Heat Integration using Pinch Analysis of Ammonia Plant

Submitted By:

Maqbool Khalid Sumiah Naveed Mohammad Talal

NUST201433602BSCME99114F NUST201432289BSCME99114F NUST201305235BSCME99113F

Supervised By:

Dr. Arshad Hussain

School of Chemical and Materials Engineering (SCME)

National University of Science and Technology (NUST)

May, 2018

Heat Integration using Pinch Analysis of Ammonia Plant

Submitted By:

Maqbool Khalid Sumiah Naveed Mohammad Talal NUST201433602BSCME99114F NUST201432289BSCME99114F NUST201305235BSCME99113F

This report is submitted as a FYP thesis in partial fulfilment of the requirement for the degree of BE Chemical Engineering

Supervisor: Dr. Arshad Hussain Industrial Supervisor: Mr. Tehseen Ullah Khan

School of Chemical and Materials Engineering (SCME)

National University of Science and Technology (NUST)

May, 2018

Certificate

This is to certify that work in this thesis has been carried out by **Mr. Maqbool Khalid, Miss Sumiah Naveed** and **Mr. Mohammad Talal** and completed under my supervision in School of Chemical and Materials Engineering, National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Supervisor: ______ Dr. Arshad Hussain Principal/Dean SCME Chemical Engineering Department School of Chemical & Materials Engineering (SCME) National University of Sciences and Technology (NUST), Islamabad

Submitted through:

HoD

Dr. Bilal Khan Niazi

Chemical Engineering Department School of Chemical & Materials Engineering National University of Sciences and Technology, Islamabad

Principal/ Dean

Dr. Arshad Hussain School of Chemical & Materials Engineering National University of Sciences and Technology, Islamabad

Dedication

We dedicate our work to our parents and teachers, who helped us constantly to reach this point in our lives, and to Lt Col Retd. Nadeem Ehsan and Dr. Muhammad Nouman Aslam Khan for continuous support and love that they bestowed upon us.

Acknowledgements

Thanks to **Almighty Allah** for His countless blessings, He gave us courage to finish this project.

A very special recognition to our Dean, **Dr. Arshad Hussain** for supervising this project and for his support us throughout the year. Because of his experience and knowledge we are able to complete this project.

We express our profound gratitude to **Mr. Muhammad Farooq**, for giving us this project and believing in us.

Furthermore, we extend our gratitude to **Mr. Tehseen Ullah Khan** for his continual provision and guidance. He has been an immense source of assistance. We couldn't have completed all the necessary paperwork and delivered it properly without him.

We are able to achieve this milestone due to love and prayers of our beloved **parents**.

Nomenclature

ΔT_{LM}	Log Mean Temperature Difference
Т	Temperature
ΔT_{min}	Minimum Temperature Difference
ΔΤ	Temperature Difference
Ts	Supply Temperature
T _T	Target Temperature
Cp	Specific Heat Capacity
C _P	Heat Capacity
Μ	Mass Flowrate
Q	Heat
W	Work
ΔH	Change in Enthalpy
h	Heat Transfer Coefficient
U	Overall Heat Transfer Coefficient
Α	Area
Wt%	Weight Percentage
L	Length of Coil

р	Pitch of coil
R	Helix Radius
do	Coil Outside Diameter
Ν	Number of Turn in Coil
٥C	Degree Celsius
m	Metre
m ²	Square Metre
mm	Millimetre
kJ	Kilojoule
kg	Kilogram
hr	Hour
W	Watt
kW	Kilowatt
Gcal	Giga calorie
PCE	Purchase Cost of Equipment
РСС	Total Physical Plant Cost

List of Figures

Figure 1.1 Onion Diagram	2
Figure 3.1: Existing Process Flow Diagram	13
Figure 3.2: Combine Composite Curve	42
Figure 3.3: Grand Composite Curve	43
Figure 4.1 Defining Reference Streams	45
Figure 4.2: Defining Utility Stream	46
Figure 4.3: Unsatisfied Grid Diagram	46
Figure 4.4: Coil E 201	47
Figure 4.5: Gird Diagram with E 201	47
Figure 4.6: Coil E 202	48
Figure 4.7: Gird Diagram with E 202	48
Figure 4.8: Coil E 203	49
Figure 4.9: Gird Diagram with E 203	49
Figure 4.10: Coil E 204 A	50
Figure 4.11: Gird Diagram with E 204 A	50
Figure 4.12: Coil F 202 A	51
Figure 4.13: Gird Diagram with F 202 A	51
Figure 4.14: Coil E 205	52
Figure 4.15: Gird Diagram with E 205	52
Figure 4.16: Coil E 204 B	53
Figure 4.17: Gird Diagram with E 204 B	53
Figure 4.18: Coil E 206	54
Figure 4.19: Gird Diagram with E 206	54
Figure 4.20: Existing Heat Exchanger Network Grid Diagram	55
Figure 4.21: High Pressure Steam Mass Flowrate	55
Figure 4.22: Process Flow Diagram for Existing Process	56
Figure 4.23: Case 1-Streams Data	57
Figure 4.24: Case 1-Grid Diagram	57
Figure 4.25: Case 1-Coil E 202 B	57
Figure 4.26: Case 1-Coil E 204 B	58
Figure 4.27: Case 1-Coil E 206	58
Figure 4.28: Case 2-Streams Data	59
Figure 4.29: Case 2-Grid Diagram	59
Figure 4.30: Case 2-E 204 B	59
Figure 4.31: Case 2-E 202 B	60
Figure 4.32: Case 2-E 206	60
Figure 4.33: Case 2-E 204 C	61
Figure 4.34: Case 3-Streams Data	61
Figure 4.35: Case 3-Grid Diagram	62
Figure 4.36: Case 3-E 202 B	62
Figure 4.37: Case 3-E 204 B	62
Figure 4.38: Case 3-E 206	63

Figure 5.1: Modified Streams Data	64
Figure 5.2: Utility Stream	64
Figure 5.3: Modified Heat Exchanger Network	65
Figure 5.4: Coil E 201	65
Figure 5.5: Coil E 202 A	66
Figure 5.6: Coil E 203	66
Figure 5.7: Coil E 204 A	67
Figure 5.8: Coil F 202 A	67
Figure 5.9: Coil E 205	68
Figure 5.10: Coil E 202 B	68
Figure 5.11: Coil E 204 B	69
Figure 5.12: Coil E 206	69
Figure 5.13: New High Pressure Steam Mass Flowrate	70
Figure 5.14 New Heat Exchanger Grid Network Design	70
Figure 5.15: New Process Flow Diagram	71
Figure 6.1: Balance Combine Composite Curve	96
Figure 7.1: Cost to Heat Transfer Area Graph	100
Figure 8.1: Components	101
Figure 8.2: Fluid Package	101
Figure 8.3: Simulation Model	102
Figure 8.4: Natural Gas	103
Figure 8.5: Recycle Gas	103
Figure 8.6: Natural & Recycle Gas	104
Figure 8.7: Desulphurized Natural Gas	104
Figure 8.8: Process Steam	105
Figure 8.9: Process Gas	105
Figure 8.10: Process Air	106
Figure 8.11: Boiler Feed Water	106
Figure 8.12: Steam from Steam Drum	107
Figure 8.13: Primary Reformer Flue Gas	107
Figure 8.14: Boiler Flue Gas	108
Figure 8.15: Combine Flue Gas	108
Figure 8.16: MIX-100 Design	109
Figure 8.17: MIX-100 Worksheet	109
Figure 8.18 MIX-101 Design	110
Figure 8.19: MIX-101 Worksheet	110
Figure 8.20: MIX-102 Design	111
Figure 8.21: MIX-102 Worksheet	111
Figure 8.22: Exchanger E 201 Design	112
Figure 8.23: Exchanger E 201 Worksheet	112
Figure 8.24: Exchanger E 202 A Design	113
Figure 8.25: Exchanger E 202 A Worksheet	113
Figure 8.26: Exchanger E 203 Design	114
Figure 8.27: Exchanger E 203 Worksheet	114
Figure 8.28: Exchanger E 204 A Design	115
Figure 8.29: Exchanger E 204 A Worksheet	115

Figure 8.30: Exchanger F 202 A Design	116
Figure 8.31: Exchanger F 202 A Worksheet	116
Figure 8.32: Exchanger E 205 Design	117
Figure 8.33: Exchanger E 205 Worksheet	117
Figure 8.34: Exchanger E 202 B Design	118
Figure 8.35: Exchanger E 202 B Worksheet	118
Figure 8.36: Exchanger E 204 B Design	119
Figure 8.37: Exchanger E 204 B Worksheet	119
Figure 8.38: Exchanger E 206 Design	
Figure 8.39: Exchanger E 206 Worksheet	
Figure 8.40: Process Gas to Primary Reformer	121
Figure 8.41: Process Air to Secondary Reformer	
Figure 8.42: Steam to Boiler	122
Figure 8.43: Natural & Recycle Gas to Desulphurizer	122
Figure 8.44: Boiler Feed Water Outlet	123
Figure 8.45: Stack Gas	123
Figure 8.46: High Pressure Generation	124

List of Tables

Table 3-1: Natural Gas Composition	15
Table 3-2: Recycle Gas Composition	16
Table 3-3: Process Gas Composition	16
Table 3-4: Process Steam Composition	16
Table 3-5: Steam from Steam Drum Composition	16
Table 3-6: Boiler Feed Water Composition	17
Table 3-7: Primary Reformer Flue Gas Composition	17
Table 3-8: Boiler Flue Gas Composition	17
Table 3-9: Natural & Recycle Gas Composition	20
Table 3-10: Process Gas Composition	24
Table 3-11: Combine Flue Gas Composition	28
Table 3-12: Process Streams Data	36
Table 3-13: Process Streams Shifted Temperatures	37
Table 3-14: Problem Table Algorithm for Existing Plant	39
Table 3-15: Hot Process Streams Data	40
Table 3-16: Hot Composite Curve Streams Data	41
Table 3-17: Cold Process Streams Data	41
Table 3-18: Cold Composite Curve Stream Data	42
Table 3-19: Threshold Temperature	44
Table 5-1: Comparison of New and Existing Heat Exchanger Network.	73
Table 6-1: Coils Design Summary	90
Table 6-2: Modified Streams Data	91
Table 6-3: Modified Streams Shifted Temperatures	92
Table 6-4: Problem Table Algorithm for Modified Data	93
Table 6-5: Modified Hot Streams Data	94
Table 6-6: Data for Hot Balance Composite Curve	94
Table 6-7: Modified Cold Streams Data	95
Table 6-8: Data for Cold Balance Composite Curve	95
Table 6-9: Area Targeting	98
Table 6-10: Area of Coils	98
Table 7-1: Fixed Capital (\$)	99
Table 7-2: Economic Analysis	99
Table 7-2: Economic Analysis Table 9-1: Guide Words for HAZOP 12	99 25
Table 7-2: Economic Analysis Table 9-1: Guide Words for HAZOP 11 Table 9-2: HAZOP Study on Valve 11	99 25 26
Table 7-2: Economic AnalysisTable 9-1: Guide Words for HAZOPTable 9-2: HAZOP Study on ValveTable 9-3: HAZOP Study of Coils	99 25 26 27

Table of Contents

Chapter 1 Introduction	1
1.1 Background	1
1.2 Problem Statement	1
1.3 Purpose of Study	2
1.4 What is Pinch Analysis?	2
Chapter 2 Literature Review	4
2.1 Process Integration	4
2.1.1 Mass Integration	4
2.1.2 Heat Integration	4
2.2 Pinch Analysis	5
2.3 Steps of Pinch Analysis	5
2.3.1 Identification of Hot, Cold & Utility Streams in the Process	6
2.3.2 Thermal Data Extraction for the Process Streams	6
2.3.3 Selection of Initial ∆Tmin Value	7
2.3.4 Construction of Composite & Grand Composite Curve	8
2.3.5 Estimation of Minimum Energy Cost Targets	9
2.3.6 Estimation of Heat Exchanger Network Capital Cost Targets.	9
2.3.7 Estimation of Optimum ΔT_{min} Value	10
2.3.8 Estimation of Targets of Heat Exchanger Network Design	11
2.3.9 Design of Heat Exchanger Network	12
Chapter 3 Process Description	13
3.1 Process Flow Diagram	13
3.1.1 Natural Gas	14
3.1.2 Process Air	14
3.1.3 Steam from Steam Drum	14
3.1.4 Boiler Feed Water	14
3.1.5 Flue Gases	14
3.2 Data Extraction	15
3.3 Material Balance	15
3.3.1 Mass Flowrates and Compositions of Known Streams	15
3.3.2 Mass Flowrates and Compositions of Unknown Streams	18
3.4 Energy Balance	.29

3.5 Data for Pinch Analysis	36
3.6 Energy Targeting	37
3.6.1 Shifted Temperatures	37
3.6.2 Problem Table Algorithm	37
3.6.3 Composite and Grand Composite Curve	40
3.6.4 Threshold Temperature	43
Chapter 4 Aspen Energy Analyzer	45
4.1 Data Entering	45
4.1.1 Defining Process Streams	45
4.2 Existing Heat Exchanger Network	46
4.2.1 Unsatisfied Grid Diagram	46
4.2.2 Coil E 201	47
4.2.3 Coil E 202	48
4.2.4 Coil E 203	49
4.2.5 Coil E 204 A	50
4.2.6 Coil F 202 A	51
4.2.7 Coil E 205	52
4.2.8 Coil E 204 B	53
4.2.9 Coil E 206	54
4.2.9 Existing Heat Exchanger Network Grid Diagram	55
4.2.10 High Pressure Steam Production in Coil E 205	55
4.3 Analysis of the Existing Process	55
4.3.1 Case 1	57
4.3.2 Case 2	59
4.3.3 Case 3	61
Chapter 5 New Heat Exchanger Network	64
5.1 New Heat Exchanger Network Design	64
5.1.1 Defining Process Streams	64
5.1.2 Defining Utility Stream	64
5.1.3 New Heat Exchanger Network	65
5.1.4 New Heat Exchanger Network Grid Diagram	70
5.2 Comparison of Networks	71
5.2 New Process Flow Diagram	71
5.3 Material and Energy Balance of New Process	72

5.3.1 Material Balance	72
5.3.2 Energy Balance	72
Chapter 6 Coils Designing	82
6.1 Design Parameters	82
6.2 Designing of Coils	83
6.2.1 Coil E 202 A	83
6.2.2 Coil E 202 B	
6.2.3 Coil E 204 A	86
6.2.4 Coil E 204 B	87
6.2.5 Coil E 206	
6.3 Coil Design Summary	90
6.4 Area Targeting	91
6.4.1 Stream Data	91
6.4.2 Problem Table Algorithm	93
6.4.3 Balanced Combine Composite Curve	94
6.4.4 Bath Algorithm	96
6.3.4 Area Comparison	98
Chapter 7 Economic Analysis	99
Chapter 7 Economic Analysis 7.1 Cost of Coils	99 99
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis	99 99 100
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation	99 99 100 101
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation	
 Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation 8.1.1 Components 	
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation 8.1.1 Components 8.1.2 Fluid Package	
Chapter 7 Economic Analysis	
Chapter 7 Economic Analysis	
Chapter 7 Economic Analysis	
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation 8.1.1 Components 8.1.2 Fluid Package 8.1.3 Model 8.1.3 Model 8.1.4 Defined Streams 8.1.5 Mixers 8.1.6 Heat Exchangers	
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation 8.1.1 Components 8.1.2 Fluid Package 8.1.2 Fluid Package 8.1.3 Model 8.1.4 Defined Streams 8.1.5 Mixers 8.1.6 Heat Exchangers 8.1.7 Product Streams	
Chapter 7 Economic Analysis	
Chapter 7 Economic Analysis 7.1 Cost of Coils 7.2 Economic Analysis Chapter 8 Aspen HYSYS Simulation 8.1 HYSYS Simulation 8.1 HYSYS Simulation 8.1.1 Components 8.1.2 Fluid Package 8.1.2 Fluid Package 8.1.3 Model 8.1.4 Defined Streams 8.1.5 Mixers 8.1.5 Mixers 8.1.6 Heat Exchangers 8.1.7 Product Streams 8.2 Results Chapter 9 HAZOP Analysis	
Chapter 7 Economic Analysis	
Chapter 7 Economic Analysis	

9.2.2 Coils	
9.2.3 Boiler	
Chapter 10 Conclusion	
References	130

Abstract

Around 80% of ammonia produced is being used for the manufacturing of urea-based fertilizers, however its production requires extensive amount of energy.

Retrofitting of an existing ammonia plant for improving energy efficiency is done by using Pinch Analysis. This method relates the core process with the utility system to reduce the energy consumption and heat waste of the plant. The technique is applied on the convective section of the primary reformer by changing the arrangement of heating coils and by doing this significant waste heat was recovered from the flue gases. Otherwise, this heat would have lost in atmosphere. The analysis was performed using Aspen Energy Analyser. The problem came out be threshold problem i.e. the system requires only one utility (cold utility) to meet the desired temperatures of different streams. Using thermodynamics principles, pinch rules and limitation imposed by the current plant design, new modifications are suggested to improve the plant efficiency. As a result of these suggestions, around 7% more high pressure steam can be generated with only slight modifications.

Chapter 1 Introduction

1.1 Background

Fauji Fertilizer Company Limited (FFC) was established back in 1978 and is one of the largest chemical fertilizer producer in Pakistan. The major products of FFC are urea and ammonia and have a capacity to produce more than 6000 metric tons of urea per day.

Ammonia is one of the most important chemical in the field of agriculture, as 80% of the produced ammonia is being used for manufacturing of fertilizers like urea, ammonium nitrate and ammonium phosphate, etc. Ammonia is also used in industrial refrigeration systems as coolant, for water and wastewater treatment, for making urea nitrate and for several metallurgical process. These mentioned uses of ammonia show its importance but the production of ammonia gas requires large amount of energy. Hence we need to design energy efficient plant with minimum heat wastage and maximum recovery.

The technique through which FFC used to produce ammonia in 1978 is now obsolete as new methods are developed using modern technology. The aim of using modern technology is to develop efficient plants that give maximum output for the same amount of inputs.

1.2 Problem Statement

Currently in Plant II of FFC, the flue gases from primary reformer and auxiliary boiler are leaving the system at sufficiently high temperature into atmosphere. This shows the plant is not being operated to its full potential along with high adverse effects on the environment. The flue gases are the source for heat recovery and by using modern engineering tools this recoverable energy can be used to heat other process stream or to produce steam.

1.3 Purpose of Study

No matter how carefully the process is designed, there is always some room to improve the process efficiency through different modifications. Pinch Analysis is one of the advance technique through which industry can modify their process for heat integration. It is a welldefined method to relate plant's core streams with the utility system, such that maximum energy is recovered.

1.4 What is Pinch Analysis?

It was first introduced by Bodo Linnhoff and Vredeveld. Pinch analysis is a methodology for minimising energy consumption of chemical processes by calculating thermodynamically feasible energy targets (or minimum energy consumption).

Figure 1.1 Onion Diagram

Designing of new process start with the reactors i.e. the core of the onion. Separators, the second layer of onion, are designed once feed, product, flowrates and recycle concentrations are known. After complete material and energy balance is performed on the new system, heat exchanger network is designed. This is where pinch analysis comes in, it provides a systematic approach to relate core process (first and second layer of onion) with the utility system (fourth layer of onion), while saving energy. Pinch analysis defines targets including minimum energy requirement, exchanger area and minimum cost prior to heat exchanger network design. The heat exchanger network designed through pinch rules ensure that these targets are meet and energy is saved. Thus, the prime objective of the technique is to achieve financial saving by maximizing process to process heat recovery and reducing the external utility loads, i.e. by better process heat integration.

Now a days, number of software have been developed to perform pinch analysis on industries complex process with speed and efficiency. Aspen Energy Analyzer is one of the famous product of Aspen One that is used to perform pinch analysis. The problem in this thesis is done by using Aspen Energy Analyzer.

Chapter 2 Literature Review

2.1 Process Integration

Process integration means to optimize a process for reducing the amount of raw material, minimize waste and utility requirement. It can be done by recycling the useful waste materials and recover waste heat that is being generated by different processes.

Process integration has two divisions.

- 1. Mass Integration
- 2. Heat Integration

2.1.1 Mass Integration

Objective of mass integration are:

- To achieve maximum product yield.
- Minimizing waste material.
- Decreasing the requirement of fresh feed.

2.1.2 Heat Integration

Objective of heat integrations:

- Calculating minimum heating and cooling duties to operate plant.
- Designing heat exchanger network to meet the initially set targets.
- Converting waste heat into valuable energy.

Different techniques used to perform process integration are:

- Pinch Analysis
- Process Graph theory Process
- State space approach
- Genetic Algorithm

Out of these, pinch analysis is one of the most common technique and widely used technique to perform process (heat) integration.

2.2 Pinch Analysis

Pinch analysis is based on the principles of thermodynamics. The First Law of thermodynamics helps to determine the change in enthalpy (Δ H) of the streams passing through heat exchanger. The Second Law determines the direction of heat flow that is from hot stream to cold stream. Temperature crossovers of the hot and cold stream profile (temperature vs enthalpy) is restricted by second law. Temperature crossover means that hot stream cannot be cooled to the temperature lower than cold stream supply temperature and vice versa. Temperature approach of heat exchanger defines the limit to which a hot stream can be cooled to. This is the minimum allowable temperature difference (Δ T_{min}) between hot and cold stream. The point at which minimum temperature difference (Δ T_{min}) occur in known as pinch point in the profile. The pinch defines the minimum driving force allowed in the exchanger unit.

The goal of any process industry is to minimize the utility requirement and maximize process to process stream heat recovery. An optimize heat exchanger network is required for minimum energy requirement. To design the most suitable heat exchanger network, pinch analysis provides well defined steps. These can be used for a new project as well as for retrofitting and existing one.

2.3 Steps of Pinch Analysis

Steps used to perform pinch analysis are:

- Identification of hot, cold & utility streams in the process.
- Thermal data extraction for the process.
- Selection of initial minimum temperature difference (ΔT_{min}) value.
- Construction of composite curve & grand composite curve.
- Estimation of minimum energy cost targets.

- Estimation of heat exchanger network capital cost targets.
- Estimation of optimum minimum temperature difference (ΔT_{min}) value.
- Estimation of practical targets of heat exchanger network design.
- Design of heat exchanger network.

