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Abstract

The future tactical systems require network based seamless communication with precise, ac-

curate and reliable information. To achieve this end, a multi-mode high throughput CDMA-

based wideband networking waveform for software defined radio is proposed. The proposed

waveform has several different modes of operation and the maximum achievable throughput

of 17.2 Mbps. Novel algorithms for the waveform’s physical layer transmitter and receiver

including sampling clock recovery, burst detection, and carrier frequency offset estimation

and compensation are proposed. For Sampling clock recovery, a novel three stage Mod-

ified Square Timing Recovery (MSTR) algorithm is proposed. For burst detection, two

novel algorithms based on Time Domain Repetitive (TDR) and Differentially Modulated

(DM) training sequences are proposed. For carrier frequency offset estimation, a novel

algorithm based on modified FFT and quadratic interpolation is proposed. A novel two

stage carrier frequency offset estimator with improved performance is also proposed which

consists of Maximum Likelihood Data Aided (MLDA) estimation and Sample-by-Sample

Residual Offset (S2RO) estimation stages. To reduce the packet re-transmissions overhead

and achieve better throughput, a novel link adaptation technique is proposed, which is based

on fuzzy inference system by considering Quality of Service and throughput requirement

of user/application. The throughput adaptation is achieved by changing the modulation

technique and the number of multicodes assigned to each user. The novelty of the pro-

posed algorithms is selected by considering the implementation affinity. The performance

improvement of the proposed algorithms is demonstrated by comparing them with a set of

known existing methods. It is shown through simulation results that the proposed algorithms

are superior in terms of performance, throughput and computational complexity. The pro-

posed algorithms are implemented using Field Programmable Gate Array and Digital Signal

Processor on SDR platform. Actual results from hardware are compared and verified with

the simulation results to demonstrate the effectiveness of the proposed techniques. This

iv



wideband SDR waveform based on the proposed algorithms finds many real world applica-

tions in both the tactical and commercial scenarios. Some examples include biometrics,

video conferencing, IP data, file transfer, situational awareness, messaging, voice push to

talk, simultaneous voice and data transfer.
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Chapter 1

Introduction

The full range capability of the traditional radio systems was provided by hardware ele-

ments. Due to this reason, those radios could be termed Hardware Defined Radios (HDR).

With the evolution of software engineering, the concept of Software Controlled Radios was

presented. Nowadays, the true Software Defined Radios (SDR), in which a wide range

of capabilities is implemented through the software configurable components, are being

fielded [1]. Specifically, SDR is a radio transceiver in which a software defines the key

radio parameters and the fundamental aspects of the radio’s operation can be changed by

reconfiguring that software [2].

In these days, SDR has become an enabling technology in many signal processing and

communication applications because a single platform can be used to provide multiple

functionalities through various software configurations. SDR supports broad range of fre-

quencies and its initial configurations can be modified for user requirements. It can be

termed as a flexible radio that is able to accommodate various protocols and formats [3].

Most SDRs utilize a Field Programmable Gate Array (FPGA), Digital Signal Processor

(DSP) and General Purpose Processor (GPP) in their architectures. The intelligent part of

systems use processors (GPP or DSP) and computationally extensive part normally goes

on FPGA [4].

A substantial research effort has been made for several years to investigate the poten-

tial of applying the Software Defined Radio (SDR) approach to a wide range of wireless

communications applications. However, present wireless communication transceivers based

on SDR technology are used primarily in high-end applications [5]. Examples are wireless

military communication equipment and base station equipment. The future SDR-based
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networks will have to support a wide variety of data-intensive applications such as stream-

ing video, biometrics, IP data while offering a high degree of survivability, mobility and

security. Due to these requirements, the developments for the future networks are mov-

ing toward wideband and digital signal based networking [6]. Wideband networking radio

waveform can overcome the insufficient capacities of the conventional narrowband wireless

channel, so that it provides higher data transmission rate to support multimedia and bulky

data traffic.

Direct Sequence Spread Spectrum (DSSS) is conventionally used in the physical layer of

wideband waveforms. The purpose of DSSS scheme is to make the networking radios work

under noise floor without affecting primary license users in the used spectrum. DSSS is

well suited for the SDR networks due to anti-jamming, anti-interference, high frequency ef-

ficiency and robustness against multipath fading effects [7]. Multiple access in DSSS/SDR-

based wideband networks is provided by Carrier Sense Multiple Access (CSMA), Time

Division Multiple Access (TDMA) etc. Despite the advantages of DSSS, timing synchro-

nization is one of the major concerns. The problem of timing synchronization includes; (1)

Estimation and Compensation of time varying Sampling Clock Offset (SCO) caused due

to sampling clock inaccuracies and (2) Detection of the Start of burst for burst mode of

transmission. Estimation and compensation of Carrier Frequency Offset (CFO) and equal-

ization are also needed. Moreover, the problem of timing synchronization becomes more

complicated in multiuser Code Division Multiple Access (CDMA) networks because all the

users simultaneously share time and frequency, and burst transmissions from all the users

are mostly asynchronous.

To optimize the use of scarce SDR resources, efficient algorithms for resource alloca-

tion/utilization are required. Different applications (e.g. Push To Talk (PTT), position

tracking, point-to-point calls, messages, file transfer, video communication etc) have differ-

ent Quality of Service (QoS) requirements. This involves adapting the parameters of the

SDR waveform to changing conditions/requirements. This process is called Link Adapta-

tion [8]. It usually comprises of two parts; (1) Varying the waveform parameters at the
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physical layer, and 2) Use of Adaptive TDMA.

In this thesis, we propose a multi-mode high throughput wideband networking wave-

form for software defined radio with a maximum achievable throughput of 17.2 Mbps.

Single code/multicode Code Division Multiple Access (CDMA) and Time Division Multi-

ple Access (TDMA) are used as multiple access schemes. Novel algorithms for the training

sequence design, sampling clock offset estimation and compensation, burst detection, and

carrier frequency offset estimation and compensation are proposed. For Sampling clock

recovery, a novel three stage Modified Square Timing Recovery algorithm is proposed. For

burst detection, two novel algorithms based on Time Domain Repetitive and Differentially

Modulated training sequences are proposed. For carrier frequency offset estimation, a novel

algorithm based on modified FFT and quadratic interpolation is proposed. A novel two

stage carrier frequency offset estimator with improved performance is also proposed which

consists of Maximum Likelihood Data Aided estimation and Sample-by-Sample Residual

Offset estimation stages. To reduce the packet re-transmissions overhead and achieve better

throughput, a novel link adaptation technique is proposed, which is based on fuzzy inference

system by considering Quality of Service and throughput requirement of user/application.

Figure 1.1 shows the overview of the physical layer of the proposed waveform.

1.1 Existing Wideband Waveforms

Software defined radio provides a platform capable of supporting different waveforms. In

other words, the SDR platform consists of the basic configurable hardware components

and the necessary software required to host a waveform. An SDR waveform is defined as a

program through which the ultimate Radio Frequency (RF) signal, modulation technique,

frequency, protocols, performance and security features are defined [9]. Due to the high

data rate network-based requirements of the future tactical and strategic applications, the

developments for the future SDR waveforms are moving toward wideband networking wave-

forms. In this section, we describe some well-known SDR wideband networking waveforms
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Figure 1.1: Overview of the physical layer of the proposed waveform

with their capabilities as well as limitations.

1.1.1 Tactical Wideband Wireless Network Waveform

The Tactical Wideband Wireless Network (TWWiN) waveform [10] is developed primarily

for maritime communications. This waveform is based on frequency hopped Orthogonal

Frequency Division Multiplexing (OFDM) which is a well-known scheme with high spectral

efficiency and provides high data rates for wireless applications. Synchronization algorithms

presented in [11] and [12] are used to provide the timing and carrier estimation performance

for frequency hopped OFDM waveform. The spectral efficiency of the TWWiN waveform

is increased by using OFDM with frequency hopping [13]. Some important features of

TWWiN waveform are:

• Anti-jam operation
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• Data rates up to 2 Mbps

• Adaptive modulation

• High spectral efficiency

The disadvantages/limitations of the TWWiN waveform are

• Highly sensitive to synchronization errors

• Data rate scalability is low

1.1.2 ASELSAN’s Wide Band Networking Radio Waveform

Wide Band Networking Radio (WBNR) waveform is developed by ASELSAN, a Turkish

company [14]. This waveform is one of the several other supported by the Software Defined

Networking Radios (SDNR) developed by ASELSAN. This waveform uses Direct Sequence

Spread Spectrum (DSSS) to provide high anti-jamming capability. The WBNR waveform

mode of the ASELSAN SDNR operates in Time Division Multiple Access (TDMA) net-

working which is configured through a central radio working as base station [15]. Some

important features of WBNR waveform are:

• High Anti-jamming capability

• User data throughput up to 112 kbps

• TDMA channel access

• Full duplex communication

The disadvantages/limitations of the WBNR waveform are

• No link adaptation mechanism

• Limited network capacity

5



• Low data throughput

• A central control station is needed for network establishment

1.1.3 Harris’ Adaptive Networking Wideband Waveform

Adaptive Networking Wideband Waveform (ANW2) [16] is developed by Harris, a well-

known US company. This waveform is featured by Falcon III Harris’ radio family. It

is an ad hoc, self-healing and self-forming waveform supporting high speed and adaptive

networking capabilities. ANW2 doesn’t need any central base station radio for network

establishment because of its intelligent protocols through which every radio automatically

discovers and joins the established network [17]. The modulation scheme used in ANW2 is

not disclosed by Harris corporation. Some important features of ANW2 are:

• Self-healing and self-forming capabilities

• User data throughput up to 2 Mbps

• No central infrastructure

• Full duplex voice and IP data communication

• Modulation switching according to channel conditions

• Supports up to 30 radios in a sub-network

1.1.4 Thales’ TrellisWare TopX-II Waveform

TrellisWare TopX-II Waveform [18] is developed by Thales, a well-known French com-

pany. This waveform is featured by Thales’ Wideband Networking Radio (WNR). The

waveform uses Continuous Phase Modulation (CPM) with cooperative diversity to achieve

high throughput. The waveform also supports Mobile Ad hoc Networking (MANET) and

multi-hop network coverage. Some important features of TrellisWare TopX-II Waveform

are:
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• Self-healing and self-forming capabilities

• Data throughput up to 2 Mbps

• Simultaneous voice and data communication

• Multi-hop network coverage

The disadvantages/limitations of the WBNR waveform are

• No link adaptation mechanism

1.1.5 JTRS Wideband Networking Waveform

Joint Tactical Radio System (JTRS) Wideband Networking Waveform (WNW) is a multi-

mode waveform based on Orthogonal Frequency Division Multiplexing (OFDM) at the

physical layer [19]. It offers multiple modes of operation by varying the modulation scheme,

Forward Error Correction (FEC) and diversity factor. The waveform is also data rate

adaptable in that it maximizes the data rate in almost every channel condition. Time

Division Multiple Access (TDMA) and Carrier Sense Multiple Access (CSMA) are used as

channel access schemes. Some important features of JTRS WNW are:

• Mobile ad hoc networking capability

• Data throughput up to 11.5 Mbps

• Simultaneous voice and data communication

• Data rate adaptation

• Multiple modes of operation
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1.2 Objectives and Problem Statement

The future strategic and tactical systems require high throughput, network based seamless

communication with precise, accurate and reliable information. The importance of interop-

erability among various defense counterparts and seamless voice and data communication

among the users of tactical and strategic networks is gradually increasing. Due to these

requirements, the future SDR waveform developments require the following objectives to

be met.

• High anti-jamming and anti-interference capabilities

• High user throughput to support variety of high data rate applications

• Robustness to multipath fading effects and harsh channel conditions

• Efficient algorithms to estimate and compensate time-frequency offsets between the

transmit and receive radios

• Simultaneous voice and IP data communication

• Self-healing and self-forming capabilities without needing any central infrastructure

• High network capacity

• Precise and reliable information requiring better synchronization algorithms

• Multiple modes of operation for all channel conditions

• Link adaptation to provide maximum possible data rates

• Effective adaptation of system parameters and protocols to reduce packet re-transmissions

overhead

Keeping in view the objectives mentioned above, the aim of this thesis is to design

a multi-mode high throughput wideband networking waveform physical layer for software
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defined radio with efficient time-frequency synchronization and link adaptation algorithms

to provide precise and reliable information with maximum possible throughput, reduced

packet re-transmissions penalties and ease of real-time implementation.

1.3 Overview of the Proposed Waveform

The overview of the physical layer of the proposed wideband networking waveform is shown

in figure 1.1. Multicode CDMA is used to increase anti-jamming ability as well as the net-

work capacity of the system by using it in conjunction with adaptive TDMA at the Medium

Access Control (MAC) layer. At the transmitter side, within each allocated time slot, the

data stream is first mapped using M -PSK symbol mapping, where M is the modulation

index. Bursts of the symbols are formed in which specific training sequence is inserted

prior to each data burst. After multicode direct sequence spreading, upsampling and Root

Raised Cosine (RRC) filtering, the data is modulated with the carrier generated from the

reference oscillator. After passing through channel, the data is received at the receivers

front-end. The crystal oscillator of the receiving device generates Sampling Clock Offset

(SCO) and Carrier Frequency Offset (CFO). At the digital front end, firstly, SCO is esti-

mated and compensated. The next blocks are correlation and Burst detection. The output

data from previous stage including training sequence is correlated with the spreading se-

quence at chip rate and fed to the burst detection block which detects the valid bursts.

After the detection of each valid burst, data at chip rate is converted to symbols through

despreading (down-conversion) by spreading gain. Then channel estimation block includes

both the estimation of Signal-to-Noise Ratio (SNR) and channel state. The link adapta-

tion algorithm based on fuzzy inference system generates a new pair of modulation and

multicode indices for the next transmission based on the estimated received SNR, Quality

of Service (QoS) and throughput requirements. The next blocks include Carrier Frequency

Offset (CFO) recovery, RAKE receiver and symbol de-mapping. The main focus of this

thesis was to propose efficient time-frequency synchronization and link adaptation algo-
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rithms to provide reliable information with maximum possible throughput and reduced

packet re-transmissions penalties. More specifically, novel and efficient algorithms for the

following are proposed.

1.3.1 Sampling Clock Recovery

The Sampling Clock Offset (SCO) arises due to the inherent mismatch between the crystal

oscillators of transmit and receive radios [20]. This offset degrades the performance heavily,

if not estimated and compensated properly. For multiuser CDMA system, it becomes more

difficult to estimate the offset because each radio receives the composite signal from all the

transmit radios. Moreover, this offset varies slowly with time due to thermal drift [21]. We

propose Modified Square Timing Recovery (MSTR) algorithm consisting of three stages

for both the single and multiuser cases.

1.3.2 Training Sequence Design and Burst Detection

The proposed wideband waveform operates in burst mode where the size of each burst

is chosen so that the channel behaves time invariant to each burst. The start of each

burst needs to be detected to further process the data. Moreover, the correct detection

of start of burst is very important as it directly affects the adaptive time slot allocation

algorithm. Two novel algorithms for burst detection are proposed which are based on

two different specifically designed training sequences. The first is Time Domain Repetitive

(TDR) training sequence and the other is Differentially Modulated (DM) training sequence.

Both the single and multiuser cases are investigated.

1.3.3 Carrier Frequency Offset Estimation and Compensation

The problem of Carrier Frequency Offset (CFO) arises due to the inherent inaccuracy of the

local oscillators at the transmit and receive radios. Two novel algorithms for the estimation

and compensation of CFO are proposed. The first algorithm is based on Fast Fourier Trans-
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form (FFT) and interpolation [22] and the other algorithm consists of two stages namely

Maximum Likelihood Data Aided (MLDA) estimation and Sample-by-Sample Residual

Offset (S2RO) estimation [23].

1.3.4 Link Adaptation

The process of changing the system parameters and/or protocols according to the varying

channel conditions and user requirements is termed as link adaptation. In packet-based

communication, effective link adaptation becomes more important because a small value

of bit error rate can result in a high packet error rate, thereby increasing the packet re-

transmission penalty. In this thesis, we propose a novel link adaptation scheme based

on fuzzy inference system (FIS) that selects the most suitable value of modulation and

multicode indices based on channel conditions, QoS and user/application throughput re-

quirements.

1.4 Fundamental Concepts

The proposed wideband waveform uses both the single code and multicode CDMA as

well as adaptive TDMA as multiple access schemes. Therefore, we briefly explain these

technologies.

1.4.1 Adaptive Time Division Multiple Access

In TDMA, the available spectrum is accessed by each radio at specific time slots. Medium

Access Control (MAC) layer monitors these assigned time slots. Figure 1.2 shows the

TDMA scheme. The Adaptive TDMA (ATDMA) Protocol is provides real-time voice and

data communication in a tactical warfare environment. The real-time requirement is met

in ATDMA based MAC protocol by guaranteeing the allocation of slots within the delay

bound, while reliability is ensured by allocating conflict free time slots.
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Figure 1.2: Time Division Multiple Access

1.4.2 Code Division Multiple Access

In CDMA, each radio can access the complete available spectrum at any time. Figure

1.3 shows the CDMA scheme. All the users/radios are separated by using user specific

spreading sequences. These spreading sequences (also called spreading codes) are used to

spread the data at chip rate which is higher than the symbol rate by an amount equal

to spreading gain. Let T be the symbol duration and Tc be the chip duration, then the

spreading gain G is defined as

G = T/Tc (1.1)

Figure 1.4 shows the working principle of a simple CDMA system.

1.4.3 Multicode CDMA

Multicode CDMA is a technique to provide variable throughput depending upon the QoS

requirements [24]. The idea is to assign more than one spreading codes to a user requir-

ing high data rate if the other users are idle or require low data rates. This multicode

system retains the benefits of CDMA system e.g. anti-jamming ability, robustness against

multipath effects etc. Figure 1.5 shows the block diagram of a typical multicode CDMA

system.

12



 

Figure 1.3: Code Division Multiple Access
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1.5 Structure of Thesis

Rest of the thesis is organized as follows.

Chapter 2 gives a detailed review of the existing algorithms and techniques for time-

frequency synchronization and link adaptation at the physical layer of CDMA-based wide-

band waveforms or other infrastructureless CDMA systems.

Chapter 3 presents the proposed Modified Square Timing Recovery (MSTR) algorithm

for SCO estimation and compensation. All the three stages including SCO estimation,

post-filtering and compensation are described. Both the single and multiuser cases are

investigated and simulation results are presented in this chapter.

The proposed burst detection algorithms are given in chapter 4. It also includes the
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proposed specifically designed training sequences. Simulation results for both the single

and multiuser CDMA scenarios are also part of this chapter.

The proposed FFT and interpolation based CFO estimation algorithm is presented in

chapter 5. It also includes the novel two stage algorithm for CFO recovery. Computational

complexity comparison and simulation results are also included. It also contains the channel

estimation algorithm.

Chapter 6 presents the proposed novel link adaptation algorithm. It starts with the

system model, followed by the optimization problem and the proposed fuzzy inference

system based link adaptation scheme.

Chapter 7 gives the brief overview of the physical layer implementation including the

design partitioning, FPGA and DSP implementations and comparison of results from hard-

ware and simulation.

Finally, chapter 8 concludes the thesis and gives some future recommendations for

researchers in this field.
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Chapter 2

Literature Review

Software defined radio waveform design has been an active area of research since last two

decades. More specifically, to support data intensive applications and bulky data traffic

in tactical and strategic battlefields, the waveform developers are moving towards high

throughput network-based digital wideband waveform design. The goal of this thesis is

also to design a high throughput CDMA based wideband networking waveform for which

efficient time/frequency synchronization and data rate adaptation algorithms are required.

Several algorithms and techniques have been proposed by researchers in this field in recent

years as well as many years ago. In this chapter, some of the prominent and recent devel-

opments are summarized. To provide a better insight to the reader, the literature review is

divided into sections such as sampling clock recovery, burst detection, carrier frequency off-

set estimation and link adaptation. A detailed review of the existing wideband networking

waveforms has already been presented in section 1.1 of chapter 1.

2.1 Sampling Clock Recovery

The timing synchronization at the physical layer of the proposed wideband waveform con-

sists of two parts; (1) Sampling clock recovery, and (2) Burst detection. The Sampling

Clock Offset (SCO) is present due to the inherent mismatch between the transmit and re-

ceive crystal oscillators. Due to thermal drift, this sampling clock frequency offset will also

change slowly in time [21]. A time domain-based sampling clock offset estimation and cor-

rection algorithm is presented in [25]. In this paper, authors explain the cause of sampling

clock offset and analyze the effect of this offset on the communication system’s performance.
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This algorithm is more specific to Orthogonal Frequency Division Multiplexing (OFDM)

waveforms. A more generic low complexity algorithm for sampling clock offset estimation

is proposed in [26]. This algorithm is non-data-aided and is based on feed-forward timing

estimation. The computational complexity of this algorithm is almost equal to that of

standard Square Timing Recovery (STR) algorithm proposed by Oerder and Meyr [27] and

higher than the well-known Phase Locked Loop (PLL) method. However, it is superior in

terms of Minimum Mean Square Error (MMSE) and jitter performances. Authors have

also presented the FPGA implementation method on SDR platform. One major drawback

of this algorithm is that it is only applicable to constant offsets and cannot be applied

directly to the systems where time varying sampling clock offsets are present.

