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Abstract 

 In last few decades, parallel manipulators have become an essential tool for many 

industries due to their high speed, accuracy, payload, stiffness and precision. These features 

make parallel manipulator ideal for jobs like, robotic surgery, precise manufacturing, missile 

launching and flight simulation, but precise part positioning on parallel manipulator is a 

challenging task in industry. With errors in position, one can never achieve the required quality 

of the part. In this work, our main focus is to find out positioning errors of a hexapod platform 

that are caused while machining. Legs will be considered elastic while the platform, part and 

leg-platform contacts will be considered rigid bodies. All legs are assumed to be 3D massless 

elastic trusses. When the load is applied on the part placed on the platform, its position may 

change due to elasticity of the manipulator.  Lagrange formulation is used to calculate the 

positioning error of the platform as a result of machining forces and torques. A generalized 

algorithm is established, using Mathematica®, which gives us the positioning error of “n” 

legged system and for any initial orientation of the platform. In the second part, Natural 

frequencies of Stewart Platform are calculated from results generated in first part. The proposed 

methodology is applied on H-840 Hexapod designed and manufactured by Physik Instrumente. 

The Hexapod is designed and modelled in CATIA® and results are validated with Finite 

Element Analysis, as well as, from the literature. 

 

 

Key Words: Stewart Platform; Parallel Manipulator; Hexapod; Lagrangian Formulation; 

3D-Trusses; Finite Element Analysis; 3D Stiffness Matrix 
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CHAPTER 1:  INTRODUCTION 

 Manipulators are backbone of modern industry. With respect to architecture, industrial 

manipulators are divided into two main groups; Serial manipulators and Parallel manipulators. 

In serial manipulators, links are connected in serial with each other, while in parallel 

manipulators all links have common base and platform. A third type not as famous as serial 

and parallel manipulators called Hybrid manipulator is available, it is combination of 

advantages of both the manipulators; like, wider space of serial manipulators and precision of 

parallel manipulators. 

1.1  Serial Manipulator 

 Serial manipulators, shown in figure 1.1, possess serial kinematic chains composed of 

rigid links and is shaped by actuated joints. These joints can be either rotational and / or 

translational. The great benefit of serial robots is its large workspace with respect to its volume 

and space occupied at work. As serial manipulators have open kinematic structure, all errors 

are accumulated and amplified from end effector to base. Furthermore, it is difficult to get high 

stiffness and dynamic properties simultaneously. For instance, manipulators with high stiffness 

are usually heavy and cannot deliver high speed. Moreover, their own weight induces 

significant undesirable stresses in actuated joints that reduces allowable payload. On the other 

hand, serial manipulators with light weight links have lower stiffness so it cannot provide high 

payload because of significant compliance errors. These drawbacks decrease efficiency and 

application areas of serial manipulators. Based on kinematics, serial manipulators are further 

divided into three main groups; SCARA, Articulated and Cartesian manipulators as shown in 

figure 1.1.  

(a) Articulated Robot (b) SCARA Robot (c) Cartesian Robot 

Figure: 1.1 Serial Manipulator 
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1.2  Parallel Manipulator 

 The parallel manipulators (also called parallel kinematic machines (PKM)) possess 

closed loop structure with platform linked to base via several rigid links (Merlet 2000). The 

most common parallel manipulators are shown in figure 1.2. The kinematic chains are 

composed of several links that are connected by passive and / or actuated joints, either 

rotational and / or translational. Such kinematics offers advantages, like; highly rigid structure, 

high stiffness, high dynamic capacities and reliable accuracy (Tlusty, et al. 1999; Ph Wenger, 

et al. 1999; Philippe et al. 2007).  Another important advantage of parallel robots is better 

accuracy, because here the position and orientation errors of each kinematic chains is averaged 

by the end platform, which in case of serial manipulator were accumulated. 

Figure: 1.2 Parallel Manipulators  

 In this thesis, an analytical model is proposed. The model calculates relative positioning 

error of the static platform of the Hexapod under external loadings with reference to unloaded 

configuration of the platform, it is assumed that whole positioning error is due to elasticity of 

legs which are taken to be 3D elastic trusses. The proposed algorithm is formulated for “n” 

legged Hexapod and generic for any number of external forces and torques. The algorithm 

established in Mathematica®, calculates linear and angular displacements of the platform, along 

with, 3D stiffness matrix of the system.  

1.3   Motivation and Methodology 

 Higher stiffness with accuracy and speed make the parallel manipulators favourite for 

many jobs like, robotic surgery, precise manufacturing, missile launching and flight simulation. 

All the features ruin out if there is error in the position of part placed on the platform of 

manipulator, so the positioning error requires special attention while using these manipulators. 
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The positioning errors could evolve due to elasticity of legs, joints and actuators. In this work, 

our main focus is to find out positioning errors of a hexapod platform that are caused while 

machining. The working methodology of proposed analytical model will be introduced in this 

section. The model gets inputs form Excel® spreadsheet, which includes machining forces and 

their positions in the platform, Material properties of Hexapod, Radiuses of legs, Platform and 

the Base and Legs’ arrangement angles. Using the inputs, algorithm calculates Kinetic Energy, 

total Potential Energy and Work done by external forces for itself and gives; the six unknown 

displacements of the platform, the Stiffness Matrix and Natural Frequencies along with 

corresponding mode shapes. A detailed methodology, based in following points, is described 

in Chapter 3. 

 Positioning error due to deformation of elastic legs 

 Elastic Potential Energy 

 Inertial Kinetic Energy 

 Total Work done by External forces 

 Displacement of platform under load 

 Study of Natural Frequencies and Mode shapes 

1.4   Implementation of Proposed Model 

 The proposed techniques for displacement calculation of Hexapod (particularly Stewart 

Platform) is validated by Finite Element Analysis. A Stewart Platform (H-840) designed and 

manufactured by Physik Instrumente is modelled, simulated and analysed in CATIA®, 

displacements of platform from both the techniques are compared (Chapter 5), to verify the 

first part of thesis. The second part, that includes the 3D Stiffness Matrix is validates by solving 

a case study, already solved in published literature. It worth mentioning, the Stiffness Matrix 

is also validated in CATIA® by comparing the Natural Frequencies of the system, as calculated 

Stiffness Matrix is used for calculation of Natural Frequencies. 

1.5  Outline of Thesis 

 The thesis is structured in 4 chapters and a conclusion. After the introduction, a detail 

of selected literature is explained in chapter 2. The chapter 2 begins with introduction to Serial 

and Parallel Manipulators. A comprehensive detail of errors in parallel manipulates with 

common approves to compensate these error from available literature is explained. In Stiffness 
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section, stiffness modelling approaches are discussed followed by the stiffness of Stewart 

Platform. 

 Chapter 3 presents the proposed analytical model for calculation of displacements and 

Natural Frequencies. It starts with the introduction of Lagrange equation, solution of which 

will give the required results. In other sections, each required part of Lagrange equation is 

calculated. The calculations involve, calculation of total elastic potential energy due to 

elasticity of each massless leg, the Inertial kinetic energy due to mass of rigid platform and 

total work done due to external loads. The method for calculation of Natural Frequencies and 

mode shapes are also presented in the end before conclusion of cahpter3. 

 In Chapter 4, a case study is solved by proposed methodology, as well as, by modelling 

and analysing a Stewart Platform with same dimensions in CATIA®. The working of the 

algorithm formulated in Mathematica®, form file exporting to importing and inputs to outputs, 

each step is explained in detail. In remaining sections of chapter 4, steps involved in designing 

and modelling of Stewart Platform in CATIA® are described. Before chapter’s conclusion, 

results from both techniques are compared and a numerical study form published literature is 

solved to testify the proposed work. 

 In 5TH chapter, the obtained results are plotted to check out the effect of single variable 

on the displacement error of the Stewart Platform, based on these plots a limit is defined on 

design variables to reduce positioning error in platform of the Hexapod. 

In the final conclusion, the advantages and demerits of the proposed technique are discussed 

which is followed by the future works and references of the work cited in the thesis. 
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CHAPTER 2:  LITERATURE REVIEW 

 In this chapter, limitations, advantages and specifications of robotic errors during 

machining applications with analysis on compensation techniques are reviewed. The key stress 

of this chapter is to review existing literature on stiffness modelling approaches for parallel 

manipulators. Finally, the goal and problem for this work is defined. 

2.1  Why Parallel Manipulator? 

 As the parallel manipulators are composed of several links connecting single platform, 

so highly rigid structure with stiffness, and accuracy is expected (Tlusty, et al. 1999; Ph 

Wenger, et al. 1999; Philippe et al. 2007). Using special arrangement of kinematic chains, it is 

possible to ensure high stiffness and high dynamic properties, simultaneously. These 

capabilities make the parallel robots highly suitable for high-speed machining. However, 

parallel robots have very complex limited working envelop (Shoval et al. 2001). Some 

researchers tried to overcome this issue by combining different types of joints, the achieved 

success resulted in decrease of load carrying capability of parallel manipulator (Dombiak, et 

al. 2000; Horin, et al.,1999). Performance of parallel manipulator (maximum speeds, accuracy 

and rigidity) essentially differs from point to point and also depend on the moving directions. 

Other disadvantages of parallel manipulators include their large footprint-to-workspace ratio 

(except the Tricept robot which requires less space) and small range of motion because of 

parallel configuration. These are the main obstacles for the machining applications of parallel 

robots (Kim et al. 1997; Rehsteiner et al. 1999). 

 At present, there are variety in parallel manipulators. Depending on the architecture, 

they may be divided into two groups that differ by the type of joints used between the base-

platform and the serial chains (Chablat et al. 2003). The first group contains manipulators with 

fixed base points and variable length of legs. Mostly robots belonging to this group implement 

the Stewart-Gough architecture, have 6 degrees of freedom and are called Hexapods. They 

provide high precision and accuracy, good stiffness and high load/weight ratio. Due to these 

essential advantages, Hexapods are often used in flight simulators, precision machining, 

surgical robots, and other areas. By variation of the link lengths, Hexapods may satisfy both 

small and large workspace, but increasing of the link’s length directly effects the accuracy of 

manipulator. The main technical issue of Hexapod is high friction of the ball joints. Typical 

examples of parallel manipulators belonging to the first group includes VARIAX, HEXA, 
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Tricept, Tripod and Delta manipulators are shown in figure 2.1 (Geldart et al. 2003; F. Pierrot, 

et al. 1991; Francois Pierrot et al. 2009; Zhang et al. 2005; Tsai et al. 2000). 

