

FEATURE SELECTION USING ROUGH SET BASED

HEURISTIC DEPENDENCY CALCULATION

By:

MUHAMMAD SUMMAIR RAZA
2011-NUST-DirPhD-CSE-65

A thesis submitted to National University of Science and Technology for

the degree of Doctor of Philosophy in the Faculty of Computer Software

Engineering

Thesis Supervisor

Dr. Usman Qamar

2018

College of Electrical and Mechanical Engineering

National University of Science and Technology

Table of Contents
Abstract ... 1

Chapter 1: Introduction ... 2

1.1 Feature Selection ... 4

1.2 Aims and Objectives ... 6

1.3 Research Contribution .. 7

1.4 Structure Of The Thesis .. 8

1.5 Summary ... 9

Chapter 2: Background ... 10

2.1 Curse of Dimensionality ... 10

2.2 Transformation-Based Reduction ... 11

2.2.1 Linear Methods .. 11

2.2.1.1 Principal Component Analysis (PCA) ... 11

2.2.2 Nonlinear Methods... 13

2.2.2.1 Locally Linear Embedding ... 13

2.3 Selection-Based Reduction ... 15

2.3.1 Feature Selection in Supervised Learning ... 15

2.3.2 Filter Techniques ... 15

2.3.2.1 FOCUS ... 15

2.3.2.2 Selection Construction Ranking using Attribute Pattern (SCRAP): 16

2.3.3 Wrapper Techniques .. 16

2.3.4 Unsupervised Feature Selection ... 17

2.3.4.1 Unsupervised Filters.. 18

2.3.4.2 Unsupervised Wrappers ... 19

2.4 Summary ... 19

Chapter 3: Rough Set Theory ... 20

3.1 Rough Set Theory (RST) .. 20

3.1.1 Information Systems .. 20

3.1.2 Decision Systems ... 21

3.1.3 Indiscernibility ... 22

3.1.4 Approximations.. 23

3.1.5 Positive Region .. 24

3.1.6 Dependency.. 24

3.1.7 Reducts and Core ... 27

3.2 Summary ... 29

Chapter 4: Rough Set Based Feature Selection Techniques ... 30

4.1 QuickReduct ... 30

4.2 Hybrid Feature Selection Algorithm Based On Particle Swarm Optimization (PSO): .. 31

4.3 Genetic Algorithm .. 34

4.4 Incremental Feature Selection Algorithm (IFSA): ... 36

4.5 Feature Selection Method using Fish Swarm Algorithm (FSA): 38

4.5.1 Representation of Position: ... 39

4.5.2 Distance and centre of fish: ... 39

4.5.3 Position Update Strategies: ... 39

4.5.4 Fitness Function: .. 39

4.5.5 Halting Condition: .. 40

4.6 Feature Selection Method Based on QuickReduct and Improved Harmony Search

Algorithm (RS-IHS-QR):.. 40

4.7 Alternative to Positive Region based Methods ... 41

4.8 Summary ... 43

Chapter 5: Dependency Classes .. 44

5.1 Proposed Dependency Classes .. 44

5.1.1 Incremental Dependency Classes (IDC) .. 44

5.1.1.1 Existing Boundary Region Class... 45

5.1.1.2 Positive Region Class ... 46

5.1.1.3 Initial Positive Region Class ... 46

5.1.1.4 Boundary Region Class .. 47

5.1.1.5 Mathematical representation of IDC .. 48

5.1.1.6 Example: .. 49

5.1.2 Direct Dependency Classes (DDC) ... 50

5.1.1 Example .. 51

5.2 Redefined Approximations ... 54

5.2.1 Redefined Lower Approximation .. 54

5.2.2 Redefined Upper Approximation:.. 57

5.3 Redefined Preliminaries based Feature Selection (RPFS) .. 59

5.4 Summary ... 63

Chapter 6: Feature Selection using Dependency Classes ... 64

6.1 Feature Selection Using Incremental Dependency Classes .. 64

6.1.1 Genetic Algorithm Using IDC ... 64

6.1.2 QuickReduct Algorithm Using IDC .. 69

6.1.3 ReverseReduct Algorithm Using IDC ... 69

6.1.4 Incremental Feature Selection Algorithm (IFSA) using IDC 70

6.1.5 Supervised PSO Based Quick Reduct (PSO-QR) Using IDC 71

6.1.6 Fish Swarm Algorithm (FSA) using IDC .. 72

6.1.7 Rough Set Improved Harmony Search Quick Reduct Using IDC 75

6.2 Parameter Settings .. 75

6.2.1 Particle Swam Optimization Based QuickReduct Using IDC PSO-QR(IDC): 75

6.2.2 Genetic Algorithm Using IDC GA(IDC) ... 77

6.2.3 Fish Swarm Algorithm (FSA) Using IDC ... 77

6.2.4 Rough Set Improved Harmony Search Quick Reduct using IDC: 77

6.3 Feature Selection Using DDC ... 77

6.3.1 Supervised PSO Based Quick Reduct Using DDC: .. 78

6.3.2 Genetic Algorithm Using DDC: .. 78

6.3.3 Incremental Feature Selection Algorithm (IFSA) Using DDC: 78

6.3.4 Fish Swarm Algorithm (FSA) Using DDC: .. 78

6.3.5 Rough Set Improved Harmony Search Quick Reduct (RS-IHS-QR) Using DDC 78

6.4 Parameter settings ... 79

6.5 Summary ... 79

Chapter 7: Results and Analysis ... 80

7.1 Comparison Framework.. 80

7.1.1 Percentage Decrease in Execution Time.. 80

7.1.2 Memory Usage ... 81

7.1.3 Accuracy .. 81

7.2 Experimental Analysis: IDC ... 81

7.2.1 Accuracy and Efficiency of IDC For Calculating Dependency 82

7.2.1.1 Percentage Decrease In Execution Time: .. 83

7.2.1.2 Accuracy .. 84

7.2.1.3 Memory Usage .. 84

7.2.2 Accuracy And Efficiency of Feature Selection Algorithms using IDC 86

7.2.2.1 Percentage Decrease in Execution Time ... 93

7.2.2.2 Accuracy .. 94

7.2.2.3 Memory Usage .. 94

7.3 Experimental analysis: DDC... 95

7.3.1 Efficiency And Accuracy of DDC ... 96

7.3.1.1 Percentage Decrease in Execution Time ... 97

7.3.1.2 Memory Usage .. 98

7.3.1.3 Accuracy .. 99

7.3.2 Efficiency And Accuracy of Algorithms using DDC .. 99

7.3.2.1 Percentage Decrease in Execution Time ... 101

7.3.2.2 Memory Usage .. 103

7.3.2.3 Accuracy .. 103

7.4 Experimental analysis: Redefined Preliminaries .. 104

7.4.1 Accuracy .. 105

7.4.2 Percentage Decrease in Execution Time.. 109

7.4.3 Memory Usage ... 109

7.5 Experimental analysis: Redefined Preliminaries Based Feature Selection 110

7.6 Summary ... 112

Chapter 8: Conclusion and Future work ... 112

8.1 Lower And Upper Approximations .. 112

8.2 Dependency Classes.. 113

8.2.1 Incremental Dependency Classes .. 113

8.2.2 Direct Dependency Classes.. 114

8.3 Feature Selection Using Dependency Classes .. 114

8.4 Experimental Analysis .. 115

8.5 Future Work .. 116

8.5.1 Dependency Classes For Unsupervised Learning.. 116

8.5.2 Dependency Classes For Unsupervised Feature Selection Algorithms 120

8.5.3 Dependency Classes For Other Algorithms ... 121

8.6 Final Word .. 122

References ... 123

List of Figures and Tables

FIGURES

FIGURE 1-1: AN OVERVIEW OF STEPS OF KDD PROCESS ………………….. 2

FIGURE 2-1: TAXONOMY OF DIMENSIONALITY REDUCTION …………….. 11

FIGURE 2-2: SUMMARY OF LLE ALGORITHM…………………..…………….. 14

FIGURE 3-1: APPROXIMATION DIAGRAM……………………………………... 23

FIGURE 4-1: QUICKREDUCT ALGORITHM …..………………………………... 30

FIGURE 4-2: PSO-QR ALGORITHM…….……………………………………........ 33
FIGURE 4-3: SELECTED CHROMOSOMES FOR ORDER BASED

CROSSOVER…………………………………………………………………………. 35

FIGURE 4-4: RESULTANT CHROMOSOMES AFTER CROSSOVER………….. 35
FIGURE 4-5: SELECTED CHROMOSOMES FOR PARTIAL MAPPED

CROSSOVER…………………………………………………………………………. 35

FIGURE 4-6: RESULTANT CHROMOSOMES AFTER CROSSOVER………….. 35

FIGURE 4-7: INVERSION MUTATION METHOD……………………...……….. 36

FIGURE 4-8: ADJACENT TWO CHANGE MUTATION METHOD……………... 36

FIGURE 4-9: IFSA ALGORITHM………………………………………………….. 37

FIGURE 4-10: FLOW OF FSA…………………………………………..………….. 38

FIGURE 4-11: A SAMPLE FISH…………………………………………...……….. 39

FIGURE 5-1: PSEUDO CODE FOR DIRECT DEPENDENCY CALCULATION... 52

FIGURE 5-2: GRID CONTENTS AFTER ADDING X1……………………………. 60

FIGURE 5-3: GRID CONTENTS AFTER ADDING X3……………………………. 61

FIGURE 6-1: INITIAL POPULATION OF GENETIC ALGORITHM…………..… 66

FIGURE 6-2: CHROMOSOME WITH HIGHEST DEPENDENCY……………….. 66

FIGURE 6-3: OFFSPRING AFTER FIRST CROSSOVER…………..….…..……... 67

FIGURE 6-4: OFFSPRING AFTER MUTATION………………………………...... 67

FIGURE 6-5: LAST GENERATION OF GA……………………………………….. 68

FIGURE 6-6: BEST CHROMSOMES IN ALL GA………..……………………….. 68
FIGURE 6-7: QUICKREDUCT ALGORITHM WITH IDC ADAPTATIONS

HIGHLIGHTED………………………………………………………………………. 69
FIGURE 6-8: IFSA ALGORITHM WITH IDC ADAPTATIONS

HIGHLIGHTED………………………………………………………………………. 70

FIGURE 6-9: PSO-QR ALGORITHM IDC ADAPTATIONS HIGHLIGHTED..... 71
FIGURE 6-10: FSA ALGORITHM WITH IDC ADAPTATIONS HIGHLIGHTED