Another algorithm for fractional timing estimation using two samples per symbol along

with the interpolation-based compensation is proposed in [28]. An important contribution

of this scheme is that the baseband signal is complex modulated with a complex exponential

at one half of the symbol rate. This is followed by lowpass filtering which results in a signal

containing the information of symbol timing offset. Both the algorithms [26] and [28] have

two major limitations. Firstly, they are only valid for constant drift between the transmitter

and receiver sampling clocks and secondly, they do not incorporate the multipath channel

effects while evaluating the estimator’s performance. An algorithm based on Sample Point

Reordering (SPR) is proposed in [29] but it assumes sampling clock inaccuracies of up to

only 12 ppm which is totally impractical in case of software defined radios. Moreover, the

performance of this estimator is affected by the amount of frequency offset present in the

received signal.

Algorithm for joint estimation of SCO and CFO is proposed in [30–32]. The authors of

[30,31] have targeted OFDM systems but the presented algorithm use predefined preambles

for the estimation and doesn’t require cyclic prefix (CP). The algorithm is computationally

less extensive as compared to the Maximum Likelihood scheme [33]. However, the frequency

domain processing time is increased by the use of preamble. A two dimensional linear least

square (LS) estimation of SCO is proposed in [32]. However, this algorithm is not suitable
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for SDR based burst mode networks because of its high computational complexity.

2.2 Burst Detection

The conventional approach for burst detection is based on calculating the energy of the

received signal and comparing it to a threshold. An example of such kind of algorithm is

given in [34]. The authors have developed the closed form expressions for the probability

of false alarm and probability of detection in Additive White Gaussian Noise (AWGN), flat

and multipath fading channels. Although energy based burst detectors are very simple and

do not require preamble but they are unable to adapt to various mobile communication

channels. The reason is that the received signal energy varies with the changing noise

level and channel conditions. Hence, a fixed threshold results in either high false alarm

probability or low detection probability.

A burst detection technique based on on-off keying during the preamble duration fol-

lowed by Markov chain search is given in [35]. Another preamble based synchronization

algorithm is given in [36] which is based on using Barker sequence of length 7 as a preamble.

A two step algorithm with windowing method is introduced. The preamble is modulated

prior to spreading by differential phase shift keying. The correct detection is declared upon

locating the Barker sequence based preamble. The performance of the algorithm is analyzed

in AWGN and frequency selective fading channels through simulation. A hybrid correlator

architecture based burst detection algorithm is proposed in [37]. The parallel structure

of matched filter and serial structure of correlator are combined to form a hybrid corre-

lator architecture. The detection performance of the hybrid correlator and serial/parallel

structures is analyzed by setting a detection threshold that obtains a constant false alarm

rate.

A periodic variance threshold searching method for burst detection in Direct Sequence

Spread Spectrum systems is given in [38] which is based on Short Time Fourier Transform

(STFT). The periodicity of the STFT of DSSS signal is exploited to detect the signal by
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setting a threshold on the signal variance. The method is simple and easy to implement

but the authors have analyzed the performance of the algorithm in AWGN only. In fading

channels, the performance is degraded to a large extent. Another algorithm for the detection

of DSSS signals using Haar Wavelet Transform (HWT) is given in [39]. The detection

algorithm uses the second order moments of the autocorrelation of the DSSS signal after

taking HWT. This method is computationally extensive but shows better performance at

low SNRs in AWGN. The algorithm is also capable of estimating the symbol period using

the same HWT technique.

An autocorrelation based detection algorithm for DSSS signals in cognitive radios is

proposed in [40]. In the first stage, this algorithm finds the peaks of the spreading sequence

autocorrelation. In the second stage, the decision of burst detection is made through

cumulative peak-to-average calculation. The algorithm is based only on pseudo-noise (PN)

sequence autocorrelation peaks and there is no decision metric for signal detection. Another

drawback is that if the number of sampling points are decreased, the probability of detection

decreases very rapidly. Another correlation-based algorithm for the detection of DSSS

packet through a specifically designed preamble is proposed in [41]. The proposed preamble

consists of a number of blocks, spread through the corresponding spreading sequence. The

performance of this algorithm is degraded if the carrier frequency offset is not compensated

earlier properly.

One possible approach for increasing the detection probability without much increasing

the probability of false alarm is to use adaptively varying threshold. One such scheme is

proposed in [42] using Constant False Alarm Rate (CFAR). This adaptively varying thresh-

old scheme is only applicable to single user CDMA systems. Another adaptively varying

threshold scheme for burst detection is proposed in [43] which gives improved detection

performance as compared to the one in [42]. This algorithm adjusts the detection thresh-

old using the pre-estimated correlation energy. This is done in the threshold generation

mode prior to the search mode.
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2.3 Carrier Frequency Offset Estimation

Several algorithms for Carrier Frequency Offset (CFO) estimation have been proposed by

many researchers. Some of these algorithms estimate CFO jointly with the channel and/or

timing estimation. An algorithm for joint estimation of channel and frequency offset is

given in [44], which provides the estimates of frequency offset and channel in closed form.

Firstly, the multiuser estimation problem is conerted into single user estimation problems

and secondly, the obtained nonlinear multivariate problem is solved. This algorithm is

computationally extensive and the estimation accuracy decreases for large amount of CFO.

A suboptimal ESPIRIT based algorithm is given in [45], which is less computationally

extensive but its performance in multipath fading channels is not satisfactory. A blind

CFO estimation method is proposed in [46] which is applicable only to the estimation

of small residual offsets. This algorithm is based on generalized eigenvalue problem and

estimates the residual frequency offsets and channel state efficiently.

An efficient algorithm for the joint estimation of frequency offset and propagation delay

is given in [47], but it is computationally very complex. In the same paper, another sub-

optimal algorithm has been proposed which has lesser complexity but its variance is high

as compared to Cramer-Rao Bound (CRB). A Non-Data Aided (NDA) estimation algo-

rithm based on determinant minimization is given in [48]. The authors of [48] also compare

the performance of their proposed estimator with the Generalized Eigenvalue Problem

(GEVPM) and Modified GEVPM based algorithm. The problem with this estimator is

that its accuracy is decreased at low SNRs. Two generalized CFO estimation algorithms

are given in [49, 50]. Both these algorithms show large Mean Square Error (MSE) at low

SNRs. Also, both these algorithms do not consider multipath fading channel effects.

Several two stage algorithms for Carrier Frequency Offset (CFO) estimation have also

been proposed by many researchers. A two stage frequency synchronization algorithm is

proposed in [51]. In the first stage, this algorithm finds a coarse estimate of the frequency

offset by minimizing the determinant of a CFO-dependent matrix and iteratively finds a fine
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estimate using adaptive Least Mean Square (LMS) algorithm in the second stage. This al-

gorithm is more suited for joint CFO and channel estimation and pose extra computational

burden for frequency offset estimation only. Another two stage CFO estimation algorithm

is proposed in [52] which is more specific to Orthogonal Frequency Division Multiple Access

(OFDMA) system but can be applied to other systems by minor changes. This algorithm

is based on subspace processing so as to estimate the CFOs of all the users simultaneously.

In [53], an algorithm is proposed for estimating large frequency offsets by using the auto-

correlation and half periodic approach. This algorithm solves the contradiction between

the frequency offset estimation range and estimation accuracy. The algorithm is simple

and easy to implement but its performance is very poor at low SNRs.

Another two stage carrier frequency offset algorithm is proposed in [54]. The coarse

estimation stage of this algorithm exploits the autocorrelation of the known preamble se-

quences [55], whereas the fine estimation stage uses a suboptimal estimator with perfor-

mance close to Cramer-Rao Lower Bound (CRLB) for high values of SNR [56]. Moreover,

the closed form expressions for the fine estimation of CFO are also derived, assuming high

SNR and low frequency deviations. Both these assumptions are not practical in SDR net-

works. Another drawback of this algorithm is its high computational complexity due to the

accumulation of preambles of consecutive bursts needed to reduce the estimator variance

so as to approach the CRLB.

To reduce the computational complexity and provide the same Bit Error Rate (BER)

performance as that of the conventional two stage algorithm given in [54], another two stage

algorithm is proposed in [57]. It offers reduced computational complexity by modifying the

Extended Schmidl and Cox Algorithm (ESCA) [58–60] in the coarse CFO estimation stage.

The fine estimation stage correlates the preambles of the consecutive bursts [61]. A high

performance frequency estimation algorithm is given in [62] which consists of three stages.

The first two stages consist of coarse CFO estimation and third stage finds fine frequency

estimate by eliminating the influence of modulation on the data.
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2.4 Link Adaptation

Efficient algorithms for resource allocation/utilization are required to optimize the use of

scarce SDR resources. This involves adapting the transmission parameters of the SDR

waveform to changing channel conditions, QoS and data rate requirements. This process is

called link adaptation. A simple example is the transmit power control algorithm, in which

the transmission power is altered based on channel variations and fading because a low

transmit power is sufficient under good channel conditions. A well-known link adaptation

strategy is adaptive modulation and coding (AMC) [63, 64]. In AMC, the channel coding

rate and modulation technique are changed according to the varying channel behavior.

Many varieties of AMC strategies are proposed by many researchers in recent years. One

such technique is proposed in [65] for mobile-WiMax technology using software defined radio

to achieve maximum throughput by retaining a threshold bit error rate. Another paper [66]

proposes a channel quality indicator (CQI) mechanism for cooperative MIMO systems over

frequency selective fading channels. The corresponding throughput performance in fading

channels is analyzed. A protocol for adaptive modulation and coding is developed in [67] for

a typical wireless communication system. The limitation of this paper is the assumption

that the channel is a slow Nakagami-m. The performance of the proposed algorithm in

achieving a target packet error rate is analyzed. An algorithm for achieving interference

alignment through adaptive modulation and coding is proposed in [68] based on channel

state information. Interference alignment is a technique that tries to align all the interfering

signals frequency, time or space domain. It requires accurate channel state information

which is not available in practical systems. An adaptive scheme is proposed which tries to

obtain perfect channel state information from the imperfect channel state information.

An efficient scheduling algorithm for adaptive modulation and coding that guarantees

the QoS requirements of individual users is proposed in [69]. The Information from both

the data link and physical layers are used to schedule the system parameters and protocols

to achieve maximum throughput. This is why the proposed algorithm is called QoS-based
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cross layer scheduling. Another scheduling algorithm based on finite block-length analysis

of channel capacity is proposed in [70]. The proposed algorithm achieves better performance

in terms of throughput as compared to the existing conventional technique for Long Term

Evolution (LTE) system. A multidimentional QoS-based packet scheduling algorithm is

proposed in [71] for providing optimized packet scheduling weights to fulfill the throughput

requirements of the variety of applications and services. The proposed technique is applied

to high speed packet data access (HSDPA) system and shown to achieve better throughput

performance as compared to the existing methods. Orthogonal multicode transmission

which is primarily used to enhance the data rate in the 3rd Generation Partnership Project

(3GPP) standard [63,72], has also been used for link adaptation.

A fundamental scheme for achieving variable data rates by changing the set of spread-

ing sequences in multicode Code Division Multiple Access is proposed in [73]. The ex-

pressions for Multiple Access Interference (MAI) have also been derived. This paper lacks

the scheduling algorithm for multicode transmission. A scheduling algorithm for both the

Adaptive Modulation and Coding (AMC) and multicode transmission is proposed in [74],

which maximizes the Carrier-to-Interference Ratio (CIR) to increase the throughput. A link

adaptation for High Speed Packet Data Access (HSPDA) is presented in [75] by adaptive

modulation and coding, multicode transmissions and Hybrid Automatic Repeat Request

(HARQ). The paper also compares the throughput of MC-CDMA and DS-CDMA tech-

nologies using the proposed method. The average bit error rate performance of the AMC

and multicode scheme for Nakagami fading channel is studied in [76].

For uplink CDMA system, the problem of maximizing the total throughput under a bit

error rate constraint is investigated in [77]. The realization of variable data rate is achieved

by parametrizing the number of signature waveforms (multicodes) and constellation points

in Quadrature Amplitude Modulation (QAM) for each user. The solution is optimal and

potentially complex. A sub-optimal approach of deriving the expressions for optimal re-

source allocation based on single user is proposed in [78]. The single user solution is then

extended to form a sub-optimal sequential optimization procedure for multiple users.
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Chapter 3

Sampling Clock Recovery

The timing synchronization at the physical layer of the proposed wideband waveform con-

sists of two parts; (1) Sampling clock offset estimation and compensation, and (2) Burst de-

tection. Both these operations are very important in wideband networking radio operation

as they directly affect the adaptive time slot algorithm in ATDMA based Medium Access

Control (MAC) protocol. Figure 3.1 shows the relation of adaptive time slot algorithm

in wideband networking operation with the timing synchronization. The measurement of

ATDMA time slots and thus the switching rate of MAC is affected by the time varying sam-

pling clock offset. This sampling clock offset is caused by the inherent mismatch between

the oscillators of transmitter and receiver [20]. Sampling clock recovery stage estimates

and compensates this offset. Similarly, the start of each time slot depends on the burst

detection stage and the switching rate of MAC. In this way, both these operations that

constitute the timing synchronization, are very important for ATDMA and MAC protocol.

The Sampling Clock Offset (SCO) degrades the performance heavily, if not estimated

and compensated properly. For multiuser CDMA system, it becomes more difficult to

estimate the offset because each radio receives the composite signal from all the transmit

radios. Moreover, this offset varies slowly with time due to thermal drift [21].

We propose Modified Square Timing Recovery (MSTR) algorithm1 consisting of three

stages for both the single and multiuser cases. The proposed MSTR algorithm consists of

three stages. In the first stage, Sampling Clock Offset (SCO) is estimated at chip level

by modifying square timing estimation. In the second stage, the SCO estimates are post-

filtered to improve the tracking performance. We present a novel usage of Steady-State,

1Parts of this chapter appear in author’s own publication, [20].
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Figure 3.1: Adaptive time slot algorithm and its relation with timing synchronization

State-Space Recursive Least Squares with Adaptive Memory (S4RLSWAM) for the post-

filtering of SCO estimate. The third stage compensates the estimated SCO by using a

feedforward Lagrange interpolation based algorithm.

3.1 System Model and Problem Formulation

We consider K users at the physical layer of the wideband waveform. The spreading

waveform of the kth user is given by

πk(t) =
G−1∑
n=0

ck[n]g(t− nTc) (3.1)

where ck[n] is the nth sample of the spreading code of kth user, G is the spreading gain

and g(t) is the pulse shaping filter at chip level with period Tc = T/G (T is the symbol

duration). The transmitted signal sk(t) of kth user is given by

sk(t) =
∑
i

dk[i]πk(t− iT ) (3.2)
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where dk[i] is the ith transmitted data symbol of kth user and T is the symbol duration.

For multipath fading environments, the channel impulse response is given by [79]

hk(τ, t) =

γk∑
l=0

αkl(t)e
j2πfD,kltδ(t− τkl) (3.3)

where δ(t− τkl) is the Dirac delta function defined as

δ(t− τkl) =

 +∞, if t = τkl

0, Otherwise

and which is also constrained to satisfy the identity∫ ∞
−∞

δ(t− τkl) dt = 1

and αkl(t), fD,kl, τkl and γk are the time varying complex path gain, Doppler spread, delay

spread corresponding to the lth path and kth user and number of multipath, respectively.

After passing through the channel, the received composite continuous time baseband signal

can be expressed as

r(t) =
K∑
k=1

ej2π∆fkt
∑
i

dk[i]qk(t− iT ) + w(t) (3.4)

where

qk(t) =

γk∑
l=1

αkl(t)πk(t− τkl) (3.5)

and ∆fk is the kth user’s CFO caused due to the Doppler spread and/or frequency mismatch

between the transmitter and receiver. The last term w(t) in (3.4) represents White Gaussian

Noise (WGN) with zero mean and variance σ2. Let the length of each burst of data be BT ,

where B is the number of symbols in each burst. The parameter B is selected such that

the channel behaves time invariant within burst duration. Therefore,

αkl(t) = αkl iT ≤ t ≤ (i+B)T

This constraint is satisfied if the time BT is less than or equal to the coherence time (Tcoh).

The coherence time is related with the Doppler spread. This relation is given as [80]

Tcoh =
0.423

fD
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After sampling the signal r(t) at sampling rate of fs = 1/Ts = Ns/Tc, we get

r(nTs) =
K∑
k=1

ej2π∆fknTs
∑
i

dk[i]qk(nTs − iT − εk(nTs)Tc) + w(nTs) (3.6)

where Ns is the upsampling factor and εk(nTs) is the nth sample of the unknown slowly

varying time delay corresponding to the kth user, and represents the parameter to be

estimated. This slowly varying time delay is produced due to frequency offset present

between the oscillators of the two communicating devices. For single CDMA user case

(K = 1), the subscript k is dropped, so that equation (3.6) becomes

r(nTs) = ej2π∆fnTs .q(nTs − iT − ε(nTs)Tc) + w(nTs) (3.7)

At the receiver, the analog received signal is first sampled by Analog-to-Digital Converter

(ADC). The drift caused by the sampling clocks of the radios produces sampling clock

errors at the ADC before timing and frequency estimation. Due to the sampling clock

errors, ADC starts to sample at an unknown uncertain rate [29]. This uncertain rate is

neither synchronous to the chip rate nor its oversampled rate. During the transmission

of one burst, this clock error is accumulated. This causes excess or starvation of data

samples at the output of ADC for slower or faster receiver sampling clocks, respectively.

The situation is depicted in Figure 3.2. This problem becomes further complicated in

case of multiple CDMA users where all the received signal is the sum of asynchronous

transmissions from multiple users.

3.2 Modified Square Timing Recovery for Single User

In this section, the proposed Modified Square Timing Recovery (MSTR) algorithm for single

user case has been presented. A three stage clock recovery algorithm has been proposed,

including:

1. Modified Square Timing Estimation
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Figure 3.2: Concept of sampling clock drift

2. Post-filtering with State Space Recursive Least Squares with Adaptive Memory

3. Sampling Clock Offset Compensation

3.2.1 Modified Square Timing Estimation

The first stage of the algorithm finds the estimate of the slowly varying time delay ε[n] =

ε(nTs) defined in (3.7). The received sequence is given as

r[n] = r(nTc/Ns) (3.8)

Let f [n] be the filtered data after processing through receiving matched filter having impulse

response of g[n]. Now, the sampling clock offset estimate ε̂ is found by computing the

normalized phase of the complex Fourier coefficient of K ′Ns samples of the filtered sequence

using [27]

ε̂ = −Ns

2π
arg

(
K′Ns−1∑
n=0

|f [n]|2e−j2πn/Ns
)

(3.9)
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In (3.9), K ′ is the number of chip samples used for estimation. By splitting the summation

on the right side of (3.9), we can write

ε̂ = −Ns

2π
arg

(
K′−1∑
i=0

Ns−1∑
l=0

|f [iNs + l]|2e−j2π(iNs+l)/Ns

)
(3.10)

Since e−j2πi = 1 ∀ i, so

ε̂ = −Ns

2π
arg

(
K′−1∑
i=0

Ns−1∑
l=0

|f [iNs + l]|2e−j2πl/Ns
)

(3.11)

The sampling rate fs must be chosen such that the spectral component of the downsampled

data at 1/Tc can be represented. It means that we must have Ns/Tc > 2/Tc. So, Ns = 4

has been chosen. The SCO estimate for Ns = 4 is

ε̂ = − 2

π
arg

(
K′−1∑
i=0

[
|f [4i]|2 − j|f [4i+ 1]|2 − |f [4i+ 2]|2 + j|f [4i+ 3]|2

])
(3.12)

or

ε̂ = − 2

π
arctan

(∑K′−1
i=0 |f [4i+ 3]|2 − |f [4i+ 1]|2∑K′−1

i=0 |f [i]|2 − |f [4i+ 2]|2

)
(3.13)

The authors of [27] estimate ε section by section by assuming very slow variation in time.

For each section ∆[n] (where ε is assumed to be constant), an estimate ε̂[n] is found.

This assumption is not practical in the presence of large clock offset. In our proposed

estimator, the estimate ε̂[n] for each incoming chip is found by computing the complex

Fourier coefficient of the K ′Ns samples. The proposed sliding window computation of the

SCO estimate for nth chip is given by

ε̂[n] = − 2

π
arctan

(∑K′+n−1
i=n |f [4i+ 3]|2 − |f [4i+ 1]|2∑K′+n−1

i=n |f [i]|2 − |f [4i+ 2]|2

)
(3.14)

This proposed SCO estimator can be easily implemented using parallel processing and

pipelining to achieve high data rates.
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3.2.2 Post-filtering with State Space Recursive Least Squares

with Adaptive Memory

The second stage of SCO estimation gives the post-filtered estimate ε̃[n] by post-filtering

the estimate ε̂[n] for nth chip sample. The main advantage of post-filtering is the reduction

of variance of the estimates. A novel usage of adaptive filter namely State Space Recursive

Least Squares with Adaptive Memory (SSRLSWAM) for post-filtering of SCO estimates

is proposed. SSRLSWAM has very good tracking performance especially in time-varying

environments [81]. The reason for selecting SSRLSWAM instead of other adaptive filters

(e.g. Least Mean Square filter, Kalman filter etc.) is the adaptive tuning of the forgetting

factor, which is a key parameter in the SSRLSWAM algorithm. There is no concept

of forgetting factor in Kalman filter, due to which its tracking performance varies with

the time-varying behavior of the incoming estimates. On the other hand, the forgetting

factor in SSRLSWAM is adaptively tuned to provide better tracking performance in time-

varying scenarios by reducing the settling time and steady-state error as much as possible.