 The second group includes manipulators with foot points sliding on linear joints. Robots 

of second group (figure 2-2) differ by the number of actuated translational axis and their 

location with respect to each other, as well as, by the type of links connecting the base and 

moving platforms. Typically, this group has 5 or 6 degrees of freedom (Hexaglide, HexaM) 

but 3 degrees of freedom translational manipulators also exists in this family (Orthoglide) that 

employ parallelogram-based links similar to Delta robots (Toyama et al. 1998; Chablat et al. 

2003). The robots of the second group are attractive for machining application due to their 

lower moving mass compared to the hexapods and tripods. However, to ensure large 

workspace, such robots require large volumes to operate and occupy essential floor space. 

  

(a) HEXA – High speed robot (b) VARIAX (Gidding & Lewis) 

  

(c) Trocept (Neos-Robotics) (d) Tripod - microrobot 

Figure: 2.1 Parallel Manipulator (Group - I) 
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(a) HexaM (b) Orthoglide 

 

 

 

 (c) Hexaglide  

Figure: 2.2 Parallel Manipulator (Group – II) 

 Hence, parallel robots provide large number of benefits as compared to the serial ones, 

which promote them for quick and highly precise machining works. Due to this reason, they 

have already been employed in commercial machining centres. 

2.2   Errors in Parallel Manipulator 

 Accuracy of manipulators depends on many factors, but those relating to manufacturing 

tolerances are crucial of all because with these errors the nominal machining accuracies can 

never be achieved, these errors are referred as geometrical errors, other important factor 

includes the deflection of end effector under machining forces and torques, these errors are 

called compliance errors. 
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2.2.1 Classification of Errors  

 Precision of the manipulator is usually described by three different performance 

measures: the resolution, repeatability and accuracy. The resolution determines the minimum 

increment that the manipulator can make. Repeatability is a feature of manipulator due to which 

it retracts its initial position and orientation. Finally, manipulator’s accuracy (also referred as 

absolute accuracy) is the proficiency of manipulator to stop at exactly required location in 

Cartesian space. (Kevin et al. 2000). 

 Khalil et al. (2002) and Paziani et al. (2009) classified main causes of positioning errors 

of parallel manipulator in two main groups: geometrical and non-geometrical ones. Klimchik 

(2011) proposed a detailed classification of errors in manipulators, which is presented in figure 

2.3. It is important to note, these errors can be both independent and correlated but for study 

purposes the errors are treated sequentially, considering them to be independent of each other. 

According to Elatta et al. (2004) in applications where the machining forces and torques are 

small in magnitude, the main source of errors in an accuracy of manipulator is due to 

geometrical errors, almost 90% of the total error in such cases is due to poor geometry of 

manipulator. The mismatching of nominal values with real values of parameters (like; links 

and joints etc.) are significant in these errors. This kind of error arises due to different origin 

values in actuator coordinates (actual system) and the mathematical model programmed in 

comptroller, this error is referred as joint offsets; it can also occur due to imperfections during 

assembling of different parts and due to transformation of local frames assumed with each 

component, generally these components are expected to be perfectly coordinated and allied. It 

worth mentioning, the geometrical errors are independent of the configuration of manipulator, 

however, it’s effect on the positional accuracy depend on end effector. At present, there are 

large number of sophisticated techniques, capable of recognizing and abolishing different 

imperfections between geometrical parameters. However, this type of error can also be 

compensated using adjusted input provided to controller of the system, in some other cases, 

direct adjustments are also made in the geometrical parameters of the model being used in the 

robot controller system. (Veitschegger et al. 1986; Roth et al. 1987; Bennett et al. 1991; 

Mirman et al. 1992; Daney et al. 2006; Dolinsky et al. 2007; Hollerbach et al. 2008).  
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Figure: 2.3 Positioning Errors in Manipulators 

 In some scenarios, the geometrical errors are dominated by non-geometrical errors, due 

to different reasons (Gong et al. 2000; Cui et al. 2006; Bogdan et al. 2009). There are few 

errors due to interaction of tool on workpiece, these errors can cause deformation of 

components (like; legs, platform and joints etc.) of manipulators. These errors are called 

compliance errors, which will be main focus of this thesis. (Meggiolaro et al. 2005). Likewise, 

the surrounding conditions like; temperature, atmospheric pressure etc., also affect the physical 

properties of the system’s components, this leads to unwanted variations in deformable 

components. In the normal working environment, the inaccuracies due to compliance are the 

weightiest. The compliance errors are particularly significant for heavy systems with relatively 

low stiffness. The external forces and torques from the machining process produce significant 

deformations in system that cannot be ignored during precise manufacturing. In such cases, the 

geometrical errors are overlooked by the compliance error due to their greater impact on the 

positioning accuracy of system. Designers of parallel manipulators pay great attention on the 
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issue, while optimizing the dynamic capabilities and stiffness properties of manipulator 

(Cheboxarov et al. 2000). 

 The compliance error constitutes: (a) applied loadings and (b) Stiffness of system. In 

addition to external machining forces, sometimes, it is essential to consider the impact of the 

weight of links, the gravitational pull compensation mechanisms, as well as, pre-loadings in 

the passive joints that are introduced in order to eradicate backlash error from the system. The 

compliance error is configuration dependant so it differs all over the working space. However, 

relevant modelling and compensation techniques are still under study (Ramesh et al. 2000; 

Dow et al. 2004; Bera et al. 2011). 

2.2.2 Compensation of the Errors 

 To get a reliable machine with minimum errors, the errors stated above must be 

compensated. The basic approach in the error’s compensation is the absolute position feedback 

in which the location of end effector in global coordinates is obtained by addition of sensors in 

joints and links of manipulator. Main benefit of this technique includes, capability to 

compensate all types of system’s errors (due to various factors), independent of their physical 

nature. However, in practice, industrial robots are equipped with joint encoders only, so the 

end-effector’s absolute location is estimated via the direct kinematic transformation. The 

absolute measurement systems are usually considered to be expensive and non-suitable for 

industrial applications; they are mostly used for robotic calibrations or laboratory experiments 

(Watanabe et al. 2006). Typically, such measurement equipment is based on stereo vision 

systems or laser scanners (Daney et al. 2006) that can hardly provide desired data in common 

industrial environment with numerous obstacles in the neighbourhood of the end-effector. 

 There are two main components involved in compensation of compliance error; a 

square matrix (symmetrical or asymmetrical) called Stiffness Matrix that maps the stiffness 

throughout the working space, the matrix can be defined for both the Cartesian or Joint 

coordinate system. Other component defines the external loads (linear and angular) acting on 

the platform during operation of manipulator (in future, it will be referred as loading of 

manipulator). The stiffness matrix is configuration dependant and differs all over the working 

space. This work will also contribute to the stiffness matrix computation algorithms. 

2.3 Stiffness Modelling of Manipulator 

 To ensure effective reduction in the compliance errors in machining based on the robots 

(serial or parallel), a suitable stiffness modelling is required that is capable of considering both 
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the configuration of manipulator along with the impact of machining forces. In this section, an 

overview of present available stiffness modelling approaches for parallel, as well as, serial 

manipulator will be discussed. 

2.3.1 Stiffness Modelling and Existing Approaches 

 In general, like structural mechanics, the stiffness of robots describes the resistivity 

offered by the manipulator to the distortions produced by external (linear and/or angular) 

loadings applied at the manipulator (Duffy et al. 1996). Numerically, a stiffness matrix [K] is 

used to define this resistivity property, this matrix defines a relation between the displacements 

and corresponding loadings that cause the positioning error. The inverse of stiffness matrix [K] 

is referred to be the compliance matrix which is denoted by [c] or [k] in some literature. For 

conservative systems, [K] is 6 x 6 positive semi-definite symmetric matrix but it could possess 

coupling between the linear and angular displacements which can be predicted by off diagonal 

terms in matrix (Kövecses et al. 2007). However, for case of non-conservative systems the 

stiffness matrix is often asymmetrical. 

 Due to some specificities, there are few individualities in terminology of stiffness 

modelling of manipulator. Mostly, the matrix [C K] denotes the “Cartesian Stiffness Matrix” 

which differs from the “Joint-Space Stiffness Matrix” [θ K] that describes the relation between 

the static loadings and resulting displacements in both the active and/or passive joints (Ciblak 

et al. 1999). Conservative Congruency Transformation is required to map both the matrices 

into each other (Kao et al. 1999; Chen et al. 1999; Huang et al. 2002), this transformation is 

trivial for systems with negligible loadings. However, a complicated equations consisting of 

the Jacobian, Jacobian derivatives and loading vectors this transformation can become useful 

(Yi et al. 1993). 

 There are different methods used to find stiffness of hexapod each has its own merits 

and demerits, main three types are Finite Element Analysis (FEA) famous for its accuracy, 

Virtual Joint Method (VJM) mostly used for its simplicity and Matrix Structural Analysis 

(MSA) for its lower computational complexity. Each of three techniques are explained below. 

 For FEA the body under consideration is divided into small number of elements, these 

small elements are in standard shapes like; a line (spring) with 2 nodes for 1D element, triangle 

or square with 3 or 4 nodes for 2D element and pyramid or cube with 4 or 8 nodes for 3D 

element. The nodes are used for force application and to measure deflection in the body. Each 

node gives static equilibrium equation by defining a proper relation between nodes, in the form 

of stiffness matrix. Summation of the stiffness matrix for each node gives global stiffness 
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matrix. Accuracy of FEA is directly related to the number of divided elements, so analytically 

FEA is very tedious job and one cannot work beyond certain limits, therefore computational 

software is required for analysis. Modern FE simulation software is user friendly, the software 

just need the number of elements in which main body is to be divided (mesh size), the mesh 

can be further linear for simple analysis or parabolic for highly accurate analysis in which 

element has more number of nodes than linear mesh. Moreover, the software allows users to 

view simulations of displacements and deformations of whole body or specific areas of concern 

that are under stresses. FEA is the most accurate technique often used to verify the results 

obtained from other techniques like; analytical and experimental (El-Khasawneh et al. 1999; 

Nagai et al. 2007; Hu et al. 2007; Corradini et al. 2003; Li et al. 2002; Piras et al. 2005) but as 

the mesh size is refined, higher computational memory is requires also re-meshing is often 

required with small change in model, so it is time consuming job that is often limited to final 

stages of design (Huang et al. 2002; Pashkevich et al. 2011; Long et al. 2003).  

