Waste Water Recycling

Akash KumarNUST201434348BSCME99114FShahzeen AkhtarNUST201433677BSCME99114FHafiz M. Usama SaleemNUST201433511BSCME99114F

School of Chemical and Materials Engineering (SCME) National University of Sciences and Technology (NUST) 2018

Waste Water Recycling

Akash Kumar

Shahzeen Akhtar

Hafiz M. Usama Saleem

NUST201434348BSCME99114F

NUST201433677BSCME99114F

NUST201433511BSCME99114F

This thesis is submitted as a partial fulfillment of the requirements for the degree of

B.E. in Chemical Engineering

Supervisor Name: Dr. Erum Pervaiz

School of Chemical and Materials Engineering (SCME)

National University of Sciences and Technology (NUST), H-12 Islamabad, Pakistan

June, 2018

Certificate

This is to certify that work in this thesis has been carried out by **Akash Kumar, Shahzeen Akhtar** and **Hafiz M. Usama Saleem** and completed under supervision of **Dr. Erum Pervaiz** in school of chemical and materials engineering (SCME), National University of Sciences and Technology, H-12, Islamabad, Pakistan.

Supervisor:

Dr. Erum Pervaiz

UG Coordinator Chemical Engineering Department

Chemical Engineering Department

School of Chemical & Materials Engineering (SCME)

National University of Sciences and Technology (NUST), Islamabad

Submitted through:

Dr. Bilal Khan Niazi HoD Chemical Engineering **Dr. Arshad Hussain** Dean/Principal SCME

Dedication

Our work is dedicated to our parents and families and to SCME where we learned some valuable lessons of life.

Acknowledgements

We are indeed blessed by Allah Almighty, the Omniscient and Omnipresent, Who made us able to complete the project respectably and honestly.

We would like to acknowledge Dr. Erum Pervaiz, our supervisor, and give her our highest regards as this project would have never been complete without her help.

We would also like to acknowledge Engr. Muhammad Mirza Nabeel at Engro Foods and thank him for his continuous guidance throughout the project.

Additionally, we would like to thank Dr. Arshad Hussain who also provided us with guidance.

Furthermore, we would like to appreciate the IPO, specifically Lec Zaeem Aman and Dr. Waqas Cheema, for getting us the project.

We are extremely indebted to our parents for believing in us, and for helping us achieve our dreams.

Abstract

The waste water from the Engro Foods Ltd. plant contains significantly high levels of TDS, BOD, COD and FOG which makes the water unsuitable for reuse. The presence of BOD and COD consumes the dissolved oxygen available in the water and promotes the growth of unwanted microorganism in the water. This results in contamination of the water. The Fats Oils and Grease present cause bad odor, and cause clogging wherever they get accumulated such as on the surface of the membranes. The TDS interferes with the taste of the food and causes scale formation in the equipment. Additionally, the inlet pH is in the range of 6 to 9 and needs to be maintained for proper operation of the plant. Therefore, the project requires us to minimize these contaminants and maintain a certain pH level by designing a treatment system so that the water can be recycled to be used in the manufacturing process instead of being disposed of. Our proposed model meets with all the requirements of the project making the water reusable.

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION	1
CHAPTER 2: LITERATURE REVIEW	3
2.1 PROCESS SELECTION FOR PH	3
2.2 PROCESS SELECTION FOR FOG	3
2.3 PROCESS SELECTION FOR BOD AND COD	4
2.3.1 SELECTION OF MBR SYSTEM CONFIGURATION	5
2.3.2 Selection of Membrane Configuration	6
2.3.3 Selection of Membrane Material	
2.4 PROCESS SELECTION FOR TDS	
CHAPTER 3: PROCESS DESCRIPTION	8
3.1 PROCESS FLOW DIAGRAM (PFD)	8
3.2 PROCESS DESCRIPTION	9
3.2.1 EQUALIZATION TANK	9
3.2.2 GREASE TRAP	9
3.2.3 Membrane Bio-Reactor (MBR)	9
3.2.4 HIGH PRESSURE PUMP	10
3.2.5 RO MEMBRANE	10
CHAPTER 4: MATERIAL BALANCE	11
4.1 EQUALIZATION TANK	11
4.1.1 FORMULAE USED	11
4.1.2 BALANCE DATA	11
4.1.3 VARIATIONS IN NAOH ADDITION WITH INLET PH	13
4.1.4 VARIATIONS IN H ₂ SO ₄ Addition With Inlet PH	14
4.2 GREASE TRAP	15
4.2.1 FORMULAE USED	15
	T 7T

4.2.2 BALANCE DATA	15
4.3 MEMBRANE BIO-REACTOR	16
4.3.1 Formulae Used	16
4.3.2 BALANCE DATA	16
4.4 RO MEMBRANE	17
4.4.1 Formulae Used	17
4.4.2 BALANCE DATA	17
4.5 SUMMARIZED MATERIAL BALANCE	18
CHAPTER 5: ENERGY BALANCE	19
5.1 EQUALIZATION TANK	19
5.1.1 FORMULAE USED	19
5.1.2 BALANCE DATA	19
5.2 GREASE TRAP	20
5.2.1 BALANCE DATA	20
5.3 Membrane Bio-Reactor	20
5.3.1 BALANCE DATA	20
5.4 HIGH PRESSURE PUMP	20
5.4.1 Formula Used	20
5.4.2 BALANCE DATA	20
5.5 RO MEMBRANE	21
5.5.1 Formula Used	21
5.5.2 BALANCE DATA	21
5.6 SUMMARIZED ENERGY BALANCE	21
CHAPTER 6: EQUIPMENT DESIGN	22
6.1 EQUALIZATION TANK	22
6.1.1 VOLUME	22
6.1.2 DIAMETER AND HEIGHT	24
6.1.3 IMPELLERS	24

6.1.4	BAFFLES	25
6.2	GREASE TRAP	26
6.2.1	Volume	26
6.2.2	Surface Area	27
6.3	MEMBRANE BIO-REACTOR	28
6.3.1	Volume	28
6.3.2	DIAMETER AND HEIGHT	28
6.3.3	MEMBRANE SPECIFICATIONS	28
6.4	HIGH PRESSURE PUMP	
6.4.1	DIFFERENTIAL HEAD	30
6.4.2	NPSH available	30
6.4.3	IMPELLER DIAMETER AND EFFICIENCY	31
6.4.4	Hydraulic Power	31
6.5	Reverse Osmosis Membrane	32
6.5.1	Feed and Permeate Specification	32
6.5.2	Selecting Flow Configurations and No. of Passes	32
6.5.3	SELECTING MEMBRANE ELEMENT TYPE	33
6.5.4	Selecting Average Membrane Flux	33
6.5.5	NUMBER OF ELEMENTS NEEDED	33
6.5.6	NUMBER OF PRESSURE VESSELS NEEDED	
6.5.7	NUMBER OF STAGES	34
6.5.8	STAGING RATIO	34
6.5.9	Pressure Vessels	35
6.6	STORAGE TANKS	36
6.6.1	NAOH TANK	36
6.6.2	H ₂ SO ₄ TANK	37
<u>CHAP</u>	PTER 7: COSTING	38
7.1	EQUALIZATION TANK	
7.1.1	Tank	
7.1.2	Agitator	

7.1.3 TOTAL COST	40
7.2 GREASE TRAP	40
7.3 MEMBRANE BIO-REACTOR	40
7.3.1 VESSEL	40
7.3.2 MEMBRANE	41
7.3.3 TOTAL COST	41
7.4 HIGH PRESSURE PUMP	41
7.5 RO MEMBRANE	42
7.5.1 Pressure Vessels	42
7.5.2 MEMBRANE ELEMENTS	42
7.5.3 TOTAL COST	43
7.6 STORAGE TANKS	43
7.6.1 NAOH TANK	43
7.6.2 H ₂ SO ₄ Tank	43
7.6.3 TOTAL COST	44
7.7 PURCHASED COST OF EQUIPMENT (PCE)	44
7.8 PHYSICAL PLANT COST (PPC)	45
7.9 FIXED CAPITAL	46
7.10 WORKING CAPITAL	46
7.11 TOTAL INVESTMENT	47
7.12 OPERATING COSTS	47
7.12.1 Fixed Costs	47
7.12.2 VARIABLE COSTS	48
7.12.3 ANNUAL OPERATING COST	49
CHAPTER 8: HAZOP ANALYSIS	50
8.1 TERMINOLOGY	51
8.2 EQUALIZATION TANK	52
8.3 GREASE TRAP	53
8.4 MEMBRANE BIO-REACTOR	54
8.5 HIGH PRESSURE PUMP	55

8.6 RO MEMBRANE	56
CHAPTER 9: SIMULATION	58
9.1 Номе	58
9.2 FEED WATER	59
9.3 REVERSE OSMOSIS SPECIFICATION	60
9.4 SUMMARY REPORT	61
CHAPTER 10: INSTRUMENTATION	69
CHAPTER 11: CONCLUSIONS	70
REFERENCES	

LIST OF TABLES

Table 1: Objectives of the project	2
Table 2: Advantages and Disadvantages of Materials Used For Membranes	7
Table 3 : Equalization Tank Material Balance when pH<7.75	11
Table 4: Equalization Tank Material Balance when pH>7.75	12
Table 5: Variation in NaOH dosage according to inlet pH	13
Table 6: Variation in H_2SO_4 dosage according to inlet pH	14
Table 7: Grease Trap Material Balance	15
Table 8: MBR Material Balance	16
Table 9: RO Material Balance	17
Table 10: Summary of Material Balance	18
Table 11: Equalization Tank Energy Balance	19
Table 12: Grease Trap Energy Balance	20
Table 13: MBR Energy Balance	20
Table 14: HP Pump Energy Balance	20
Table 15: RO Energy Balance	21
Table 16: Summary of Energy Balance	21
Table 17: Hourly flow data of feed	23
Table 18: Factors affecting Grease Trap size	27
Table 19: Different types of membrane module elements	33
Table 20: Data showing relation between system recovery and number of stages	34
Table 21: Base costs, size units and cost indices for different equipments	38
Table 22: Summary & total of purchased equipment cost	44
Table 23: Lang's factors to calculate PPC for system containing solids and liquids	45
Table 24: Lang's factors to calculate Fixed Capital for system containing solids and liquids	46
Table 25: Fixed Operating Costs	48
Table 26: Variable Operating Costs	48
Table 27: Meanings of different terminologies used in HAZOP Analysis	51
Table 28: Factors involved in HAZOP Analysis of Equalization Tank	52
Table 29: Factors involved in HAZOP Analysis of Grease Trap	53
Table 30: Factors involved in HAZOP Analysis of MBR	54
Table 31: Factors involved in HAZOP Analysis of HP Pump	55
Table 32: Factors involved in HAZOP Analysis of RO	57

LIST OF FIGURES

Figure 1: Process Flow Diagram	8
Figure 2: Hydrograph of Equalization Tank	23
Figure 3: Performance curve of pump	31
Figure 4: Pump capacity vs. purchased cost	41
Figure 5: Home screen of DOW WAVE software	58
Figure 6: Details of Feed Water in DOW WAVE software	59
Figure 7: Details of Reverse Osmosis panel of the software	60
Figure 8a: Results of the simulation	61

Chapter 1: Introduction

Waste Water Treatment Plants (WWTPs) are installed in industries to treat waste water before its disposal to water channels. When such plants are used to treat waste water to such extent so that it can be reused, they are essentially called Waste Water Recycling Plants. The main purpose of this project is to achieve the fresh water standards by reducing TDS, BOD, COD and FOG, and by maintaining pH so that the water can be used in manufacturing of products such as milk, ice cream, etc., to make the process economical.