This improvement in performance is achieved at the cost of computational complexity

which results due to the fact that SSRLSWAM has a memory. Since SSRLSWAM is

computationally extensive, an approximate solution is used which is termed as Steady

State SSRLSWAM (or S4RLSWAM). The steady state algorithm is still time varying due

to the time varying behavior of the forgetting factor.

Since the SCO estimate from the first stage is bounded by −Ns/2 ≤ ε̂[n] < Ns/2 (see eq.

3.14), the post-filtered estimate ε̃[n] must also be bounded. Therefore, S4RLSWAM cannot

be directly applied for the post-filtering of SCO estimates. A new idea of boundedness has

been proposed within S4RLSWAM algorithm. The proposed idea is to apply modulo-Ns

operation to the prediction error and a-posteriori states to restrict them to the interval

[−Ns/2, Ns/2).

Now, the summarized S4RLSWAM algorithm with the proposed modulo-Ns operation

([.]Ns) is described which has been used to find the post-filtered SCO estimate ε̃[n] (de-
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tailed generic algorithm of S4RLSWAM can be found in [81]). The S4RLSWAM algorithm

requires a state-space model of the signal. We use the constant velocity model which is

expressed in terms of continuous-time state space equations as

ẋ1(t) = x2(t)

ẋ2(t) = 0

y(t) = x1(t)

(3.15)

such that

A =

 0 1

0 0

 , C =
[

1 0
]

(3.16)

The discrete-time equivalent of the model

ẋ(t) = Ax(t)

y(t) = Cx(t)
(3.17)

is obtained by sampling at a period of Ts. Therefore,

ẋ(nTs) =
x((n+ 1)Ts)− x(nTs)

(n+ 1)Ts − nTs
(3.18)

Evaluating (3.17) for t = nTs and noting that (n+ 1)Ts − nTs = Ts, we get

x((n+ 1)Ts)− x(nTs) = TsAx(nTs)

y(nTs) = Cx(nTs)
(3.19)

Rearranging gives,

x((n+ 1)Ts) = [I + TsA]x(nTs)

y(nTs) = Cx(nTs)
(3.20)

Let the state and output matrices for discrete-time model be F and H, respectively. From

(3.16) and (3.20), the matrices are

F =

 1 Ts

0 1

 , H =
[

1 0
]

(3.21)
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So that the discrete-time constant velocity model becomes

x[n+ 1] = Fx[n]

y[n] = Hx[n]
(3.22)

The algorithm then proceeds as follows. First of all, the predicted states are calculated

based on previously estimated states by using

x̄[n] = Fx̂[n− 1] (3.23)

By using the predicted states, the predicted SCO estimate is found by using the output

equation

ε̄[n] = Hx̄[n] (3.24)

So that the prediction error is

ξ[n] = [ε̂[n]− ε̄[n]]Ns (3.25)

Note that ε̂[n] is the input to the post-filtering algorithm. The forgetting factor is updated

using

λ[n] =
[
λ[m− 1] + αψ[m− 1]F THT ξ[n]

]λ+
λ−

(3.26)

The bracket followed by λ− and λ+ in (3.26) indicates the restriction of the forgetting

factor to the interval [λ−, λ+]. The limit λ+ is usually set very close to 1, whereas λ− is

determined by the user. The matrix ψ[n] used in (3.26) is given as,

ψ[n] = (F −K[n]HF )ψ[n− 1] + S[n]HT ξ[n] (3.27)

where K[n] is the S4RLSWAM gain, given as

K[n] = λ[n− 1]−1FP [n]F THT ×
[
1 + λ[n− 1]−1HP [n]F THT

]−1
(3.28)

The matrices P [n] and S[n] are given as,

P [n] = Pλ =

 1− λ[n]2 (1− λ[n])2

(1− λ[n])2 (1− λ[n])3/λ[n]

 (3.29)
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and

S[n] = Sλ =
∂Pλ
∂λ

=

 −2λ[n] −2(1− λ[n])

−2(1− λ[n]) (1− λ[n])2(−1− 2λ[n])/λ[n]2

 (3.30)

After the calculation of S4RLSWAM gain K[n] and the estimation error, the a-posteriori

estimate of states is calculated by

x̂[n] = [Fx̂[n− 1] +K[n]ξ[n]]Ns (3.31)

Using x̂[n], the post-filtered SCO estimate is finally given as

ε̃[n] = Hx̂[n] (3.32)

Since it is a recursive algorithm, it needs to be initialized. The method of regularization

term has been used for initialization. Following initializations are taken to simplify the

process.

ψ[0] = 0, x̂[0] = 0

3.2.3 Sampling Clock Offset Compensation

The third stage of sampling clock recovery consists of compensation of the sampling clock

offset using the post-filtered estimate found in the second stage. A feedforward compen-

sation method based on polynomial-based Lagrange interpolation has been proposed for

this stage. From (3.14) it can be seen that the possible range of ε̂[n] is −2 ≤ ε̂[n] < 2

(for Ns = 4), which will be the same for ε̃[n]. With these bounds, figure 3.3 shows the

method of selection of samples to be interpolated based on the estimated sampling clock

offset. Note that rapid changes in the SCO estimate are shown to explain all the cases; this

variation is relatively slower in practical systems. The offset is estimated with reference to

the second sample in the set of four samples. A right headed arrow indicates a negative

offset, whereas, left-headed arrow shows a positive offset. Let the integer and fractional

parts of ε̃ be α and δ respectively. Then, for Ns = 4, the samples for cubic interpolation
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Figure 3.3: Proposed concept of SCO compensation using cubic interpolation

are given as

s1 = x[i+ α− 1]

s2 = x[i+ α]

s3 = x[i+ α + 1]

s4 = x[i+ α + 2]

where i = 0, Ns, 2Ns, 3Ns, ....... For faster sampling clock, a sample is skipped whenever

the integer offset α is increased by 1. For slower sampling clocks, one latest sample in time
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is used again in cubic interpolation whenever the integer offset α is decreased by 1. After

selecting the samples for interpolation, the fractional part δ is used to perform the Lagrange

polynomial based cubic interpolation. Let s1, s2, s3, and s4 be the 4 samples of the filtered

signal corresponding to a specific chip on which cubic interpolation is to be performed.

For each estimate ε̃[n], the fractional part δ[n] is used to interpolate the 4 samples. The

compensated and downsampled sample y[n] is given as

y[n] =
(
−s1

6
+
s2

2
− s3

2
+
s4

6

)
δ3[n]

+
(s1

2
− s2 +

s3

2

)
δ2[n]

+
(
−s1

3
− s2

2
+ s3 −

s4

4

)
δ[n] + s2

(3.33)

Another problem caused by the sampling clock drift is the excess or starvation of samples

at the receiver due to faster or slower receiver sampling clocks respectively. In case of faster

receiver clock, samples must be discarded whereas in case of slower receiver clock, extra

samples must be put to avoid starvation of data samples.

A new technique to avoid starvation or excess of samples is proposed. The proposed

technique works as follows (assuming Ns = 4). The integer part α of the SCO estimate

decides whether the downsampler has to put required samples or discard extra samples.

This is explained in Figure 3.3. It shows that if the receiver has faster sampling clock, the

integer part α increases from −2 to 1 slowly. Since SCO estimate has an upper bound of

ε̃ < 2 integer part jumps from 1 to −2. At this point a sample is discarded for the purpose

of synchronization. Similarly, if the receiver has slower sampling clock, the integer part α

decreases from 1 to −2 slowly. Since the SCO estimate is lower bounded by ε̃ ≥ −2, integer

part jumps from −2 to 1. At this point, the valid sample x[i + α − 3] is inserted directly

without interpolation and an extra sample x[i + α + 1] is also inserted directly to avoid

starvation of samples.
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3.3 Modified Square Timing Recovery for Multiple

Users

The estimation and compensation of sampling clock offset becomes more challenging in case

of multiple CDMA users per slot. The reason is that the signal received by the receiving

radio is the sum of all the users’ transmissions. Therefore, valid signal needs to be decoupled

from the composite signal prior to SCO estimation. The proposed modified square timing

recovery algorithm is applied to multiuser case as follows.

From (3.7), f [n] is the nth sample of the sequence output from the receiving matched

filter at Ns/Tc = 4/Tc. Before estimation of SCO, the desired user’s data needs to be de-

coupled from the composite data. This requires correlation with the user specific spreading

code. Since the spreading sequence ck is at the sampling rate of 1/Tc, it must be upsampled

by 4 for chip sample-wise correlation with the sequence f [n]. This correlation is given as

fk[n] =
4G−1∑
j=0

f [n+ j]cu,k[j] (3.34)

where fk[n] is the nth sample of the decoupled/correlated sequence and cu,k[j] is the jth sam-

ple of the spreading sequence upsampled by 4, corresponding to the kth user, respectively.

The next stages of SCO estimation, post-filtering and compensation stages are applied on

this sequence in a similar fashion as for single user case. Figure 3.4 elaborates the difference

between the single user and multiuser cases. In Figure 3.4, the matched filtering, corre-

lation and SCO estimation are collectively referred to as Modified Square Timing (MST)

estimation. Note that the proposed scheme for multiuser SCO estimation reduces to single

user SCO estimation when only one user is present. The reason is that there will be no

multiple access interference (MAI) in the correlation result from (3.11) for single user.
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Figure 3.4: Block diagram of the proposed MSTR algorithm

3.4 Simulation Results

In this section, simulation results of the proposed MSTR algorithm have been presented.

The parameters used in the simulation are as follows.

• Number of modulated symbols in each (Nd) = 288

• RRC roll-off factor (R) = 0.65

• Number of samples used for SCO estimation (K ′) = 32

• Initial value of forgetting factor (λinit) = 0.995

• Constant α = 0.000005

Golay sequences of length 16 have been used for spreading and QPSK has been used as

the modulation technique. Figure 3.5 shows the tracking performance of the proposed
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Figure 3.5: Performance of the proposed SCO estimator for time varying and fixed
clock offsets

estimator with and without S4RLSWAM post-filtering at SNR of 2 dB for single user case.

S4RLSWAM has been initialized by the method of regularization term. In Figure 3.5(a),

tracking performance is shown for a slowly varying time delay due to clock offsets of −200

ppm and +200 ppm. The sudden change of clock offset is common in communication

networks due to the change of transmitting or receiving device. It can be seen that the

proposed estimator efficiently tracks the varying time delay even after the sudden change in

clock offset. The proposed estimator can cope with large sampling clock offsets in contrast

to the algorithm given in [29] which assumes the inaccuracy of oscillators up to only 12

ppm. Figure 3.5(b) shows the tracking performance of the proposed estimator for a fixed

fractional time delay of 0.5T . It can be seen that the proposed estimator performs well for
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Figure 3.6: Performance comparison of the proposed estimator with other well-
known estimators

both the fixed and varying time delays.

The comparison of variances of the proposed and other well-known SCO estimators is

shown in Figure 3.6 for single user case. The performance metric (i.e. estimators variance)

is given as

var(ε̃) =
1

M

M∑
i=1

(
ε̃i − Ê (ε̃)

)
(3.35)

where

Ê (ε̃) =
1

M

M∑
i=1

ε̃i (3.36)

is the sample mean of the post-filtered estimate ε̃m and M is the number of realizations.

In this simulation, we have taken M = 2000. For comparison, ML-based algorithm [55],

Montazeri and Kiasaleh’s estimator [26] and a two samples/symbol based feedforward algo-

rithm given in [28] have been considered. It can be seen that the proposed estimator shows

considerable performance improvement when compared to other estimators at all SNRs. It
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is also worth mentioning here that the algorithms given in [26] and [28] are applicable only

when the time delay is fixed, whereas the proposed estimator is capable of estimating both

the fixed and time varying delays efficiently. Furthermore, the proposed algorithm which

uses S4RLSWAM as post-filtering method shows up to 3 dB performance improvement as

compared to that with Kalman filter. This is shown in figure 3.7.

Table 3.1: SUI-3 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 0.4 0.9

Power (dB) 0 -5 -10

K-factor 1 0 0

Doppler (Hz) 0.40 0.30 0.50
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Now, we present the performance of the proposed MSTR algorithm for single user in

Stanford University Interim-3 (SUI-3) channel model [82]. These six Stanford University

Interim (SUI) channels are modelled according to three terrain types and various values of

delay spread, Doppler spread and Line of Sight (LOS)/Non Line of Sight (NLOS) condi-

tions. The detailed specifications of all six SUI channel models are given in appendix A. We

have used SUI-3 channel model in our simulations which models a terrain having moderate

to high tree density and weak LOS. Other specifications of SUI-3 are given in table 3.1.

In table 3.1, K-factor represents the ratio of LOS component to NLOS components. For

NLOS case, K-factor is zero.

Figure 3.8 shows the estimation performance in terms of variance for AWGN and SUI-3

channel models. For multiuser case, we consider 4 radios, i.e. K = 4. Figure 3.9 shows the

performance of the proposed MSTR algorithm in AWGN. The performance is compared to

the single user case with the same SCO of +200 ppm. Without loss of generality, the first
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Figure 3.8: Performance of the proposed MSTR algorithm for single user in AWGN
and SUI-3 channel model

41



0 5 10 15 20 25 30 35
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

Eb/N0 (dB)

V
ar

ia
nc

e

 

 
K=1
K=4

Figure 3.9: Performance of the proposed MSTR algorithm for single/multiple users
in AWGN

user is considered as the desired user. It can be seen that the performance degradation is

almost 2-3 dB at low SNRs, whereas it reduces to 0.5-1 dB at high SNRs. The performance

degradation is due to the Multiple Access Interference present between multiple CDMA

users.

3.5 Conclusion

In this chapter, a Modified Square Timing Recovery (MSTR) algorithm for the estimation

and compensation of the sampling clock offset in the wideband waveform of SDR is pro-

posed. The proposed algorithm consists of three stages for both the single and multiuser

cases. The first stage estimates the Sampling Clock Offset (SCO) at chip level by modifying

the well-known square timing estimation. The second stage post-filters the SCO estimates

to improve the tracking performance. A novel usage of Steady-State, State-Space Recursive

Least Squares with Adaptive Memory (S4RLSWAM) for the post-filtering of SCO estimate
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is proposed. Finally, in third stage, the estimated SCO is compensated by using a feed-

forward Lagrange interpolation method. It is shown through computer simulations that

the proposed MSTR algorithm achieves better performance as compared to a set of known

existing methods in terms of reduced estimator variance and overall BER performance.
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Chapter 4

Burst Detection

To combat multipath fading effects, especially in fast fading channels, many communication

systems use burst mode of transmission [83]. The size of each burst is selected such that

the channel behaves time invariant within the duration of each burst [84]. Consequently,

timing and frequency synchronization, channel estimation, equalization etc. are performed

on each burst independently. In such systems, one of the major challenge at the receiver

side is to detect the start of each valid burst of data.

The detection of burst is actually part of the proposed timing synchronization at the

physical layer of the wideband networking waveform. The sampling clock recovery (chapter

3) and burst detection are very vital in wideband networking radio operation as they

directly affect the adaptive time slot algorithm in ATDMA based Medium Access Control

(MAC) protocol. Figure 4.1 shows the relation of adaptive time slot algorithm in wideband

networking operation with the timing synchronization. The measurement of ATDMA time

slots and thus the switching rate of MAC is affected by the time varying sampling clock

offset. Similarly, the start of each time slot depends on the burst detection and the switching

rate of MAC. In this way, both these operations that constitute the timing synchronization,

are very important for ATDMA-based MAC protocol.

In this chapter, two robust algorithms for burst detection in wideband networking wave-

form are proposed1 . The proposed algorithm I computes the decision metric on the basis

of proposed Time Domain Repetitive (TDR) training sequence. The major contribution

of the proposed algorithm II is a specifically designed training sequence containing two

equal length sub-sequences. The design of training sequence involves the use of differential

1Parts of this chapter appear in author’s own publications, [85], [86].
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Figure 4.1: Adaptive time slot algorithm and its relation with burst detection

encoding through a precoding sequence. The training sequence structure and precoding

sequence are exploited in the decision metric which is normalized by the signal energy. It is

shown through computer simulations that the proposed burst detection is robust to carrier

frequency offset and multipath fading effects.

4.1 Problem Formulation

The received sampled data (3.6) is re-written as

r(nTs) =
K∑
k=1

ej2πυkn
B−1∑
i=0

dk[i]qk(nTs − iT − εk(nTs)Tc) + w(nTs) (4.1)

where Ns is the upsampling factor and υk = ∆fk/fs ∈ [−0.5, 0.5] is the normalized carrier

frequency offset corresponding to the kth user and εk(nTs) is the slowly varying time delay

due to SCO corresponding to kth user (discussed in chapter 3). The SCO compensation

stage compensates the estimated SCO by downsampling the sequence r[n] by Ns = 4

through cubic interpolation and generates the sequence y[n] at 1/Tc (equation (3.33)). For

Data Aided (DA) burst detection algorithm, each burst contains a known training sequence

extending over several samples. The receiver searches for this known training sequence for
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the detection of data bursts. Normally the bursts are transmitted back to back without

silent intervals, but in case of TDMA-based networking waveform, there can be silent

intervals. In our case, let the number of spread samples of the known training sequence

be N . Therefore, the valid number of spread data samples is BG − N , where G is the

spreading gain.

4.2 Proposed Algorithm I

In this section, the proposed Time Domain Repetitive (TDR) training sequence design and

the corresponding burst detection algorithm is presented.

4.2.1 Time Domain Repetitive Training Sequence

The design of training sequence can be done in either frequency domain or time domain.

Frequency domain training sequences are mostly used in multicarrier systems, e.g. OFDM,

multicarrier CDMA, etc [87]. Some training sequences [58] give a decision metric plateau

resulting in high probability of false alarm. Therefore, a vital requirement of the training

sequence design is that it should give a steep roll-off in the resulting timing/decision met-

ric. Moreover, the training sequence data should also be uncorrelated with the valid data

symbols.

To achieve both these requirements, we propose a Time Domain Repetitive (TDR)

training sequence consisting of L identical parts. The basic repeated part is taken as a

length M0 sequence. This sequence must have good autocorrelation properties. Figure 4.2

shows the comparison of the autocorrelation of Golay sequence [88], Gold sequence [89] and

m-sequence [90]. It can be seen that Golay sequence have better autocorrelation properties

as compared to other sequences in terms of sharper peak and lower out-of-phase maxima.

Therefore, we have chosen Golay complementary sequence to be used as basic repeated part

of the TDR training sequence. Each repeated part is spread by the user specific spreading

sequence, so that the length of each part now becomes M = GM0, where G is the spreading
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Figure 4.2: Autocorrelation comparison of Golay, Gold and m-sequences

gain. The L identical parts, each of length M are concatenated to form the TDR training

sequence of length N , such that

M =
N

L
(4.2)

Note that the L identical parts can have different sign patterns as given in [91]. These

sign patterns are exploited in the calculation of timing metric for burst detection. As an

example, for L = 4, the sign pattern can be [− + −−]. If the length M0 repeated part is

denoted by A, then the resulting training sequence becomes [−A,A,−A,−A] for the given

sign pattern. The concept is elaborated in Figure 4.3.

4.2.2 Burst Detection Algorithm based on TDR training

The proposed burst detection algorithm calculates decision timing metric on the data se-

quence y[n] (output of SCO compensation stage) correlated with the user specific spreading

sequence. The reason is that the received data is spread and the training sequence known

at the receiver is also spread so there should be a method to indicate the start of each
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Figure 4.3: Concept of TDR training sequence for L = 4

spread symbol in time. For this purpose, the SCO compensated data is correlated with the

spreading sequence of the corresponding user. The correlated data for kth user is given as

yc,k[n] =
G−1∑
j=0

y[n+ j]c∗k[j] (4.3)

where G is the spreading gain, y[n] is the nth sample of the downsampled data from SCO

recovery stage and ck is the spreading sequence of kth user. Note that this correlation is not

needed in case of multiuser case, because of the correlation performed in sampling clock

recovery stage. In that case, yc,k[n] = y[n]. The correlated data found by using (4.3) is

used to compute the timing metric and energy. The calculation of timing metric exploits

the repeating structure of the training whereas the energy is calculated by squaring the

samples of correlated data. The formulas for timing metric (P ) and energy (E) are given

as

P [d] =
L−2∑
k=0

b[k]

M0−1∑
m=0

[(
y∗c,k[d+ (kM0 +m)G]

)
. (yc,k[d+ ((k + 1)M0 +m)G])

]
(4.4)

E[d] =
M−1∑
i=0

L−1∑
k=0

|yc,k[d+ i+ kM ]|2 (4.5)

where d = 1, 2, 3, ..., b[k] = p[k] × p[k + 1] = [− − +], p[k] is the length L sign pattern of

the training sequence and k = 0, 1, ..., L − 2. With the timing metric and energy defined
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in (4.4) and (4.5), the normalized timing metric for the burst detection is given as

T1[d] =

(
L

L− 1

|P [d]|2
E[d]

)
(4.6)

The normalized timing metric given by (4.6) is similar to the one proposed in [91] for

OFDM systems, but obviously the expressions for P [d] and E[d] given in [91] cannot be

used directly for CDMA system. Therefore, a modified method for the calculation for P [d]

and E[d] (given by (4.4) and (4.5)) is proposed in this paper which uses correlated data as

input sequence and spreading gain G for the calculation of timing metric instead of using

the received sequence directly. A typical normalized timing metric (or decision metric) T1

for length 16 Walsh-hadamard spreading codes in AWGN obtained is shown in Figure 4.4.

