison in terms of event-rate for the PHOLD benchmark

when run with all of the above-mentioned synchronization algorithms is re-

ported in Figure 6.5. The event rate is defined as the total number of events

processed in a unit time. Figure 6.5 shows that TW and CMB NULL mes-

sage algorithm shows a better event rate as compared with the Tree Barrier

and the Time-Stepped approaches. In TW, it is due to the optimistic behav-

ior that, for most of the execution time, continues the processing of events

without any need of synchronization. Similarly, the CMB keeps on executing

the available events except when it needs to exchanges NULL message to

get the value of the LBTS of an unknown link. In the case of Tree Barrier

and Time-Stepped, most of the computing time is consumed in defining the

LBTS or processing synchronization respectively.

CHAPTER 6. RESULT & DISCUSSIONS 49

Figure 6.5: Event rate for different synchronization algorithms

6.2 Results – Mobile Device Resource Uti-

lization

This section reports the resource utilization of proposed SEECSSim frame-

work when run on a mobile platform. In comparison with traditional desktop

or server systems, the handheld devices provide a limited amount of compu-

tational resources. For this reason, the completion time of simulations run

on handheld devices usually increases as compared with traditional systems.

It is thus not fair to compare the traditional execution architectures with

handheld devices considering only the amount of time that is necessary to

complete the simulation runs. A more comprehensive approach needs to take

in account both the execution time and the energy consumptions of the sim-

ulations. Our goal is to thus analyze the CPU usage, memory consumption,

energy consumption and the amount of time spent to complete each simula-

tion while using different supported synchronization algorithms. The results

also include the total number of events processed, the number of LBTS/GVT

computations and the total execution time. The Trepn profiler tool is used

CHAPTER 6. RESULT & DISCUSSIONS 50

for measuring the power consumption and the performance of the different

synchronization algorithms.

Figure 6.6: Average CPU usage for different synchronization algorithms

6.2.1 CPU Usage

The average CPU usage of the different simulation synchronization algo-

rithms is reported in Figure 6.6. The Time-Stepped approach consumed

the least CPU resources as compared with the other algorithms available in

SEECSSim. On the other hand, the TW consumed a significant amount of

CPU. The reason for the excessive CPU utilization in TW is that it needs

to process a larger amount of events than the other approaches. Moreover,

during the rollbacks, many events are pilled up in the input queues and thus

more CPU work is required.

The GVT computations and fossil collect attempts also contribute to

higher CPU utilization. The CPU usage for the CMB algorithm is lower as

compared to TW but higher than Tree Barrier. This is caused by the num-

ber of NULL messages that are generated for processing each single event.

Similarly, the look-ahead value, also has an impact on the performance of

CHAPTER 6. RESULT & DISCUSSIONS 51

CMB. The Time-Stepped approach performed better compared to others.

However, it is important to note that the concept of CPU utilization for mo-

bile devices is different than for desktop systems. For example, in a desktop

computer a high CPU utilization can be termed as better CPU utilization

since a consistent power supply is always available. This does not happen in

mobile devices in which a high CPU usage means more energy consumption

and therefore a faster battery depletion.

Figure 6.7: Memory consumption for different synchronization algorithms

6.2.2 Memory Consumption

Memory consumption is another important parameter that needs to be con-

sidered in embedded or mobile devices. As discussed in the previous section,

the TW algorithm executes events using an optimistic behavior (that is with-

out time synchronization). In order to perform rollbacks, each LP saves state

variables and processed events. This state saving mechanism requires a sig-

nificant amount of memory as compared with the other techniques discussed

in this work. In fact, the other approaches consume a lower amount of en-

ergy and are very close to each other in terms of memory consumption. The

CHAPTER 6. RESULT & DISCUSSIONS 52

memory usage comparison for all the algorithms is shown in Figure 6.7.

Figure 6.8: Energy consumption for different synchronization algorithms

6.2.3 Energy Consumption

Handheld devices are usually based on ARM processors that are designed for

optimizing the energy consumption ([64] [65]) instead of the peak perfor-

mance. These battery operated mobile devices are energy constrained, there-

fore one of the main design requirements is to minimize the total amount of

energy consumption to complete a given computation task. The energy 1

consumed by executing the PHOLD benchmark with the different synchro-

nization algorithms is presented in Figure 6.8.

In the figure, the amount of consumed energy is plotted using a loga-

rithmic scale. It is important to note that reported energy consumption

of the algorithms is relative to each other rather than their individual en-

ergy consumption. The energy is computed by multiplying power with time,

therefore, if the execution time increases then its energy consumption also

1Here energy is given in milliwatt-hour, the watt-hour (Wh) is a unit of energy equiva-
lent to one watt (1W) of power expended for one hour (1h) of time, thus, a milliwatt hour
is 1/1000 Wh (symbolized mWh).