Details of these steps are discussed below:

2.3.1 Identification of Hot, Cold & Utility Streams in the

Process

This step is the simplest yet the most crucial step in which process flow diagram of the plant is carefully analysed to identify hot, cold and utility streams. Hot streams are those which need to be cooled while cold stream are those which must be heated. Reactant stream normally require preheating before entering a reactor and hence are cold stream. If heat exchange between the process streams is not feasible or economical then utility streams are used as coolant to heating agents. Hot utilities include steam, hot oil or flue gases, etc. Cold utilities include cooling water, steam generation or air, etc.

2.3.2 Thermal Data Extraction for the Process Streams

Following stream data is required to perform pinch analysis:

- Supply Temperature (T_s °C)
- Target Temperature (T_T °C)
- Heat Capacity Flow Rate (C_P kW/°C)

Heat capacity flow rate is the product of mass flow rate (M kg/s) and specific heat capacity ($c_p kJ/kg \circ C$).

$$C_P = M \times c_p$$

• Enthalpy Change (ΔH kW)

According to first law of thermodynamics:

$$\Delta H = Q \pm W$$

For heat exchangers,

W = 0

S0,

$$\Delta H = Q$$

Moreover,

$$Q = C_P \left(T_S - T_T \right)$$

• Heat Transfer Coefficients (h W/m² °C)

Heat transfer coefficients are required to calculate over heat transfer coefficient (U W/m² °C) between the hot and cold streams in the heat exchanger. The overall heat transfer coefficient are used to calculate the area of heat exchangers.

$$\frac{1}{U} = \frac{1}{h_{Hot}} + \frac{1}{h_{Cold}}$$
$$A = \frac{Q}{U \times \Delta T_{LM}}$$
$$\Delta T_{LM} = \frac{(T_{Hin} - T_{Cout}) - (T_{Hout} - T_{Cin})}{\ln \frac{(T_{Hin} - T_{Cout})}{(T_{Hout} - T_{Cin})}}$$

Where ΔT_{LM} is log mean temperature difference.

2.3.3 Selection of Initial ∆Tmin Value

For feasible heat transfer design, minimum driving force is required that is Δ Tmin has to be maintained between the streams. Value of minimum temperature difference (Δ T_{min}) will depend on the physical properties of the exchanging streams and the type of heat exchanger that is being used.

Importance of selecting suitable minimum temperature difference (ΔT_{min}) value can be determine for the fact that it is the main controlling factor for both capital and energy costs. For a particular value of heat load (Q), if smaller value of minimum temperature difference (ΔT_{min}) is selected, then area requirement by the exchangers

rises. For the higher value, heat recovery will be reduced and utilities demand increase to meet the desired results.

2.3.4 Construction of Composite & Grand Composite Curve

2.3.4.1 Composite curves

Composite curves are temperature vs enthalpy (T-H) plot that is used to determine energy target prior to design. Combine composite curve is plot between the hot and cold stream. The minimum distance between these two composite curves is ΔT_{min} . The point at which ΔT_{min} occur is known as pinch point. Hot composite curve represents the heat source in the system while cold composite curve are the heat sink. Overlapping area of the two curves are maximum recoverable energy. The hot composite curve portion extended on left side of the plot beyond the cold composite curve represents minimum cold utility requirement while extended cold composite curve on right side of the plot represents minimum hot utility requirement. However, there is always a chance of error while using graphical method. To eliminate these error, Linnhoff developed a numerical approach known as the problem table algorithm to determine energy requirement.

2.3.4.2 Grand Composite curve

Grand composite curve is used to determine the type of utility required to satisfy supply temperatures of the process streams. It represents the variation of heat supply and demand within the process. GCC are used to maximize the use of cheaper utilities and minimize the requirement of expensive utility.

Method to plot the composite and grand composite will be discussed in later chapters while solving the project.

2.3.4.3 Threshold Problem

If the plant's streams require only one utility that is either hot or cold utility then such problem is known as threshold problem. The pinch point for these type of problem lies on the one side of the plot rather than in the middle. If the plant requires only cold utility, then pinch will lie on the right end of the plot and if it requires hot utility, then pinch will lie in the left end of the plot. However, the problem will remain single utility dependent till a value of ΔT_{min} known as threshold temperature. After this, plant will require both hot and cold utilities.

2.3.5 Estimation of Minimum Energy Cost Targets

After determining the minimum utilities requirement and the type of utility to be used, energy cost can be determined by using following equation.

$$Total \ Energ \ Cost = \sum_{i=1}^{i} Q_i \ \times \ C_i$$

Where

Q_i = Duty of utility i (kW)

C_i = Unit cost of utility i (\$/kW yr)

i = Total number of utilities used

2.3.6 Estimation of Heat Exchanger Network Capital Cost

Targets

Capital cost of the heat exchanger networks is dependent upon:

- Number of exchangers
- Overall network area
- Distribution of area between the exchangers.

While targeting the area before the network design, it is assumed that area is evenly distributed between the units.

2.3.6.1 Area Targeting

Minimum heat exchanger network area is calculated through following relation:

$$HEN Area_{min} = \sum_{i} \left[\frac{1}{\Delta T_{LM}} \sum_{j} \frac{q_{j}}{h_{j}} \right]$$

2.3.6.2 Number of Units Targeting

Minimum number of exchanger units are calculated by:

 $N_{min} = [N_h + N_c + N_u - 1]_{Above Pinch} + [N_h + N_c + N_u - 1]_{Below Pinch}$

Where:

N_h = Number of hot streams

N_c = Number of cold streams

N_u = Number of utility streams

2.3.6.3 Heat Exchanger Network Capital Cost Targeting

After determining minimum area heat exchanger area and minimum number of units, capital cost of the heat exchanger can be determined by:

$$C(\$)_{HEN} = \left[N_{min} \left\{ a + b \left(\frac{A_{min}}{N_{min}} \right) \right\}^{c} \right]_{Above Pinch} + \left[N_{min} \left\{ a + b \left(\frac{A_{min}}{N_{min}} \right) \right\}^{c} \right]_{Below Pinch}$$

where a, b and are constants in exchanger cost law

Exchanger cost $(\$) = a + b (Area)^c$

2.3.7 Estimation of Optimum ΔT_{min} Value

 ΔT_{min} can affect the system in following ways:

- Increasing minimum temperature difference (ΔT_{min}) value will give higher energy costs but lower capital cost.
- Decreasing minimum temperature difference (ΔT_{min}) value will give lower energy costs but higher capital cost.
- Optimum minimum temperature difference (ΔT_{min}) exists where both total annual cost of energy and capital costs are minimized.

2.3.8 Estimation of Practical Targets of Heat Exchanger

Network Design

In some cases optimum value of minimum temperature difference (ΔT_{min}) might not be suitable for appropriate design. If the value small that means requires area will be large and network design will be much complicated. In these situations, higher value of minimum temperature difference (ΔT_{min}) is preferred if the effect on marginal cost is low.

The pinch temperature divides the system in two parts such that each portion is in enthalpy balance with its utility. Following points must be kept in while designing a network

- No external heating below the pinch.
- No external cooling above the pinch.
- No heat transfer across the pinch.

If any of above mentioned points are not followed while designing a network, then more energy will be required than theoretically calculated using combine composite curves.

2.3.8.1 Plus/Minus Principle

There are several factors in the plant system that can be changed for changing the energy consumption of plant. This will result changes in the energy and material balance. The change in these factor may have a favourable impact on energy consumption, this is known as plus/minus principle.

Following are the guidelines that can be used to reduce utility loads.

- Increasing (+) in hot stream duty or decreasing (-) in cold stream duty above the pinch will reduce utility load.
- Increasing (+) in cold stream duty or decreasing (-) in hot stream duty below the pinch will reduce utility load.

2.3.9 Design of Heat Exchanger Network

Heat exchanger network is designed using Pinch Design Method (PDM). The pinch temperature divides the network grid diagram into two parts that are above and below the pinch. Heat exchanger networks for both part are designed separately. When no more process to process heat exchange is possible then utility streams are added in the grid. Some of the basic design rules to identify between which two stream an exchange is possible are given below:

- Divide the problem at the pinch.
- Design away from the pinch.
- Above the pinch,
 - o match streams adjacent to the pinch if,

$$CP_{Hot} \leq CP_{Cold}$$

$$\circ N_{Hot} \leq N_{Cold}$$

Where:

N_{Hot} = Number of hot streams

N_{Cold} = Number of Cold Streams

- Use hot utility
- Below the pinch,
 - o match streams adjacent to the pinch if,

 $CP_{Cold} \leq CP_{Hot}$

- $N_{Cold} \le N_{Hot}$ Where: $N_{Hot} =$ Number of hot streams $N_{Cold} =$ Number of Cold Streams
- \circ Use cold utility
- If the stream matching criteria is not satisfied then split a stream.
- Maximize the exchanger heat loads.

In the following chapters, these steps are used to perform the pinch analysis on the ammonia plant.

Chapter 3 Process Description

In this chapter, the existing network of coils in discussed in detail followed by extraction of data required to perform pinch analysis.

3.1 Process Flow Diagram

In the convective section of primary reformer, series of coils are install to preheat natural gas, process air, boil feed water and to generate steam to recover heat from the flue gas.

Figure 3.1: Existing Process Flow Diagram

Legend	
Temperature Natural Gas Air Steam/Water Flue Gas	

3.1.1 Natural Gas

Natural Gas at 38 °C is mixed with Recycled Gas coming at 117 °C and passed through two preheaters E 204 B and E 204 A, in respective order. Mixture of these gases then entered the desulphurizer at 418°C. Sulphur content of natural gas is reduced from 0.9 ppm to 5 ppb.

The Desulphurized Gas is mixed with process steam and heated in coil E 201 to 532 °C before entering into the primary reformer.

3.1.2 Process Air

Process Air after being compressed in preheated in coil E 202 from 177 °C to 492°C.

3.1.3 Steam from Steam Drum

Steam from steam drum is first heated in coil E 203 through flue gas from primary reformer and then in F 202 A through flue gas coming from boiler.

3.1.4 Boiler Feed Water

Boiler Feed Water is heated in coil E 206 from 110 °C to 136 °C through stack gases.

3.1.5 Flue Gases

Flue gas coming from primary reformer is passed through four series of coils, namely E 201, E 202, E 203 and E 204 A, its temperature drops from 990 °C to 604 °C and then mixed with flue gas from the boiler. These combine flue gases are used to produce high pressure steam in coil E 205. Before exhausting into the environment at 220 °C, they preheat natural gas and boiler feed water in coil E 204 B and E 206, respectively.

Now we will perform data extraction of the process.

3.2 Data Extraction

For data extraction, complete material and energy balance of the system is required. Following data is required for pinch analysis:

- Streams supply temperatures (T_S °C)
- Streams target temperatures (T_T °C)
- Streams mass flow rates (M kg/h)
- Streams specific heat capacities (cp kJ/kg °C)
- Streams head load (Q kW)
- Heat transfer coefficients (h W/m² °C)

3.3 Material Balance

Material balance is performed to calculate the mass flow rates and well the composition of streams. Detail material balance is given below:

3.3.1 Mass Flowrates and Compositions of Known Streams

Following data is provided by the industry

Natural Gas

Components	M (kg/hr)	Wt%
N ₂	9435	24.67%
CO ₂	6588.214	17.23%
CH ₄	22104.286	57.80%
C ₂ H ₆	112.5	0.29%
Flow (Total)	38240	100%

Table 3-1: Natural Gas Composition

Recycled Gas

Components	M (kg/hr)	Wt%
H ₂	172.260	17.30%
N ₂	798.750	80.22%
СО	0.000	0.00%
CO ₂	0.000	0.00%
Ar	8.929	0.90%
CH ₄	15.000	1.51%
C ₂ H ₆	0.000	0.00%
H ₂ O	0.804	0.08%
Flow (Total)	995.742	100%

Table 3-2: Recycle Gas Composition

Process Air

Components	M (kg/hr)	Wt%
O ₂	10585.71	23.12%
N ₂	34436.25	75.20%
CO ₂	21.61	0.05%
Ar	592.86	1.29%
H ₂ O	153.48	0.34%
Flow (Total)	45789.91	100%

Table 3-3: Process Gas Composition

Process Steam

Components	M (kg/hr)	Wt%
H ₂ O	103950	100%

Table 3-4: Process Steam Composition

Steam from Steam Drum

Components	M (kg/hr)	Wt%
H ₂ O	255379	100%

Table 3-5: Steam from Steam Drum Composition

Boiler Feed Water

Components	M (kg/hr)	Wt%
H ₂ O	257959	100%

Table 3-6: Boiler Feed Water Composition

Flue Gas from Primary Reformer

Components	M (kg/hr)	Wt%
O ₂	4305.25	1.70%
N ₂	180006.77	71.19%
CO ₂	37765.50	14.94%
Ar	3007.13	1.19%
H ₂ O	27776.39	10.98%
Flow (Total)	252861.03	100%

Table 3-7: Primary Reformer Flue Gas Composition

Flue Gas from Boiler

Components	M (kg/hr)	Wt%
02	1944.16	2.60%
N ₂	53362.16	71.37%
CO ₂	10702.51	14.31%
Ar	892.63	1.19%
H ₂ O	7870.61	10.53%
Flow (Total)	74772.08	100%

Table 3-8: Boiler Flue Gas Composition

However, information about combine Natural and Recycled Gas, Process Gas and Combine Flue Gas is need to be calculated used material balance techniques.

3.3.2 Mass Flowrates and Compositions of Unknown Streams

3.3.2.1 Mass Flowrate Calculations

Material Balance around Mixer of Natural and Recycled Gas

Let X be the flow rate of inlet stream Natural Gas = 38240 kg/hr

Let Y be the flow rate of inlet stream Recycle Gas = 995.742 kg/hr

Let Z be the flow rate of outlet stream (Natural and Recycled Gas) =?

X + Y = Z

So, Z = 39235.742 kg/hr

Component Balance

N₂ Balance

Let x be the mass fraction of N_2 in inlet stream Natural Gas = 0.2467 Let y be the mass fraction of N_2 in inlet stream Recycled Gas = 0.8022 Let z be the mass fraction of N_2 in outlet stream = ?

38240 x 0.2467 + 995.742 x 0.8022 = 39235.742 x z

So, z = 0.2608

H₂ Balance

Let x be the mass fraction of H_2 in inlet stream Natural Gas = 0

Let y be the mass fraction of H_2 in inlet stream Recycled Gas = 0.1730

Let z be the mass fraction of H_2 in outlet stream = ?

38240 x 0 + 995.742 x 0.1730 = 39235.742 x z

So, **z** = **0.0044**

CO₂ Balance

Let x be the mass fraction of CO_2 in inlet stream Natural Gas = 0.1723 Let y be the mass fraction of CO_2 in inlet stream Recycled Gas = 0 Let z be the mass fraction of CO_2 in outlet stream = ?

38240 x 0.1723 + 995.742 x 0 = 39235.742 x z

So, z = 0.1679

Ar Balance

Let x be the mass fraction of Ar in inlet stream Natural Gas = 0 Let y be the mass fraction of Ar in inlet stream Recycled Gas = 0.0090 Let z be the mass fraction of Ar in outlet stream = ?

38240 x 0 + 995.742 x 0.0090 = 39235.742 x z

So, z = 0.0002

CH4 Balance

Let x be the mass fraction of CH_4 in inlet stream Natural Gas = 0.5780 Let y be the mass fraction of CH_4 in inlet stream Recycled Gas =0.0151 Let z be the mass fraction of CH_4 in outlet stream = ?

38240 x 0.5780 + 995.742 x 0.0151 = 39235.742 x z

So, z = 0.5638

C₂H₆ Balance

Let x be the mass fraction of C_2H_6 in inlet stream Natural Gas = 0.0029 Let y be the mass fraction of C_2H_6 in inlet stream Recycled Gas = 0 Let z be the mass fraction of C_2H_6 in outlet stream = ?

38240 x 0.0029 + 995.742 x 0 = 39235.742 x z

So, z = 0.0029

H₂O Balance

Let x be the mass fraction of H_2O in inlet stream Natural Gas = 0 Let y be the mass fraction of H_2O in inlet stream Recycled Gas = 0.0008 Let z be the mass fraction of H_2O in outlet stream = ?

38240 x 0.7380 + 995.742 x 0.0081 = 39235.742 x z

So, **z** = **0**

Components	Natural and Recycle Gas Mass Fraction	Wt%
N ₂	0.1839	18.39%
H ₂	0.00430	0.43%
CO ₂	0.00754	0.75%
Ar	0.0001	0.01%
CH ₄	0.6957	69.75%
C ₂ H ₆	0.0019	0.19%
H ₂ O	0	0%
Total	1	100%
M (kg/hr)	39235.7	

Table 3-9: Natural & Recycle Gas Composition
Material Balance around Mixer of Process Steam and Desulphurized Gas

Let X be the flow rate of inlet stream Process Steam = 103950 kg/hr

Let Y be the flow rate of inlet stream Desulphurized Gas = 39235.4 kg/hr

Let Z be the flow rate of outlet stream Process Gas = ?

X + Y = Z

103950 + 39235.4 = Z

So, Z = 105701.6 kg/hr

Component Balance

O₂ Balance

Let x be the mass fraction of O_2 in inlet stream Process Steam = 0

Let y be the mass fraction of O₂ I inlet stream Desulphurized Gas = 0.0044

Let z be the mass fraction of O_2 in outlet stream Process Gas = ?

10395 x 0 + 39235.4 x 0.0044 = 105701.6 x z

So, z = 0

H₂ Balance

Let x be the mass fraction of H_2 in inlet stream Process Steam = 0

Let y be the mass fraction of H_2 in inlet stream Desulphurized Gas = 0.2608

Let z be the mass fraction of H_2 in outlet stream Process Gas = ?

103950 x 0 + 39235.4 x 0.2608 = 105701.6 x z

So, z =0.00007

N₂ Balance

Let x be the mass fraction of N_2 in inlet stream Process Steam = 0 Let y be the mass fraction of N_2 in inlet stream Desulphurized Gas = 0 Let z be the mass fraction of N_2 in outlet stream Process Gas = ?

103950 x 0 + 39235.4 x 0 = 105701.6 x z

So, z = 0.00432

CO Balance

Let x be the mass fraction of CO in inlet stream Process Steam = 0

Let y be the mass fraction of CO in inlet stream Desulphurized Gas = 0.1679

Let z be the mass fraction of CO in outlet stream Process Gas = ?

103950 x 0 + 39235.4 x 0.1679 = 105701.6 x z

So, z = 0

CO₂ Balance

Let x be the mass fraction of CO_2 in inlet stream Process Steam = 0

Let y be the mass fraction of CO_2 in inlet stream Desulphurized Gas = 0.0002

Let z be the mass fraction of CO_2 in outlet stream (Process Gas) = ?

 $103950 \ge 0 + 39235.4 \ge 0.0002 = 105701.6 \ge 2$

So, z = 0.00278

Ar Balance

Let x be the mass fraction of Ar in inlet stream Process Steam = 0

Let y be the mass fraction of Ar in inlet stream 2 Desulphurized Gas = 0.5638

Let z be the mass fraction of Ar in outlet stream Process Gas = ?

103950 x 0 + 39235.4 x 0.5638 = 105701.6 x z

So, z = 0

CH₄ Balance

Let x be the mass fraction of CH_4 in inlet stream Process Steam = 0

Let y be the mass fraction of CH_4 in inlet stream Desulphurized Gas = 0.0029

Let z be the mass fraction of CH₄ in outlet stream Process Gas = ?

103950 x 0 + 39235.4 x 0.0029 = 105701.6 x z

So, z = 0.00934

C₂H₆ Balance

Let x be the mass fraction of C_2H_6 in inlet stream Process Steam = 0

Let y be the mass fraction of C_2H_6 in inlet stream Desulphurized Gas = 0

Let z be the mass fraction of C_2H_6 in outlet stream Process Gas = ?

 $103950 \ge 0 + 39235.4 \ge 0 = 105701.6 \ge 2$

So, z = 0.00005

H₂O Balance

Let x be the mass fraction of H_2O in inlet stream Process Steam = 1

Let y be the mass fraction of H_2O in inlet stream Desulphurized Gas = 0

Let z be the mass fraction of H_2O in outlet stream Process Gas = ?

103950 x 1 + 39235.4 x 0 = 105701.6 x z

So, z = 0.9834

Components	Process Gas Mass Fraction	Wt%
O ₂	0	0%
H ₂	0.00007	0.007%
N ₂	0.00432	0.432%
СО	0	0%
CO ₂	0.00278	0.278%
Ar	0	0%
CH ₄	0.00934	0.934%
C ₂ H ₆	0.00005	0.005%
H ₂ O	0.9834	98.34%
Total	1	100%
M (kg/hr)	105701.6	

Table 3-10: Process Gas Composition

Material balance around Mixer of Flue Gas from Primary Reformer and Boiler

Let X be the flow rate of inlet stream of Primary Reformer Flue Gas = 252861.03 kg/hr

Let Y be the flow rate of inlet stream of Boiler Flue Gas = 74772.08 kg/hr

Let Z be the flow rate of outlet stream Combine Flue Gas = ?

X + Y = Z

252861.03 + 74772.08 = Z

So, Z = 327633.11 kg/hr

Component balance

O₂ Balance

Let x be the mass fraction of O_2 in inlet stream of Primary Reformer Flue Gas = 0.0170

Let y be the mass fraction of O_2 in inlet stream of Boiler Flue Gas = 0.0260

Let z be the mass fraction of O_2 in outlet stream of Combine Flue Gas = ?

252861.03 x 0.0170 + 74772.08 x 0.0260 = 327633.11 x z

So, **z = 0.0191**

H₂ Balance

Let x be the mass fraction of H_2 in inlet stream of Primary Reformer Flue Gas = 0

Let y be the mass fraction of H_2 in inlet stream of Boiler Flue Gas = 0

Let z be the mass fraction of H_2 in outlet stream of Combine Flue Gas = ?

252861.03 x 0 + 74772.08 x 0 = 327633.11 x z

So, **z** = **0**

N₂ Balance

Let x be the mass fraction of N_2 in inlet stream of Primary Reformer Flue Gas = 0.7119

Let y be the mass fraction of N_2 in inlet stream of Boiler Flue Gas = 0.7137 Let z be the mass fraction of N_2 in outlet stream Combine Flue Gas = ?

252861.03 x 0.7119 + 74772.08 x 0.7137 = 327633.11 x z

So, z = 0.7123

CO Balance

Let x be the mass fraction of CO in inlet stream of Primary Reformer Flue Gas = 0

Let y be the mass fraction of CO in inlet stream of Boiler Flue Gas = 0

Let z be the mass fraction of CO in outlet stream Combine Flue Gas = ?