 MSA is another technique which is simplification of FEA, it can be used along with 

FEA that allows its users to take advantage of the FEA, avoiding high computation for different 

configuration of body under study, but this can be done only for special cases of unloaded 

systems (Klimchik 2011). MSA uses element which are larger in size like; beams and arcs, this 

reduces computational time so results are not as accurate as that of FEA. MSA as main 

technique was used for stiffness modelling of PM with passive joints and for SP based milling 

machine (Deblaise et al. 2006)(Clinton et al. 1997). Working methodology of both the FEA 

and MSA are almost same, both the methods calculate displacements of nodes of elements 

under load while working with matrices but from computational side MSA is less complicated 

than that of FEA. For this technique to work properly, links estimate by beam or arc element 

should be accurate otherwise results will not be reliable. In short, MSA is special case of FEA 

which reduces computational time with reasonable accuracy.  

 VJM is third technique often used in stiffness calculation, body as whole is considered 

to be rigid but joints liable for flexibility of system. This consideration of flexibility is same as 

addition of auxiliary virtual joints in real joints using virtual springs. By this lumped 

representation of stiffness overall model is much simplified than that of considering distributed 

stiffness in whole system. In (1980), Salisbury applied this method for first time, later C. 

Gosselin (1990) considered the elasticity source in joints of actuator. His work was further 

modified to flexible links (Gosselin et al. 2002). Defining virtual springs is tough task in itself. 

In earlier days, each actuated joint was represented by single spring  (Zhang 2001; Pigoski, et 

al. 1998; C. M. Gosselin et al. 2002). In (2004), Majou et al. took flexibility of links by 
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increasing number of virtual joints in each joint, several  virtual springs were introduced in 

actual joints, in (2007) Majou et al. applied VJM for analytical stiffness analysis of parallel 

manipulator. Most recent development in VJM is taking 6 DOF virtual springs to replace link’s 

flexibility (Pashkevich, et al. 2009). The increase in number of springs made VJM as good as 

FEA with additional advantage of lower computational costs. VJM is not suited for stiffness 

modelling of parallel manipulators because of sequential chains between the base plate and 

platform, for such internal looped structures defining VJM based stiffness analysis becomes 

complicated. 

2.3.2 Computational Complexity. 

 The computational complexity of any of the method described above can be estimated 

by the computational resources required for inversion of matrices in algorithm. The 

computational complexity required for calculation of matrix of order nxn is O(n3) which is 

calculated by Lin et al. (2011), where “O” represents orthogonal matrix group. 

 For the FEA method n in O(n3) depends on two things; the mesh size of element and 

the nature of mesh elements (linear or parabolic). For parabolic shaped mesh there are 12 

connections in 10 nodes between each element. The value of n changes to 30vnL, where nL is 

the number of links of manipulator and v represents mesh size per element (v must be atleast 

103 for reliable results).  

 For case of MSA analysis, “n=12 nd” representing the upper bound of the matrix size 

which is computed using the node number nd. For VJM method, the matrix to be inverted has 

size n= 6+ nq; where nq is the number of the DOF of spring with which the passive joints are 

represented. 

The computational complexity of each method calculated by Klimchik (2011) is 

presented in table 2-1. From the Klimchik’s study it can be concluded that the VJM is least 

complex method and FEA is about five time more complex than VJM, MSA stands in between 

both methods. 

Table: 2-1 Complexity while solving Stiffness model; (Klimchik 2011) 

Stiffness modelling method Complexity of Stewart platform 

FEA 

MSA 

VJM 

~1016 

~106 

~103 



 

14 
 

2.3.3 Stewart Platform and its Stiffness: 

Stewart Platform is six DOF hexapod, which was originally used for flight simulation 

by Stewart. The platform was hexapod with a fixed plate connected by six legs having prismatic 

joint in centre, furthermore, a spherical and a revolute joint was attached at upper and lower 

ends of each leg at fixed and movable platform, respectively (Stewart 1965). Stewart utilized 

the same idea that was used by Gough in late 1940s for his universal tyre testing machine figure 

2-4, but published in 1962 (Gough et al. 1962), so in some literature it is referred as Gough 

Stewart Platform (GSP). Nowadays, SP is being used in different machining processes for 

higher precision and rigidity (Clinton et al. 1997). Different changes in SP were made to 

improve its performance like; SP with improved dexterity was presented by Stoughton et al, 

(1993) the work was named as Modified SP, figure 2-5; struts were connected in two 

 

Figure: 2.4 Gough Universal Tyre Testing Machine (Gough et al. 1962) 

 

Figure: 2.5 Modified Stewart Platform (Stoughton et al. 1993) 
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circles instead of single circle, result was about 30% improvement in force and torque than that 

of SP proposed by Stewart, however, this change in arrangement of legs reduced the workspace 

of platform (Stoughton et al. 1993). Performance of system greatly rely on its stiffness, as 

stiffness is the ability of a system to withstand forces without extreme deformations in its 

structure, so accuracy and position of end effector highly depends on stiffness of system. 

Stiffness determines deformation of system under applied load, also the positional accuracy is 

directly related to stiffness (Portman et al. 2000). 

Stiffness attracted attention of many researchers. A relationship between Lagrangian 

and Cartesian stiffness matrix for PM with elastic joints and rigid links is defined using 

principle of virtual work (Ruggiu et al. 2012). Stiffness of PM is focused by Huang et al. (2002) 

using principle of superposition; whole system is divided into two parts machine frame and 

parallel mechanism while studying the machine frame the parallel mechanism is kept rigid and 

vice versa. The superposition is applied to find stiffness as a whole (Huang et al. 2002). In 

(1999), El-Khasawneh et al. calculated stiffness of SP using inverse kinematics and Jacobian 

of manipulator, as the stiffness of platform is direction dependant so stiffness of PM in 

particular directions is discussed. In their work maximum and minimum bounds of stiffness 

are also developed. 

In (1993), Lebret et al. studied the dynamics and applications of SP in manufacturing 

industry using Lagrange’s formulation. Lagrange formulation was also used by Butt et al. in 

(Butt et al. 2013) to calculate positional error in rigid baseplate during precise machining of 

precious metal used in hip prosthesis The position error was due to elastic locators with elastic 

contacts configuration. Hernez et al. in (2014) focused on the errors in legs of SP that occurred 

due to manufacturing issues, a numerical methodology is formulated that compensates the 

displacement errors and simulates its effects in histogram but the proposed approach is only 

applicable on systems having error data in pattern. Nagai et al. in (2007) proposed a systematic 

approach to calculate stiffness by considering both the joints and the links as flexible elements, 

the proposed systematic approach has set of rules; passive forces are temporarily assumed to 

be non-zero, certain links are either fixed or joined to passive joints, for validation the proposed 

approach is applied on 2 DOF PM with passive joints and eventually applied on NINJA to find 

its overall stiffness. 

 Position error caused due to deformation of links and joints in presence of external 

forces is calculated by Ahmad et al. (2014), their work consists of two parts; a simple model 

and a detailed model, in simplified model only links are deformed due to applied forces and 

moments, summation of stiffness of each leg gives global stiffness matrix, results are iteratively 
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compared with FEA results with small model parameter adjustments when both results are 

validated, an experiment is carried out for same model. In case simplified modelling is failed, 

a detailed modelling is carried out in which flexibility of joints and actuators are also 

considered and whole processes is repeated again, by comparison of both the simplified and 

detailed models it is concluded that by considering flexibility of joints and actuators, the 

average error between experiments results and analytical results can be reduced from 80% to 

9%. 

 Carbone (2011) worked on stiffness calculation of multi body robotic system using 

both the analytical as well as experimental techniques, to save computational time lumped 

parameter model was used instead of FEA, stiffness properties of both the links and the 

actuators were taken into account using linear and torsion springs. In (2005), Piras et al. derived 

linear dynamic model of moving mechanisms while considering flexibility in links, both the 

linear and transverse directions of links were taken into account to study flexibility of links, 

moreover, linear actuators were also included in proposed mathematical model, a FE 

simulation was also performed for validation and it was concluded that high speed motion 

deflection of mechanism depends on its configuration.  

In (2009), Pashkevich et al., considered flexibility of links and focused on non-linear 

analysis of stiffness of modulator to present methodology that enables study of buckling 

deflection with other non-linear phenomenon for elastic behaviour of manipulator under 

applied machining forces, the proposed model was based on multi-dimensional lumped 

parameter. Bhattacharya et al. (1995) used nonlinear techniques to study rigidity behaviour of 

PM considering elastic legs under axial loading, finally nonlinear optimization techniques were 

applied to find optimum design parameters for Hexapod. Other objective of the work includes 

formulation of a scalar to measure rigidity of SP type PM to obtain most rigid design, this was 

done using multi objective optimization technique in which two design parameters were (1) 

arrangement angle “α” of leg at upper platform and (2) ratio of radius of two plates, with “α”=0 

platform was at its maximum rigidity. 

 Afzali-Far et al. (2014), proposed analytical model that includes study of inertia, 

damping, flexibility of struts in axial direction and stiffness matrix, Lagrange equation and 

Bryant angles are used for mathematical model development, the proposed model is developed 

in term of twelve design variables with neutral configuration of platform so it can be used for 

design and optimization of any SP, they also used Eigen values and frequencies in Cartesian 

space. 
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For stability of any structure in working environment its Eigen values and natural 

frequencies play leading role, Eigen values and natural frequencies are important part of many 

research works. In (2009), Mahboubkhah et al. presented a study in which free vibrations of 

hexapod table of machine tool were investigated, it consisted of two different techniques, (1) 

all kinematics chains of hexapod were involved in evaluation of coupled system of equations 

and (2) vibration equation of moving platform were derived considering flexibility as well as 

damping of supporting chains.  

2.4 Conclusion 

Although much work had been done on stiffness analysis yet there is research gap of 

finding the way in which stiffness from different techniques like analytical, experimental and 

FEA yields same result (Carbone 2011). This mismatching of results could be due to several 

reasons like; by ignoring friction forces, force due to gravity or any surrounding disturbance 

which is present during experiments but overlooked during simulation, another reason could 

be modelling of 3D systems in 1D or 2D systems. We observed in literature that there is almost 

always small deviation between experimental, simulation and analytical results (El-Khasawneh 

et al. 1999; Ahmad et al. 2014; Huang et al. 2002; Clinton et al. 1997). This is because often 

simulations or analytical work is 1D or 2D while experimental work is always in 3D, which 

causes some error. 