CHAPTER 6. RESULT & DISCUSSIONS 53

increases.

Time Warp is shown to be energy intensive as compared to the other

algorithms. On the other hand, Time Stepped and Tree Barrier consume

lower amount of energy while the energy consumption of CMB is nearly the

same as the Time Stepped and Tree Barrier approaches.

Figure 6.9: Energy Consumption – Time Warp vs. Time Warp with Wolf
Calls

The energy consumption of the TW algorithm can be improved using

specific techniques that help limit the number of rollbacks. One of such

techniques is called Wolf Calls [66] whereby when a LP detects a straggler

message, it sends a control message (Wolf Call) to all other LPs causing

them to stop their message processing until the error is removed. An even

better way for improving the performance of the Wolf Calls algorithm is

to stop the processing only in LPs that would have been affected by the

propagation of the causality error. Other, more advanced techniques such as

lazy, re-lazy cancellation, and reverse computation can be employed. In the

current version, the SEECSSim simulation framework includes support for

Wolf Calls only.

CHAPTER 6. RESULT & DISCUSSIONS 54

Figure 6.10: Total Execution Time – Tree Barrier, Time Warp and Time
Warp with Wolf Calls

The results presented in Figure 6.9 suggest that the energy consumption

of Time Warp with Wolf Calls enabled is improved considerably with an

increasing number of LPs. It is pertinent to note that, in this case, the

improvement in terms of energy consumption is achieved at the expense of

the execution time (Figure 6.10). The execution time has increased when

using the Wolf Calls but it is still better than the Tree Barrier approach.

6.2.4 Total Execution Time

The total execution time for different synchronization algorithms is shown in

Figure 6.11. Results show that Time Barrier takes the most time to execute

followed by Time Stepped while CMB NULL takes the least execution time.

The total execution time for TW is less as compared to Tree Barrier and

Time Stepped Algorithms due to its optimistic approach.

CHAPTER 6. RESULT & DISCUSSIONS 55

Figure 6.11: Total Execution Time for different synchronization algorithms

6.2.5 Function Level Execution Time

The objective of function level benchmark is to identify the modules that

are taking most of the execution time. The execution time of every major

module for all the mentioned algorithms is reported in Table 6.2–6.5. It

can be seen that the Event-Handler (EH) module is taking the bulk of the

execution time. Specifically, in Time-Stepped, the EH takes on average the

72.05 % whereas the same function in TW takes the minimum amount of

time (58.375%) of all the approaches discussed in this section. Inside the EH

implementation, there are a number of submodules taking more than 10% of

the total execution time.

Looking at the execution time at the submodule level, it can be identified

that TS Event Send for Time Stepped, TRB Event Send for Tree Barrier,

CMB Event Send for CMB NULL and TW Event Send for Time Warp con-

sumes the most percentage of the total execution time.

CHAPTER 6. RESULT & DISCUSSIONS 56

Table 6.2: Functional Level Execution Time for the Time Stepped Synchro-
nization Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TS Init

TS Scheduler

Event Handler

TS Event Send

TS Rand SEEDS

TS Event New

RNG Gen Val

Others

TS Net Read

TS Service Queue

Others

TS Event Receive

Others

TS Finalize

Initializations

97

0.3

96.2

73

19

12

13

5

9

14

13

1

15

9.2

0.5

3

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

98

0.5

97

72

20

13

11

6

9

15

13

2

13

10

0.5

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

99

0.7

97.5

73

19

12

13

5

8

14

12

2

16

10.5

0.8

1

99

0.8

97.4

73.4

18

13.3

13

4.1

10

14

13

1

16

10

0.8

1

98

0.4

97

72

19

12

13

6

9

15

14

1

13

10

0.6

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

Execution Time (sec) 14 24 48 94 185 339 651 1255

Table 6.3: Functional Level Execution Time for the Tree Barrier Synchro-
nization Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TRB Initialize

TRB Scheduler

Event handler

TRB Event Send

TRB Rand SEEDS

TRB Event New

RNG en val

Others

TRB net read

TRB Dqueue

Others

TRB event receive

Others

TRB Finalize

Initializations

96

0.7

94.5

70

17

12

13

5

8

14

12

2

16

10.5

0.8

4

97

0.3

96.2

73

19

12

13

5

9

14

13

1

15

9.2

0.5

3

98

1.2

97

73

18

13

13

4

10

14

13

1

16

10

1.8

2

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

98

0.4

97

72

19

12

13

6

9

15

14

1

13

10

0.6

2

98

0.5

97

72

20

13

11

6

9

15

13

2

13

10

0.5

2

97

0.5

96

71

18

12

13

5

9

15

14

1

15

10

0.5

3

97

0.4

96

71

18

13

13

4

10

15

14

1

14

10

0.6

3

Execution Time (sec) 16 27 63 129 224 418 734 1501

CHAPTER 6. RESULT & DISCUSSIONS 57

Table 6.4: Functional Level Execution Time for the CMB NULL Messages
Synchronization Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