TDS, or the Total Dissolved Solids, are the salts or minerals that have been completely dissolved in water, and therefore cannot be removed by large solid-liquid separators such as screens, etc. Therefore, they required special membranes that have perforations in the nano-scale or even smaller so that the salts can retain while the even smaller water molecules pass from the membrane.

BOD, or Biological Oxygen Demand, represents the amount of Oxygen required by microorganisms present in water to decompose the organic matter present. When provided with sufficient Oxygen, the microorganisms become active and use that Oxygen to feed on the organic matter, thereby decomposing it. However, they are still present in the water; therefore, a solid separation system like a partially permeable membrane is required to filter them out.

COD, or Chemical Oxygen Demand, represents the amount of Oxygen required by the water for the decomposition of some chemical compounds. When provided with sufficient Oxygen, these compounds are oxidized, thereby reducing the amount of unwanted chemical compounds that may contaminate the process.

FOG, or Fats Oils and Grease, are the saturated and unsaturated hydrocarbons that exist as fats and oils. They add bad odor to the water and cause clogging when they are accumulated. In our process stream, the presence of FOG is brought about by the dairy compounds that are manufactured in the process plant, which is the source of our waste

water. They are essentially separated based on the difference between the densities of FOG compounds and water. Once formed as separate layer, they are removed from the water.

pH, or the power of Hydrogen, is actually a numeric scale which denotes the acidity and alkalinity of the water. While pH=7 is termed as neutral, pH below 7 is said to be acidic and pH greater than 7 is said to be alkaline. Acidic streams can cause corrosion of the process equipment, while alkaline streams result in fouling. Hence to bring the pH to a neutral value, acidic streams are treated with bases, and alkaline streams are treated with acids.

The purpose of our project is to treat these 5 parameters and to have the following specifications:

Feed Water		Desired Treated Water
BOD	80 ppm	Nil
COD	150 ppm	Nil
рН	6-9	7.5-8
FOG	5 ppm	Not specified
TDS	3500 ppm	20

Table 1: Objectives of the project

Chapter 2: Literature Review

2.1 Process Selection for pH

Neutralization is the only suitable process used for pH control. Essentially in a neutralization process, a continuously stirred tank reactor (CSTR) is present in which the process stream flows into. There are acid and base tanks above the reactor from which acid or base enter the reactor and are mixed with the process stream. In general, the reactors are designed so that there is sufficient residence time for the reaction to take place. Since the water formation reaction (neutralization) is an extremely fast reaction, it eliminates the need for a vessel. On the other hand, since there is also a need to equalize the incoming flow rate to a steady value, the equipment can be designed in the manner of an equalization tank since a CSTR is essentially a tank with an agitator. So, the equalization tank with an agitator was selected so as to provide the point of acid/base dosing and so that the incoming variable volumetric flow rate can be stabilized.

2.2 Process Selection for FOG

Fat, Oil and Grease (FOG) compounds essentially separated from water by one of two methods. One is by the use of a decanter and the other is by the use of a grease trap (interceptor). In general, decanters are used when the amount of oil is significantly large in the water-oil mixture. Additionally, to use a decanter, it is also necessary that the oil is of constant density, i.e. only one component of oil is present. On the other hand, a grease trap is used to remove the oils from water when they are in a sufficiently smaller amount and when the oil compounds are allowed to be a mixture of variable density compounds where some may be lighter than water while others may be heavier than water. The basis of separation in both the equipment is density difference. However, their designs are significantly different, allowing the grease trap to remove variable density oil compounds from water. Hence, the grease trap was selected since the water stream had the possibility of containing heavier FOG compounds as well as lighter ones as compared to water.

2.3 Process Selection for BOD and COD

There are a number of techniques that can be used to remove BOD and COD from water. Some of the most common ones are highlighted below:

- Treatment with Chemicals: In this method, the wastewater containing BOD and COD are treated with chemicals such as H_2O_2 (most common), ozone, etc. The compounds responsible for BOD and COD are oxidized and a further filtration down the line is carried out to remove the microorganisms present in water.
- Advanced Oxidation: In this technique, UV radiation is used to oxidize the BOD and COD compounds similarly to chemical treatment method. Again, further filtration down the line is possibly required to remove the microorganisms present.
- Conventional Activated Sludge Treatment with Clarifier: In this method, aeration is essentially used to oxidize the BOD and COD compounds. The aeration is provided with the help of blowers that transfer oxygen to the water. The water stream then moves to the clarifier, which is essentially a settling tank. The sludge-water mixture is provided with sufficient time for the sludge to settle (i.e. sedimentation occurs). The clear water is them removed from the top and filtered out.
- Membrane Bio-Reactor: This method is essentially a combination of activated sludge method and membrane filtration. For the activated sludge treatment part, the wastewater is supplied with oxygen using a blower to oxidize the BOD and COD compounds. However, this MBR technology eliminates the need of a clarifier by providing a membrane inside the aeration vessel to separate the sludge from the water and allowing it to move forward without the impurities present.

MBR was the technology that was chosen for this project as it was considered to be superior to the others. It could be used for large flow rates. It eliminates the need of clarifiers which are generally extremely large because of the high settling time needed for the liquid-solid separation. It is a technology that is being used more commonly in the world because of its high efficiency i.e. higher effluent quality. It also has a low sludge production rate and easy operation.

Once MBR technology was selected, there were various other parameters to be considered for this technology.

2.3.1 Selection of MBR System Configuration

There are two MBR system configurations namely Immersed (Submerged) MBR and Sidestream MBR.

In the Immersed MBR (IMBR) system, the membranes are placed in the bio-reactor vessels in which the aeration is provided. This is done to the waste water to reduce the efforts of cleaning and to reduce the need of an additional vessel. The flow is essentially dead end which results in high water recovery, i.e., permeate water is generally equal in amount to the feed water. This driving force in this system is created by the trans-membrane pressure which is essentially the drop in pressure across the membrane. There is a suction pump on the permeate side that helps in pulling the water from the MBR system. Hence, the pump is a centrifugal type where vacuum is created at the eye of the impeller so as to draw liquid from the MBR and which can pump the liquid to a higher pressure, if desired.

In the Side-stream MBR (SMBR) system, the membranes are placed in a pressure vessel separate from the one used for aeration of the waste water. The mixed liquor flows into the pressure vessel where cross flow is used for separation. This system also requires the employment of a high pressure pump. The driving force here is the pressure provided by the pump. The pressurized water flow through the membrane and the permeate flows out of the MBR and is pumped further ahead.

The system selected was IMBR because:

- unlike the SMBR, the IMBR doesn't require an additional pressure vessel reducing the required capital.
- the IMBR doesn't require a high pressure pump before the membrane separation, unlike the SMBR (which increase the operational costs)
- the IMBR employs dead end flow where recovery (permeate flow as a percentage of feed flow) is essentially 100% unlike the lower recovery of the cross flow of SMBR.

2.3.2 <u>Selection of Membrane Configuration</u>

Membrane configuration essentially refers to the shape or construction of membrane in a specific manner. There are 4 basic membrane configurations that can be employed:

- Hollow Fibre (HF): In this configuration, many fibrous membranes that are hollow from the inside are bundled together and attached to epoxy blocks at each end. The water flows in to the hollow part from the outside and is collected in the epoxy blocks from where it is moved forward.
- Spiral wound: In this configuration, membrane sheets are wound around a perforated tube through which the permeate flows. These membranes are normally used for Nano-Filtration and Reverse Osmosis applications.
- Plate and Frame (Flat Sheet): In this configuration, flat membrane sheets are clamped on to plates and separated by support material. The water flows through the membrane, i.e., right across it, and permeate is then collected using pipes starting from inside the membrane modules.
- Tubular: In this configuration, the membranes are in a tubular form and are contained in pressure vessels. So, they generally require that the mixed liquor be formed in one vessel where aeration is provided and be sent to these membranes in the pressure vessel, thereby creating a side-stream configuration.

The selected membrane configuration was the HF configuration because of their high packing density, high permeability, lower cost and use of dead end flow allowing greater separation efficiency.

2.3.3 Selection of Membrane Material

There are a number of materials which can be used for the membranes. A table comparing common used membrane materials is provided below:

Material	Advantages	Disadvantages
Polypropylene (PP)	Low costHigh pH range	 No chlorine tolerance Expensive cleaning chemicals required
Polyvinylidene fluoride (PVDF)	High chlorine toleranceReasonable costSimple cleaning chemicals	• Cannot sustain pH>10
Polyether Sulfone & Polysulfone (PES & PS)	High chlorine toleranceReasonable cost	Brittle material requires support
Polyacrylonitrile (PAN)	Low Cost	• Less chemically resistant than PVDF
Cellulose Acetate	Low Cost	Narrow pH rangeBiologically active

 Table 2: Advantages and Disadvantages of Materials Used For Membranes

Hence, PVDF was selected because of its reasonable cost, requirement of simple cleaning chemicals, chemical resistance and biological inactivity.

2.4 Process Selection for TDS

There are also a number of methods available for the removal of TDS from water. Alum can be employed to remove TDS chemically but it very low efficiency. Sand filters and carbon filters can be used but they are used for systems which don't have such high flow rates and such high amounts of TDS. The best option available was the use of Reverse Osmosis (RO) membranes which physically separates the TDS from the water and is applicable for la;6rge flow rates, high amounts of TDS and provides high salt rejection rates.

Chapter 3: Process Description

3.1 Process Flow Diagram (PFD)

Plant Capacity = $4000 \text{m}^3/\text{day}$

Figure 1: Process Flow Diagram

3.2 Process Description

3.2.1 Equalization Tank

The feed water initially flows into an equalization tank which serves 2 purposes:

- equalizing the variable feed flow rate to a steady flow rate value so as to prevent the oversizing of the downstream equipment
- act as a dosing point for the acid/base into the water stream to attain the desired pH level and to provide with sufficient mixing to ensure neutralization reaction completion

There is a pH sensor before the Equalization Tank which senses the inlet pH and sends that value to the controller. Additionally, a flow sensor record the inlet flow rate and sends that value to the controller as well. The controller, using the set value of pH=7.75, determines the difference in H⁺ moles and decides the amount of acid or base that needs to be added to the water stream. Consequently, the controller sends signals to the control valves to open proportionally to add the required amount of acid or base.

3.2.2 Grease Trap

The Grease Trap is used for the removal of Fats, Oils and Grease from the water stream. It does so by providing sufficient residence time to the water to allow the heavier FOG components such as skimmed milk to settle down and for the lighter FOG components such as whipped cream to form a layer on the top. Consequently, water comes out of the Grease Trap with significantly lower amount of FOG present in it. The FOG that is accumulated in the Grease Trap is in very low amounts. Hence, the Grease Trap is cleaned after 3 months to remove the FOG.