252861.03 x 0 + 74772.08 x 0 = 327633.11 x z

So, **z** = **0**

CO₂ Balance

Let x be the mass fraction of CO_2 in inlet stream of Primary Reformer Flue Gas = 0.1494

Let y be the mass fraction of CO_2 in inlet stream of Boiler Flue Gas = 0.1431

Let z be the mass fraction of CO2 in outlet stream Combine Flue Gas = ?

So, z = 0.1479

Ar Balance

Let x be the mass fraction of Ar in inlet stream of Primary Reformer Flue Gas = 0.0119

Let y be the mass fraction of Ar in inlet stream of Boiler Flue Gas = 0.0119 Let z be the mass fraction of Ar in outlet stream Combine Flue Gas = ?

252861.03 x 0.0119 + 74772.08 x 0.0119 = 327633.11 x z

So, **z = 0.0191**

CH₄ Balance

Let x be the mass fraction of CH_4 in inlet stream Primary Reformer Flue Gas = 0.2467

Let y be the mass fraction of CH_4 in inlet stream of Boiler Flue Gas = 0

Let z be the mass fraction of CH₄ in outlet stream Combine Flue Gas =?

252861.03 x 0.2467 + 74772.08 x 0 = 327633.11 x z

So, **z** = **0**

C₂H₆ Balance

Let x be the mass fraction of C_2H_6 in inlet stream Primary Reformer Flue Gas = 0

Let y be the mass fraction of C_2H_6 in inlet stream of Boiler Flue Gas = 0

Let z be the mass fraction of C_2H_6 in outlet stream Combine Flue Gas = ?

So, **z** = **0**

H₂O Balance

Let x be the mass fraction of H_2O in inlet stream Primary Reformer Flue Gas = 0.1098

Let y be the mass fraction of H_2O in inlet stream of Boiler Flue Gas = 0.1053

Let z be the mass fraction of H_2O in outlet stream Combine Flue Gas = ?

252861.03 x 0.1098 + 74772.08 x 0.1053 = 327633.11 x z

Components	Combine Flue Gas Mass Fraction	Wt%
O ₂	0.0190	1.9%
H ₂	0	0%
N ₂	0.7123	71.23%
СО	0	0%
CO ₂	0.1479	14.79%
Ar	0.019	1.9%
CH ₄	0	0%
C ₂ H ₆	0	0%
H ₂ O	0.1088	10.88%
Total	1	100%
Mass Flow (kg/hr)	327633.11	

Table 3-11: Combine Flue Gas Composition

3.4 Energy Balance

Reference Temperature = 25 °C

Balance on Natural and Recycle Gas Mixer

Stree area	Μ	M Cp		H _{In}
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(kJ/hr)
Natural Gas	38240	1.92	38	954470.4
Recycle Gas	996	3.87	117	354615.84
Natural &	39210	1 99	41 9	1318671 51
Recycle Gas	00210	1.55	11.5	1010071.01

 $\Delta H_{In} = \Delta H_{Natural \, Gas} + \Delta H_{Recycle \, Gas}$

 $\Delta H_{In} = 954470.4 + 354615.84$ $\Delta H_{In} = 1309086.24 \ kJ/hr$ $\Delta H_{out} = 1318671.51 \ kJ/hr$ So, $\Delta H_{In} \cong \Delta H_{out}$

Balance on Desulphurized Gas and Process Steam Mixer

Stroom	Μ	Cp	Ts	H _{In}
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(kJ/hr)
Process Steam	103950	2.52	380	92993670
Desulphurized Gas	39210	2.42	413	36816621.6
Process Steam &	143071	2 49	390	130030078 4
Desulphurized Gas	1100/1	2.15	330	100000070.1

 $\Delta H_{In} = \Delta H_{Process \, Steam} + \Delta H_{Desulphurized \, Gas}$

 $\Delta H_{In} = 92993670 + 36816621.6$

 $\Delta H_{In} = 129810291.6 \, kJ/hr$

 $\Delta H_{Out} = 130030078 \, kJ/hr$

So, $\Delta H_{In} \cong \Delta H_{Out}$

Balance on Primary Reformer Flue Gas and Boiler Flue Gas Mixer

Stream	M (kg/hr)	c _p (kJ/kg °C)	Т _s (°С)	H _{In} (kJ/hr)
Primary Reformer Flue Gas	252861	1.3	604	190328499.5
Boiler Flue Gas	74772	1.26	497	44468452.52
Combined Flue Gas	327633	1.19	580	216385214.9

 $\Delta H_{In} = \Delta H_{Primary \, Reformer \, Flue \, Gas} + \Delta H_{Boiler \, Flue \, Gas}$

 $\Delta H_{In} = 170328499.5 + 44468452.52$

 $\Delta H_{In} = 214796952 \ kJ/hr$

$$\Delta H_{out} = 234796952 \, kJ/hr$$

So,
$$\Delta H_{In} \cong \Delta H_{Out}$$

Balance on Coil E 201

Stroom	Μ	Cp	Ts	TT	H _{In}	Hout
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Process	143071	2 49	390	532	130030078 4	180617122 5
Gas	143071	2.45	330	552	130030070.4	100017122.5
Primary						
Reformer	252861	1.33	990	840	324534492.7	274088716.6
Flue Gas						

Duty E 201 = $Q_{E 201}$ = 12.06 Gcal/hr = 50410800 kJ/hr

For Process Gas,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

 $Q = 180617122.5 - 130030078.4 = 50587044.18 \, kJ/hr$

So,
$$Q_{E \ 201} \cong Q$$

For Primary reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

 $Q = 1324534492.7 - 274088716.6 = 50445776.07 \, kJ/hr$

So,
$$Q_{E 201} \cong Q$$

Balance on Coil E 202

Stream	Μ	Cp	Ts	TT	H _{In}	Hout
	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Process Air	45761	1.07	177	492	130030078.4	22866314.09
Primary						
Reformer	252861	1.33	840	794	274088716.6	256674177.3
Flue Gas						

Duty E 202 = $Q_{E 202}$ = 3.68 Gcal/hr = 15382400 kJ/hr

For Process Air,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

Q = 22866314.09 - 130030078.4 = 15423745.05 kJ/hr

So, $Q_{E 202} \cong Q$

For Primary Reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 274088716.6 - 256674177.3 = 17414539.34 \, kJ/hr$$

So,
$$Q_{E \ 202} \cong Q$$

Balance on Coil E 203

Stroom	Μ	Cp	Ts	TT	H _{In}	H _{Out}
(kg/l	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Steam from	1/13071	2 /19	210	3/18	316092803 5	345622277 2
Steam Drum	143071	2.45	515	540	510052005.5	343022277.2
Primary						
Reformer	252861	1.33	794	655	256674177.3	207093186
Flue Gas						

Duty E 203 = Q_{E 203} = 10.9 Gcal/hr = 45562000 kJ/hr

For Steam from Steam Drum,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

Q = 345622277.2 - 316092803.5 = 29529473.77 kJ/hr

So, $Q_{E \ 203} \cong Q$

For Primary Reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

 $Q = 256674177.3 - 207093186 = 49580991.34 \, kJ/hr$

So,
$$Q_{E 203} \cong Q$$

Balance on Coil E 204 A

Stroom	Μ	Cp	Ts	T _T	H_{In}	Hout
Stream	(kg/hr)	(kJ/kg K)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Natural and	20210	? ?	247	/18	17222102.8	33000066
Recycle Gas	39210	2.2	247	410	17522195.0	33300300
Primary						
Reformer	252861	1.3	655	604	207093186	190328499.5
Flue Gas						

Duty E 204 A = $Q_{E 204 A}$ = 3.87 Gcal/hr = 16176600 kJ/hr

For Natural and Recycle Gas,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

$$Q = 33900966 - 17322193.8 = 16578772.2 \, kJ/hr$$
So, $Q_{E204A} \cong Q$

For Primary Reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

 $Q = 207093186 - 190328499.5 = 16764686.48 \, kJ/hr$

So,
$$Q_{E \ 204 \ A} \cong Q$$

Balance on Coil F 202 A

Stream	Μ	Cp	Ts	T _T	H _{In}	Hout
	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Steam from	255270	/ 10	2/18	375	345622277 2	27/512202 5
Steam Drum	233373	4.15	540	375	343022277.2	374313303.3
Boiler Flue	74772	1 26	805	107	73486002.05	11168152 52
Gas	/4//2	1.20	805	437	73480002.03	44400452.52

Duty F 202 A = Q_{F 202 A} = 6.93 Gcal/hr = 28967400 kJ/hr

For Steam from Steam Drum,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

Q = 374513303.5 - 345622277.2 = 28891026.27 kJ/hr

So,
$$Q_{F 202 A} \cong Q$$

For Boiler Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

Q = 73486002.05 - 44468452.52 = 29017549.53 kJ/hr

So,
$$Q_{F 202 A} \cong Q$$

Balance on Heat Exchanger E 205

Stream	M	c _p	Ts	Т _т	H _{In}	H _{Out}
	(kg/hr)	(kJ/kg °C)	(°C)	(°С)	(kJ/hr)	(kJ/hr)
Combined Flue Gas	327633	1.19	580	336	216385214.9	118196881.1

Duty E 205 = $Q_{E 205}$ = 22.81 Gcal/hr = 95345800 kJ/hr

For Combined Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

Q = 216385214.9 - 118196881.1 = 98188333.7 kJ/hr

So,
$$Q_{E \ 205} \cong Q$$

Balance on Coil E 204 B

Stroom	Μ	Cp	Ts	T _T	H _{In}	Hout	
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)	
Natural and	30210	2 /0	/1 0	247	1218671 51	17322103.8	
Recycle Gas	39210	2.45	41.5	247	13100/1.31	17522155.0	
Combined	327633	1 16	336	294	118196881 1	101353268 6	
Flue Gas	327033	1.10	550	234	110150001.1	101333200.0	

Duty E 204 B = Q_{E 204 B} = 3.82 Gcal/hr = 15967600 kJ/hr

For Natural and Recycle gas,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

Q = 17322193.8 - 1318671.51 = 16003522.29 kJ/hr

So,
$$Q_{E \ 204 \ B} \cong Q$$

For Combined Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

Q = 118196881.1 - 101353268.6 = 16843612.53 kJ/hr

So,
$$Q_{E \ 204 \ B} \cong Q$$

Balance on Coil E 206

Stroom	Μ	Cp	Ts	T _T	H _{In}	H _{Out}	
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)	
Boiler Feed	257050	12	110	136	92091363	11007/151 3	
Water	237333	4.2	110	130	92091303	115574151.5	
Combined	277622	1 16	20/	220	101353268 6	73471700 25	
Flue Gas	327033	1.10	254	220	101333200.0	/34/1/00.23	

Duty E 206 = $Q_{E 206}$ = 6.64 Gcal/hr = 27755200 kJ/hr

For Boiler Feed Water,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

 $Q = 119974151.3 - 92091363 = 27882788.31 \, kJ/hr$

So, $Q_{E \ 206} \cong Q$

For Combined Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

 $Q = 101353268.6 - 7347100.25 = 27881568.3 \ kJ/hr$

So, $Q_{E 206} \cong Q$

3.5 Data for Pinch Analysis

Following data is extracted after performing energy and material balance on the primary reformer convective section.

Process	М	Cp	СР	Ts	TT	ΔH	h
Streams	(kg/hr)	(kJ/kg°C)	(kW/°C)	(ºC)	(°C)	(kJ/hr)	(W/m² °C)
Natural &							
Recycle	39210	2.18	23.72	41	418	8943.5	116.4
Gas							
Process	15761	1 07	13 50	177	/102	1279.8	115.0
Air	43701	1.07	15.55	1//	452	4275.0	115.0
Process	1/13071	2 67	106.26	400	532	1/026	170.8
Gas	143071	2.07	100.20	400	552	14020	170.0
Steam							
from	255270	F 99	270.20	210	275	20726	70.0
Steam	255579	5.22	570.29	519	375	20730	/0.0
Drum							
BFW	257959	4.15	297.01	110	136	7722	5721
Primary							
Reformer	252861	1.31	91.93	990	604	35483	200.0
Flue Gas							
Boiler	7/779	1 26	26.17	805	197	8059.6	200.0
Flue Gas	/4//2	1.20	20.17	005	437	0033.0	200.0
Combine	327633	1 18	107 48	580	220	38693	338 3
Flue Gas	527655	1.10	107.10	500	220	00000	

Table 3-12: Process Streams Data

In this problem five streams have to be heated to desired temperature while there are three streams that require cooling. Note that intermediate temperatures are not required while performing a pinch analysis. Heat transfer coefficient is required to perform area targeting and calculating the area of new designed coils.

The minimum temperature difference (ΔT_{min}) in this problem is 27 °C. At any point in the heat exchanger, temperature difference between the hot and cold streams cannot be less than 27 °C.

3.6 Energy Targeting

Using pinch analysis, it is possible estimate minimum energy requirement before designing the heat exchanger network. For this purpose problem table algorithm is used. Following calculations will be used to target energy for the process.

3.6.1 Shifted Temperatures

Shifted temperatures are calculated by following equations.

For Cold stream, Shift Temperature = Temperature + $1/2 \Delta T_{min}$ For Hot stream, Shift Temperature = Temperature - $1/2 \Delta T_{min}$

Drogogo Strooma	Ts	TT	Stream	Shift Ts	Shift T_T
Process streams	(°C)	(°C)	Туре	(°C)	(°C)
Natural & Recycle Gas	41	418	Cold	54.5	431.5
Process Air	177	492	Cold	190.5	505.5
Process Gas	400	532	Cold	413.5	545.5
Steam	319	375	Cold	332.5	388.5
BFW	110	136	Cold	123.5	149.5
Primary Reformer Flue Gas	990	604	Hot	976.5	590.5
Boiler Flue Gas	805	497	Hot	791.5	483.5
Combine Flue Gas	580	220	Hot	566.5	206.5

Table 3-13: Process Streams Shifted Temperatures

3.6.2 Problem Table Algorithm

These shifted temperature are then arrange in descending order and any repeated values are omitted. Temperature difference, net heat capacity and heat loads are calculated for each interval using following equations.

$$\Delta T = T_{(i+1)} - T_i$$
$$dH = C_{P Net} \times \Delta T$$

$$C_{P \, Net} = \sum C_{P \, Hot} - \sum C_{P \, Cold}$$

If enthalpy change (dH) of the interval is positive, then it has heat surplus and if the value of enthalpy change (dH) is negative then it demands heat. According to second law of thermodynamics, each upper interval can transfer heat to the lower interval as heat is transferred from higher temperature to lower temperature. First, infeasible cascade is determined by supply zero heat in the start and if the interval has surplus heat then it is added to the net heat load and if it demands heat then it is subtracted from the net heat load. If there is any negative value in the infeasible cascade then this heat is supplied in the start to form a feasible cascade. Surplus heat supplied in start is the minimum hot utility demand and heat left at end is the minimum cold utility. In this way, problem table algorithm is used to target the energy before designing the network.

In this problem, infeasible and feasible cascade are same because hot utility demand of the system is zero and minimum cold utility demand is calculated at the end.

Shift		Т Т.	Cn	ЧП		Infeasible/
Temperature	Interval					Feasible
(°C)		(°C)	(KW/°C)	(KW)		Cascade
976.5					Pinch	<mark>0</mark>
	1	185	91.92	17006	S	
791.5						17006
	2	201	118.09	23736	S	
590.5						40743
	3	24	26.16	628	S	
566.5						41371
	4	21	128.25	2693	S	
545.5						44064
	5	40	22.1	880	S	
505.5						44944
	6	22	8.42	185	S	
483.5						45130
	7	52	-17.75	-923	D	
431.5						44207
	8	18	-41.47	-746	D	
413.5						43460
	9	25	64.78	1619	S	
388.5						45080
	10	56	-305.5	-17108	D	
332.5						27971
	11	142	64.78	9199	S	
190.5						37170
	12	3	78.36	235	S	
187.5						37405
	13	38	-23.72	-901	D	
149.5						36504
	14	26	-320.73	-8339	D	
123.5						28165
	15	69	-23.72	-1636	D	
54.5						26528

Table 3-14: Problem Table Algorithm for Existing Plant

Pinch temperature is 976.5 °C. Hot and cold pinch are 990 °C and 963 °C, respectively. They are calculated by

Hot Pinch = Pinch Temperature +
$$1/2 \Delta T_{min}$$

Hot Pinch = 976.5 + $1/2 \times 27 = 990 \circ C$
Cold Pinch = Pinch Temperature - $1/2 \Delta T_{min}$
Cold Pinch = 976.5 - $1/2 \times 27 = 963 \circ C$

The minimum hot utility requirement is 0 kW while minimum cold utility requirement is 25268 kW. So, it is a threshold problem.

3.6.3 Composite and Grand Composite Curve

Composite Curve is a plot between the actual temperature and heat flow. Calculations are:

For hot composite curve, arrange the supply and target temperatures of hot streams in descending order and calculate the value of heat capacity (C_P) in each interval. The product of the temperature difference and heat capacity will give the value of heat flow. Plot temperatures against heat flow.

Process Stream	T _S (°C)	T _T (°C)	C _P (kW/°C)
Primary			
Reformer Flue	990	604	91.9
Gas			
Boiler Flue Gas	805	497	26.2
Combine Flue	580	220	107 5
Gas	500	220	107.5

Table 3-15: Hot Process Streams Data

Actual Temperature (ºC)	Interval	T _(i+1) -T _i (°C)	ΣC _{P Hot} (kW/ºC)	Heat Flow (kW)	Total Head Load (kW)
220					
497	1	277	107.5	29777.5	29777.5
580	2	83	133.7	11097.1	40874.6
604	3	24	26.2	628.8	41503.4
805	4	201	118.1	23738.1	65241.5
990	5	185	91.9	170002	235243

Table 3-16: Hot Composite Curve Streams Data

Similarly, for cold streams

Process Stream	T _S (°C)	Τ _Τ (°C)	C _P (kW/ºC)	
Natural & Recycle	41 9	418	23 72	
Gas	11.0	110		
Process Air	177	492	13.6	
Process Gas	390	532	106.3	
Steam from	319	375	370.3	
Steam Drum	515	373	370.3	
Boiler Feed	110	136	107 5	
Water	110	130	107.5	

Table 3-17: Cold Process Streams Data

Actual Temperature (°C)	Interval	T _(i+1) -T _i (°C)	ΣC _{P Cold} (kW/ºC)	Heat Flow (kW)	Total Head Load (kW)
41.9					
110	1	68.1	23.72	1615.3	1615.3
136	2	23	131.22	3018	4633.3
177	3	41	23.72	972.5	5605.8
319	4	142	37.32	5299	10904.8
375	5	56	407.6	22825.6	33730.4
390	6	15	37.32	559.8	34290.2
418	7	28	143.6	4020.8	38311
492	8	74	119.9	8872.6	47183.6
532	9	40	106.3	4252	51435.6

Table 3-18: Cold Composite Curve Stream Data

Now plot the actual temperatures and heat flow for hot and cold streams on the graph to obtain combine composite curve.

Figure 3.2: Combine Composite Curve

Grand composite curve is a plot between shifted temperature and the net heat flow or the feasible cascade.

Figure 3.3: Grand Composite Curve

3.6.4 Threshold Temperature

Threshold temperature will only require one utility till a temperature limit known as threshold temperature that is 310 °C. After this, system requires both utilities. The following table shows the value of hot and cold utilities for different values of minimum temperature difference (ΔT_{min}).

ΔT_{min}	Hot Pinch	Cold Pinch	Hot Utility	Cold Utility
(ºC)	(°C)	(°C)	(kW)	(kW)
310	629	319	1670.6942	28198.674
295.75	990	694.25	0	26527.98
281.5	990	708.5	0	26527.98
267.25	990	722.75	0	26527.98
253	990	737	0	26527.98
238.75	990	751.25	0	26527.98
224.5	990	765.5	0	26527.98
210.25	990	779.75	0	26527.98
196	990	794	0	26527.98
181.75	990	808.25	0	26527.98
167.5	990	822.5	0	26527.98
153.25	990	836.75	0	26527.98
139	990	851	0	26527.98
124.75	990	865.25	0	26527.98
110.5	990	879.5	0	26527.98
96.25	990	893.75	0	26527.98
82	990	908	0	26527.98
67.75	990	922.25	0	26527.98
53.5	990	936.5	0	26527.98
39.25	990	950.75	0	26527.98
25	990	965	0	26527.98

Table 3-19: Threshold Temperature

Chapter 4 Aspen Energy Analyzer

Heat Exchanger Network is designed using Aspen Energy Analyzer. Details to design existing heat exchanger network on Aspen Energy Analyzer is discussed in following section.

4.1 Data Entering

4.1.1 Defining Process Streams

Following process streams data will be entered into aspen energy analyser.

- Name of the stream
- Inlet Temperature
- Outlet Temperature
- Mass Flowrate
- Specific Heat Capacity
- Heat Transfer Coefficient

Name	1	🔏 Inlet T	🖌 🛓 Outlet T	K 🕵	Enthalpy	Seam	HTC	Flowrate	Effective Cp	DT Cont.
Name		[C]	[C]	[kJ/C-h]	[kJ/h]	Jegin.	[kJ/h-m2-C]	[kg/h]	[kJ/kg-C]	[C]
P FG	1	990.0	604.0		1.277e+008	1		2.529e+005		Global
B FG	1	805.0	497.0	9.421e+004	2.902e+007		720.0	7.477e+004	1.260	Global
C FG	1	580.0	220.0		1.390e+008	1		3.276e+005		Global
Process Gas	1	390.0	532.0	3.562e+005	5.059e+007		615.0	1.431e+005	2.490	Global
Process Air	1	177.0	492.0	4.896e+004	1.542e+007		414.3	4.576e+004	1.070	Global
BFW 1	1	319.0	375.0		7.465e+007	1		2.554e+005		Global
NG + RG	1	41.9	418.0		3.223e+007	1		3.921e+004		Global
BFW	1	110.0	136.0	1.071e+006	2.783e+007		20598.0	2.580e+005	4.150	Global
New										
Process Stream	ns	Utility Str	reams E	conomics Opt	ions Notes					

Figure 4.1 Defining Reference Streams

4.1.2 Defining Utility Stream

After defining process streams, utility is defined for the system. Only cold utility is required here. The cold utility is High Pressure Steam Generation of 110 Bars at 320 °C.