CMB init

CMB scheduler

Event handler

CMB event send

CMB rand SEEDS

CMB event new

rng gen val

Others

CMB net read

CMB Dqueue

Others

CMB LBTS step

CMB event receive

Others

CMB Finalize

Initializations

99

1.2

96

59

20

13

12

5

9

14

12

2

12

7

11

1.8

1

98

1.5

95

58

19

14

11

4

10

12

10

2

14

9

11

1.5

2

99

2

95

56

18

15

10

5

8

15

12

3

15

8

9

2

1

98

1

94

60

20

14

10

6

10

14

11

3

14

10

6

2

2

99

1

96

58

18

12

13

6

9

15

12

3

11

8

12

2

1

99

1

97

56

19

14

9

6

8

16

11

4

13

9

12

1

1

99

2

96

59

19

14

11

6

9

13

11

2

13

7

11

2

1

98

1.2

97

57

18

13

13

4

10

14

13

1

16

16

10

1.8

2

Execution Time (sec) 8 14 27 51 98 201 403 817

Table 6.5: Functional Level Execution Time for the Time Warp Synchro-
nization Algorithm

Functions (% Time) LP’s

8 16 32 64 128 256 512 1024

main run

TW Init

TW Scheduler

Event Handler

TW Event Send

TW Rand SEEDS

TW Event New

RNG Gen Val

Others

TW Net Read

TW Dqueue

Others

TW Gvt Step

TW Event Receive

Others

TW Finalize

Initializations

99

2

96

59

19

14

11

6

9

13

11

2

13

7

11

2

1

99

1

96

58

18

12

13

6

9

15

12

3

11

8

12

2

1

98

0.5

97

59

20

13

11

6

9

15

13

2

13

13

10

0.5

2

98

0.4

97

58

19

12

13

6

9

15

14

1

14

13

10

0.6

2

96

0.7

94.5

59

17

12

13

5

8

14

12

2

11

16

10.5

0.8

4

98

1.2

97

60

18

13

13

4

10

14

13

1

13

16

10

1.8

2

97

0.3

96.2

58

19

12

13

5

9

14

13

1

15

15

9.2

0.5

3

99

2

95

56

18

15

10

5

8

15

12

3

15

8

9

2

1

Execution Time (sec) 12 20 35 62 126 243 493 1015

CHAPTER 6. RESULT & DISCUSSIONS 58

6.3 Discussion

Table 6.6 shows comparison between different synchronization approaches

supported in SEECSSim. The Time Warp is one of the most extensively

used algorithms in distributed simulations. However, it is evident from sum-

mary results that it consumes the most of memory and energy as compared

with other approaches, thus, it is not suitable for mobile and embedded de-

vices. Moreover, CMB NULL approach performed better than TW on all

parameters evaluated.

Table 6.6: Summary of the Average Resource Utilization for synchronization
algorithms in SEECSSim

Simulation Algorithm
Execution
Time
(Seconds)

Memory
Consumption
(MBs)

Average
CPU Usage
(%)

Energy
Consumption
(mWh)

Synchronous Execution (Tree Barrier) 389.00 32.71 30.13 15.44
Time-Stepped 326.25 31.65 27.22 15.41
Conservative Approach (CMB NULL Message) 202.37 36.30 34.93 17.47
Optimistic Approach (Time Warp) 250.72 44.69 45.47 24.42

On the other hand, the Time-Stepped approach is the best among all the

synchronization algorithms (except for the execution time where the CMB

Null outperforms all others) but with a significant issue: due to its time-

advancement mechanism, it cannot exploit true parallelism. It concludes

that the CMB conservative algorithm is adequate in terms of execution time

as well as energy consumption for adoption over mobile devices.

Chapter 7

Conclusion

It is worth noting that, in comparison with traditional systems, the handheld

devices provide a limited amount of computational resources. Therefore, the

completion time of the simulations on handheld devices usually increases in

comparison to traditional systems. This is due to the fact that handheld

devices uses ARM based processors that are designed for optimizing the

energy consumption ([64] [65]). In other words, it is not fair to compare

traditional execution architectures (e.g. desktops, servers) with handheld

devices considering only the amount of time that is necessary to complete

the simulation runs. A more comprehensive approach is to take in account

both the execution time and the energy consumption of the simulation runs.

