

Automated Summarizing of Bug reports to Speed-up Software

Development/Maintenance Process

Author

Muhammad Irtaza Nawaz Tarar

FALL 2017 - MS-17 (CSE) 00000203705

Supervisor

Dr. Wasi Haider Butt

Co-Supervisor

Dr. Moazzam Khattak

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY

ISLAMABAD

JAN 2020

Automated Summarizing of Bug reports to Speed-up Software

Development/Maintenance Process

Author

Muhammad Irtaza Nawaz Tarar

FALL 2017 - MS-17 (CSE) 00000203705

A thesis submitted in partial fulfillment of the requirements for the degree of

MS Computer Software Engineering

Thesis Supervisor:

Dr. Wasi Haider Butt

Thesis Supervisor’s Signature:-__________________________________

DEPARTMENT OF COMPUTER & SOFTWARE ENGINEERING

COLLEGE OF ELECTRICAL & MECHANICAL ENGINEERING

NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY,

ISLAMABAD

JAN 2020

DECLARATION

I certify that this research work titled “Automated Summarizing of Bug reports to Speed-up

Software Development/Maintenance Process” is my own work under the supervision of Dr.

Wasi Haider Butt and co-supervised by Dr. Muazzam Khattak. The work has not been

presented elsewhere for assessment. The material that has been used from other sources it has

been properly acknowledged / referred.

Signature of Student

Muhammad Irtaza Nawaz Tarar

FALL 2017 - MS-17 (CSE) 00000203705

LANGUAGE CORRECTNESS CERTIFICATE

This thesis has been read by an English expert and is free of typing, syntax, semantic,

grammatical and spelling mistakes. Thesis is also according to the format given by the

university.

Signature of Student

Muhammad Irtaza Nawaz Tarar

FALL 2017 - MS-17 (CSE) 00000203705

Signature of Supervisor

Dr. Wasi Haider Butt

COPYRIGHT STATEMENT

• Copyright in text of this thesis rests with the student author. Copies (by any process)

either in full, or of extracts, may be made only in accordance with instructions given

by the author and lodged in the Library of NUST College of E&ME. Details may

be obtained by the Librarian. This page must form part of any such copies made.

Further copies (by any process) may not be made without the permission (in writing)

of the author.

• The ownership of any intellectual property rights which may be described in this

thesis is vested in NUST College of E&ME, subject to any prior agreement to the

contrary, and may not be made available for use by third parties without the written

permission of the College of E&ME, which will prescribe the terms and conditions

of any such agreement.

• Further information on the conditions under which disclosures and exploitation may

take place is available from the Library of NUST College of E&ME, Rawalpindi.

ACKNOWLEDGEMENTS

I am extremely thankful to ALLAH Almighty for his bountiful blessings throughout this work.

Indeed this would not have been possible without his substantial guidance through every step,

and for putting me across people who could drive me though this work in a superlative manner.

Indeed none be worthy of praise but the Almighty. In addition, my admirations be upon Prophet

Hazrat Muhammad (PBUH) and his Holy Household for being source of guidance for

people.

I would like to express my special thanks to my supervisor Dr. Wasi Haider Butt and co-

supervisor Dr. Muazzam Khattak for his generous help throughout my thesis, and for being

available even for the pettiest of issues. My thanks for a meticulous evaluation of the thesis,

and guidance on how to improve it in the best way possible.

I am profusely thankful to Dr. Arslan Shaukat and Dr. Urooj Fatima for an excellent

guidance throughout this journey and for being part of my evaluation committee.

It is indeed a privilege to thank my Mother, my father Nawaz Tarar and my elder brother

Sajid Tarar for their constant encouragement throughout my degree and research period. The

sense of belief that they instilled in me has helped me sail through this journey. I would like to

thank my Family & friends, especially Mubashir Ali who has rendered valuable assistance to

my study.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance in this period.

v

Dedicated to my exceptional parents, excellent siblings and my best

friend whose tremendous support and cooperation led me to this

wonderful accomplishment. I am truly indebted to you all.

vi

ABSTRACT

Software’s development process can be optimized by using the knowledge about past

information about same kind of product or problem. During development process, software’s

bug repository can provide a great deal of easiness for development team. It can be a rich source

of information for developers and other members of development team. Bug reports can

provide a great deal of assistance for developers during the process of development. But due

to the large size of bug repositories, it is sometimes difficult to take advantage of these artifacts

in the available time. One way of helping developers to provide summaries of these reports and

provide relevant details only. Once it’s decided that this is the required report then one can

study the details. We analyzed the previous approaches use for this purpose and realized that

there is need of improvement in this research. We used an extractive summarization approach

using the unsupervised learning method for this purpose and developed a novel framework to

get better results than previous a state of the art systems. As text mining technology advances,

many substantial approaches have been proposed to generate optimized summaries for bug

reports. In this paper, we have proposed an extractive based methodology for the generation of

summaries of bug reports by using the sentence embedding. We used supervised learning

technique to generate the summaries. In our proposed methodology the similarity between

sentences is calculated by using sentence embedding. After preprocessing, the sentences are

converted to vectors of real numbers by sentence embedding. K-mean cluster is used to cluster

these sentences. Then we have to select one sentence per cluster. Sentence ranking is used to

rank sentences per information they contain and select high rank sentences for summarization.

We achieved improved rouge-1 and rouge-2 results than the previous state of the art systems

for the bug report summary generation.

Keywords: Summarization, Natural Language Processing, Machine Learning, Software

Artifacts, Bug reports

vii

Table of Contents

DECLARATION ... i

LANGUAGE CORRECTNESS CERTIFICATE .. ii

COPYRIGHT STATEMENT... iii

ACKNOWLEDGEMENTS .. iv

ABSTRACT ... vi

List of Figures .. ix

List of Tables ... x

CHAPTER 1: INTRODUCTION.. 12

1.1. Background ... 12

1.2. Problem Statement ... 14

1.3. Proposed Methodology... 15

1.4. Research Contribution ... 16

1.5. Thesis Organization ... 17

CHAPTER 2: LITERATURE REVIEW ... 20

2.1. Introduction .. 20

2.2. Research Methodology ... 22

2.3. Methodology/Development of Review Protocol ... 23

2.3.1. Inclusion and exclusion criteria .. 23

2.3.2. Search process and selection of keywords ... 23

2.3.3. Execution of Search String: .. 24

2.3.4. Quality checking .. 25

2.3.5. Data Extraction and synthesis ... 25

2.4. Results ... 28

2.5. Research Gaps .. 30

2.6. Discussion and Limitations .. 30

CHAPTER 3: PROPOSED METHODOLOGY .. 33

3.1. Core Concepts Explanation .. 33

3.1.1 NLP ... 33

3.1.2. Tokenization .. 33

viii

3.1.3. Stemming ... 34

3.1.4. Lemmatization ... 34

3.1.5. Stop Words .. 35

3.1.6. Clustering ... 36

3.1.7. RNN .. 36

3.1.8. GRU .. 40

3.2. Proposed Solution ... 41

3.2.1 Preprocessing... 41

3.2.2 Sentence Embedding ... 42

3.2.3 Clustering based on Similarity ... 43

3.2.4 Sentence Ranking .. 45

3.2.5 Sentence Selection ... 46

CHAPTER 4: IMPLEMENTATION ... 48

4.1. Data-Set ... 48

4.2. Experimentation ... 49

CHAPTER 5: Results and Evaluation .. 55

5.1. Evaluation Metric .. 55

5.1.1. ROUGE.. 55

5.2. Results Evaluation and comparison: .. 58

CHAPTER 6: DISCUSSION AND LIMITATION ... 63

6.1. Discussion .. 63

6.2. Limitations .. 63

CHAPTER 7: CONCLUSION AND FUTURE WORK ... 65

7.1. Conclusion ... 65

7.2. Future Work ... 65

References ... 67

ix

List of Figures

Figure 1. Software bug resolution cycle ... 12

Figure 2. Sample Bug Report .. 13

Figure 3. Brief Introduction of the Research Study .. 15

Figure 4. Research Flow ... 16

Figure 5. Thesis outline ... 18

Figure 6. Search Process ... 27

Figure 7. RNN Working Principal .. 37

Figure 8. RNN Weights and Biases .. 38

Figure 9. RNN Feedback Nature... 39

Figure 10. Methodology Flow Diagram ... 42

Figure 11. Vector representation of sentences .. 43

Figure 12. Encoder-Decoder Model.. 43

Figure 13. Clusters of sentences ... 44

Figure 14. Bug Report Structure ... 49

Figure 15. System Generated Summary Sample... 50

Figure 16. Gold Standard Summary Sample .. 51

Figure 17. ROUGE Evaluation Package output .. 57

Figure 18. Graphical Representation of individual results.. 60

Figure 19. Graphical representation of Results ... 61

x

List of Tables

Table 1. Execution of Search String ... 24

Table 2. Identified Algorithms .. 29

Table 3. Identified Tools ... 29

Table 4. Identified Performance Metrics .. 30

Table 05. Stop words explained .. 35

Table 6. Data-Set Details .. 48

Table 7. Results ... 58

Table 8. Results & Comparison .. 59

xi

Chapter 1

Introduction

12

CHAPTER 1: INTRODUCTION

This chapter contains a brief introduction of the research performed. The background study

is elaborated in Section 1.1. The problem statement is specified in Section 1.2. Section 1.3

includes the proposed methodology and Section 1.4 provides a brief overview to our research

contribution. Lastly, the thesis organization is stated in Section 1.5.

1.1. Background

Software development cycle has many stages and these stages have different kind of

artifacts with them are associated to them. One of these artifacts is software bug reports [1]. But

a bug is not despite its name a little animal in the context of Software engineering or software

development, but it is something else. We can define Bug related to software [3] as:

“A software bug is an error, flaw, failure, or fault in a computer program or system that

causes it to produce an incorrect or unexpected result or to behave in unintended ways.”