🕨 🗹 🖬 🖉 🗹 🖄	<u>.</u>	<mark>₹</mark>									₽
Name		Inlet T	Outlet T	Cost Index	Seam	HTC	Target Load	Effective Cp	Target Flowrate	DT Cont.	
Nanc		[C]	[C]	[Cost/kJ]	oogin.	[kJ/h•m2•C]	[kJ/h]	[kJ/kg·C]	[kg/h]	[C]	
HP Steam Generation - 110 Bar	1	319.0	320.0	-2.490e-006		2.160e+004	9.501e+007	1500	6.334e+004	Global	
<empty></empty>											
Process Streams Utility Streams Economics Options Notes											
Set Up Operations Convert to HI Proje	ct	Hot	Sufficient	Cold S	ufficien	t					

Figure 4.2: Defining Utility Stream

4.2 Existing Heat Exchanger Network

Existing heat exchanger network design is as followed:

4.2.1 Unsatisfied Grid Diagram

In this problem, there are three hot streams while five cold streams. The unsatisfied streams are represented by the dotted line. When the stream is satisfied, it is represented by solid line.

Figure 4.3: Unsatisfied Grid Diagram

4.2.2 Coil E 201

Now heat exchanger between Primary Reformer Flue Gas and Process Gas placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.4: Coil E 201

Figure 4.5: Gird Diagram with E 201

4.2.3 Coil E 202

Now heat exchanger between Primary Reformer Flue Gas and Process Air placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.6: Coil E 202

Figure 4.7: Gird Diagram with E 202

4.2.4 Coil E 203

Now heat exchanger between Primary Reformer Flue Gas and Steam from Steam Drum placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.8: Coil E 203

Figure 4.9: Gird Diagram with E 203

4.2.5 Coil E 204 A

Now heat exchanger between Primary Reformer Flue Gas and Natural & Recycle Gas is placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.10: Coil E 204 A

Figure 4.11: Gird Diagram with E 204 A

4.2.6 Coil F 202 A

Now heat exchanger between Boiler Flue gas and Steam from Steam Drum placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.12: Coil F 202 A

Figure 4.13: Gird Diagram with F 202 A

4.2.7 Coil E 205

Now high pressure steam generator is added to be heated by combine flue gas.

Figure 4.14: Coil E 205

Figure 4.15: Gird Diagram with E 205

4.2.8 Coil E 204 B

Now heat exchanger between Combine Flue Gas and Boiler Feed Water is placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.16: Coil E 204 B

Figure 4.17: Gird Diagram with E 204 B

4.2.9 Coil E 206

Now heat exchanger between Combine Flue Gas and Boiler Feed Water is placed. Heat exchanger is defined by providing supply or target temperatures of the streams exchanging heat.

Figure 4.18: Coil E 206

Figure 4.19: Gird Diagram with E 206

This is the completely satisfied heat exchanger network diagram for existing process.

4.2.9 Existing Heat Exchanger Network Grid Diagram

Following is the completely satisfied Grid Diagram for existing heat exchanger network:

Figure 4.20: Existing Heat Exchanger Network Grid Diagram

4.2.10 High Pressure Steam Production in Coil E 205

Currently the production High Pressure Steam is 63340 kilograms per hour.

 Utility Stream: HP Steam Generation - 110 Bar 							
1	Flowrate [kg/h] Target Heat Load [kJ/h]			6.334e+00 9.501e+00: 6.334e			
Γ	Inlet T Outlet T		Effective Cp	M 1.396e+005lb/hr		HTC	
	[C]	[C]	[kJ/kg-C]	[kJ/C-h]	[kJ/h]	[kJ/h-m2-C]	
Π	319.0	320.0	1.5000e+03	9.501e+007	9.501e+007	2.160e+004	
	Insert Segment De			ete Segment		Delete All	
Segment Data Physical Properties Graphs							

Figure 4.21: High Pressure Steam Mass Flowrate

4.3 Analysis of the Existing Process

Detail analysis of the existing process is performed to identify different possible sources of heat recovery. For this, soft and fix data has to be identified. In this process, outlet temperature of coil E 205 has to be kept constant that is 336 °C as it directly affect the pressure of steam being generated. Hence it is a fix data. On the other hand, stack temperature of the flue gas is soft data and can easily be changed by using Plus/Minus Principle. However, it cannot be reduce to less than sulphur dioxide dew point i.e. 120 °C. If the flue gas is released near sulphur dioxide dew point then it will not only be corrosive for the coils and shell as they are made up of carbon steel but flue gas will also cause acid rain. Hence it is harmful for both, the plant and the environment.

While reducing the temperature of the flue gas, following conditions must be considered.

• No temperature crossover occur between the streams.

• Approach temperature condition should not be violated in any heat exchangers.

Figure 4.22: Process Flow Diagram for Existing Process

Coils being heated by Combine Flue Gas effects the coils heated by Primary Reformer Flue Gas. Number of new cases are designed for the Combine Flue Gas portion using Aspen Energy Analyzer and most suitable case is then selected.
4.3.1 Case 1

336.0 C

293.0 0

136.0

<u>+ - - -</u>

In case 1, new pre heater is added to heat Process Air using Combine Flue Gas. Temperature of Combine Flue Gas was reduced from 336 °C to 190.7 °C while Process Air is heated from 177 °C to 293 °C and Natural and Recycle Gas is heated to 319 °C.

Nama		Inlet T	Outlet T	MCp	Enthalpy	C	HTC	Flowrate	Effective Cp	DT Cont.
iname		[C]	[C]	[kJ/C-h]	[kJ/h]	segm.	[kJ/h-m2-C]	[kg/h]	[kJ/kg·C]	[C]
J C FG	1	336.0	190.9	3.816e+005	5.537e+007		1218.00			27.0
Process Air	1	177.0	293.0	4.860e+004	5.638e+006		414.00			27.0
NG + RG	1	41.9	319.0	7.920e+004	2.195e+007		419.00			27.0
BFW	1	110.0	136.0	1.069e+006	2.780e+007		20598.00			27.0
New										

\$* ◇ 読⊵ 4 ● 27 🛄 27 💭 結果 あっぷ* 💸 🔅 🔶 🐂 😫 🔶 … 😫 5637600.0 kJ/h 27799200.0 kJ/h C FG 319.0 C NG + RG

Figure 4.23: Case 1-Streams Data

Figure 4.25: Case 1-Coil E 202 B

190.9 C

41.9 C

177.0 C

110.0 C

> ~

Process A

BFW

Figure 4.26: Case 1-Coil E 204 B

Figure 4.27: Case 1-Coil E 206

Although temperature of the Flue Gas is significantly reduced, the areas of the exchangers came to be quite large making the case impractical to apply.

4.3.2 Case 2

In case 2, new pre heater to heat Process Air and heating Natural and Recycle Gas in two parts using Combine Flue Gas. Temperature of Combine Flue Gas was reduced from 336 °C to 190.7 °C while Process Air is heated from 177 °C to 293 °C and Natural and Recycle Gas is heated to 319 °C.

Mana		Inlet T	Outlet T	МСр	Enthalpy	Carro	HTC	Flowrate	Effective Cp	DT Cont.
Name		[C]	[C]	[kJ/C-h]	[kJ/h]	segm.	[kJ/h-m2-C]	[kg/h]	[kJ/kg-C]	[C]
C FG	1	336.0	190.7	3.816e+005	5.545e+007		720.00			27.0
Process Air	1	177.0	293.0	4.860e+004	5.638e+006		414.30			27.0
NG + RG	1	41.9	320.0	7.920e+004	2.203e+007		419.00			27.0
BFW	1	110.0	136.0	1.069e+006	2.780e+007		20598.00			27.0
New										

Figure 4.28: Case 2-Streams Data

Figure 4.29: Case 2-Grid Diagram

Figure 4.30: Case 2-E 204 B

Figure 4.31: Case 2-E 202 B

Figure 4.32: Case 2-E 206

Figure 4.33: Case 2-E 204 C

Similar issue is faced in this case as the area of exchangers are too large to use them in real system.

4.3.3 Case 3

In case 3, new pre heater to heat Process Air using Combine Flue Gas is added. However, temperature of Combine Flue Gas was reduced from 336 °C to 202 °C while Process Air is heated from 177 °C to 300 °C and Natural and Recycle Gas is heated to 260 °C.

Name		Inlet T [C]	Outlet T [C]	MCp [kJ/C-h]	Enthalpy [kJ/h]	Segm.	HTC [kJ/h-m2-C]	Flowrate [kg/h]	Effective Cp [kJ/kg-C]	DT Cont. [C]
C FG	1	336.0	202.2	3.816e+005	5.106e+007		1218.00			27.0
Process Air	1	177.0	300.0	4.860e+004	5.978e+006		414.30			27.0
NG + RG	1	41.9	260.0	7.920e+004	1.727e+007		419.00			27.0
BFW	1	110.0	136.0	1.069e+006	2.780e+007		20598.00			27.0
New										

Figure 4.34: Case 3-Streams Data

Figure 4.35: Case 3-Grid Diagram

Figure 4.36: Case 3-E 202 B

Figure 4.37: Case 3-E 204 B

Figure 4.38: Case 3-E 206

This is the post suitable case to apply new preheater for the Process Air as the areas estimated by Aspen Energy Analyzer of heat exchangers are also in practical range to design coils.

In the next chapter, the selected case will be applied to design new exchanger network and results will be calculated based on it.

Chapter 5 New Heat Exchanger Network

Based on the solution suggested in chapter 4, proposed heat exchanger network is designed for all the process streams. Later new process flow diagram is drawn followed by comparing the results of both existing and proposed networks.

5.1 New Heat Exchanger Network Design

5.1.1 Defining Process Streams

Entire data for the process streams is same as the previous one except that outlet temperature of Combine Flue Gas is reduced to 201 °C.

Figure 5.1: Modified Streams Data

5.1.2 Defining Utility Stream

Utility for the system same.

🕨 🗹 🖬 🖉 🗹 K 🗉	-	3 \$								₽
Name		Inlet T Outle	t T Cost Index	Seam.	HTC	Target Load	Effective Cp	Target Flowrate	DT Cont.	
			[Lost/kJ]		[kJ/h·m2·L]	[kJ/h]	[kJ/kg·L]	[kg/h]		
HP Steam Generation - 110 Bar	1	319.0 320	0.0 -2.490e-006		2.160e+004	9.501e+007	1500	6.334e+004	Global	
<empty></empty>										
1										
Process Streams Utility Streams Economics Options Notes										
Set Up Operations Convert to HI Project Hot Sufficient Cold Sufficient										

Figure 5.2: Utility Stream

5.1.3 New Heat Exchanger Network

In this network, a new preheater for Process Air is added after coil E 205. Total number of heat exchangers in the network are nine now.

Figure 5.3: Modified Heat Exchanger Network

5.1.3.1 Coil E 201

No change in the conditions of this exchanger.

Figure 5.4: Coil E 201

5.1.3.2 Coil E 202 A

In this exchanger, inlet temperature of Process Air is now 300 °C instead of 177 °C while outlet temperature of Primary Reformer Flue Gas is dropped from 794 °C to 811 °C.

Figure 5.5: Coil E 202 A

5.1.3.3 Coil E 203

In this exchanger, conditions of the cold stream in same. However, inlet and outlet temperature of Primary Reformer Flue Gas are now 811 °C and 673 °C instead of 794 °C and 655 °C, respectively.

Figure 5.6: Coil E 203

5.1.3.4 Coil E 204 A

In this exchanger, inlet temperature of Natural and Recycle Gas is now 260 °C instead of 247 °C. Inlet and outlet temperature of Primary Reformer Flue Gas are changed from 655 °C and 604 °C to 673 °C and 626 °C, respectively.

🏓 Heat Exchanger E 204 A	
Hot Stream: P FG	F26.4 C Fied
254.9 C 1.499e+007 kJ/h	Area: a1 Cold end: 184.1 m2 366.4 C
☐ Tied 418.0 C	Cold Stream: NG + RG
Counter Current	○ Shell and Tube
Data Connectivity Parameters T-H Plot Note	88
Calcu	lations OK

Figure 5.7: Coil E 204 A

5.1.3.5 Coil F 202 A

No change in the conditions of this exchanger.

Figure 5.8: Coil F 202 A

5.1.3.6 Coil E 205

In this exchanger, due to increase in the temperature of Primary Reformer Flue Gas, Combine flue Gas temperature is increased from 580 °C to 597 °C. However outlet temperature of Combine Flue Gas is kept constant to 336 °C as it will affect the pressure of steam being generated.

Figure 5.9: Coil E 205

5.1.3.7 Coil E 202 B

This is the new exchanger in the system. The inlet and outlet temperature of Process Air are estimated in previous chapter that are 177 °C and 300 °C, respectively.

Figure 5.10: Coil E 202 B

5.1.3.8 Coil E 204 B

In this exchanger, outlet temperature of Natural and Recycle Gas is increased to 260 °C from 247 °C. Inlet and outlet temperature of Combine Flue Gas are now 320 °C and 275 °C instead of 336 °C and 294 °C, respectively.

🏓 Heat Exchanger E 204 B		×
Hot Stream: C FG)	
DEC.5 C	Image: State Contract Image: State Contre Image: State Contre <t< th=""><th>:</th></t<>	:
⊡ Tied 260.0 C	✓ Tied	
 Counter Current 	Cold Stream: NG + RG Shell and Tube	
Data Connectivity Parameters T-H Plot Note	38	
X Calcul	lations OK	

Figure 5.11: Coil E 204 B

5.1.3.9 Coil E 206

In this exchanger, conditions of the cold stream in same. However, inlet and outlet temperature of Combine Flue Gas are now 275 °C and 201 °C instead of 294 °C and 220 °C, respectively.

Figure 5.12: Coil E 206

5.1.3.10 High Pressure Steam Production in Coil E 205

As a result of increased inlet temperature of Combine Flue Gas at coil E 205, production of High Pressure Steam is increased from 63340 kilograms per hour to 67770 kilograms per hour.

a	Utility Stream: HP Steam Generation - 110 Bar								
	Flowrate [kg/h] 6.777e+004 Target Heat Load [kJ/h] 1.017e+008 6.777e+004kg/h								
	Inlet T	Outlet T	Effective Cp	MCp 1.49	4e+005lb/hr	HTC			
	[C]	[C]	[kJ/kg-C]	[kJ/C-h]	[kJ/h]	[kJ/h-m2-C]			
	319.0	320.0	1.5000e+03	1.017e+008	1.017e+008	2.160e+004			
	Insert Segment Delete Segment Delete All								
	Segment Data Physical Properties Graphs								

Figure 5.13: New High Pressure Steam Mass Flowrate

5.1.4 New Heat Exchanger Network Grid Diagram

Following is the completely satisfied Grid Diagram for new heat exchanger network:

Figure 5.14 New Heat Exchanger Grid Network Design

5.2 Comparison of Networks

Following tables shows comparison between existing and proposed heat exchanger network.

Parameters	Existing Heat Exchanger Network	New Heat Exchanger Network		
Stack Gas Temperature	220	201		
(°C)	220	201		
HP Steam Production	63340	67770		
(kg/hr)	00010	07770		

Table 5-1: Comparison of New and Existing Heat Exchange Network

5.2 New Process Flow Diagram

Based on the new heat exchanger network, modified process flow diagram is drawn. In this diagram, coil E 202 B is added after coil E 205 to pre heat Process Air.

Figure 5.15: New Process Flow Diagram

5.3 Material and Energy Balance of New Process

After the new system is designed, material and energy balance on the modified process is performed.

5.3.1 Material Balance

As no reaction or mixing is take place, material balance of the modified process will remain same to that performed in chapter 3. However, due to addition of new coil and changing the temperatures of some of the streams, energy balance of the system will change and is shown in the next section.

5.3.2 Energy Balance

Reference Temperature = 25 °C

Balance on Natural and Recycle Gas Mixer

Stroom	Μ	Cp	Ts	H _{In}	
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(kJ/hr)	
Natural Gas	38240	1.92	38	954470.4	
Recycle Gas	996	3.87	117	354615.84	
Natural &	39210	1 99	41 9	1318671 51	
Recycle Gas	00210	1.00	11.0	10100/1.01	

 $\Delta H_{In} = \Delta H_{Natural \, Gas} + \Delta H_{Recycle \, Gas}$

 $\Delta H_{In} = 954470.4 + 354615.84$

 $\Delta H_{In} = 1309086.24 \, kJ/hr$

 $\Delta H_{out} = 1318671.51 \, kJ/hr$

So,
$$\Delta H_{In} \cong \Delta H_{Out}$$

Balance on Desulphurized Gas and Process Steam Mixer

Stroom	Μ	Cp	Ts	H_{In}	
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(kJ/hr)	
Process Steam	103950	2.52	380	92993670	
Desulphurized Gas	39210	2.42	413	36816621.6	
Process Steam & Desulphurized Gas	143071	2.49	390	130030078.4	

 $\Delta H_{In} = \Delta H_{Process \, steam} + \Delta H_{Desulphurized \, Gas}$

 $\Delta H_{In} = 92993670 + 36816621.6$

 $\Delta H_{In} = 129810291.6 \, kJ/hr$

 $\Delta H_{out} = 130030078 \, kJ/hr$

So,
$$\Delta H_{In} \cong \Delta H_{Out}$$

Balance on Primary Reformer Flue Gas and Boiler Flue Gas Mixer

Stream	M (kg/hr)	c _p (kJ/kg ºC)	Т _S (°С)	H _{In} (kJ/hr)
Primary				
Reformer Flue	252861	1.3	626	197560325
Gas				
Boiler Flue Gas	74772	1.26	497	44468452.52
Combined Flue	327633	1.19	597	223013230.4
Gas				

 $\Delta H_{In} = \Delta H_{Primary \, Reformer \, Flue \, Gas} + \Delta H_{Boiler \, Flue \, Gas}$

 $\Delta H_{In} = 197560325 + 444.68452.52$

 $\Delta H_{In} = 271046327.1 \, kJ/hr$

 $\Delta H_{out} = 223013230.4 \, kJ/hr$

So, $\Delta H_{In} \cong \Delta H_{Out}$

Balance on Coil E 201

Stroom	Μ	Cp	Ts	T _T	H _{In}	Hout
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Process	1/2071	2 /0	300	522	120020078 /	190617122 5
Gas	143071	2.49	390	552	130030078.4	100017122.3
Primary						
Reformer	252861	1.33	990	840	324534492.7	274088716.6
Flue Gas						

Duty E 201 = $Q_{E 201}$ = 12.06 Gcal/hr = 50410800 kJ/hr

For Process Gas,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

$$Q = 180617122.5 - 130030078.4$$

$$Q = 50587044.18 \, kJ/hr$$
So, $Q_{E 201} \cong Q$

For Primary Reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 324534492.7 - 274088716.6$$

$$Q = 50445776.07 \ kJ/hr$$
So, $Q_{E \ 201} \cong Q$

Balance on Coil E 202 A

Stroom	М	Cp	Ts	TT	H _{In}	H _{Out}
Stream	(kg/hr) (kJ/kg °C) (°C) (°C)		(°C)	(kJ/hr)	(kJ/hr)	
Process	45761	1 07	300	492	13/6517/ 25	22866317 1
Air	13701	1.07	500	-152	13403174.23	22000314.1
Primary						
Reformer	252861	1.33	840	811	274088716.6	262348378.9
Flue Gas						

Duty E 202 A = $Q_{E 202 A}$ = ?

For Process Air,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

$$Q = 22866314.09 - 13465174.25$$

$$Q = 9401139.84 \, kJ/hr$$
So, $Q_{E 202 A} = Q = 9401139.84 \, kJ/hr$

For Primary Reformer Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 274088716.6 - 26234873.9$$

$$Q = 11740337.76kJ/hr$$
So, $Q_{E \ 202 \ A} \cong Q$

$$Q_{E \ 202 \ A} = 2.25 \ G c a l/hr$$

Balance on Coil E 203

Stroom	Μ	Cp	Ts	TT	H _{In}	H _{Out}
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Steam from						
Steam	143071	2.49	319	348	316092803.5	345622277.2
Drum						
Primary						
Reformer	252861	1.3	811	673	262348378.9	213010134.0
Flue Gas						

Duty E 203 = $Q_{E 203}$ = 10.9 Gcal/hr = 45562000 kJ/hr

For Steam from Steam Drum,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

$$Q = 345622277.2 - 316092803.5$$

$$Q = 29529473.77 \ kJ/hr$$
So, $Q_{E \ 203} \cong Q$

For Primary Reformer Flue Gas,

 $Q = \Delta H_{In} - \Delta H_{Out}$ Q = 262348378.9 - 213010134 $Q = 49338244.75 \ kJ/hr$ So, $Q_{E 203} \cong Q$

Balance on Coil E 204 A

Stream	M (kg/hr)	c _p (kJ/kg °C)	Ts (°C)	Т _т (°С)	H _{In} (kJ/hr)	H _{Out} (kJ/hr)
Natural and Recycle Gas	39210	2.2	260	418	18336556	33900966
Primary Reformer Flue Gas	252861	1.33	673	626	213010134	197560325

Duty E 204 A = $Q_{E 204 A}$ = ?

For Natural and Recycle Gas,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

 $Q = 33900966 - 18336556$
 $Q = 15564409.5 \, kJ/hr$

So, $Q_{E \ 204 \ A} = Q = 15564409.5 \ kJ/hr$

For Primary Reformer Flue Gas,

 $Q = \Delta H_{In} - \Delta H_{Out}$ Q = 213010134.1 - 197560325 $Q = 15449809.11 \, kJ/hr$ So, $Q_{E \, 204 \, A} \cong Q$

 $Q_{E \ 204 \ A} = 3.72 \ Gcal/hr$

Balance on Coil F 202 A

Stroom	Μ	Cp	Ts	T _T	H _{In}	Hout
Suedin	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Steam from	255270	1 10	249	275	245622277	27/512202
Steam Drum	233379	4.15	340	375	343022277	374313303
Boiler Flue	74772	1 26	805	497	73486002	44468452
Gas	11112	1.20	005	-137	75400002	11100132

Duty F 202 A = $Q_{F 202 A}$ = 6.93 Gcal/hr = 28967400 kJ/hr

For Steam from Steam Drum,

$$Q = \Delta H_{Out} - \Delta H_{In}$$

$$Q = 374513303.5 - 345622277.2$$

$$Q = 28891026.27 \ kJ/hr$$
So, $Q_{F202A} \cong Q$

For Boiler Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 73486002.5 - 44468452.52$$

$$Q = 29017549.53 \ kJ/hr$$
So, $Q_{F 202 A} \cong Q$

Balance on Coil E 205

Stream	M	c _p	T _S	Т _т	H _{In}	H _{Out}
	(kg/hr)	(kJ/kg °C)	(°C)	(°С)	(kJ/hr)	(kJ/hr)
Combined Flue Gas	327633	1.19	597	336	223013230.4	118196881.1

Duty E 205 = $Q_{E 205}$ = 22.81 Gcal/hr = 95345800 kJ/hr

For Combined Flue Gas,

 $Q = \Delta H_{In} - \Delta H_{Out}$ Q = 216385214.9 - 118196881.1 Q = 104816349.4 kJ/hrSo, $Q_{E 205} \cong Q$

Balance on Heat Exchanger E 202 B

Stream	M (kg/hr)	c _p (kJ/kg °C)	Ts (°C)	Т _т (°С)	H _{In} (kJ/hr)	H _{Out} (kJ/hr)
Process Air	45761	1.07	177	300	7442569.04	13465174.25
Combined Flue Gas	327633	1.16	336	320	118196881.1	112116013

Duty E 202 B = Q_{E 202 B} = ?