This work describes the instrumentation of a traditional distributed simu-

lation framework, ROSS. The profiling results have provided valuable insight

into the design and implementation of simulation frameworks for embedded

and mobile devices. Based on our findings, A new distributed simulation

framework is proposed called SEECSSim specifically designed for resource

constraint devices. The simulator framework supports a number of syn-

chronization algorithms, out of which CMB NULL conservative algorithm is

59

CHAPTER 7. CONCLUSION 60

shown to perform adequately both in terms of execution time and energy

consumption.

To the best of our knowledge, SEECSSim is the first open-source sim-

ulator framework that can help researchers to build simulations that can

be efficiently executed on mobile devices. The flexible design of SEECSSim

allows the researchers to incorporate their own simulation models and syn-

chronization algorithms. As a future work, plans are to extend the support of

SEECSSim for distributed simulations running on top of interconnected het-

erogeneous devices. In our view, this will open many new research direction

for the PDES community.

7.1 Future Work

This thesis work has provided a full-fledged working PDES framework that

includes all famous types of synchronization algorithms. It also provides an

brief about how the resource utilization of an algorithm can be improved

using techniques to reduce computations or overall execution time. This

study will be able to help the researcher in selecting the most appropriate

synchronization algorithms for simulation applications designed and running

on embedded or mobile devices. As a future work, plan is to add other

synchronization approaches to our simulation framework and to enhance the

already available ones with other techniques that could be able to improve the

cost of the algorithms when run on mobile and embedded systems. Moreover,

formal verification and validation of the framework also needs be to carried

out before making it available to the research community.

Bibliography

[1] Richard M Fujimoto, Rajive Bagrodia, Randal E Bryant, K Mani Chandy, David

Jefferson, Jayadev Misra, David Nicol, and Brian Unger. Parallel discrete event

simulation: The making of a field. 2017.

[2] Richard M Fujimoto. Parallel and distributed simulation systems, volume 300. Wiley

New York, 2000.

[3] Asad Waqar Malik, Alfred J Park, and Richard M Fujimoto. An optimistic parallel

simulation protocol for cloud computing environments. SCS M&S Magazine, 4:1–9,

2010.

[4] Kurt Vanmechelen, Silas De Munck, and Jan Broeckhove. Conservative distributed

discrete event simulation on amazon ec2. In Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages

853–860. IEEE Computer Society, 2012.

[5] Yihua Wu, Jian Cao, and Minglu Li. Private cloud system based on boinc with

support for parallel and distributed simulation. In Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth International Conference on, pages 1172–

1178. IEEE, 2011.

[6] Eric Mikida, Nikhil Jain, Laxmikant Kale, Elsa Gonsiorowski, Christopher D

Carothers, Peter D Barnes Jr, and David Jefferson. Towards pdes in a message-

driven paradigm: A preliminary case study using charm++. In Proceedings of the

2016 annual ACM Conference on SIGSIM Principles of Advanced Discrete Simula-

tion, pages 99–110. ACM, 2016.

[7] ROSS. Rensselaer’s optimistic simulation system. https://carothersc.

github.io/ROSS, 2017. Accessed March 20, 2017.

61

BIBLIOGRAPHY 62

[8] Richard M Fujimoto. Parallel discrete event simulation. Communications of the

ACM, 33(10):30–53, 1990.

[9] Lokesh Bajaj, Mineo Takai, Rajat Ahuja, Ken Tang, Rajive Bagrodia, and Mario

Gerla. Glomosim: A scalable network simulation environment. UCLA Computer

Science Department Technical Report, 990027(1999):213, 1999.

[10] James H Cowie, David M Nicol, and Andrew T Ogielski. Modeling the global internet.

Computing in Science & Engineering, 1(1):42–50, 1999.

[11] Luciano Bononi, Michele Bracuto, Gabriele DAngelo, and Lorenzo Donatiello. Ar-

tis: a parallel and distributed simulation middleware for performance evaluation.

In International Symposium on Computer and Information Sciences, pages 627–637.

Springer, 2004.

[12] Gabriele DAngelo. The simulation model partitioning problem: an adaptive solution

based on self-clustering. Simulation Modelling Practice and Theory (SIMPAT), 70:1

– 20, 2017.

[13] Gabriele D’Angelo and Stefano Ferretti. Lunes: Agent-based simulation of p2p sys-

tems. In High Performance Computing and Simulation (HPCS), 2011 International

Conference on, pages 593–599. IEEE, 2011.

[14] Allan I McInnes and Brian R Thorne. Scipysim: towards distributed heterogeneous

system simulation for the scipy platform (work-in-progress). In Proceedings of the

2011 Symposium on Theory of Modeling & Simulation: DEVS Integrative M&S Sym-

posium, pages 89–94. Society for Computer Simulation International, 2011.