The normalized timing metric is the ratio of P [d] to signal energy. It can be seen from

figure 4.4 that the proposed burst detection method gives a timing metric having sharp

peak at the burst start.

As mentioned earlier that timing metric calculation exploits the repeated structure of

training sequence, so if burst is present, T1[d] will be high whereas in the absence of burst

start, T1[d] will be low, since energy will be high in both the cases. Therefore, the start of
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burst detection is a binary hypothesis problem which can be stated as

H0 : T1[d] < γ, =⇒ No burst detected

H1 : T1[d] > γ, =⇒ Burst detected

where γ is the threshold. If burst is detected, the next step is peak searching which finds

the index corresponding to the maximum value of the normalized timing metric for next

Nw samples. This is mathematically written as

n̂0 = argmax
d
T1[d] for next Nw samples (4.7)

The peak search can also be increased beyond Nw samples but it will cause unnecessary

delay in the processing. The start of the burst index is given by (4.7). Starting from this

burst index, the data yc,k is downsampled by G to get B symbols of the detected burst.

4.2.3 Simulation Results

In this section, we present the simulation results of the proposed burst detection algorithm

based on TDR training sequence. The parameters used in the simulation are as follows.

• Number of modulated symbols in each burst (without spreading) (Nd) = 288

• Training sequence length (N0) = 32

• RRC roll-off factor (R) = 0.65

• Threshold (γ) = 0.1

Golay sequences of length 16 have been used for spreading and QPSK has been used as

the modulation technique. The performance of the proposed algorithm has been evaluated

by finding the probability of correct burst detection (PD). In this simulation, we have

incorporated multipath fading effects by using SUI channel models [82]. The detailed SUI

channel parameters can be found in appendix A. The probability of correct burst detection
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Figure 4.5: Probability of Burst detection versus SNR of the proposed TDR train-
ing based algorithm in different channel models

of the proposed algorithm by varying SNR in AWGN, SUI-2 and SUI-4 multipath fading

channels is shown in Fig. 4.5. It can be seen that the probability in AWGN and SUI-2

channels is almost equal to that in AWGN whereas only a small difference is observed

in case of SUI-4 channel model. This is due to zero line of sight and large delay spread

values present in SUI-4 channel model (see appendix A). However, the detection probability

is equal to unity at high SNR for all the channels. This shows that the proposed burst

detection algorithm is robust against multipath fading effects.

The detection performance of the proposed burst detection algorithm has been com-

pared with that of some existing algorithms. For this comparison, Zhao’s algorithm [38]

and Deng’s algorithm [40] have been considered. The reason for selecting these algorithms

is that they are superior to other detection algorithms described in chapter 2 in terms of

detection performance. From Fig. 4.6, it can be seen that the proposed algorithm out-

performs both these algorithms even at low SNR. The performance improvement is almost
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Figure 4.6: Detection performance comparison of the proposed TDR training based
algorithm with other algorithms in AWGN channel

1dB at low SNRs ranging from -16dB to -9dB. Moreover, the proposed algorithm achieves

PD = 1 at -9dB. The performance of these three algorithms has also been compared in

SUI-4 channel model with the same value of γ as used for AWGN channel. This com-

parison is shown in Fig. 4.7 which shows that PD for the proposed algorithm is changed

slightly, whereas PD for the other two algorithms is decreased very much. In this case, the

performance improvement is almost 2dB as compared to Deng’s algorithm. Moreover, the

proposed algorithm achieves PD = 1 at -8.5dB.

4.3 Proposed Algorithm II

Although there is no timing metric plateau in the proposed TDR training based burst

detection algorithm, the timing metric roll-off needs to be further increased so that the

peak becomes sharper and more distinct. To achieve this, we propose a novel Differentially
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Figure 4.7: Detection performance comparison of the proposed TDR training based
algorithm with other algorithms in SUI-4 channel model

Modulated (DM) training sequence and burst detection with precoding algorithm.

4.3.1 Differentially Modulated Training Sequence

We propose a novel training sequence which is based on differential encoding using a pre-

coding sequence. This is why it is termed as Differentially Modulated (DM) training

sequence. The idea is to concatenate two equal length sub-sequences p1 and p2, each

of length L0 = N/2G, where N is the length of spread training sequence and G is the

spreading gain. The second sub-sequence p2 is obtained by differentially modulating the

first sub-sequence p1. This is achieved by using a precoding sequence pw of length L0.

Therefore,

p2[j] = p1[j].pw[j] j = 0, 1, 2, ..., L0 − 1 (4.8)

where p1[j], p2[j] and pw[j] are the jth samples of p1, p2 and pw, respectively. By concate-

nating the two sub-sequences p1 and p2, the unspread sequence vu of length N0 = N/G is
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given as

vu = [p1 p2] (4.9)

The sequence given in (4.9) has no user specific information. Therefore, the sequence vu

is spread by the user specific spreading code to distinguish it from that of other users. So,

the proposed spread training signal for kth user becomes

vk(t) =

N0−1∑
i=0

vu[i]zk(t− iT ) (4.10)

The choice of sub-sequence p1 and precoding sequence pw is the most important step

in the design. These sequences must be intelligently chosen to have specific correlation

properties. An important property that the sequences p1 and pw must have is the minimum

value of maximum out-of-phase autocorrelation. The accuracy of the correct detection

performance of the proposed algorithm is directly related with the value of maximum out-

of-phase autocorrelation. The lower the out-of-phase maxima of the chosen sequence, the

more will be the accuracy.

Figure 4.2 shows the comparison of the autocorrelation of Golay sequence, Gold se-

quence and m-sequence. It can be seen that Golay sequence [88] have better autocorrelation

properties as compared to other sequences. It can be noted that;

i. The out-of-phase maxima of the Golay sequence autocorrelation is lower than other

two sequences, and

ii. The out-of-phase maxima of the Golay sequence autocorrelation is not near the main

peak as compared to other two sequences

These two properties govern the selection of Golay sequences for the training sequence

design. Furthermore, the proposed training sequence has even better autocorrelation prop-

erties. Figure 4.8 compares the autocorrelation of a Golay complementary sequence and

the proposed training sequence of length 32. It can be seen that the out-of-phase max-

ima of the Golay sequence autocorrelation is 21.88% of the peak value in case of Golay
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Figure 4.8: Autocorrelation comparison of Golay sequence and the proposed train-
ing sequence

sequence, whereas the out-of-phase maxima of the proposed training sequence autocorre-

lation is 15.6% of the peak value. It also affirms the better correlation properties of the

proposed training sequence as compared to the typical Golay sequences. The sequences p1,

pw and p2 chosen from the Golay sequence set of length N0/2 are

p1 = [1,−1,−1,−1,−1, 1,−1,−1, 1,−1,−1,−1, 1,−1, 1, 1],

pw = [1,−1, 1, 1, 1,−1,−1,−1,−1, 1,−1,−1, 1,−1,−1,−1],

and

p2 = [1, 1,−1,−1,−1,−1, 1, 1,−1,−1, 1, 1, 1, 1,−1,−1].

4.3.2 Burst Detection Algorithm with Precoding

For burst detection, we follow the method of S&C [58] with appropriate modifications. The

main modification is in the training sequence design. So, firstly, the proposed differentially
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Figure 4.9: A typical normalized timing metric using DM training sequence (G = 16)

modulated training sequence is designed according to the procedure mentioned in section

4.3.1. Then the method presented in [58] is applied as follows. Since the received data

given by (4.1) is spread and the training sequence known at the receiver is also spread,

therefore the SCO compensated data is first correlated with the user specific spreading

sequence. This is necessary to indicate the start of each spread symbol in time. If kth user

is receiving data, than mth chip of the correlated data is given by

yc,k[n] =
G−1∑
j=0

r[n+ j]ck[j] (4.11)

where y[n] is the nth sample of the SCO compensated data. Note that this correlation is not

required in case of multiuser case because of the correlation performed in the SCR stage.

The correlated data from (4.11) is used to compute the decision metric. Note that the

method given in [40] uses the absolute value of correlated data (similar to (4.11)) followed

by peak search for detection process. The peaks are separated by the period T = GTc.

A major problem in this approach is that these peaks are submerged at low SNRs. To

overcome this problem, we propose a decision metric for burst detection which uses the

correlated data given in (4.11) and exploits the structure of the proposed training sequence

(see section 4.3.1). The algorithm operates in sliding window mode, where the window
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size is equal to the spread training sequence length N . The proposed normalized decision

metric is given as

T2[d] =

∣∣∣∑L0−1
m=0 yc,k[d+mG].yc,k[d+ (m+ L0)G].pw[m]

∣∣∣2
|E(d)|2 (4.12)

where

E[d] =

L0−1∑
m=0

|yc,k[d+ (m+ L0)G]|2 (4.13)

is the energy of the current batch of correlated data of kth user. Also, let

P [d] =

L0−1∑
m=0

yc,k[d+mG].yc,k[d+ (m+0 L)G].pw[m] (4.14)

where d = 0, 1, 2, 3, .... and L0 is the length of precoding sequence equal to N0/2 and

pw[m] is the mth sample of the precoding sequence (see section 4.3.1). The inclusion of the

proposed precoding sequence is the main difference between our modified decision metric

and the metric of [58]. A typical normalized timing metric (or decision metric) T2 of length

16 Walsh-hadamard spreading codes in AWGN obtained by proposed modification is shown

in Figure 4.9. The normalized timing metric is the ratio of P [d] to signal energy. It can be

seen from figure 4.9 that the proposed burst detection method produces a timing metric

having sharp peak at the correct burst start.

From (4.12) and (4.13), the modified decision metric consists of two parts; (1) Timing

metric, P , which exploits the training sequence structure and precoding sequence, and (2)

Normalization factor, E, which doesn’t exploit the training sequence structure. As men-

tioned earlier that timing metric calculation exploits the differential modulated structure

of training sequence, so if burst is present, T2[d] will be high whereas in the absence of

burst start, T2[d] will be low, since energy will be high in both the cases. Therefore, the

start of burst detection is a binary hypothesis problem which can be stated as

H0 : T2[d] < γ, =⇒ No burst detected

H1 : T2[d] > γ, =⇒ Burst detected
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where γ is the threshold. If burst is detected, the next step is peak searching which finds

the index corresponding to the maximum value of the normalized timing metric for next

Nw samples. This is mathematically written as

n̂0 = argmax
d
T2[d] for next Nw samples (4.15)

The peak search can also be increased beyond Nw samples but it will cause unnecessary

delay in the processing. The start of the burst index is given by (4.15). Starting from this

burst index, the data yc,k is downsampled by G to get B symbols of the detected burst.

4.3.3 Simulation Results

In this section, we present simulation results of the proposed burst detection algorithm

based on DM training sequence. The parameters used in the simulation are as follows.

• Number of modulated symbols in each burst (without spreading) (B) = 288

• Training sequence length in symbols (N0) = 32

• RRC roll-off factor (R) = 0.65

• Spreading gain (G) = 16

• Precoding sequence length (L0) = 16

• Training sequence length in chips (N) = 512

For different values of false alarm probability (PFA), the detection probability (PD)

of the proposed algorithm in Additive White Gaussian Noise (AWGN) has been shown

in Figure 4.10. Since PFA is a Q-function of SNR and threshold [92], it can be fixed

for each curve by decreasing the value of threshold as SNR increases. To change the

fixed value of PFA for other curve, threshold is adequately increased which decreases the

detection probability (PD). The detection performance of the proposed burst detection

algorithm has been compared with that of Zhao’s [38] and Deng’s [40] algorithms. All the
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Figure 4.10: Detection performance of the proposed DM training based algorithm
in AWGN channel for different values of PFA

simulation parameters have been kept the same and PFA is set to be 10−2. Since the two

algorithms [38] and [40] are applicable only to single user system, the proposed algorithm

is also simulated for single user case for true comparison. From Figure 4.11, it can be

seen that the proposed algorithm outperforms both these algorithms even at low SNR.

The performance improvement is almost 1dB at low SNRs ranging from -16dB to -9dB.

Moreover, the proposed algorithm achieves PD = 1 at -10dB.

The performance of these three algorithms has also been compared in Stanford Univer-

sity Interim (SUI) channel model [82]. We have used SUI-4 channel model in our simulations

which models a terrain having moderate to high tree density and weak LOS. The compar-

ison is shown in Figure 4.12 which shows that the proposed DM training based algorithm

achieves a performance improvement of almost 2dB as compared to Deng’s algorithm and

also achieves PD = 1at -9dB. Moreover, the detection performance of the proposed algo-

rithm is decreased only about 0.5dB as when compared with its performance over AWGN.

On the other hand, the performance degradation for Deng’s algorithm is almost 1-1.5dB.
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Figure 4.11: Detection performance comparison of the proposed DM training based
algorithm with other algorithms in AWGN channel

This shows that the proposed algorithm is very robust against multipath fading effects.

Finally, the performance of proposed burst detection algorithm for multiuser case has

been evaluated by finding the probability of correct burst detection (PD) for different

number of users. The simulation is performed over AWGN channel for 1, 4, and 8 CDMA

users. Figure 4.13 shows the detection probabilities versus SNR for different number of

users. It can be seen that for 1 and 4 users’ case, PD becomes 1 at -10dB, whereas for 8

users PD becomes 1 at -9dB which shows that by increasing number of users from 1 to 4, the

proposed algorithm can still achieve PD = 1 at the same SNR. The detection performance

for multiuser case is also evaluated over SUI-4 channel model and shown in figure 4.14.

It can be seen that there is almost 1-2dB difference between 1 user and 8 users’ cases. It

affirms that the proposed DM training based burst detection algorithm is very effective for

multiuser CDMA based wideband networking waveform in multipath fading environment.
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Figure 4.12: Detection performance comparison of the proposed DM training based
algorithm with other algorithms in SUI-4 channel model
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Figure 4.13: Detection performance of the proposed DM training based algorithm
for multiple CDMA users in AWGN

61



−16 −14 −12 −10 −8 −6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

SNR (dB)

P
D

 

 

8 CDMA users
4 CDMA users
1 CDMA user

Figure 4.14: Detection performance of the proposed DM training based algorithm
for multiple CDMA users in SUI-4 channel

4.4 Comparison of TDR training and DM training

based Burst Detection

In this chapter, we have presented two novel data aided algorithms for burst detection

at the physical layer of the wideband networking waveform. The first algorithm (section

4.2) is based on TDR training and exploits a specific sign pattern for identical parts in

the calculation of timing metric. The resulting timing metric, normalized by the signal

energy, has a steep roll-off pattern. The second algorithm (section 4.3) is based on DM

training and exploits the precoding sequence used in the design of training sequence for

the calculation of timing metric. Due to the use of two sub-sequences formed through

differential modulation, the occurrence of data similar to training sequence becomes very

less probable. Furthermore, the sub-sequences are selected from Golay complementary

sequences and it is shown that the proposed DM training sequence has better correlation

properties as compared to that of Golay sequence. The resulting timing metric of the DM

training based algorithm has a very sharp peak at the correct detection point. Due to
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Figure 4.15: Performance comparison of the two proposed burst detection algo-
rithms in SUI-2 channel

this reason, the DM training based algorithm gives slight improvement in the detection

performance as compared to the TDR training based algorithm. This is shown in Figure

4.15 for SUI-2 channel model. Figure 4.16 shows the detection performance of the two

proposed algorithms in SUI-4 channel. It can be seen that the DM training based algorithm

outperforms the other by almost 0.25− 0.5dB.

4.5 Conclusion

This chapter presented two proposed novel algorithms for burst detection in wideband net-

working waveform. A Time Domain Repetitive (TDR) training sequence is proposed and

used for the computation of decision metric for algorithm I. For the proposed algorithm II,

a specifically designed training sequence containing two equal length sub-sequences is pro-

posed. It is termed as differentially modulated (DM) training sequence. The design of DM

training sequence involves the use of differential encoding through a precoding sequence.
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Figure 4.16: Performance comparison of the two proposed burst detection algo-
rithms in SUI-4 channel

The training sequence structure and precoding sequence are exploited in the decision metric

which is normalized by the signal energy. It is shown through computer simulations that

the proposed burst detection is superior to a set of known existing algorithms in terms of

the probability of detection. The detection performance is also evaluated in the presence

of multipath fading effects generated by using SUI channel models.
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Chapter 5

Carrier Frequency Offset Estimation

Carrier Frequency Offset (CFO) is caused due to the inherent mismatch between the oscil-

lator frequencies of the transmitter and receiver. As a result of CFO, the received signal’s

phase is distorted. The digital data can’t be properly detected if the CFO is not correctly

estimated and compensated at the receiver side [93]. Since the software defined radio net-

works are mostly infrastructureless, each radio has a carrier frequency oscillator that is

independent to those of other radios. Therefore, the CFO introduced at each receiver side

is independent from all other receivers. So each radio should estimate and compensate the

CFO for the incoming signal individually.

Due to the burst mode of transmission of the proposed wideband waveform, each burst

may be affected by a different Doppler spread in case of relative motion between transmitter

and receiver [94]. Moreover, each incoming burst may come from a different radio in

the network due to the TDMA-based networking operation. Therefore, CFO needs to be

estimated and compensated for each burst individually and independently.

In this chapter, we propose two types of novel CFO estimation and compensation algo-

rithms1. The first algorithm is based on Fast Fourier Transform (FFT) and interpolation.

Firstly, a basic estimation algorithm has been proposed which uses FFT and quadratic

interpolation. Secondly, an enhanced CFO estimator has been proposed which is based

on modified FFT and biquadratic interpolation technique. A detailed computational com-

plexity analysis of both the basic and enhanced algorithms is also presented. The second

algorithm is a novel two stage algorithm for CFO estimation and compensation. The first

stage (coarse estimation) provides a coarse estimate of CFO by using Maximum Likeli-

1Parts of this chapter appear in author’s own publications, [22], [23].
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hood Data Aided (MLDA) correlation based algorithm. The second stage (fine estimation)

estimates the residual offset error for each burst on sample by sample basis using blind

estimation approach. The estimation range of the proposed estimator is almost full. It will

be shown that the proposed algorithm has better performance and lower computational

complexity as compared to a set of known two stage CFO estimation algorithms.

5.1 Problem Formulation

The received sampled data (3.6) is re-written as

r(nTs) =
K∑
k=1

ej2πυkn
B−1∑
i=0

dk[i]qk(nTs − iT − εk(nTs)Tc) + w(nTs) (5.1)

where υk = ∆fT = ∆fk/fs is the normalized carrier frequency offset for kth user and

εk(nTs) is the slowly varying time delay due to SCO corresponding to kth user. Since

∆f can vary from −fs/2 to fs/2, the range of the normalized CFO is from -0.5 to 0.5.

The received sequence r(nTs) is downsampled after SCO estimation in the sampling clock

recovery stage by Ns = 4 followed by further downsampling by G in the burst detection

stage to result in the downsampled and despread sequence z[n]. This downsampled data

sequence in the form of bursts is input to the CFO estimation stage which estimates the

symbol-level normalized CFO for kth user (υo,k = GNsυk). Since the CFO of each user is

to be estimated independently, the subscript k is dropped for simplicity. The aim of CFO

estimation algorithm is to find an estimate of CFO (υo) and then correct it.

5.2 Proposed FFT and Interpolation based Algorithms

5.2.1 FFT and Quadratic Interpolation

This section presents the proposed basic algorithm for CFO estimation using FFT and

Lagrange quadratic interpolation. In burst mode of communication, each burst is affected
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Figure 2. Block diagram of the proposed basic CFO estimator 

4. Proposed Basic Algorithm 

This section presents the proposed basic algorithm for CFO 
estimation using FFT and Lagrange quadratic interpolation. 
In MC-CDMA, the received signal first goes through inverse 
OFDM before spreading, so the spread received signal r(k) 
has to be used to estimate wideband CFO. In burst mode of 
communication, each burst is affected by a different 
frequency offset, so the proposed estimator finds the CFO 
estimate for each burst independently [19].  

Let N be the number of samples in each received burst. 
Firstly, each received burst of length N is divided into N0(basic) 
windows, each of length W=2R, where R may be any integer 
from 1 to log2(N). To achieve better FFT resolution, the 
window size W must be greater than 32 (i.e. R > 5). Then, 
FFT is applied to each window and average of FFT 
coefficients for all windows is calculated. The frequency 
corresponding to the maximum value FFT coefficient is a 
coarse frequency offset estimate with an error of eFFT = ∆f - 
fm. This error is very large due to the limited resolution of 
FFT. It is then reduced by the use of quadratic interpolation. 
Figure 2 shows the block diagram of the proposed basic 
estimator.  

This interpolation is applied to the peaks of the resulting 
FFT of the received burst. Figure 3 illustrates the technique 
of finding the peak of the spectrum from three adjacent 
spectral lines. Point B (fm,hm) is the point of maximum FFT 
energy detected by the receiver, whereas points A (fm-1,hm-1) 
and C (fm+1,hm+1) are the spectral lines adjacent to it. The 
index m represents the position of the FFT peaks. The true 
frequency f is located at Point D. 