In the present work, it is proposed to calculate the stiffness matrix for Stewart platform 

by considering each leg of platform as 3D elastic truss. Analytical model is used for the 

calculation of the overall energy of the system. Lagrangian formulation is utilized to calculate 

the displacements of the upper platform of hexapod under external loadings. A generic 

algorithm is formulated in MATHEMATICA®, which calculates stiffness of “n” legged PM. 

Stewart platform with same dimensions is modelled and simulated in CATIA® to validate 

proposed methodology. This work is an effort in minimizing computational time for predicting 

the workpiece displacement under the working condition. 
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CHAPTER 3:  METHODOLOGY 

 In this chapter methodology of proposed work will be explained. It includes the 

calculation of potential energy of each leg by considering each leg to be a 3D massless elastic 

truss and the calculation of total work done due to external machining forces on the platform. 

This methodology is proposed while keeping in mind the structure of Stewart Platform but is 

applicable to all parallel manipulator family of Group 11. In the end, kinetic energy of platform 

due to its mass and machining forces is studied to calculate the Eigen value and Eigen vector 

of the platform.  

3.1   Mechanical Model Representation 

The basic representation of system, modelled in CATIA, without external forces is 

shown in figure 3-1. During the mechanical modelling, the legs are taken as massless 3D elastic 

trusses, each leg is represented by proper stiffness matrix [(K1) to (K6)]. The platform is 

assumed to be a rigid mass element i.e. no deformation is possible under machining forces. The 

spherical contacts of legs are also assumed to be rigid so no deformation modelling is 

established between the plates and legs of the system. Aim of this mechanical model is to 

calculate the displacements of “platform” due to external forces, along, with 3D Stiffness 

matrix of the system due to elasticity of legs. Using the calculated Stiffness matrix, Eigen 

values and their corresponding Eigen vector are also calculated. 

 

Figure: 3.1 Isometric view of Stewart Platform Model 

                                                 
1 Categorised in Chapter 1 
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The term arrangement angle of the legs at lower and upper plates shows the placement 

angles of legs at corresponding plate. To make a truss structure for stability of system, axis at 

base plate is taken at 0˚, however, axis for platform are initially rotated at angle of 60˚ and for 

symmetry of system each leg at base is placed at angle of 10˚ (θB) and 6˚ (θP) at platform as 

shown in figure 3-2. 

 

Figure: 3.2 Top view of Stewart Platform Model 

3.2 Positioning error due to deformation of elastic legs 

The legs of manipulator can deform either under the weight of the platform or due to 

dynamic (machining) forces exerted on the platform by the tool. The displacements as the result 

of external forces are required to calculate the positioning error of platform. 

In this section, an analytical model is proposed that calculates the deformation of elastic 

legs due to displacement of the rigid platform under external load. This analytical model will 

be referred as "mechanical model" in report. The proposed model calculates the stiffness of 

elastic legs and mass of the upper platform, the legs are assumed to be the 3D trusses with 

negligible masses and the platform of system will be the rigid massed body. 

As the FEA method needs tedious initial modelling of the system whenever the 

configuration or condition of the system changes. Therefore, the analytical formulation is 

preferred for the solution of this problem. The proposed methodology will allow to obtain the 

mass matrix, stiffness matrix and displacements of upper platform quickly for any 

configuration, as well as, for any initial orientation of the parallel manipulator, the inputs are 

introduced by just editing the input spreadsheet file, generated by Mathematica®. 



 

20 
 

The Lagrangian formulation is programmed in Mathematica® to obtain the stiffness 

matrix. The calculated matrix depends on the configuration of platform and changes with 

alternations in the design parameters like; platform’s initial orientation, dimensions and 

material properties, etc. Small displacement approximation is used as the deformation must 

remain small for precision of the system.  

Followings will be the main focuses of the chapter: in start, the proposed analytical 

model was constructed assuming the platform being rigid with elastic legs. Later, the overall 

energies of the system are obtained, these energies include the potential energies of all the legs 

of system, kinetic energy of inertial elements (platform) and overall work done due to the 

machining loads acting on the platform. Lagrange equation takes the KE, PE and work done as 

inputs and calculates the displacement of platform, furthermore, Hessian of the calculated PE 

gives stiffness matrix and KE gives mass matrix of the platform, these matrices are used for 

calculation of Natural Frequencies and mode shapes of the platform. During the calculations, 

it is assumed that the contacts between the legs, the base, as well as, the platform are rigid. 

3.3 Mechanical Behaviour Formulation 

In this section, the mechanical behaviour of the system is formulated using Lagrange 

formulation and assuming small displacement approximation. The general Lagrange equation 

is given below; 

∂
∂t
ቆ
∂ሺKE‐	PEሻ

q i	
ቇ ‐
∂ሺKE‐ PEሻ

∂qi
‐
∂W
∂qi

ൌ0 (3.1) 

where, PE is the total potential energy of all the elastic bodies in the hexapod, KE represents 

total kinetic energy of inertial parts, W represents work that is done by external machining 

forces and torques on the platform, qis represent generalized coordinate. For this study, qi’s are 

the 6-DOF and ݍሶ represents six velocities (ݍ ൌ ቀడഢ
ሶ

డ௧
ቁ) of the system. 

The external forces may relocate the workpiece, however, to simplify the model it is 

supposed that the machining forces are directly applied on rigid platform so no displacement 

can take place between the platform and workpiece under load or work piece is also taken as a 

rigid body. 

Main aim of upcoming sub-sections is to estimate the displacement produced in the 

platform under machining forces which is the relative to the initial position of the platform to 

that of unloaded. This displacement of platform is the positioning error of the platform. The 

information of the system’s configuration consists of; initial orientation of platform, material 
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property, dimensions of system along with the magnitude and direction of the applied 

machining forces and moments. The stiffness and mass matrices are calculated assuming small 

displacements and Lagrangian formulation. 

3.3.1 Calculation of Leg Length 

The calculation of the length of leg requires its coordinates at the platform and the base. 

The lower coordinates are calculated using radius of base plate and arrangement angles of leg 

on the base, as the origin is assumed at the upper face of base therefore in z-axis will be “0”, 

lower coordinates can be calculated using equation (3.2).  Similarly, for leg’s coordinate at the 

platform, leg’s arrangement angles at platform and radius of platform are required, in this case 

z axis will have value same as that of point “P”, equation (3.3). 

	ݏ݁ݐܽ݊݅݀ݎܿ	ݎ݁ݓܮ ൌ 	൭
	ݎ݁ݓ݈	݂	ݏݑܴ݅݀ܽ ∗ ߠ	ݏܿ	
	ݎ݁ݓ݈	݂	ݏݑܴ݅݀ܽ ∗ ߠ	݊݅ݏ	

0
൱    (3.2) 

	ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁ ൌ 	ቌ
	ݎ݁ݑ	݂	ݏݑܴ݅݀ܽ ∗ ߠ	ݏܿ	
	ݎ݁ݑ	݂	ݏݑܴ݅݀ܽ ∗ ߠ	݊݅ݏ	

"ܲ"	݂	ݏ݅ݔݖ	ܼ
ቍ    (3.3) 

If there is any initial orientation of platform, it must be introduced in this step by pre-

multiplication of RPY1 rotation matrix with upper coordinates of legs. This multiplication will 

change the length of certain legs according to rotation matrix. Hence, the platform will get an 

initial orientation in local coordinates using equation 3.4, which is converted into global 

coordinates using equation 3.5.  

ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁	݀݁ݐܽݐܴ ൌ 
1 െ∆ߙ ߛ∆
ߙ∆
െ∆ߛ

1
ߚ∆

െ∆ߚ
1

൩ . 
	ݎ݁ݑ	݂	ݏݑܴ݅݀ܽ ∗ ߠ	ݏܿ	
	ݎ݁ݑ	݂	ݏݑܴ݅݀ܽ ∗ ߠ	݊݅ݏ	

0
൩ (3.4) 

ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁	݈ܽ݊݅ܨ ൌ ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁	݀݁ݐܽݐܴ  
0
0

"ܲ"	݂	ݏ݅ݔܽ	ܼ
൩ (3.5) 

Now, using two coordinates of each leg, the calculated points can be used for calculation of 

length of leg using distance formula which is given as 

݄ݐ݈݃݊݁	݃݁ܮ ൌ ඥሺݔ െ ሻଶݔ  ሺݕ െ ሻଶݕ  ሺݖ െ  ሻଶ    (3.6)ݖ

where xL, yL, zL and xU, yU, zU are lower and upper coordinates of leg, respectively. 

 (Dukkipati et al. 2012), used the components of the unit vector calculated form length 

of each leg, these components are used form calculation of 3D Stiffness matrix of each leg, 

                                                 
1 YRP: Yaw (α) Roll(β) Pitch(γ) 
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summation of which can be used for calculation of global potential energy of the system with 

massless elastic legs.  

3.3.2 Elastic Potential Energy 

Consider again, the hexapod shown in figure 3-1, overall PE of this hexapod is 

summation of individual PE each leg possesses, the only elastic body in the system, besides, 

whole assembly is assumed to be rigid. Each leg is assumed to 3D elastic truss. The overall 

potential energy of the ith elastic legs is given by; 

ܧܲ ൌ 1
2ൗ 	ሼܺ߂ሽ		ሾܭ	ሿ		ሼܺ߂ሽ

்       (3.7) 

 ሼΔXሽ 	ൌ ሼ0 0 0 ΔX୧ ΔY୧ ΔZ୧ሽ		 

where, [K]i represents stiffness matrix for ith leg 

ΔXi, ΔYi, ΔZi are components of displacement vector, the displacements of the point of contact 

of ith leg attached to upper plate 

ΔXi represents displacement of the point of contact of ith leg due to its elasticity, Dukkipati et 

al. (2012) defined stiffness matrix for 3D truss body as : 

ܭ  ൌ ܧܣ
ൗܮ ቂ ݇′ െ݇′
െ݇′ ݇′

ቃ        (3.8) 

where, ݇ᇱ ൌ ൦

௫ଶߣ ௬ߣ௫ߣ ௭ߣ௫ߣ
௫ߣ௬ߣ ௬ଶߣ ௭ߣ௬ߣ
௫ߣ௭ߣ ௬ߣ௭ߣ ௭ଶߣ

൪  

 z are ith, jth and kth components of unit vector of length of leg obtained by leg’s point ofߣ ,yߣ ,xߣ

contact at the platform and base plate. 