[15] Alessandro Pellegrini, Roberto Vitali, and Francesco Quaglia. The rome optimistic

simulator: core internals and programming model. In Proceedings of the 4th Inter-

national ICST Conference on Simulation Tools and Techniques, pages 96–98. ICST

(Institute for Computer Sciences, Social-Informatics and Telecommunications Engi-

neering), 2011.

[16] Yong Meng Teo and Yew Kwong Ng. Spades/java: object-oriented parallel discrete-

event simulation. In Simulation Symposium, 2002. Proceedings. 35th Annual, pages

245–252. IEEE, 2002.

BIBLIOGRAPHY 63

[17] Luca Toscano, Gabriele D’Angelo, and Moreno Marzolla. Parallel discrete event simu-

lation with erlang. In Proceedings of the 1st ACM SIGPLAN workshop on Functional

high-performance computing, FHPC’12, pages 83–92, New York, NY, USA, 2012.

ACM.

[18] Gabriele D’Angelo, Stefano Ferretti, and Moreno Marzolla. Time warp on the go. In

Proceedings of the 5th International ICST Conference on Simulation Tools and Tech-

niques, SIMUTOOLS ’12, pages 242–248, ICST, Brussels, Belgium, Belgium, 2012.

ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications

Engineering).

[19] Christopher D Carothers, David Bauer, and Shawn Pearce. Ross: A high-

performance, low-memory, modular time warp system. Journal of Parallel and Dis-

tributed Computing, 62(11):1648–1669, 2002.

[20] Intel. Intel® soc watch. https://software.intel.com/en-us/node/

589913, 2017. Accessed March 29, 2017.

[21] Allinea. Allinea-map. http://www.allinea.com/products/map, 2017. Ac-

cessed April. 2, 2017.

[22] Kalyan S Perumalla. Scaling time warp-based discrete event execution to 104 proces-

sors on a blue gene supercomputer. In Proceedings of the 4th international conference

on Computing frontiers, pages 69–76. ACM, 2007.

[23] David W Bauer Jr, Christopher D Carothers, and Akintayo Holder. Scalable time

warp on blue gene supercomputers. In Proceedings of the 2009 ACM/IEEE/SCS 23rd

Workshop on Principles of Advanced and Distributed Simulation, pages 35–44. IEEE

Computer Society, 2009.

[24] Ilya Zhukov, Christian Feld, Markus Geimer, Michael Knobloch, Bernd Mohr, and

Pavel Saviankou. Scalasca v2: Back to the future. In Tools for High Performance

Computing 2014, pages 1–24. Springer, 2015.

[25] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,

Holger Mickler, Matthias S Müller, and Wolfgang E Nagel. The vampir performance

analysis tool-set. In Tools for High Performance Computing, pages 139–155. Springer,

2008.

BIBLIOGRAPHY 64

[26] Allen D Malony and Sameer Shende. Performance technology for complex parallel

and distributed systems. In Distributed and parallel systems, pages 37–46. Springer,

2000.

[27] Allen D Malony, Sameer Shende, Robert Bell, Kai Li, Li Li, and Nick Trebon. Ad-

vances in the tau performance system. In Performance analysis and grid computing,

pages 129–144. Springer, 2004.

[28] Sameer S Shende and Allen D Malony. The tau parallel performance system. Inter-

national Journal of High Performance Computing Applications, 20(2):287–311, 2006.

[29] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end proces-

sors: Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM

International Symposium on Microarchitecture, page 93. IEEE Computer Society,

2003.

[30] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W

Cameron. Powerpack: Energy profiling and analysis of high-performance systems and

applications. IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671,

2010.

[31] Xixhou Feng, Rong Ge, and Kirk W Cameron. Power and energy profiling of sci-

entific applications on distributed systems. In 19th IEEE International Parallel and

Distributed Processing Symposium, pages 34–34. IEEE, 2005.

[32] Giuseppe Procaccianti, Luca Ardito, Maurizio Morisio, et al. Profiling power con-

sumption on desktop computer systems. In International Conference on Information

and Communication on Technology, pages 110–123. Springer, 2011.

[33] Luka Stanisic, Brice Videau, Johan Cronsioe, Augustin Degomme, Vania

Marangozova-Martin, Arnaud Legrand, and Jean-François Méhaut. Performance

analysis of hpc applications on low-power embedded platforms. In Proceedings of

the conference on design, automation and test in Europe, pages 475–480. EDA Con-

sortium, 2013.

[34] Nikola Rajovic, Alejandro Rico, James Vipond, Isaac Gelado, Nikola Puzovic, and

Alex Ramirez. Experiences with mobile processors for energy efficient hpc. In Pro-

ceedings of the Conference on Design, Automation and Test in Europe, pages 464–468.

EDA Consortium, 2013.