A quadratic polynomial is then applied between the 
spectral peaks A, B and C to estimate the true peak which is 
located at point D. A quadratic polynomial obtained using 
these three points is obtained by using Lagrange polynomial 
interpolation [20]. This polynomial is given as, 
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The point of maximum amplitude can be found by 
differentiating (4) with respect to f such that, 
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Now the point of maximum/minimum amplitude can be 
obtained by letting, 
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If the frequency resolution of FFT is fresolution = fm - fm-1, then 
the following simplifications can be made accordingly. 
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By using these simplifications and performing some easy 
algebraic manipulation, we get, 

1 1 1 1
( )

1 1

2 4 2 ( )

2( 2 )
,m m m m m m m m resolution

est basic

m m m

f h f h f h h h f
f

h h h

− + − +

− +

− + + −
∆ =

− +
 

which can be further simplified to get the frequency offset 
estimate for this algorithm as,  
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The error between the estimated and true frequency offset is, 
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Figure 3. Quadratic interpolation applied to the FFT peaks 

The estimation of the offset depends on the 
maxima/minima of the quadratic curve which may occur 
anywhere between points A and B in Figure 3. So, there 
exists an uncertainty about the estimation performance. This 
uncertainty is not very severe in DS-CDMA systems. In MC-
CDMA systems, this estimation uncertainty can lead to large 
amount of Intercarrier Interference (ICI). Due to this reason, 
this error needs to be further reduced in order to decrease the 
amount of ICI introduced. 
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Figure 5.1: Block diagram of the proposed FFT and Quadratic interpolation based
algorithm

by a different frequency offset, so the proposed estimator finds the CFO estimate for each

burst independently.

Let the number of samples in each received burst is denoted by B. Firstly, each received

burst of length B is divided into N0,basic windows, each of length W = 2R, where R is an

integer such that 1 ≤ R ≤ log2(B). A greater window size results in better FFT resolution.

Fast Fourier Transform is then applied to each window and average of FFT coefficients

for all windows is calculated. The frequency corresponding to the maximum value FFT

coefficient is a coarse frequency offset estimate with an error of eFFT = υo − υm, where υm

is the normalized frequency corresponding to the maximum FFT amplitude. This error is

very large due to the limited resolution of FFT. It is then reduced by the use of quadratic

interpolation. Figure 5.1 shows the block diagram of the proposed basic estimator.

The quadratic interpolation is applied to the peaks of the resulting FFT of the received

burst. Figure 5.2 illustrates the technique for finding the peak of the spectrum from three

adjacent spectral lines. Point B(υm, am) is the point of maximum FFT energy detected

by the receiver, whereas points A(υm−1, am−1) and C(υm+1, am+1) are the spectral lines

adjacent to it. The index m represents the position of the FFT peaks. The true frequency

υo is located at Point D. A quadratic polynomial is then applied between the spectral

peaks A, B and C to estimate the true peak which is located at point D. A quadratic

polynomial obtained using these three points is obtained by using Lagrange polynomial
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has to be used to estimate wideband CFO. In burst mode of 
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fm. This error is very large due to the limited resolution of 
FFT. It is then reduced by the use of quadratic interpolation. 
Figure 2 shows the block diagram of the proposed basic 
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This interpolation is applied to the peaks of the resulting 
FFT of the received burst. Figure 3 illustrates the technique 
of finding the peak of the spectrum from three adjacent 
spectral lines. Point B (fm,hm) is the point of maximum FFT 
energy detected by the receiver, whereas points A (fm-1,hm-1) 
and C (fm+1,hm+1) are the spectral lines adjacent to it. The 
index m represents the position of the FFT peaks. The true 
frequency f is located at Point D. 

A quadratic polynomial is then applied between the 
spectral peaks A, B and C to estimate the true peak which is 
located at point D. A quadratic polynomial obtained using 
these three points is obtained by using Lagrange polynomial 
interpolation [20]. This polynomial is given as, 
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The point of maximum amplitude can be found by 
differentiating (4) with respect to f such that, 
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Now the point of maximum/minimum amplitude can be 
obtained by letting, 

( )
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If the frequency resolution of FFT is fresolution = fm - fm-1, then 
the following simplifications can be made accordingly. 
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By using these simplifications and performing some easy 
algebraic manipulation, we get, 
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which can be further simplified to get the frequency offset 
estimate for this algorithm as,  
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The error between the estimated and true frequency offset is, 
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Figure 3. Quadratic interpolation applied to the FFT peaks 

The estimation of the offset depends on the 
maxima/minima of the quadratic curve which may occur 
anywhere between points A and B in Figure 3. So, there 
exists an uncertainty about the estimation performance. This 
uncertainty is not very severe in DS-CDMA systems. In MC-
CDMA systems, this estimation uncertainty can lead to large 
amount of Intercarrier Interference (ICI). Due to this reason, 
this error needs to be further reduced in order to decrease the 
amount of ICI introduced. 
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Figure 5.2: Quadratic interpolation applied to the FFT peaks

interpolation [95]. This polynomial is given as

L(υ) =
(υ − υm)(υ − υm+1)

(υm−1 − υm)(υm−1 − υm+1)
am−1 +

(υ − υm−1)(υ − υm+1)

(υm − υm−1)(υm − υm+1)
am

+
(υ − υm−1)(υ − υm)

(υm+1 − υm−1)(υm+1 − υm)
am+1

(5.2)

The point of maximum amplitude can be found by differentiating (5.2) with respect to υ

such that,

dL(υ)

dυ
=

[2υ − (υm + υm+1)]

(υm−1 − υm)(υm−1 − υm+1)
am−1 +

[2υ − (υm−1 + υm+1)]

(υm − υm−1)(υm − υm+1)
am

+
[2υ − (υm−1 + υm)]

(υm+1 − υm−1)(υm+1 − υm)
am+1

(5.3)

Now the point of maximum amplitude can be obtained by letting

dL(υ)

dυ

∣∣∣∣
υ=υ̂b

= 0

If the frequency resolution of FFT is υres = υm − υm−1, then the following simplifications
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can be made accordingly.

υm − υm+1 = υres

υm−1 − υm = −υres

υm+1 − υm−1 = 2υres

By using these simplifications, (5.3) can be written as

0 =
[2υ̂b − (υm + υm+1)]

2υ2
res

am−1 −
[2υ̂b − (υm−1 + υm+1)]

υ2
res

am

+
[2υ̂b − (υm−1 + υm)]

2υ2
res

am+1

(5.4)

which is further simplified as

2υ̂b(am−1 − 2am + 2am+1) = (υm + υm+1)am−1 − 2(υm−1 + υm+1)am + (υm + υm−1)am+1

υ̂b =
υmam−1 + υm+1am−1 − 2υm−1am + 2υm+1am + υmam+1 + υm−1am+1

2(am−1 − 2am + am+1)
(5.5)

Adding and subtracting υmam−1, υmam+1 and 4υmam to the numerator of the right side of

5.5, collecting similar terms and using υres = υm − υm−1 = υm+1 − υm, we get

υ̂b =
2υmam−1 − 4υmam + 2υmam+1 + (am−1 − am+1)υres + 2am(2υm − υm−1 − υm+1)

2(am−1 − 2am + am+1)
(5.6)

As 2υm − υm−1 − υm+1 = 0, so the CFO estimate υ̂b using the basic FFT and quadratic

interpolation is given as

υ̂b = υm +
(am−1 − am+1)υres

2(am−1 − 2am + am+1)
(5.7)

The error between the estimated and true frequency offset is

eb = υo − υ̂b (5.8)
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5. Proposed Enhanced Algorithm 
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and (fm, hm) as shown in Figure 6. 

Now, for applying quadratic interpolation again, first we 
have to find ∆hest. It can be calculated by using equation (4) 
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It is worth mentioning here that the data points for this 
interpolation are not uniformly spaced, so we cannot use the 
FFT resolution thoroughly in this case. However if we define 
η as the fractional distance of the peak ∆fest from fm-1 and also 
set fm-fm-1 =fresolution then we can write, 
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Using these simplifications, the new frequency offset 
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Figure 5.3: Block diagram of the proposed modified FFT and biquadratic interpo-
lation based CFO estimator

5.2.2 Modified FFT and Biquadratic Interpolation

The estimation performance of the CFO using FFT and quadratic interpolation depends

on the maxima/minima of the quadratic curve which depends heavily on the amplitude

difference of the points A and B in Figure 5.2. To further improve the performance of the

estimator, we propose an enhanced algorithm which is based on overlapping windows based

FFT and successive use of quadratic interpolation (termed as biquadratic interpolation) on

the FFT coefficients of the received data. Figure 5.3 shows the block diagram representation

of the proposed CFO estimation algorithm. It consists of the following three steps;

Step I

Each received burst of size B is divided into N0,enh overlapped windows, each of size W ,

such that

N0,enh =
B

rW
− 1 (5.9)

where r is the overlapping factor. The reason for using overlapped windows is to avoid

the loss of data near the window boundaries [96]. Moreover, to avoid the spectral leakage

effect, Hamming windows can be used instead of rectangular windows [97]. The concept

of overlapping windows is illustrated in Figure 5.4. Now, applying a similar procedure as

mentioned in the basic algorithm, frequency corresponding to the maximum absolute FFT

coefficient is found.
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It is worth mentioning here that the data points for this 
interpolation are not uniformly spaced, so we cannot use the 
FFT resolution thoroughly in this case. However if we define 
η as the fractional distance of the peak ∆fest from fm-1 and also 
set fm-fm-1 =fresolution then we can write, 
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Using these simplifications, the new frequency offset 
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Figure 5.4: Concept of overlapping windows for modified FFT

Step II

After detecting the point of highest energy (υm, am) in the FFT data, Lagrange quadratic

interpolation is applied to this highest energy point (υm, am) and its two adjacent points

(υm−1, am−1) and (υm+1, am+1). The CFO estimate υ̂b is calculated by the procedure men-

tioned in section 5.2.1.

Step III

The frequency point (υ̂b) obtained in step II using (5.7) is considered as the center point

and quadratic interpolation is again applied to the point (υ̂b, ab) and its two adjacent points

(υm−1, am−1) and (υm, am) as shown in Figure 5.5.

Now, for applying quadratic interpolation again, first we have to find ab. It can be

calculated by using equation 5.2 and putting υ = υ̂b such that

ab = L(υ̂b) (5.10)

After calculation of this FFT energy, we interpolate these points by Lagrange polynomial
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Figure 5.5: Biquadratic interpolation applied to the FFT peaks

method. The Lagrange polynomial will now be

L2(υ) =
(υ − υ̂b)(υ − υm)

(υm−1 − υ̂b)(υm−1 − υm)
am−1 +

(υ − υm−1)(υ − υm)

(υ̂b − υm−1)(υ̂b − υm)
ab

+
(υ − υm−1)(υ − υ̂b)

(υm − υm−1)(υm − υ̂b)
am

(5.11)

The point of maximum amplitude can be obtained by letting,

dL2(υ)

dυ

∣∣∣∣
υ=υ̂e

= 0

It is worth mentioning here that the data points for this interpolation are not uniformly

spaced, so we cannot use the FFT resolution thoroughly in this case. However if we define

η as the fractional distance of the peak υ̂b from υm−1 and also use υm − υm−1 = υres, then

we can write

υ̂b − υm−1 = ηυres

υm − υ̂b = (1− η)υres
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Using these simplifications, the enhanced CFO estimate υ̂e by the proposed modified FFT

and biquadratic interpolation becomes

υ̂e =
υm−1[ηam − ab] + υ̂b[(1− η)am−1 + ηam] + υm[(1− η)am−1 − ab]

2[(1− η)am−1 − ab + ηam]
(5.12)

From Figure 5.5, it is clear that the estimation error of the enhanced algorithm is less than

that of the basic algorithm.

5.2.3 Computational Complexity

In this section, we describe the computational complexity of the basic and enhanced CFO

estimation algorithms proposed in sections 5.2.1 and 5.2.2, respectively. The computational

complexities of the proposed basic and enhanced algorithms in terms of number of additions,

multiplications and divisions for burst size B are shown in Tables 5.1 and 5.2. For a burst

size B, window overlapping factor of r and window size of W , the total number of FFT

windows for the proposed basic and enhanced algorithm is given by

N0,basic =
B

W

N0,enh =
B

rW
− 1

Since, a W -point FFT requires (W/2) log2(W ) complex additions and W log2(W ) complex

multiplications [98], therefore the total number of operations for the FFT computation in

the both the algorithms will be calculated as follows.

Table 5.1: Computational complexity of proposed basic CFO estimation algorithm

Operations Additions Multiplications Divisions

FFT computation B
2

log2(W ) B log2(W ) -

FFT averaging B −W - W

Quadratic interpolation 4 3 1

Total B
2

log2(W ) +B −W + 4 B log2(W ) + 3 W + 1

Total operations: 3B
2

log2(W ) +B + 8
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Table 5.2: Computational complexity of proposed enhanced CFO estimation algorithm

Operations Additions Multiplications Divisions

FFT computation B−rW
2r

log2(W ) B−rW
r

log2(W ) -

FFT averaging B
r
− 2W - W

1st quadratic interpolation 4 3 1

2nd quadratic interpolation 8 6 1

Total B−rW
2r

log2(W ) + B
r
− 2W + 12 B−rW

r
log2(W ) + 9 W + 2

Total operations: 3(B−rW )
2r

log2(W ) + B
r
−W + 23

For basic algorithm:

Complex additions:

(
B

W

)(
W

2

)
log2(W )⇒ B

2
log2(W )

Complex multiplications:

(
B

W

)
W log2(W )⇒ B log2(W )

For enhanced algorithm:

Complex additions:

(
B − rW
rW

)(
W

2

)
log2(W )⇒ B − rW

2r
log2(W )

Complex multiplications:

(
B − rW
rW

)
W log2(W )⇒ B − rW

r
log2(W )

The next step is the averaging of FFT windows which results in B−W and (B/r)−2W

additions for basic and enhanced algorithms, respectively. The number of divisions for

averaging operation is W for both the cases. The number of multiplications, additions and

divisions for the two stages of interpolation is calculated by using (5.7) and (5.12). Table

5.4 shows the numerical values of all the operations for the basic and enhanced algorithms

for the parameters listed in Table 5.3. It can be seen that the major contribution towards

the complexity is due to the overlapping windowed FFT operation. The inclusion of second

stage of quadratic interpolation contributes very less towards the total computations. Also,

the percentage increase in the total computational complexity for enhanced estimation

algorithm is about 15.5%.
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Table 5.3: Parameters used in the simulation

Parameter Value/Description

Spreading gain (G) 16

Number of users (K) 8

Window size (W ) 32

Window type Hamming

FFT size 32

Burst length in samples (B) 320

Overlapping factor (r) 0.8

5.2.4 Simulation Results

In this section, we present the simulation results of the proposed basic and enhanced CFO

estimation algorithms. The simulation parameters used for this purpose are summarized in

Table 5.3. To model the fading channel with variety of terrain types, SUI channel models

are also used in the simulation.

Figure 5.6 presents the BER performance of the two proposed CFO estimation algo-

rithms. We have introduced 20% CFO (i.e. normalized offset = 0.2). It is clear that the

basic algorithm is almost 2-3 dB deviant from the ideal case, where CFO is assumed to

be known at the receiver. This degradation is much reduced by the used of modified FFT

and biquadratic interpolation based algorithm which improves the estimation performance,

resulting in the BER performance close to that of the ideal case. Similar is the case with

Table 5.4: Computational complexity comparison of the basic and enhanced algo-
rithms for parameters listed in Table 5.3

Operations Additions Multiplications Divisions Total

Basic algorithm 1092 1603 33 2728

Enhanced algorithm 1268 1849 34 3151
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Figure 5.6: BER performance analysis of the proposed FFT and interpolation
based algorithms in AWGN

the simulation in SUI-2 channel model shown in Figure 5.7. The deviation of the proposed

basic algorithm is observed to be 1-2 dB from the ideal curve. Again, the enhanced algo-

rithm improves the BER performance and makes it very close to that of the ideal case. The

performance of the proposed estimator is also compared to that of MGEVPM method [48].

It can be seen that the proposed enhanced algorithm gives a performance improvement of

almost 0.5-1 dB in both the AWGN and SUI-2 channel models.

5.3 Proposed Two Stage Data Aided Algorithm

The carrier frequency offset is often estimated in two stages; coarse estimation and fine

estimation. Some of these algorithms are reviewed in chapter 2. Before presenting our

proposed two stage CFO estimation algorithm, we briefly explain two well-known existing

algorithms.
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Figure 5.7: BER performance analysis of the proposed FFT and interpolation
based algorithms in SUI-2 channel model

Casini’s algorithm

In Casini’s algorithm [54], the first stage of coarse estimation is based on Mengali’s con-

ventional CFO estimation [55]. The coarse estimator exploits the autocorrelation of the

known preamble sequence to find the frequency offset and is given as

υ̂coarse =
1

2πDT
arg

[
N0∑
k=D

z[k]z∗[k −D]

]
(5.13)

where υ̂coarse is the coarse estimate of CFO, z[k] is the kth sample of the sequence input

to the CFO estimation stage, T is the sampling period, D is the loop delay and N0 is the

number of symbols in the training sequence. The drawback of this estimator is that it can

estimate up to 20% normalized frequency offset for D = 2. For larger values of D, the

estimation range is further decreased.

For fine estimation of CFO, a suboptimal estimator providing variance close to Cramer-
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Rao Lower Bound (CRLB) has been used [56]. The estimate is given as

υ̂fine =
1

πT (M ′ + 1)
arg

[
M ′∑
k=1

R[k]

]
(5.14)

where υ̂fine is the fine estimate of CFO, M ′ is a positive constant such that M ′ ≤ N0 − 1

and R[k] is the autocorrelation estimate defined as

R[k] =
1

N0 − k

N0∑
i=k+1

zc[i].z
∗
c [i− k], 0 ≤ k ≤ N0 − 1 (5.15)

where zc[i] is the ith sample of the compensated data after coarse CFO estimation. Due to

the sub-optimum implementation assumptions, the mean square error between the Maxi-

mum Likelihood (ML) estimate and the suboptimal estimate increases as Signal-to-Noise

Ratio (SNR) decreases. Moreover, the closed form expression for the frequency estimate

given by (5.14) is obtained under the assumptions of high SNR and low frequency devia-

tions (i.e. M ′T υ̂fine � 1) which are not practical especially in SDR networks. Also, the

variance of the estimate approaches CRLB when the value of M ′ is approximately N0/2 (for

N0 � 1) [56], which increases the computational complexity of the overall algorithm. The

performance of the fine estimation algorithm can be increased by accumulating training

sequences of consecutive bursts. Let B be the number of symbols in each burst, then the

fine estimate will become

υ̂fine =
1

πT (M ′ + 1)
arg

[
Ka−1∑
n=0

M ′∑
k=1

R[n, k]

]
(5.16)

where Ka is the number of autocorrelation summations and

R[n, k] =
1

N0 − k

N0∑
i=k+1

zc[i+ nB].z∗c [i− k + nB]. (5.17)

This accumulation operation requires large memory for the autocorrelation summations.

Oh’s Algorithm

The coarse CFO estimator proposed by Oh and Kim [57] is a modified version of the

Extended Schmidl and Cox Algorithm (ESCA) [58,59]. The smoothing function is removed
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from and arg() operation is re-positioned in ESCA to reduce the computational complexity

[60]. The modified estimator exploits the correlation between the samples of the received

signal to find the frequency estimate. The frequency estimate is given as

υ̂coarse =
1

2πT
arg

[
Ma∑
k=1

{R[k].R∗[k − 1]}
]

(5.18)

where Ma is the number of autocorrelators and

R[k] =
1

N0 − k

N0−1∑
i=k

z[i].z∗[i− k]. (5.19)

The estimation range of this coarse CFO estimation algorithm is almost full irrespective

of the value of Ma, but the choice of Ma is related to the variance of the estimator. The

authors of [57] has chosen Ma = 9 to reduce the computations. For Ma = 9, the estimator

outperforms the estimator of [55], but shows large deviation from CRLB at low values of

SNR, as will be shown in simulation results.

For fine estimation of CFO, a simple correlation scheme between the training sequences

of consecutive bursts is used [61]. This estimator can be expressed as

υ̂fine =
1

2πB
arg

[
N0−1∑
k=0

zc,current[k].z∗c,previous[k]

]
(5.20)

where zc,current[k] and zc,previous[k] are the kth samples of the current and previous data

bursts after coarse CFO compensation, respectively. This estimator works well except a

problem that it uses two data bursts to estimate the residual CFO correctly.

Now we present our proposed novel two stage algorithm for carrier frequency offset

estimation. The first stage (coarse estimation) provides a coarse estimate of CFO by using

Maximum Likelihood Data Aided (MLDA) correlation based algorithm. The second stage

(fine estimation) estimates the residual offset error for each burst on sample by sample

basis using blind estimation approach. The estimation range of the proposed estimator is

almost full.

79



5.3.1 Stage I: Maximum Likelihood Data Aided Estimation

In this section, we derive the Maximum Likelihood Data Aided (MLDA) algorithm for

as the first stage of the proposed two stage CFO estimator. The estimation range of the

proposed MLDA algorithm is full i.e. −0.5 ≤ υ̂o ≤ 0.5. The likelihood function for the

estimation of υo is given by [99]

L(υo) = Re

{∑N0−1
2

i=−N0−1
2

e−j2πυoid∗[i]z[i]

}
(5.21)

where d[i] and z[i] = z(iT ) are the ith samples of the transmitted and received symbols,

respectively, and N0 is the unspread training sequence length.