……………………………………………………………………… 73
FIGURE 6-11: FSA SEARCHING ALGORITHM IDC ADAPTATIONS

HIGHLIGHTED …………………………….…………….. ………………………… 74

FIGURE 6-12: FSA SWARMING ALGORITHM IDC WITH ADAPTATIONS

HIGHLIGHTED …………………………….………………………………………... 74
FIGURE 6-13: FSA FOLLOWING ALGORITHM WITH IDC ADAPTATIONS

HIGHLIGHTED ………..………………….…………….. ………………………….. 74

FIGURE 6-14: RS-IHS-QR Algorithm………………………………………………. 76

FIGURE 7-1: EXECUTION TIME: IDC VS POSITIVE REGION ………………. 83

FIGURE 7-2: MEMORY USAGE: IDC VS POSITIVE REGION ……………… 83
FIGURE 7-3: EQUIVALANCE CLASS STRUCTURE W.R.T. DECISION

ATTRIBUTES………………………………………………………………………… 85
FIGURE 7-4: EQUIVALANCE CLASS STRUCTURE W.R.T. CONDITIONAL

ATTRIBUTES………………………………………………………………………… 86

FIGURE 7-5: GRID FOR CALCULATING IDC………………...………………... 86

FIGURE 7-6: EXECUTION TIME COMPARISON B/W QR AND QR (IDC)…... 90

FIGURE 7-7: EXECUTION TIME COMPARISON B/W GA AND GA (IDC)…... 90

FIGURE 7-8: EXECUTION TIME COMPARISON B/W IFSA AND IFSA (IDC). 91
FIGURE 7-9: EXECUTION TIME COMPARISON B/W PSO-QR AND PSO-QR

(IDC)………………………………………………………………………………… 91
FIGURE 7-10: EXECUTION TIME COMPARISON B/W REVERREDUCT AND

REVERSEREDUCT (IDC)………………………………………………….. 92
FIGURE 7-11: EXECUTION TIME COMPARISON B/W FSA AND FSA

(IDC)……………………………………………………………………………… 92
FIGURE 7-12: EXECUTION TIME COMPARISON B/W RS-IHS-QR AND RS-

IHS-QR (IDC)……….……………………………………………………………... 93
FIGURE 7-13: MEMORY COMPARISON B/W POSITIVE REGION AND

IDC….….. 93

FIGURE 7-14: RUNTIME EQUIVALANCE CLASS STRUCTURE [X]P….……. 98

FIGURE 7-15: COMPARISON OF EXECUTINO TIME IFSA AND IFSA(DDC). 102

FIGURE 7-16: COMPARISON OF EXECUTINO TIME GA AND GA(DDC)….. 102
FIGURE 7-17: COMPARISON OF EXECUTINO TIME RS-IHS-QR AND RS-

IHS-QR(DDC)……………………………………………………………………….. 102

FIGURE 7-18: COMPARISON OF EXECUTINO TIME FSA AND FSA(DDC)…. 103
FIGURE 7-19: COMPARISON OF EXECUTINO TIME PSO-QR AND PSO-

QR(DDC)……………………………………………………………………………… 103

FIGURE 8-1: UNSUPERVISED QUICKREDUCT ALGORITHM………….…….. 117
FIGURE 8-2: UNSUPERVISED QUICKREDUCT ALGORITHM WITH

HIGHLIGHTED ADAPTATIONS………………………………………………….. 121

TABLES

TABLE 3-1(A): INFORMATION SYSTEM………………………………………... 21

TABLE 3-1(B): DECISION SYSTEM………………………………………………. 22

TABLE 3-1(C): DECISION SYSTEM……………………………………………. 25

TABLE 3-2: SAMPLE DECISION SYSTEM………………………………………. 28

TABLE 4-1: RELATED ALGORITHMS BASED ON RST………………………... 41

TABLE 4-2: ALTERNATE TO POSITIVE REGION APPROACHES…………….. 43

TABLE 5-1: SAMPLE DECISION SYSTEM………………………………………. 45

TABLE 5-2: DECISION SYSTEM EXAMPLE…………………………………….. 45

TABLE 5-3: ADDING NEW OBJECT “C”..……………………………………… 46

TABLE 5-4: ADDING NEW OBJECT “I”………………..………………………. 47

TABLE 5-5: ADDING NEW OBJECT “H”………………………………………. 47

TABLE 5-6: SUMMARY OF IDC…………………………..………………………. 48

TABLE 5-7: HOW DDC CALCULATES DEPENDENCY………………………. 50

TABLE 5-8: SAMPLE DECISION SYSTEM……………..….…………………….. 55

TABLE 5-9: SAMPLE DECISION SYSTEM…………………………………….. 61
TABLE 6-1: EXAMPLE OF CHROMOSOME CROSSOVER ORDER IN

GA(IDC)…………………………………………………………………………….. 65

TABLE 7-1: SUMMARY OF DATASETS USED…………………….……………. 81
TABLE 7-2: CONVENTIOANL POSITIVE REGION BASED APPROACES VS

IDC…………………………………………………………………………………... 82

TABLE 7-3: COMPARISON B/W QR AND QR(IDC)…………..….……………. 87

TABLE 7-4: COMPARISON B/W GA AND GA(IDC)…………......…………….. 87

TABLE 7-5: COMPARISON B/W PSO-QR AND PSO-QR(IDC)….…………….. 88

TABLE 7-6: COMPARISON B/W IFSA AND IFSA(IDC)……..….……………... 88
TABLE 7-7: COMPARISON B/W REVERSEREDUCT AND

REVERSEREDUCT(IDC) …………………………………………………………. 88

TABLE 7-8: COMPARISON B/W FSA AND FSA(IDC)…………..….………….. 89

TABLE 7-9: COMPARISON B/W RS-IHS-QR AND RS-HIS-QR(IDC)………… 89

TABLE 7-10: SUMMARY OF DATASETS USED FOR DDC….….……………. 96
TABLE 7-11: CONVENTIOANL POSITIVE REGION BASED APPROACES VS

DDC…………………………………………………………………………………. 97

TABLE 7-12: COMPARISON B/W IFSA AND IFSA(DDC)……..….……………. 100

TABLE 7-13: COMPARISON B/W GA AND GA(DDC)……..….………………... 100

TABLE 7-14: COMPARISON B/W HIS AND IHS (DDC)……..….………………. 100

TABLE 7-15: COMPARISON B/W FSA AND FSA(DDC)……..….……………… 101

TABLE 7-16: COMPARISON B/W PSO AND PSO(DDC)……..….……………… 101

TABLE 7-17: CONVENTIONAL LOWER APPROXIMATION VS REDEFINED

LOWER APPROXIMATION……………………………………………………….. 104
TABLE 7-18: CONVENTIONAL UPPER APPROXIMATION VS REDEFINED

UPPER APPROXIMATION…………………………………………………………. 105
TABLE 7-19: LOWER APPROXIMATION: INDISCERNIBILITY VS

REDEFINED PRELIMINARIES BASED APPROACH…………………………….. 105
TABLE 7-20: UPPER APPROXIMATION: INDISCERNIBILITY VS

REDEFINED PRELIMINARIES BASED APPROACH…………………………….. 107
TABLE 7-21: RPFS VS CONVENTIONAL INDISCERNIBLITY BASED

APPROACHES……………………………………………………………………… 110

TABLE 8-1: HOW DDC CALCULATE DEPENDENCY………..….…………… 114

TABLE 8-2: SAMPLE DATASET TAKEN FROM [88]………………………….... 118

TABLE 8-3: DEPENDENCY VALUES CALCULATED BY [88]..….……………. 118

1

Abstract

The amount of data to be processed is significantly increasing day by day. The increase in data

size is not only due to more number of records but also due to substantial number of attributes

added to space. The phenomenon is leading to the dilemma called curse of dimensionality i.e.

datasets with exponential number of attributes. The ideal approach is to reduce the number of

dimensions such that resulted reduced set contains the same information as present in the entire

set of attributes. There are various approaches to perform this task of dimensionality reduction.

Recently, rough set-based approaches, which use attribute dependency to carry out feature

selection, have been prominent. However, this dependency measure requires the calculation of the

positive region, which is a computationally expensive task. In this research, we have proposed a

new concept called the “Dependency Classes”, which calculates the attribute dependency without

using the positive region. Dependency classes define the change in attribute dependency as we

move from one record to another. By avoiding the positive region, they can be an ideal replacement

for the conventional dependency measure in feature selection algorithms, especially for large

datasets. A comparison framework was devised to measure the efficiency and effectiveness of the

proposed measure. Experiments on various publically available datasets show that the proposed

approaches provide significant computational performance with same accuracy as provided by

conventional approach. We have also recommended seven feature selection algorithms using this

measure. The experimental results have shown that algorithms using the classes were more

effective than their counterparts using the positive region-based approach in terms of accuracy,

execution time and required runtime memory.

2

Chapter 1: Introduction

Knowledge is only valuable when it can be used efficiently and effectively; therefore knowledge

management is increasingly being recognized as a key element in extracting its value. An example

of this is Knowledge Discovery in Databases (KDD). Traditionally, data was turned into

knowledge by means of manual analysis and interpretation. For many applications, this form of

manual probing of data is slow, costly, and highly subjective. Indeed, as data volumes grow

dramatically, this type of manual data analysis is becoming completely impractical in many

domains. This motivates the need for filtering the data.

At basic level KDD comprises of five steps as shown in figure 1.1.

Figure-1.1: An overview of steps of KDD process taken from [2]

Here is brief description of each of the step:

 Data Selection

Data selection comprises of selecting the data for knowledge discovery. This may require

selecting the data from existing repository or creating a single source of data (a new

repository) from multiple sources. The data is selected on the basis of the analysis task.

3

This is an important step where all the data relevant to analysis should be considered, failed

to do so may lead to failure of the entire process.

 Data Cleansing/ Pre-processing

This step refers to increasing reliability and accuracy of data. Majority of the times, the

selected data may contain records that are potentially outliers, may contain insufficient

details (e.g. missing attribute values), noise or incorrect values etc. Using such data may

lead to incorrect models, may affect classification accuracy or performance of induction

algorithms etc. at later stages. Data cleansing or pre-processing refers to removal of all

such factors to enhance the quality and reliability of selected data. There are many

techniques for data cleansings. We may use outlier detection algorithms to find out outliers.