For Process Air,

 $Q = \Delta H_{out} - \Delta H_{In}$ Q = 33900966 - 18336556 $Q = 15564409.5 \, kJ/hr$

So, $Q_{E 202B} = Q = 15564409.5 kJ/hr$

For Combine Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 213010134.1 - 197560325$$

$$Q = 15449809.11 \, kJ/hr$$
So, $Q_{E \ 202 \ B} \cong Q$

$$Q_{E \ 202 \ B} = 3.72 \ Gcal/hr$$

Balance on Coil E 204 B

Stroom	М	Cp	Ts	TT	H _{In}	H _{Out}
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Natural						
and	30210	2 /0	<i>/</i> 10	260	1218671 51	18336556 5
Recycle	39210	2.45	41.5	200	13100/1.31	10320220.2
Gas						
Combined	327633	1 16	320	275	112116013	9/19//87 5
Flue Gas	527033	1.10	520	275	112110013	JH1JH407.J

Duty E 204 B = $Q_{E 204 B}$ = ?

For Natural and Recycle Gas,

$$Q = \Delta H_{out} - \Delta H_{In}$$

$$Q = 33900966 - 18336556$$

$$Q = 17017884.99 \, kJ/hr$$

So,
$$Q_{E \ 204 \ B} = Q = 17017884.99 \ kJ/hr$$

For Combine Flue Gas,

$$Q = \Delta H_{In} - \Delta H_{Out}$$

$$Q = 213010134.1 - 197560325$$

$$Q = 17921525.1 \, kJ/hr$$

So,
$$Q_{E \ 204 \ B} \cong Q$$

 $Q_{E \ 204 \ B} = 4.07 \ Gcal/hr$

Balance on Coil E 206

Stroom	М	Cp	Ts	T _T	H_{In}	H _{Out}
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(kJ/hr)	(kJ/hr)
Boiler Feed	257050	4.0	110	126	02001262	11007/101 2
Water	25/959	4.2	110	130	92091303	1199/4151.3
Combined	227622	1 16	275	201	04104497 F	66212010 2
Flue Gas	327033	1.10	275	201	94194407.5	00312919.2

Duty E 206 = $Q_{E 206}$ = ?

For Natural and Recycle Gas,

 $Q = \Delta H_{out} - \Delta H_{In}$ Q = 33900966 - 18336556 $Q = 27882788.31 \, kJ/hr$

So, $Q_{E 206} = Q = 27882788.31 \, kJ/hr$

For Primary Reformer Flue Gas,

 $Q = \Delta H_{In} - \Delta H_{Out}$ Q = 213010134.1 - 197560325 $Q = 27881568.3 \, kJ/hr$ So, $Q_{E \, 206} \cong Q$ $Q_{E \, 206} = 6.67 \, G c a l/hr$

After performing energy balance on the new system, it was determined that duty of some of the coils has changed. Design of these coils are given in details in the next chapter.

Chapter 6 Coils Designing

In the previous chapter, duty of the following coils were determined.

- E 202 A
- E 202 B
- E 204 A
- E 204 B
- E 206

In this chapter detail designing of these coils is performed.

6.1 Design Parameters

These coils are designed as the helical coil heat exchangers. For this purpose following parameters for each coil are calculated. Equations used to design these parameters are given along with them.

• Heat Load (Q)

$$\Delta H = Q = M \times c_p (T_S - T_T) = C_P (T_S - T_T)$$

• Overall Heat Transfer Coefficient (U)

$$\frac{1}{U} = \frac{1}{h_{Hot}} + \frac{1}{h_{Cold}}$$

• Log Mean Temperature Difference (ΔT_{LM})

$$\Delta T_{LM} = \frac{(T_{Hot S} - T_{Cold T}) - (T_{Hot T} - T_{Cold S})}{\ln \frac{(T_{Hot S} - T_{Cold T})}{(T_{Hot T} - T_{Cold S})}}$$

• Area (A)

$$A = \frac{Q}{U \times \Delta T_{LM}}$$

• Length (L)

$$L = \frac{A}{\pi \times d_o}$$

• Pitch (p)

$$p = 1.5 \times d_o$$

• Number of Turns (N)

$$N = \frac{L}{\sqrt{(2\pi \times R)^2 + p^2}}$$

Where following factors are known

- Outside Diameter of Coil (d_o)
- Helix Radius (R)
- Mass flowrate of streams passing through coils (M)
- Specific Heat Capacity of streams passing through coils (cp)
- Streams Supply and Target Temperatures
- Heat transfer coefficient of Hot Fluid (h_{hot})
- Heat transfer coefficient of Hot Fluid (h_{cold})

6.2 Designing of Coils

6.2.1 Coil E 202 A

In coil E 202 A, Process Air is heated by Primary Reformer Flue Gas. Following information is known.

Outside Diameter of Coil (d_o) = 88.9 mm

Stroom	M Cp		Ts	TT	h
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(W/m² °C)
Process Air	45761	1.07	300	492	115
Primary Reformer Flue Gas	252861	1.31	840	811	200

Helix Radius (R) = 1.15 m

$$C_{P \ Cold} = 45761 \times 1.07/3600$$

$$C_{P \ Cold} = 13.6 \ kW/^{\circ}C$$

$$Q = 13.6 \times (492 - 300)$$

$$Q = 2611.4 \ kW$$

$$\frac{1}{U} = \frac{1}{200} + \frac{1}{115}$$

$$U = 73.02 \ W/m^{2\circ}C$$

$$\Delta T_{LM} = \frac{(840 - 492) - (811 - 300)}{\ln \frac{(840 - 492)}{(811 - 300)}}$$

$$\Delta T_{LM} = 424.3^{\circ}C$$

$$A = \frac{2611.4 \times 1000}{73.02 \times 424.3}$$

$$A = 84.3 \ m^{2}$$

$$L = \frac{84.3}{\pi \times (88.9/1000)}$$

$$L = 302 \ m$$

$$p = 1.5 \times (88.9/1000)$$

$$p = 0.133$$

$$N = \frac{302}{\sqrt{(2\pi \times 1.15)^{2} + 0.133^{2}}}$$

$$N = 42$$

6.2.2 Coil E 202 B

In coil E 202 B, Process Air is heated by Combine Flue Gas. Following information is known.

Outside Diameter of Coil (d_o) = 114.3 mm

Helix Radius (R) = 1.48 m

Stroom	M Cp		Ts	TT	h
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(W/m² °C)
Process Air	45761	1.07	177	300	115
Combine Flue Gas	327633	1.18	336	320	338

 $C_{P \ Cold} = 45761 \times 1.07/3600$

 $C_{P \ Cold} = 13.6 \ kW/^{\circ}C$ $Q = 13.6 \times (300 - 177)$ $Q = 1673 \, kW$ $\frac{1}{U} = \frac{1}{338} + \frac{1}{115}$ $U = 85.8 W/m^{2}$ °C $\Delta T_{LM} = \frac{(336 - 300) - (320 - 177)}{\ln \frac{(336 - 300)}{(320 - 177)}}$ $\Delta T_{LM} = 77.57 \ ^{\circ}\text{C}$ $A = \frac{1673 \times 1000}{77.57 \times 85.81}$ $A = 251.34 m^2$ $L = \frac{251.34}{\pi \times (114.3/1000)}$ L = 700 m $p = 1.5 \times (114.3/1000)$ p = 0.171 $N = \frac{700}{\sqrt{(2\pi \times 1.48)^2 + 0.171^2}}$ N = 75

6.2.3 Coil E 204 A

In coil E 204 A, Natural and Recycle Gas is heated by Primary Reformer Flue Gas. Following information is known.

Outside Diameter of Coil (d_o) = 88.9 mm

Helix Radius (R) = 1.15 m

Stroom	M Cp		Ts	T _T	h
Stream	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(W/m² °C)
Natural and Recycle	39210	2 18	260	/18	116 /
Gas	55210	2.10	200	410	110.4
Primary Reformer	252861	1 22	673	626	200
Flue Gas	232001	1.00	075	020	200

 $C_{P \ Cold} = 39210 \times 2.18/3600$

 $C_{P \ Cold} = 23.72 \ kW/^{\circ}C$ $Q = 23.72 \times (418 - 260)$ $Q = 4164 \, kW$ $\frac{1}{U} = \frac{1}{200} + \frac{1}{116.4}$ $U = 73.58 W/m^{2}$ °C $\Delta T_{LM} = \frac{(673 - 418) - (626 - 260)}{\ln \frac{(673 - 418)}{(626 - 260)}}$ $\Delta T_{LM} = 307.16 \,^{\circ}\text{C}$ $A = \frac{4164 \times 1000}{307.2 \times 73.58}$ $A = 184.2 m^2$ $L = \frac{184.2}{\pi \times (88.9/1000)}$ L = 660 m $p = 1.5 \times (88.9/1000)$ p = 0.133

$$N = \frac{660}{\sqrt{(2\pi \times 1.15)^2 + 0.133^2}}$$
$$N = 91$$

6.2.4 Coil E 204 B

In coil E 204 B, Natural and Recycle Gas is heated by Combine Flue Gas. Following information is known.

Outside Diameter of Coil (d_o) = 114.3 mm

Helix Radius (R) = 1.48 m

Stroom	Μ	Cp	Ts	TT	h
Sucan	(kg/hr)	(kJ/kg °C)	(°C)	(°C)	(W/m² °C)
Natural and Recycle	30210	2.18	/1 0	260	116 /
Gas	35210	2.10	41.5	200	110.4
Combine Flue Gas	327633	1.18	320	275	338

 $C_{P \ Cold} = 39210 \times 2.18/3600$

 $C_{P \ Cold} = 23.72 \ kW/^{\circ}C$

$$Q = 23.72 \times (260 - 41.9)$$

 $Q = 4789 \, kW$

$$\frac{1}{U} = \frac{1}{338} + \frac{1}{116.4}$$
$$U = 86.6 W/m^{2} C$$

$$\Delta T_{LM} = \frac{(320 - 260) - (275 - 41.9)}{\ln \frac{(320 - 260)}{(275 - 41.9)}}$$

 $\Delta T_{LM} = 127.55 \text{ °C}$

$$A = \frac{4789 \times 1000}{86.6 \times 127.55}$$
$$A = 433.63 m^{2}$$

$$L = \frac{433.63}{\pi \times (114.3/1000)}$$
$$L = 1208 \text{ m}$$
$$p = 1.5 \times (114.3/1000)$$
$$p = 0.171$$
$$N = \frac{1208}{\sqrt{(2\pi \times 1.48)^2 + 0.171^2}}$$
$$N = 130$$

6.2.5 Coil E 206

In coil E 206, Boiler Feed Water is heated by Combine Flue Gas. Following information is known.

Outside Diameter of Coil (d_o) = 114.3 mm

Helix Radius (R) = 1.48 m

Stream	M (kg/hr)	c _p (kJ/kg ºC)	Ts (°C)	Т _Т (°С)	h (W/m² °C)
Boiler Feed Water	252861	4.15	110	136	5722
Combine Flue Gas	327633	1.18	320	201	338

 $C_{P \ Cold} = 252861 \times 12.8/3600$

$$C_{P \ Cold} = 297.01 \ kW/^{\circ}C$$

$$Q = 297.01 \times (136 - 110)$$

$$Q = 7730 \, kW$$

$$\frac{1}{U} = \frac{1}{338} + \frac{1}{5722}$$
$$U = 319.15 W/m^{2} °C$$

$$\Delta T_{LM} = \frac{(275 - 136) - (201 - 110)}{\ln \frac{(275 - 136)}{(201 - 110)}}$$
$$\Delta T_{LM} = 113.3 \,^{\circ}\text{C}$$
$$A = \frac{7730 \times 1000}{319.15 \times 113.3}$$
$$A = 213.76 \, m^2$$
$$L = \frac{213.76}{\pi \times (114.3/1000)}$$
$$L = 595.7 \,\text{m}$$
$$p = 1.5 \times (114.3/1000)$$
$$p = 0.171$$
$$N = \frac{595.7}{\sqrt{(2\pi \times 1.48)^2 + 0.171^2}}$$
$$N = 64$$

6.3 Coil Design Summary

Following table shows the summary of coil design:

Parameters	E 202 A	E 202 B	E 204 A	E 204 B	E 206
Heat Load (kW)	2611.4	1673	4163.8	4788.8	7730
Hot Fluid T _s (°C)	840	336	673	320	275
Hot Fluid T _T (°C)	811	320	626	275	201
Cold Fluid T _s (°C)	300	177	260	41.9	110
Cold Fluid T _T (°C)	492	300	418	260	136
Hot Fluid h (W/m ² °C)	200	338	200	338	338
Cold Fluid h (W/m ² °C)	115	115	116.4	116.4	5722
Overall Heat Transfer	73.02	85 81	73 58	86 58	319
Coefficient U (W/m ² °C)	/3.02	05.01	/ 3.30	00.50	515
LMTD (°C)	424.29	77.57	307.16	127.55	113
Area (m²)	84.29	251.34	184.24	433.63	213.8
Coil Outer Diameter do	88.9	114 3	88.9	114 3	114 3
(mm)	00.5	111.0	00.5	111.0	111.0
Helix Radius R (m)	1.15	1.48	1.15	1.48	1.48
Length L (m)	301.97	700.30	660.00	1208.2	595.6
Pitch p (m)	0.133	0.171	0.133	0.171	0.171
Number of Turns (N)	42	75	91	130	64

Table 6-1: Coils Design Summary

6.4 Area Targeting

To calculate the minimum area requirement for the heat exchanger network, balanced combine composite curve is used. Balanced combine composite curve is same as combine composite curve, in addition to it also includes utility streams. By including utility streams, both hot and cold composite curve are in energy balance with one another. First minimum cold utility requirement is calculated using problem table algorithm for the new stream data.

6.4.1 Stream Data

Process	М	Cp	СР	Ts	T _T	ΔH	h
Streams	(kg/hr)	(kJ/kg°C)	(kW/°C)	(°C)	(°C)	(kJ/hr)	(W/m² °C)
Natural &							
Recycle	39210	2.18	23.7	41	418	8943	116.4
Gas							
Process	45761	1 07	13.6	177	492	4280	115.0
Air	13701	1.07	15.0	1//	152	1200	115.0
Process	1/13071	2 67	106	400	532	1/026	170.8
Gas	143071	2.07	100	100	552	14020	170.0
Steam							
from	255270	F 99	270	210	275	20726	70.0
Steam	233373	3.22	370	519	373	20730	70.0
Drum							
BFW	257959	4.15	297	110	136	7722	5721
Primary							
Reformer	252861	1.31	91.9	990	626	35483	200.0
Flue Gas							
Boiler	7/772	1 26	26.1	805	/197	8060	200.0
Flue Gas	/4//2	1.20	20.1	005	437	0000	200.0
Combine	327633	1 18	107	597	201	38693	338.3
Flue Gas	027000	1.10	107	557	201	00000	000.0

Modified streams data is as followed:

Table 6-2: Modified Streams Data

Drocoss Strooms	Ts	TT	Stream	Shift	Shift T_T
Process Streams	(°C)	(°C)	Туре	Ts (°C)	(°C)
Natural & Recycle Gas	41	418	Cold	54.5	431.5
Process Air	177	492	Cold	190.5	505.5
Process Gas	400	532	Cold	413.5	545.5
Steam	319	375	Cold	332.5	388.5
BFW	110	136	Cold	123.5	149.5
Primary Reformer Flue Gas	990	629	Hot	976.5	612.5
Boiler Flue Gas	805	497	Hot	791.5	483.5
Combine Flue Gas	597	201	Hot	583.5	187.5

Streams shifted temperatures are as followed:

 Table 6-3: Modified Streams Shifted Temperatures

 $\Delta T_{min} = 27^{\circ} \text{C}$
6.4.2 Problem Table Algorithm

To determine minimum cold utility requirement, problem table algorithm is developed for modified streams data.

Shift Temperature (°C)	Interval	T _(i+1) -T _i (°C)	C _{P net} (kW/ºC)	dH (kW)		Infeasible/ Feasible Cascade
976.5					<mark>Pinch</mark>	<mark>0</mark>
	1	185	91.9	17001.5	S	
791.5						17002
	2	179	118.1	21139.9	S	
612.5						38141
	3	29	26.2	759.8	S	
583.5						38901
	4	38	133.7	5080.6	S	
545.5						43982
	5	40	27.4	1096.0	S	
505.5						45078
	6	22	13.8	303.6	S	
483.5						45381
	7	52	-12.4	-644.8	D	
431.5						44737
	8	28	-36.12	-1011.4	D	
403.5						43725
	9	15	70.18	1052.7	S	
388.5						44778
	10	56	-300.1	-16807	D	
332.5						27971
	11	142	70.18	9965.56	S	
190.5						37937
	12	3	83.78	251.34	S	
187.5						38188
	13	38	-23.72	-901.36	D	
149.5						37287
	14	26	-131.2	-3411.7	D	
123.5						33875
	15	68.1	-23.72	-1615.3	D	
55.4						32260

Table 6-4: Problem Table Algorithm for Modified Data

Hence, minimum cold utility requirement = 32260 kW

6.4.3 Balanced Combine Composite Curve

Process Stream	Ts (°C)	Т _Т (°С)	C _P (kW/ºC)	h (W/m² ºC)
Primary Reformer Flue Gas	990	626	91.9	200
Boiler Flue Gas	805	497	26.2	200
Combine Flue Gas	597	201	107.5	338.3

For hot balance composite curve, following tables are used.

Table 6-5: Modified Hot Streams Data

Actual Temperature (ºC)	Interval	T _(i+1) -T _i (°C)	ΣC _{P Hot} (kW/ºC)	Heat Load (kW)	Total Heat Flow (kW)
201					0
497	1	296	107.5	31820	31820
597	2	100	133.7	13370	45190
626	3	29	26.2	759.8	45949.8
805	4	179	118.1	21140	67089.8
990	5	185	91.9	170002	84091.2

 Table 6-6: Data for Hot Balance Composite Curve

For cold balance composite curve,

Drococc Stroom	Ts	TT	СР	h
Process Stream	(°C)	(°C)	(kW/°C)	(W/m² ºC)
Natural & Recycle	/1 9	/18	23 72	116 /
Gas	41.5	410	23.72	110.4
Process Air	177	492	13.6	115
Process Gas	390	532	106.3	170.8
Steam from Steam	319	375	370 3	70.0
Drum	010	070	070.0	, 0.0
Boiler Feed Water	110	136	107.5	5721
HP Steam	319	320	32259 7	6000
Generation	010	020	0220017	0000

Table 6-7: Modified Cold Streams Data

Actual Temperature (°C)	Interval	T _(i+1) -T _i (°C)	ΣC _{P Cold} (kW/ºC)	Heat Load (kW)	Total Heat Flow (kW)
41.9					0
110	1	68.1	23.72	1615.332	1615.3
136	2	26	131.22	3411.72	5027.052
177	3	41	23.72	972.52	5999.572
319	4	142	37.32	5299.44	11299.01
320	5	1	26935.6	32667.32	43966.33
375	6	55	407.6	22419.1	66385.43
390	7	15	37.32	559.8	66945.23
418	8	28	143.6	4021.36	70966.59
492	9	74	119.9	8872.6	79839.19
532	10	40	106.3	4252	84091.19

Table 6-8: Data for Cold Balance Composite Curve

Now plot temperature against heat flow to obtain balance combine composite curve.

Figure 6.1: Balance Combine Composite Curve

Bath algorithm is used to determine minimum heat transfer area for the heat exchanger network.

6.4.4 Bath Algorithm

In bath algorithm, first the values of total heat flow for both hot and cold streams are arrange in ascending order and any repeated value is omitted. Corresponding value of temperatures for hot and cold composite curve are calculated by using following relation if it is unknown for the enthalpy interval.

For hot curve,

$$T_{H,row q} = T_{H,row r} - (\Delta H_{row r} - \Delta H_{row q}) / \Sigma C_{P H,row r}$$

Where

T_H,_{row q} = Unknown value of hot curve temperature in row q

T_H, _{row} r = Known value of hot curve temperature in row r

 $\Delta H_{row r}$ = Heat load in row r

 $\Delta H_{row q}$ = Heat load in row q

 $\Sigma C_{P H, row r}$ = Summation of hot streams heat capacity in row r For cold curve,

$$T_{C,row q} = T_{C,row r} - (\Delta H_{row r} - \Delta H_{row q}) / \Sigma C_{PC,row r}$$

Where

T_{C,row q} = Unknown value of cold curve temperature in row q

T_c, _{row} r = Known value of cold curve temperature in row r

 $\Delta H_{row r}$ = Heat load in row r

 $\Delta H_{row q}$ = Heat load in row q

 $\Sigma C_{P C, row r}$ = Summation of cold streams heat capacity in row r

Then compute Σ (C_P/h)_h and Σ (C_P/h)_c for each enthalpy interval. After that calculate Σ (Q/h)_n for each interval using:

$$\Sigma(Q/h)_n = \Delta T_{H,n} \times \Sigma(C_P/h)_h + \Delta T_{C,n} \times \Sigma(C_P/h)_C$$

Calculate log mean temperature different (ΔT_{LM}) for each interval and divide Σ (Q/h)_n with it to calculate the area for these intervals. Sum of the areas of all these intervals will give the total area required for heat exchange.