Software bug consists of the bugs faced by development teams during development. So

during the progress of projects, when bugs occur in the software then the person who found the

bug would report in the form of document & send it to people in charge of fixing these bugs, error

or failures [2]. Software bug resolution consists of different steps as shown in the Figure.1 below:

Figure 1. Software bug resolution cycle

Bugs found will be documented and forwarded to the relevant teams or persons. Those

teams will analyze these bugs and then fix them. Bug report will contain the information about

this complete process started from bug detection to bug resolution. These bug reports will consist

of conversation of different members of the team, about how to resolve the bugs and how to

13

perform this action in short time and budget. These are conversational in nature. An example of a

bug report is shown in Figure.2 below:

Figure. 2 Bug Report

Figure 2. Sample Bug Report

BUG REPORT

14

The software bug resolution is a cyclic process and it is one of crucial part of software

development cycle and is considered among the challenging phases in a software development life

cycle [2]. The process of reporting bugs involve conversations of the development team members

about the suggestion and handling of the bug. In ideal case these bug reports should be summarized

in the end for future guidance but projects time and money constraints doesn’t allow this. So if

we want to optimize or automate this process of bug resolution, we have to consider the most

important factor involved which is natural language [4].

 Natural language processing is the field of artificial intelligence which is basically

concerned with automatic analysis of plain natural language [5].There are several techniques in

the natural language processing e.g. sentence splitting, tokenization, POS tagging [9]. Sentence

splitting is basically used to split complex structured sentences into short and easy to

understandable sentences [51], [52]. Tokenization is the processing of breaking up the complex

long text into units. These small chucks or units are called tokens [49]. Part of speech tagging,

commonly known as POS tagging is basically the process of marking or tagging the input words

on the basis of part of speech i.e. noun, pronoun, verb, adverb etc. [8]. Entity identification

chunking and extraction is all under named-entity recognition natural language technique. It is

sub-part of information extraction in which named elements are extracted from plain text [9].

1.2. Problem Statement

Software’s development process can be optimized by using the knowledge about past

information about same kind of product or problem. During development process, software’s bug

repository can provide a great deal of easiness for development team. It can be a rich source of

information for developers and other members of development team. For example, a developer

can see the bug repository to learn how changes were made to software in the past .He can also

consult to understand the reported bugs in more details. So when a developer needs to see the bug

repository, often he ends up getting a large number of reports either as a result of some search

recommender engine [11], [12].In fact, developer needs only few reports that he should follow.

Sometimes a developer can have idea about report by reading the title but sometimes he has to

read the whole report to determine that if this report is relevant or not. These reports can be very

lengthy because it includes the conversations between development team members or other

15

stakeholders. This can be very hectic process to read the lengthy reports every time he needs to

consult bug repository. For instance, a developer is trying to get duplicate reports for a bug

#564332 from Mozilla system by using a duplicate report recommender [12]; it gets a report of a

total 237 sentences and 5,125 words in the top six bug reports on the recommendation list. There

is a dire need to develop an intelligent framework capable of automatically summarizing the bug

reports.

1.3. Proposed Methodology

In this thesis, we have proposed solution is bases on Natural Language Processing (NLP).

We have explored the existing literature to highlight the standards for bug report summarization.

We analyzed the previous approaches use for this purpose and realized that there is need

of improvement in this research. We used an extractive summarization approach using the

unsupervised learning method for this purpose and developed a novel framework to get better

results than previous a state of the art systems.

Following figure shows the proposed process at abstract level. Basically, what we want to

do is simply explained in the following Figure.3.

Figure 3. Brief Introduction of the Research Study

The entire research is done in a systematic way. Flow of the research is shown in Figure.

4. First of all, we identify the problem, then we propose a solution to the identified problem. Then,

we carry out a comprehensive systematic literature review which becomes the foundation of the

proposed solution. Researches related to the proposed solution are analyzed and compared.

16

The proposed work includes a fully automated approach to generate the summaries for bug

reports. The proposed methodology has been compared with the previous methodologies to

compare the improvement.

Figure 4. Research Flow

1.4. Research Contribution

The main contributions made by our research work is to save time, cost and other resource

in software bug resolution process during software development cycle.

Below are listed the contributions concluded by the proposed approach:

• We have performed a systematic literature review on automated summarization of bug reports.

Through this literature review, we identified different techniques used in past for this purpose

from researches reported in detail in Chapter 2. Similarly, our systematic literature review has

drawn the NLP algorithms used. The concluded results show that our study would provide an

advantage to the researchers in future it is the very first systematic literature review carried out

on automated bug report summarization. It will help practitioners in this field to overview the

results to explore more investigate maturity of this process.

• We have identified analyzed and employed techniques and tools provided by Natural Language

Processing for automation of summarization of bug reports

17

• We have formalized a practical approach that uses techniques offered by Natural language

processing.

• We have exploited text mining for the determination and development of a novel framework

more specifically rational expression for the transformation rules on basis of formal language

theory.

• We have implemented the defined methodology to the standard data set and compared the

results with previous state of the art systems to validate the improvements.

• In order to design and develop our tool, Python has been utilized.

1.5. Thesis Organization

Organization of the thesis is represented in Figure. 5

Chapter 1: Introduction offers a brief introduction containing the background study,

problem statement, research contribution and thesis organization. Chapter 2: Literature Review

provides the detailed literature review highlighting the work done in the domain of automated bug

report summarization. The systematic literature review is composed of three main sections. First

section is review protocol which gives details on the methodology using which the literature

review is carried out. Section two offers details on research works, whereas, section three

highlights the research gaps that we encountered. Chapter 3: Proposed Methodology covers the

details of proposed methodology used for identification of problem. Chapter 4: Implementation

presents the detailed implementation regarding the proposed tool. Chapter 5: Validation provides

the validation performed for our proposed methodology using nine important case studies. Chapter

6: Discussion and Limitation contains a brief discussion on entire work performed along with

limitations to our research. Chapter 7: Conclusion and Future Work concludes the research and

recommends a future work for the research.

18

Figure 5. Thesis outline

19

Chapter 2

Literature Review

20

CHAPTER 2: LITERATURE REVIEW

Natural language Processing techniques have been proved very helpful in optimizing the

software development process. It has improved the accuracy and speed of different steps of

development process. Summarization of software artifacts is one of application of natural language

processing techniques to help the developers or testers. Summarization tools and techniques have

been applied to many software artifacts in the past like source code, discussions and bug reports.

We present a systematic literature review of the natural language processing techniques applied

for the summarization of bug reports. Bug reports are very important for development process

because these have valuable knowledge of the problems and their resolution. By summarizing bug

reports, a lot of developer’s time can be saved during bug triaging when developers are looking

for the similar problems from the past. Bug report summarization is done by various methods and

techniques and it have helped the developer to save their time and better understanding of the

problem at hand. This survey of the past techniques used for the summarization of bug reports will

provide useful and wide background knowledge of this research field to the future researchers.

This chapter contains the systematic literature review performed for our research. Section 2.1

presents introduction to the SLR. Research methodology of literature review is explained in

Section 2.2. The review protocol mechanism is explained in Section 2.2 and 2.3. The results,

acquired using review protocol mechanism, are presented in Section 2.4. Research gaps are

presented in the Section 2.5. Discussion and limitations are discussed in Section 2.6.

2.1. Introduction

Now days, with the increasing amount of data generated electronically on daily basis, there is

greater need of generating summary of information provided. Many specialists commit themselves

to concentrate the summarization techniques and many researchers have done work in this area.

Software’s development process can be optimized by using the knowledge about past information

about same kind of product. Bertram et al. [28] conducted a study to prove that bug reports are

becoming more and more important to software development industry as they provide coordination

and communication for involved parties. During development process, software’s bug repository

can provide a great deal of easiness for development team. It can be a rich source of information

for developers and other members of development team. For example, a developer can see the bug

21

repository to learn how changes were made to software in the past .He can also consult to

understand the reported bugs in more details. So when developers need to see the bug repository,

often they get a large number of defect reports from some recommender or search engine ([11],

[12]).In fact, developer needs only few reports that he should follow. Sometimes a developer can

have idea about report by reading the title but sometimes he has to read the whole report to

determine that if this report is relevant or not. These reports can be very lengthy because it includes

the conversations between development team members or other stakeholders. This can be very

hectic process to read the lengthy reports every time he needs to consult bug repository. As bug

reports are similar to conversations and G. Murray and G. Carenini [33] have summarize the

spoken and written conversations in their study. Further, Lawrie et al. [34] illustrated the value of

bug report in software engineering. Many research studies have been conducted in this field. Some

researchers have also considered the technical nature of bug reports and they have considered it as

an important feature. XiaoyinWang et al. [35] have provided the mechanism of extracting the

technical expression s from the bug reports. Some other studies have provided the mechanism of

finding the duplicate bug reports using natural language processing to help developers in the

process of software development[36][38][39]. He Jiang et al. [40] have provided the research about

the importance of authorship feature in bug reports. It can help to improve the bug report

summarization. A. Podgurski et al. [41]have provide the way to classify the failure/bug reports to

prioritize the reports. Haiduc has generated the summaries of code that contains mostly used terms

in classes or methods to describe the method or class [46].Sridhar has proposed the natural

language processing technique to generate comments for java method by using the internal

structure of method and its statements [47]. Morino has produced the summaries of java classes to

understand the purpose of classes by using the internal structure of classes [48]. Basically there

are two categories in which we can divide the summarization techniques: Abstractive and

Extractive. In extractive, first of all it will prioritize the sentences on the basis of given criteria and

then it will select a reasonable amount of sentences from a set of existing sentences to generate

summary. An abstractive summarization approach will build the internal semantic representation

of sentences and then applies NLP techniques to generate summary [37]. We will concentrate on

the extractive approach in this paper as it provides the good summaries in low cost than abstractive

approaches and it has shown good results in other domains as well. Many generic extractive

summarization techniques have been used for bug reports in previous literature. Usually generic

22

summarization approaches do not make any assumptions, about the domain knowledge. But it can

be very useful in order to produce accurate results if use these domain information by defining the

most important information in the document. For example, summarization of conversation-based

data. Extractive summarization approaches have been applied to telephonic conversations and

emails and meeting conversations [42] [43] [44].Several researchers have explored the bug reports

for its conversational nature and its usefulness during development stage of software projects.