 Data Transformation/Reduction

This step refers to transforming the data to make it appropriate for underlying analysis and

knowledge discovery. The data may contain redundant attributes that do not add much to

our information or may contain totally irrelevant attributes. Such attributes are removed at

this stage. Various techniques are used at this stage e.g. feature selection, feature extraction,

attribute discretization etc. The basic purpose is to transform/reduce the data to enhance

performance at later stages.

 Data Mining

Once the data is ready we can apply our data mining algorithms to actually discover the

hidden information/patterns from our data. The use of a particular mining algorithm

depends on the nature of the analysis and goal of the knowledge discovery e.g. either we

want prediction or description on the basis of data?

 Interpretation/Evaluation

Once the knowledge has been discovered (patterns have been identified), it is evaluated on

the basis of our defined goals to validate accuracy, usefulness, novelty etc. It should be

noted that we may need to repeat previous steps to enhance the above mentioned measures,

e.g. by including more number of features and repeating the steps again.

4

This research focuses on the third step i.e. data reduction of Knowledge Discovery in Datasets

process. The size of a dataset comprises of two perspectives i.e. number of distinct samples to be

processed per dataset and number of attributes per sample. The former only affects the training

process in data mining, depending on its use, however, the latter i.e. number of attributes per

sample also called dimensionality, effects training process as well as performance of algorithm.

Many algorithms exhibit non polynomial execution time with respect to dimensionality.

The large number of dimensions in a dataset lead to a phenomenon called curse of dimensionality.

The term was first coined by Bellman [1] resulting out of the volume increase by adding extra

dimensions to mathematical space. Curse of dimensionality is the problem faced by many data

analysis algorithms for their practical implementation on datasets with larger size. As already

mentioned that performance of data mining algorithms is inversely proportional to dimensionality

of datasets, so higher dimensionality not only challenges performance of such algorithms but

makes their implementation impractical for many real life applications where datasets increase

beyond smaller size.

The problems caused by curse of dimensionality lead towards finding the solution that could

reduce the dimensionality without losing relevant information. There are various approaches,

which can, broadly fall in two categories [2]: the ones that change or even destroy meaning of

features and others that preserve semantics. Feature selection (FS) methods are semantic

preserving where we select features from original on the basis of some evaluation function.

1.1 Feature Selection

Feature selection is the process of selecting a subset of features from dataset that provides most of

the useful information [2]. The selected set of features can then be used on behalf of the entire

dataset. So, a good feature selection algorithm should opt to select the features that tend to provide

complete or most of the information as present in the entire dataset and ignore the irrelevant and

misleading attributes.

5

The simple way to perform feature selection is to evaluate all possible subsets of features from

entire dataset and evaluate their feasibility. However, exhaustive search is not possible due to its

adherent implications as there will be need to evaluate 2n subsets to be evaluated for a dataset with

n features. So, exhaustive search is only possible for datasets where n is very small. An alternative

way, we can use random search where a candidate feature subset can be randomly generated [3].

On each iteration, a random feature subset is selected and evaluated against its fitness for

satisfaction criteria, the process repeats until we find a feature subset, at any stage, which fulfils

the required criteria. The process also ends after a certain number of iterations are performed,

predefined time period is elapsed or a certain number of subsets are tested.

Third and most commonly used method uses heuristic approach [3] where some heuristics function

is used to guide the search. Feature selection aims at removing unnecessary features which can be

classified as irrelevant features and redundant features [2]. Irrelevant features have not effect on

target concept, whereas redundant features do not add any new information to target concept,

instead they negatively affect the classification performance and computational time [4]. An

informative feature is one having high correlation with the decision concept(s) but highly

uncorrelated with other features. In the same way, a feature subset is considered to be useful if it

is highly relevant and non-redundant.

In [5], authors defined two notions based on the relevancy of features: strong relevance and weak

relevance; strongly relevant features are the one that cannot be removed without losing predictive

accuracy. Weakly relevant features, on the other hand, may contribute to the accuracy. However,

these definitions do not depend upon specific learning algorithm used.

Rough-Set Theory (RST) [6] provides a framework for dimensionality reduction. RST was

proposed by Pawlak for knowledge discovery in datasets [6]. A dataset may contain number of

redundant attributes can be eliminated without losing essential information. Using RST it is

possible to reduce the dataset to one having lesser number of attributes but still providing

maximum information. All the other attributes can be eliminated without losing information. In

contrast to other co-relation based approaches minimum input is required by RST, it preserves data

semantics which makes resulting models more accurate. Different algorithms have been proposed

6

on the basis of the concepts provided by rough set theory. Set approximation and dependency

calculation are basic steps towards finding the relevant features (reducts) from the original dataset

while still maintaining relevant information.

RST has been used in various domains for data analysis including economy and finance [7, 35-

38], medical diagnosis [8,39-43], medical imaging [9, 44-45], banking [10,46], data mining [11,

47-50] etc.

1.2 Aims and Objectives

Rough Set Theory provides a framework comprising of data structures and operations that can be

performed on these data structures for data analysis. However, one of the drawbacks of the RST

is its inherent complex operations. In this research, our objective was to propose heuristics based

approaches for three of the most commonly used measures of Rough Set Theory. These measures

include:

 Lower approximation

 Upper approximation

 Dependency Calculation

Using the heuristics based approach will let us avoid the underlying complex operations and thus

enhancing the performance and efficiency of algorithms using these measures.

We also aim at proposing feature selection algorithm using these measures which could efficiently

be used to perform feature selection in case of large datasets.

The proposed heuristics measures should poses the following characteristics:

 They should provide the same accuracy as provided by the conventional Rough Set based

measures.

 Performance and efficiency should be significantly enhanced, so that the algorithms using

these approaches could be used for datasets beyond larger size.

 The memory requirements of the proposed approaches should be minimum as compared

to the conventional approaches.

Results have shown that these all of the aims and objectives were successfully met.

7

1.3 Research Contribution

Rough Set Theory uses equivalence structures for calculating lower and upper approximations.

The approximations are further used for performing different tasks during data analysis.

Calculating equivalence class structures is computationally complex job, so in this research we

have provided heuristics based approach for calculating both of these approximations. The

heuristics based approach calculates these approximations without calculating equivalence class

structures and thus significantly enhancing the efficiency.

Similarly, Traditional rough set based approaches use positive region based dependency measure

for feature selection process. However, using positive region is computationally expensive

approach that makes it inappropriate to use for large datasets. We have developed an alternate way

to calculate dependency comprising of dependency classes. A dependency class is a heuristic

which defines how the dependency measure changes as we scan new records during traversal of

the dataset.

We start with first record and calculate the dependency of decision attribute on conditional attribute

based on the derived heuristics. Then after adding each single record the dependency of a particular

attribute is refreshed based on to which decision class, the value of that attribute leads to. On the

basis of the heuristics used by dependency classes, two types of dependency classes are proposed

as follows:

 Incremental Dependency Classes

 Direct Dependency Classes

Proposed Incremental Dependency Classes (IDC) are set of four classes, which govern how

dependency of a decision attributes changes as a new record in dataset is added. Using these

classes, lets us avoid calculation of computationally expensive positive region. Incremental

dependency classes provide same accuracy as provided by conventional approach with enhanced

performance.

In second phase of the research, four classes were further reduced to two without effecting the

performance and accuracy. Proposed Direct Dependency Classes (DDC) are set of two classes

8

which categories the records in two categories. Those that are redundant on the basis of attributes

considered and those which are non-redundant on the basis of attributes considered. New

definitions of lower and upper approximations were also provided which are computational more

efficient than traditional definitions.

On the basis of heuristics proposed, feature selection was performed by using feature selection

algorithms. Positive region based dependency calculation step in these algorithms was replaced

with proposed heuristics based dependency calculation. Results were compared with original ones.

It was observed that proposed heuristic dependency based feature selection algorithms provide

same accuracy with substantial increase in overall performance.

1.4 Structure Of The Thesis

Overall the thesis is structured as follows:

 Chapter 2: Background. This chapter provides overview of dimensionality reduction

approaches.

 Chapter 3: Rough Set Theory. Chapter 3 discusses preliminary concepts of Rough Set

Theory. It also provides analysis of rough-set theory along with examples including its

advantages and limitations.

 Chapter 4: Rough-sets Based Feature Selection Techniques. This chapter discusses

various feature selection techniques available in literature using Rough Set Theory.

 Chapter 5: Dependency Classes. In this chapter, proposed heuristics based dependency

measure is discussed in detail, along with its advantages, calculation methods and analysis

by comparing it with conventional rough set based dependency measure.

 Chapter 6: Feature Selection Using Heuristics Based Dependency Classes. This

chapter discusses different feature selection algorithms using conventional dependency

9

measure. These algorithms are then re-implemented to use them with proposed heuristics

based dependency measure.

 Chapter 7: Results and Analysis. This chapter discusses the results and why the proposed

solution is better than the existing approaches.

 Chapter 8: Summary and Future Work. This section concludes the thesis. Summary of

all of the findings along with overview of future work is presented.

1.5 Summary

The amount of data to be processed is significantly increasing day by day. The increase in data

size is not only due to more number of records but also due to substantial number of attributes

added to space. The phenomenon is leading to the dilemma called curse of dimensionality i.e.

datasets with exponential number of attributes. The ideal approach is to reduce the number of

dimensions such that resulted reduced set contains the same information as present in the entire

set of attributes. This research addresses and tempts to solve the dilemma of curse of

dimensionality by providing computationally efficient method for calculating necessary features,

so that dimensions could be reduced with 0% information loss.

10

Chapter 2: Background

When faced with difficulties resulting from the dimensionality of a data space, one approach is to

try to decrease the dimension, without losing relevant information in the data. Essentially,

Dimension Reduction (DR) is used as a form of pre-processing. There are numerous methods to

perform this task. An overview of techniques for dimensionality reduction is given in this chapter.

2.1 Curse of Dimensionality

The significant increase in the number of dimensions in datasets leads to phenomenon called curse

of dimensionality. The curse of dimensionality is the problem caused by the exponential increase

in volume associated with adding extra dimensions to a (mathematical) space [1]. Dimension

Reduction (DR) is used as pre-processing [13]. The original feature space is mapped onto a new,

reduced dimensionality space and the samples are represented in that new space [54]. There are

various techniques to perform DR e.g. [55-59], but many of such techniques destroy the underlying

semantics of data which makes them undesirable to many real world applications.

So, primarily this thesis focuses on DR techniques that preserve original data semantics. In

particular, the research work will focus on those techniques based on Rough Set Theory [6].