BIBLIOGRAPHY 65

[35] Shaoxiong Hua and Gang Qu. Approaching the maximum energy saving on embedded

systems with multiple voltages. In Proceedings of the 2003 IEEE/ACM international

conference on Computer-aided design, page 26. IEEE Computer Society, 2003.

[36] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S Nikolopoulos, Bro-

nis R De Supinski, and Martin Schulz. Prediction models for multi-dimensional

power-performance optimization on many cores. In Proceedings of the 17th interna-

tional conference on Parallel architectures and compilation techniques, pages 250–259.

ACM, 2008.

[37] Charles Lively, Valerie Taylor, Xingfu Wu, Hung-Ching Chang, Chun-Yi Su, Kirk

Cameron, Shirley Moore, and Dan Terpstra. E-amom: an energy-aware modeling

and optimization methodology for scientific applications. Computer Science-Research

and Development, 29(3-4):197–210, 2014.

[38] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and MT-C Lee. Instruction level power

analysis and optimization of software. In VLSI Design, 1996. Proceedings., Ninth

International Conference on, pages 326–328. IEEE, 1996.

[39] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Rajwar. Performance

evaluation of intel® transactional synchronization extensions for high-performance

computing. In High Performance Computing, Networking, Storage and Analysis (SC),

2013 International Conference for, pages 1–11. IEEE, 2013.

[40] Kishore Kumar, Pusukuri Rajiv, Gupta Laxmi, and N Bhuyan. Shuffling: a frame-

work for lock contention aware thread scheduling for multicore multiprocessor sys-

tems. In Parallel Architecture and Compilation Techniques (PACT), 2014 23rd In-

ternational Conference on, pages 289–300. IEEE, 2014.

[41] Matthew Curtis-Maury, Ankur Shah, Filip Blagojevic, Dimitrios S Nikolopoulos, Bro-

nis R De Supinski, and Martin Schulz. Prediction models for multi-dimensional

power-performance optimization on many cores. In Proceedings of the 17th interna-

tional conference on Parallel architectures and compilation techniques, pages 250–259.

ACM, 2008.

[42] Xixhou Feng, Rong Ge, and Kirk W Cameron. Power and energy profiling of sci-

entific applications on distributed systems. In Parallel and Distributed Processing

Symposium, 2005. Proceedings. 19th IEEE International, pages 10–pp. IEEE, 2005.

BIBLIOGRAPHY 66

[43] Shaoxiong Hua and Gang Qu. Approaching the maximum energy saving on embedded

systems with multiple voltages. In Proceedings of the 2003 IEEE/ACM international

conference on Computer-aided design, page 26. IEEE Computer Society, 2003.

[44] Charles Lively, Valerie Taylor, Xingfu Wu, Hung-Ching Chang, Chun-Yi Su, Kirk

Cameron, Shirley Moore, and Dan Terpstra. E-amom: an energy-aware modeling

and optimization methodology for scientific applications. Computer Science-Research

and Development, 29(3-4):197–210, 2014.

[45] Ryan Child and Philip A Wilsey. Using dvfs to optimize time warp simulations.

In Proceedings of the Winter Simulation Conference, page 288. Winter Simulation

Conference, 2012.

[46] Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajku-

mar Buyya, and Mihai Alexandru. Energy-aware simulation with dvfs. Simulation

Modelling Practice and Theory, 39:76–91, 2013.

[47] Richard M Yoo, Christopher J Hughes, Konrad Lai, and Ravi Rajwar. Performance

evaluation of intel® transactional synchronization extensions for high-performance

computing. In 2013 SC-International Conference for High Performance Computing,

Networking, Storage and Analysis (SC), pages 1–11. IEEE, 2013.

[48] Kishore Kumar Pusukuri, Rajiv Gupta, and Laxmi N Bhuyan. Shuffling: a framework

for lock contention aware thread scheduling for multicore multiprocessor systems. In

Proceedings of the 23rd international conference on Parallel architectures and compi-

lation, pages 289–300. ACM, 2014.

[49] Deepak Jagtap, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Optimization of parallel

discrete event simulator for multi-core systems. In Parallel & Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, pages 520–531. IEEE, 2012.

[50] Miguel A Erazo and Roberto Pereira. On profiling the energy consumption of dis-

tributed simulations: A case study. In Proceedings of the 2010 IEEE/ACM Int’l

Conference on Green Computing and Communications & Int’l Conference on Cyber,

Physical and Social Computing, pages 133–138. IEEE Computer Society, 2010.

[51] Jason Liu. The prime research, 2007.

[52] Richard M Fujimoto. Research challenges in parallel and distributed simulation. ACM

Transactions on Modeling and Computer Simulation (TOMACS), 26(4):22, 2016.