Sandusky and gasser found that bug repositories are fundamental location for the distribution of

responsibilities in bug resolution in software projects [45]. Different paths have been followed to

generate extractive summaries of various software artifacts. Many researchers have applied

different tools and techniques to produce summaries for bug reports to reduce the time delay during

bug triaging. But there is lack of some systematic study that can give the overall understanding to

future researcher that which technique is better for summarization. We have developed some

research questions for conducting this systematic study of literature:

• How many significant efforts are made to summarize the bug reports from 2000 to 2019?

• What algorithms or specific techniques have been used for this purpose during 2010 –

2019 researches?

• What specific tools have been used during 2000 – 2019 researches?

• What metrics have been used for evaluation of these techniques during 2010 – 2019

researches?

2.2. Research Methodology

Kitchenham presented Systematic Literature Review in 2004 [10], which is used as a guideline for

performing this research. He had explained all procedures to do a systematic literature review

(SLR). It is a best way to systematically analyze and evaluate all existing researches relevant to

our topic and research questions. Therefore, our research involves five levels these are:

• Identification of Problem

• Development of Review protocol

23

• Defining of Inclusion and exclusion criteria

• Search process using selected databases

• Quality assessment of selected research

• Data extraction and synthesis.

2.3. Methodology/Development of Review Protocol

2.3.1. Inclusion and exclusion criteria

For development of review protocol, first of all we have defined some constraints to make sure

that results of research are relevant and accurate. For this purpose we have defined five constraints

and we will include or exclude the research based in these five constraints:

1) We will select the research that includes the automated summarization of bug reports and

exclude the research papers that are irrelevant to our research topic and our research

questions.

2) Only research conducted between 2000 and 2019 will be included in our systematic study

and previous researches will be excluded.

3) We will use mostly these four scientific databases for the inclusion of our research work:

IEEE, Springer, Elsevier and ACM.

4) For all the research work that is part of more than one database are merge to avoid the

redundancy in our results.

5) For all research work that have some defined results and these results are sustained by

concrete evidences, will be included

2.3.2. Search process and selection of keywords

For the search process for the systematic studies of our selected research topic, we have done a

selection of keywords shown below, to find the research paper in the four scientific databases

IEEE, ACM, Springer and Elsevier having high impact factor journals and conference

24

proceedings; Bug, Defect, Report, Summarization, Natural Language Processing, Extractive

summarization, Abstractive summarization.

2.3.3. Execution of Search String:

Key words have been used with the number of filters to find the research papers related to our

topic and criteria. Search process has been done by using the four selected scientific databases by

using filters like research publications between 2008-2019 and by using the AND/OR operators

to find the publication containing the one or a combination of keywords. Moreover Table.01

contains the execution of search strings with the filters or conditions. After the execution of search

strings we have selected a total 6,183 papers that were seem to related to our research topic and

then further we have analyze and scrutinize these research papers based on our further inclusion

criteria by filtering on the basis of their title, abstract and general study and detailed study of

publications. Further process is illustrated in Figure.6.

Table 1. Execution of Search String

Sr.

No.

Key Words/Search Terms Oper

ators

Number of Research Papers

IEEE Spring

er

ACM Elsevier

01 Bug Report and Summarization AND 18 321 23 6

OR 6,851 7,658 22,129 6,158

02 Defect Report and

Summarization

AND 6 589 11 8

OR 9,443 8,556 18,986 5,012

03 Extractive summarization and

Bug

AND 5 19 10 14

OR 7,053 789 18,993 11,143

04 Bug and abstractive

Summarization

AND 0 8 14 0

OR 7,546 659 21,723 19,004

05 Summary and Natural Language

Processing

AND 893 10931 156 954

OR 98,511 78,198 94,159 78,259

06 Bug NLP AND 21 401 14 96

OR 15,892 19,258 4,241 5,127

25

Further we have used an advance search to further refine the results from the defined four

scientific. The steps of our research process using the defined key words from four databases is

shown in the Error! Reference source not found..

1) We identified the several “search terms’ in the selected four scientific databases. Then after

scrutinizing these and 7,640 search results selected according to the rejection and selection criteria.

2) 3,713 studies were rejected on the basis of their Title, according to the exclusion and inclusion

criteria.

3) 2,963 studies were rejected on the basis of evaluation of their Abstract, according to the

exclusion and inclusion criteria.

4) 964 studies were selected to perform general study and then further, 871 research works were

discarded according to the exclusion and selection criteria based on general study.

5) Then after the thorough study of 93 studies and 62 researches were discarded according to the

criteria.

6) At the last, 31 researches were selected having completely agreement with our rejection and

selection criteria.

2.3.4. Quality checking

Quality cehcking is done by the checking that the facts evaluation of study is grounded on the

tangible evidences and theoretic understanding without some unclear declarations. Also quality

was ensured by using the trusted sources and to improve the accuracy and qulaity of our search

results four quality scientific databases, Springer, ACM, IEEE and Elsevier were selected.

2.3.5. Data Extraction and synthesis

We have find the different algorithms and tools used to summarize the bug reports, by reviewing

the researches we get after the execution of search process described in section 2.3.We have

perform the systematic review of data from the selected researches to extract and analyze the data.

First of all we record the Bibliographic data from the researches and it includes the Author, Title,

publication year, publication type etc. Then we extracted the technical data from the researches by

identifying that what algorithms have been used for summarization of bug reports in these

researches. Then we recorded the summary of techniques used for this purpose. After that we have

26

analyze the results of these summarization techniques. We also analyze that what performance

metrics have been used to check the quality of results and what was the nature/kind of

summarization techniques used for the summarization of bug reports. Results of Data extraction

and analysis have been shown in the next section.

27

Figure 6. Search Process

28

2.4. Results

We have identified the various kinds of algorithms by the systematic studies of our selected

researches and these have been shown in the Table.2. Different tools were identified during the

study for process of summarizing bug reports and have been shown in the Table.3. Performance

metrics are used for the calculating the accuracy of different techniques used in the machine

learning. We have identified the performance metrics used for the summarization process shown

in Table.4. All of our selected researches have used the extractive summarization approach for the

summarization of bug reports and none have used abstractive summarization. [13] [14] [16] have

used the supervised learning techniques and other have used the unsupervised techniques for this

purpose. Rastkar [13] [14] proposed the method to summarize the reports on the basis of their

conversational nature. Their methodology involves a BRC (Bug report Corpus) summarizer. They

used the twenty four features to rank the sentences of conversations and then uses a logistic

regression to prioritize the sentences to be used in the summary. Senthil Mani et al. [15] have used

the noise reduction module with three classes; code, question and investigative. After that they

applied the four unsupervised learning algorithms; Centroid [29], Grass Hopper [30], Maximum

Marginal Relevance [22] and Diverse Rank [31] to find the best sentences for the summary. Cheng-

Zen YANG et al. [16] have used the noise reduction module same as [15] but with two new classes;

anthropogenic and procedural information. And then they applied the logistic regression to find

the sentences to be included in summary. Lotufo [17] provides a novel model and his proposed

methodology includes the summarization of discussion threads of bug reports. In first step he used

the network model and applied it to the discussion thread and then he applied PageRank method

to find the relation between sentences. In addition to relation between the sentences, he also

considers the similarity measure between the sentences and the topic or description of bug reports.

If similarity measure is high then sentence will have more priority to be considered for summary.

Xiaochen Li et al. [18] have used the Deepsum algorithm which used the unsupervised network

training to compute the scores for sentences and then sentences with best scores are included in

the summary. Jiang [19] has used the approach known as PRST (PageRank Summarization

Technique). He also used the additional information for generation of summaries from the relevant

duplicate bug reports. Hi Jiang et.al [22] introduced new eleven attributes with a method crowded-

29

attribute (CA) and then used logistic regression to compute the scores for sentences for the

summary on the base of these new eleven attributes.

Table 2. Identified Algorithms

Sr. No. Algorithms References

1 Logistic Regression [33],[34] ,[36] ,[22] ,[19]

,[25] ,[33]

2 Centroid [15],[22] ,[29]

3 Page Rank [17],[20] ,[21] ,[19]

4 Grass Hopper [15],[22] ,[30]

5 Deep sum [18]

6 Maximum Marginal Relevance [15],[22]

7 Diverse Rank [15],[22],[31]

Table 3. Identified Tools

Sr. No. Tools References

1 Porter Stemmer [16],[17] ,[18] ,[19] ,[20]

2 NLP Sanford Parser [15],[16]

3 Stanford Tokenizer [16]

4 Lingpipe Tokenizer [19]

5 Island Grammar Parser [24]

6 Infozilla [18],[23],[32]

7 Fuzzy Java code Parser [23]

8 Snow Ball Stemmer [21]

30

Table 4. Identified Performance Metrics

Sr.

No.