Taxonomy of DR techniques is presented in figure 2.1. The presented techniques are classified

into two categories: those that change the underlying semantics of data during DR process and

those that preserve data semantics. The choice to choose one depends upon the underlying

application, e.g. if an application needs to preserve original data semantics than the DR technique

to be chosen ensure that it is preserved. However, if an application requires to discuss the

relationships between attributes then the techniques that transforms the data into two or three

dimensions while emphasizing these relationships may be selected.

11

Figure 2-1: Taxonomy Of Dimensionality Reduction

Semantic preserving DR techniques “other” than feature selection have also been placed in this

taxonomy. These are techniques which perform semantics-preserving dimensionality in sideline

e.g. machine learning algorithm C4.5 [29]. In this chapter we will discuss sample techniques from

each of the above category.

2.2 Transformation-Based Reduction

 These techniques are useful where the semantics of original features are not needed by any future

process. These are classified into two categories: linear and nonlinear.

2.2.1 Linear Methods

Various linear methods for DR are proposed in literature and include techniques like Principal

Component Analysis [30, 31,60-62] and Multidimensional Scaling [33].

2.2.1.1 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) [30,31] is a well-known tool for data analysis and

transformation and is considered the canonical means of DR. PCA is mathematical tool that

converts large number of correlated variables to smaller number of uncorrelated variables called

components. The intention is to reduce the dimensions in dataset but still preserving original

12

variability in data. The first principal component accounts for maximum of variability possible

and each of the succeeding component accounts for maximum of remaining variability.

PCA represents variance covariance structure of high dimensional vector with few linear

combinations of the original component variables. For example, for a p-dimensional random

vector X = (X1, X2, ..., Xp), PCA will find k (univariate) random variables Y1, Y2, ..., Yk called K

principal components and can be defined by the following formula:

 (2.1)

Here l1,l2 ,..etc coefficient vectors which are chosen on the basis of following conditions:

 First Principal Component = Linear combination l1'X that maximizes Var(l1'X) and || l1 ||

=1

 Second Principal Component = Linear combination l2'X that maximizes Var(l2'X) and || l2

|| =1 and Cov(l1'X , l2'X) =0

 j th Principal Component = Linear combination lj'X that maximizes Var(lj'X) and || lj || =1

and Cov(lk'X , lj'X) =0 for all k < j

It means that each principal component is a linear combination that maximizes variance of linear

combination and has zero covariance with previous component.

Thus PCA maximizes the variance of datasets sample vectors along their axes by locating a new

co-ordinate system and suitably transforms the samples. The new axes are constructed in

decreasing order of variance such that first variable in new axes has maximum variance and so on.

Correlation in new sample space is reduced or totally removed consequently resulting in reduced

redundancies. Thus DR can be performed on a dataset using PCA and then selecting appropriate

number of first k principal components as per requirement and discarding the rest.

13

PCA, however, suffers from the following shortcomings:

 It destroys the underlying semantics of data.

 It can be used only for numeric datasets

 It can only deal with linear projects and thus ignores any nonlinear structure in the data.

 Finally, human input is also required to decide how many of first principal components

will be kept. Thus, the operator’s task is to balance information loss against DR to suit the

task at hand.

2.2.2 Nonlinear Methods

Linear DR methods are no doubt useful but their utility fails in case of nonlinear data. This

motivated the development of nonlinear DR methods such as [63-68]. An example of nonlinear

method is Locally Linear Embedding (LLE) [14], [15].

2.2.2.1 Locally Linear Embedding

LLE calculates reconstructions (embedding) which are low dimensional and neighbourhood

preserving by using local symmetries of linear reconstructions (from high dimensional data). This

can be explained better by considering the following informal analogy [15]. Initial data is three

dimensional, however, taking shape of rectangular manifold (two dimensional) that has been

moulded to a three dimensional S shaped curve. Now Scissors cut this manifold into small squares.

Each square represents a locally linear patch of the non-linear surface. These squares are then

arranged on flat surface however by preserving angular relationships between neighbouring

squares. As all transformations comprise of translation, scaling or rotation only so this is a linear

mapping. Through this process algorithm uses series of linear steps to find non-linear structure.

In first step, it selects neighbours in data points. This selection can be achieved using Euclidean

distance for k nearest neighbours [16]. In second step, LLE computes the weights that linearly

reconstruct data points using least square problem. Following cost function is used:

 (2.2)

14

Finally we compute low dimensional embedded vectors by minimizing the embedded cost

function:

 (2.3)

Figure 2.2 summarizes LLE algorithm

Figure 2-2: Summary of the LLE algorithm.

To save the time and space, LLE also tends to accumulate very sparse matrices. It avoids dynamic

programming problems as well. LLE, however, does not provide any indication about how to map

a test data point from input space to manifold space or how to reconstruct a data point from its

low-dimensional representation.

Similar to LLE, Laplacian Eigenmaps attempts to find low-dimensional data representation while

preserving local properties of the manifold [17]. In Laplacian Eigenmaps, the local properties are

based on neighbours. Laplacian Eigenmaps minimizes the distance between a data point and its k

nearest neighbours in an attempt to construct low low-dimensional representation of the data.

Weights are used for this purpose, i.e., the distance between a datapoint and its first nearest

neighbour contributes more to the cost function as compared to the distance between the datapoint

and its second nearest neighbour which costs more as compared to distance between datapoint and

its third neighbour and so on. Using spectral graph theory, the minimization of the cost function is

defined as an Eigen problem.

15

2.3 Selection-Based Reduction

In contrast to transformation based techniques, which destroy the underlying semantics of data,

semantics-preserving DR techniques (called feature selection) preserve original data semantics.

2.3.1 Feature Selection in Supervised Learning

In supervised learning, feature subset selection explores feature space, generates candidate subsets

and evaluates/rates them on the basis of criterion which serves as guide to search process. The

usefulness of a feature or feature subset is determined by both its relevancy and redundancy [2].

A feature is relevant if it determines the value of decision feature(s), otherwise it will be irrelevant.

A redundant feature is the one highly correlated with other features. Thus a good feature subset is

the one highly correlated with decision feature(s) but uncorrelated with each other.

The evaluation schemes used in both supervised and unsupervised feature selection techniques can

generally be divided into two broad categories [2, 18]:

1. Filter approaches.

2. Wrapper methods.

2.3.2 Filter Techniques

Filter techniques perform feature selection independent of learning algorithms. Features are

selected on the basis of some rank or score. A score indicating the “importance” of the term is

assigned to each individual feature based on an independent evaluation criterion, such as distance

measure, entropy measure, dependency measure and consistency measure [69]. Various feature

filter based feature selection techniques have been proposed in literature e.g. [70-74]. In this

section we will discuss some representative filter techniques along with advantages and

disadvantages of each.

2.3.2.1 FOCUS

FOCUS [20] uses breadth-first search to find feature subsets that give consistent labelling of

training data. It evaluates all the subsets of current size (initially one) and removes ones with least

16

inconsistency. The process continues until it finds a consistent subset or has evaluated all the

possible subsets. Algorithm, however suffers from two major drawbacks: it is very sensitive to

noise or inconsistencies in training datasets and algorithm furthermore, due to exponential growth

of the features power set size, algorithm is not suitable for application in domains having large

number of dimensions.

2.3.2.2 Selection Construction Ranking using Attribute Pattern (SCRAP):

SCRAP [21] performs sequential search to determine feature relevance in instance space. It

attempts to identify those features that change decision boundaries in dataset by considering one

object (instance) at a time, these features are considered to be most informative. Algorithm starts

by selecting a random object, which is considered as first point of class change (PoC). It then

selects next PoC which usually is the nearest object having different class label. After this nearest

object to this having a different class label which becomes the next PoC. These two PoCs define a

neighbourhood and dimensionality of decision boundary between the two classes is defined by the

features that change between them. If only one feature changes between them, then it is considered

to be absolutely relevant and is included in feature subset otherwise their associated relevance

weights (which initially are zero), are incremented. However, if objects in the same class are closer

than this new PoC and differ only by one feature then relevance weight is decremented. Objects

belonging to neighbourhood are then removed and this process continues until there is no

unassigned object to any neighbourhood. Final feature subset is then selected comprising of

features with positive relevance weight and those that are absolutely relevant.

Major deficiency of the approach is that it regularly chooses large number of features. This

normally happens in case when weights are decremented. Feature weights remain unaffected if

more than one features change between a PoC and an object belonging to same class.

2.3.3 Wrapper Techniques

One of the criticism suffered by filter approaches is that the filter to select attributes is independent

of the learning algorithm. To overcome this issue, wrapper approaches use classifier performance

to guide the search i.e. the classifier is wrapped in the feature selection process [19].

17

Four popular strategies are [2, 19]:

1. Forward Selection (FS): Starting with an empty feature subset, it evaluates all features one

by one, selects the best feature and combines this feature with others one by one.

2. Backward Elimination (BE): Initially it selects all features, evaluates by removing each

feature one by one and continues to eliminate features until it selects the best feature subset.

3. Genetic Search applies genetic algorithm (GA) to search feature space. Each state is

defined by chromosome that actually represents a feature subset. With this representation,

implementation of GA for feature selection becomes quite simple. However, the evaluation

of fitness function i.e. its classification accuracy, can be expensive.

4. Simulated Annealing (SA), in contrast to GA which maintains the population of

chromosomes (each chromosome represents a feature subset), considers only one solution.

It implements a stochastic search as there is a chance that some deterioration in solution is

accepted - this allows a more effective exploration of the search space.

Forward elimination and backward elimination terminate when adding or deleting further features

do not affect classification accuracy. However these greedy search strategies do not ensure best

feature subset. GA and SA can be more sophisticated approaches and can be used to explore search

space in a better way.

2.3.4 Unsupervised Feature Selection

Feature selection in unsupervised learning can however be challenging because the success

criterion is not clearly defined. Various unsupervised feature selection techniques have been

proposed in literature e.g. [83-87]. Feature selection in unsupervised learning has been classified

in the same way as in supervised learning, i.e. unsupervised filters and unsupervised wrappers as

discussed below.

18

2.3.4.1 Unsupervised Filters

The main characteristics of filter based approaches is that features are selected on the basis of some

rank or score which remains independent of the classification or clustering process. Laplacian

Score (LS) is one of the examples of this strategy, which can be used for DR when motivation is

that the locality is preserved. The LS uses this idea for unsupervised feature selection [75]. LS

selects features by preserving the distance between objects both in input and reduced output space.

This criterion presumes all the features are relevant; the only thing is that they may just be

redundant.