An imaginary point “P” is chosen with respect to which the displacement vector is 

measured, any arbitrary point could be chosen for this purpose, however, for this study, this 

point is the centre of gravity of the platform. If α, β and γ are three rotations for the platform in 

Cartesian coordinates, the location of ith point of contact on the platform, w.r.t. arbitrary point 

“P”, is defined as; 

൦

ݔ
ݕ
ݖ
1

൪ ൌ ൦
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െܿߚݏ	ߛ݊݅ݏ ߚ݊݅ݏ ߛݏܿ	ߚݏܿ ܼ
0 0 0 1

൪		൦

ݔ െ ݔ
ݕ െ ݕ
ݖ െ ݖ
1

൪	   (3.9) 

where, xi - xP, yi - yP, and zi - xP, represents the position vector between the initial contact point 

and chosen imaginary point “P”, xfi, yfi and zfi shows final position of ith point after its 

displacement, and XP, YP and ZP represents the displacements of imaginary point of the 

platform under external forces. According to small displacement assumption: 

sin θ ≈ θ, cos θ ≈ 1 



 

23 
 

sin θ cos θ ≈ 0 

sin2 θ ≈ 0 

After applying the small angles hypothesis, the equation 3.9, is reduced to; 
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൪ ൌ ൦
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െ∆ߛ
0

1
ߚ∆
0
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൪ ∗     (3.10) 

The final coordinates of ith point w.r.t. point P, after displacement, is obtained by 

subtraction of the final position of contact point from its initial position w.r.t. “P” on the 

platform. The final position of ith point of contact becomes; 
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 ∗     (3.11) 

Equation 3.11 enables us to calculate the deformation of each leg’s contact point which leads 

to the calculation of potential energy of massless elastic legs as the function of six unknowns 

(linear and angular) displacements of the platform {ΔXP, ΔYP, ΔZP, Δβ, Δγ, Δα}T. 

3.3.3 Inertial Kinetic Energy 

The system under study is supposed to be at static configuration so its velocity is zero, 

hence kinetic energy will be zero. But there will be small kinetic energy due to mass of 

platform, the only inertial body in the system, it will experience kinetic energy due to external 

machining loads. Kinetic energy consists of; linear and angular kinetic energies. The general 

equation for linear kinetic energy (TV) is given as; 

ܶ ൌ 	
ଵ

ଶ
൛ሬܸԦൟ	ሾܯሿ	൛ሬܸԦൟ

்
         (3.12) 

where M is consistent mass matrix of platform, ൛VሬሬԦൟ is linear velocity vector with components; 

Ԧ௫ݒ ൌ
ఋ
ఋ௧
, Ԧ௬ݒ ൌ 	

ఋ
ఋ௧
Ԧ௭ݒ			, ൌ 	

ఋ
ఋ௧

       (3.13) 

M = ρπH(RP)2  

The equation 3.12 gives the linear velocity vector in terms of six unknown displacements of 

the platform. Similarly, the angular kinetic energy in term of unknown variables is calculated 

using equation 3.14.  

Ωܶ ൌ 	 ൛ΩሬሬԦൟ	ሾܫሿ	൛ΩሬሬԦൟ
்
         (3.14) 

where [I] is the inertia matrix 
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[I] = 
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     (3.15) 

 and ൛ΩሬሬԦൟ
்
ൌ ൛	߱௫ሬሬሬሬሬԦ, ߱௬ሬሬሬሬሬԦ	, ሬ߱ሬԦ௭ൟ is the angular velocity vector. Lalanne et al. (1986), calculated 

angular velocities, figure 3-3 shows the platform that bears three rotations α, β and γ about z, 

x and y axis, respectively. Angular velocities calculated by Lalanne et al. (1986) are function 

of three angular displacements, these velocities are given as, 

ሬ߱ሬԦ௫ ൌ 	െ
ఋఈ

ఋ௧
ߛ݊݅ݏߚݏܿ 	ఋఉ

ఋ௧
 (3.16a)       ߛݏܿ

ሬ߱ሬԦ௬ ൌ 	െ
ఋఊ

ఋ௧
	ఋఈ

ఋ௧
 (3.16b)         ߚ݊݅ݏ

ሬ߱ሬԦ௭ ൌ 	െ
ఋఈ

ఋ௧
ߛݏܿߚݏܿ 	ఋఉ

ఋ௧
  (3.16c)       ߛ݊݅ݏ

 

Figure: 3.3 Rotation along axis [β, γ and α about x, y and z axis](Lalanne et al. 1986) 

The small angle displacement hypothesis cos	ߠ	 ൎ 	1, sin	ߠ	 ൎ ߠ	  reduces equation 3.16 to 

equation 3.17 

ሬ߱ሬԦ௫ ൌ 	െ
ఋఈ
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ߛ 	ఋఉ

ఋ௧
         (3.17a) 

ሬ߱ሬԦ௬ ൌ 	െ
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ఋ௧
	ఋఈ

ఋ௧
 (3.17b)         ߚ

ሬ߱ሬԦ௭ ൌ 	െ
ఋఈ

ఋ௧
	ఋఉ

ఋ௧
 (3.17c)         ߛ
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Equations 3.12 and 3.14, calculate both the linear and angular KE of the platform as a function 

of six unknown displacements {ΔXP, ΔYP, ΔZP, Δβ, Δγ, Δα}T. Hence, like potential energy, 

kinetic energy will also be calculated as a function of unknown displacements of the platform. 

Summation of linear and angular kinetic energies will give us total kinetic energy of the 

platform: 

ܶ ൌ 	 ܶ 	 Ωܶ          (3.18) 

In this thesis, the kinetic energy is neglected but it is of great importance in turning process. 

  

Figure: 3.4 Platform with machining force 

3.3.4 Total Work done by External Forces 

The forces applied by the machining tool (linear and moment) on platform are treated 

as the external forces. In this section, total work done by the machining tool will be calculated. 

In figure 3-4, the platform is shown without legs and is experiencing a point machining load F 

= {Fx, Fy, Fz}T with moment M = {Mx, My, Mz}T. For the machining force acting at point 

other than point “P”, there will be some angular displacement along with linear displacement 

of the platform. Total work done the static force is calculated in equation 3.19. 

W = {F}.{ΔXP} + {M}.{Δθ}*       (3.19) 

where, F represents linear force, ΔXP shows linear displacements of point P under force F, T is 

the torque applied by the tool with Δθ resultant angular displacement vector. 3D view of the 

platform is shown in figure 3-5, with a force and moment component. 

There is some displacement of point of action of force due to mutual effect of elasticity 

of legs and applied force. The displacement of the point of application of force can be written 

as the function of 6 DOF of the platform as shown in equation 3.20 using small displacement 

approximation as; 

M
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where, ሼx 	െ x, y 	െ y, z 	െ zሽ shows the position vector between application point of  

 

Figure: 3.5 Three views of Platform with machining force 

force w.r.t. imaginary point, while ሼΔXሽ 	ൌ 	 ሼΔX, ΔY, ΔZሽ  is the displacement of point 

at which the force (F) is applied, like KE it is also in term of six unknown displacements 

ሼΔX, ΔY, ΔZ, β, Δγ, Δαሽ  of the platform. For “i” forces and “j” moments equation 3.21 

becomes; 

W = ා ቐ
௫ܨ
௬ܨ
௭ܨ
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   (3.21) 

where, {ΔXf, ΔYf, ΔZf} represents linear displacement vector and {Δβ, Δγ, Δα} shows angular 

displacement vector of the platform. Using calculated equations for the potential energies of 

legs, kinetic energy of the platform and work done by the machining loads, the Lagrange 

equation (equation. 3.1) uses calculated KE, PE and work done to find the stiffness matrix, 

mass matrix, six unknown displacements of the platform under machining forces, using the 

mass and stiffness matrices the natural frequencies of the hexapod can be investigated. 
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3.3.5 Displacement of platform under load 

Major focus of this work includes computation of the positioning error of the platform 

under the forces exerted by machining tool, the machining forces are directly acting on the 

rigid platform which is mounted on the elastic legs with rigid joints. The total energies of 

system (KE and PE) and the work done by all the machining loads (linear and angular) are 

explained in previous sections. All calculated terms are function of six unknown variables 

{ΔXP, ΔYP, ΔZP, Δβ, Δγ, Δα}. The calculated energy terms with Lagrange equation (equation 

3.1) gives the displacement vector of the platform. There will be separate equation for each leg, 

so for “n” legs algorithm will generate “n” linear equations. The statically determinate problem 

will be solved for six unknown displacements. To obtain the unknowns this algorithm is 

programmed in Mathematica assuming small displacement approximation, i.e. 

ሶݍ ൎ 0, ሷݍ ൎ 0, ݍݍ ൎ 0	 

where, qis represent the 6 DOF parameters (ΔXP, ΔYP, ΔZP, Δβ, Δγ, Δα) of the 

workpiece, 	qሶ ୧ represents the velocity parameters with qሶ ୧ ൌ 	
ఋ	
ఋ௧	

 and ݍሷ  represents the 

acceleration parameters with ݍሷ୧ ൌ 	
ఋమ
ఋ௧మ

 of the considered system.  

3.3.6 Natural Frequencies of the System  

The mechanical behaviour of the hexapod can also be studied using potential and 

kinetic energies. Mass matrix is obtained from the calculated Kinetic energy, similarly, the 

global stiffness matrix is obtained from the overall PE of the system, as shown in figure 3-6. 

From equation 2.2 and equation 2.13, the component i × j of the stiffness and mass matrices 

are obtained using equation. 3.22a and equation. 3.22b. 

ሾKijሿ ൌ 	 ஔ

ஔ୯୧ஔ୯୨
            (3.22a) 

ሾ݆݅ܯሿ ൌ 	 ఋ்

ఋሶ ఋሶ 
         (3.22b)  

Using calculated stiffness matrix of legs and mass matrix of platform, the Natural frequencies 

and mode of the system can be analysed using the equation 2.18, (Dukkipati et al. 2012) gives 

this equation as; 

|[M]−1[K] − ω2[I]| = 0        (3.23) 

The natural frequency determines the safe operating frequency of the platform. For safety, the 

frequency of the machine tool should be different from the natural frequencies of the hexapod.  
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Figure: 3.6 Overall stiffness and Mass matrix representation 

3.3.7 Displacement of Any Point on Platform 

The calculation described in above sections is for Point “P”, the centre of gravity of 

platform, however, linear displacement of any point on the platform can be calculated by 

multiplying the HTM1 with a position vector form point “P” to the point of interest, whose 

linear displacement is required. The displacement of any point other than “P” can be calculated 

using equation. 3.24. 
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     (3.24) 

where; {ΔαP, ΔβP, ΔγP, ΔXP, ΔYP, ΔZP} are six displacements calculated by Lagrangian 

formulation 

ΔXO, ΔYO, ΔZO are displacements of the point of interest on the platform  

xO, yO,zO, are the coordinates of any other point of interest 

xP,yP,zP, are the coordinates of point “P”, with reference to which displacements of platform 

are calculated. It should be noted that equation 3.24 is used for validation of angular 

displacement in next chapter. 