Performance Metrics References

1 Precision [13],[14],[15],[16],[17],[18],[19],[21],[22],[2

6],[36]

2 Rouge [18],[27]

3 Recall [13],[14],[15],[16],[17],[18],[19],[21],[22],[2

6],[36]

4 F-measure [13],[14],[15],[16],[18],[19],[21],[22],[26]

5 Accuracy [26]

6 AUROC [13],[14],[33]

7 Pyramid Precision [13],[14],[15],[17],[18],[19],[22]

2.5. Research Gaps

 We have conduct rigorous research about the automated bug report summarization and

identified the different algorithm used for this purpose in the past. We use a proper systematic

literature review protocol to find the previously used techniques and algorithms. But we have

found that this research area needs a lot of improvements. Also, our proposed methodology gives

very good results in this summarization of bug reports and it has been never used before. Therefore

we have proposed this methodology to improve the results and quality of system generated

summaries.

2.6. Discussion and Limitations

Automation has revolutionized the modern day processes by reducing the time delays and

introduced the great accuracy. Natural language processing has been proven great beneficial in

software development processes and has helped the software developer with in many fields. One

such field is the summarization of software artifacts to save the time of developers needed to

analyze these artifacts. Many efforts have been made to summarize the different software artifacts

like source code, mailing lists, developers’ discussion or bug reports. This paper investigates the

31

efforts made for the summarization of bug reports and xx researches were selected from 2000 to

2019 for the systematic study. Different algorithms and tools were identified and research results

and their performance metrics were analyzed and recorded for the systematic mapping. Finally, it

is concluded that good results have been achieved by the efforts made so far but still there is need

for improvement in techniques and more sophisticated tools are needed to increase the accuracy

of results to cope with the requirements of real time systems. Although we have followed a proper

research methodology but still there is a chance that we may have missed some of researches in

other databases are missed, because we have used only four scientific databases to ensure the

quality of our research. And may be our related studies may have different titles or content and so

we could have missed these researches on the basis of title rejection criteria. Although we used the

advanced search to check the abstract and other parts of research too, but still there is a minor

chance that some fraction of researches is missed.

32

Chapter 3

Proposed Methodology

33

CHAPTER 3: PROPOSED METHODOLOGY

This chapter contains details of the proposed methodology. Section 3.1 discusses the

targeted core concepts explanation, Section 3.2 provides the detailed proposed methodology.

3.1. Core Concepts Explanation

3.1.1 NLP

Natural Language processing usually referred as NLP is an Artificial Intelligence Branch. This

field is related to helping computers to interpret the human language, understand it and then

able to manipulate it [49]. Basically, Natural Language processing is actually a subfield of

Computer Science, Artificial Intelligence and Linguistics and it is related to the interaction

between human’s languages and computer. It’s about how to teach computers that how to

analyze and process the natural language. This field can be further breakdown in speech

recognition, natural language understanding, natural language summarization and natural

language generation etc. Natural language processing is used to help the developers to manage

and organize the work knowledge to perform their tasks like summarization, named entity

relationship, translation, information retrieval or relationship extraction, speech recognition

and topic segmentation etc.[50]. This field helps computers and create automated systems that

can understand and analyze a human languages like Arabic, Latin or English etc.

3.1.2. Tokenization

Tokenization is basically a dividing task that is used to divide a lengthy text in to smaller parts

known as tokens. As natural language processing is used for building automated systems like

text classification, automated Chabot, language translations and sentiment analysis etc. It is

important to understand and analyze the patterns occurring in the text to achieve the before

mentioned objectives. So tokenization plays a vital role in finding these kind of patterns and

also tokenization is considered as base step for lemmatization and stemming [68]. Stemming

and lemmatization will be discussed later in the report. We can understand the stemming and

lemmatization as the cleaning steps for text using the Natural Language Processing (NLP).

Tokenization is described as splitting the text in to tokens. Tokens can be defined as words in

the sentence or sentences in a paragraph.

In this research, we have done tokenization on sentence level by using a function that uses

“PunktSentenceTokenizer” from the nltk.tokenize.punkt module. This tokenizer is trained

34

already and so it knows very well how to mark the end and beginning of sentence considering

the characters and punctuation.

3.1.3. Stemming

The process of stemming can be defined as a kind of normalization process performed for

words [50]. Normalization is described as a technique in which we can convert the set of words

in to sequence so that we can shorten its lookup time. Those words that have same meaning

and have some variation due to context can be normalized. Simply we can define the stemming

as a root word for many variants of that same word. For example, “kick” is a root word for its

different variants like “kicks, kicking, kicked” and many others. With the help of same process,

we can use stemming to find the root word for different variations of a word.

For example, we can find root word in the two sentences given below:

“He will be eating a burger.”

“He is going to eat a burger.”

In both sentences, we can see that meaning is same because action is going to be happened in

the near future. We as humans can easily understands that both sentences have same meaning

but machine will take both sentences as different. So it will hard for a machine to convert it

into the same data. If we did not provide the same data to machine, it will be not possible for

machine to interpret that these sentences have same meaning. And machine will be fail to

predict this similarity in the meaning. So here is the point when we will use the process of

stemming to categorize the same data in single category by finding the root for these same

meaning words.

From the aforementioned explanation, we can conclude that stemming is one of most important

step in the preprocessing of textual data before the starting the data processing. English

language contains the different variations for a single word. That can cause ambiguity and

redundancy. Process of stemming can remove this redundancy and ambiguity. And as a result

we can use the data for much accurate training or processing.

3.1.4. Lemmatization

Process of Lemmatization is to find the lemma of a word according to its meaning. This process

is usually refers to analyzing the words in morphological way and it can remove the inflectional

endings [69]. It helps to return the base or dictionary form of word, usually known as lemma.

Before staring the processing of data, stemming is performed and lemmatization as well.

35

Sometimes these two processes, stemming and lemmatization is considered as same and it can

be confusing for some. But stemming and lemmatization have diffenrces. Lemmatization is

usually preferred over stemming due to a reason mentioned below.

Stemming works by returning the root by cutting the suffix of words. But Lemmatization on

the contrary performs more detailed operation. In addition to cutting the words to their roots it

considered the morphological analysis of the words. Lemmatization gives the lemma which is

the base form of all its inflectional forms. Lemmatization use the in-depth linguistic knowledge

to perform the creation of dictionaries and returns the proper form of the word. Simply we can

stemming is a general pre-processing step and lemmatization is an intelligent pre-processing

step. Lemmatization can also save memory by forming better machine learning features and

reducing the density of a word by returning the words to their base. It reduces the text ambiguity

and gives clean representation of data. Cleaner the data, the more intelligent and accurate your

machine learning model and will reduce the computational cost.

3.1.5. Stop Words

Process of converting the data to a form that a computer can understand is known as a

preprocessing stage. This stage has many steps like stemming and lemmatization as we

discussed before. Another major issue with raw data is useless data that we don’t need for the

processing or training. To resolve this issue, we performed a process of removing the useless

data. This useless data is known as Stop words in natural Language Processing [6]. Stop words

are the commonly used words like “the”, “a”, “an”, “in” and we don’t need these words during

the processing or training because these words are not going to help in building the training

model and will cost useless processing/computing power. Processing time and memory is very

valuable in case of language processing, so we cannot let this useless data to increase the

processing time and taking up extra memory. Some examples have been given in Table.5

below:

Table 05. Stop words explained

Text with Stop Words Stop Words Removed

Listening can be exhausting? Listening, Exhausting

I am reading and I like it Reading, Like

36

3.1.6. Clustering

Clustering is an interesting process of Machine learning and it is used to group the data points.

If we are given a set of different data points, clustering can be used to classify these data points

in a specific number of groups known as clusters [54]. The data points of a single cluster should

have similar features or properties and data points of different clusters will have dissimilarities

in features or properties. Clustering is basically an unsupervised learning process because in

this case ground truth is not available to compare the output of the results of algorithm to the

true labels, to evaluate the algorithm’s performance .This process is very common and widely

used technique for the statistical analysis of data in many fields. Clustering is used in the field

of data science to get some valuable insights from the data. We can define clustering as:

“Clustering is the process of dividing the entire data into groups (also known as clusters) based

on the patterns in the data.”

3.1.7. RNN

Recurrent Neural Network also referred as RNN are a type of neural network in which output

of the previous step is fed as input to the next or current step. As we know that the basic or

traditional neural networks work differently because in this case inputs and outputs doesn’t

depend on each other. But when we have to predict the next word of a sentence or next sentence

of a paragraph, the previous state (sentence or word) has to be remembered. So Recurrent

Neural Networks (RNN) came into existence and it proposed the solution for this problem by

introducing the hidden layer. So most important concept related to the Recurrent Neural

Network (RNN) is the hidden state, which has capability to remember the information about

previous state in a sequence [58].

Recurrent Neural Network has ability to memorize and it has mmemeory that can remember

all the previous information about any calculations. In these neural networks, same paramenters

are used for each inout like it performs the similar task on all hidden layers or inputs to get the

output. This helps to reduce the complexity of the parameters. We can understand the working

principal of RNN by this exampe (Figure. 7).

37

Figure 7. RNN Working Principal

Suppose ,we have a deep network and it has one inout, one output layer and three hidden layers.

Now we know that like other neural networks, these hidden layers will have their own weights

and biases. So suppose that layer 1, layer 2, layer 3 has weights and biases (w1,b1), (w2,b2)

and (w3,b3) respectively as shown in Figure. 8. This means that these layers donot memorize

the prevous outputs and are independent of each other.

38

Figure 8. RNN Weights and Biases

Now recurrent neural Network have different strategy and it will convert these independent

activations in to dependent ones by inserting the same biases and weights to all the layers. This

will do the two things; first it will decrease the complexity also and second it will make possible

to memorize the previous output/state by providing the output as an input to the next hidden

39

layer as shown in the Figure. 9. So these three hidden layers will be joined in to a single

recurrent layer as all weights and bias of the layers will be same.