BIBLIOGRAPHY 67

[53] Yihua Wu, Jian Cao, and Minglu Li. Private cloud system based on boinc with

support for parallel and distributed simulation. In Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth International Conference on, pages 1172–

1178. IEEE, 2011.

[54] Aradhya Biswas and Richard Fujimoto. Profiling energy consumption in distributed

simulations. In Proceedings of the 2016 annual ACM Conference on SIGSIM Princi-

ples of Advanced Discrete Simulation, pages 201–209. ACM, 2016.

[55] Asad W Malik, Imran Mahmood, and Aakash Parkash. Energy consumption of tra-

ditional simulation protocol over smartphones: an empirical study (wip). In Proceed-

ings of the Summer Computer Simulation Conference, page 23. Society for Computer

Simulation International, 2016.

[56] SaBra Neal, Richard Fujimoto, and Michael Hunter. Energy consumption of data

driven traffic simulations. In Winter Simulation Conference (WSC), 2016, pages

1119–1130. IEEE, 2016.

[57] Richard M Fujimoto, Michael Hunter, Aradhya Biswas, Mark Jackson, and SaBra

Neal. Power efficient distributed simulation. In Proceedings of the 2017 ACM SIGSIM

Conference on Principles of Advanced Discrete Simulation, pages 77–88. ACM, 2017.

[58] Kenneth R Rouse, William Boff. Organizational simulation. Wily-Interscience, 2005.

[59] Kalyan S Perumalla. Introduction to reversible computing. Chapman and Hall/CRC,

2013.

[60] Karthik Shenoy. Techniques for optimizing time-stepped simulations. 2004.

[61] Rahul Garg, Vijay K Garg, and Yogish Sabharwal. Efficient algorithms for global

snapshots in large distributed systems. IEEE Transactions on Parallel and Distributed

Systems, 21(5):620–630, 2010.

[62] K. Mani Chandy and Jayadev Misra. Distributed simulation: A case study in design

and verification of distributed programs. IEEE Transactions on software engineering,

(5):440–452, 1979.

[63] David R Jefferson. Virtual time. ACM Transactions on Programming Languages and

Systems (TOPLAS), 7(3):404–425, 1985.

BIBLIOGRAPHY 68

[64] Joshua Wyatt Smith and A Hamilton. Massive affordable computing using arm

processors in high energy physics. In Journal of Physics: Conference Series, volume

608, page 012001. IOP Publishing, 2015.

[65] S Ryu and G Ganis. The proof benchmark suite measuring proof performance. In

Journal of Physics: Conference Series, volume 368, page 012020. IOP Publishing,

2012.

[66] Vijay Madisetti, Jean Walrand, and David Messerschmitt. Wolf: A rollback algorithm

for optimistic distributed simulation systems. In Simulation Conference Proceedings,

1988 Winter, pages 296–305. IEEE, 1988.

[67] Richard M. Fujimoto. Research challenges in parallel and distributed simulation.

ACM Transactions on Modeling and Computer Simulation (TOMACS), 26(4):22,

2016.

[68] Rong Ge, Xizhou Feng, Shuaiwen Song, Hung-Ching Chang, Dong Li, and Kirk W.

Cameron. Powerpack: Energy profiling and analysis of high-performance systems and

applications. IEEE Transactions on Parallel and Distributed Systems, 21(5):658–671,

2010.

[69] Canturk Isci and Margaret Martonosi. Runtime power monitoring in high-end proces-

sors: Methodology and empirical data. In Proceedings of the 36th annual IEEE/ACM

International Symposium on Microarchitecture, page 93. IEEE Computer Society,

2003.

[70] Andreas Knüpfer, Holger Brunst, Jens Doleschal, Matthias Jurenz, Matthias Lieber,

Holger Mickler, Matthias S. Mller, and Wolfgang E. Nagel. The vampir performance

analysis tool-set. Tools for High Performance Computing, pages 139–155, 2008.

[71] Allen D. Malony, Sameer Shende, Robert Bell, Kai Li, Li Li, and Nick Trebon.

Advances in the TAU performance system, pages 129–144. Springer, 2004.

[72] Sameer S. Shende and Allen D. Malony. The tau parallel performance system. The

International Journal of High Performance Computing Applications, 20(2):287–311,

2006.

[73] Ilya Zhukov, Christian Feld, Markus Geimer, Michael Knobloch, Bernd Mohr, and

Pavel Saviankou. Scalasca v2: Back to the future, pages 1–24. Springer, 2015.

BIBLIOGRAPHY 69

[74] Richard M Fujimoto. Performance of time warp under synthetic workloads. 1990.

[75] Fahad Maqbool, Syed Meesam Raza Naqvi, and Asad W. Malik. Why to redesign

pdes framework for smart devices: An empirical study. In Proceedings of the Sum-

mer Simulation Multi-Conference, SummerSim ’17, pages 20:1–20:11, San Diego, CA,

USA, 2017. Society for Computer Simulation International.