In order to find CFO estimate υ̂o, we have to maximize the likelihood function given by

(5.21)

max
υo
{L(υo)}

Here, we follow a similar approach to [99], where |L(υo)|2 = L(υo)L
∗(υo) has been maxi-

mized instead of L(υo). So, taking derivative of |L(υo)|2 with respect to υo and setting it

equal to zero yields υ̂o. So,

2|L(υo)|Re

{∑N0−1
2

i=−N0−1
2

(−j2πi)e−j2πυ̂oid∗[i]z[i]

}
= 0. (5.22)

As L(υo) is not zero, we need only to put the real term part equal to zero in (5.22). Hence

Re

{∑N0−1
2

i=−N0−1
2

(−j2πi)e−j2πυ̂oid∗[i]z[i]

}
= 0. (5.23)

Equation 5.23 can be re-written as

0 = Re

{
j
∑N0−1

2

i=−N0−1
2

id∗[i]z[i]e−j2πυ̂oi
}

(5.24)

0 = Re

{
j
∑N0−1

2

i=−N0−1
2

+1
id∗[i]z[i]e−j2πυ̂oi −

(
N0 − 1

2

)
d∗[−N0−1

2
]z[−N0−1

2
]e−j2πυ̂o(−

N0−1
2 )
}

= Re

{
j
∑N0−1

2

i=−N0−1
2

+1
id∗[i]z[i]e−j2πυ̂oi(

N0 − 1

4

)[
N0 − 3

2
− N0 + 1

2

]
d∗[−N0−1

2
]z[−N0−1

2
]e−j2πυ̂o(−

N0−1
2

)

} (5.25)
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By further expanding the terms on right side of (5.25) and, adding and subtracting the

term (
N2

0 − 1

8

)
d∗[N0−1

2
+1]z[N0−1

2
+1]e−j2πυ̂o(

N0−1
2

+1)

we get

0 = Re

{
j

{(
N2

0 − 1

8

)
d∗[N0−1

2
+1]z[N0−1

2
+1]e−j2πυ̂o(

N0−1
2

+1)

−
(
N0 − 1

4

)(
N0 + 1

2

)
d∗[−N0−1

2
]z[−N0−1

2
]e−j2πυ̂o(−

N0−1
2 )

−
∑N0−1

2

i=−N0−1
2

+1
i(i− 1)d∗[i]z[i]e−j2πυ̂oi

+
∑N0−1

2

i=−N0−1
2

+1
i(i+ 1)d∗[i]z[i]e−j2πυ̂oi −

(
N2

0 − 1

8

)
d∗[N0−1

2
+1]z[N0−1

2
+1]e−j2πυ̂o(

N0−1
2

+1)

+

(
−N0 − 1

2
+ 1

)(
−N0 − 1

2

)
d∗[−N0−1

2
]z[−N0−1

2
]e−j2πυ̂o(−

N0−1
2 )
}}

.

(5.26)

By noting that
N2

0 − 1

8
=

(
N0 − 1

2
+ 1− 1

)(
N0 − 1

2
+ 1

)
and combining the 5th and 6th terms on the right side of (5.26) with 3rd and 4th summation

terms, respectively, we get

0 = Re

{
j

{(
N2

0 − 1

8

)
d∗[N0−1

2
+1]z[N0−1

2
+1]e−j2πυ̂o(

N0−1
2

+1)

−
(
N2

0 − 1

8

)
d∗[−N0−1

2
]z[−N0−1

2
]e−j2πυ̂o(−

N0−1
2 )

−
∑N0−1

2
+1

i=−N0−1
2

+1
i(i− 1)d∗[i]z[i]e−j2πυ̂oi +

∑N0−1
2

i=−N0−1
2

i(i+ 1)d∗[i]z[i]e−j2πυ̂oi
}}

.

(5.27)

Adding and subtracting the term(
N2

0 − 1

8

)∑N0−1
2

i=−N0−1
2

+1
d∗[i]z[i]e−j2πυ̂oi

on the right side of (5.27) and combining the 1st and 2nd terms with the two added/subtracted
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summations, we get

0 = Re

{
j

{(
N2

0 − 1

8

)∑N0−1
2

+1

i=−N0−1
2

+1
d∗[i]z[i]e−j2πυ̂oi

−{
(
N2

0 − 1

8

)∑N0−1
2

i=−N0−1
2

d∗[i]z[i]e−j2πυ̂oi

−
∑N0−1

2
+1

i=−N0−1
2

+1
i(i− 1)d∗[i]z[i]e−j2πυ̂oi +

∑N0−1
2

i=−N0−1
2

i(i+ 1)d∗[i]z[i]e−j2πυ̂oi
}}

0 = Re

{
j

{(
N2

0 − 1

8

)∑N0−1
2

i=−N0−1
2

d∗[i+ 1]z[i+ 1]e−j2πυ̂o(i+1)

−
(
N2

0 − 1

8

)∑N0−1
2

i=−N0−1
2

d∗[i]z[i]e−j2πυ̂oi

−
∑N0−1

2

i=−N0−1
2

i(i+ 1)d∗[i+ 1]z[i+ 1]e−j2πυ̂o(i+1)

+
∑N0−1

2

i=−N0−1
2

i(i+ 1)d∗[i]z[i]e−j2πυ̂oi
}}

0 = Re

{∑N0−1
2

i=−N0−1
2

j

2

(
N2

0 − 1

2
− i(i+ 1)

)
{
d∗[i+ 1]z[i+ 1]e−j2πυ̂o(i+1) − d∗[i]z[i]e−j2πυ̂oi

}}
.

(5.28)

or

0 = Re

{∑N0−1
2

i=−N0−1
2

j

8

(
N2

0 − (2i+ 1)2
)

{
d∗[i+ 1]z[i+ 1]e−j2πυ̂o(i+1) − d∗[i]z[i]e−j2πυ̂oi

}}
.

(5.29)

which can be written as

Re

{∑N0−1
2

i=−N0−1
2

jc[i]
{
d∗[i+ 1]z[i+ 1]e−j2πυ̂o(i+1) − d∗[i]z[i]e−j2πυ̂oi

}}
= 0 (5.30)

where

c[i] =
1

8

(
N2

0 − (2i+ 1)2
)

(5.31)

is a special filter function which performs windowing operation. The following relationship

[100] is a good approximation at high SNRs.

z∗[i]

d∗[i]e−j2πυ̂oi
≈ 1 (5.32)
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Multiplying each term in the summation of (5.30) with the term on left hand side of (5.32),

we get

Re

{∑N0−1
2

i=−N0−1
2

jc[i]

{
d∗[i+ 1]z[i+ 1]z∗[i]

d∗[i]
e−j2πυ̂o − z∗[i]z[i]

}}
= 0. (5.33)

Noting that z∗[i]z[i] = |z[i]|2 (a real sequence), (5.33) becomes

Re

{∑N0−1
2

i=−N0−1
2

jc[i]

{
d∗[i+ 1]z[i+ 1]z∗[i]

d∗[i]
e−j2πυ̂o

}}
= 0. (5.34)

From (5.34), we directly get the coarse CFO estimate as

ˆυo(coarse) =
1

2π
arg

{∑N0−1
2

i=−N0−1
2

c[i]
d∗[i+ 1]

d[i]
z[i+ 1]z∗[i]

}
. (5.35)

Here, we explain the technical differences between the MLDA estimator (5.35) and the

estimators [54] and [57]. The proposed estimator makes use of the phase difference between

successive samples z[i] and z[i + D], where D = 1. For D = 1, the estimation range

of the estimator is almost full. For D ≥ 1, the variance of the estimator is increased

due to the reduced number of samples to be averaged in a given window; however, the

computational complexity is accordingly decreased. On the other hand, Casini’s algorithm

[54] can estimate only 20% normalized CFO for D = 2. The most important contribution

of the MLDA estimator is the introduction of a special filter function c[i] which is in the

form of a symmetric window function. The variance of this estimator meets Cramer-Rao

Bound due to the use of the filter c[i] (at-least at high SNRs due to approximation of

(5.32)) [101]. At low SNRs, the variance of the estimate can be reduced by using the

residual offset estimation stage (to be discussed in the next section). The basic idea behind

the coarse estimation stages of the proposed algorithm and the Casini’s algorithm is similar,

but the difference is that the proposed MLDA estimator uses transmitted training sequence

and along with the filter function c[i] to reduce the variance by windowing. On the other

hand, Oh’s algorithm [57] exploits the correlation of the received samples for coarse CFO

estimation.
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5.3.2 Stage II: Sample-by-Sample Residual Offset Estimation

After obtaining coarse frequency estimate by the MLDA algorithm, CFO compensation

has to be applied on the received data. The coarse compensated data is given as

zc[i] = z[i]e−j2πυ̂o(coarse)i, i = 0, 1, ..., B − 1. (5.36)

Now, we present the algorithm for residual offset estimation. The approach is quite similar

to the phase estimation algorithm for PSK signals [102] with some modifications. This

approach is based on estimating the residual offset of each sample in the burst by using

a sliding window approach. For M -ary PSK modulated system, the phase of ith symbol

(assuming perfect frequency synchronization) is given as

φi = θ + ki(2π/M) (5.37)

where θ is the initial phase and ki is the modulation index. Due to the estimation error of

from stage I, the phase φi becomes

φi = θ + 2πυεi+ ki(2π/M). (5.38)

In (5.38), the term υε is the residual offset that needs to be estimated.

To estimate the residual offset of the ith symbol of any burst, let RE = 2P + 1 be the

number of symbols in the estimation interval, where P is the number of symbols before/after

the ith symbol. Therefore, the estimation window for the estimation of residual offset υε[i]

for zc[i] will be

zc[i− P ], ...., zc[i− 1], zc[i], zc[i+ 1], ...., zc[i+ P ].

The structure of the estimator for the estimation of residual offset of the ith symbol is

shown in Figure 5.8.

To incorporate the moving window estimation, we insert P zeros on both sides of the

burst, so that the modified zero-padded burst becomes

z0 = [01×P , zc[0], zc[1], ...., zc[B − 1],01×P ] . (5.39)
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Figure 5.8: Block diagram of the 2nd stage of the proposed CFO estimator

The residual frequency offset for (i − P )th M -ary PSK symbol using the residual fre-

quency estimator is given as

υ̂ε[i− P ] =

 1

2πM
arg


min(i+P−1,B+P )∑
k=max(i−P,P+1)

ejMarg(z0[k])




2π
M

(5.40)

where i = P, P + 2, ...., P +B − 1 and [.] 2π
M

is the modulu-2π/M operation.

After the estimation of residual offset υ̂ε = υ̂fine using (5.40), the final compensated

data rf will be

zf [i] = zc[i]e
−j2πiυ̂ε[i], i = 0, 1, ...., B − 1

5.3.3 Simulation Results

In this section, we present the simulation results of the proposed two stage CFO estimation

algorithm. The training sequence length N0 for MLDA algorithm is taken 32 whereas the

estimation interval RE for the 2nd stage is taken 23. The length of burst B including

training sequence is 320 samples.

It has been mentioned in earlier sections that the proposed algorithm is capable of

estimating large frequency offsets. Figure 5.9 and 5.10 show the relative CFO estimate vs

the actual normalized CFO for SNR = −10 dB and SNR = 0 dB respectively. The actual

normalized CFO (υo) varies from 0 to 0.5. Each point has been obtained by averaging

over 5,000 statistically independent frequency estimates. It can be seen that the proposed
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Figure 5.9: Estimate of CFO vs actual CFO using the MLDA estimator (SNR =
−10 dB).
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Figure 5.10: Estimate of CFO vs actual CFO using the MLDA estimator (SNR = 0 dB).
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frequency estimator efficiently estimates CFO throughout its range even at SNR = −10

dB. This observation makes the proposed estimator valid for estimating a wide range of

frequency offsets efficiently.

The variance of the proposed two stage frequency estimator has been compared with the

Cramer-Rao Bound (CRB). The proposed algorithm uses N0 samples in the first stage and

a maximum of 2P +1 samples in the second stage for the estimation of CFO. Therefore the

overall length of estimation interval will be Nest = N0 + 2P + 1. For frequency estimation,

CRB is given as [55]

CRB(υo) =
3

8π2N3
est

1

SNR
. (5.41)

Figure 5.11 shows the Mean Square Error (MSE) performance of the proposed two stage

estimator compared with the Cramer-Rao Bound (CRB). It can be seen that the estimator

approaches CRB with a little deviation at low SNR. In this simulation, 30% frequency

offset (i.e. normalized CFO = 0.3) is assumed. With this frequency offset, the MSE of the

proposed estimator has been compared with Casini’s CFO estimator [54] and Oh’s CFO

estimator [57]. For [54], M ′ = 18 is chosen, whereas for [57], Ma = 9 and training sequence

length N0 = 32 are used. The simulation result is shown in Figure 5.12. It can be seen

that the proposed estimator outperforms both the algorithms at all SNRs.

The 2nd stage of the proposed estimation algorithm involves windowing and averaging

operation. The effect of changing the window length RE on MSE performance of the

proposed estimator is shown in figure 5.13. It can be seen that there is an MSE performance

degradation of 2 dB at low SNRs and less than 1 dB at high SNRs if window length is

changed from 23 to 11. Even with the reduced window length (which also reduces the

computational complexity), the proposed estimator is superior to the Oh’s estimator in

terms of MSE performance.

Now we compare the Bit Error Rate (BER) performance of the proposed two stage algo-

rithm with the ideal case where CFO is known to the receiver. The BER curves have been

obtained by Monte Carlo simulations with a Monte Carlo index of 1000. Figure 5.14 shows

the BER comparison of the MLDA estimator (1st stage only), proposed two stage estimator
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Figure 5.11: MSE for frequency estimation in AWGN with 30% frequency offset
(Comparison with CRB).
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Figure 5.12: MSE comparison for frequency estimation in AWGN with 30% fre-
quency offset.
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Figure 5.13: MSE comparison for frequency estimation in AWGN with different win-
dow lengths

and the ideal case. It can be seen that the proposed two stage estimator approaches the

BER performance of the ideal case at all SNRs. In this simulation, 30% frequency offset

has been introduced which is successfully estimated and compensated by the proposed es-

timator. Figure 5.15 compares the BER performance of the proposed estimator to that of

the Oh’s estimator. A performance improvement of almost 3 dB can clearly be observed.

To demonstrate the effectiveness of the proposed estimator in multipath fading channel,

the performance is evaluated over Stanford University Interim (SUI) channel models. In

the simulation, we have used SUI-3 channel model with three taps and having a Doppler

spread of 0.5 Hz. Figure 5.16 shows the BER performance comparison of the proposed

estimator and Oh’s estimator. It can be seen that the proposed algorithm outperforms

the Oh’s algorithm at all SNRs while approaching to the ideal case where CFO is known.

This result affirms the viability of the proposed algorithm to be used for CFO estimation

in multipath fading channels.
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Figure 5.14: BER performance of the proposed algorithm in AWGN
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Figure 5.15: BER performance comparison in AWGN
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5.4 Channel Estimation

For channel impulse response estimation, we follow the method given in [91] with some

modification. The modification is required because of the absence of the cyclic prefix in

CDMA systems. The received training sequence after correct detection of burst is sampled

at T = GNsTs. This is given in vector form as (dropping subscript k for simplicity)

vR = [yc(0), yc(G), yc(2G), ...., yc((N0 − 1)G)]T

The channel to be estimated h, the matrix W and the white noise n are given as;

h , [h0, h1, ..., hKc−1]T

W(υo) , diag[1, ej2πυ̂o/N0 , ..., ej2π(N0−1)υ̂o/N0 ]

n , [n(0), n(1), ...., n(N0 − 1)]T
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where Kc is the number of coefficients to be estimated. If the transmitted training sequence

is given by vT, then we form a matrix VT, given as,

VT =


vT (0) vT (−1) · · · vT (−K + 1)

vT (1) vT (0) · · · vT (−K + 2)
...

...
. . .

...

vT (N0 − 1) vT (N0 − 2) · · · vT (N0 −Kc)

 (5.42)

where vT (−1) = vT (−2) = · · · = vT (−Kc+1) = 0. The Maximum Likelihood (ML) channel

impulse response estimate can be realized by,

ĥ = [VT
H .VT]−1VT

H .WH(υ̂o).vR(0) (5.43)

where

vR(0) = W(υ̂o)VT.h + n (5.44)

To combat multipath fading effects, RAKE receiver with Maximal Ratio Combining

(MRC) has been implemented.

5.5 Conclusion

In this chapter, two types of novel CFO estimation and compensation algorithms for the

wideband SDR waveform are proposed. The first algorithm is based on Fast Fourier Trans-

form (FFT) and interpolation. Firstly, a basic estimation algorithm has been proposed

in which FFT and quadratic interpolation are used sequentially to estimate CFO. The

estimation performance of this algorithm is improved by proposing an enhanced CFO esti-

mator which uses modified FFT and biquadratic interpolation. A detailed computational

complexity analysis of both the basic and enhanced algorithms is also presented. A novel

two stage algorithm for CFO estimation and compensation is also proposed and presented

in this chapter. The first stage (coarse estimation) of this algorithm provides a coarse

estimate of CFO by using Maximum Likelihood Data Aided (MLDA) correlation based
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algorithm. In the second stage (fine estimation),the residual offset error for each burst on

sample by sample basis using blind estimation approach is estimated and compensated.

The estimation range of the proposed estimator is almost full. It is shown through com-

puter simulations that the proposed algorithm has better performance as compared to a

set of known two stage CFO estimation algorithms.
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Chapter 6

Link Adaptation

The future SDR-based networks will have to support a variety of high data rate appli-

cations such as streaming video, biometrics, IP data, voice, situational awareness, while

offering a high degree of survivability, mobility and security. Due to these requirements,

the future network developments are moving toward wideband and digital signal based net-

working capable of providing adaptive and high speed communication. Efficient algorithms

for resource allocation/utilization are required to optimize the use of scarce SDR resources.

This involves adapting the transmission parameters of the SDR waveform to varying chan-

nel conditions, QoS and data rate requirements. This process is called link adaptation. A

simple example is the transmit power control algorithm, in which the transmission power

is altered based on channel variations and fading, because a low transmit power is suffi-

cient under good channel conditions. The requirement of link adaptation increases when

the transmissions are in the form of network packets. A low value of bit error rate can

drastically increase the packet error rate and thus packet re-transmissions, if the signal and

protocol parameters are not dynamically changed according the channel conditions and

tolerable bit error rate.

In this chapter, a novel algorithm for link adaptation using fuzzy rule based system

(FRBS) for the physical layer of the wideband networking waveform of SDR is proposed1.

To reduce the packet re-transmissions overhead, the configurable system parameters need

to be changed dynamically according to the channel conditions. Moreover, different ap-

plications (e.g. Push To Talk (PTT), position tracking, point-to-point calls, messages, file

transfer, video communication etc) have different QoS requirements. This varying QoS re-

1Parts of this chapter appear in author’s own publication, [103]

94



quirement in a networking waveform is fulfilled by link adaptation which usually comprises

of two parts; 1) Varying the waveform parameters at the physical layer, and 2) Adaptive

TDMA. The focus of this thesis is on the first part with multicode CDMA at the physical

layer. A novel scheme based on fuzzy rules is proposed which is capable of selecting the

most suitable parameters based on the heuristics. The required Quality of Service (QoS)

and throughput constraints are met by dynamically changing the modulation technique

and the number of multicodes assigned to each user through fuzzy inference system. The

proposed algorithm reduces the complexity and thus the power consumption by restricting

the throughput to the value required by user or application, even if the channel conditions

are fair enough to allow higher throughput. Results have been presented to demonstrate the

effectiveness of the proposed algorithm. It has been shown that the proposed link adapta-

tion scheme achieves better throughput by efficiently reducing the packet re-transmissions

overhead.

6.1 System Model

Considering a maximum of K users at the physical layer of wideband waveform, the spread-

ing waveform corresponding to the mth code assigned to kth user is given by

πk,m(t) =
G−1∑
n=0

ck,m[n]g(t− nTc) m = 0, 1, ..., IM,k − 1 (6.1)

where ck,m[n] is the nth sample of the mth spreading code of kth user, IM,k is the multicode

index (i.e. number of codes) assigned to kth user). The transmitted signal of kth user is

given by

sk(t) =
∑
i

IM,k−1∑
m=0

dk[IM,k(i− 1) +m]πk,m(t− iT ) (6.2)

where dk[.] ∈ ej2mkπ/Mk are the M -PSK symbols of kth user, Mk is the modulation index

and mk = 0, 1, ...,Mk−1. After passing through the multipath fading channel, the received
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composite continuous-time baseband signal is

r(t) =
K∑
k=1

ej2π∆fkt.
∑
i

.

IM,k−1∑
m=0

.

γk∑
l=1

αkldk[IM,k(i− 1) +m]πk,m(t− iT − τkl) + w(t)

(6.3)

and fD,kl, αkl and τkl are the Doppler spread, constant complex path gain (considering

BT ≤ Tcoh) and delay spread corresponding to the lth path and kth user, respectively, γk is

the number of multipath and ∆fk be the kth user’s CFO. Let the waveform qk,m(t) for kth

user’s mth spreading code be defined as

qk,m(t) =

γk∑
l=1

αklπk,m(t− iT ) (6.4)

so that considering first burst of data, (6.3) becomes

r(t) =
K∑
k=1

ej2π∆fkt.
B−1∑
i=0

IM,k−1∑
m=0

.