Figure 9. RNN Feedback Nature

Here is the formula for the calculation of Current state:

ht = f (ht-1, xt)

Where

 ht represents the current state

 ht-1 represents the previous state

 xt represents the input state

And the Formula for output calculation:

y t = Why ht

40

 Yt represents the output

 Why represents the weight at output layer

Formula for applying Activation Function (tanh):

ht = tanh (Whhht-1 + Wxhxt)

 Whh represents the weight at recurrent neuron

 Wxh represents the weight at input neuron

3.1.8. GRU

Vanishing gradient problem in machine learning is basically a difficulty in training the neural

networks with the backpropagation and gradient-based learning methods. These methods,

weights of neural network will be receiving an updated proportion to the partial derivative of

the error function with respect to the current weight with the each iteration of the training. But

issue is in some cases is that, gradient can be vanish-ably small and stopping the weights from

changing its value. Or it can even stop the neural networks from further training in worst case.

This problem of vanishing-exploding gradient problem is usually faced during the training of

a basic Recurrent Neural Network. So to resolve this problem, many variations were developed.

One of these variations is Long Short Term Memory Network (LSTM) [59] and another is

Gated Recurrent Unit Network (GRU) [60]. Both these variations used for solution of

vanishing-exploding gradient problem are equally effective. Difference between LTSM and

GRU is that GRU has only three gates and doesn’t no have an internal cell state unlike LTSM.

The information is incorporated in a hidden state in case of GRU which is stored in the internal

cell state in case of LTSM. And this information will be feed in to next GRU. Different gates

of GRU [60] has been described below:

Update Gate (z): This decides that how much knowledge needs to be passed along in next

stage from past stage. Update Gate is shown below:

Reset Gate (r): It will decide that how much information to forget from past. Reset Gate is

shown bel

41

Current Memory Gate (ht): It is often incorporated into the Reset Gate just like the Input

Modulation Gate is a sub-part of the Input Gate and is used to introduce some non-linearity

into the input and to also make the input Zero-mean. Another reason to make it a sub-part of

the Reset gate is to reduce the effect that previous information has on the current information

that is being passed into the future. Current memory gate is shown below:

GRU’s basic work flow is similar to the basic RNN, main difference is internal working within

each recurrent unit as Gated Recurrent Unit networks consist of gates which modulate the

current input and the previous hidden state.

3.2. Proposed Solution

 In our proposed methodology the similarity between sentences is calculated by using

sentence embedding. After preprocessing, the sentences are converted to vectors of real

numbers by sentence embedding. K-mean cluster is used to cluster these sentences. Then we

have to select one sentence per cluster. Sentence ranking is used to rank sentences per

information they contain and select high rank sentences for summarization. Python is used to

develop the system. Figure.10 shows the top level flow of proposed system.

3.2.1 Preprocessing

NTK [63] is used to work on natural language. NLTK is a platform used to work on human

language in python. It has many libraries for classification, tokenization, stemming etc. It also

contains many corpora, almost over 50 like WordNet etc. Another beautiful thing about it is

NLTK has a large community support. Natural Language Toolkit is a set of libraries written

python for the statistical and symbolic natural language processing (NLP) for English language

and it is usually known as NLTK. NLTK contains sample data and graphical demonstrations.

It is intended to support the different research fields in Natural language processing (NLP) and

other fields related to the machine learning, cognitive science, Artificial intelligence,

Information retrieval and empirical linguistics. It has been successfully used as an individual

study tool, and as a platform for prototyping and building research systems. NLTK can perform

classification, tokenization, and stemming, tagging, parsing, and semantic reasoning

functionalities.

First step is to combine all sentences from different documents like text file or .csv file.

Tokenize the string data to list sentences is the next process to move to next step.

42

3.2.2 Sentence Embedding

Sentences are then converted to fixed length dense vectors. One approach is to use word2vec

method to generate vector representation for every word in sentences. Then we can take

average sum of these vectors to calculate sentence embedding. Another approach is to use

sentence vector. Skip-thought [64] is used to calculate sentence embedding. It is works as

encoder-decoder model. Skip-thought used RNN [58] encoder with GRU [60] activations and

an RNN decoder with a conditional GRU.

Figure 10. Methodology Flow Diagram

We implemented and considered the skip-thoughts as framework of encoder-decoder model.

Encoder-Decoder model is being widely used in the field of neural machine translation. An

encoder will map the words of a sentence to the sentence vector. Then a decoder will be used

to generate the surroundings of that sentence. We have used the encoder with the RNN with

GRU activations and decoder with the conditional GRU. GRU has shown equally good

performance like LTSM and it is simpler.

43

Figure 11. Vector representation of sentences

The encoder encodes the sentence into vector. Given a sentence, the decoder generates the

surrounding sentences of that input. Consider we have 3 sentences Si-1, Si, Si+1. If we give Si to

decoder, the output of decoder will be Si-1, Si+1. Pre trained model are available for English

sentences. As focus of this paper is also on English language so there is no need to train the

model. These vectors of sentences are then passed to next step. Figure. 11 shows the vectored

sentences.

Figure 12. Encoder-Decoder Model

3.2.3 Clustering based on Similarity

As we have vectors of sentences. These vectors contain a list of features (numbers). By

comparing these features we can calculate clusters of similar sentences. K mean clusters are

used for this purpose. K-mean cluster fit best in our scenario as we have numbers and fixed

44

number of clusters [57]. This number depends upon the size of input document (number of

sentences). Clusters are different for different size of data. Figure. 13 show the clusters of

sentences.

Figure 13. Clusters of sentences

Clusters are in following format:

The sentences are array having 1 or many sentences. Each sentence is represented by a number.

This number is the order number of that specific sentence in document.

For K-mean clustering, first of all we will select the number of clusters or groups to be used

and the will initialize the randomly center points of these clusters [56]. We should take a quick

look, in order to figure out the classes’ number to use and try to identify the different distinct

classes. K-mean will categorize the data in to specified groups of similarity. And Euclidian

distance is used to measure the similarity between data points. Basic flow of this algorithm is

mentioned below:

In first step, center points or means will be initialized randomly.

Then each data point will be categorized to its closest center point or mean and then these

means will be updated according to the average of the points that are grouped in previous

iteration.

This process will be repeated for a specified number of iterations and then we will have our

clusters.

The center points are called means because they are the average of the points categorized in

that cluster. These can be initialized randomly in an intuitive way.

The above algorithm in pseudocode:

“Initialize k means with random values

45

 For a given number of iterations:

 Iterate through items:

 Find the mean closest to the item

 Assign item to mean

 Update mean ”

3.2.4 Sentence Ranking

Sentences are ranked based on the information they carry. Tf-idf is most commonly used term

weighting method [67]. This assign a high weight to a term or word if it is occurring frequently

in the document but rarely occurred in the whole document collection. On the other hand, if

one term or word is occurring in nearly all the documents of a collection then it will have less

discriminatory power and it will be given a low weight. Usually these low weight term are the

stop words in a document. So in order to calculate the tf-idf , we need to know the two things;

first is that how many times a word occur in the document which is known as term frequency

and second one is that in how many documents this term appears known as document

frequency. Then we will take the inverse of the document frequency and we have both

components to calculate the weight by multiplying tf by idf.

In practice, the inverse document frequency is calculated as the logarithm (base 10) of the

quotient of the total number of documents (N) and the document frequency in order to scale

the values.

Selecting one by one cluster and looping through it. Every sentence within a cluster is process

to remove stop words and stemmed. Finally find the weight of every sentence by the following

formula

𝑆𝑤 =∑𝑡𝑓𝑖𝑑𝑓(𝑤𝑖)

𝑛

𝑖

Where

46

 ‘Sw’ is the weight of sentence

‘n’ is the total number of words in Sw

‘wi’ is the ith word of sentence

The same method repeated for every cluster. Now we have all sentences along with their

weight.

3.2.5 Sentence Selection

From every cluster only one sentence is selected having high weight from other sentences of

same cluster. By getting only one sentence per cluster solve the problem of redundancy. The

sentences are then re arranged in their original sequence.

47

Chapter 4

Implementation

48

CHAPTER 4: IMPLEMENTATION

The chapter elaborates the implementation details of our proposed methodology for the

automated summarization of bug reports. Section 4.1 discusses the details about the standard

data-set we have used for our research. Section 4.2 gives details about the experimentation

details.

4.1. Data-Set

We implemented proposed algorithm with the machine learning library Theano. We

implemented our methodology on a standard data set known as Summary Data Set (SDS). This

data set contains 36 bug reports and this bug report corpus was created by Sarah Rastkar et al

[13] and has been used widely in this research field. It contains bug reports from four open-

source Software projects which includes Eclipse Platform, Mozilla, Genome and KDE. These

reports have different length in terms of sentences or comments. Sixty nine percent reports

have five to fourteen comments and remaining thirty one percent have fifteen to twenty five

comments.

Table 6. Data-Set Details
Data-Set No. of Bug

Reports

Average

Comment Count

Average

Comments Size

Total

Sentences

SDS 36 6.5 9.5 2361

Total number of sentences are 2361 in these reports. Table.6 shows the details about SDS

data set. Each bug report in this data set was annotated by three annotators and they wrote an

abstractive summary for each report. These abstractive summaries known as Gold standard

summaries (GSS) are used for evaluation of our results. Generated summaries are 25% of the

original bug report.

49

Figure 14. Bug Report Structure

4.2. Experimentation

 We implemented proposed algorithm with the machine learning library Theano.

Theano is a library written in Python and it is used for fast numerical computations that can be

50

run on the CPU or GPU. Theano can be used directly to create Deep Learning models or

wrapper libraries to simplify the process greatly and it is a key foundational library for Deep

Learning in Python. We have run our algorithm on corei5 with RAM of 8 GB and GPU of 2

GB.