3.2.3 Membrane Bio-Reactor (MBR)

The MBR is a combination of a bioreactor and a separator. It serves to provide Oxygen to the water, which is given sufficient residence time for the oxidation reaction to take place. The microorganisms in the water use the provided Oxygen to break down the organic matter. Additionally, the Oxygen is used by other chemical compounds, which add to COD, to oxidize themselves. Hence, in this manner the COD and BOD are eliminated. Furthermore, the microorganisms that reduce the BOD are prevented from flowing ahead with the water stream with the help of ultrafiltration membrane which has a pore size small enough to prevent the microorganisms from flowing along with it.

3.2.4 High Pressure Pump

The High Pressure (HP) Pump provides the water with such an amount of pressure so that when the water enters the RO unit, it does not flow back due to the osmotic pressure generated because of the salts present across the membrane there.

3.2.5 RO Membrane

The RO Membrane unit is used to rid the water off of the dissolved salts so as to achieve the fresh water standards. When the water containing high amounts of TDS flows into the RO unit, it passes through membrane elements which have such small pores (smaller than nano size), that only water is allowed to pass through the membrane while the salts are retained. However, the process is not 100% efficient and some amount of salts pass along with the product stream. The product stream, essentially known as the permeate water, contains significantly low amounts of TDS, while the salts retained in the RO are simultaneously rejected from the RO unit along with reject water as not all of the water passes as the product water due to the cross flow in the RO unit.

Chapter 4: Material Balance

4.1 Equalization Tank

4.1.1 Formulae Used

- In + Generated = Out + Consumed
- $[H+] conc. (mol/L) = 10^{(-pH)}$
- mass = density x volume
- moles = molar concentration x volume
- NaOH Required $\left(\frac{g}{d}\right) = NaOH$ Required $\left(\frac{mol}{d}\right) * 40$
- H_2SO_4 Required $\left(\frac{g}{d}\right) = H2SO4$ Required $\left(\frac{mol}{d}\right) * 98$

4.1.2 Balance Data

When pH < 7.75			
Water Inflow (m ³ /d)	4000		
Inlet pH	6		
Inlet [H+] conc. (mol/L) (x10 ⁻⁷)	10.00		
Inlet H ⁺ Flow Rate (mol/d)	4.000		
Desired Outlet pH	7.75		
Desired Outlet [H+] conc. (mol/L) (x10 ⁻⁷)	0.178		
Desired H+ Outflow (mol/d)	0.071		
H ⁺ Consumption (mol/d)	3.929		
NaOH Required (mol/d)	3.929		
NaOH Required (g/d)	157.2		

Table 3 : Equalization Tank Material Balance when pH<7.75

When pH > 7.75			
Water Inflow (m ³ /d)	4000		
Inlet pH	9		
Inlet [H+] conc. (mol/L) (x10 ⁻⁹)	1.000		
Inlet H+ Flow Rate (mol/d)	0.004		
Desired Outlet pH	7.75		
Desired Outlet [H+] conc. (mol/L) (x10 ⁻⁹)	17.78		
Desired H+ Outflow (mol/d)	0.071		
H ⁺ Generation (mol/d)	0.067		
H ₂ SO ₄ Required (mol/d)	0.034		
H ₂ SO ₄ Required (g/d)	3.289		

 Table 4: Equalization Tank Material Balance when pH>7.75

The target pH is 7.75. When the pH is below that value, we need to add a strong base to increase it, whereas when the pH is above that value, we need to add a strong acid to reach the target value. Since inlet pH varies between 6 and 9, the amount of acid or base used would also vary. These variations in required acid and base with variation in inlet pH are shown ahead.

4.1.3 Variations in NaOH Addition With Inlet pH

Inlot nU	Desired Outlet	H+ Consumption	NaOH Required	NaOH Required
iniet pri	рН	(mol/d)	(mol/d)	(g/d)
6	7.75	3.929	3.929	157.2
6.1	7.75	3.106	3.106	124.2
6.2	7.75	2.453	2.453	98.11
6.3	7.75	1.934	1.934	77.34
6.4	7.75	1.521	1.521	60.85
6.5	7.75	1.194	1.194	47.75
6.6	7.75	0.934	0.934	37.34
6.7	7.75	0.727	0.727	29.08
6.8	7.75	0.563	0.563	22.51
6.9	7.75	0.432	0.432	17.30
7	7.75	0.329	0.329	13.15
7.1	7.75	0.247	0.247	9.864
7.2	7.75	0.181	0.181	7.250
7.3	7.75	0.129	0.129	5.174
7.4	7.75	0.088	0.088	3.524
7.5	7.75	0.055	0.055	2.214
7.6	7.75	0.029	0.029	1.174
7.7	7.75	0.009	0.009	0.347
7.74	7.75	0.002	0.002	0.066

Table 5: Variation in NaOH dosage according to inlet pH

4.1.4 Variations in H₂SO₄ Addition With Inlet pH

Inlet pH	Desired Outlet pH	H+ Generation (mol/d)	H2SO4 Required (mol/d)	H2SO4 Required (g/d)
9	7.75	0.067	0.034	3.289
8.9	7.75	0.066	0.033	3.239
8.8	7.75	0.065	0.032	3.175
8.7	7.75	0.063	0.032	3.094
8.6	7.75	0.061	0.031	2.993
8.5	7.75	0.058	0.029	2.866
8.4	7.75	0.055	0.028	2.705
8.3	7.75	0.051	0.026	2.503
8.2	7.75	0.046	0.023	2.249
8.1	7.75	0.039	0.020	1.929
8	7.75	0.031	0.016	1.525
7.9	7.75	0.021	0.010	1.018
7.8	7.75	0.008	0.004	0.379
7.76	7.75	0.002	0.001	0.079

Table 6: Variation in H_2SO_4 dosage according to inlet pH

4.2 Grease Trap

4.2.1 Formulae Used

- FOG Mass Inflow/Outlflow $\left(\frac{kg}{d}\right)$ = volumetric flowrate * concentration
- FOG Removed $\left(\frac{kg}{d}\right) = FOG$ Mass Inflow * Grease Trap Efficiency
- In = Out + Accumulated

4.2.2 Balance Data

Water Inflow (m ³ /d)	4000
FOG conc. (ppm or mg/L)	5
FOG Mass Inflow (kg/d)	20
Grease Trap Efficiency	0.85
FOG Removed (kg/d)	17
FOG Outflow (kg/d)	3
FOG Outflow (ppm or mg/L)	0.75

Table 7: Grease Trap Material Balance

4.3 Membrane Bio-Reactor

4.3.1 Formulae Used

- **BOD** In $\left(\frac{kg}{d}\right)$ = Water Inflow * BOD In (concentration)
- COD In $\left(\frac{kg}{d}\right)$ = Water Inflow * COD In (concentration)
- Oxygen To Be Supplied (kg/d) = BOD In + COD In
- Air To Be Supplied (kg/d) = Oxygen To Be Supplied / 0.23
- Volume of Air Required $\left(\frac{m3}{d}\right) = \frac{Air To Be Supplied (kg/d)}{Density of Air (kg/m3)}$
- In = Out + Consumed

4.3.2 Balance Data

Water Inflow (m ³ /d)	4000
BOD In (ppm or mg/L)	80
BOD In (kg/d)	320
COD In (ppm or mg/L)	150
COD In (kg/d)	600
Oxygen To Be Supplied (kg/d)	920
Air To Be Supplied (kg/d)	4000
Density of Air (kg/m3)	1.184
Volume of Air Required (m ³ /d)	3378

Table 8: MBR Material Balance

4.4 RO Membrane

4.4.1 Formulae Used

- TDS Inflow (kg/d) = Water Inflow * TDS In (concentration)
- TDS in Rejects $\left(\frac{kg}{d}\right) = TDS$ Inflow * Salt Rejection (%)
- TDS in Permeate (kg/d) = TDS Inflow TDS in Rejects
- Recovery = $\frac{Permeate Water Flow}{Feed Water Inflow}$
- RO Reject Water $\left(\frac{m_3}{d}\right)$ = Water Inflow Permeate Water Flow

4.4.2 Balance Data

Water Inflow (m ³ /d)	4000
TDS In (ppm or mg/L)	3500
TDS Inflow (kg/d)	14000
Salt Rejection (%)	99.5
TDS in Permeate (kg/d)	70
TDS in Rejects (kg/d)	13930
RO Permeate Water (m ³ /d)	3760
RO Reject Water (m ³ /d)	240
TDS in Permeate (ppm)	18.62
TDS in Reject (ppm)	58041.66

Table 9: RO Material Balance

4.5 Summarized Material Balance

Equipment	Parameter	In	Out	Removed	Added
Equalization Tank	H+ moles (when ph=6) (mol/d)	4.000	0.071	3.929	-
	H+ moles (when ph=9) (mol/d)	0.004	0.071	-	0.067
Grease Trap	FOG (kg/d)	20	3	17	-
MBR	BOD (kg/d)	320	0	320	-
	COD (kg/d)	600	0	600	-
RO Unit	TDS (kg/d)	14000	70	13930	-

Table 10: Summary of Material Balance

Chapter 5: Energy Balance

$$m_{in}\left(H_{in} + gz_{in} + \frac{v_{in}^2}{2}\right) + \dot{Q} + W = m_{out}\left(H_{out} + gz_{out} + \frac{v_{out}^2}{2}\right)$$

5.1 Equalization Tank

5.1.1 Formulae Used

- Mass = Density * Volume
- Energy In = Mass Inflow * Enthalpy
- Energy of Reaction = Moles Required * Enthalpy of reaction
- Shaft Work $(kW) = Power ratio \left(converted to \frac{kJ}{m^3}\right) * Volumetric Flow Rate$

5.1.2 Balance Data

Water Density (kg/m3)	999.71
Water Inflow (m ³ /d)	4000
Mass Inflow (kg/d) (x10 ⁴)	399.9
Inlet Temperature (°C)	25
Enthalpy (J/kg)	104.92
Energy In (kW)	4.856
Mass Outflow (kg/d) (x10 ⁴)	399.9
Enthalpy of Reaction (kJ/mol)	57.62
Energy of Reaction (kW)	0.002620
Power Ratio (hp/1000gal)	0.75
Shaft Work (kW)	0.006841
Energy Outflow (kW)	4.865
Enthalpy Out (J/kg)	105.12
Temperature Out (°C)	~25

Table 11: Equalization Tank Energy Balance

5.2 Grease Trap

5.2.1 Balance Data

Energy In (kW)	4.865
Energy Outflow (kW)	4.865

 Table 12: Grease Trap Energy Balance

5.3 <u>Membrane Bio-Reactor</u>

5.3.1 Balance Data

Energy In From GT (kW)	4.865
Energy Out (kW)	4.865

Table 13: MBR Energy Balance

5.4 <u>High Pressure Pump</u>

5.4.1 Formula Used

Energy Required = Water Inflow $*(P_{out} - P_{in}) * (1 - \beta T)/(Pump Efficiency)$