3.4 Conclusion 

This chapter was devoted to establishment of a mechanical model of the hexapod to 

compute the displacement error of the platform and its behaviour under machining forces and 

in environment, respectively. To do this, stiffness and mass matrices of the “n” legged hexapod 

                                                 
1 Homogenous Transformation Matrix 

M

6x6 

6x6 
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are calculated assuming the legs to be 3D massless elastic trusses keeping the platform 

assembly as rigid mass body with rigid spherical contacts with legs. Using the proposed 

analytical methodology, stiffness matrix for any initial configuration and orientation of the 

platform can be accurately estimated. The methodology is modelled in Mathematica®. To 

make the algorithm reliable, the deformation must remain small, so small displacement 

hypothesis is used. 

The proposed mechanical model of hexapod is demonstrated by considering platform 

and joints being rigid with elastic legs. Total energy of the hexapod is computed, the energy 

constitutes of the potential energy within all elastic legs, kinetic energy due to mass of platform 

and work done by all the machining forces applied on the platform. Solution of Lagrange 

equation gives; displacement of the platform under external loading, the stiffness and mass 

matrices along with vibrational behaviour of the platform, deformation of each leg depends on 

the stiffness matrix of leg. During the evaluation, contacts between the legs and platform and 

the platform itself is kept rigid. The proposed methodology is capable of solving complex 

problems with different number of machining forces and with different initial orientation of 

platform. 
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CHAPTER 4:  CASE STUDY AND FE ANALYSIS 

 In this chapter, a case study is performed on a Stewart platform, designed and developed 

by Physik Instrumente, model  H-840 (“H-840 6-Axis Hexapod” 2016), shown in figure 3-1, 

to explain the working and findings of the proposed mechanical model. It has repeatability of 

±0.4μm and resolution of 16nm, H-840 with same specification as provided by its 

manufacturers (table 4-1), is designed in CATIA (figure 4-2) to evaluated the displacement of 

platform and natural frequencies of the system. Force “F” is taken as machining force at any 

point on the platform, the model is capable to take into account the effect of “n” forces, [K1] 

to [K6] are stiffness matrices of legs (1 to 6) that are taken to be 3D trusses. 

 

Figure: 4.1 PI H-840 Hexapod 

Table: 4-1 Specifications of Hexapod 

 Symbol Value Symbol Value 

 Rb 0.130m H 0.085m 

 Rp 0.105m θp 60 

 r 0.01m θb 100 
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Figure: 4.2 CATIA Model of PI H-840 

4.1 Data Input 

During the analysis, the platform is considered not to be at its natural configuration. 

Initial length of each leg is given in table 4-2. Initial configuration of the platform in terms of 

YPR 1  is given in table 4-3. The orientation can be entered through spreadsheet. Other 

specifications are given in data sheet of PI H-840 drawing attached in Appendix A and also 

shown in table 4-1. These specifications are extracted from the drawing attached in Appendix. 

The material properties of Stewart platform and the machining forces acting on platform are 

also entered using spreadsheet. There could be any number of forces acting on platform but in 

specific case three simultaneous machining forces are being considered, shown in table 4-4 

along with point of action of forces.  

Arrangement angle of the legs at lower and upper plates, which is placement angle of 

legs at corresponding plate, could also be varied and is introduced in spreadsheet. To make a 

truss structure for stability of system, axis at base plate is taken at 0˚, however, axis for platform 

are initially rotated at angle of 60˚ and for symmetry of system each leg at base is placed at 

angle of 10˚ and 6˚ at platform. 

Table: 4-2 Initial leg lengths of Hexapod 

 Leg Length Value (m) Leg Length Value (m) 

 l1 0.315 l4 0.310 

 l2 0.311 l5 0.293 

 l3 0.320 l6 0.284 

                                                 
1 YRP: Yaw (α) Roll (β) Pitch (γ) 

M
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Table: 4-3 Initial Orientation of Platform 

 Axix Angle (˚) 

 X 7 

 Y 6 

 Z 5 

Table: 4-4 Machining Forces and their positions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure: 4.3 Flow chart of proposed Mathematical Model 

 Force (N) Force Position (mm)

 {-15, -35, -65} {0, 0, 283.35} 

 {-80, -65, -90} {80, 80, 283.35} 

 {-45, -65, -95} {-80, -80, 283.35} 

Initial Data: 
Material’s Modulus 
Legs arrangement angle 
Plate’s Initial Orientation 
Radius of legs, base, platform 
Position of Point “P” in global axis 
Applied forces and moments with position 

Import data to Mathematica 

Calculation of Potential 
energy of each leg 

Calculation of Kinetic 
energy due to machining 
forces on platform 

Calculation of Work 
done by machining 
forces and moments 

Six unknown displacements, 
Stiffness of system and Natural 
frequencies using Lagrange equation 
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4.2  Working of Proposed Algorithm in Mathematica: 

Main steps of proposed mathematical model are shown in figure 4-3. Each step is 

further explained in detail as follows: 

4.2.1 Exporting Files:  

Depending upon the input data i.e. number of forces and legs etc., the algorithm exports 

the required spreadsheet “.dat” files to enter the magnitude of forces being applied on platform, 

their point of action, moment (if any) being applied by the forces, the material properties 

including radius of leg, the arrangement angles of legs on the base and the platform, Initial 

orientation of platform (if any) and the imaginary point “P” that could be anywhere on the 

platform with reference to which all forces and positions of legs are defined, in the present case 

“P” is assumed to be the centre of gravity of the platform. These files are later imported by 

algorithm, so without entering the proper inputs the algorithm will not run any further. 

4.2.2 Algorithm Calculation Flow: 

In this section, the working of each step, given in figure 4-3, will be explained in detail. 

4.2.2.1 Displacement Matrix: 

The calculations start with calculation of RYP rotation matrix in which three rotations 

β, γ, and α are assumed along x, y and z axis. Multiplication of these rotations gives complete 

rotation matrix, further by assuming small angle assumption RYP is reduced to matrix shown 

in Eq. (3.10) and also shown below: 
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The simplified rotation matrix is used in all future calculations, like for calculation of 

displacement matrix which is obtained by subtraction of rotation matrix of point “P” from the 

simplified rotation matrix. As mentioned earlier the Point “P” is centre of gravity of platform 

so its rotation matrix is simply an identity matrix, the displacement matrix is shown in matrix 

of equation. 3.11 and also given below: 
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4.2.2.2 Leg’s coordinates and its length: 

To calculate the length of leg its coordinates at the platform and the base are required, 

which can be calculated using equation 3.2 and equation 3.3, which are also given below. 

	ݏ݁ݐܽ݊݅݀ݎܿ	ݎ݁ݓܮ ൌ ൭
	ݎ݁ݓ݈	݂	ݏݑܴ݅݀ܽ ∗ ߠ	ݏܿ	
	ݎ݁ݓ݈	݂	ݏݑܴ݅݀ܽ ∗ ߠ	݊݅ݏ	

0
൱ 

	ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁ ൌ ൭
Radius	of	upper	 ∗ 	cos	θ
Radius	of	upper	 ∗ 	sin	θ

Z	zxis	of	"P"
൱ 

Now, that we have two coordinates of each leg, the calculated points can be used for calculation 

of length of leg using distance formula using equation 3.6, which is given as 

݄ݐ݈݃݊݁	݃݁ܮ ൌ ඥሺݔଵ െ ଶሻଶݔ  ሺݕଵ െ ଶሻଶݕ  ሺݖଵ െ  ଶሻଶݖ

This length of leg plays an important role in upcoming calculations for evaluation of stiffness 

matrix of legs and its potential energy. 

4.2.2.3 Initial Orientation of Platform: 

The values of orientation of platform are imported from spreadsheet exported earlier, a 

rotation matrix again by using YRP rotation is constructed, this time it uses the values specified 

for orientation of platform. To add initial orientation of platform this constructed rotation 

matrix is multiplied with upper coordinates of legs calculated in equation 3.5 and also shown 

below. This multiplication with rotation matrix will increase or decrease the length of legs 

which will induce rotation in the platform. It should be noted that this rotation has no effect on 

the point “P” as point “P” is the reference point of this rotation. 

ݏ݁ݐܽ݊݅݀ݎܿ	ݎܷ݁	݈ܽ݊݅ܨ ൌ ൭
1 െ∆ߙ ߛ∆
ߙ∆
െ∆ߛ

1
ߚ∆

െ∆ߚ
1

൩ . 
ܴ 	∗ ߠ	ݏܥ	
ܴ 	∗ ߠ	݊݅ܵ	

0
൩൱  

0
0

"ܲ"	݂	ݏ݅ݔܽ	ܼ
൩ 

4.2.2.4 Potential Energy of Leg: 

Potential energy of each leg is calculated using equation 3.7, area of each leg is same 

and is calculated using the radius from spreadsheet. For calculation of potential energy, we 

need the length of each leg, the length is used for calculation of unit vector using the length 

position vector and its magnitude, components of calculated unit vector are used in construction 

of stiffness matrix of each leg that is being treated as 3D truss. The stiffness matrices will be 

used for calculation of potential energy of each leg which is summed to get global PE of the 

hexapod. The overall PE will be used for calculation of stiffness matrix of system by derivation 

of potential energy w.r.t linear and angular velocities using equation 3.22a. 
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4.2.2.5 Kinetic Energy: 

Although this is a static system so kinetic energy is zero because of absence of velocity 

of platform but the small amount of kinetic energy can be there due to applied machining forces 

on the platform with mass and inertia. The KE can be calculated using equation 3.18. Overall 

kinetic energy of platform includes linear and angular kinetic energies due to mass and inertia, 

respectively. This total kinetic energy will be used later for calculation of mass matrix of system 

by derivation of total kinetic energy w.r.t linear and angular velocities using equation 3.22b. 