First of all we took the data from text files and then performed the proposed algorithm. We

used following libraries for or algorithm implementation: NLTK, Skipthought, Numpy,

Sklearn for clustering, SentenceRanking for tf-idf, RankSentence to select top sentences.

NLTK has been used for the tokenization of the bug report at sentences level. Then these

tokenized sentences will be given as input to the skipthought module, which will use the

encoder-decoder method to convert he sentences in to vectors. Then these vectors will be used

for clustering. Cluster’s sentences will be then ranked by using tf-idf weighting technique. Then

we will select the top sentences from each clusters. It will generate the summary.

We generated the summaries for 36 bug reports. An example is shown below:

Figure 15. System Generated Summary Sample

These system generated summaries were used to compare with the gold standard summaries

provided with the original data-set. These gold standard summaries were annotated by the

experienced annotators [14]. First they wrote abstractive summaries for each report and then

51

they linked each sentence of the abstractive summary with the sentences of bug reports. Gold

standard summaries are consisted of these linked sentences of the original bug reports. Now

we have three gold summaries of each bug report. So to achieve consensus, we take these

sentences in to our final gold standard summary which are present in at least two annotated

summaries. Below is an example of the gold standard summary:

Figure 16. Gold Standard Summary Sample

Main coding layout for implementation is given below:

“from nltk.tokenize import sent_tokenize

import skipthoughts

import numpy as np

from sklearn.cluster import KMeans

import collections

52

from sentenceRanking import tfIdf

from rankSentence import rankPreprocessor

model = skipthoughts.load_model()

encoder = skipthoughts.Encoder(model)

def task (fileName):

 BugReport_file = open('BUGREPORTs/'+fileName,'r')

 BugRep =BugReport_file.read().decode("UTF-8")

 BugRep =BugRep.replace('\n','')

 summaryFile = open('summaries/system/'+fileName,'w+')

 sentences = sent_tokenize(BugRep)

 encoded = encoder.encode(sentences)

 print('encoded is:',encoded)

 n_clusters = np.int64(np.ceil(len(sentences)**0.30))

 if len(sentences)<100:

 n_clusters = np.int64(np.ceil(len(sentences)*0.25))

 kmeans = KMeans(n_clusters=n_clusters)

 kmeans = kmeans.fit(encoded)

 clusters = collections.defaultdict(list)

 for i, label in enumerate(kmeans.labels_):

 clusters[label].append(i)

 clusters = dict(clusters)

 print(clusters)

 #tf idf matrix function is

 tfidf_matrix = tfIdf(BugRep)

 summary_indexes = rankPreprocessor(sentences,tfidf_matrix,clusters)

 summary = '\n'.join(' '+sentences[id] for id in summary_indexes).encode('utf-8').strip()

53

 summaryFile.write(summary)

for i in range(3):

 if i==0:

 continue

 fileName = '00'+str(i)+'.txt'

 if i>9:

 fileName = '0'+str(i)+'.txt'

 task(fileName)”

54

Chapter 5

Results and Evaluation

55

CHAPTER 5: Results and Evaluation

This chapter deals with the results and evaluation of our algorithm. Section 5.1

discusses the evaluation metrics to be used for the evaluation of our algorithm. Section 5.2

discusses the results and comparison with the previously used techniques.

5.1. Evaluation Metric

Different evaluation metrics have been used for the evaluation of the summary generating

algorithms in the past [66]. But most commonly used metric used for the evaluation of

summaries is ROUGE. It is widely accepted because it is an automated evaluation method.

5.1.1. ROUGE

ROUGE is a combination of different metrics or variations of a metric, used for the evaluation

of automatic text summarization and it stands for “Recall oriented Understudy for Gisting

Evaluation” [65]. It compares the automatically generated summary with the reference

summary usually known as gold standard summary. For better understanding for example we

have a system summary or a summary produced by machine given below:

“The cat was running fast”

And below is given reference Summary or gold standard summary:

“The cat was running very fast”

So if we count the words in system summary ,it gives a count of 5 words and reference

summary or gold standard summary gives a word count of 6 words. So rouge will find the

overlapping between both system and reference summary. But it doesn’t give enough idea

about the quality. So Rouge recall ad precision is measured using the overlap for each

summary. So Rouge recall would be the how much coverage of reference summary is done in

the system summary. If we are just considering the Rouge-1 then recall would be:

In case of above given example Recall rouge would be:

Recall = 5/6 = 0.83

56

This means 83% of reference summary has been captured by the system summary.But only

recall is not enough and it doesn’t tell us about the other side of the story. It doesn’t give the

idea about how much right information is the system summary contains. So we will find the

precision, which can be defined as:

In above mentioned example, precision would be:

Precision = 5/5 =1

That means system summary contains 100% right information and doesn’t consist of useless

information .Although in practice this doesn’t happens. But reality is that recall and precision

don’t give the complete idea more than often. So F-measure is always used for the measurement

of ROUGE.ROUGE has different variations like ROUGE-N, ROUGE-S, and ROUGE-L and

difference is their granularity level of texts being compared between the system summaries and

reference summaries.

• ROUGE-N: “it measures unigram, bigram, trigram and higher order n-gram overlap

like ROUGE-1, ROUGE-2 or ROUGE-3 etc.”

• ROUGE-L: “it measures longest matching sequence of words”

• ROUGE-S: “it is also known as skip-gram concurrence and it measures the overlap of

word pairs that can have a maximum of two gaps in between words.”

We used a rouge evaluation package 1.5.5 [62] and below we have shown an example of output

in the figure.

We used R-1 and R-2 and measured the F-measure as it gives the all over idea about the

performance.

Rouge evaluation package 1.5.5 is used for the rouge evaluation:

==

“from pyrouge import Rouge155

r = Rouge155()

57

r.system_dir = 'summaries/system'

r.model_dir = 'summaries/user'

r.system_filename_pattern = '(\d+).txt'

r.model_filename_pattern = '(\d+).txt'

output = r.convert_and_evaluate()

print(output)

output_dict = r.output_to_dict(output)”

==

Figure 17. ROUGE Evaluation Package output

58

5.2. Results Evaluation and comparison:

After the implementation of our algorithm, we evaluated the experimentation by using widely

used and accepted summarization evaluation package “Recall-Oriented Understudy for Gisting

Evaluation” or ROUGE. This metric compare the automatically generated summary with the

human written reference summary or Gold summary [65]. ROUGE tries to asses that if the

automatically generated summary covers the most of important information present in the

reference summary or Gold summary. ROUGE-1 and ROUGE-2 are very useful in emulation

of human evaluation procedure [66].

Table 7. Results

Report Number ROUGE-1 ROUGE-2

1 0.39 0.14

2 0.75 0.13

3 0.57 0.28

4 0.75 0.25

5 0.64 0.19

6 0.75 0.22

7 0.67 0.27

8 0.72 0.21

9 0.71 0.29

10 0.52 0.13

11 0.41 0.18

12 0.57 0.23

13 0.62 0.25

14 0.69 0.22

15 0.41 0.17

16 0.4 0.17

17 0.58 0.19

18 0.52 0.26

19 0.51 0.22

20 0.69 0.28

21 0.57 0.26

22 0.32 0.16

23 0.71 0.21

24 0.54 0.23

25 0.52 0.18

26 0.58 0.19

27 0.56 0.29

28 0.68 0.32

29 0.71 0.25

59

30 0.5 0.19

31 0.61 0.23

32 0.62 0.21

33 0.52 0.16

34 0.5 0.21

35 0.54 0.16

36 0.7 0.26

Average 0.584722222 0.216388889

The reason we didn’t used ROUGE-1 alone but with the combination of ROUGE-2 due to the

reason that it can tell us about the fluency of the system summaries or translation. As we know

that if we follow the word orderings of the reference summary more closely, then our summary

is actually more fluent.

Table 8. Results & Comparison

Algorithms R-1 R-2

BRC [13] [14] 0.521 0.140

Centroid [15] [22] 0.471 0.126

MMR [15] [22] 0.498 0.145

Grasshopper [15] [22] 0.505 0.135

Diverse Rank [15] [22] 0.500 0.139

PageRank [17] 0.525 0.153

Deep Sum [18] 0.563 0.177

Sentence Embedding 0.584 0.216

That’s why, we calculated the ROUGE-1 and ROUGE-2 for the evaluation and comparison

of our summaries with previous work in this field, by using Rouge-1.5.5 [62]. We calculated

the ROUGE-1 and ROUGE-2 for the 36 reports and then we took average of these results to

achieve the final reading for our algorithm as shown in Fig.18.

60

Figure 18. Graphical Representation of individual results

Then we compared our result with the previous algorithms used for the automated bug report

summarization. Table.7 shows the results of this experiment. Results shows that our algorithm

has shown significant improvement in rouge-1 and rouge-2 metrics on SDS Data set [13].

Fig.20 shows the graphical representation of comparison of our algorithm with algorithms used

previously for bug report summarization

61

Figure 19. Graphical representation of Results

62

Chapter 6

Discussion and Limitation

63

CHAPTER 6: DISCUSSION AND LIMITATION

This chapter deals with an overview of research by highlighting research gap covered

in Section 6.1 whereas Limitations to research are mentioned in section 6.2

6.1. Discussion

 Automation has revolutionized the modern day processes by reducing the time delays

and introduced the great accuracy. Natural language processing has been proven great

beneficial in software development processes and has helped the software developer with in

many fields. One such field is the summarization of software artifacts to save the time of

developers needed to analyze these artifacts. We have optimized this process by using sentence

embedding through skip thought vectors. We compared our results with the previous bug report

summary generation algorithms and achieved improved results in term of rouge- and rouge-2

metric.