LS is calculated using a graph G that realises nearest neighbour relationships between input data

points. A square matrix S is used to represent G where:

Sij = 0 unless xi and xj are neighbours, in which case:

Here “t” is a bandwidth parameter. L = D - S represents Laplacian of the graph and D = degree of

diagonal matrix as given below

 (2.4)

LS can be calculated using following calculations:

 (2.5)

 (2.6)

Where mi is the vector of values for the ith feature and 1 is a vector or 1s of length n.

All the features can be scored on this criterion i.e. how efficiently they preserve locality. This idea

can be appropriate for domains where locality preservation is an effective motivation [75] e.g.

image analysis. However, it may not be a sensible motivation in case of irrelevant features e.g. in

analysis of gene expression data or text classification etc.

19

2.3.4.2 Unsupervised Wrappers

Wrapper based techniques use classification or clustering process as part of feature selection to

evaluate feature subsets. One such technique is proposed in [76]. Authors have used notion of a

category unit (CU) [77] to present unsupervised wrapper-like feature subset selection algorithm.

CU was used as evaluation function to guide the process of creating concepts and can be defined

as follows:

 (2.7)

Here:

C = {C1,…….Cl,……Ck} is the set of clusters

F = {F1,…….Fi,……Fp} is the set of features.

CU calculates the difference between the conditional probability of a feature i having value j in

cluster l and its prior probability. The inner most sum is over r feature values, the middle sum is

over p features and the outer sum is over k clusters. CU is used as key concept to score the quality

of clustering in a wrapper like search.

2.4 Summary

In this chapter, we have presented an overview of various dimensionality reduction techniques. In

general, DR techniques can be categorized in two categories: transformation based reduction and

selection-based reduction. Approaches in transformation-based category reduce dimensions in

data but transform the data thus by destroying the underlying semantics. Selection based

techniques, instead of transforming the dimensions, select the features, thus by preserving the data

semantics. Feature selection can further be categorized into supervised feature selection and

unsupervised feature selection. Various algorithms have been presented in both of these categories.

20

Chapter 3: Rough Set Theory

In this chapter the main aspects of Rough-Set theory (RST) are presented. The main objective of

RST is to reduce data size. RST can reduce dimensionality using information contained within the

dataset and, unlike other techniques mentioned in chapter 2, it also preserves the meaning of the

features (i.e. it is semantics preserving). This chapter introduces the notions of indiscernibility,

rough set and reduct, used to approximate information and to exclude redundant data.

3.1 Rough Set Theory (RST)

RST has become a topic of great interest over the past ten years and has been successfully applied

to many domains by researchers. For a given dataset it is possible to find out a smaller attribute set

(called reduct) that contains most of the information. So, attributes other than reduct set can be

removed from dataset with minimal information loss. Pawlak has proposed RST for knowledge

discovery in datasets [2, 6]. In contrast to conventional discrete sets, RST is based on the concepts

of upper and lower approximations as discussed below.

In a dataset, there may be redundant attributes which may be eliminated without much of the

essential information loss. Rough sets [6] let us define strong and weak relevance levels, so that

redundant attributes may be removed. The concept of the reduct is fundamental in RST. Being a

subset of attributes, it can distinguish all the objects in a dataset which are discernible with respect

to the entire attribute set. Another important notion in RST is that of core. A core is common set

of attributes in all reducts of a dataset. Both reduct and core are important concepts that are used

in feature selection and dimensionality reduction. Reducts and cores are discussed in more detail

in the following section.

3.1.1 Information Systems

An information system is just like a flat table or view [6] comprising of objects and their attributes.

An IS () is defined by a pair (U,A) [6] as given below:

Here:

21

U = finite non empty set of objects

A = attributes of the objects

Every attribute has a value set represented by Va as shown below. Each value set of an

attribute contains all possible values of that attribute.

Table 3.1(a) is an information system = (U,A) where:

 U = {x1, x2, x3, x4, x5, x6, x7}

A={Age, Incom}.

Table 3.1(a): Information System.

Customer Age Income

X1 35-40 30000-40000

X2 35-40 30000-40000

X3 40-45 50000-60000

X4 25-35 20000-30000

X5 40-45 50000-60000

X6 25-35 20000-30000

X7 25-35 20000-30000

3.1.2 Decision Systems

Decision systems (DS) [6] are a special form of Information System having decision attribute also

called the class of the object. Every object belongs to a specific class. The value of the class

depends on other attributes called conditional attributes. Formally:

α = (U, C ∪ {D})

Where:

C = set of conditional attributes

D = Decision attribute (or class)

Table 3.1(b) shows a decision system with policy as decision attribute (or class).

22

Table 3.1(b): Decision System.

Customer Age Income Policy

X1 35-40 30000-40000 Platinum

X2 35-40 30000-40000 Platinum

X3 40-45 50000-60000 Gold

X4 25-35 20000-30000 Silver

X5 40-45 50000-60000 Gold

X6 25-35 20000-30000 Silver

X7 25-35 20000-30000 Gold

3.1.3 Indiscernibility

A decision system represents all knowledge about a model. This table may be unnecessarily large

by two ways: there may be identical or indiscernible objects having more than one occurrence and

there may be superfluous attributes. The notion of equivalence is recalled first. A binary relation

is called equivalence relation if it is reflexive i.e. an object is in relation with itself xRx, symmetric

i.e. if xRy, then yRx and transitive i.e. if xRy and yRz then xRz. The equivalence class of an

element consists of all objects such that xRy.

Let A = (U, C ∪ {D}) be a decision system; indiscernibility defines an equivalence relation

between objects in A. For any c ∈ C in A, there exists an indiscernibility relation INDA(C):

𝐼𝑁𝐷𝐴(𝐶) = {(𝑂1 = 𝑂2) ∈ 𝑈 2 |∀ 𝑐 ∈ 𝐶 𝑐(𝑂1) = 𝑐(𝑂2)} (3.1)

INDA(C) (also denoted by [x]c) is called a “C-indiscernibility” relation. If two objects (O1,O2) ∈

INDA(C), then these objects are indiscernible or indistinguishable w.r.t. C. Considering the Table-

3.1(a), objects x1,x2 are indiscernible w.r.t. attribute “Age”. Similarly objects x3 and x5 are

indiscernible w.r.t. attribute “Income”.

The subscript is normally omitted if we are sure about which information system is meant. In

Table-3.1(a):

IND({Age}) = {{x1, x2},{x3,x4},{x5,x6,x7}}

IND({Income}) = {{x1},{x2},{x3, x4},x5, x6, x7}}

23

3.1.4 Approximations

Most of the sets cannot be identified unambiguously, so we use approximation. For an information

system where , we can approximate the decision class X by using the information contained

in B. The lower and upper approximations are defined as follows [6]:

 (3.2)

 (3.3)

Lower approximation defines the objects that are definitely member of X with respect to

information in “B”. Upper approximation on the other hand contains objects that with respect to

“B” can possibly be members of “X”. The boundary region defines the difference between lower

and upper approximation.

 (3.4)

Using the decision system shown in Table 3.1(b), the situation can be sketched as Figure 3-1

below. The lower boundary of “Policy” defines all the equivalence classes that can surely belong

to class Policy=Gold. Upper boundary defines classes that can possibly belong to Policy=Gold.

Figure 3-1: Approximation Diagram.

𝐵𝑃𝑜𝑙𝑖𝑐𝑦 = {{𝑋3, 𝑋5}}

𝐵𝑃𝑜𝑙𝑖𝑐𝑦 = {{𝑋3, 𝑋5}, {𝑋4, 𝑋6, 𝑋7}}

The boundary region is 𝐵𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 − 𝐵𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 = {{𝑋4, 𝑋6, 𝑋7}}. As it is non empty, so the

set is rough set.

24

3.1.5 Positive Region

Lower approximation is also called positive region. Let P and Q be equivalence relations over U,

then the positive region can be defined as:

 (3.5)

Where P is the set of conditional attributes and Q is the Decision class. The positive region is union

of all equivalence classes in [X]P that are subset of (or are contained by) target set.

Considering the table 3-1(b), we calculate positive region for set Policy=”Gold” as follows:

First we will calculate [X]P

Here:

P1 = {x1, X2}

P2= {x3, x5}

P3= {x4, x6, x7}

Now we calculate [X]Q where Q implies the concept “Insurance=Gold”.

Here:

Q = {x3, x5, x7}

It means we cannot distinguish between x3, x5 and x7 with respect to information contained in Q.

Here for concept “Policy = Gold”, only P2 class belongs to Q. So, positive region for Q will be:

POSP(Q) = {x3, x5}

3.1.6 Dependency

Dependency defines how uniquely value of an attribute determines the value of other attribute.

Dependency defines how uniquely the value of an attribute determines the value of other attribute.

An attribute “D” depends on other attribute “C” by degree “K” calculated by:

𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
 (3.6)

Where

𝑃𝑂𝑆𝐶(𝐷) = ⋃ 𝐶(𝑋)𝑋 ∈𝑈/𝐷 (3.7)

25

is called positive region of “U/D” w.r.t. “C” as discussed in Section-3.1.5. “K” is called degree of

dependency and specifies the ratio of the elements that can positively be contained by partition

induced by D i.e. U/D. If K = 1, D fully depends on C, for 0 <K< 1, D depends partially on C and

for K = 0, D does not depend on C. It is clear that if K=1 i.e. D totally depends on C then IND(C)

⊆ IND (D), in simple words the U/C is finer than U/D.

Finally dependency is calculated as follows:

 𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
 (3.8)

Calculating dependency using positive region requires three steps.

1. First constructs the equivalence class structure using decision classes.

2. Construct equivalence class structure using current attribute set.

3. Calculate positive region using:

Here we provide details of each of these steps. Consider the decision system 𝐷𝑆 =

{{𝑆𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} ∪ {𝐽𝑜𝑏}} given in Table 3.1(c):

Table 3.1(c): Sample decision

system

U State Qualification Job

x1 S1 Doctorate Yes

x2 S1 Diploma No

x3 S2 Masters No

x4 S2 Masters Yes

x5 S3 Bachelors No

x6 S3 Bachelors Yes

x7 S3 Bachelors No

We will calculate 𝑘 = 𝛾({𝑠𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}, 𝐽𝑜𝑏) using positive region based approach.