4.2.2.6 Work Calculation:   

The imported force positons are taken with reference to point “P”. This is done by 

calculating position vector of the force position with reference to point “P”. To get the displaced 

force positions on the platform equation 3.20 is used, the force positions are multiplied with 

displacement matrix obtained in equation 3.11.  Now, the linear work done is obtained by the 

scalar product of force vector and the calculated displacement matrix. To calculate overall 

linear work all linear works are added. The angular work is due to moment (if any) applied by 

the tool on the platform, the angular work is scalar product of moment vector with the angles 

β, γ, and α of platform. Total work done is summation of linear and angular works. 

4.2.2.7 Lagrange and its solution: 

The Lagrange equation requires the kinetic energy, potential energy and work done as 

inputs, but while solution of Lagrange for displacements of platform kinetic energy is “0”. So 

the Lagrange equation will be simplified. By putting values in Lagrange, we get six equations 

with six unknowns, statically determinate problem. The solution will give six unknown 

variables that will be displacement of point “P” of platform.  

∂
∂t
ቆ
∂ሺKE‐	PEሻ

q i
ቇ ‐
∂ሺKE‐	PEሻ

∂qi	
‐	
∂W
∂qi

ൌ0 

Displacements of any point in platform can be calculated using homogenous transformation 

matrix when its variables are replaced with displacements of point “P”, the HTM is then 

multiplied with coordinates of that particular point of interest.  

4.2.2.8 Natural frequencies: 

Natural frequencies are calculated using mass matrix calculated in equation. 3.22b. 

Solution of equation. 3.22a gives the natural frequencies of platform. As it is a 6 DOF problem, 

six Natural frequencies will be calculated. 

|[M]−1[K] − ω2[I]| = 0 
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The Eigen values and Eigen vectors are calculated using the Eigenvalues and Eigenvectors 

command in Mathematica. The natural frequencies are obtained by taking square root of 

calculated Eigen values of system and the vector corresponding to each Eigen value gives the 

mode shape at that frequency.  

4.3 Finite Element Analysis in CATIA: 

The model with same dimension as that of provided by manufacturer of H-840 is 

modelled in CATIA for its FE analysis. Dimensions of the system are given in table 4-1, 

drawing provide by PI is attached in Appendix (“H-840 6-Axis Hexapod” 2016). Material of 

system is Aluminium few amendments are made in the material properties of different parts 

for better comparison between both the analysis in Mathematica and CATIA. Three parts of 

system are explained below. 

4.3.1 Platform: 

This is upper moveable plate with six spherical seats for fitting of legs, radius of each 

seat is 10mm. Each slot is coloured differently so that each leg is placed at its own side of 

global axis. Boolean command in CATIA is used for slots placement. The platform is 15mm 

thick. Material properties for this part is unchanged, default material properties provided by 

CATIA are used. The platform is shown in figure 4-4 

 

Figure: 4.4 Platform in CATIA 

4.3.2 Base plate: 

Like platform the base also have six slots for leg’s sitting along with six different 

colours for each leg. The material properties for the base will not affect the analysis so these 

properties are also kept unchanged. The thickness of base is 29mm. Base is shown in figure 4-

5 
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Figure: 4.5 Base plate in CATIA 

4.3.3 Legs: 

The only elastic bodied in analysis are legs. The length of leg changes with change in 

orientation of platform. For different configurations, the leg length changes each time and the 

values are taken from Mathematica calculations. To make legs massless, properties of material 

are modified in CATIA by changing density of Aluminium. Each leg is coloured differently 

according to its position in global axis, otherwise there are high chances of mistake which cause 

error in orientation of platform. Leg is shown in figure 4-6 

 

Figure: 4.6 Leg in CATIA 

4.3.4 Assembly: 

All parts are designed separately in CATIA part design and assembled in assembly 

design. During the assembly, all legs are placed in proper pace in global axis and contact 

constraint is applied between each slot place at the platform and the base to upper and lower 

ends of legs, respectively. This contact constraint forms surface contact between legs and both 

the plates, as the result, plates have three angular degrees of freedom. Other three degrees of 

freedom can be provided manually by changing the length of legs, in real system prismatic 

joints with actuators are used for this purpose. 24 coloured squares show in figure 4-7 are 

surface contacts between plates and legs. 
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Figure: 4.7 Assembly of Stewart platform in CATIA 

4.3.5 Analysis: 

Analysis is performed in Generative Structural Analysis of CATIA, case for this 

analysis is Static Analysis. During the analysis, base plate is fixed for all kind of motions i.e. 

base has zero DOF. Both the base and the platform are made rigid from all side using “Rigid 

Virtual Part”. The “User Defined Restrain” is used for complete rigid body motion of plates. 

“Rigid Connection Properties” are used for defining rigid connections between both the plates 

and all the legs. 

Local points are imposed on platform to apply point loads and to obtain displacements 

of different points on the platform. As the platform is rigid so it is coarsely meshed with linear 

type elements, mesh size for base and platform is 16mm. Legs on the other hand are has 2mm 

mesh size with parabolic elements type. Applied machining forces are given in Table 3-3. This 

completes the requirements to run static analysis. The Stewart Platform ready for analysis is 

shown in figure 4-8. 

4.3.6 Results for Displacements 

The analysis is run to compute displacements of platform. First of all, the product is 

meshed according to size provided in last step, meshing time depends on the size of part and 

the number of elements. The meshed system is shown in figure 4-9. It can be observed that 

both platforms are coarsely meshed while legs are finer. 
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Figure: 4.8 Ready to run Analysis 

 

Figure: 4.9 Meshed Stewart Platform 

  

(a) Displacement (vector) Displacement (magnitude) 

Figure: 4.10 Displacement Results of Analysis 
 

For solution computation different available method can be selected, however, for this case 

auto solution method is used. Depending on the size of elements the solution time varies. The 
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translational displacement result for present case is shown in figure 4-10. Displacements 

obtained from Mathematica and CATIA for few selected point is given in table 4-5. The error 

magnitude column shows the percentage of magnitude of both displacement results obtained 

from FEA and analytical approach. 

Table: 4-5 Displacement Results Comparison 

 

Point (mm) 

Displacements using Proposed 
method 

Displacements using 
Simulation 

Error’s 
magnitude

 
ΔX (μm) 
----------- 

ΔY (μm)
-----------

ΔZ (μm)
-----------

ΔX 
(μrad)

---------
- 

ΔY 
(μrad) 

----------
-- 

ΔZ 
(μrad) 

---------
--- 

 {0, 0, 283.35} -6.441 -8.561 െ1.098 -6.406 -8.328 -1.068 1.937% 

 {80, 80, 283.35} -7.572 -7.430 -1.078 -7.697 -7.290 -1.212 -0.068%

 {-80, 80, 283.35} -7.572 -9.692 -1.457 -7.481 -9.550 -1.355 -1.441%

 {-80, -80, 283.35} -5.310 -9.692 -1. 118 -5.105 -9.412 -0.918 -2.836%

 {80, -80, 283.35} -5.310 -7.430 -7.387 -5.311 -7.09 -7.676 0.208% 

4.3.7 3D Stiffness Matrix: 

Final stiffness matrix is calculated using equation 3.22b, the calculated stiffness matrix is 

shown in equation 4.1. 

ۏ
ێ
ێ
ێ
ێ
ۍ
20.673 1.373 െ0.174

	 18.760 0.059
	 	 238.157

	
െ0.203 0.0557	 0.313
െ0.209 െ0.452 0.213
െ0.381 െ0.322 	0.655

.݉݉ݕܵ	 	 	
	 	 	
	 	 		

	
			1.597 				0.033 			0.025

	 1.570 െ0.033
	 	 	0.518 ے

ۑ
ۑ
ۑ
ۑ
ې

 ܰ/݉  (4.1)	10	ݔ

4.4 Frequency Analysis in CATIA 

For frequency analysis we need to select Frequency Analysis in “Generative Structural 

Analysis” rest of all steps are same as that of for static analysis. Before analysis the number of 

required mode shapes are changed to six. Six shapes of H-840 at first six natural frequencies 

are shown in figure 4-11, corresponding six Eigen vectors corresponding to the particular 

shapes are shown in equation 4.2. For better comparison of Eigen vectors and mode shapes 

Stewart platform is kept at its neutral configuration. Natural frequencies from Mathematica and 

CATIA are shown in table 4-6. 
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Figure: 4.11 Mode Shapes from CATIA 
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ۏ
ێ
ێ
ێ
ێ
ۍ

0 െ996.313 0 െ85.791 0 0
െ996.313 0 0 0 85.790 0

0 0 0 0 0 1000
0 0 1000 0 0 0
0 െ0.348 0 1000 0 0

െ0.348 0 0 0 െ1000 0 ے
ۑ
ۑ
ۑ
ۑ
ې

   (4.2) 

Table: 4-6 Comparison of Natural Frequencies 

 Frequency (Hz) Analytical Simulation % Error 

 ω1 478.939 499.74 4.1 

 ω2 517.687 499.742 3.5 

 ω3 934.764 928.702 0.653 

 ω4 1746.2 1726.52 1.14 

 ω5 2214.83 2277.21 2.7 

 ω6 2265.84 2278.37 0.558 

 

4.5 Validation form Literature 

Besides the validation of the proposed technique in the last section from Finite Element 

Analysis the work is validated by solving an example from Afzali – Far et al. (2014). 

 

Figure: 4.12 Afzali - Far et al.'s GSP 
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Main aim of proposed analytical model in their work is to study the Inertia, damping 

and stiffness of the system that is useful in design and optimization of parallel manipulators 

especially hexapods like; Stewart Platform at its neutral configuration.  

Afzali – Far et al. (2014) also applied Lagrangian formulation in his work to calculate 

the equation of motion of the system. Each leg is modelled as a linear spring with damper and 

results are calculated for both the damped and undamped system. The potential energy of each 

is calculated, the Kinetic energy of system is also calculated to calculate the Eigen values, 

Eigen vectors and Natural frequencies of system. The methodology is validated with FEA 

simulation in Ansys. In the end, the proposed methodology is applied to calculate the Stiffness 

matrix and Natural Frequencies of the Gough Stewart platform for collimation system of large 

optical telescope. 

In this section, the mechanical model proposed in this thesis will be used to solve the 

same collimation system Gough Stewart Platform for Stiffness matrix and Natural frequencies 

and result from both the techniques will be compared to testify the mechanical model proposed 

in this thesis. 

The inputs for benchmark work Afzali – Far et al. (2014) are extracted and converted 

into from more familiar with inputs introduced for mechanical model proposed in this thesis. 

The inputs are given in table 4-7. 