5.4.2 Balance Data

Pressure In (kPa)	81.30
Pressure Out (kPa)	1500
Water Inflow (m ³ /d)	4000
Pump Efficiency	0.7
Expansivity Coefficient (1/K)	0.000248
Temperature (°C)	25
Energy Required (kW)	86.89
Energy Inflow From MBR (kW)	4.865
Energy Outflow (kW)	91.76

Table 14: HP Pump Energy Balance

5.5 <u>RO Membrane</u>

5.5.1 Formula Used

- Energy In Permeate $= \frac{Permeate Flow}{Feed Flow} \times Energy In Feed$
- Energy In Rejects = Energy In Feed Energy In Permeate

5.5.2 Balance Data

Energy In From HP Pump (kW)	91.76
Water Flow of Permeate (m ³ /d)	3760
Water Flow of Reject (m ³ /d)	240
Energy Out In Permeate (kW)	86.25
Energy Out In Reject (kW)	5.506

Table 15: RO Energy Balance

5.6 Summarized Energy Balance

Equipment	Inflow (kW)	Added (kW)	Generated (kW)	Outflow (kW)
Equalization Tank	4.856	6.84E-03	2.620E-03	4.865
Grease Trap	4.865	-	-	4.865
MBR	4.865	-	-	4.865
HP Pump	4.865	86.89	-	91.76
RO Unit	91.76	-5.506		86.25

Table 16: Summary of Energy Balance

Chapter 6: EQUIPMENT DESIGN

6.1 Equalization Tank

6.1.1 <u>Volume</u>

Time (hours)	Flow Rate (m ³ /h)	Total Volume (m ³)	Cumulative Flow (m ³)
1	167	167	167
2	130	130	297
3	100	100	397
4	135	135	532
5	160	160	692
6	175	175	867
7	180	180	1047
8	190	190	1237
9	200	200	1437
10	200	200	1637
11	200	200	1837
12	195	195	2032
13	190	190	2222
14	185	185	2407
15	180	180	2587
16	170	170	2757
17	155	155	2912
18	145	145	3057
19	140	140	3197
20	150	150	3347
21	160	160	3507
22	160	160	3667
23	167	167	3834
24	166	166	4000

Table 17: Hourly flow data of feed

From the hydrograph below, we can determine that the capacity of the equalization tank. The total capacity of the equalization tank is the sum of the vertical distances from the average flow rate line to the parallel tangents which cut the curve above and below the average flow rate line. Hence,

Capacity = A + B $\simeq 200 \text{ m}^3$

Figure 2: Hydrograph of Equalization Tank
6.1.2 Diameter and Height

 $D_t: H_t = 1: 2 \longrightarrow H_t = 2D_t$

 $V = \frac{\pi}{4} D_t^2 H_t \quad \longrightarrow \quad V = \frac{\pi}{2} D_t^3$

$$200 = \frac{\pi}{2} D_t^3$$

$$D_t = 5.03m$$

$$H_t = 10.06m$$

6.1.3 Impellers

 $D_i = 0.3D_t = 0.3 \ge 5.03 = 1.51m$

Impeller Spacing = $D_i = 1.51m$

Height of bottom-most impeller = $D_i = 1.51m$

Average height of liquid in the tank,

$$H_{\rm L} = \frac{166.7}{200} x \ 10.06 = \frac{8.385 \,{\rm m}}{10.06}$$

Minimum no. of impellers,

$$n_{\min} = \frac{H_L - 2D_i}{2D_i} = \frac{8.385 - 2(1.51)}{2(1.51)} = \frac{1.78}{1.78}$$

Maximum no. of impellers,

$$n_{\max} = \frac{H_L - D_i}{D_i} = \frac{8.385 - 1.51}{1.51} = \frac{4.55}{1.51}$$

Number of impellers = $\underline{3}$

Number of impeller blades = **<u>6</u>** (standard turbine blades)

Typical tip speed of impeller, v = 5m/s

 $v = \pi N D_i$ 5 = $\pi N (1.51)$ N = 1.054 rps = <u>63.2 rpm</u>

6.1.4 Baffles

Number of baffles = $\underline{4}$

Baffle width, J = $\frac{D_t}{12}$

$$J = \frac{5.03}{12} = 0.42m$$

6.2 Grease Trap

6.2.1 <u>Volume</u>

Residence time= 30 min

Volume = volumetric flow rate * time = 4000m3/day * 1day/24h * 1h/60min * 30min = <u>83.3m³</u>

Nominal Size is given by

$$NS = QS * ft * fd * fr$$

Where,

Q_s= flow rate in litre/sec

f_t= temperature co-efficient

f_d= density co-efficient

 f_r = detergent and soap co-efficient

<u>Temp</u>	<u>f</u> t	<u>Density</u>	<u>fa</u>	<u>Detergent</u> <u>use</u>	<u>f</u> r
<60ºC	1.0	≤0.94 g/cm ³	1.0	Never	1.0
≥60°C	1.3	>0.94 g/cm ³	1.5	always	1.3
				In special case	≥1.5

Table 18: Factors affecting Grease Trap size

Hence,

$$NS = 4000m3/day * 1000L/m3 * 1day/24hrs * 1hr/3600s * 1.0 * 1.5 * 1.0$$

= <u>69.44 L/s</u>

6.2.2 Surface Area

Minimum Grease Trap Surface Area, A_{min}= 0.25xNS

where 0.25 also accounts for conversion of units

 $A_{\min} = 0.25*69.44$

A_{min} = <u>17.36 m²</u>

6.3 Membrane Bio-Reactor

6.3.1 <u>Volume</u>

Hydraulic Residence Time (HRT) = 8h

Volume = *Volumetric Flow rate* * *Hydraullic Residence Time (HRT)*

= 4000m3/day * 1day/24h * 8h

= <u>1333.3m³</u>

6.3.2 Diameter and Height

$$D_{t}: H_{t} = 1:2 \longrightarrow H_{t} = 2D_{t}$$

$$V = \frac{\pi}{4}D_{t}^{2}H_{t} \longrightarrow V = \frac{\pi}{2}D_{t}^{3}$$

$$1333.3 = \frac{\pi}{2}D_{t}^{3}$$

$$D_{t} = \underline{9.47m}$$

$$H_{t} = \underline{18.94m}$$

6.3.3 <u>Membrane Specifications</u>

Pore size = $0.03 \mu m$

Configuration = Hollow Fiber

Material = PVDF (Polyvinylidene Flouride)

Element Type = DOW IntegraFlux[™] Module SFP-2880XP

Permeability of Hollow Fiber PVDF = 233L/m²hbar

Trans-membrane Pressure (TMP) = 0.2bar

 $Flux = Permeability \ x \ TMP$ $= 233 \ L/m^2 h bar \ x \ 0.2 bar$ $= 46.6 L/m^2 h$

Total Required Membrane Area of All Membrane Modules

 $Area = \frac{Volumetric \ Flow \ Rate}{Flux}$

$$=\frac{\frac{4000m^3}{d}x\frac{1000L}{m^3}x\frac{1d}{24h}}{46.6L/m^2h}$$

= <u>3576.5m²</u>

Number of membrane modules for the selected membrane module is as follows

 $Number of modules = \frac{Total Required Area}{Area of one module}$

$$=\frac{3576.5}{77}=46.44$$

= <u>47</u>

6.4 High Pressure Pump

6.4.1 Differential Head

Suction Pressure = 81.30 kPa

Discharge Pressure = 1500 kPa (to overcome the osmotic pressure of the RO membrane)

Differential Head, H, is given by

$$H = \Delta P * \frac{1000}{\rho g}$$
$$= (1500 - 81.30) * \frac{1000}{1000*9.8}$$

=<u>144.8m</u>

6.4.2 <u>NPSH available</u>

NPSH available = (*Psuc* – *Pvap*) *
$$\frac{1000}{\rho g}$$

$$= (81.30 - 3.17) * \frac{1000}{1000 * 9.8}$$

= <u>7.97m</u>

6.4.3 Impeller Diameter and Efficiency

Figure 3: Performance curve of pump

Volumetric Flow Rate = 4000
$$\frac{m^3}{day} \ge 0.18 \frac{gpm}{1 m^3/day}$$

= 733.8 gpm

Given the flow rate of 733.8 gpm and 144.8m of differential pressure head, the suitable impeller diameter would be **<u>12in</u>** and efficiency would be around <u>77%</u>.

6.4.4 Hydraulic Power

 $Power = \frac{Head \ x \ Vol. \ Flow rate \ x \ Density \ x \ gravitational \ acceleration}{efficiency}$

$$Power = \frac{144.8m \ x \ 4000 \ \frac{m^3}{day} x \ \frac{1 \ day}{86400s} x 1000 \ \frac{kg}{m^3} x \ 9.8 \frac{m}{s^2}}{0.77}$$

Power = 85319.86W

Power = **<u>85</u>.32***kW*

6.5 <u>Reverse Osmosis Membrane</u>

6.5.1 Feed and Permeate Specification

Feed Source= Brackish water

Feed flow rate= 4000m³/day= 734 gal/min

Feed TDS concentration = 3500ppm

Permeate flow rate = $3760m^3/day$

Permeate TDS = 18.62 ppm

$$Recovery = \frac{Permeate \ Flow \ Rate}{Feed \ Flow \ Rate} \ x \ 100$$
$$= \frac{3760}{4000} \ x \ 100$$
$$= 94\%$$

6.5.2 <u>Selecting Flow Configurations and No. of Passes</u>

Flow configuration = plug flow (standard - with spiral wound membrane)

No. of passes = 1 (standard)

Membrane Type	Feed TDS (ppm)	Permeate Quality (ppm)
TW	<5000	<50
XLE, LE	<1000	<50
BW, FR	<5000	<50
SW	3000 - 15000	<150
SWHR, SWHR LE	10000 - 50000	Varies (<500)
NF	<1000	<150

6.5.3 <u>Selecting Membrane Element Type</u>

Table 19: D	ifferent types	of membrane	module	elements

Membrane element= BW30-400/34i (used for brackish water with less than 5000 ppm in feed) with an active area of $34m^2$.

6.5.4 Selecting Average Membrane Flux

Flux=37L/m²h (According to feed source)

6.5.5 <u>Number of Elements Needed</u>

$$Ne = \frac{Qp}{F \ x \ A}$$

$$=\frac{\frac{3760m^3}{day}x1000\frac{L}{m^3}x\frac{1\,day}{24h}}{37\frac{L}{m^2h}x\,34\,m^2}$$

6.5.6 Number of Pressure Vessels Needed

 $Nv = \frac{Ne}{number of \ elements \ per \ vessel}$

=125/8

=<u>16</u>

A vessel can contain up to 8 elements.

6.5.7 <u>Number of Stages</u>

System Recovery (%)	Number of Serial Element Positions	Number of Stages (6-elements vessels)
40 - 60	6	1
70 - 80	12	2
85 – 90	18	3

Table 20: Data showing relation between system recovery and number of stages

Since our system has 94% recovery and 8 elements in a vessel, we can reasonably assume that we can select the number of stages as 3.