γk∑
l=1

αkldk[IM,k(i− 1) +m]qk,m(t− iT ) + w(t) (6.5)

After sampling the received signal given by (6.5) at Ns/Tc, timing and frequency syn-

chronization is achieved. The aim of the proposed link adaptation scheme is to dynamically

change the modulation index M and multicode index IM through Fuzzy Rule based Sys-

tem (FRBS) which takes QoS and throughput requirements and estimated received SNR

as inputs as shown in Figure 6.1. The first two inputs (i.e. QoS and throughput) are either

specified by user or as required by a specific application, whereas the received SNR needs

to be estimated at the receiver. Several SNR estimation algorithms are present in the liter-

ature, e.g. see [104–106]. The proposed link adaptation algorithm uses higher modulation

index M up to 16. Due to this reason, a moment-based algorithm for estimating SNR for

higher order modulation given in [106] has been chosen. The estimation performance of

this estimator is superior to other existing moment-based algorithms.

6.2 Problem Formulation

The effective throughput of any waveform depends on the both the waveform parameters

and channel conditions. The waveform parameters include RF bandwidth, modulation
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Figure 6.1: Overview of the proposed link adaptation scheme based on fuzzy rule
based system

scheme, number of samples per symbol, forward error correction etc. For a wideband

waveform based on multicode CDMA, these parameters also include spreading gain and

multicode index. Wideband networking waveforms suffer heavily by re-transmissions over-

head due to erroneous received packets in case of harsh channel conditions. This overhead

reduces the effective throughput. The aim of a good link adaptation scheme should be to

provide maximum possible data throughput as required by a user or application by reducing

the packet re-transmissions overhead through the use of optimum waveform parameters.

The computational complexity and thus the power consumption need to be reduced by re-

stricting the throughput to the required value even if the channel conditions are fair enough

to allow higher throughput. Thus, the problem of link adaptation at the physical layer of
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wideband networking waveform is formulated as

maxRk =
2BIM,k log2(Mk)

BnormNsG
.

Nd

N0 +Nd

(6.6)

subject to the constraints

BER ≤ BERmax

Rk =

 Rmax, if Rmax ≤ Rreq

Rreq, if Rmax > Rreq

where

BRF = RF bandwidth in MHz

log2(Mk) = Bits per M -PSK symbol for kth user

IM,k = Multicode index for kth user

Bnorm = Normalized two-sided bandwidth

Ns = Number of samples per symbol (upsampling factor)

Nd = Number of data symbols/burst

N0 = Number of symbols in training sequence

Rk = Data rate of kth user in Mbps

BER = Bit Error Rate

BERmax = Maximum allowed BER as per QoS requirement

Rk,req = Throughput requirement of kth user/application in Mbps

Rmax = Maximum throughput possible for given QoS bound and SNR

We have assumed 10−4 ≤BERmax ≤ 10−1 and 0.25Mbps≤ Rk,req ≤ 17.5Mbps. Note that

the effective throughput depends on packet error rate. As packet error rate increases, the

effective throughput is decreased due to the increase in number of packet re-transmissions.

98



0 5 10 15 20 25
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR (dB)

B
E

R

 

 
M = 2
M = 4
M = 8
M = 16
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6.3 Data Acquisition for Fuzzy Rules Formation

The first step of the proposed algorithm is the acquisition of data from BER performance

curves of the system for all the possible modes of operation. BER performance of the system

is analyzed for all the possible pairs of modulation and multicode indices. Figure 6.2 shows

an example with a set of BER curves for a multicode index IM = 8 and modulation indices

(M) varying from 2 to 16. In similar way, BER curves for all other pairs are obtained

through simulation.

The data is then acquired from the set of BER curves by drawing horizontal line (for

a specific QoS requirement) for each BER curve and noting the intersection point. This

will give the minimum SNR that guarantees the BER to be within maximum allowable

value along with the achievable throughput for a specific Modulation and Multicode Index

(MMI) pair. This process is repeated for the complete set of BER curves obtained through
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Figure 6.3: Block diagram of a typical fuzzy inference system

simulation to obtain the data acquisition table 6.1. Note that the subscript k is dropped

for simplicity.

6.4 Proposed Fuzzy Rule based Link Adaptation

In this section, we present the proposed algorithm for creating the FRBS which selects

the best MMI pair for the next transmission. Fuzzy logic depends heavily on human

thinking in spirit and is much closer to natural language as compared to conventional

logic systems. By adjusting the input signal, the fuzzy logic controller executes similar

actions as a human operator executes. A typical fuzzy system comprises of these stages;

Fuzzification, Rule Base and Defuzzification (see Figure 6.3). In Fuzzification stage, these

inputs are first converted to fuzzy numbers. The next stage, rule base, generates fuzzy

number of the compensated output signal by using the fuzzified input variables. The fuzzy

numbers corresponding to the compensated output signal are converted to crisp values in

the defuzzifier stage. Collectively, these three stages are referred to as Fuzzy Inference

System (FIS).

6.4.1 Selection of Fuzzy Sets

After completing the data acquisition from BER curves, fuzzy sets and the corresponding

Membership Functions (MF) are now selected to cover the complete range of inputs and

100



Table 6.1: Data acquired from the BER curves (Minimum SNR values that guar-
antee the BER to be within maximum allowable value)

BERmax M=2 M=4 M=8 M=16

10−1 - 0.35 5.02 5.6

IM = 1 10−2 1.28 4.87 9.85 10.68

10−3 3.76 7.07 12.2 13.2

10−4 5.31 8.63 13.72 14.8

M=2 M=4 M=8 M=16

10−1 - 3 7.6 8.27

IM = 2 10−2 3.9 7.43 12.42 13.45

10−3 6.38 9.7 14.82 15.97

10−4 7.83 11.21 16.43 17.48

M=2 M=4 M=8 M=16

10−1 1.06 5.23 9.95 10.53

IM = 4 10−2 6.15 9.67 14.74 15.7

10−3 8.55 12.02 17.14 18.2

10−4 10.3 13.45 18.68 19.78

M=2 M=4 M=8 M=16

10−1 2.85 7.1 11.73 12.46

IM = 8 10−2 8.01 11.55 16.58 17.64

10−3 10.41 13.8 18.93 20.15

10−4 12.2 15.41 20.4 21.72

M=2 M=4 M=8 M=16

10−1 4.2 8.4 13.03 13.85

IM = 16 10−2 9.38 12.92 17.89 19.1

10−3 11.81 15.18 20.3 21.59

10−4 13.32 16.56 21.77 23.14
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outputs. The inputs to the proposed FIS are QoS requirement (taken as negative logarithm

of BER, denoted as nLogBER) throughput requirement (Rk,req) and estimated SNR. The

generated output is Modulation and Multicode Index (MMI) pair. Triangular membership

function is used with min-max (and-or) as implication and aggregation operation. The

triangular membership function M(x) is with endpoints (a, 0) and (b, 0) and the high point

(c, α) is given as

M(x) =


α
(
x−a
c−a

)
, a ≤ x ≤ c

α
(
x−b
c−b

)
, c ≤ x ≤ b

0, otherwise

The third input (Rk,req) uses non-uniform triangular MF, whereas the other two inputs and

the output use the standard uniform triangular MF. The MFs of the inputs and output of

the proposed FIS are shown in Figure (6.4). Sufficient number of fuzzy sets are used to

represent the inputs and output. The input variable nLogBER is simply calculated as

nLogBER = − log(BER)

BER = 10−b

nLogBER = − log(10−b) = b

The number of fuzzy sets used for the inputs are 4, 6 and 9 for nLogBER, received SNR

and Rk,req, respectively. For the output MMI pair, the possible values of Mk are 2, 4, 8, 16

and the possible values of IM,k are 1, 2, 4, 8, 16. So, the maximum 20 possible fuzzy sets

are used for the output MMI pair.

6.4.2 Fuzzy Rule Matrix for Multicode and Modulation Indices

Selection

The Fuzzy Rule Matrix (FRM) is the main processing stage of any FIS. It is based on a

collection of logic rules in the form of IF-THEN statements. The ’IF’ part of the rule is

called ’antecedent’ and the ’THEN’ part of the rule is called ’consequent’. As mentioned
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Figure 6.4: Membership functions of the inputs and output of the proposed FIS
using fuzzy systems toolbox
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earlier, the FIS of the proposed system takes three inputs (QoS requirement, throughput

requirement and estimated SNR) and generates an output Modulation and Multicode Index

pair. Let the total number of fuzzy rules be NR. The possible input-output pairs for the

proposed FRBS can be represented as

(xr1, x
r
2, x

r
3; yr) r = 1, 2, 3, ..., NR

where xr1, x
r
2, x

r
3 and yr denote the desired nLogBER, received SNR, Rk,req and the output

MMI pair for the rth rule respectively.

Letting {E1, E2, E3, E4}, {S1, S2, ...., S6}, {R1, R2, ...., R9} and {P1, P2, ..., P20} be

the fuzzy set values for the required nLogBER, SNR, Rk,req and the output MMI pair,

respectively, an example fuzzy rule can be stated as

IF {(x1 is E2) AND (x2 is S8) AND (x3 is R3)} THEN (y is P12)

The output MMI pairs for the 20 fuzzy set values are shown in table 6.2. Based on the

number of fuzzy set values used for the inputs and output of the FIS, a total number of

NR = 216 fuzzy rules are formed using the acquired data from the BER curves. Some rules

have same antecedent (IF part) but different consequents (THEN parts). Such rules are

called conflicting rules. For conflicting rules, the consequent resulting in higher throughput

is selected. Similarly, if two or more consequents result in same throughput, the consequent

with lower value of modulation and/or multicode indices is selected since it will result in

lower computational complexity and thus lower power consumption. If some input/output

pairs are not available in the acquired data, then those parts are filled by human intuition

or expert knowledge. For example, if an MMI pair fulfills the given specifications at a

lower SNR, then it is certainly valid for higher SNR. If the throughput specification is not

achievable by the available MMI pairs under a given QoS requirement, then the MMI pair

resulting in the highest possible throughput is selected. The complete Fuzzy Rule Matrix

(FRM) is given table 2.
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Table 6.2: Output MMI pairs (modulation index, multicode index) for the 20 fuzzy
set values

Value MMI Pair Value MMI Pair Value MMI Pair Value MMI Pair

P1 (2,1) P6 (4,2) P11 (8,4) P16 (16,8)

P2 (4,1) P7 (8,2) P12 (16,4) P17 (2,16)

P3 (8,1) P8 (16,2) P13 (2,8) P18 (4,16)

P4 (16,1) P9 (2,4) P14 (4,8) P19 (8,16)

P5 (2,2) P10 (4,4) P15 (8,8) P20 (16,16)

Table 6.3: Human intuition based FRM for MMI pair

selection

QoS SNR
Required data rate (Rk,req)

R1 R2 R3 R4 R5 R6 R7 R8 R9

S1 P1 P5 P5 P5 P5 P5 P5 P5 P5

S2 P2 P6 P9 P13 P17 P17 P17 P17 P17

E1 S3 P3 P4 P7 P8 P11 P18 P18 P18 P18

S4 P3 P4 P7 P10 P12 P15 P16 P19 P20

S5 P3 P4 P7 P10 P12 P15 P16 P19 P20

S6 P3 P4 P7 P10 P12 P15 P16 P19 P20

S1 P1 P1 P1 P1 P1 P1 P1 P1 P1

S2 P1 P5 P5 P5 P5 P5 P5 P5 P5

E2 S3 P2 P3 P10 P13 P17 P17 P17 P17 P17

S4 P2 P4 P7 P8 P11 P18 P18 P18 P18

S5 P2 P4 P7 P8 P12 P15 P16 P19 P20

S6 P2 P4 P7 P8 P12 P15 P16 P19 P20

S1 P1 P1 P1 P1 P1 P1 P1 P1 P1

Continued on next page
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Table 6.3 – Continued from previous page

QoS SNR R1 R2 R3 R4 R5 R6 R7 R8 R9

S2 P1 P1 P1 P1 P1 P1 P1 P1 P1

E3 S3 P5 P6 P6 P6 P6 P6 P6 P6 P6

S4 P2 P4 P7 P10 P14 P14 P14 P14 P14

S5 P2 P4 P7 P8 P11 P15 P18 P18 P18

S6 P2 P4 P7 P8 P11 P15 P16 P19 P20

S1 P1 P1 P1 P1 P1 P1 P1 P1 P1

S2 P1 P1 P1 P1 P1 P1 P1 P1 P1

E4 S3 P1 P5 P5 P5 P5 P5 P5 P5 P5

S4 P2 P3 P10 P10 P17 P17 P17 P17 P17

S5 P2 P4 P7 P8 P11 P18 P18 P18 P18

S6 P2 P4 P7 P8 P11 P15 P16 P19 P20

6.4.3 Defuzzification

In the fuzzification stage, all the three inputs are converted into fuzzy numbers µnLogBER,

µSNR and µRk,req . The fuzzy inference stage generates a fuzzy output value ∆u by using

the FRM. This fuzzy value is then defuzzified in to a crisp value in the form of MMI pair

number. For defuzzification, Centroid of Area (COA) method [107] is used in the proposed

FRBS. For discrete number of fuzzy rules the defuzzified output ∆u(k) by COA method

will be

∆u(k) =

∑
i µRi(∆u)∆u(Ri)∑

i ∆u(Ri)
(6.7)

where ∆u(Ri) is the representative crisp value corresponding to the peak value of the

membership degree of the fuzzy set which is an output from the FRM for the rule Ri.
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6.5 Simulation Results

This section presents the simulation results of the proposed link adaptation algorithm. The

parameters used in the simulations are as follows.

• RF bandwidth (BRF ) = 8 MHz

• Pulse shaping roll-off factor (α) = 0.65

• Spreading sequence length (G) = 16

The proposed algorithm is applicable to the systems with a maximum of K active users

at the physical layer in the current time slot, where K ≤ G. Note that if K = G in a

single time slot, then IM will always be unity which results in a maximum data throughput

of 1.08 Mbps. The aim of the proposed link adaptation algorithm is to provide either

maximum possible data rate (Rmax) depending upon the QoS and throughput requirements

(if Rmax ≤ Rreq) or restrict the data rate to that required by the user or application (if

Rmax > Rreq). The data rate is restricted to the throughput required by the user or a

specific application to reduce the computational load and thus the power consumption and

allow more active users to communicate.

Figures 6.5-6.6 show the resulting throughput versus Eb/N0 for QoS requirements of

10−1 and 10−3, respectively, plotted for Rreq ={0.25, 1.75, 4.25, 8.25, 17.25} Mbps. The

Stanford University Interim channel model is used in the simulations to investigate the

performance in the presence of Doppler spread and multipath fading. It can be seen

that the proposed algorithm achieves the required throughput for all the QoS and data

rate requirements at various Eb/N0 values by maintaining the BER less than or equal to

BERmax. The higher throughput requirements are met at higher values of Eb/N0 because

of the selection of higher modulation and multicode indices. However, maximum possible

throughput is achieved at lower values of Eb/N0 by the selection of appropriate MMI pair.

Figure 6.7 shows the effect of QoS demands on the maximum achieved data through-

put. As expected, Rreq is achieved at lower values of Eb/N0 for relatively lower QoS
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Figure 6.5: Throughput performance of the proposed algorithm for QoS demand of 10−1
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Figure 6.6: Throughput performance of the proposed algorithm for QoS demand of 10−3

demands. The QoS demands are taken in nLogBER format defined earlier in the paper.

For BERmax = 3 and 4, the effect on throughput is small. This is due to less difference in

BER performance between M = 8 and M = 16, as shown in figure 6.2.
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Figure 6.7: Throughput performance of the proposed algorithm for various QoS
requirements and Rreq = 1.75 Mbps
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Figure 6.8: Throughput with and without proposed link adaptation (QoS = 10−1

and Rreq = 17.25 Mbps)
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Figure 6.9: Throughput with and without proposed link adaptation (QoS = 10−3

and Rreq = 8.25 Mbps)

Mostly, the wideband networking waveforms use network packet-based communication.

In the absence of link adaptation, a lower value of BER drastically increases the packet

error rate, thereby increasing the packet re-transmission rate. The proposed link adaptation

algorithm reduces packet re-transmissions rate by switching the modulation scheme and

multicode index to provide maximum possible throughput for lower Eb/N0 values. Figures

6.8-6.9 show the throughput comparison with two different QoS requirements with and

without the proposed link adaptation algorithm. For both the throughput requirements

without link adaptation, the modulation scheme and modulation index are chosen which

provide the required throughput in perfect channel conditions. In the absence of link

adaptation, the throughput drastically reduces at lower Eb/N0 values because most of the

network packets need re-transmissions due to very high packet error rate. On the other

side, the proposed link adaptation provides maximum possible throughput for lower Eb/N0

values and restricts throughput to the required value in good channel conditions.
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6.6 Conclusion

This chapter prsents a novel algorithm for link adaptation using fuzzy rule based system

(FRBS) for the physical layer of the wideband networking waveform of SDR. The varying

QoS requirement of different applications in a networking waveform is fulfilled by link

adaptation which is usually achieved by varying the waveform parameters at the physical

layer and/or implementing adaptive TDMA. This chapter focussed on the first part with

multicode CDMA at the physical layer. A novel scheme based on fuzzy rules is proposed

which is capable of selecting the most suitable parameters based on the heuristics. The

required Quality of Service (QoS) and throughput constraints are met by dynamically

changing the modulation technique and the number of multicodes assigned to each user

through fuzzy inference system. The proposed algorithm reduces the complexity and thus

the power consumption by restricting the throughput to the value required by user or

application, even if the channel conditions are fair enough to allow higher throughput. It

is shown through computer simulations that the proposed link adaptation scheme achieves

better throughput by efficiently reducing the packet re-transmissions overhead.
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Chapter 7

Implementation and Results

Software defined radio is a radio transceiver whose key parameters, protocols and funda-

mental aspects of operation are defined in software, in the form of a waveform, and can

be reconfigured by upgrading that software. In this way, a single radio platform is used to

host several waveforms. The proposed physical layer algorithms of the CDMA/ATDMA

based wideband networking waveform are implemented, tested and verified successfully

on the SDR platform. The proposed timing synchronization algorithms (i.e. sampling

clock recovery and burst detection) have been implemented on Field Programmable Gate

Array (FPGA) and the remaining portions of the receiver like Carrier Frequency Offset

(CFO) estimation, channel estimation, RAKE reception and M -PSK demodulation have

been implemented in software on a Digital Signal Processor (DSP).

This chapter firstly presents the throughput analysis of the proposed wideband network-

ing waveform. A brief description of the design partitioning for the effective implementation

of the physical layer is presented, followed by the FPGA and DSP implementation results.

Real-time experimental results are given and compared to the simulation results to demon-

strate the effectiveness of the proposed technology.

7.1 Throughput Calculation

The mathematical framework for the calculation of achieved throughput of the proposed

wideband waveform is now presented. The available RF bandwidth for the wideband

waveform is 8 MHz. Using this available bandwidth BRF , the maximum allowed sampling

rate (fs) (chips/sec) is calculated. Note that fs is the rate at which the spreader block

112



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Normalized Frequency

P
S

D Normalized Bandwidth

Figure 7.1: Method of finding the normalized bandwidth

generates the data. The burst detection block also takes the input data at the same rate.

The sampling rate (fs) is given as

fs =
2BRF

BnormNs

(7.1)

where BRF is the RF bandwidth, Ns is the upsampling factor and Bnorm is the normalized

bandwidth calculated from the normalized two-sided Power Spectral Density (PSD) of

the transmitted data. Figure 7.1 shows the method of finding the normalized bandwidth

(Bnorm). Once fs is found, the overall throughput for kth user is given as

Rk =
2BRF IM,k log2(Mk)rFEC

BnormNsG
.

Nd

N0 +Nd

(7.2)

where Mk is the modulation index, IM,k is the multicode index, Nd is the number of data

symbols/burst, N0 is the number of symbols in training sequence rFEC is the code rate of

FEC and Rk is the throughput of kth user.

As an example consider, BRF = 8 MHz, IM,k = 1,Mk = 4, G = 8, rFEC = 1, Ns =

4, Nd = 288, N0 = 32, and Bnorm = 0.4167 (Figure 7.1). The throughput for kth user using

(7.2) comes out to be 1.08 Mbps.
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7.2 Design Partitioning

The architectures of most SDRs consist of Field Programmable Gate Array (FPGA), Gen-

eral Purpose Processor (GPP), and Digital Signal Processor (DSP). Before waveform im-

plementation, the design needs to be effectively partitioned so that the computationally

extensive part normally uses FPGA and intelligent part of systems goes on processors (GPP

or DSP). There are two types of design partitioning; (1) Coarse partitioning, in which the

complete design is partitioned on block level, i.e. some blocks are implemented in hardware

(HW) on FPGA and the others in software (SW) on DSP, and (2) Fine partitioning, in

which HW/SW partitioning is applied within one block, so that a part of the block is imple-

mented in HW on FPGA and the other part in SW on DSP. The fine partitioning is more

beneficial than the coarse partitioning and results in efficient waveform implementation but

it requires more development time and communication/interface overheads.