[76] A. W. Malik, R. Fujimoto, and A. Park. An optimistic parallel simulation protocol

for cloud computing environments. Simulation Magazine, Society for Modeling and

Simulation, International, 1(3):1–9, Oct 2010.

[77] Miguel A. Erazo and Roberto Pereira. On profiling the energy consumption of dis-

tributed simulations: A case study. In IEEE, editor, IEEE/ACM Intl Conference on

Cyber, Physcial and Social Computing, pages 133 – 138, Hangzhou, 2010. IEEE.

[78] Asad W. Malik, Imran Mahmood, and Aakash Parkash. Energy consumption of

traditional simulation protocol over smartphones: an empirical study. In Proceedings

of the summer Computer Simulation Conference- SCSC 2016, ISBN: 978-1-5108-

2424-9, number 23, pages 23:1 – 23:4. ACM, 2016.

[79] Ryan Elmore, Kenny Gruchalla, Caleb Phillips, Avi Purkayastha, and Nick Wun-

der. Analysis of application power and schedule composition in a high performance

computing environment. Technical report, NREL (National Renewable Energy Lab-

oratory (NREL), Golden, CO (United States)), 2016.

[80] Osman S Unsal. System-level power-aware computing in complex real-time and mul-

timedia systems. PhD thesis, University of Massachusetts Amherst, 2003.

[81] Richard Biswas, AradhyaFujimoto. Energy consumption of synchronization algo-

rithms in distributed simulations. Journal of Simulation, 2016.

[82] Michael J Quinn, Michael JQuinn. Parallel computing. McGraw-Hill, 1994.

[83] Aradhya Biswas and Richard Fujimoto. Profiling energy consumption in distributed

simulations. In Proceedings of the 2016 annual ACM Conference on SIGSIM Princi-

ples of Advanced Discrete Simulation, pages 201–209. ACM, 2016.

[84] Vivek Tiwari, Sharad Malik, Andrew Wolfe, and Mike Tien-Chien Lee. Instruction

level power analysis and optimization of software. In Technologies for wireless com-

puting, pages 139–154. Springer, 1996.

BIBLIOGRAPHY 70

[85] Ryan Child and Philip A Wilsey. Using dvfs to optimize time warp simulations.

In Proceedings of the Winter Simulation Conference, page 288. Winter Simulation

Conference, 2012.

[86] Tom Guérout, Thierry Monteil, Georges Da Costa, Rodrigo Neves Calheiros, Rajku-

mar Buyya, and Mihai Alexandru. Energy-aware simulation with dvfs. Simulation

Modelling Practice and Theory, 39:76–91, 2013.

[87] Miguel A Erazo and Roberto Pereira. On profiling the energy consumption of dis-

tributed simulations: A case study. In Proceedings of the 2010 IEEE/ACM Int’l

Conference on Green Computing and Communications & Int’l Conference on Cyber,

Physical and Social Computing, pages 133–138. IEEE Computer Society, 2010.

[88] Jason Liu. The prime research, 2007.

[89] Yihua Wu, Jian Cao, and Minglu Li. Private cloud system based on boinc with sfup-

port for parallel and distributed simulation. In Dependable, Autonomic and Secure

Computing (DASC), 2011 IEEE Ninth International Conference on, pages 1172–

1178. IEEE, 2011.

[90] Kurt Vanmechelen, Silas De Munck, and Jan Broeckhove. Conservative distributed

discrete event simulation on amazon ec2. In Proceedings of the 2012 12th IEEE/ACM

International Symposium on Cluster, Cloud and Grid Computing (ccgrid 2012), pages

853–860. IEEE Computer Society, 2012.

[91] SaBra Neal, Richard Fujimoto, and Michael Hunter. Energy consumption of data

driven traffic simulations. In Winter Simulation Conference (WSC), 2016, pages

1119–1130. IEEE, 2016.

[92] Deepak Jagtap, Nael Abu-Ghazaleh, and Dmitry Ponomarev. Optimization of parallel

discrete event simulator for multi-core systems. In Parallel & Distributed Processing

Symposium (IPDPS), 2012 IEEE 26th International, pages 520–531. IEEE, 2012.

[93] Richard M Fujimoto. {Performance of Time Warp under synthetic workloads}. 1990.

[94] Rajive Bagrodia, Richard Meyer, Mineo Takai, Yu-an Chen, Xiang Zeng, Jay Martin,

and Ha Yoon Song. Parsec: A parallel simulation environment for complex systems.

Computer, 31(10):77–85, 1998.

BIBLIOGRAPHY 71

[95] Intel. Intel® vtune amplifier. https://software.intel.com/en-us/

intel-vtune-amplifier-xe, 2017. Accessed April. 2, 2017.