6.5.8 Staging Ratio

$$R = \left[\frac{1}{1-Y}\right]^{1/n}$$

Where

R= staging ratio

Y=recovery in fractions

N= no. of stages

$$R = \left[\frac{1}{1 - 0.94}\right]^{1/3} = \underline{2.55}$$

Nv(1)= no. of vessels in first stage

Nv(2)= no. of vessesls in second stage

Nv(3)=no. of vessels in third stage

$$Nv(1) = \frac{Nv}{1 + R^{-1} + R^{-2}} = 10$$
$$Nv(2) = \frac{Nv(1)}{R} = 4$$

$$Nv(3) = Nv - Nv(1) - Nv(2) = 16 - 10 - 4 = 2$$

Ratio of Nv(1) : Nv(2) : Nv(3) = 5 : 2 : 1

6.5.9 <u>Pressure Vessels</u>

Diameter of each element, $D_e = 7.9$ inches

Diameter of vessel = D_e + allowance = 7.9 + 1 = 8.9 inches

Length of each element, $L_e = 40.5$ inches

Length of vessel = No. of elements x L_e + allowance = 8 x 40.5 + 1 = 325 inches

$$Volume = \frac{\pi}{4}D^{2}L$$
$$= \frac{\pi}{4}8.9^{2} \times 325$$
$$= 20218.70 \text{ in}^{3}$$
$$= 0.331 \text{m}^{3}$$

6.6 Storage Tanks

6.6.1 NaOH Tank

Maximum moles of NaOH that can be used = 3.929 moles/day

Concentration of NaOH = 0.5 M (considering the hazards of using higher concentration, 0.5M is suitable value to be used industrially)

Storage Time = 2 weeks

Hence,

$$Capacity = \frac{3.929 \frac{mol}{day} \times 2 \text{ weeks } \times \frac{7 \text{ days}}{1 \text{ week}}}{0.5 \frac{mol}{L}}$$

= 110 L

6.6.2 <u>H₂SO₄ Tank</u>

Maximum moles of H_2SO_4 that can be used = 0.034 moles/day

Concentration of $H_2SO_4 = 0.01$ M (as H_2SO_4 is significantly more hazardous, 0.01M is a more suitable value to be used industrially)

Storage Time = 2 weeks

Hence,

$$Capacity = \frac{0.034 \frac{mol}{day} \times 2 \text{ weeks } x \frac{7 \text{ days}}{1 \text{ week}}}{0.01 \frac{mol}{L}}$$

= 47.6 L

= <u>0.0476 m³</u>

Chapter 7: Costing

Equipment	Size	Size	Con	stant	Index	Comment
	unit, S	range	C.£	C,\$	n	
Agitators Propeller Turbine	driver power, kW	5-75	1200 1800	1900 3000	0.5 0.5	
Boilers Packaged up to 10 bar	kg/h steam	$(5-50) \times 10^3$	70	120	0.8	oil or gas fired
10 to 60 bar			60	100	0.8	
Centrifuges Horizontal basket Vertical basket	dia., m	0.5-1.0	35,000 35,000	58,000 58,000	1.3 1.0	carbon steel × 1.7 for ss
Compressors Centrifugal	driver	20-500	1160	1920	0.8	electric,
Reciprocating	power, kw		1600	2700	0.8	max. press, 50 bar
Conveyors Belt 0.5 m wide 1.0 m wide	length, m	2-40	1200 1800	1900 2900	0.75	
Crushers Cone Pulverisers	t/h kg/h	20-200	2300	3800 3400	0.85	
Dryers Rotary Pan	area, m ²	5-30 2-10	21,000 4700	35,000	0.45	direct
Evaporators Vertical tube Falling film	area, m ²	10-100	12,000	20,000	0.53	carbon steel
Filters Plate and frame Vacuum drum	area, m ²	5-50 1-10	5400 21,000	8800 34,000	0.6 0.6	cast iron carbon steel
Furnaces Process Cylindrical Box	heat abs, kW	$10^{3} - 10^{4}$ $10^{3} - 10^{5}$	330 340	540 560	0.77 0.77	carbon steel ×2.0 ss
Reactors Jacketed, agitated	capacity, m ³	3-30	9300 18,500	15,000 31,000	0.40 0.45	carbon steel glass lined
Tanks						
Process vertical horizontal	capacity, m ³	1-50 10-100	1450 1750	2400 2900	0.6 0.6	atmos, press, carbon steel
floating roof cone roof		50-8000 50-8000	2500 1400	4350 2300	0.55 0.55	×2 for stainless

Table 21: Base costs, size units and cost indices for different equipments

Diameter, m	Material factors		Pressure factors	
1-0.5 3-2.0 2-1.0 4-3.0	C.S. S.S. Monel S.S. clad Monel clad	× 1.0 × 2.0 × 3.4 × 1.5 × 2.1	1-5 bar 5-10 10-20 20-30 30-40 40-50	× 1.0 × 1.1 × 1.2 × 1.4 × 1.6 × 1.8
			50-60	× 2.2
Te	emperature up	to 300°C		

 $\begin{array}{l} \mbox{Horizontal pressure vessels.} \\ \mbox{Purchase cost} = (bare cost from figure) \times \mbox{Material factor} \times \mbox{Pressure factor} \end{array}$

7.1 Equalization Tank

7.1.1 <u>Tank</u>

Capacity of tank = 200 m³ $Cost = CS^n$ = 2400 × (200)^{0.6} = \$ 57653.97

7.1.2 Agitator

Agitator Power = 0.006841 kW

 $Cost = CS^n$

 $= 3000 \times (0.006841)^{0.5}$

= \$ 248.13

7.1.3 Total Cost

Total Cost = Cost of Tank + Cost of Agitator

= <u>\$ 57902.10</u>

7.2 Grease Trap

Capacity of tank = 83.3 m³ = 22005.5 gal

$$Cost = C_1 (S_2 / S_1)^n$$

$$= 2000 \ x \ (\frac{22005.5}{1000})^{0.6}$$

7.3 <u>Membrane Bio-Reactor</u>

7.3.1 <u>Vessel</u>

Capacity of tank = 1333.3 m^3

 $Cost = CS^n$

$$= 2400 \times (1333.3)^{0.6}$$

7.3.2 Membrane

Area =
$$3576.5 \text{ m}^2$$

Cost = Cost per unit area x Area

$$= 25 \times 3576.5$$

= \$89412.5

7.3.3 Total Cost

Total Cost = Cost of Vessel + Cost of Membrane

= \$ 179956.68 + \$ 89412.5

= <u>\$ 269369.18</u>

7.4 High Pressure Pump

Figure 4: Pump capacity vs. purchased cost

Volumetric Flow Rate = 734 gpm

Cost from the Graph = **<u>\$ 12000</u>**

7.5 RO Membrane

7.5.1 Pressure Vessels

Capacity of Vessel = $0.331 m^3$ $Cost = xCS^n$ $= 16 \times 2900 \times (0.331)^{0.6}$ $= 16×1493.81 = \$23900.93

Accounting for the pressure factor, the cost of RO vessel will be as follows:

Purchase Cost = Bare cost x Pressure factor

= \$23900.93 x 1.2

= 28681.12

7.5.2 Membrane Elements

No. of elements = $16 \times 8 = 128$

Cost = Cost per unit element x No. of elements

= 545 x 128

= \$ 69760

7.5.3 Total Cost

Total Cost = Cost of Pressure Vessels + Cost of Membrane Elements

= \$ 28681.17 + \$ 69760

= <u>\$ 98441.17</u>

7.6 Storage Tanks

7.6.1 <u>NaOH Tank</u>

Capacity of tank = 0.11 m^3

 $Cost = CS^n$

 $= 2400 \times (0.11)^{0.6}$

= \$ 638.33

7.6.2 <u>H₂SO₄ Tank</u>

Capacity of tank = 0.0476 m^3

 $Cost = CS^n$

$$= 2400 \times (0.0476)^{0.6}$$

7.6.3 Total Cost

Total Cost = Cost of Tank + Cost of Agitator

$$=$$
 \$638.33 + \$386.17

= <u>\$ 1024.50</u>

7.7 Purchased Cost of Equipment (PCE)

Total purchase cost of major equipment items is as follows:

Equipment	Cost (\$)
Equalization Tank	57902.10
Grease Trap	12780.53
Membrane Bio-Reactor	269369.18
High Pressure Pump	12000
RO Unit	98441.17
Storage Tanks	1024.50
Total PCE	451517.48

Table 22: Summary & total of purchased equipment cost

7.8 Physical Plant Cost (PPC)

Factor	Value
<i>f</i> ¹ Equipment Erection	0.45
<i>f</i> ² Piping	0.45
f_3 Instrumentation	0.15
<i>f</i> ₄ Electrical	0.10
<i>f</i> ⁵ Buildings	0.10
<i>f</i> ₆ Utilities	0.45
<i>f</i> ⁷ Storages	0.20
<i>f</i> ⁸ Site Development	0.05
f9 Ancillary Buildings	0.20
Total	2.15

Table 23: Lang's factors to calculate PPC for system containing solids and liquids

 $PPC = PCE \ x \ (1 + f_1 + \dots + f_9)$

= \$451517.48 x (1 + 2.15)

7.9 Fixed Capital

For systems with both liquid and solids, the following factors are used to determine the fixed capital.

Factor	Value
f_{10} Designing and Engineering	0.25
f_{11} Contractor's Fee	0.05
<i>f</i> ₁₂ Contingency	0.10
Total	0.40

Table 24: Lang's factors to calculate Fixed Capital for system containing solids and liquids

Fixed Capital = PPC
$$x (1 + f_{10} + f_{11} + f_{12})$$

= \$ 1422280.06 *x* (1 + 0.4)

= <u>\$ 1991192.08</u>

7.10 Working Capital

Working capital will be taken as 5% of Fixed Capital as our plant has a single product and a rather simple process.

Working Capital = 5% x Fixed Capital

$$= 5\% x \$ 1991192.08$$

7.11<u>Total Investment</u>

Total Investment = Fixed Capital + Working Capital

= \$ 1991192.08 + \$ 99559.60

= <u>\$ 2090751.68</u>

7.12 Operating Costs

Operating Time (Allowing for plant attainment) = 95% x 365

= 347 days/y

=8328 h/y

7.12.1 Fixed Costs

Type of Cost	Method of Calculation	Cost (\$)
Maintenance	5% of Fixed Capital	99559.60
Operating Labor	Manning Estimate	100000
Laboratory Costs	20% of Operating Labor	20000
Supervision	20% of Operating Labor	20000
Plant Overheads	50% of Operating Labor	50000
Capital Charges	10% of Fixed Capital	199119.21

Insurance	1% of Fixed Capital	19911.92
Local Taxes	2% of Fixed Capital	39823.84
Royalties	1% of Fixed Capital	19911.92
Total		568326.49

Table 25: Fixed Operating Costs

7.12.2 Variable Costs

Type of Cost	Method of Calculation	Cost (\$)
Raw Materials	NaOH = 0.1572kg/d x \$2.6/kg x347d/y H ₂ SO ₄ = 0.003289kg/d x \$0.065/kg x 347d/y	141.83
Miscellaneous Materials	10% of Maintenance Costs	9955.96
Utilities	\$0.015/MJ x Energy/year	38372.50
Total		48470.29

Table 26: Variable Operating Costs

7.12.3 Annual Operating Cost

Annual Operating Cost = Fixed Costs + Variable Costs

= \$ 568326.49 + \$ 48470.29

= <u>\$ 616796.78</u>

Chapter 8: HAZOP Analysis

A HAZOP study identifies hazards and operability problems. The concept involves investigating how the plant might deviate from the design intent. If in the process of identifying problems during a HAZOP study, a solution becomes apparent, it is recorded as part of the HAZOP result; however, care must be taken to avoid trying to find solutions which are not so apparent, because the prime objective for the HAZOP is problem identification.