The proposed physical layer design of the wideband networking waveform is partitioned

according to Figure 7.2. The FPGA device available for implementation is XC3SD3400A

which belongs to the Spartan-3A DSP family of FPGAs. The DSP core available on the

SDR platform is the high performance TMS320C64x+ core. This DSP core is incorporated

on the TMS320DM6446 System-on-Chip (SoC) architecture. The FPGA and DSP are

interfaced through External Memory Interface (EMIF). We have used coarse partitioning

method, in which the blocks requiring high speed and computationally extensive processing

e.g. synchronization, up/down conversion and high speed filtering are implemented on

FPGA. On the other hand, the blocks requiring low speed and less extensive processing,

e.g. modulation/demodulation, packet construction and narrowband channel estimation

are implemented in software on DSP.

Keeping in view the coarse partitioning requirements, at the transmitter side, FEC en-

coding, low speed modulation and burst formation are implemented in software on DSP.

The data spreading and digital up conversion, which include high speed filtering, are imple-

mented on FPGA. At the receiver side, the data at high sampling rate is down converted
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Figure 7.2: Design partitioning of the proposed physical layer design

using digital down converter which is implemented on FPGA. It is followed by sampling

clock recovery and burst detection operations implemented on FPGA because of high speed

and complex processing required in these stages. The despread data, which is at a relatively

lower speed, goes to DSP. The subsequent stages including CFO estimation and compen-

sation, channel estimation, RAKE receiver and demodulation are implemented on DSP.

Since FEC decoding is computationally extensive operation, it is again implemented on

FPGA.
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Figure 10. Performance of implemented SCO estimator on 
FPGA (captured from ChipScope) 
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Figure 11. Comparison of MATLAB simulation and FPGA 

hardware results of the proposed SCO estimator  

Table 1. Device Utilization Summary  

Resources Used Total Percentage 

Number of Slices 4076 23872 17% 

Number of Slice Flip Flops 5002 47744 9% 

Number of 4 input LUTs 5585 47744 11% 

Number of BRAMs 14 126 11% 

Number of DSP48s 47 126 37% 

 

8. Conclusion and Future Work 

In this paper, practically efficient algorithm for sampling 
clock recovery for burst mode wideband networking 
waveform of software defined radio has been proposed. 
Sampling clock recovery plays a key role in the adaptive time 
slot measurement for switching rate of medium access 
control. The proposed sampling clock recovery algorithm 
includes proposed modified square timing estimation, 
S4RLSWAM based post-filtering and proposed cubic 
interpolation based compensation. The proposed algorithm 
shows considerable performance improvement when 
compared to other well-known algorithms. Our simulation 
has also shown that the proposed estimator is capable of 
estimating both the fixed and time varying delays. Practical 
FPGA architectures and implementation results for the 
proposed algorithm on FPGA platform have also been 

presented. It has been shown that the hardware results are 
identical to the simulation results. 

Some other post-filtering approaches can be applied to the 
proposed SCO estimation as future research work. Moreover, 
the FPGA implementation can be further optimized to 
achieve lesser resource utilization. 
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Figure 7.3: Performance of implemented SCO estimator on FPGA (captured from
ChipScope)

7.3 Implementation Results

In this section, we firstly present the implementation results of the sampling clock recovery

and burst detection stages which are implemented on FPGA and compare those results to

that of the simulation.

Tracking performance of the proposed SCO estimator (for negative time varying offset)

captured from ChipScope after implementation on FPGA is shown in Figure 7.3. The

input data is taken at an Eb/N0 = −2. It is obvious that the estimate has very low

variance. The transition occurs from −32766 to 32762 (i.e. from −1.9999 to 1.996 for

Q2.14 format), which is almost equal to that of simulated result (see chapter 3). This

is further elaborated in Figure 7.4 which shows the comparison of SCO estimate obtained

from MATLAB simulation and FPGA hardware. It can be seen that both the estimates are

identical since they are overlapping each other. The bottom sub-figure shows the magnified

SCO estimate of the last few samples from the first figure to have a clear visualization.

The detection performance of the proposed burst detection algorithm with precoding
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Figure 7.4: Comparison of MATLAB simulation and FPGA hardware results of
the proposed SCO estimator

on FPGA hardware is investigated. For comparison of simulated proposed burst detection

algorithm with the hardware implementation, the data from MATLAB at different SNRs

has been dumped into FPGA and the probability of correct burst detection on hardware

has been computed. The result is shown in Figure 7.5, which clearly indicates that the

hardware results are identical to the simulation results.

Now, we present stage-by-stage analysis of the receiver by taking the results from the

SDR platform. Figure 7.6 shows the method of extracting the outputs of specific stages

which are implemented on FPGA or DSP. First, the output data from Digital Down Con-

verter (DDC) is dumped into MATLAB for the receiver simulation. The data set is selected

so that it includes the complete timing metric for burst detection. At the same time, the

output of sampling clock recovery stage and burst detection stage are also dumped into

MATLAB for comparison. The output data from burst detection stage is fed to the DSP

through FIFOs. The SDR platform used for implementation contains high performance
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Figure 7.5: Comparison of correct detection probability for simulation and FPGA
hardware results

TMS320C64x+ DSP core. This DSP core is incorporated on the TMS320DM6446 System-

on-Chip (SoC) architecture. The same data is also dumped into MATLAB. The outputs

of coarse frequency compensation, fine frequency compensation and RAKE receiver stages

are dumped into MATLAB for comparison with the simulation results.

Figure 7.7 shows the comparison of simulation and FPGA result of the burst detection

stage. It is shown through the timing metric and Threshold×Energy plots that the results

from hardware are identical to the simulation results. Figures 7.8 to 7.12 show the error

between the results of MATLAB simulation and SDR implementation for the output data

taken from sampling clock recovery, burst detection, coarse frequency compensation, fine

frequency compensation and RAKE receiver, respectively. For better visualization, the

second half all the error data sets are shown in a zoomed view. It is clear that error in

all the cases is within 10−3 range, which is normal for 16-bit fixed point implementation.

Figure 7.13 show the constellation diagram of the received QPSK data prior to symbol
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Figure 7.9: Error between MATLAB simulation and SDR implementation results:
Output of burst detection stage
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Figure 7.10: Error between MATLAB simulation and SDR implementation results:
Output of coarse CFO compensation stage
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Figure 7.11: Error between MATLAB simulation and SDR implementation results:
Output of fine CFO compensation stage
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Figure 7.12: Error between MATLAB simulation and SDR implementation results:
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Chapter 8

Conclusion and Future Work

8.1 Conclusion

The major requirement of the future strategic and tactical systems is network based seam-

less communication. Such networks demand precise, accurate and reliable information to

be delivered at the other end.

In this thesis, we have proposed a multi-mode high throughput wideband networking

waveform for software defined radio. The proposed waveform has several different modes

of operation and can achieve a maximum throughput of 17.2 Mbps. We have used Time

Division Multiple Access (TDMA) and Code Division Multiple Access (CDMA) as multiple

access schemes. Novel algorithms for the transmitter and receiver operations of the physical

layer of the wideband waveform are proposed. They include training sequence design,

sampling clock offset estimation and compensation, burst detection, and carrier frequency

offset estimation and compensation. We have considered both the single and multiuser

scenarios.

For Sampling clock recovery, we have proposed Modified Square Timing Recovery

(MSTR) algorithm consisting of three stages including SCO estimation, S4RLSWAM-based

post-filtering and cubic interpolation for SCO compensation. For burst detection, two al-

gorithms have been proposed. The first algorithm is based on Time Domain Repetitive

(TDR) training sequence and exploits the repetitive training sequence structure in the cal-

culation of decision metric. The second algorithm is based on Differentially Modulated

(DM) training sequence and exploits the precoding sequence in the calculation of decision

metric. Both the operations (SCR and burst detection) are important as they directly
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affect the adaptive time slot allocation algorithm. For CFO estimation, we have proposed

two novel algorithms. In the first algorithm, modified FFT and quadratic interpolation are

used to estimate CFO efficiently. The second algorithm consists of two stages namely Max-

imum Likelihood Data Aided (MLDA) estimation and Sample-by-Sample Residual Offset

(S2RO) estimation.

To reduce the packet re-transmissions overhead and achieving better throughput, a novel

link adaptation technique based on fuzzy inference system by considering Quality of Ser-

vice and throughput requirement of user/application has been proposed. The constrained

optimization problem is solved by changing the modulation technique and the number of

multicodes assigned to each user. The performance of the proposed algorithms is evaluated

by using Stanford University Interim (SUI) channel models. The performance improvement

of our proposed algorithms is demonstrated by comparing them with set of known existing

methods. Simulation results showed that the proposed algorithms are superior in terms of

performance, throughput and ease of implementation. To demonstrate the implementation

affinity of the proposed technology, the proposed algorithms are implemented using Field

Programmable Gate Array (FPGA) and Digital Signal Processor (DSP) on SDR platform.

Actual results from hardware are compared and verified with the simulation results.

8.2 Contributions

The major contributions of this thesis are

1. It proposed a complete physical layer design for adaptive high data rate CDMA-based

wideband waveform for SDR tactical networks, considering almost all the synchro-

nization problems and channel impairments.

2. The proposed waveform design supports several modes of operation and can achieve

a maximum throughput of 17.2 Mbps.

3. As the first part of timing synchronization, a new sampling clock recovery algorithm
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namely modified square timing recovery (MSTR) is proposed. A novel usage of

S4RLSWAM filter for the post-filtering of estimates is also proposed. The algorithm

is further modified to be successfully applied to the multiuser CDMA environment.

4. For the second part of timing synchrnization, two new data-aided burst detection

techniques based on Time Domain Repetitive (TDR) and Differentially Modulated

(DM) training sequences are proposed.

5. For frequency synchronization, two novel algorithms are proposed. The first algorithm

is based on modified FFT and biquadratic Lagrange interpolation. The second algo-

rithm consists of two stages; coarse estimation stage based on Maximum Likelihood

Data Aided (MLDA) estimation, and fine estimation stage based on sample-by-sample

residual offset estimation.

6. A dynamic link adaptation algorithm using fuzzy rule based system is proposed. The

proposed technique changes the waveform parameters at the physical layer based on

varying channel conditions to avoid packet re-transmissions overhead.

7. Performance of all the proposed algorithms is compared with a set of known algo-

rithms. It is found that the proposed algorithms are superior as compared to the

existing algorithms. The design is effectively partitioned for FPGA and DSP imple-

mentation on SDR platform. The actual results are compared and verified against

the simulation values.

8.3 Future Recommendations

This thesis presented the complete design of the physical layer of CDMA based wideband

networking waveform by proposing efficient algorithms for the time/frequency synchroniza-

tion and link adaptation. The proposed algorithms are implemented on SDR platform that

includes FPGA, DSP and GPP. Efficient implementation of the proposed algorithms require
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in-depth analysis of design partitioning which can be very interesting area for researchers

in the field of embedded systems.

To achieve high throughput in a given bandwidth, source coding is used for data com-

pression in wireless communication systems. Efficient source coding schemes need to be

investigated which are computationally less extensive and can provide a significant through-

put enhancement for voice, data and video communications.

The use of both the CDMA and TDMA in a wideband waveform is proposed in this

thesis. This concept can further be extended by using other multiple access schemes at

the physical layer of the wideband waveform. The following schemes are recommended for

future.

Multicarrier CDMA

Multicarrier code division multiple access (MC-CDMA) has been evolved as an emerging

multiple access scheme since the last decade. It is a combination of DS-CDMA and OFDM.

Due to this reason it sometimes referred to as OFDM-CDMA. It is one of the emerging

candidates for the next generation communication technologies [108]. In this scheme, data

symbol of each user is transmitted simultaneously on narrowband sub-channels which are

then multiplied by the user specific spreading sequence.

MC-CDMA, like CDMA, provides multiuser support, high throughput and anti-jamming

ability. Additionally, it provides immunity towards Intersymbol Interference (ISI) by reduc-

ing the symbol rate. In very high chip rate systems, this ISI reduction is very significant.

Though MC-CDMA is robust against the interference caused by the multipath fading chan-

nels, it is sensitive to the factors that destroy the orthogonality between the carriers. In this

regard, CFO appears very destructive and needs to be estimated with very high precision.

Hybrid Direct Sequence-Time Hopped-CDMA

The hybrid Direct Sequence-Time Hopped-CDMA (DS-TH-CDMA) is a novel idea to be

used in the wideband waveform design of SDR. This technique combines the advantages
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of both DS- and TH-CDMA systems. The transmission is in the form of frames which

consist of time slots. The user transmits its data in one of the total NT time slots per

frame determined by the code assigned to that user. In this way, instead of using parts of

spectrum all the time, TH-CDMA uses whole wideband spectrum for short time periods.

In multiple user scenarios, each of the NT time slots is occupied by different user. Each

user has its different code which decides the slot number in which that corresponding user

transmits its data.

Since hybrid DS-TH CDMA is completely a new idea, so it has never been used in

the wideband waveform design in SDRs. In this technique, the user transmits the spread

data (at chip rate) in its time slot after direct sequence spreading instead of transmitting

the actual data. In this way, anti-jamming capability of the resulting system is doubly

increased. Furthermore, the Multiple Access Interference (MAI), which is the most severe

problem in conventional CDMA, is mitigated to a large extent.
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Appendix A

Stanford University Interim Channel

Models

Stanford University Interim (SUI) channels are modelled to represent three different terrain

types and various values of delay spreadl, Doppler spread, and LOS/NLOS conditions. The

summary of these six channel models is given in Table A.1. The detailed specifications of

all SUI channel models is given in tables Tables A.2 to A.7. In these specifications, K-factor

is the ratio of LOS component to NLOS components. For NLOS case, K-factor is zero.

Table A.1: Summary of SUI channel terrain types

SUI-1 SUI-2 SUI-3 SUI-4 SUI-5 SUI-6

Terrain

category
C C B B A A

Terrain

type
Flat Flat Hilly Flat Hilly Hilly

Tree

density
Light Light Light

Moderate to

heavy

Moderate

to heavy

Moderate

to heavy

Line of

sight
Strong Strong Weak Weak Weak Weak

Delay

spread
Low Low Low Moderate High High

Path loss Low Low Intermediate Intermediate High High

Doppler

spread
Low Low Low High Low High
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Table A.2: SUI-1 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 0.4 0.9

Power (dB) 0 -15 -20

K-factor 4 0 0

Doppler (Hz) 0.40 0.30 0.50

Table A.3: SUI-2 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 0.4 1.1

Power (dB) 0 -12 -15

K-factor 2 0 0

Doppler (Hz) 0.20 0.15 0.25

Table A.4: SUI-3 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 0.4 0.9

Power (dB) 0 -5 -10

K-factor 1 0 0

Doppler (Hz) 0.40 0.30 0.50

Table A.5: SUI-4 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 1.5 4.0

Power (dB) 0 -4 -8

K-factor 0 0 0

Doppler (Hz) 0.20 0.15 0.25

144



Table A.6: SUI-5 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 4.0 10.0

Power (dB) 0 -5 -10

K-factor 0 0 0

Doppler (Hz) 2.00 1.50 2.50

Table A.7: SUI-6 channel model specifications

Tap 1 Tap 2 Tap 3

Delay (µs) 0.0 14.0 20.0

Power (dB) 0 -10 -14

K-factor 0 0 0

Doppler (Hz) 0.40 0.30 0.50

145



Appendix B

Publications

B.1 Journal Papers

1. Muhammad Zeeshan and Shoab A. Khan, ”A novel algorithm for link adaptation

using fuzzy rule based system for wideband networking waveform of SDR”, AEU

- International Journal of Electronics and Communications, Vol. 69, No. 9, pp.

1366-1373, 2015. [Impact factor: 0.601]

2. Muhammad Zeeshan and Shoab A. Khan, ”A Novel Algorithm for Burst Detection

in Wideband Networking Waveform of Software Defined Radio”, IEICE Transactions

on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E98-

A, No. 6, pp. 1225-1233, 2015. [Impact factor: 0.231]

3. Muhammad Waqas Khan, Mohammad Ahmad Choudhry, Muhammad Zeeshan

and Ahsan Ali, ”Adaptive Fuzzy Multivariable Controller Design based on Genetic

Algorithm for an Air Handling Unit”, Energy (Elsevier), Vol. 81, pp. 477-488, March

2015. [Impact factor: 4.159]

4. Muhammad Zeeshan, Shoab A. Khan and Ibtsam Haq, ”A Two Stage Algorithm

for Carrier Frequency Offset Recovery with DSP Implementation on SDR Platform”,

IEICE Transactions on Communications, Vol. E97-B, No. 11, pp. 2449-2458, 2014.

[Impact factor: 0.326]

5. Muhammad Zeeshan and Ihsan Ullah, ”Comparative Analysis of SSRLS and SS-

RLS with Adaptive Memory for Wireless Channel Equalization”, International Jour-

146



nal of Future Computer and Communication, Vol. 2, No. 6, pp. 604-607, Dec. 2013.

6. Muhammad Zeeshan and Shoab A. Khan, ”Robust Sampling Clock Recovery Al-

gorithm for Wideband Networking Waveform of SDR”, International Journal of Com-

munication Networks and Information Security (IJCNIS), Vol. 5, No. 1, pp. 10-18,

Apr. 2012. [HEC Recognized Journal in X Category]

7. Muhammad Zeeshan and Shoab A. Khan, ”A Robust Carrier Frequency Offset

Estimation Algorithm in Burst Mode Multicarrier CDMA based Ad Hoc Networks”,

International Journal of Communication Networks and Information Security (IJC-

NIS), Vol. 4, No. 3, pp. 174-181, Dec. 2012. [HEC Recognized Journal in X

Category]

B.2 Book

1. Muhammad Zeeshan, Shoab A. Khan, Power Optimization of CDMA based Tacti-

cal Networks; A Multiuser Detection Approach, LAP Lambert Academic Publishing,

Saarbrcken, Germany, 2012, ISBN: 978-3-659-19912-7.

B.3 International Conference Papers

1. Muhammad Zeeshan and Shoab A. Khan, ”Data Aided Algorithm for Burst Detec-

tion in Wideband Networking Waveform with FPGA Implementation on SDR Plat-

form”, 11th HONET Photons for Electronics (PfE) Conference, Charlotte, North

Carolina, USA, 2014.

2. Muhammad Zeeshan and Shoab A. Khan, ”An Efficient Burst Detection Algo-

rithm for CDMA/Adaptive TDMA based Wideband Networking SDR Waveform”,

33rd IEEE International Performance Computing and Communications Conference

(IPCCC), Austin, Texas, USA, 2014.

147



3. Muhammad Waqas Khan, M. A. Choudhry and Muhammad Zeeshan, ”Multivari-

able Adaptive Fuzzy Logic Controller Design based on Genetic Algorithm applied to

HVAC Systems”, 3rd International Conference on Computer, Control and Commu-

nication (IC4), Karachi, Pakistan, Sep 2013.

4. Muhammad Waqas Khan, M. A. Choudhry and Muhammad Zeeshan, ”An Effi-

cient Design of Genetic Algorithm based Adaptive Fuzzy Logic Controller for Mul-

tivariable Control of HVAC Systems ”, 5th Computer Science and Electronic Engi-

neering Conference (CEEC), Colchester, UK, 2013.

5. Muhammad Zeeshan, Shoab A. Khan, M. Waqas Khan and Sabahat A. Malik,

”An Efficient Capacity Improvement Technique for Multiuser DS-CDMA based Fixed

Wireless Applications”, International Conference on Open Source Systems and Tech-

nologies (ICOSST), Lahore, Pakistan, Dec. 2012.

6. Muhammad Zeeshan, Shoab A. Khan and M. Yasir Malik, ”A Secure DS-CDMA

based Technique with Capacity Enhancement for Ad Hoc Wireless Networks”, 2nd

International Conference on IT Convergence and Security (ICITCS), South Korea,

2012.

7. Muhammad Zeeshan and Shoab A. Khan, ”A Modified FFT and Biquadratic

Interpolation based Algorithm for Carrier Frequency Offset Estimation in MC-CDMA

based Ad Hoc Networks”, 8th International Conference on Emerging Technologies

(ICET), Islamabad, Pakistan, 2012.

8. M. Shahzad Anwar, Muhammad Zeeshan, Saira Aslam, M. Asim Ajaz and M.

Salman, ”Comparative Performance Evaluation of LDPC coded and Turbo Coded

OFDM systems in SUI Multipath Channel Models”, International Conference on

Computer Applications & Industrial Electronics (ICCAIE), Malaysia, 2010.

9. Muhammad Zeeshan and Ihsan Ullah, ”Comparative analysis of SSRLS and SS-

148



RLS with Adaptive Memory for Wireless Channel Equalization”, International Con-

ference on Intelligence and Information Technology (ICIIT), Lahore, Pakistan, 2010.

10. Nauman A. Baig, M. B. Malik and Muhammad Zeeshan, ”Analysis of Various

Configurations of Jammer and Transmitter”, International Colloquium on Comput-

ing, Communications, Control and Management (CCCM), China, Aug. 2010.

11. Muhammad Zeeshan and Shoab A. Khan, ”Power Optimization of Multiuser

CDMA based Mobile Ad Hoc Network in tactical Setting”, International Colloquium

on Computing, Communications, Control and Management (CCCM), China, Aug.

2010.

149