In	Qn	T _{Hn}	T _{Cn}		Σ(C _P /h)	Σ(C _P /h)	5(0/h)	ΔT_{lm}	An
111	(kW)	(°C)	(°C)	ZCP H/C	Hot	Cold	2(Q/II)n	(°C)	(m²)
	0	201	41.9	0	0	0	0	0	0
1	1615	216	110	23.72	317.7	203.7	18652	130	142
2	5027	247	136	131.2	317.7	222.5	15871	108	145
3	5999	303	177	23.72	317.7	203.7	26186	119	219
4	11299	343.5	319	37.32	317.7	322	58325	62	936
5	31820	497	319.5	107.5	317.7	10988	54805	77	709.3
6	43966	587.8	320	26935	448.7	10988	45724	219	208.2
7	45190	597	323	133.7	448.7	5612	20868	270	77
8	45949	626	3245	26.2	131	5612	14262	287	49.6
9	66385	800	375	407.5	590.5	5612	384240	359	1068
10	66945	804	390	37.32	590.5	322	7132	419	17
11	67089	805	394	143.6	590.5	944	4249	412	10.3
12	70966	866	418	118.1	459.5	944	51061	429	118.8
13	79839	950	492	119.9	459.5	740	93159	453	205.5
14	84091	990	532	106.3	459.5	622	43274	458	94.5

Table 6-9: Area Targeting

Total area is 4004 m².

6.3.4 Area Comparison

Area of current installed coils and newly designed coils is as followed:

Coils	Area (m²)
E 201	336
E 202 A	84.3
E 203	629
E 204 A	184.2
F 202 A	587
E 205	940
E 202 B	251.3
E204 B	433.63
E 206	213.8
Total Area	3659.23

Table 6-10: Area of Coils

Area Target Achieved =
$$\frac{3660}{4004} \times 100\% = 91.5\%$$

Chapter 7 Economic Analysis

7.1 Cost of Coils

Coils are made up of carbon steel. Cost of coils is determine by using following graphs and lag factors. Calculation for fixed capital is shown below:

Equipment	$\Lambda map (m^2)$	Equipment
Lquipment	Alea (III-)	Cost (\$)
E 202 A	84.29	30000
E 202 B	251.34	61000
E 204 A	184.24	49000
E 204 B	433.63	85000
E 206	213.76	52000
Purchas Cost of	DCF (\$)	277 000
Equipment	ΓCL (φ)	277,000
f1 Equipment erection	0.4	
f ₂ Piping	0.7	
f ₃ Instrumentation	0.2	
f ₄ Electrical	0.1	
f5 Buildings	none required	
f ₆ Utilities	not applicable	
f7 Storages	not applicable	
f ₈ Site development	not applicable	
f9 Ancillary buildings	none required	
Total Physical Plant Cost	PPC (\$)	664,800
f_{10} Design and Engineering	0.3	
f ₁₁ Contractor's Fee	none	
f ₁₂ Contingencies	0.1	
	Fixed Capital (\$)	930,720

Table 7-1: Fixed Capital (\$)

Figure 6.3*a*, *b*. Shell and tube heat exchangers. Time base mid-2004 Purchased cost = (bare cost from figure) \times Type factor \times Pressure factor

Figure 7.1: Cost to Heat Transfer Area Graph

7.2 Economic Analysis

Following tables shows the cost saving due to extra production of steam and payback period of project by introducing these new coils.

Total Area of Coils	1167.26 m ²
Capital Cost of Coils	\$ 930,720
Surplus HP Steam Generated	4430 kg/hr
Cost Saved Per Annum by Surplus	$$451 \times 10^5$ ner vear
HP Steam	¢ 1.51x10 per yeur
Pay Back Period	2.06 years

Table 7-2: Economic Analysis

*Cost of steam is approximately \$12 per ton.

So, the payback period of this project is 2.06 years so it is feasible to apply these modifications.

Chapter 8 Aspen HYSYS Simulation

For the verification of proposed design, it was simulated on Aspen HYSYS. Detailed simulation of the process is as followed.

8.1 HYSYS Simulation

8.1.1 Components

Following list of components was selected from HYSYS databank.

Source Databank: HYSYS		
Component	Туре	Group
Oxygen	Pure Component	
Hydrogen	Pure Component	
Nitrogen	Pure Component	
СО	Pure Component	
CO2	Pure Component	
Argon	Pure Component	
Methane	Pure Component	
Ethane	Pure Component	
H2O	Pure Component	

8.1.2 Fluid Package

Peng Robinson is selected as fluid package for simulation as only non-polar gases area involve.

Fluid Package	Component List	Property Package	Status
Basis-1	Component List - 1 [HYSYS Databanks]	Peng-Robinson	Input Complete

Figure 8.2: Fluid Package

8.1.3 Model

8.1.4 Defined Streams

Following streams were defined on HYSYS.

Natural Gas

Worksheet	Stream Name	Natural Gas	Vapour Phase	
onditions	Vapour / Phase Fraction	1.0000	1.0000	
roperties	Temperature [C]	38.00	38.00	
omposition	Pressure [kPa]	3906	3906	
il & Gas Feed	Molar Flow [kgmole/h]	1869	1869	
etroleum Assay	Mass Flow [kg/h]	3.824e+004	3.824e+004	
lser Variables	Std Ideal Liq Vol Flow [m3/h]	93.87	93.87	
lotes	Molar Enthalpy [kJ/kgmole]	-8.710e+004	-8.710e+004	
Cost Parameters Normalized Yields Heat Flow [kJ/h]	Molar Entropy [kJ/kgmole-C]	152.2	152.2	
	Heat Flow [kJ/h]	-1.628e+008	-1.628e+008	
	Liq Vol Flow @Std Cond [m3/h]	4.409e+004	4.409e+004	
	Fluid Package	Basis-1		
	Utility Type			

Figure 8.4: Natural Gas

Recycle Gas

Material Strear	n: Recycle Gas		_		×
Worksheet Atta	chments Dynamics				
Worksheet	Stream Name	Recycle Gas	Vapour Phase		
Conditions	Vapour / Phase Fraction	1.0000	1.0000		
Properties	Temperature [C]	117.0	117.0		
WorksheetStream NameRecycle GasVapour PhaseConditionsProperties1.00001.0000Properties117.0117.0CompositionPressure [C]117.0Oil & Gas FeedPetroleum AssayMolar Flow [kgmole/h]115.1Molar Flow [kgmole/h]115.1115.1Mass Flow [kg/h]995.7995.7Std Ideal Liq Vol Flow [m3/h]3.5133.513Molar Enthalpy [kl/kgmole]19341934Molar Enthalpy [kl/kgmole]110.0110.0Heat Flow [k/h]2.227e+0052.227e+005Liq Vol Flow @Std Cond [m3/h]27232723Fluid PackageBasis-1Utility Type					
Oil & Gas Fee	Molar Flow [kgmole/h]	115.1	115.1		
Petroleum Ass	Mass Flow [kg/h]	995.7	995.7		
User Variables	Std Ideal Liq Vol Flow [m3/h]	3.513	3.513		
Notes	Molar Enthalpy [kJ/kgmole]	1934	1934		
Cost Paramete	rs Molar Entropy [kJ/kgmole-C]	110.0	110.0		
Normalized Yi	elds Heat Flow [kJ/h]	2.227e+005	2.227e+005		
	Lig Vol Flow @Std Cond [m3/h]	2723	2723		
	Fluid Package	Basis-1			
	Utility Type				
		OK			

Figure 8.5: Recycle Gas

Natural & Recycle Gas

Material Stream: Natural+Recycle	Gas
----------------------------------	-----

 \Box \times

—

Worksheet Attachme	ents Dynamics		
Worksheet	Stream Name	Natural+Recycle Gas	Vapour Phase
Conditions	Vapour / Phase Fraction	1.0000	1.0000
Properties	Temperature [C]	40.97	40.97
Composition	Pressure [kPa]	3906	3906
Oil & Gas Feed	Molar Flow [kgmole/h]	1984	1984
K Value	Mass Flow [kg/h]	3.924e+004	3.924e+004
User Variables	Std Ideal Liq Vol Flow [m3/h]	97.39	97.39
Notes	Molar Enthalpy [kJ/kgmole]	-8.193e+004	-8.193e+004
Cost Parameters	Molar Entropy [kJ/kgmole-C]	151.3	151.3
Normalized Yields	Heat Flow [kJ/h]	-1.625e+008	-1.625e+008
	Liq Vol Flow @Std Cond [m3/h]	4.681e+004	4.681e+004
	Fluid Package	Basis-1	
	Utility Type		
	OK		
Delete	Define from Stream	iew Assay	\$

Figure 8.6: Natural & Recycle Gas

Desulphurized Natural Gas

🖻 Material Stream: De	sulphurized NG		_	
Worksheet Attachm	ents Dynamics			
Worksheet	Stream Name	Desulphurized NG	Vapour Phase	
Conditions	Vapour / Phase Fraction	1.0000	1.0000	
Properties	Temperature [C]	413.0	413.0	
Composition	Pressure [kPa]	3808	3808	
Oil & Gas Feed	Molar Flow [kgmole/h]	1984	1984	
Petroleum Assay	Mass Flow [kg/h]	3.924e+004	3.924e+004	
User Variables	Std Ideal Liq Vol Flow [m3/h]	97.39	97.39	
Notes	Molar Enthalpy [kJ/kgmole]	-6.561e+004	-6.561e+004	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	185.1	185.1	
Normalized Yields	Heat Flow [kJ/h]	-1.302e+008	-1.302e+008	
	Liq Vol Flow @Std Cond [m3/h]	4.681e+004	4.681e+004	
	Fluid Package	Basis-1		
	Utility Type			
Delete	OK Define from Stream	ïew Assav		

Figure 8.7: Desulphurized Natural Gas

Process Steam

🜔 Material Stream: Proc	cess Steam
-------------------------	------------

_

Worksheet	Stream Name	Process Steam	Vapour Phase
Conditions	Vapour / Phase Fraction	1.0000	1.0000
Properties	Temperature [C]	380.0	380.0
Composition	Pressure [kPa]	3828	3828
Oil & Gas Feed	Molar Flow [kgmole/h]	5770	5770
Oil & Gas Feed Petroleum Assay K Value User Variables NotesMolar Flow [kgmole/h]57705770Mass Flow [kg/h]1.040e+0051.040e+0051.040e+005Std Ideal Liq Vol Flow [m3/h]104.2104.2Molar Enthalpy [kJ/kgmole]-2.305e+005-2.305e+005Cost Parameters Normalized YieldsMolar Entropy [kJ/kgmole-C]169.6Heat Flow [kJ/h]-1.330e+009-1.330e+009Liq Vol Flow @Std Cond [m3/h]102.4102.4Fluid PackageBasis-1Utility Type	1.040e+005		
User Variables	Std Ideal Liq Vol Flow [m3/h]	104.2	104.2
Notes	Molar Enthalpy [kJ/kgmole]	-2.305e+005	-2.305e+005
Cost Parameters	Molar Entropy [kJ/kgmole-C]	169.6	169.6
Normalized Yields	Heat Flow [kJ/h]	-1.330e+009	-1.330e+009
	Liq Vol Flow @Std Cond [m3/h]	102.4	102.4
	Heat Flow [kl/h] -1.330e+009 -1.330e+009 Liq Vol Flow @Std Cond [m3/h] 102.4 102.4 Fluid Package Basis-1 Utility Type		
	OK		

Figure 8.8: Process Steam

Process Gas

/ teterini				
Worksheet	Stream Name	Process Gas	Vapour Phase	
Conditions	Vapour / Phase Fraction	1.0000	1.0000	
Properties	Temperature [C]	385.6	385.6	
Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Pressure [kPa]	3808	3808	
Oil & Gas Feed	Molar Flow [kgmole/h]	7754	7754	
K Value	Mass Flow [kg/h]	1.432e+005	1.432e+005	
User Variables	Std Ideal Liq Vol Flow [m3/h]	201.5	201.5	
Notes	Molar Enthalpy [kJ/kgmole]	-1.883e+005	-1.883e+005	
Cost Parameters	Molar Entropy [kJ/kgmole-C]	178.2	178.2	
Normalized Yields	Heat Flow [kJ/h]	-1.460e+009	-1.460e+009	
	Liq Vol Flow @Std Cond [m3/h]	189.0	189.0	
	Fluid Package	Basis-1		
	Utility Type			
	OK			

Figure 8.9: Process Gas

Process Air

Vorksheet Attachm	ents Dynamics			
Worksheet	Stream Name	Process Air	Vapour Phase	
Conditions	Vapour / Phase Fraction	1.0000	1.0000	
Properties	Temperature [C]	177.0	177.0	
Composition	Pressure [kPa]	32.40	32.40	
Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Molar Flow [kgmole/h]	1585	1585	
K Value	Mass Flow [kg/h]	4.581e+004	4.581e+004	
User Variables	Std Ideal Liq Vol Flow [m3/h]	52.64	52.64	
Notes	Molar Enthalpy [kJ/kgmole]	3093	3093	
K Value Mass Flow [kg/h] 4.581e+004 User Variables Std Ideal Liq Vol Flow [m3/h] 52.64 Notes Molar Enthalpy [kJ/kgmole] 3093 Cost Parameters Molar Entropy [kJ/kgmole-C] 173.9 Heat Flow [kJ/h] 4.901e+006 Liq Vol Flow @Std Cond [m3/h] 3.744e+004 Fluid Package Basis-1 Utility Type 1	173.9			
Normalized Yields	Heat Flow [kJ/h]	4.901e+006	4.901e+006	
	Liq Vol Flow @Std Cond [m3/h]	3.744e+004	4.581e+004 52.64 3093 173.9 4.901e+006 3.744e+004	
	Fluid Package	Basis-1		
	Utility Type			
	ОК			

Figure 8.10: Process Air

Boiler Feed Water

🕟 Material Stream: BFW

onditions roperties omposition il & Gas Feed etroleum Assay Value ser Variables otes ost Parameters ormalized Yields	Vapour / Phase Fraction Temperature [C] Pressure [kPa] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Enthalpy [kJ/kgmole]	0.0000 110.0 1.383e+004 1.432e+004 2.580e+005 258.5 -2.794e+005	1.0000 110.0 1.383e+004 1.432e+004 2.580e+005 258.5
Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Temperature [C] Pressure [kPa] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Enthalpy [kJ/kgmole]	110.0 1.383e+004 1.432e+004 2.580e+005 258.5 -2.794e+005	110.0 1.383e+004 1.432e+004 2.580e+005 258.5
Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Pressure [kPa] Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Enthalpy [kJ/kgmole]	1.383e+004 1.432e+004 2.580e+005 258.5 -2.794e+005	1.383e+004 1.432e+004 2.580e+005 258.5
Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Molar Flow [kgmole/h] Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Enthalpy [kJ/kgmole_C]	1.432e+004 2.580e+005 258.5 -2.794e+005	1.432e+004 2.580e+005 258.5
K Value User Variables Notes Cost Parameters Normalized Yields	Mass Flow [kg/h] Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole]	2.580e+005 258.5 -2.794e+005	2.580e+005 258.5
User Variables Notes Cost Parameters Normalized Yields	Std Ideal Liq Vol Flow [m3/h] Molar Enthalpy [kJ/kgmole] Molar Entropy [kJ/kgmole-C]	258.5 -2.794e+005	258.5
Notes Cost Parameters Normalized Yields	Molar Enthalpy [kJ/kgmole]	-2.794e+005	
Cost Parameters Normalized Yields	Molar Entropy [k]/kgmole-C]		-2.794e+005
Normalized Yields	molar entropy [to/kginole-o]	73.05	73.05
	Heat Flow [kJ/h]	-4.000e+009	-4.000e+009
	Liq Vol Flow @Std Cond [m3/h]	254.2	254.2
	Fluid Package	Basis-1	
	Utility Type		
	OK		

Figure 8.11: Boiler Feed Water

_

 \times

Steam from Steam Drum

WorksheetStream NameFrom Steam DrumVapour PhaseConditionsProperties1.00001.0000PropertiesTemperature [C]319.0CompositionOil & Gas FeedPressure [kPa]1.108e+004Petroleum AssayK Value1.418e+0041.418e+004User VariablesNotesStd Ideal Liq Vol Flow [m3/h]255.9NotesStd Ideal Liq Vol Flow [m3/h]2.534e+005Cost ParametersMolar Entropy [kJ/kgmole]-2.368e+005Normalized YieldsHeat Flow [kJ/h]-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	WorksheetStream NameFrom Steam DrumVapour PhaseConditionsProperties1.00001.0000PropertiesTemperature [C]319.0319.0CompositionOil & Gas FeedPressure [kPa]1.108e+0041.108e+004Petroleum AssayMolar Flow [kgmole/h]1.418e+0041.418e+004Molar Flow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Enthalpy [kl/kgmole]-2.368e+005-2.368e+005Molar Entropy [kl/kgmole-C]151.9151.9Heat Flow [kl/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	orksheet Attachm	ents Dynamics			
Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Vapour / Phase Fraction 1.000 1.0000 Molar Flow [kgn] 1.108e+004 1.108e+004 1.108e+004 Molar Flow [kgmole/h] 1.418e+004 1.418e+004 Moss Flow [kg/h] 2.554e+005 2.554e+005 Std Ideal Liq Vol Flow [m3/h] 255.9 255.9 Molar Enthalpy [kl/kgmole] -2.368e+005 -2.368e+005 Normalized Yields Molar Entropy [kl/kgmole-C] 151.9 Heat Flow [kl/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1 Utility Type	Conditions Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables NotesVapour / Phase Fraction1.00001.0000Molar Flow [kgmole/h]1.108e+0041.108e+0041.108e+004Molar Flow [kgmole/h]1.418e+0041.418e+004Molar Slow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Enthalpy [kl/kgmole]-2.368e+005-2.368e+005Normalized YieldsMolar Entropy [kl/kgmole-C]151.9Heat Flow [kl/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	Worksheet	Stream Name	From Steam Drum	Vapour Phase	
Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsTemperature [C]319.01108e+004 Molar Flow [kgmole/h]1.108e+004 1.418e+0041.108e+004Molar Flow [kgmole/h]1.418e+0041.418e+004Mass Flow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Entropy [kJ/kgmole]-2.368e+005-2.368e+005Molar Entropy [kJ/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsTemperature [C]319.01.108e+004 Molar Flow [kgmole/h]1.108e+004 1.418e+0041.108e+004Molar Flow [kgmole/h]1.418e+0041.418e+004Molar Flow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Entropy [kJ/kgmole]-2.368e+005-2.368e+005Molar Entropy [kJ/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	Conditions	Vapour / Phase Fraction	1.0000	1.0000	
Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsPressure [kPa]1.108e+0041.108e+004Molar Flow [kg/h]1.418e+0041.418e+0041.418e+004Molar Flow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Entropy [kJ/kgmole]-2.368e+005-2.368e+005Molar Entropy [kJ/kgmole]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsPressure [kPa]1.108e+004Pressure [kPa]1.418e+0041.418e+004Molar Flow [kg/h]2.554e+0052.554e+005Std Ideal Liq Vol Flow [m3/h]255.9255.9Molar Entropy [kl/kgmole]-2.368e+005-2.368e+005Molar Entropy [kl/kgmole]-3.357e+009151.9Heat Flow [kl/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1	Properties	Temperature [C]	319.0	319.0	
Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsMolar Flow [kgmole/h]1.418e+0041.418e+004Molar Enthalpy [k]/kgmole]2.554e+0052.554e+0052.554e+005Molar Enthalpy [k]/kgmole]-2.368e+005-2.368e+005Molar Enthalpy [k]/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1111111111111111111111111111111111	Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized YieldsMolar Flow [kg/h]1.418e+0041.418e+004Molar Enthalpy [k//kgmole]2.554e+0052.554e+0052.554e+005Molar Enthalpy [k//kgmole]-2.368e+005-2.368e+005Molar Entropy [k//kgmole]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1-Utility Type	Composition	Pressure [kPa]	1.108e+004	1.108e+004	
Mass Flow [kg/h]2.554e+005K Value User Variables Notes Cost Parameters Normalized YieldsMass Flow [kg/h]2.554e+005Molar Enthalpy [k]/kgmole]-2.368e+005-2.368e+005Molar Enthalpy [k]/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1Utility Type	Mass Flow [kg/h]2.554e+005K Value User Variables Notes Cost Parameters Normalized YieldsMass Flow [kg/h]2.554e+005Molar Enthalpy [kl/kgmole]-2.368e+005-2.368e+005Molar Entropy [kl/kgmole-C]151.9151.9Heat Flow [kl/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1	Properties Composition Oil & Gas Feed Petroleum Assay K Value User Variables Notes Cost Parameters Normalized Yields	Molar Flow [kgmole/h]	1.418e+004	1.418e+004	
Ivade Std Ideal Liq Vol Flow [m3/h] 255.9 255.9 Notes Molar Enthalpy [k/kgmole] -2.368e+005 -2.368e+005 Molar Enthalpy [k/kgmole-C] 151.9 151.9 Heat Flow [k/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1 1 Utility Type	Ivade Std Ideal Liq Vol Flow [m3/h] 255.9 255.9 Notes Molar Enthalpy [k//kgmole] -2.368e+005 -2.368e+005 Molar Enthalpy [k//kgmole-C] 151.9 151.9 Heat Flow [k/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1 0 Utility Type 0 0 0	K Value	Mass Flow [kg/h]	2.554e+005	2.554e+005	
Notes Cost Parameters Normalized YieldsMolar Enthalpy [k//kgmole]-2.368e+005-2.368e+005Heat Flow [k//kgmole-C]151.9151.9Heat Flow [k//h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1	Notes Cost Parameters Normalized YieldsMolar Enthalpy [kJ/kgmole]-2.368e+005Molar Entropy [kJ/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1	User Variables	Std Ideal Liq Vol Flow [m3/h]	255.9	255.9	
Cost Parameters Normalized Yields Molar Entropy [kl/kgmole-C] 151.9 151.9 Heat Flow [kl/h] -3.357e+009 -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1	Cost Parameters Normalized YieldsMolar Entropy [kJ/kgmole-C]151.9151.9Heat Flow [kJ/h]-3.357e+009-3.357e+009-3.357e+009Liq Vol Flow @Std Cond [m3/h]251.7251.7Fluid PackageBasis-1	Notes	Molar Enthalpy [kJ/kgmole]	-2.368e+005	-2.368e+005	
Normalized Yields Heat Flow [k]/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1 Utility Type	Normalized Yields Heat Flow [kJ/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1	Notes Std Ideal Liq Vol Flow [m3/h] 255.9 Notes Molar Enthalpy [kJ/kgmole] -2.368e+005 Normalized Yields Molar Entropy [kJ/kgmole-C] 151.9 Heat Flow [kJ/h] -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 Fluid Package Basis-1	151.9			
Liq Vol Flow @Std Cond [m3/h] 251.7 Fluid Package Basis-1 Utility Type	Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1 Utility Type	Normalized Yields	Heat Flow [kJ/h]	-3.357e+009	-3.357e+009	
Fluid Package Basis-1 Utility Type	Fluid Package Basis-1 Utility Type		Molar Entropy [kJ/kgmole-C] 151.9 151.9 ields Heat Flow [kJ/h] -3.357e+009 -3.357e+009 Liq Vol Flow @Std Cond [m3/h] 251.7 251.7 Fluid Package Basis-1			
Utility Type	Utility Type		Fluid Package	Basis-1		
			Utility Type			
			Liq Vol Flow @Std Cond [m3/h] Fluid Package Utility Type	251.7 Basis-1	251.7	
			0	K		