6.2. Limitations

 As this approach is an extractive unsupervised learning in the field of automated bug

report summarization and still it needs the improvement in the results. Also this approach

doesn’t give the abstractive summaries and abstractive summaries are more helpful if generated

rightly. Also his approach doesn’t consider the importance of a person who is commenting in

the conversation. Like more experienced person’s comment should have given more weight to

include it in the final summary.

64

Chapter 7

Conclusion and Future Work

65

CHAPTER 7: CONCLUSION AND FUTURE WORK

This chapter deals with an overview of research conclusion covered in Section 7.1

whereas future work is mentioned in Section 7.2.

7.1. Conclusion

 Software Automation field is progressing day by day. Software development demand is

increasing on daily basis as the modern age is moving towards the automation of all daily life

process. So this demands the fast and optimized software development process. One of the

biggest hurdle in the fast delivery of the software is the number of bugs faced during the

development process. In case of large projects, number of issues arise in the development

process are enormous. So if a team has to resolve the same bug each time with same effort, it

would be time wasting and money as well. So to help the developers and to make the bug

resolution fast. Developers can take advantage of historical knowledge about the bug if it has

been faced before and in no time they can resolve the bug with the previously used resolution

methods. For this purpose bug repositories are used. But as bug repositories would be growing

with the time and it is difficult for the developers to find the needed bug report. It would be a

very time consuming task to read all of the bug reports to find their concerning report. For the

solution of this problem, automation of bug report summarization was introduced in 2010 first

time. Many researchers have worked on this process and achieved good results. But there was

still need of improvements in this process. So we proposed a novel framework for the

automated summarization of bug reports to speed-up the software development process to cope

with the modern days demands. We proposed an extractive based supervised approach for this

purpose and achieved improvements in the ROUGE-1 and ROUGGE-2 results as compared to

previously used techniques. But still there is a need of improvement in this area. We have

discussed about suggestions in the next part about what can be improved and possible future

directions.

7.2. Future Work

Future work includes improving and extending this approach in order to support the

bug resolution in better way. We proposed an extractive summarization approach and it

generates the extractive summaries for bug reports. An abstractive approach can be used in the

future as abstractive summaries are more human alike. A proper GUI tool can be generated and

66

provided for the public access to use this tool. Also many important features can be identified

in the bug reports like importance of persons involved in the conversation and use this to

include most important sentences in the summary.

67

References

[1] J. D. Strate and P. A. Laplante, "A Literature Review of Research in Software Defect

Reporting," in IEEE Transactions on Reliability, vol. 62, no. 2, pp. 444-454, June 2013.

doi: 10.1109/TR.2013.2259204

[2] A. A. Rahman and N. Hasim, "Defect Management Life Cycle Process for Software

Quality Improvement," 2015 3rd International Conference on Artificial Intelligence,

Modelling and Simulation (AIMS), Kota Kinabalu, 2015, pp. 241-244.

doi:10.1109/AIMS.2015.47

[3] B. S. Rawal and A. K. Tsetse, "Analysis of bugs in Google security research project

database," 2015 IEEE Recent Advances in Intelligent Computational Systems (RAICS),

Trivandrum, 2015, pp. 116-121. doi: 10.1109/RAICS.2015.7488399

[4] Yu, L., Ramaswamy, S., & Nair, A. (2011). Using bug reports as a software quality

measure. ICIQ.

[5] A. Gelbukh, "Natural language processing," Fifth International Conference on Hybrid

Intelligent Systems (HIS'05), Rio de Janeiro, Brazil, 2005, pp. 1 pp.-. doi:

10.1109/ICHIS.2005.79

[6] P. Kłosowski, "Deep Learning for Natural Language Processing and Language Modelling,"

2018 Signal Processing: Algorithms, Architectures, Arrangements, and Applications

(SPA), Poznan, 2018, pp. 223-228. doi: 10.23919/SPA.2018.8563389

[7] Y. Tian and D. Lo, "A comparative study on the effectiveness of part-of-speech tagging

techniques on bug reports," 2015 IEEE 22nd International Conference on Software

Analysis, Evolution, and Reengineering (SANER), Montreal, QC, 2015, pp. 570-574. doi:

10.1109/SANER.2015.7081879

[8] Cheng Juan, "Research and implementation English Morphological Analysis and Part-of-

Speech tagging," 2010 International Conference on E-Health Networking Digital

Ecosystems and Technologies (EDT), Shenzhen, 2010, pp. 496-499. doi:

10.1109/EDT.2010.5496438

[9] Ankita and K. A. Abdul Nazeer, "Part-of-speech Tagging and Named Entity Recognition

Using Improved Hidden Markov Model and Bloom Filter," 2018 International Conference

on Computing, Power and Communication Technologies (GUCON), Greater Noida, Uttar

Pradesh, India, 2018, pp. 1072-1077. doi: 10.1109/GUCON.2018.8674901

68

[10] Kitchenham, Barbara. "Procedures for performing systematic reviews." Keele, UK,

Keele University33.2004 (2004): 1-26.

[11] D. Cubrani c and G.C. Murphy, “Hipikat: Recommending Pertinent Software

Development Artifacts,” Proc. 25th Int’l Conf. Software Eng. (ICSE ’03), pp. 408-418,

2003.

[12] C. Sun, D. Lo, S.-C. Khoo, and J. Jiang, “Towards More Accurate Retrieval of

Duplicate Bug Reports,” Proc. 26th Int’l Conf. Automated Software Eng. (ASE ’11), pp.

253-262, 2011.

[13] Sarah Rastkar , Gail C. Murphy, Gabriel Murray(2014), “Automatic Summarization of

Bug Reports “ , IEEE Transactions on Software Engineering Volume 40 Issue 4, Pages

366-380.

[14] Sarah Rastkar , Gail C. Murphy, Gabriel Murray(2010), “Summarizing Software

Artifacts:A Case Study of Bug Reports” ICSE '10 Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering - Volume 1, Pages 505-514.

[15] Senthil Mani, Rose Catherine, Vibha Singhal Sinha, Avinava Dubey(2012), “AUSUM:

approach for unsupervised bug report summarization” , FSE '12 Proceedings of the ACM

SIGSOFT 20th International Symposium on the Foundations of Software Engineering,

Article No. 11.

[16] Cheng-Zen YANG, Cheng-Min AO, Yu-Han CHUNG(2018), “Towards an

Improvement of Bug Report Summarization Using Two-Layer Semantic Information”,

IEICE Transactions on Information and Systems. VOL.E101–D, NO.7, Pages 1743-1750

[17] R. Lotufo, Z. Malik, and K. Czarnecki (2012) “Modeling the ‘Hurried’ Bug Report

Reading Process to Summarize Bug Reports,” Proceedings; 28th IEEE International

Conference on Software Maintenance (ICSM '12), pp.430-439.

[18] Xiaochen Li, He Jiang, Dong Liu, Zhilei Re, Ge Li (2018), “Unsupervised Deep Bug

Report Summarization” ICPC '18 Proceedings of the 26th Conference on Program

Comprehension, Pages 144-155.

[19] H. Jiang, N. Nazar, J. Zhang, T. Zhang, and Z. Ren(2017), “PRST: A PageRank-Based

Summarization Technique for Summarizing Bug Reports with Duplicates,” International

Journal of Software Engineering and Knowledge Engineering, Vol. 27, No. 06, Pages:869-

896.

[20] Shamima Yeasmin, Chanchal K. Roy, Kevin A. Schneider (2014), “Interactive

Visualization of Bug Reports using Topic Evolution and Extractive Summaries” ICSME

69

'14 Proceedings of the IEEE International Conference on Software Maintenance and

Evolution, Pages 421-425

[21] Isabella Ferreira, Elder Cirilo, Vinicius Vieira, Fernando Mour˜ao (2016), “Bug Report

Summarization: An Evaluation of Ranking Techniques” X Brazilian Symposium on

Software Components, Architectures and Reuse (SBCARS), pages: 101-110.

[22] He Jiang , Xiaochen Li , Zhilei Ren, Jifeng Xuan, Zhi Jin (2019), “Toward Better

Summarizing Bug Reports With Crowdsourcing Elicited Attributes” IEEE Transactions on

Reliability, Volume 68(1), pages: 2-22

[23] Nicolas Bettenburg, Rahul Premraj(2008) “Extracting Structural Information from

Bug Reports” MSR '08 Proceedings of the 2008 international working conference on

Mining software repositories, Pages 27-30

[24] Luca Ponzanelli, Andrea Mocci, Michele Lanza(2015), “Summarizing Complex

Development Artifacts by Mining Heterogeneous Data”MSR '15 Proceedings of the 12th

Working Conference on Mining Software Repositories, Pages 401-405.

[25] Gabriel Murray, Giuseppe Carenini (2008), “Summarizing Spoken and Written

Conversations” EMNLP '08 Proceedings of the Conference on Empirical Methods in

Natural Language Processing, Pages 773-782

[26] Yuan Tian, David Lo(2015), “A Comparative Study on the Effectiveness of Part-of-

Speech Tagging Techniques on Bug Reports”, IEEE 22nd International Conference on

Software Analysis, Evolution, and Reengineering (SANER), pp. 570-574.

[27] Kukkar A., Mohana R. (2019), “An Optimization Technique for Unsupervised

Automatic Extractive Bug Report Summarization”. International Conference on Innovative

Computing and Communications, Pages:1-11.

[28] D. Bertram, A. Voida, S. Greenberg, and R. Walker,(2010)

“Communication,Collaboration, and Bugs: The Social Nature of Issue Tracking in Small,

Collocated Teams,” Proc. ACM Conf. Computer Supported Cooperative Work (CSCW

’10), pp. 291-300, 2010.

[29] Dragomir R. Radev, Hongyan Jing, Malgorzata Stys, and Daniel Tam.(2004)

“Centroid-based summarization of multiple documents.” Information Processing and

Management, 40:919–938, November 2004.