Although the HAZOP study was developed to supplement experience based practices when a new design or technology is involved, its use has expanded to almost all phases of a plant's life. HAZOP is based on the principle that several experts with different backgrounds can interact and identify more problems when working together than when working separately and combining their results.

8.1 <u>Terminology</u>

The following terminology is considered when performing a HAZOP analysis.

Term	Meaning
 Study Nodes 	The area that is limited by the parameters in consideration.
 Operating Steps 	The procedure being analyzed by the team performing HAZOP.
o Intention	The routine operations that are expected of the study node.
 Process Parameters 	Characteristics used to define the process and which may be chemical or physical.
o Deviation	Difference in operations from the desired intention.
o Cause	The possible reasons behind the deviations.
o Consequences	The results of the changes in the system.
o Safeguards	Engineered systems to ensure that the system follows the intention.
o Actions	Requirements rising from the deviations.

Table 27: Meanings of different terminologies used in HAZOP Analysis

8.2 Equalization Tank

Deviation	Causes	Consequences	Safeguards	Recommendations
High Flow Rate	Tanker man sets the flowrate too high or	 Potential to over pressurize the tank during 	Tanker man monitoring to detect the problem	 Verify that the relief valves on the tank are sized.
	might be failure of control system.	 filling. It could cause injury to operator in area. 	• There is a reductant level control system.	
Low Flow Rate	 Pump operator closes a valve at wrong time. Valve fails closed. 	 Leads to pump impeller, leak aging and vibration. 	 Level control valves and level control system must be inspected regularly. 	Consider installing flow rate indicators in the filling lines.

Table 28: Factors involved in HAZOP Analysis of Equalization Tank

8.3 Grease Trap

Deviation	Causes	Consequences	Recommendations
Less flow	 Leaking flange of valved stub not blanked and leaking. 	Material loss	 Install high level of alarm on LIC and check sizing of relief opposite liquid overfilling.
Less temperature	• Winter conditions	• Water sump and drain line freeze up.	• Lag water sump down to drain system and drain line downstream.
High concentration water in stream	 High water level in immediate storage tank. 	• Water sump fills up more quickly.	• Install high interface level alarm on sump.
More flow	LCV fails open	Tank overfills	 Install high level alarm on LIC.
More temperature	 High intermediate storage tank. 	High pressure in tank.	Install adequate warning of high temperature.

Table 29: Factors involved in HAZOP Analysis of Grease Trap

8.4 Membrane Bio-Reactor

Deviation	Causes	Consequences	Recommendations		
Less flow	 Feed line or valves blocked. Aging of the membrane. Valve on retentate side open. 	 No efficient separation. Overpressure. 	 Check of valves and lines Membrane substitution. 		
More flow	 Membrane failure. Feed flowrate and temperature increase. 	 Purity loss. Overpressure. No separation Recovery increases 	 Fit a relief valve. Maintenance of instrumentations. Check of valves and lines. 		
Low temperature	 Steam feed valve in heat exchanger partially closed. Heat exchanger control fails. 	 Condensate film on membrane surface. No efficient separation. 	 Fit a temperature alarm. Membrane cleaning. 		
More temperature	 Steam feed valve in heat exchanger sticks open. Heat exchanger control fails. 	 Membrane can be damaged. No efficient separation. Higher permeate flow rate. 	 Fit and control a temperature alarm. Maintenance of instrumentations. 		

Table 30: Factors involved in HAZOP Analysis of MBR

8.5 <u>High Pressure Pump</u>

Deviation	Causes	Consequences	Recommendations
Pressure	 Increase pressure due to overflow Decrease in pressure due to restricted flow 	 Pump damage. Recirculation. More pump power. Cavitation in pump 	Flow regulation and control.
Temperature	High or low temperature	• Increased risk of cavitation.	 Temperature regulation and control of columns. Flow regulation and control of tanks
Flow	• More or less flow	 Reduced pump efficiency. Chances of cavitation. Chances of recirculation. 	• Flow regulation and transmittance

Table 31: Factors involved in HAZOP Analysis of HP Pump

8.6 <u>RO Membrane</u>

Deviation	Causes	Consequences	Recommendations
No pressure	 Blocked inlet and outlet of the pump Pump Failure Fouling of check valves Manual valve failure 	• Line Trip, and no produce permeate water	 Install switch on manual valve as safety lock Install auto vent on line
Low pressure	 Decrease in level of Raw Water Vessel regard to inlet suction Strainer blockage Pump Corrosion 	• Line Trip, and no produce permeate water	 Controlling of manual valves Installing moisture sensor near sand filter pump
Low flow	 No regular manual valve in outlet of Raw Water Pump, Concentrate of Reverse Osmosis, High Pressure Pump Failure in pump suction Check valve blockage 	• Line Trip, and no produce permeate water	 Controlling of manual valves Regular backwash of sand filter. Periodical inspection & maintenance

High flow	 No regularize manual valve. Mechanical failure in flange. Start accidental pump 	• Line Trip, and no produce permeate water and cracking pipe	• Programming on PLC that no start additional pump when one pump is running
Service failures	 Acid Pump corrosion. Mechanical failure in Acid instrument 	 No unloading of Acid, diffusion of Acid on place 	Maintenance & periodical repairing

 Table 32: Factors involved in HAZOP Analysis of RO

Chapter 9: Simulation

9.1 <u>Home</u>

Figure 5: Home screen of DOW WAVE software

We have performed our simulation using the DOW WAVE software. As it can be seen we have selected the RO system.

We have specified our Feed Water Flow Rate as $4000 \text{ m}^3/\text{day}$.

The Product (Permeate) Water Flow Rate is 3760 m³/day indicating the 94% recovery.

9.2 Feed Water

Col	figuration	Use	r Settings	Feed Setup	Report	Help		27	WAVE Answer Center	Quick He
				did Solutes		Adjust Solute				
Save To Vister	Library	Adjust phi	Add Soft	m AAC Chineste	Adjust Calane	Adust Arises	Aduat Al Ione	3900	AL NeCS	
		in the second	25755					C Description		
Open Water Li	brany		Add Calo	WITH I	ward and co	AND ADD .				
Water Litrar	w			Charge Ba	lance Adjustment			Quick En	69 C	
torne Femil Visit	er Surrena	ery Report								
Stream Definition	-		eed Wat	ter - Stream	1					
Stream 1	185,85	4	Feed Faramet	10.0	Seld Cere	#11 ·				
		- 11	Water Type					Termente		
Parts at	UNA(S)		Mult Water		w.	T. etc.		1 22.0	140 31.4 Met	28.0
			Vister Sub-t	-		1010	and and		Jel	
			Mar DON N	F. 101 - 3.8	Total Su	spended Solids (1	(82) (82)	mpl. meaning	Dank.	tar cruzer.
						5	DLui 8.00	10 2.7	5	
					2000	- T				
					Organic O	uriari		Addressel	sedwater Information	
						Organics (7	OC) 8.00	ma(1.		
Carkang					Ankons				Neutrals	
Spendard	ing/L	pages.	cxco,	Paris II.	Syredual	mpli	Japan CaCID.	Typens	Syndiat	mark
NPK.	0.00	0	40	0.00	100,	0.00	8.00	8.00	501	8.00
K	0.80		40	0.08	HCO ₆	0.00	8.00	8.00	8	8.00
144	1.376.81	2/8	17.01	59.09	HD3	0.00	8.00	0.00	CO,	0.00
Mg .	0.50		40	0.00	0	2,173,19	3,997.81	19.89		
6	0.00	-0	AD	0.00	50.	0.00	0.00	0.00		
84	0.00	0	40	0.08	100	3.00				
	1 1 1 1 1 1 1 1			Cash and		12122021		41420	****	12.22
and a second	1.176.81			29.89	Tetal Antenu	T1371à		39.89	Total Bestrale:	0.09
Tetal Cational					Charge Balanc	a -0.000827 m	en/L	Entire	ated Cumberlivity 6	178.48 x 31mm
Tetal Cations	d Bulutes 3	1,800.01 m								
Tetal Cations Total Dissolve	d Barlathen 1	1,800.01 m	10							
Tetal Cations	d Bolules I	1,800.01 m								
Tetal Cations Tetal Dissolve	d Bolulus I	1,800.01 m	3							Activ

Figure 6: Details of Feed Water in DOW WAVE software

Water Type is selected as Well Water as it contains TDS in the range from 1500 – 5000ppm and our water has 3500ppm TDS.

We have set our 3500ppm for NaCl as we don't actually have the specification of the salts in the water and as NaCl is a common salt found in the water of food industry, which is the category for Engro Foods.

Water Sub-type is selected as "With DOW UF, SDI<2.5" as our MBR has a UF Hollow fiber membrane provided by DOW.

pH is selected as 7.75 which is that of our water.
Temperature is selected as 25°C with variation of 3°C.

· (Configuration Us	ser Settings	Feed	Setup Report	Help		Ŷ	WAVE Answer Center	Quick He
Flor	w: ◯ gpm ◯ m³/h ◯ gpd ● m³/d	Add Case	Add	Chemicals/Degas	Compaction)	UF TOC Rejection		
Pressur Temperatur	e: ○ psi ● bar e: ○ ºF ● ºC	Manage	Adju	st Final pH	RO TOC Rejection				
Flu	x: O gfd () LMH Units () Mor	e Cases	Water (Chemistry Adjustments	RO Special Fea	tures	UF Special Features		
e 🛛 Feed V	Vater Reverse Osmosis	Summary Rep	oort						
	Reverse Osmos	is Pass Con	figura	tion			- System Configurati	on	
ss 1	Number of Stages			Feed Flow	4000	m³/d	system comigorate		
355	○ 1 ○ 2 ●	3 () 4 () 5		Recovery	Calculated	1 96			
		- <u></u>		Dermeste Flour	Calculated] ~~			
	Flow Factor	0.85		renneate riow	Calculated]			
	Temperature Design	n v 25.0]∘c	Flux	Calculated	ј имн			
			1.	Conc. Recycle Flow	Calculated] m³/d			oncentrate
	Pass Permeate Back	Pressure 0.00	bar	Bypass Flow	Calculated] m³/d	Food		
	Stages								
		Stage	1	Stage 2	Stage .	5		and the second	Permeate
	# PV per stage	10		4	2		_		
	<u> </u>	8		8	8				
	Element Type Specs	BW30-400/34i	.*	BW30-400/34i	BW30-400/34i		2		
	Total Els per Stage	80		32	16				
_	Pre-stage ΔP (bar)	0.31		0,20	0.20				
	Stage Back Press (bar)	0.00		0.00	0.00				
	Boost Press (bar)	N/A		0	0				
	Feed Press (bar)	15		N/A	N/A				
	% Conc to Feed	0.00		0,00	0.00				
	· · · · · · · · · · · · · · · · · · ·								

9.3 <u>Reverse Osmosis Specification</u>

Figure 7: Details of Reverse Osmosis panel of the software

Number of stages is selected as 3 as shown in designing chapter.