Figure 8.12: Steam from Steam Drum

Primary Reformer Flue Gas

	Channes Name	D.F.C. from Defension	Verseur Diese-	
Norksheet	Stream Name	P FG from Reformer	Vapour Phase	
Conditions	Vapour / Phase Fraction	1.0000	1.0000	
Properties	Temperature [C]	990.0	990.0	
Composition	Pressure [kPa]	1.100e+004	1.100e+004	
Dil & Gas Feed	Molar Flow [kgmole/h]	9040	9040	
Composition Pressure [kPa] Oil & Gas Feed Molar Flow [kgmole/h] Petroleum Assay Mass Flow [kg/h] K Value Std Ideal Liq Vol Flow [m3/h] User Variables Molar Enthalpy [kl/kgmole] Notes Molar Entropy [kl/kgmole-C] Normalized Yields Liq Vol Flow @Std Cond [m3/h] Fluid Package Utility Type	2.530e+005	2.530e+005		
User Variables	Std Ideal Liq Vol Flow [m3/h]	302.9	Vapour Phase 1.0000 990.0 1.100e+004 9040 2.530e+005 302.9 -4.538e+004 171.1 -4.102e+008 2.130e+005	
User Variables Notes Std Ideal Liq Vol Flow [m3/h] 302.9 Notes Molar Enthalpy [kl/kgmole] -4.538e+004 -4.53 Cost Parameters Molar Entropy [kl/kgmole-C] 171.1 -4.102e+008 -4.100 Normalized Yields Heat Flow [kl/h] -4.102e+008 -4.100 -4.100	-4.538e+004			
Cost Parameters	Molar Entropy [kJ/kgmole-C]	171.1	171.1	
Normalized Yields	Heat Flow [kJ/h]	-4.102e+008	-4.102e+008	
	Liq Vol Flow @Std Cond [m3/h]	2.130e+005	2.130e+005	
	Fluid Package	Basis-1		
	Utility Type			

Figure 8.13: Primary Reformer Flue Gas

Boiler Flue Gas

– 🗆 🗙

1.0000 805.0 0e+004 2669 U1e+004 89.43 6e+004 164.8 2e+008 U0e+004 Basis-1	1.0000 805.0 1.100e+004 2669 7.481e+004 89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
805.0 0e+004 2669 11e+004 89.43 6e+004 164.8 2e+008 10e+004 Basis-1	805.0 1.100e+004 2669 7.481e+004 89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
0e+004 2669 1e+004 89.43 6e+004 164.8 2e+008 10e+004 Basis-1	1.100e+004 2669 7.481e+004 89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
2669 11e+004 89.43 6e+004 164.8 2e+008 10e+004 Basis-1	2669 7.481e+004 89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
81e+004 89.43 6e+004 164.8 2e+008 10e+004 Basis-1	7.481e+004 89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
89.43 6e+004 164.8 2e+008 0e+004 Basis-1	89.43 -4.916e+004 164.8 -1.312e+008 6.290e+004
6e+004 164.8 2e+008 0e+004 <i>Basis-1</i>	-4.916e+004 164.8 -1.312e+008 6.290e+004
164.8 2e+008 10e+004 Basis-1	164.8 -1.312e+008 6.290e+004
2e+008 10e+004 Basis-1	-1.312e+008 6.290e+004
00e+004 Basis-1	6.290e+004
Basis-1	

Figure 8.14: Boiler Flue Gas

Combine Flue Gas

ksheet Attach	ments Dynamics		
Worksheet	Stream Name	Combine FG	Vapour Phase
Conditions	Vapour / Phase Fraction	1.0000	1.0000
Properties	Temperature [C]	666.5	666.5
Composition	Pressure [kPa]	1.100e+004	1.100e+004
Oil & Gas Feed	Molar Flow [kgmole/h]	1.171e+004	1.171e+004
K Value	Mass Flow [kg/h]	3.278e+005	3.278e+005
User Variables	Std Ideal Liq Vol Flow [m3/h]	392.4	392.4
Notes	Molar Enthalpy [kJ/kgmole]	-5.662e+004	-5.662e+004
Cost Parameters	Molar Entropy [kJ/kgmole-C]	160.1	160.1
Normalized Yields	S Heat Flow [kJ/h]	-6.630e+008	-6.630e+008
	Liq Vol Flow @Std Cond [m3/h]	2.759e+005	2.759e+005
	Fluid Package	Basis-1	
	Utility Type		
	OK		

Figure 8.15: Combine Flue Gas

8.1.5 Mixers

Now mixers are simulated in HYSYS.

MIX-100

The Natural Gas and Recycle Gas are mixed together in MIX-100 to produce mixture of Natural and Recycle Gas.

🕟 Mixe	r: MIX-10	D				_		×
Design	Rating	Worksheet	Dynamics]				
Des	ign		Name	MIX-100				
Connec Parame User Va Notes	ctions eters ariables							
		Inlets		—	Outlet			
			Natural	Gas	Natural+Recycle Gas	•		
			Recycle	: Gas n >>	Fluid Package Basis-1	•		
							-	
	Delete			OK				gnored
								•

Figure 8.16: MIX-100 Design

🕞 Mixer: MIX-10	0			- C) X
Design Rating	Worksheet Dynamics				
Worksheet	Name	Natural Gas	Recycle Gas	Natural+Recycle	
Conditions	Vapour	1.0000	1.0000	1.0000	
Properties	Temperature [C]	38.00	117.0	40.97	
Composition	Pressure [kPa]	3906	5005	3906	
PF Specs	Molar Flow [kgmole/h]	1869	115.1	1984	
	Mass Flow [kg/h]	3.824e+004	995.7	3.924e+004	
	Std Ideal Liq Vol Flow [m3/h]	93.87	3.513	97.39	
	Molar Enthalpy [kJ/kgmole]	-8.710e+004	1934	-8.193e+004	
	Molar Entropy [kJ/kgmole-C]	152.2	110.0	151.3	
	Heat Flow [kJ/h]	-1.628e+008	2.227e+005	-1.625e+008	
Delete		OK			Ignored

Figure 8.17: MIX-100 Worksheet

MIX-101

The streams; Process Steam and Desulphurized Natural Gas, are mixed together in MIX-101 to produce Process Gas.

Name Process Steam Desulphurized N Process Gas Conditions Vapour 1.0000 1.0000 1.0000 Properties Temperature [C] 380.0 413.0 385.6 Composition Pressure [kPa] 3828 3808 3808 Molar Flow [kgmole/h] 5770 1984 7754 Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009	Workshoot	- J	D C		D
Vapour 1.0000 1.0000 1.0000 Properties Temperature [C] 380.0 413.0 385.6 Composition Pressure [kPa] 3828 3808 3808 Molar Flow [kg/h] 5770 1984 7754 Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009	worksheet	Name	Process Steam	Desulphurized N	Process Gas
Properties Temperature [C] 380.0 413.0 385.6 Composition Pressure [kPa] 3828 3808 3808 DF Specs Molar Flow [kgmole/h] 5770 1984 7754 Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kl/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kl/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009	Conditions	Vapour	1.0000	1.0000	1.0000
Pressure [kPa] 3828 3808 3808 Molar Flow [kgmole/h] 5770 1984 7754 Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.460e+009	Properties	Temperature [C]	380.0	413.0	385.6
Molar Flow [kgmole/h] 5770 1984 7754 Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009	Composition	Pressure [kPa]	3828	3808	3808
Mass Flow [kg/h] 1.040e+005 3.924e+004 1.432e+005 Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009	PF Specs	Molar Flow [kgmole/h]	5770	1984	7754
Std Ideal Liq Vol Flow [m3/h] 104.2 97.39 201.5 Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009		Mass Flow [kg/h]	1.040e+005	3.924e+004	1.432e+005
Molar Enthalpy [kJ/kgmole] -2.305e+005 -6.561e+004 -1.883e+005 Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009		Std Ideal Liq Vol Flow [m3/h]	104.2	97.39	201.5
Molar Entropy [kJ/kgmole-C] 169.6 185.1 178.2 Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009		Molar Enthalpy [kJ/kgmole]	-2.305e+005	-6.561e+004	-1.883e+005
Heat Flow [kJ/h] -1.330e+009 -1.302e+008 -1.460e+009		Molar Entropy [kJ/kgmole-C]	169.6	185.1	178.2
		Heat Flow [kJ/h]	-1.330e+009	-1.302e+008	-1.460e+009

Figure 8.19: MIX-101 Worksheet

MIX-102

Boiler Flue Gas and Primary Flue Gas are mixed together in MIX-102 to produce Combine Flue Gas.

Dixer: MIX-1	02			- 0	×
Design Rating	Worksheet Dynamics				
Worksheet	Name	B FG to Mixer	P FG to Mixer	Combine FG	
Conditions	Vapour	1.0000	1.0000	1.0000	
Properties	Temperature [C]	584.0	690.6 1.100e+004	666.5	
Composition	Pressure [kPa]	1.100e+004		1.100e+004	
PF Specs	Molar Flow [kgmole/h]	2669	9040	1.171e+004	
	Mass Flow [kg/h]	7.481e+004	2.530e+005	3.278e+005	
	Std Ideal Liq Vol Flow [m3/h]	89.43	302.9	392.4	
	Molar Enthalpy [kJ/kgmole]	-5.715e+004	-5.646e+004	-5.662e+004	
	Molar Entropy [kJ/kgmole-C]	156.6	161.1	160.1	
	Heat Flow [kJ/h]	-1.526e+008	-5.104e+008	-6.630e+008	
Delete		OK			gnore

Figure 8.21: MIX-102 Worksheet

8.1.6 Heat Exchangers

Now exchangers are simulated in HYSYS.

Exchanger E 201

In this exchanger, Process Gas is heated using Primary Reformer Flue Gas.

Design Rating	g Worksheet Performance Dynamics Rigorous Shell&Tube	
Design	Tube Side Inlet Name E 201	Shell Side Inlet
Connections Parameters	Process Gas 🔹	P FG from Reformer
Specs User Variables		_
Notes	Tubeside Flowsheet Case (Main) Case (Main)	
	Process Gas to Primary R Switch streams	P FG to E 202 A
	Tube Side Fluid Pkg	Shell Side Fluid Pkg
	Basis-1	Basis-1
	Convert to Rigorous Model You can replace any simple exchanger model by a fully rigorous model in your simula geometry by sizing or by direct specification via input or by importing a prepared file Size Exchanger	ation defining a a.
	See Skelwinger	
Delete	OK	Update Ignored

Figure 8.22: Exchanger E 201 Design

IameProcess GasProcess Gas to PriP FG from ReformP FG to E 202 A'apour1.00001.00001.00001.0000emperature [C]385.6532.0990.0843.4ressure [kPa]380834651.100e+0041.100e+004Alar Flow [kgmole/h]775490409040Ass Flow [kg/h]1.432e+0051.432e+0052.530e+0051d Ideal Liq Vol Flow [m3/h]201.5201.5302.9Aolar Enthalpy [kJ/kgmole]-1.883e+005-1.819e+005-4.538e+004Aolar Entropy [kJ/kgmole-C]178.2187.8171.1Ieat Flow [kJ/h]-1.460e+009-1.411e+009-4.102e+008	worksheet	Performance	Dynamics	Rigorous Shell&Tube	2		
fapour1.00001.00001.0000emperature [C]385.6532.0990.0843.4tressure [kPa]380834651.100e+0041.100e+004Aloar Flow [kgmole/h]7754775490409040Aass Flow [kg/h]1.432e+0051.432e+0052.530e+0052.530e+005td Ideal Liq Vol Flow [m3/h]201.5201.5302.9302.9Aolar Enthalpy [kl/kgmole]-1.883e+005-1.819e+005-4.538e+004-5.087e+004Aolar Entropy [kl/kgmole-C]178.2187.8171.1166.5leat Flow [kl/h]-1.460e+009-1.411e+009-4.102e+008-4.598e+008	Name			Process Gas	Process Gas to Pri	P FG from Reform	P FG to E 202 A
emperature [C]385.6532.0990.0843.4ressure [kPa]380834651.100e+0041.100e+004Aloar Flow [kgmole/h]7754775490409040Aass Flow [kg/h]1.432e+0051.432e+0052.530e+0052.530e+005td Ideal Liq Vol Flow [m3/h]201.5201.5302.9302.9Aloar Entropy [kJ/kgmole]-1.883e+005-1.819e+005-4.538e+004-5.087e+004Aloar Entropy [kJ/kgmole-C]178.2187.8171.1166.5ieat Flow [kJ/h]-1.460e+009-1.411e+009-4.102e+008-4.598e+008	/apour			1.0000	1.0000	1.0000	1.0000
ressure [kPa]380834651.100e+0041.100e+004Molar Flow [kgmole/h]7754775490409040Mass Flow [kg/h]1.432e+0051.432e+0052.530e+0052.530e+005td Ideal Liq Vol Flow [m3/h]201.5201.5302.9302.9Molar Enthalpy [kJ/kgmole]-1.883e+005-1.819e+005-4.538e+004-5.087e+004Molar Entropy [kJ/kgmole-C]178.2187.8171.1166.5Heat Flow [kJ/h]-1.460e+009-1.411e+009-4.102e+008-4.598e+008	Temperature	[C]		385.6	532.0	990.0	843.4
Molar Flow [kgmole/h]7754775490409040Mass Flow [kg/h]1.432e+0051.432e+0052.530e+0052.530e+005td Ideal Liq Vol Flow [m3/h]201.5201.5302.9302.9Molar Enthalpy [kJ/kgmole]-1.883e+005-1.819e+005-4.538e+004-5.087e+004Molar Entropy [kJ/kgmole-C]178.2187.8171.1166.5Heat Flow [kJ/h]-1.460e+009-1.411e+009-4.102e+008-4.598e+008	Pressure [kPa	3]		3808	3465	1.100e+004	1.100e+004
Mass Flow [kg/h]1.432e+0051.432e+0052.530e+0052.530e+005td Ideal Liq Vol Flow [m3/h]201.5201.5302.9302.9Molar Enthalpy [kJ/kgmole]-1.838e+005-1.819e+005-4.538e+004-5.087e+004Molar Entropy [kJ/kgmole-C]178.2187.8171.1166.5Heat Flow [kJ/h]-1.460e+009-1.411e+009-4.102e+008-4.598e+008	Molar Flow [I	kgmole/h]		7754	7754	9040	9040
td Ideal Liq Vol Flow [m3/h] 201.5 201.5 302.9 302.9 Iolar Enthalpy [kJ/kgmole] -1.883e+005 -1.819e+005 -4.538e+004 -5.087e+004 Iolar Entropy [kJ/kgmole-C] 178.2 187.8 171.1 166.5 Ieat Flow [kJ/h] -1.460e+009 -1.411e+009 -4.102e+008 -4.598e+008	Mass Flow [k	g/h]		1.432e+005	1.432e+005	2.530e+005	2.530e+005
Aolar Enthalpy [kJ/kgmole] -1.883e+005 -1.819e+005 -4.538e+004 -5.087e+004 Aolar Entropy [kJ/kgmole-C] 178.2 187.8 171.1 166.5 Ieat Flow [kJ/h] -1.460e+009 -1.411e+009 -4.102e+008 -4.598e+008	Std Ideal Liq	Vol Flow [m3/h]		201.5	201.5	302.9	302.9
Molar Entropy [kJ/kgmole-C] 178.2 187.8 171.1 166.5 leat Flow [kJ/h] -1.460e+009 -1.411e+009 -4.102e+008 -4.598e+008	Molar Enthal	py [kJ/kgmole]		-1.883e+005	-1.819e+005	-4.538e+004	-5.087e+004
eat Flow [kJ/h] -1.460e+009 -1.411e+009 -4.102e+008 -4.598e+008	Molar Entrop	y [kJ/kgmole-C]	178.2	187.8	171.1	166.5
	Heat Flow [k	J/h]		-1.460e+009	-1.411e+009	-4.102e+008	-4.598e+008

Figure 8.23: Exchanger E 201 Worksheet

Exchanger E 202 A

In this exchanger, Process Air is heated using Primary Reformer Flue Gas.

Figure 8.24: Exchanger E 202 A Design

Name Process Air to E 2I Process Air to Sec P FG to E 202 A P FG to E 203 /apour 1.0000 1.0000 1.0000 1.0000 1.0000 femperature [C] 300.0 492.0 843.4 814.8 Pressure [kPa] 32.40 32.40 1.100e+004 1.100e+004 Molar Flow [kgmole/h] 1585 1585 9040 9040 Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Sid Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Entropy [kl/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kl/kgmole-C] 181.3 190.3 166.5 165.5 teat Flow [kl/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Vapour 1.0000 1.0000 1.0000 1.0000 Temperature [C] 300.0 492.0 843.4 814.8 Pressure [kPa] 32.40 32.40 1.100e+004 1.100e+004 Molar Flow [kgmole/h] 1585 1585 9040 9040 Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Entropy [kJ/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [kJ/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Temperature [C] 300.0 492.0 843.4 814.8 Pressure [kPa] 32.40 32.40 1.100e+004 1.100e+004 Molar Flow [kgmole/h] 1585 1585 9040 9040 Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Enthalpy [kJ/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [k/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Pressure [kPa] 32.40 32.40 1.100e+004 1.100e+004 Molar Flow [kgmole/h] 1585 1585 9040 9040 Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Enthalpy [kJ/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [k/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Molar Flow [kgmole/h] 1585 1585 9040 9040 Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Enthalpy [kJ/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [k/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Mass Flow [kg/h] 4.581e+004 4.581e+004 2.530e+005 2.530e+005 Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Enthalpy [kl/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kl/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [kl/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Std Ideal Liq Vol Flow [m3/h] 52.64 52.64 302.9 302.9 Molar Enthalpy [kl/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kl/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [kl/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Molar Enthalpy [kJ/kgmole] 6834 1.285e+004 -5.087e+004 -5.192e+004 Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [kJ/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Molar Entropy [kJ/kgmole-C] 181.3 190.3 166.5 165.5 Heat Flow [kJ/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008
Heat Flow [k]/h] 1.083e+007 2.036e+007 -4.598e+008 -4.694e+008

Figure 8.25: Exchanger E 202 A Worksheet

Exchanger E 203

In this exchanger, Steam from steam drum is heated using Primary Reformer Flue Gas.

Figure 8.26: Exchanger E 203 Design

🕟 Heat Exchanger: E 203				- 0	×
Worksheet Performance Dynamics	Rigorous Shell&Tube				-
Name	From Steam Drun	Steam to F 202 A	P FG to E 203	P FG to E 204 A	
Vapour	1.0000	1.0000	1.0000	1.0000	
Temperature [C]	319.0	348.0	814.8	736.5	
Pressure [kPa]	1.108e+004	1.108e+004	1.100e+004	1.100e+004	
Molar Flow [kgmole/h]	1.418e+004	1.418e+004	9040	9040	
Mass Flow [kg/h]	2.554e+005	2.554e+005	2.530e+005	2.530e+005	
Std Ideal Liq Vol Flow [m3/h]	255.9	255.9	302.9	302.9	
Molar Enthalpy [kJ/kgmole]	-2.368e+005	-2.350e+005	-5.192e+004	-5.479e+004	
Molar Entropy [kJ/kgmole-C]	151.9	155.0	165.5	162.8	
Heat Flow [kJ/h]	-3.357e+009	-3.331e+009	-4.694e+008	-4.953e+008	-
	OK			Update][
4		1			Þ.

Figure 8.27: Exchanger E 203 Worksheet

Exchanger E 204 A

In this exchanger, Natural and Recycle gas is heated using Primary Reformer Flue Gas.

Figure 8.28: Exchanger E 204 A Design

🕞 Heat Exchanger: E 204 A				- 🗆	×
Worksheet Performance Dynamics	Rigorous Shell&Tube				_
Name	NG to E 204 A	To Desulphurizer	P FG to E 204 A	P FG to Mixer	
Vapour	1.0000	1.0000	1.0000	1.0000	
Temperature [C]	260.0	418.0	736.5	690.6	
Pressure [kPa]	3906	3808	1.100e+004	1.100e+004	
Molar Flow [kgmole/h]	1984	1984	9040	9040	
Mass Flow [kg/h]	3.924e+004	3.924e+004	2.530e+005	2.530e+005	
Std Ideal Liq Vol Flow [m3/h]	97.39	97.39	302.9	302.9	
Molar Enthalpy [kJ/kgmole]	-7.296e+004	-6.535e+004	-5.479e+004	-5.646e+004	
Molar Entropy [kJ/kgmole-C]	172.8	185.5	162.8	161.1	
Heat Flow [kJ/h]	-1.447e+008	-1.297e+008	-4.953e+008	-5.104e+008	
	OK			Update	
•					•

Figure 8.29: Exchanger E 204 A Worksheet

Exchanger F 202 A

In this exchanger, Steam from Steam Drum is heated using Boiler Reformer Flue Gas.

Figure 8.30: Exchanger F 202 A Design

🜔 Heat Exch	anger: F 202 A					- 🗆	×
Worksheet	Performance	Dynamics	Rigorous Shell&Tube				_
Name			Steam to F 202 A	Steam to Boiler	B FG to F 202 A	B FG to Mixer	
Vapour			1.0000	1.0000	1.0000	1.0000	
Temperature	[C]		348.0	375.0	805.0	584.0	
Pressure [kPa]		1.108e+004	1.108e+004	1.100e+004	1.100e+004	
Molar Flow [k	(gmole/h]		1.418e+004	1.418e+004	2669	2669	
Mass Flow [kg	g/h]		2.554e+005	2.554e+005	7.481e+004	7.481e+004	
Std Ideal Liq	Vol Flow [m3/h]]	255.9	255.9	89.43	89.43	
Molar Enthalp	oy [kJ/kgmole]		-2.350e+005	-2.335e+005	-4.916e+004	-5.715e+004	
Molar Entrop	y [kJ/kgmole-C]	155.0	157.3	164.8	156.6	
Heat Flow [kJ	/h]		-3.331e+009	-3.310e+009	-1.312e+008	-1.526e+008	
			ОК			Update)
*							Þ.