26

Step-1:

First step is calculating positive region based dependency measure is to calculate equivalence

classes using decision attribute (“Job” in our case):

Equivalence class structure specifies all the indiscernible objects i.e. the objects which w.r.t. to

given attributes cannot be distinguished. In our case we will have two equivalence classes as

follows:

Q1 = {x1,x4,x6}

Q2 = {x2,x3,x5,x7}

Note that if consider the value of “Job” as “Yes” we cannot distinguish among x1, x4 and x6.

Step-2:

After calculating the equivalence classes using decision attribute, next step is to calculate

equivalence class structure for decision attributes (in our case “{State, Qualification”}).

Calculating equivalence classes using conditional attributes requires comparison of value of each

attribute for each record to find indiscernible objects. The equivalence classes in our case will be:

P1 = {x1}

P2= {x2}

P3= {x3,x4}

P4={x5,x6,x7}

Step-3:

Positive region specifies which equivalence classes in Step-2 are contained by or subset of

equivalence classes identified in Step-1. First we will check which classes from P1…P4 are subset

of Q1 and then we will calculate which classes from P1…P4 are subsets of Q2. This process will

be used for all classes in step-2 and we will identify all classes that are subset of equivalence

classes in Step-1.

Here:

𝑃1 ⊆ 𝑄1

𝑃2 ⊆ 𝑄2

27

No other class from P1,P2, P3 and P4 is subset of either of Q1 and Q2. So the dependency will be:

 𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
=

|𝑃1|+|𝑃2|

|𝑈|

𝑘 = 𝛾({𝑆𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}, 𝐽𝑜𝑏) =
2

7

This process will take a considerable amount of time for datasets with large numbers of attributes

and instances. Thus, this factor makes a positive region-based dependency measure a bad choice

for use in feature selection algorithms against these datasets.

3.1.7 Reducts and Core

One way of dimensional reduction is keeping only those attributes that preserve the indiscernibility

relation i.e. classification accuracy. Using selected set of attributes provides the same set of

equivalence classes that can be obtained by using the entire attribute set. The remaining attributes

are redundant and can be reduced without effecting classification accuracy. There are normally

many subsets of such attributes called reducts. Mathematically reducts can be defined using the

dependency as follows:

γ(C,D) = γ(C’,D) for C’ ⊆C (3.9)

i.e. an attribute set C’ ⊆ C will be called reduct w.r.t. D, if the dependency of D on C’ will be same

as that of its dependency on C.

Calculating the reducts comprises of two steps. First, we calculate dependency of the decision

attribute on entire dataset. Normally this is “1”, however, for inconsistent datasets, this may be any

value between “0” and “1”. In second step we try to find the minimum set of attributes on which

decision attribute has same dependency value as that of its value on entire set of attributes. In this

step we may use any Rough Set based feature selection algorithm. It should be noted that there

may be more than one reduct sets in a single dataset.

We will now explain it with the help of an example. Consider the table-3.2 given below.

28

Table 3-2: Sample decision system

U a b c D

X1 1 1 3 x

X2 1 2 2 y

X3 2 1 3 x

X4 3 3 3 y

X5 2 2 3 z

X6 1 1 2 x

X7 3 3 1 y

For our first step, we calculate dependency of decision attribute “D” on conditional attributes

C={a,b,c}. Here we find that:

γ(C,D) = 1

For the second step, we have to find the attribute subsets such that condition mentioned in equation

(8) is satisfied. Here we see that we may have two subsets that satisfy the condition.

γ({a,b},D) = 1

γ({b,c},D) = 1

Representing them with R1 and R2:

R1={a,b}

R2={b,c}

So either of R1 and R2 provide the same classification accuracy as provided by entire of the

conditional attribute set thus can be used to represent entire dataset. It is important that reduct set

should be optimal i.e. it should contain minimum number of attributes to better realize its

significance, however, finding optimal reduct is a difficult task as it requires exhaustive search

with more number of resources. Normally exhaustive algorithms are used to find reducts in smaller

datasets, however, for datasets beyond smaller size, the other category of algorithms i.e. random

or heuristics based search are used, but the drawback of these algorithms is that they do not produce

optimal result. So getting the optimal reducts is a trade-off between the resources and reduct size.

Core is another important concept in Rough Set Theory. Normally the reduct set is not unique in

a dataset i.e. we may have more than one reduct sets. Although reduct may contain the same

29

amount of information otherwise represented by entire attribute subset, but even in reduct there

are attributes that are more important than others i.e. these attributes cannot be removed without

effecting the classification accuracy of the reducts. Mathematically it can be written as 𝐶𝑜𝑟𝑒 =

 ⋂ 𝑅𝑖
𝑛
𝑖=1 where Ri is ith Reduct Set. So, core is the attribute or set of attributes common to all reduct

sets. In our example explained above it is clear that the attribute {b} is common in all reduct sets,

so, {b} is core attribute here. Manually it can be seen that removing attribute {b} from either of

the reducts effects dependency of decision class on rest of the attributes in that reduct and thus

effecting the classification accuracy of the reduct.

3.2 Summary

RST provides many concepts to thoroughly analyse datasets and find irrelevant and redundant

features. Given a dataset with discretized attribute values, it is possible to find a subset of the

original attributes using RST that are the most informative: all other attributes can be removed

from the dataset with minimum information loss. Unlike statistical correlation-reducing

approaches, this requires no human input or intervention. Most importantly, it also retains the

semantics of the data, which makes the resulting models more transparent to human scrutiny.

30

Chapter 4: Rough Set Based Feature

Selection Techniques

Rough Set Theory has been successfully used for feature selection techniques. The underlying

concepts provided by RST help find representative features by eliminating the redundant ones. In

this chapter we will present various feature selection techniques which use RST concepts.

4.1 QuickReduct

In QuickReduct (QR) [2], authors attempt to develop a forward feature selection mechanism

without exhaustively generating all possible subsets. The algorithm starts with an empty set and

adds attributes one by one which result in maximum increase in degree of dependency. Algorithm

continues until maximum dependency value is achieved. After adding each attribute, dependency

is calculated and attribute is kept if it results in maximum increase in dependency. If at any stage

the value of selected attribute set becomes equal to that of the entire dataset algorithm terminates

with current selected subset as reduct. Figure-4.1 show the pseudo code of the algorithm.

Figure-4.1:Quickreduct algorithm taken from [2]

Algorithm uses positive region based approach for calculating dependency at each step-5 and 8.

However, using positive region based dependency measure requires three steps i.e. calculating

equivalence classes using decision attribute, calculating dependency classes using conditional

31

attributes and finally calculating positive region. Using these three steps can be computationally

expensive.

REVERSEREDUCT [2] is another strategy for attribute reduction, however, it uses backward

elimination in contrast with forward feature selection mechanism. Algorithm starts by considering

entire set of conditional attributes as reduct. It then removes one attributes at a time and calculates

dependency until the removal of any further attribute becomes impossible without introducing

inconsistency. Algorithm also suffers same problem as that faced by QuickReduct. It uses positive

region based dependency measure and is equally unsuitable for larger datasets.

4.2 Hybrid Feature Selection Algorithm Based On Particle Swarm

Optimization (PSO):

In [23] Hanna et al. presented a supervised hybrid feature selection algorithm based on Particle

Swarm Optimization (PSO) and RST. Algorithm computes reducts without exhaustively

generating all possible subsets. Algorithm starts with an empty set and adds attributes one by one.

It constructs a population of particles with random position and velocity in S dimensions. In the

problem space. It then computes fitness function of each particle using RST based dependency

measure. The feature with highest dependency is selected and the combination of all other features

with this one are constructed. Fitness of each of these combination is selected. If the fitness value

of this particle is better than previous best (pbest) value, this is selected as pbest. Its position and

fitness are stored. It then compares the fitness of current particle with population’s overall previous

best fitness (gbest). If it is better than gbest then gbest position is set to current the current particle’s

position with the global best fitness updated. This position represents the best feature subset

encountered so far, and is stored in R. algorithm then updates velocity and position of each particle.

It continues until stopping criteria is met which is maximum number of iterations in normal case.

According to the algorithm, the dependency of each attribute subset is calculated based on the

dependency on decision attribute and the best particle is chosen. Algorithm uses positive region

based dependency measure and is enhancement of QuickReduct algorithm.

Velocity of each particle is represented using positive number from 1 to Vmax. It implies that how

many bits of a particle should be changed to be the same as that of global best position. The number

32

of bits different between two particles imply the difference between their position e.g. if Pgbest =

[1,0,1,1,1,0,1,0,0,1], Xi = [0,1,0,0,1,1,0,1,0,1] then the difference between Pgbest and Xi is Pgbest

− Xi=[1,−1,1,1,0,−1,1,−1,0,0]. ‘1’ means that this bit (each “1” represents the presence of feature

and “0” represents absence) should be selected as compared to the global best position and “-1”

means that this bit should not be selected. After velocity is updated, next task is to update position

by new velocity. If the new velocity is V, and the number of different bits between the current

particle and gbest is xg, then position is updated as per following conditions:

•V ≤ xg. In this case random V bits, which are different from that of gbest, are changed. So

the particle will move towards best position while keeping its exploration ability.

• V > xg. In this case, apart from the bits to be the same as that of gbest, (V − xg) further

bits should also be randomly changed. Hence, after the particle reaches the global best

position, it keeps on moving some distance toward other directions, which gives it further

exploration ability.

Figure-4.2 shows the pseudo code of PSO-QR algorithm.

33

Figure-4.2: PSO-QR taken from [23]

34

4.3 Genetic Algorithm

In [24] authors present a rough set based genetic algorithm (GA) for feature selection. The selected

set of features was provided to artificial neural network classifier for further analysis. The

algorithm uses positive region based dependency measure as fitness for generated candidates in

proposed system. The proposed system uses RST based feature dependency value of each

chromosome for finding the high performance optimal reducts. Stopping criterion was defined on

the based on following equation:

𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
 ≥ 𝛼

The candidates equal or greater than were accepted as result. Following equation was used to

calculate solution addition type added to the solution:

𝑅𝑆𝐶% = 100% − (𝐵𝑆𝐶% + 𝑊𝑆𝐶%)

Where:

RSC = Random Selected Chromosomes

BSC = Best Solution Candidates

WSC = Worst Solution Candidates

Number of generations in each generation pool were 2*n where “n” is user defined parameter and

can be changed by user for optimal performance and specifying the number of generations. In

proposed version, these 2*n (2, 4, 6… n) generations were randomly initialized and used for

generating the following generations. The last 2*n (4, 6, 8…) generations were used to construct

the gene pool used to determine the intermediate region used for crossover and mutation operator.