No. of Pressure vessels selected for first stage is 10, for second stage is 4 and for third stage is 2 as calculated in designing chapter.

No. of elements selected for each vessels is 8 as selected in the designing chapter.

Element type is selected as BW30-400/34i as is suitable for our feed water.

Feed pressure is specified here as 15 bars as known earlier.

9.4 <u>Summary Report</u>

🌚 🔚 🔹 Untitled Project -Case 1				- 🗆 ×
File Configuration User Settings	Feed Setup Report	Help	💝 WAVE Ans	wer Center 🛛 🔞 Quick Help
Detailed Report Ten Run Batch Save To Water Library Refresh Report 25	nperature: Report Language: n 5.0 °C	Export to PDF	Stacked Detailed Rep	ports in PDF
Calculations Water Library Ten	nperature: Language	Export Project Summary	Report Stacked Rep	oort
Home Feed Water Reverse Osmosis Summary Report	t			
	2 Pass 1 6	•	,	
# Descripti	ion	Flow (m³/d) (r	TDS Pressure mg/L) (bar)	
1 Raw Feed to Pump		4,000 3	0.00	
2 Net Feed to Pass 1		3,997 3	16.52	
4 Total Concentrate from Pass 1		1,527 9	0,070 0.00	
6 Total Permeate from Pass 1		2,473 6	1.15 0.00	
				Activat
- Dow-	© 2017. The Dow Chemical Com	npany. All rights reserved.	Water Applicat Dow Water & I	ion Value Engine O

Figure 8a: Results of the simulation

	an 1.5 1 1.5 1.5		.	
👦 🖶 🔹 Untitled Project -Cas	e 1			- 🗆 ×
File Configuration User Set	ttings Feed Setup	Report Help	💱 WAV	VE Answer Center 🛛 🔞 Quick Help
Detailed Report	Temperature: Report	t Language:		
Run Batch	y Design V English	Export to PDF	Stacked Detai	led Reports in PDF
Calculations Water Library	25.0 °C	anguage Export Project Su	immary Report Stack	red Report
Home Feed Water Reverse Osmosis Sum	mary Report			
Reverse Osmosis Report				
RO System Overview				^
Total # of Trains 1	Online = 1	Standby = 0	RO Recovery 61.80 %	6
System Flow Rate (m³/d)	Net Feed = 4,000	Net Product = 2,473		
	2.4			
	Pass 1			
Stream Name	Stream 1			
Water Type	Well Water (With DOW UF, SDI	< 2.5)		
Number of Elements	128			
Total Active Area (m ²)	4756.64			
Feed Flow per Pass (m³/d)	3,997			
Feed TDS> (mg/L)	3,503			
Feed Pressure (bar)	16.52			
Flow Factor	0.85			
Permeate Flow per Pass (m³/d)	2,473			
Pass Average flux (LMH)	21.7			
Permeate TDS ^a (mg/L)	61.15			
D D	C1.0.0/			Activat
Dow	© 2017. The Dow	Chemical Company. All rights res	erved. Water App Dow Wat	plication Value Engine

Figure 8b: Results of simulation 1

Configuration	User Settin	gs Feed Setup	Report	Help	WAVE Answer Center	🕜 Quick He
etailed Report Run Batch efresh Report	o Water Library	Temperature:	Report Language: English-United States	Export to PDF	Stacked Detailed Reports in PDF	
Calculations Wate	er Library	Temperature:	Language	Export Project Summary Report	Stacked Report	
me Feed Water Reverse C	smosis Summa	ny Report				
Reverse Osmosis Report						
Number of Elements	-1	128	- E			
Total Active Area	(m²)	4756.64				
Feed Flow per Pass	(m³/d)	3,997				
Feed TDS ²	(mg/L)	3,503				
Feed Pressure	(bar)	16.52				
Flow Factor		0.85				
Permeate Flow per Pass	(m³/d)	2,473				
Pass Average flux	(LMH)	21.7				
Permeate TDSª	(mg/L)	61.15				
Pass Recovery		61.9 %				
Average NDP	(bar)	7.81				
Specific Energy	(kWh/m³)	0.93				
Temperature	(°C)	25.0				
pН		6.91				
Chemical Dose						
RO System Recovery		61.8 %				
Net RO System Recovery		61.8%				
Total Dissolved Solids inclu	ides ions, SiO- an	d B(OH). It does not in	dude NH+ and CO+			
(Activ

Figure 8c: Results of simulation 1

	Conf	ting.				Fred Cat		Dement	Usla			4	A WAVE A-	nuor Conto		uick 4
<u> </u>	Config	uration	U U	Jser Se	ttings	Feed Set	up	керог	нер				VIAVE AII	swer center	1.000	
ailed Rep	port	11.			Ter	nperature:	Repo	ort Language	8							
tun Batci	h	📩 Save	To Wate	er Librar	y Desig	in 🔨	Englisi	n-United Sta	Expo	rt to PDF		Stacked	Detailed Re	eports in PDF		
resinnep	on				2!	5.0 °C										
alculatio	ns	W:	ater Libr	ary	Ten	nperature:	1	Language	Export	Project Sun	nmary Repo	t	Stacked Re	port		
e Fee	d Water	Reverse	Osmosi	s Sur	imary kepor	c										
everse (Osmosis P	Report														
RO FI	ow Tal	ble (St	age L	evel)	- Pass 1											
			- 9													
				#Els		Fee	ed			Concentrat	te		Pern	neate		
Stage	Elei	ments	#PV	per PV	Feed Flow	Recirc Flow	Feed Press	Boost Press	Conc Flow	Conc Press	Press Drop	Perm Flow	Avg Flux	Perm Press	Perm TDS	
					(m³/d)	(m³/d)	(bar)	(bar)	(m³/d)	(bar)	(bar)	(m³/d)	(LMH)	(bar)	(mg/L)	
1	BW30-	400/34i	10	8	3,997	0.00	16.21	0.00	1,959	13.98	2.22	2,040	28.6	0.00	41.95	
2	BW30-	400/34i	4	8	1,959	0.00	13.78	0.00	1,547	9.78	4.00	412.00	14.4	0.00	121	
з	BW30-	400/34i	2	8	1,547	0.00	9.58	0.00	1,527	0.00	9.58	20.94	1.5	0.00	761	
RO S C	olute C	oncent	tratio	ns - P	ass 1											
Conce	ntration	s (mg/L	as ion)													
	Feed	c	oncent	rate		Pern	neate									
		Stage1	Stage	2 Sta	ge3 Stage	1 Stage2	Stage3	Total								
NH₄*	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00								
к∗	0.00	0.00	0.00	0.0	0.00	0.00	0.00	0.00								
		1	1		1	1	1	I I							Δ	ctiv
İ															F	10.111

Figure 8d: Results of simulation 1

ile 📼	Config	uration	Toject -	Case I		Food Cat		Report	Help	WAVE Answer Center	- U
11L Y	Coning	uration	USE	er Setting	js i	reeu Sel	up	Report	нер	¥ WAVE Allower Center	O GOICK
Netailed Rep	port		T- Weber	1 ihorana	Temp	erature:	Repo	ort Language:			
Run Batcl	h	ave 🔚	To water	Library	Design		Englis	n-onited states	Export to PDF	Stacked Detailed Reports in PDF	
verresh nep	on				25.0	°C					
Calculatio	ins	W	ater Library	/	Temp	erature:		Language	Export Project Summary Report	Stacked Report	
me Fee	d Water	Reverse	Osmosis	Summar	y Report :						
Reverse (Osmosis F	Report									
	Feed										
		Stage1	Stage2	Stage3	Stage1	Stage2	Stage3	Total			
NH₄⁺	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
К*	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Na⁺	1,377	2,794	3,525	3,568	16.50	47.48	299.22	24.06			
Mg+2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Ca+2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Sr*2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Ba⁺²	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
CO3-5	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
HCO3-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
NO3 ⁻	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
CI-	2,123	4,309	5,436	5,502	25.45	73.21	461.43	37.10			
F-	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
504 ⁻²	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
SiO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
Boron	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
CO2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00			
TD5ª	3,500	7,104	8,961	9,070	41.95	121	761	61.15			
ън	6.92	6.89	6.88	6.89	7.00	6.98	6.96	7.00			Act
						© 20 <u>1</u> 7.	The Dow	Chemical Com	pany. All rights reserved.	Water Application Value	ingine or

Figure 8e: Results of simulation 1

	onadec								_		1
T	Configuratio	on User S	ettings Fe	ed Setup	Report H	elp		🙀 WAVE Answ	er Center	🕜 Quic	ck
ailed Repo	rt		Tempera	ture: Repo	rt Language:		_				
Run Batch	- Si	ave To Water Libr	ary Design	✓ English	-United States	Export to PDF	Sta	cked Detailed Repo	rts in PDF		
fresh Repor	t		25.0	∘ c							
alculations		Water Library	Tempera	ature: L	anguage E	xport Project Summ	nary Report	Stacked Repo	rt		
ie Feed	Water Reve	rse Osmosis Su	mmary Report								
everse Os	mosis Report										
											_
	w Tablo (I	Elomont I ov	ol) - Doce 1								
KO FIO	w Table (Element Lev	rer) - Pass I								
									1		
Stage	Element	Recovery	Feed Flow	Feed Press	Feed TDS	Conc Flow	Perm Flow	Perm TDS			
		(%)	(m³/d)	(bar)	(mg/L)	(m³/d)	(m³/d)	(mg/L)			
1	1	7.71	399.71	16.21	3,503	368.95	30.82	24.75			
1	2	7.93	368.92	15.79	3,793	339.69	29.26	28.50			
1	3	8.17	339.69	15.41	4,117	311.97	27.74	32,88			
1	4	8.42	311.97	15.09	4,480	285.74	26.26	38.04			
1	5	8.66	285.73	14.80	4,887	261.00	24.75	44.21			
1	6	8.91	261.00	14.55	5,346	237.76	23.26	51.57			
1	7	9.14	237.76	14.33	5,864	216.04	21.74	60.50			
1	8	9.34	216.03	14.14	6,448	195.87	20.18	71.45			
2	1	3.80	489.68	13.78	7,104	471.08	18.62	77.32			
2	2	3.57	471.08	13.19	7,381	454.31	16.80	88.10			
2	3	3.31	454.31	12.63	7,651	439.27	15.06	101			
2	4	3.05	439.27	12.11	7,909	425.87	13.42	115			
	5	2.79	425.87	11.60	8,154	414.02	11.87	133			
2											
2	6	2.51	414.02	11.12	8,384	403.62	10.41	154			