Table: 4-7 Afzali - Far's Inputs 

 Symbol Value Symbol Value 

 RB 0.5m H 0.9m 

 RP 0.4m θP 10˚ 

 AE/L 106 N/m θB 15˚ 

Using the inputs in table 4-7 and his proposed methodology Afzali – Far et al. calculated the 

stiffness matrix of system, shown in equation 4.3 

[K]=

ۏ
ێ
ێ
ێ
ێ
ۍ
276820.2 0 0 0 -16092.1 0

0 276820.2 0 16092.1 0 0
0 0 5446359.5 0 0 0
0 16.92.1 0 436158.9 0 0

-16092.1 0 0 0 136158.9 0
0 0 0 0 0 ے88483.8

ۑ
ۑ
ۑ
ۑ
ې

N/m (4.3) 

Using same inputs in the algorithm proposed in this work and formulated in Mathematica the 

stiffness matrix is obtained which is shown in equation 4.4.  
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ሾܭሿ ൌ

ۏ
ێ
ێ
ێ
ێ
ۍ
279558 0 0 0 െ11704.5 0

0 279558 0 11704.5 0 0
0 0 5500230 0 0 0
0 11704.5 0 440018 0 0

െ11704.5 0 0 0 440018 0
0 0 0 0 0 ے89359

ۑ
ۑ
ۑ
ۑ
ې

ܰ/݉       (4.4) 

Equation 4.5 gives the percentage error of both results 

	

ۏ
ێ
ێ
ێ
ێ
ۍ
0.98 0 0 0 27.26 0
0 0.98 0 27.26 0 0
0 0 0.98 0 0 0
0 27.26 0 0.88 0 0

27.26 0 0 0 0.88 0
0 0 0 0 0 ے0.98

ۑ
ۑ
ۑ
ۑ
ې

      (4.5) 

By observing the equation 4.5, we can say that stiffness matrices obtained from both the 

techniques are very close, the diagonal terms are almost same with maximum percentage error 

just 0.98%, however, non-diagonal terms deviate from each other by 27.26%. As the analytical 

model of Afzali – Far et al. (2014) considers each leg to be a linear spring, a perpendicular 

force (or force other than axial axis) is applied at the ends of spring it causes bending in the 

spring. However, there is no bending error in the methodology proposed in this work because 

each leg is assumed to be a truss which does not bend under force. It should be noted that non 

diagonal terms are of less importance than that of diagonal terms, this statement will be proven 

by comparing the results of natural frequencies obtained by both the methods. Table 4-8 shows 

the Natural frequencies from Afzali’s work and from model proposed in this work. Percentage 

error of Natural frequencies is shown in table 4-8. 

Table: 4-8 Comparison of Natural Frequencies 

Frequency 

(rad/s) 

Afzali -Far 

et al.’s 

Proposed 

Methodology

% 

Error

ω1 52.555 52.8428 0.54 

ω2 52.555 52.8428 0.54 

ω3 94.066 94.5299 0.49 

ω4 233.374 234.526 0.49 

ω5 295.361 296.659 0.43 

ω6 295.361 296.659 0.43 

 
The maximum percentage error is just 0.54%, it should be noted that the stiffness matrix in 

equation 4.4 is used for calculation of Natural Frequencies in table 4-8. The repetitions of first 
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two and last two Natural Frequencies is due to neutral configuration of platform at which there 

is symmetry at x and y axis of platform. 

So, we can conclude that the proposed methodology is valid for existing literature, it 

is worth mentioning that the methodology proposed in this work is more flexible than that of 

Afzali’s because we can introduce separate value of radius of leg, material modulus of elasticity 

and different length of each leg of manipulator (calculated automatically form coordinates of 

point “P”), but Afzali et al. (2014) used direct value from axial loading of leg “AE/L = 

106N/m”.  

4.6 Conclusion 

In this chapter, the proposed methodology is applied on Stewart Platform that is 

commercially being fabricated. The specifications are taken from the manufacturer’s online 

resources available for research purposes. Each step of the algorithm programmed in 

Mathematica, is explained form exporting of spreadsheet to final displacement and Natural 

frequencies calculations.  

In the remaining sections, the parts’ designing, their assembly, meshing and analysis are 

described for CATIA environment. All the necessary changes required to replicate the 

mathematical model in CATIA are described. The results from the proposed technique are 

compared with the simulation results. The proposed technique is also validated form recent 

literature. A numerical study is chosen from Afzali – Far et al.’s work, using their inputs and 

our methodology, we reproduce his results with minimum error.  
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CHAPTER 5:  RESULTS AND DISCUSSIONS 

 In this chapter, graphical conclusion based on the results derived in last chapters will 

be deduced. The graphs are plotted by varying one design variable and keeping rests unaltered. 

This conclusion allows to predict the effect of single design variables (like; leg radius, legs 

placement angle and Modulus of Elasticity of material) on the positioning error of platform. It 

is worth mentioning, the platform is kept at neutral configuration during these plot. 

5.1 Leg Angle vs Displacement 

For this plot the leg’s arrangement angle at the platform is varied keeping other design 

parameter constant. The leg’s arrangement angle is varied from 2˚ to 10˚, other inputs are same 

as shown in Table 3-2. The force vector is {-500, -500, -500} at point “P” on the platform. The 

graph plotted for Leg angle vs the normalized value of six Displacements is shown in figure 5-

1. 

 

Figure: 5.1 Leg’s Arrangement Angles vs Displacements 

From figure 5-1 it can be observed that with decrease in leg angle there is decrease in 

displacement error of leg. Percentage decrease in positioning error with leg’s arrangement 

angle from 10˚ to 9˚ is about 54%. The error will keep in decreasing with decrease in leg angle, 
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but the error trend becomes less steep after 6˚ leg arrangement angle. It is also important to 

note that the leg angle and leg radius (next plot) are interdependent of each other.  

5.2 Leg Radius vs Displacements 

For this plot the leg radius is varied keeping other design parameter constant. The leg 

radius is varied from 5mm to 12mm, other inputs are same as that of for the previous plot. The 

graph plotted for Leg radius vs Displacements is shown in figure 5-2. 

 

Figure: 5.2 Leg’s Radius vs Displacements 

From figure 5-2, it can be observed that as the leg radius is increased there is decrease in 

normalized displacement error of platform under force, in the beginning there is more rapid 

decrease in displacement error per mm increase in radius of leg, which later becomes less steep 

per mm increase in leg radius like; for increase in leg radius from 5mm to 6mm there is 30% 

decrease in normalized displacement error of platform while the percentage error decrease with 

radius increase from 11mm to 12mm is just 16%. Another important conclusion that can be 

deduced from figure 5-1 and figure 5-2 is that leg radius cannot be increase beyond certain 

limit because with increase in leg radius there will be increase in leg angle which will again 

increase the displacement error. So an optimization according to requirements is needed. 

Another thing that can be done is using the “Modified Stewart Platform” in which leg at upper 
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platform are connected in two circles instead of one, but this design of Stewart platform has 

lower working envelop and torque carrying capability than that of original design (Stoughton 

and Arai 1993). 

5.3 Modulus of Elasticity vs Displacement 

During this plot, the modulus of elasticity of material is varied from 10GPa to 400GPa. 

Plot of normalized value of displacement and modulus of material is shown in figure 5-3.  

 

Figure: 5.3 Modulus of Elasticity of Material vs Normalized Displacements 

From the plot it can be observed that at modulus of value 70GPa displacement curve becomes 

smooth. So Aluminium can be selected as design material for hexapod with specification given 

in table 4-1. If steel is selected as material for the Hexapod (200GPa) the displacement error 

will be almost 28% less than that of the system designed with Aluminium as material. 

5.4 Conclusion 

From the graphical results, it can be concluded that different variables depend on 

each other. In figure 5-1, the arrangement angle of leg at the platform is directly proportional 

to the magnitude of displacement of the platform, but the arrangement angle cannot be 
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decreased beyond certain limits due to its dependency on the legs radius. The displacement is 

inversely proportional to the leg radius, which cannot be increased above certain level because 

greater the radius of leg greater will be the placement angle between two legs at the platform. 

Form figure 5-3, the importance of modulus of elasticity of material can be observed, so atleast 

Aluminium or harder metal should be used form fabrication of Hexapod with specification 

given in table 4-1. 
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CHAPTER 6:  CONCLUSION AND FUTURE WORKS 

 This work is placed in the field of precision manufacturing. The thesis consists of 

formulating a mathematical model which allows the calculation of displacement error in 

position of platform of hexapod due to application of external machining forces and moments. 

The position of platform is taken with respect to an imaginary point “P” that is assumed to be 

the centre of gravity of platform. The point “P” is further taken in global coordinates. In the 

proposed mathematical model, each leg is assumed to be a 3D truss body attached to two point 

at upper platform and the base. The assumption of leg as truss is due to spherical joint between 

plates and legs. 

During the calculations, only legs are elastic bodies everything else like platform, base 

and joints between legs and platform are absolute rigid bodies, so it is expected that due to 

applied machining forces, there will be some displacement error in position of platform due to 

elasticity of legs. This displacement error is calculated using Lagrange formulation. The 

equation requires potential energy, kinetic energy and work done all in terms of six unknown 

variables, as input and calculates the displacements of platform. During this thesis, it is 

assumed that hexapod is at static when machining forces are applied on it so the kinetic energy 

term will be zero because of no velocity. Later the kinetic energy term is included which is due 

to mass of the platform when machining forces are applied at it. The kinetic energy is then used 

to calculated the natural frequencies of hexapod. The proposed model is programmed in 

MATHEMATICA® and is totally generic for number of legs and forces applied on the platform. 

This work is validated literature and working is explained and verified by finite element 

analysis designed and modelled in CATIA. Results from both techniques are very close. As 

compared to the FE analysis results produced using proposed technique are quick. Time taken 

by MATHEMATICA® to produce results in table 4-5 is just 1.234 seconds, while time used by 

CATIA® for same model is about 30 minutes on same system and this time for FE simulation 

will increase with increase in size of model while time will not be affected much in 

MATHEMATICA®. 

The proposed future works for the current research includes: 

(a) Joint’s flexibility and clearance are also accountable for the positioning 

error in the platform of manipulator, so in future clearance and flexibility of 

the joints can be studied. 
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(b) The proposed algorithm is for static system which can be enhanced to 

dynamic system. 

(c) Experimental validation of the proposed model is yet to be done. 

(d) The work can be further improved by considering damping in the legs. 
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APPENDIX A 
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