For crossover, order based and partially matched crossover methods were used. In order based

method, random number of solution points are selected from parent chromosomes. In first

chromosome selected gene will remain at its place whereas in second chromosome, the

corresponding gene will be beside that of first chromosome that occupy the same place. Order

based crossover method is shown in Figure-4.3 and 4.4. Figure-4.3 shows the selected

chromosomes and Figure-4.4 shows the resultant chromosomes.

35

Figure-4.3: Selected Chromosomes for order based crossover method

Figure-4.4: Selected Chromosomes for order based crossover method

In partially matched method (PMX), two crossover points are randomly selected to give matching

selection. Position wise exchange takes place then. It affects cross by position-by-position

exchange operations. It is also called partially mapped crossover as parents are mapped to each

other. Figure-4.5 and 4.6 show the process of partially mapped crossover method.

Figure-4.5: Selected Chromosomes for partial mapped crossover method

Figure-4.6: Chromosomes resulted after crossover operator

For mutation, inversion and two change mutation operators were used. In inversion method a

subtour is randomly selected by determining two points in chromosome and gene are inverted

between selected points where as in adjacent two input change mutation method, adjacent two

genes are selected and place of genes are inverted. Figure 4.7 and 4.8 show both mutation methods:

36

Figure-4.7: Inversion mutation method

Figure-4.8: Adjacent two change mutation method

4.4 Incremental Feature Selection Algorithm (IFSA):

Qian et al. [25] present an incremental feature selection algorithm (IFSA) for feature subset

selection. It starts with an original feature subset P. It then incrementally computes the new

dependency function and evaluates P for either it is the required feature subset or not. If the new

dependency function under P is equal to that under the whole feature set, P is also the new feature

subset; otherwise, a new feature subset is computed from P. Algorithm proceeds to gradually select

features with highest significance from C - P and adds them to feature subset. At final stage,

algorithm removes the redundant features to ensure optimal feature subset output. Finally,

redundant features are removed to ensure the optimal output in redundancy removing step.

Proposed solution compares feature significance to select the surviving features. Algorithm uses

the following definitions to measure significance of an attribute:

Definition-1: Let DS = (U,A = C ∪ D) be a decision system, for B ⊆ C and a ∈ B. The significance

measure of attribute “a” is defined by:

sig1(a,B,D) = γB(D) − γB−{a}(D)

If sig1(a,B,D) = 0, then the feature “a” can be removed otherwise not.

Definition-2: Let DS = (U,A = C ∪ D) be a decision system, for B ⊆ C and a /∈ B. The significance

of feature “a” is defined by:

sig2(a,B,D) = γB∪{a}(D) − γB(D)

37

Figure-4.9 shows the pseudo code of the algorithm.

Figure-4.9: IFSA taken from [25]

38

4.5 Feature Selection Method using Fish Swarm Algorithm (FSA):

Chen et al. [26] present rough set based feature selection method using fish swarm algorithm

(FSA). As first step, algorithm constructs the initial swarm of fish with each fish, searching for

food, represents a subset of features. With passage of time, these fish change their position to

search for food, communicate with each other to find a locally and globally best position, the

position with minimum high density of food. After a fish achieves maximum fitness, it perishes

by getting rough set Reduct. The next iteration starts after all the fish are perished. Process

continues until it gets the same reducts in three consecutive iterations or maximum iteration

threshold is met. Figure-4.10 shows the flow of FSA process.

Figure-4.10: Flow of FSA

 Some underlying concepts that must be considered before applying FSA to feature selection are:

39

4.5.1 Representation of Position:

A fish position is represented by binary bit string of length N where N is total number of features.

The presence of a feature in a fish is represented by binary bit “1” and absence of a feature is

represented by “0”. E.g. if N=5, the following fish shown in figure-4.11 represents the presence of

first, third and fourth feature from dataset

1 0 1 1 0

Figure-4.11: a sample fish

4.5.2 Distance and centre of fish:

Suppose two fish are represented by two bit strings X, Y representing the position of these two

fish, hamming distance will be calculated by X XOR Y i.e. the number of bits at which strings are

different. Mathematically:

Where “ ” is modulo-2 addition, xi; yi {0, 1}. The variable xi represents a binary bit in X.

4.5.3 Position Update Strategies:

In each iteration, every fish starts with a random position. Fish change their position one step

according to searching, swarming and following behaviour. Authors have used fitness function to

evaluate all of these behaviours. The behaviour with maximum fitness value updates the next

position.

4.5.4 Fitness Function:

Following fitness function was used in the algorithm:

40

Where 𝛾𝑅(𝐷) is dependency of decision attribute “D” on “R” and R is number of “1” bits in a fish

and |C| is the number of features in dataset.

4.5.5 Halting Condition:

When a fish achieves maximum fitness it is perished by getting rough set reduct. Next iteration

starts after all the fish are perished. Algorithm stops when maximum iteration threshold is met or

same feature reduct is obtained under three consecutive iterations.

4.6 Feature Selection Method Based on QuickReduct and Improved

Harmony Search Algorithm (RS-IHS-QR):

Inbarani et al. [27] propose a feature selection method based on QuickReduct and improved

harmony search algorithm (RS-IHS-QR). This algorithm emulates the music improvisation

process where each musician improvises their instrument’s pitch by searching for a perfect state

of harmony. The algorithm stops when it reaches the maximum number of iterations or finds a

harmony vector with maximum fitness. It uses rough set based dependency measure as its objective

function to measure the fitness of harmony vector which again is a performance bottleneck for

larger datasets.

41

Table-4.1 shows the summary of all the rough set based approaches discussed so far.

Table-4.1: Related algorithms based on RST

Algorithm Technique used Advantages Disadvantages

Supervised hybrid

feature selection

based on PSO and

rough sets for

medical diagnosis

[22]

Particle swarm

optimization and

rough set based

dependency

measure.

PSO is an advance heuristics

based algorithm to avoid

exhaustive search

Conventional dependency based

measure is a performance

bottleneck.

Rough set based

genetic algorithm

[24].

Conventional

positive region

based dependency

calculation.

It is Based on randomness so the

procedure may find reducts in

few attempts.

Uses conventional positive region

based dependency measure.

Quick Reduct

approach for feature

selection [23].

Rough set based

dependency

measure.

Attempts to calculate reducts

without exhaustively generating

all possible subsets.

Uses conventional dependency

based measure, which is time

consuming task.

ResverseReduct

[23].

Rough set based

dependency

measure.

Backward elimination is utilized

without exhaustively generating

all possible combinations.

Dependency is calculated using

conventional positive region based

approach.

An Incremental

Algorithm to Feature

Selection in Decision

Systems with the

Variation of Feature

Set [25]

Incremental feature

selection using

rough set based

significance

measure of

attributes.

Presents Feature selection for

dynamic systems where the

datasets keep on increasing with

time.

Conventional dependency measure

is used to measure attribute

significance. Measuring

significance requires measuring

dependency twice, once with

attribute and then without attribute.

Fish Swarm

Algorithm [26]

Rough set based

dependency used

with fish swarm

method for feature

selection.

Attempts to find rough set

reducts using the swarm logic

where swarms can discover best

combination of features.

Conventional dependency based

measure is again a performance

bottleneck.

Rough Set Improved

Harmony Search

Quick Reduct [27]

Rough set based

dependency

measure used with

harmony search

algorithm for

feature selection

Integrates rough set theory with

“improved harmony search”

based alsorithm with

QuickReduct for feature

selection.

Uses conventional dependency

based measure, which is time

consuming.

4.7 Alternative to Positive Region based Methods

Many approaches have been proposed in literature to overcome computationally expensive task of

calculating positive region. In this section we present few representative of these approaches.

42

In [28], Yu et al. proposed a “Compact Discernibility Information tree” also called CDI-tree for

attribute reduction; The CDI-tree can map all nonempty elements to same path can allow them to

share same prefix, which is recognized as a compact structure for storing non-empty elements in

discernibility matrix. A heuristic algorithm, based on CDI-tree, is also proposed. As an

approximate strategy, algorithm deletes the least important attribute in each iteration. The task is

performed to ensure that only important attributes are kept by algorithm. At the same time, the

algorithm uses to delete all paths including core node in each of iterations as well. However, their

approach reduces execution time only by 44.14% as compared to its counterpart.

In [32], In-Kyoo et al. propose information-theoretic dependency roughness (ITDR). ITDR

considers information-theoretic attributes dependencies degree of categorical-valued information

systems. A new algorithm minimum-minimum roughness (MMR) based on rough set theory was

also proposed. However, the execution time required for calculating ITDR is not provided.

In [29], Yuhua et al. propose an accelerator approach called forward approximation which can be

used to accelerate algorithms of heuristic attribute reduction. Based on this framework they have

also presented an improved heuristic feature selection algorithm (FSPA). Through the use of the

accelerator, few heuristic fuzzy-rough feature selection algorithms have also been enhanced.

However, their approach reduced the execution time of fuzzy positive region reduction approach

by almost 50.4% and that of Fuzzy condition entropy based approach by almost 45% as compared

to positive region.

In [30], Anhui et al. present a matrix based algorithm for calculating positive region, they have

proposed the minimal and maximal descriptions in a covering decision system which can be easily

obtained by the matrix-based methods. These descriptions are then employed to construct a new

discernibility matrix. It is also pointed that use of minimal and maximal descriptions, the total

number of nonempty discernibility sets in discernibility matrix can be reduced. However the

execution time comparison of calculating matrix based positive region with that using original

rough set method is not provided.

43

In [31] Essam presents an improved harmony search algorithm where feature selection was

performed using discernibility matrix and fuzzy lower approximation. A special fitness function

was defined fusing the classical ranking methods with the fuzzy-rough method, and applying

binary operations to speed up implementation. However, the proposed approach reduces the

execution time by almost 51%. The above discussed approaches are summarized in table-4.2 given

below:

Table-4.2: summary of approaches to reduce the execution time of positive region

Algorithm Technique used Results

Minimal attribute reduction with

rough set based on compactness

discernibility information tree

[15]

Discernibility information tree For twelve datasets, the algorithm reduced

execution time only by 44.14%.

Fuzzy-rough feature selection

accelerator [27]

Forward approximation For six datasets, approach reduced the

execution time of fuzzy positive region

reduction approach by almost 50.4% and

that of Fuzzy condition entropy based

approach by almost 45%.

Matrix-based set approximations

and reductions in covering

decision information systems

[31]

Matrix-based Results not compared with that of original

method

Finding a Fuzzy Rough Set

Reduct Using an Improved

Harmony Search [7]

Discernibility matrix For eighteen datasets, execution time is

reduced by almost 51%.