Figure 8f: Results of simulation 1

0	l 🔒 🕷	Untitle	d Project -Cas	se 1						- 🗆 ×
	File 🔻	Configurati	on User Se	ttings Fe	ed Setup	Report	Help		🍟 WAVE Answer Cente	r 🛛 🕡 Quick Help
	Detailed Repo Run Batch Refresh Repor	rt 📄	Save To Water Libra	Tempera Design	eture: Rig	eport Language: plish-United States	Export to PDF		Stacked Detailed Reports in PD	
	Calculations	5	Water Library	Tempera	ture:	Language	Export Project Sum	mary Report	Stacked Report	
н	ome Feed	Water Rev	erse Osmosis Sun	nmary Report						
[Reverse Os	mosis Repor	t							
	1	6	8.91	261.00	14.55	5,346	237.76	23.26	51.57	^
	1	7	9.14	237.76	14.33	5,864	216.04	21.74	60.50	
	1	8	9.34	216.03	14.14	6,448	195.87	20.18	71.45	
	2	1	3.80	489.68	13.78	7,104	471.08	18.62	77.32	
	2	2	3.57	471.08	13.19	7,381	454.31	16.80	88.10	
	2	3	3.31	454.31	12.63	7,651	439.27	15.06	101	
	2	4	3.05	439.27	12.11	7,909	425.87	13.42	115	
	2	5	2.79	425.87	11.60	8,154	414.02	11.87	133	
	2	6	2.51	414.02	11.12	8,384	403.62	10.41	154	
	2	7	2.24	403.62	10.66	8,596	394.58	9.05	179	
	2	8	1.97	394.58	10.21	8,789	386.82	7.78	211	
	3	1	0.71	773.64	9.58	8,961	768.20	5.48	293	
	3	2	0.37	768.20	8.37	9,023	765.37	2.87	540	
	3	3	0.15	765.37	7.17	9,054	764.25	1.17	1,218	
	3	4	0.07	764.25	5.97	9,065	763.80	0.50	2,406	
	3	5	0.03	763.79	4.78	9,069	763.59	0.25	3,808	
	3	6	0.02	763.59	3.58	9,070	763.50	0.13	5,282	
	3	7	0.01	763.50	2.39	9,071	763.49	0.06	6,787	
	3	8	0.00	763.48	1.19	9,070	763.44	0.02	8,307	~
H					E) 2017. The D	ow Chemical Com	pany, All rights reser	ved.	Water Application Valu	Activat e Engineio 70000
	Dow								Dow Water & Process	Solutions 🤎

Figure 8g: Results of simulation 1

Configuration	User Settin	ngs Feed Seti	up Report	Help	WAVE Answer Center	😧 Quick He
tailed Report		Temperature:	Report Language:			
Run Batch 🚽 🚽 Save Te	o Water Library	Design 💙	English-United States	Export to PDF	Stacked Detailed Reports in PDF	
fresh Report		25.0 °C				
alculations Wate	er Library	Temperature:	Language	Export Project Summary Report	Stacked Report	
e Feed Water Reverse O	smosis Summa	ary Report				
everse Osmosis Report						
	nas					
Ness	iigs					
RO Chemical Adjust	ments					
A PORT OF A PORT A PARTY PARTY PARTY	A G P Sec S & Second					
10						
ហើ វីហា	1	PO 11 Dare				
	Pass 1 Feed	RO 1=* Pass Conc				
pH	Pass 1 Feed	RO 1== Pass Conc 6.88				
pH Langelier Saturation Index	Pass 1 Feed 6.92 0.00	RO 1>* Pass Conc 6.88 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index	Pass 1 Feed 6.92 0.00 0.00	RO 1** Pass Conc 6.88 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS ^a (mg/l)	Pass 1 Feed 6.92 0.00 0.00 3,500	RO 1** Pass Conc 6.88 0.00 0.00 9,070				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS= (mg/l) Ionic Strength (molal)	Pass 1 Feed 6.92 0.00 0.00 3,500 0.06	RO 1** Pass Conc 6.88 0.00 0.00 9,070 0.16				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS* (mg/l) Ionic Strength (molal) HCO ₃ - (mg/L)	Pass 1 Feed 6.92 0.00 0.00 3,500 0.06 0.00	RO 1=* Pass Conc 6.88 0.00 0.00 9,070 0.16 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS* (mg/l) Ionic Strength (molal) HCD ₂ ⁻ (mg/L) CO ₂ (mg/l)	Pass 1 Feed 6,92 0,00 0,00 3,500 0,06 0,00 0,00	RO 1+* Pass Conc 6.88 0.00 0,00 9,070 0.16 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS= (mg/l) Ionic Strength (molal) HCO ₂ ⁻ (mg/L) CO ₂ (mg/l) CO ₃ ⁻² (mg/L)	Pass 1 Feed 6.92 0.00 0.00 3,500 0.06 0.00 0.00 0.00	RO 1** Pass Conc 6.88 0.00 0,00 9,070 0.16 0.00 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS ² (mg/l) Ionic Strength (molal) HCO ₂ ⁻ (mg/L) CO ₂ (mg/l) CO ₅ ⁻² (mg/L) CaSO ₄ (% saturation)	Pass 1 Feed 6.92 0.00 3,500 0.06 0.00 0.00 0.00 0.00 0.00	RO 1** Pass Conc 6.88 0.00 0.00 9,070 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS ^a (mg/l) Ionic Strength (molal) HCO ₃ ⁻ (mg/L) CO ₂ (mg/L) CO ₃ ⁻² (mg/L) CO ₃ ⁻² (mg/L) CaSO ₄ (% saturation) BaSO ₄ (% saturation)	Pass 1 Feed 6.92 0.00 3,500 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00	RO 1** Pass Conc 6.88 0.00 0.00 9,070 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS* (mg/l) Ionic Strength (molal) HCO ₂ (mg/L) CO ₂ (mg/L) CO ₂ ² (mg/L) CO ₃ ² (mg/L) CaSO ₄ (% saturation) BaSO ₄ (% saturation) SrSO ₄ (% saturation)	Pass 1 Feed 6,92 0,00 0,00 3,500 0,06 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00 0,00	RO 1=* Pass Conc 6.88 0.00 0,00 9,070 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS ^a (mg/l) Ionic Strength (molal) HCO ₂ ⁻ (mg/L) CO ₂ ⁻ (mg/L) CO ₂ ⁻² (mg/L) CaSO ₄ (% saturation) BaSO ₄ (% saturation) SrSO ₄ (% saturation) CaF ₂ (% saturation)	Pass 1 Feed 6.92 0.00 3,500 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	RO 1+* Pass Conc 6.88 0.00 0,00 0,00 0,00 0,16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				
pH Langelier Saturation Index Stiff & Davis Stability Index TDS ² (mg/l) Ionic Strength (molal) HCO ₂ ⁻ (mg/L) CO ₂ (mg/l) CO ₂ ⁻² (mg/L) CaSO ₄ (% saturation) BaSO ₄ (% saturation) SrSO ₄ (% saturation) CaF ₂ (% saturation) SiO ₂ (% saturation)	Pass 1 Feed 6.92 0.00 3,500 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	RO 1+* Pass Conc 6.88 0.00 0,00 9,070 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00				

Figure 8h: Results of simulation 1

_

Chapter 10: Instrumentation

Instrumentation was done for Equalization Tank only as this is why it is required the most.

Chapter 11: Conclusions

As supported by various research papers and books, the proposed plant easily achieves all the target parameters. The pH of the water is stabilized to a value of 7.75. Even if there is a slight variance in the process variables, the pH level would still remain in the desired pH range of 7.5-8. Additionally, the flow rate of the water is stabilized reducing the need for oversizing the downstream equipment, thereby, reducing expected costs. The BOD and COD present in the feed water are eliminated. The product FOG levels were not specified but are significantly reduced to a value of 0.75ppm. The TDS, which was the main parameter to be treated, has been reduced below the maximum target of 20ppm to a value of 18.62ppm. Further reduction of TDS may lead to undesirable increase in costs.

Conclusively, it would be beneficial to set up the proposed plant to treat the undesirable parameters so that the water can be recycled back to the process plant.

References

- Burk, R. L., Kurth, C., & Green, J. (2003). Improved Nanocomposite Seawater Desalination Membranes. 6.
- [2] Ching, K. F., & Hong, N. (2008). Design and Operation of MBR Type Sewage Treatment Plant. 9.
- [3] Frederickson, K. C. (2005). *The Application of a Membrane Bioreactor for Wastewater Treatment.* Winnipeg.
- [4] Gkotsis, P. K., Banti, D. C., Pelaka, E. N., Zouboulis, A. I., & Samaras, P. E. (2014).
 Fouling Issues in Membrane Bioreactors (MBRs) for Wastewater Treatment: Major Mechanisms, Prevention and Control Strategies. 72.
- [5] Goel, R. K., Flora, J. R., & Chen, J. P. (2005). Flow Equalization and Neutralization. In
 L. K. Wang, Y.-T. Hung, & N. K. Shammas, *Handbook of Environmental Engineering, Volume 3: Physicochemical Treatment Processes* (p. 27). New Jersey: The Humana
 Press Inc.
- [6] Iorhemen, O. T., Hamza, R. A., & Tay, J. H. (2016). Membrane Bioreactor (MBR) Technology for Wastewater Treatment and Reclamation:. 29.
- [7] Jeon, S., Rajabzadeh, S., Okamura, R., Ishigami, T., Hasegawa, S., Kato, N., et al. (2016). The Effect of Membrane Material and Surface. 11.
- [8] Kucera, J. (2015). *Reverse Osmosis: Industrial Processes and Applications*. Salem: Scrivener Publishing.
- [9] Nasr, F. A., Doma, H. S., Abdel-Halim, H. S., & El-Shafai, S. A. (2004). CHEMICAL INDUSTRY WASTEWATER TREATMENT. *TESCE, Vol. 30, No.2*, 23.

- [10] Publishing, S. (2004). Application of Membrane Bioreactor Technology to Wastewater Treatment and Reuse. 15.
- [11] Radjenovi, J., Mato, M., Mijatovi, I., & Petrovi, M. (2007). Membrane Bioreactor(MBR) as an AdvancedWastewater Treatment Technology. *Hdb Env Chem Vol. 5,*, 66.
- [12] Schwartz, T. C., & Herring, B. R. (2005). Membrane Bioreactor Performance Compared to Conventional Wastewater Treatment. 7.
- [13] Wilf, M. (2008). *Membrane Types and Factors Affecting Membrane Performance*. Stanford.
- [14] Yang, J. (n.d.). Membrane Bioreactor for Wastewater Treatment. 2013: Book Boon.
- [15] Zaerpour, M. (2014). Design, Cost & Benefit Analysis of a Membrane. Milan.
- [16] Kubota Corporation Membrane System Department, "Sai Kung STW Phase II Upgrading, EIA and Process Treatment Studies, Pilot Study of Membrane Bioreactor", March 2003
- [17] Churchouse, S.J. and Brindle, K., "Long Term Operating Experience of Membrane Bioreactors", 9 April 2003.