[30] Xiaojin Zhu, Andrew B. Goldberg, Jurgen Van, and Gael David Andrzejewski(2007).

“Improving diversity in ranking using absorbing random walks.” In Physics Laboratory

â˘A ¸S University of Washington, pages 97–104, 2007.

70

[31] Qiaozhu Mei, Jian Guo, and Dragomir Radev. Divrank:(2010) “the interplay of

prestige and diversity in information networks.” In Proc. 16th ACM SIGKDD international

conference on Knowledge discovery and data mining, KDD ’10, pages 1009–1018, 2010

[32] Nicolas Bettenburg, Rahul Premraj, Sunghun Kim, and Thomas Zimmermann. (2008).

“Extracting structural information from bug reports”. In Proceedings of the International

Working Conference on Mining Software Repositories (MSR’08). ACM, 27–30.

[33] G. Murray and G. Carenini,(2008) “Summarizing Spoken and Written Conversations,”

Proc. 2008 Conference on Empirical Methods

 in IEICE TRANS. INF. & SYST., VOL.E101–D, NO.7 JULY 2018 Natural Language

Processing (EMNLP ’08), pp.773–

782, 2008.

[34] Lawrie, Dawn J. and Dave W. Binkley.(2018) “On the Value of Bug Reports for

Retrieval-Based Bug Localization.” 2018 IEEE International Conference on Software

Maintenance and Evolution (ICSME) (2018): 524-528.

[35] Xiaoyin Wang, David Lo, Jing Jiang, Lu Zhang, Hong Mei (2009)“Extracting

paraphrases of technical terms from noisy parallel software corpora” In Proceeding

ACLShort '09 Proceedings of the ACL-IJCNLP 2009 Conference Short Papers Pages 197-

200

[36] Per Runeson , Magnus Alexandersson, Oskar Nyholm (2007) “Detection of Duplicate

Defect Reports Using Natural Language Processing” In Proceeding ICSE '07 Proceedings

of the 29th international conference on Software Engineering. Pages 499-510.

[37] A. Nenkova and K. McKeown,(2011) “Automatic Summarization,” Foundations and

Trends in Information Retrieval, vol. 5, no. 2/3, pp. 103-233, 2011.

[38] Xiaoyin Wang , Lu Zhang, John Anvik, Jiasu Sun (2008) “An approach to detecting

duplicate bug reports using natural language and execution information” In Proceeding

ICSE '08 Proceedings of the 30th international conference on Software engineering Pages

461-470.

[39] Yang, Cheng-Zen et al. (2012)“Duplication Detection for Software Bug Reports Based

on BM25 Term Weighting.” 2012 Conference on Technologies and Applications of

Artificial Intelligence (2012): 33-38.

[40] Jiang, H., Zhang, J., Ma, H. et al.(2017) “Mining authorship characteristics in bug

repositories” Sci. China Inf. Sci. (2017) 60: 012107.

71

[41] A. Podgurski et al. (2003), “Automated support for classifying software failure reports”

In Proceedings “25th International Conference on Software Engineering, 2003.

Proceedings.”

[42] K. Zechner, “Automatic Summarization of Open-Domain Multiparty Dialogues in

Diverse Genres,” Computational Linguistics, vol. 28, no. 4, pp. 447-485, 2002.

[43] X. Zhu and G. Penn, “Summarization of Spontaneous Conversations,” Proc. Ninth Int’l

Conf. Spoken Language Processing (Interspeech ’06-ICSLP), pp. 1531-1534, 2006.

[44] O. Rambow, L. Shrestha, J. Chen, and C. Lauridsen,“Summarizing Email Threads,”

Proc. Human Language Technology Conf. North Am. Chapter of the Assoc. for

Computational Linguistics (HLT-NAACL ’04), 2004.

[45] R.J. Sandusky and L. Gasser, “Negotiation and the Coordination of Information and

Activity in Distributed Software Problem Management,” Proc. Int’l ACM SIGGROUP

Conf. Supporting Group Work (GROUP ’05), pp. 187-196, 2005.

[46] S. Haiduc, J. Aponte, L. Moreno, and A. Marcus, “On the Use of Automated Text

Summarization Techniques for Summarizing Source Code,” Proc. 17th Working Conf.

Reverse Eng. (WCRE ’10), pp. 35-44, 2010.

[47] G. Sridhara, E. Hill, D. Muppaneni, L. Pollock, and K. Vijay- Shanker, “Towards

Automatically Generating Summary Comments for Java Methods,” Proc. 25th Int’l Conf.

Automated Software Eng. (ASE ’10), pp. 43-52, 2010.

[48] L. Moreno, J. Aponte, G. Sridhara, A Marcus, L. Pollock, and K. Vijay-Shanker,

“Automatic Generation of Natural Language Summaries for Java Classes,” Proc. IEEE 21st

[49] A Chowdhury, G. G. (2003). Natural language processing. Annual review of

information science and technology, 37(1), 51-89.

[50] Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal

of Machine Learning Research 12.Aug (2011): 2493-2537.

[51] Vogel, Stephan. "PESA: Phrase pair extraction as sentence splitting." Proc. of the

Machine Translation Summit. Vol. 10. 2005.

[52] Collados, José Camacho. "Splitting Complex Sentences for Natural Language

Processing Applications: Building a Simplified Spanish Corpus." Procedia-Social and

Behavioral Sciences 95 (2013): 464-472.

[53] Y. Zhang, M. Chen and L. Liu, "A review on text mining," 2015 6th IEEE International

Conference on Software Engineering and Service Science (ICSESS), Beijing, 2015, pp.

681-685. doi: 10.1109/ICSESS.2015.7339149

72

[54] E. A. Calvillo, A. Padilla, J. Muñoz, J. Ponce and J. T. Fernandez, "Searching research

papers using clustering and text mining," CONIELECOMP 2013, 23rd International

Conference on Electronics, Communications and Computing, Cholula, 2013, pp. 78-81.

doi: 10.1109/CONIELECOMP.2013.6525763

[55] Li Xinwu, "Research on text clustering algorithm based on improved K-means," 2010

International Conference On Computer Design and Applications, Qinhuangdao, 2010, pp.

V4-573-V4-576. doi: 10.1109/ICCDA.2010.5540727

[56] Fasheng Liu and Lu Xiong, "Survey on text clustering algorithm -Research present

situation of text clustering algorithm," 2011 IEEE 2nd International Conference on

Software Engineering and Service Science, Beijing, 2011, pp. 196-199. doi:

10.1109/ICSESS.2011.5982288

[57] J. Lin, X. Li and Y. Jiao, "Text Categorization Research Based on Cluster Idea," 2010

Second International Workshop on Education Technology and Computer Science, Wuhan,

2010, pp. 483-486. doi: 10.1109/ETCS.2010.413

[58] Z. Shi, M. Shi and C. Li, "The prediction of character based on recurrent neural network

language model," 2017 IEEE/ACIS 16th International Conference on Computer and

Information Science (ICIS), Wuhan, 2017, pp. 613-616. doi: 10.1109/ICIS.2017.7960065

[59] Yu Wang, "A new concept using LSTM Neural Networks for dynamic system

identification," 2017 American Control Conference (ACC), Seattle, WA, 2017, pp. 5324-

5329. doi: 10.23919/ACC.2017.7963782

[60] R. Dey and F. M. Salemt, "Gate-variants of Gated Recurrent Unit (GRU) neural

networks," 2017 IEEE 60th International Midwest Symposium on Circuits and Systems

(MWSCAS), Boston, MA, 2017, pp. 1597-1600. doi: 10.1109/MWSCAS.2017.8053243

[61] Z. Tang, Y. Shi, D. Wang, Y. Feng and S. Zhang, "Memory visualization for gated

recurrent neural networks in speech recognition," 2017 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, 2017, pp. 2736-

2740. doi: 10.1109/ICASSP.2017.7952654

[62] https://github.com/summanlp/evaluation/tree/master/ROUGE-RELEASE-1.5.5#start-

of-content

[63] NLTK; Available from: https://www.nltk.org/.

[64] Kiros, R.a.Z., Yukun and Salakhutdinov, Ruslan and Zemel, Richard S and Torralba,

Antonio and Urtasun, Raquel and Fidler, Sanja, Skip-Thought Vectors. arXiv preprint

arXiv:1506.06726, 2015.

73

[65] Lin, Chin-Yew. (2004). ROUGE: A Package for Automatic Evaluation of summaries.

Proceedings of the ACL Workshop: Text Summarization Braches Out 2004. 10.

[66] Karolina Owczarzak, John M Conroy, Hoa Trang Dang, and Ani Nenkova. 2012. An

assessment of the accuracy of automatic evaluation in summarization. In Proceedings of

Workshop on Evaluation Metrics and System Comparison for Automatic Summarization.

ACL, 1–9.

[67] P. Bafna, D. Pramod and A. Vaidya, "Document clustering: TF-IDF approach," 2016

International Conference on Electrical, Electronics, and Optimization Techniques

(ICEEOT), Chennai, 2016, pp. 61-66. doi: 10.1109/ICEEOT.2016.7754750

[68] F. M. Barcala, J. Vilares, M. A. Alonso, J. Grana and M. Vilares, "Tokenization and

proper noun recognition for information retrieval," Proceedings. 13th International

Workshop on Database and Expert Systems Applications, Aix-en-Provence, France, 2002,

pp. 246-250. doi: 10.1109/DEXA.2002.1045906

[69] P. Han, S. Shen, D. Wang and Y. Liu, "The influence of word normalization in English

document clustering," 2012 IEEE International Conference on Computer Science and

Automation Engineering (CSAE), Zhangjiajie, 2012, pp. 116-120. doi:

10.1109/CSAE.2012.6272740