Figure 8.31: Exchanger F 202 A Worksheet

Exchanger E 205

In this exchanger, High Pressure Steam Generator is installed for cooling Combine Flue Gas.

Design Rating	Worksheet	Performance	Dynamics				
Design Connections Parameters User Variables Notes	Inlet Con Fluid Basi	Package	E 205	Energy Q-Steam Generation Outlet C FG to E 202 A	on v		
Delete				OK			Ignored

Figure 8.32: Exchanger E 205 Design

WorksheetNameCombine FGC FG to E 202 AQ-Steam GeneralConditionsVapour1.0001.0000 <empty>PropertiesTemperature [C]666.5336.0<empty>DompositionPressure [kPa]1.100e+0041.100e+004<empty>Molar Flow [kgmole/h]1.171e+0041.171e+004<empty>Mass Flow [kg/h]3.278e+0053.278e+0058.073e+004Std Ideal Liq Vol Flow [m3/h]392.4392.4<empty>Molar Enthalpy [kJ/kgmole]-5.662e+004-6.836e+004<empty>Molar Enthalpy [kJ/kgmole-C]160.1144.7<empty>Heat Flow [kJ/h]-6.630e+008-8.005e+0081.375e+008</empty></empty></empty></empty></empty></empty></empty>		-	,				
Conditions Vapour 1.0000 1.0000 <empty> Iroperties Temperature [C] 666.5 336.0 <empty> Pressure [kPa] 1.100e+004 1.100e+004 <empty> Molar Flow [kgmole/h] 1.171e+004 1.171e+004 <empty> Mass Flow [kg/h] 3.278e+005 3.278e+005 8.073e+004 Std Ideal Liq Vol Flow [m3/h] 392.4 392.4 <empty> Molar Enthalpy [kJ/kgmole] -5.662e+004 -6.836e+004 <empty> Molar Enthalpy [kJ/kgmole-C] 160.1 144.7 <empty> Heat Flow [kJ/h] -6.630e+008 -8.005e+008 1.375e+008</empty></empty></empty></empty></empty></empty></empty>	worksneet	Name		Combine FG	C FG to E 202 A	Q-Steam General	
Importies Temperature [C] 666.5 336.0 <empty> iomposition Pressure [kPa] 1.100e+004 1.100e+004 <empty> Molar Flow [kgmole/h] 1.171e+004 1.171e+004 <empty> Mass Flow [kg/h] 3.278e+005 3.278e+005 8.073e+004 Std Ideal Liq Vol Flow [m3/h] 392.4 392.4 <empty> Molar Enthalpy [kJ/kgmole] -5.662e+004 -6.836e+004 <empty> Molar Enthalpy [kJ/kgmole-C] 160.1 144.7 <empty> Heat Flow [kJ/h] -6.630e+008 -8.005e+008 1.375e+008</empty></empty></empty></empty></empty></empty>	Conditions	Vapour		1.0000	1.0000	<empty></empty>	
Image: system of the	roperties	Temperature	[C]	666.5	336.0	<empty></empty>	
F Specs Molar Flow [kgmole/h] 1.171e+004 1.171e+004 <empty> Mass Flow [kg/h] 3.278e+005 3.278e+005 8.073e+004 Std Ideal Liq Vol Flow [m3/h] 392.4 392.4 <empty> Molar Enthalpy [kJ/kgmole] -5.662e+004 -6.836e+004 <empty> Molar Enthalpy [kJ/kgmole-C] 160.1 144.7 <empty> Heat Flow [kJ/h] -6.630e+008 -8.005e+008 1.375e+008</empty></empty></empty></empty>	Composition	Pressure [kPa]		1.100e+004	1.100e+004	<empty></empty>	
Mass Flow [kg/h] 3.278e+005 3.278e+005 8.073e+004 Std Ideal Liq Vol Flow [m3/h] 392.4 392.4 392.4 <empty> Molar Enthalpy [kJ/kgmole] -5.662e+004 -6.836e+004 <empty> Molar Entropy [kJ/kgmole-C] 160.1 144.7 <empty> Heat Flow [kJ/h] -6.630e+008 -8.005e+008 1.375e+008</empty></empty></empty>	Specs Molar Flow [kgmole/h]		1.171e+004	1.171e+004	<empty></empty>		
Std Ideal Liq Vol Flow [m3/h] 392.4 392.4 392.4 <th< td=""><td></td><td>Mass Flow [kg</td><td>g/h]</td><td>3.278e+005</td><td>3.278e+005</td><td>8.073e+004</td><td></td></th<>		Mass Flow [kg	g/h]	3.278e+005	3.278e+005	8.073e+004	
Molar Enthalpy [kl/kgmole] -5.662e+004 -6.836e+004 <empty> Molar Entropy [kl/kgmole-C] 160.1 144.7 <empty> Heat Flow [kl/h] -6.630e+008 -8.005e+008 1.375e+008</empty></empty>		Std Ideal Liq \	/ol Flow [m3/h]	392.4	392.4	<empty></empty>	
Molar Entropy [kl/kgmole-C] 160.1 144.7 <empty> Heat Flow [kl/h] -6.630e+008 -8.005e+008 1.375e+008</empty>		Molar Enthalp	oy [kJ/kgmole]	-5.662e+004	-6.836e+004	<empty></empty>	
Heat Flow [kJ/h] -6.630e+008 -8.005e+008 1.375e+008		Molar Entrop	y [kJ/kgmole-C]	160.1	144.7	<empty></empty>	
		Heat Flow [kJ,	/h]	-6.630e+008	-8.005e+008	1.375e+008	

Figure 8.33: Exchanger E 205 Worksheet

Exchanger E 202 B

In this exchanger, Process Air is heated using Combine Flue Gas.

🕟 Heat Exchan	ger: E 202 B			_		×
Design Ratin	g Worksheet Performance Dynamics F	ligorous Shell&Tube				
Design Connections Parameters Specs User Variables Notes	Tube Side Inlet	Name E 202 B Shell Side Inlet C FG to E 202 A Shellside Flowsheet D Case (Main)				
	Tube Side Outlet Process Air to E 202 B Tube Side Fluid Pkg Basis-1 Convert to Rigorous Model You can replace any simple exchange	Switch streams Switch streams Switch streams Shell Side Outlet C FG to E 204 B Shell Side Fluid Pk Basis-1	g T			
Delete	Size	Exchanger Specify Geometry OK	Update		🔲 Ignor	ed

Figure 8.34: Exchanger E 202 B Design

🕟 Heat Excl	hanger: E 202 B					_		×
Worksheet	Performance	Dynamics	Rigorous Shell&Tube					4
Name			Process Air	Process Air to E 20	C FG to E 202 A	C FG t	o E 204 B	
Vapour			1.0000	1.0000	1.0000		1.0000)
Temperature	[C]		177.0	300.0	336.0		321.7	·
Pressure [kPa]		32.40	32.40	1.100e+004	1.7	100e+004	Ļ
Molar Flow [k	(gmole/h]		1585	1585	1.171e+004	1.7	171e+004	Ļ
Mass Flow [k	g/h]		4.581e+004	4.581e+004	3.278e+005	3.	278e+005	i
Std Ideal Liq	Vol Flow [m3/h]		52.64	52.64	392.4		392.4	Ļ
Molar Enthal	py [kJ/kgmole]		3093	6834	-6.836e+004	-6.	887e+004	Ļ
Molar Entrop	y [kJ/kgmole-C]	173.9	181.3	144.7		143.9)
Heat Flow [kJ	/h]		4.901e+006	1.083e+007	-8.005e+008	-8.0	064e+008	
			OK			Up	date	
4								•

Figure 8.35: Exchanger E 202 B Worksheet

Exchanger E 204 B

In this exchanger, Natural and Recycle gas is heated using Combine Flue Gas.

Figure 8.36: Exchanger E 204 B Design

Worksheet Performance Dynamics	Rigorous Shell&Tube			
Name	Natural+Recycle (NG to E 204 A	C FG to E 204 B	C FG to E 206
Vapour	1.0000	1.0000	1.0000	1.0000
Temperature [C]	40.97	260.0	321.7	279.0
Pressure [kPa]	3906	3906	1.100e+004	1.100e+004
Molar Flow [kgmole/h]	1984	1984	1.171e+004	1.171e+004
Mass Flow [kg/h]	3.924e+004	3.924e+004	3.278e+005	3.278e+005
Std Ideal Liq Vol Flow [m3/h]	97.39	97.39	392.4	392.4
Molar Enthalpy [kJ/kgmole]	-8.193e+004	-7.296e+004	-6.887e+004	-7.039e+004
Molar Entropy [kJ/kgmole-C]	151.3	172.8	143.9	141.2
Heat Flow [kJ/h]	-1.625e+008	-1.447e+008	-8.064e+008	-8.242e+008

Figure 8.37: Exchanger E 204 B Worksheet

Exchanger E 206

In this exchanger, Boiler Feed Water is heated using Combine Flue Gas.

	Performance	Dynamics	Rigorous Shell&Tube			
Name			BFW	BFW from E 206	C FG to E 206	Stack Gas
Vapour			0.0000	0.0000	1.0000	1.0000
Temperature	[C]		110.0	136.0	279.0	209.0
Pressure [kPa	a]		1.383e+004	1.383e+004	1.100e+004	1.100e+004
Molar Flow [kgmole/h]		1.432e+004	1.432e+004	1.171e+004	1.171e+004
Mass Flow [k	g/h]		2.580e+005	2.580e+005	3.278e+005	3.278e+005
Std Ideal Liq	Vol Flow [m3/h]		258.5	258.5	392.4	392.4
Molar Enthal	py [kJ/kgmole]		-2.794e+005	-2.773e+005	-7.039e+004	-7.292e+004
Molar Entrop	y [kJ/kgmole-C]		73.05	78.28	141.2	136.3
Heat Flow [k]	l/h]		-4.000e+009	-3.971e+009	-8.242e+008	-8.539e+008
			ОК			Update

Figure 8.39: Exchanger E 206 Worksheet

8.1.7 Product Streams

Following are the heated product streams.

Process Gas to Primary Reformer

Conditions Properties	Vapour / Phase Fraction	1.0000	1.0000
roperties	Temperature [C]		
	remperature [e]	532.0	532.0
Composition	Pressure [kPa]	3465	3465
Oil & Gas Feed	Molar Flow [kgmole/h]	7754	7754
Petroleum Assay	Mass Flow [kg/h]	1.432e+005	1.432e+005
Jser Variables	Std Ideal Liq Vol Flow [m3/h]	201.5	201.5
Notes	Molar Enthalpy [kJ/kgmole]	-1.819e+005	-1.819e+005
Cost Parameters	Molar Entropy [kJ/kgmole-C]	187.8	187.8
Normalized Yields	Heat Flow [kJ/h]	-1.411e+009	-1.411e+009
	Liq Vol Flow @Std Cond [m3/h]	189.0	189.0
	Fluid Package	Basis-1	
	Utility Type		

Figure 8.40: Process Gas to Primary Reformer

Process Air to Secondary Reformer

Worksheet	Stream Name	Process Air to Sec Ret	Vanour Phase
Contraction	Vanour / Phase Fraction	1 0000	1 0000
Conditions	Targe endury Phase Praction	1.0000	1.0000
Properties	Temperature [C]	492.0	492.0
Composition	Pressure [kPa]	32.40	32.40
Detroleum Assav	Molar Flow [kgmole/h]	1585	1585
K Value	Mass Flow [kg/h]	4.581e+004	4.581e+004
User Variables	Std Ideal Liq Vol Flow [m3/h]	52.64	52.64
Notes	Molar Enthalpy [kJ/kgmole]	1.285e+004	1.285e+004
Cost Parameters	Molar Entropy [kJ/kgmole-C]	190.3	190.3
Normalized Yield	S Heat Flow [kJ/h]	2.036e+007	2.036e+007
	Liq Vol Flow @Std Cond [m3/h]	3.744e+004	3.744e+004
	Fluid Package	Basis-1	
	Utility Type		

Figure 8.41: Process Air to Secondary Reformer

Steam to Boiler

	Attachmer	nts	Dynamics			
Worksh	neet	Stre	am Name	Steam to Boiler	Vapour Phase	
Conditio	ns	Vap	our / Phase Fraction	1.0000	1.0000	
Propertie	es 🛛	Tem	iperature [C]	375.0	375.0	
Composi	tion	Pres	ssure [kPa]	1.108e+004	1.108e+004	
Oil & Ga	s Feed	Мо	ar Flow [kgmole/h]	1.418e+004	1.418e+004	
K Value	m Assay	Mas	ss Flow [kg/h]	2.554e+005	2.554e+005	
User Vari	ables	Std	Ideal Liq Vol Flow [m3/h]	255.9	255.9	
Notes		Мо	ar Enthalpy [kJ/kgmole]	-2.335e+005	-2.335e+005	
Cost Para	ameters	Мо	ar Entropy [kJ/kgmole-C]	157.3	157.3	
Normaliz	ed Yields	Hea	t Flow [kJ/h]	-3.310e+009	-3.310e+009	
		Liq	Vol Flow @Std Cond [m3/h]	251.7	251.7	
		Flui	d Package	Basis-1		
		Util	ity Type			

Figure 8.42: Steam to Boiler

Natural and Recycle Gas to Desulphurizer

and the second	Steam Name	To Desulphurizer	Vapour Phase
onditions	Vapour / Phase Fraction	1.0000	1.0000
Properties	Temperature [C]	418.0	418.0
Composition	Pressure [kPa]	3808	3808
Oil & Gas Feed	Molar Flow [kgmole/h]	1984	1984
Petroleum Assay	Mass Flow [kg/h]	3.924e+004	3.924e+004
User Variables	Std Ideal Liq Vol Flow [m3/h]	97.39	97.39
Notes	Molar Enthalpy [kJ/kgmole]	-6.535e+004	-6.535e+004
Cost Parameters	Molar Entropy [kJ/kgmole-C]	185.5	185.5
Normalized Yields	Heat Flow [kJ/h]	-1.297e+008	-1.297e+008
	Liq Vol Flow @Std Cond [m3/h]	4.681e+004	4.681e+004
	Fluid Package	Basis-1	
	Utility Type		

Figure 8.43: Natural & Recycle Gas to Desulphurizer

Conditions Vapou Properties Temp Composition Pressu Oil & Gas Feed Petroleum Assay K Value User Variables Std Id	r / Phase Fraction rrature [C] re [kPa] Flow [kgmole/h] Flow [kg/h]	0.0000 136.0 1.383e+004 1.432e+004	1.0000 136.0 1.383e+004
Properties Temp Composition Dil & Gas Feed Petroleum Assay K Value User Variables Std Id	rature [C] re [kPa] Flow [kgmole/h] Flow [kg/h]	136.0 1.383e+004 1.432e+004	136.0 1.383e+004 1.432e+004
Composition Oil & Gas Feed Petroleum Assay K Value User Variables Std Id	re [kPa] Flow [kgmole/h] Flow [kg/h]	1.383e+004 1.432e+004	1.383e+004
Oil & Gas Feed Petroleum Assay K Value User Variables Std Id	Flow [kgmole/h] Flow [kg/h]	1.432e+004	1.432++004
K Value K Value User Variables	low [kg/h]		1432E±004
User Variables Std Id		2.580e+005	2.580e+005
	eal Liq Vol Flow [m3/h]	258.5	258.5
Notes Molar	Enthalpy [kJ/kgmole]	-2.773e+005	-2.773e+005
Cost Parameters Molar	Entropy [kJ/kgmole-C]	78.28	78.28
Normalized Yields Heat	low [kJ/h]	-3.971e+009	-3.971e+009
Liq Vo	Flow @Std Cond [m3/h]	254.2	254.2
Fluid	ackage	Basis-1	
Utility	Туре		

Figure 8.44: Boiler Feed Water Outlet

Stack Gas

/orksheet Attachme	ents Dynamics		
Worksheet	Stream Name	Stack Gas	Vapour Phase
Conditions	Vapour / Phase Fraction	1.0000	1.0000
Properties	Temperature [C]	209.0	209.0
Composition Oil & Gas Feed Petroleum Assay K Value User Variables	Pressure [kPa]	1.100e+004	1.100e+004
	Molar Flow [kgmole/h]	1.171e+004	1.171e+004
	Mass Flow [kg/h]	3.278e+005	3.278e+005
	Std Ideal Liq Vol Flow [m3/h]	392.4	392.4
Notes	Molar Enthalpy [kJ/kgmole]	-7.292e+004	-7.292e+004
Cost Parameters Normalized Yields	Molar Entropy [kJ/kgmole-C]	136.3	136.3
	Heat Flow [kJ/h]	-8.539e+008	-8.539e+008
	Liq Vol Flow @Std Cond [m3/h]	2.759e+005	2.759e+005
	Fluid Package	Basis-1	
	Utility Type		
	OK		
Delete	Define from Stream Vie	ew Assay	+ +

Figure 8.45: Stack Gas

8.1.6 Higher Pressure Steam Generation

Following is the production rate of steam in E 205 simulated in Aspen HYSYS.

🕟 Energ	庨 Energy Stream: Q-Steam Generation			_		×
Stream Unit Ops Dynamics			Stripchart	User Varial	oles	
Properties						
Strea	Stream Name		Q-Stea	m Generati	ion	
Heat Flow [kJ/h]		1.375e+008				
Ref. Temperature [C]		<empty></empty>				
Utilit	Utility Type		HP Stea	im Generati	ion	
Utility Mass Flow [kg/h]		8.073e+004				
ОК						
	Delete				\$	⇒

Figure 8.46: High Pressure Generation

8.2 Results

The temperature of stack gas calculated using Aspen Energy Analyzer was 201°C. However, temperature of stack gas simulated on Aspen HYSYS is 209°C. Slight difference in results can be due to fluid package selected or pressure drop factors. Results are significantly close and proposed modifications are supported by Aspen HYSYS simulation.

Chapter 9 HAZOP Analysis

HAZOP analysis is used as a fragment of a Quantitative Risk Assessment. The aim is to investigate the divergence of the plant, from the design intent and formulate risk for workforce and equipment and operability complications.

9.1 Why HAZOP?

The motives for carrying out this study, are primarily, to identify hazards, and to resolve them.

The following Guidewords along with the meanings are illustrated below.

Guidewords	Meaning	
NO	Complete negation of the design intent	
MORE	Quantitative Increase	
LESS	Quantitative Decrease	
REVERSE	Logical opposite of the design intent	
INSTEAD	Complete substitution	

Table 9-1: Guide Words for HAZOP

9.2 Analysis

HAZOP Analysis is done on the major equipment used in convective section of primary reformer.

9.2.1 Valve

Equipment: Valve

Purpose: To control the flow of inlet streams in the reformer

Parameter	Deviation	Causes	Consequences	Action
Flow		Control	Low heat recovery se	Installation
	More	Valve fails		of Flow
		open		sensors
		Control	No heat	Replace or
Flow	No	Valve fails	exchanges in the	cloan valvo
		closed	coil	

Table 9-2: HAZOP Study on Valve

9.2.2 Coils

Equipment: Coils

Purpose: To exchanges heat with Flue gas

Parameter	Deviation	Causes	Consequences	Action
Flow	No	Control Valve fails to open	No heat exchanges in coils	Install temperature sensors
Flow	More	Failure of valve to be close	Output temperature too low	Install temperature sensors before and after process streams
Flow	Less	Pipe leakage	Temperature of process steam is low	Install flow sensors
Flow	Reverse	Failure of process fluid inlet valve	Product offset	Installation of check valve
Contamination	high	Poor separation	Low heat recovery	Proper maintenance
Pressure (shell side)	low	Inlet pump failed to work properly	No significant variation	Installation of pressure sensors
Pressure (shell side)	high	Exchanger outlet discharge valve fails to open	Exchanger shell side will be over pressurized	High pressure security must be installed on shell outlet which if actuated will close all valves.

Table 9-3: HAZOP Study of Coils

9.2.3 Boiler

Equipment: Boiler

Purpose: To produce steam

Parameter	Deviation	Causes	Consequences	Action
Flow	Low	Failure of inlet control valve	Boiler heated the reactants to high temperature than required	Install flow sensors
Flow	High	Inlet valve opens	Poor heating of reactants	Install Control valves
Temperature	High	Failure of temperature control valve	Chances of explosion	Install temperature sensors
Temperature	low	High flow rate of inlet streams	Low temperature of process streams	Install Control Valves

Table 9-4: HAZOP Study on Boiler
Chapter 10 Conclusion

By using pinch analysis, not only the source of heat wastage was identified, that is high temperature flue gas being released into environment, but also it suggested away to recover waste heat. Hence led to better heat integration. Around 7% more steam can be produced and stack temperature of the flue gas can be reduced by 19°C using proposed heat exchanger network design. Proposed design also achieves 91.5% of the area target calculated using Bath Algorithm.

Economic analysis shows the payback period after applying these modifications is just 2.06 years with the cost saving of 0.45 million dollars per year. Due to reduction in stack temperature of flue gases, environmental impact is also reduced.

References

Kemp, I. C. (2011). Pinch Analysis and Process Integration: A User Guide on Process Integration for the Efficient Use of Energy. Elsevier.

2

1

Gundersen, T. (2002). What is Process Integration? International Energy Agency: International Collaboration in Energy Technology: A Sampling of Success Stories.

3

Tjoe TN, L. B. (1986). Using Pinch Technology for Process Retrofit. Chem Eng, 47-60.

4

Panjeshahi, M. H. (2008). Retrofit of Ammonia Plant for Improving Energy Efficiency. Energy, 46-64.

5

Sinnott, R. K. (2005). Coulson & Richardson's Chemical Engineering: Vol. 6. Oxford: Elsevier Butterworth-Heinemann.

6

Wang Y, D. J. (2003). Application of Total Process Energy-Integration in Retrofitting an Ammonia Plant. Appl Energy, 467-547.

```
7
```

Aspen Technology, Inc. (2015). Aspen Energy Analyzer: User Guide. Bedford, MA.

8

Rennie, T. J. (2006). Numerical Studies of a Double-pipe Helical Heat Exchanger. Applied Thermal Engineering, 1266-1273.