Rough set approach for clustering

categorical data using

information-theoretic

dependency measure [23]

Information-theoretic dependency Execution time of calculating ITDR is not

provided

4.8 Summary

In this section we have presented feature selection algorithms using rough set based positive region

and alternate ones. Positive region based approaches use conventional dependency measure

comprising of three steps to measure the fitness of an attribute for being selected for reduct set.

However, using positive region is computationally expensive approach that makes these

approaches inappropriate to use for larger datasets. Alternate approaches are the one that don’t use

positive region. However, application of such approaches has only been tested against smaller

datasets which raises question for their appropriateness for larger datasets.

44

Chapter 5: Dependency Classes

Majority of rough set based feature selection approaches use positive region based dependency

measure as underlying criteria for feature selection. However, the problem with this approach is

calculation of positive region is a computationally expensive task. In this section we will discuss

the proposed dependency classes to show how they can overcame the limitations of positive region.

5.1 Proposed Dependency Classes

Calculating the dependency of an attribute D on C requires scanning of the dataset and calculating

the positive region of D w.r.t. C, which is a time consuming job. We have developed an alternate

way to calculate dependency comprising of dependency classes. A dependency class is a heuristic

which defines how the dependency measure changes as we scan new records during traversal of

the dataset.

We start with first record and calculate the dependency of decision attribute on conditional attribute

based on the derived heuristics. Then after adding each single record the dependency of a particular

attribute is refreshed based on to which decision class, the value of that attribute leads to. On the

basis of the heuristics used by dependency classes, two types of dependency classes are proposed

as follows:

 Incremental dependency classes

 Direct dependency classes

5.1.1 Incremental Dependency Classes (IDC)

Incremental dependency classes comprise of four rules where each rule defines a class that governs

how dependency of decision attribute “D” on “C” changes as we read each new record.

We will explain each incremental dependency class with the help of example. Consider the

following decision system shown in Table-5.1 taken from [31]:

45

Table-5.1: Decision System example
U a' b' c' d' D

A M L 3 M 1

B M L 1 H 1

C L L 1 M 1

D L R 3 M 2

E M R 2 M 2

F L R 3 L 3

G H R 3 L 3

H H N 3 L 3

I H N 2 H 2

J H N 2 H 1

Here:

C = {a’, b’, c’, d’}

D = {D} and |U| = 10

Initially we start with the |U| = 6 where U = {a, b, d, e, f, g}. We calculate the dependency of “D”

on all attributes present in C (given at the end of each column in Table-5.2).

Table-5.2: Decision System example

U a' b' c' d' D

A M L 3 M 1
B M L 1 H 1
D L R 3 M 2
E M R 2 M 2
F L R 3 L 3

G H R 3 L 3

 0.16667 0.3333 0.3333 0.5

Now we define different classes through which the dependency can be calculated, after adding a

new record.

5.1.1.1 Existing Boundary Region Class

For an attribute a', if same value of attribute leads to different decision classes for example, in

table-5.3, a’(L)->2,3 (i.e. the value “L” leads to decision class “2” and “3”) then adding a new

record with same value of a’ decreases the dependency of decision on that attribute. Adding a row

in this case will simply decreases the dependency.

46

For example, in Table-5.3,

γ(a′, D) =
1

6

After adding new record i.e. object “C”, the new dataset with new dependency values are shown

in Table-5.3

Table-5.3: adding new object “C”

U a' b' c' d' D

A M L 3 M 1
B M L 1 H 1
C L L 1 M 1
D L R 3 M 2

E M R 2 M 2
F L R 3 L 3

G H R 3 L 3

 0.14286 0.4286 0.4286 0.4286

Before adding new record: a'(L)-> 2,3 (in Table-5.3)

After adding new record: a'(L)-> 1,2,3 (in Table-5.4)

So by adding new record, the value “L” of attribute “a’” which initially was leading to two decision

classes, now leads to three decision classes, so γ(a’,D) becomes:

 γ(a′, D) =
1

7

5.1.1.2 Positive Region Class

For an attribute a', if adding a record, does not lead to a different decision class for same value of

that attribute, then dependency will increase.

For example in Table-5.3, b’(L)->1. Previous dependency value was 2/6. After adding new row

(Object “C” as shown in table-5.4), b’(L)->1 sustains i.e. the value “L” of attribute b’ uniquely

identifies the decision class, so the new dependency will be:

γ(b′, D) =
3

7

5.1.1.3 Initial Positive Region Class

For an attribute a', if the value appears in the data set for the first time for that attribute, then

dependency increases:

47

For example, adding new record (object “I”) as shown in Table-5.4:

Table-5.4: adding new object “I”

U a' b' c' d' D

A M L 3 M 1
B M L 1 H 1
C L L 1 M 1
D L R 3 M 2
E M R 2 M 2
I H N 2 H 2
F L R 3 L 3

G H R 3 L 3
 0/8 0.5 0.5 0.25

b’(N)->2. Initially the value “N” for b’ attribute was not present. Now adding the record for this

value of b’ leads to new dependency value as follows:

 γ(b, D) =
4

8

5.1.1.4 Boundary Region Class

For an attribute a', if same value (which was leading to unique decision previously) of attribute

leads to different decision, then adding the new record reduces the dependency.

For example adding a record “H” in Table-5.5:

Table-5.5: adding new object “H”

U a' b' c' d' D

A M L 3 M 1
B M L 1 H 1
C L L 1 M 1

D L R 3 M 2
E M R 2 M 2
I H N 2 H 2
F L R 3 L 3
G H R 3 L 3
H H L 3 L 3

 0 1/9 0.5 0.25

The new dependency γ(b’,D) will be:

48

 γ(c, D) =
1

9

Which was γ(c, D) =
3

9
 before adding record “H”.

Table-5.6 shows the summary of all decision classes:

Table-5.6: Summary of IDC

Decision

class

Definition Initial

attribute

value

After adding

new record

Effect on

dependency

Existing

Boundary

region class

If same value of attribute leads

to different decision classes, it

decreases the dependency

a’(L)->2,3 a'(L)-> 1,2,3 Decreases

Positive

region class

If adding a record, does not

lead to a different decision

class for same value of that

attribute, then dependency will

increase.

b’(L)->1 b’(L)->1 Increases

Initial

Positive

region class

If the value appears in the data

set for the first time for that

attribute, then dependency

increases.

- b’(N)->2 Increases

Boundary

region class

If same value (which was

leading to unique decision

previously) of attribute leads

to different decision, then

adding the new record reduces

the dependency

b’(L)->1 b’(L)->1,3 Decreases

5.1.1.5 Mathematical representation of IDC

Now we provide mathematical representation of IDC and an example about how to calculate

IDC. Mathematically:

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ 𝛾′𝑘

𝑁
𝑘=1 (5.1)

Where:

𝛾′𝑘 =

[

 1 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠

 1 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠

−𝑛 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠

0 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 ℎ𝑎𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑙𝑒𝑎𝑑 𝑡𝑜 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠]

49

Where:

𝛾({𝑎𝑡𝑡}, 𝐷) 𝑖𝑠 dependency of attribute “D” on attribute {att}

{att} is current attribute under consideration

D is decision attribute (Decision Class)

𝛾′𝑘is dependency value contributed by object “k” for attribute {att}

V{att},k is value of attribute {att} for object “k” in dataset

n is total number of previous occurrences of V{att},k

N is total number of records in dataset

5.1.1.6 Example:

Following example shows how IDC calculates dependency. We read each record and identify its

dependency class. Based on the class we decide the factor by which dependency will be added in

overall dependency value. We will consider dataset given in table-5.2. Using IDC:

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ 𝛾′𝑘

𝑁

𝑘=1

Consider the attribute {a’}, we read first three records i.e. object “A”, as it appears for the first

time, so it belongs to “Initial Positive Region” class, thus we will add “1” to overall dependency

value. Reading objects “B” and “C” lead to “Positive region” class, so we will add “1” for both.

Reading “D”, the value “L” now leads to decision class “2” (previously its one occurrence was

leading to decision class “1”), so it belongs to “Boundary region” class and thus we will add the

value “-1” to overall dependency. Reading object “E” at this stage, value “M” belongs to

“Boundary region” class and it had two occurrences before, so, we will add “-2” in overall

dependency. Reading object “F”, note that it has already lead to “Boundary region” class, so we

will add “0” to overall dependency and so on.

𝛾({𝑎′}, 𝐷) =
1

10
∑ 𝛾′

𝑘
=

10

𝑘=1

 (1 + 1 + 1 + (−1) + (−2) + 0 + 1 + 1 + (−2) + 0) =
0

10
= 0

Similarly dependency of “D” on {b’, c’, d’} will be as follows:

𝛾({𝑏′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + 1 + 1 + (−2) + 0 + 1 + (−1) + 0) =
3

10

𝛾({𝑐′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + (−1) + 1 + 0 + 0 + 0 + 1 + (−2)) =
2

10

50

𝛾({𝑑′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + (−2) + 0 + 1 + 1 + 1 + (−1) + 0) =
3

10

Note that if a value of an attribute has already lead to boundary region class than adding a same

value will simply be reflected by adding “0” as dependency.

5.1.2 Direct Dependency Classes (DDC)

Direct dependency classes are alternate to IDC for calculating dependency directly without

involving positive region and exhibit almost same performance as shown by IDC. DDC determines

the number of unique/non-unique classes in a dataset for an attribute C. A unique class represents

the attribute values that lead to unique decision class throughout dataset, so this value can be used

to precisely define decision class.

For example in Table-5.3 the value “L” of attribute b’ is unique class as all of its occurrences in

the same table lead to a single/unique decision class (i.e. “1”). Non-unique classes represent the

attribute values that lead to different decision classes, so they cannot be precisely used to

determine the decision class. For example in Table-5.3, the value “R” of attribute b’ represents

non-unique class as some of its occurrences lead to decision class “2” and some occurrences lead

to decision class “3”.

Calculating unique/non-unique classes directly lets us avoid complex computations of positive

region. The basic idea behind the proposed approach is that number of unique classes increase

dependency and non-unique classes decrease dependency. For a decision class D, the dependency

K of D on C is shown in Table-5.7.

Table-5.7: How DDC calculates dependency

Dependency No of unique/non-unique classes

0 If there is no unique class

1 If there is no non-unique class

n Otherwise where 0 < n < 1

The dependency using DDC approach can be calculated by the following formula:

51

If we consider the number of unique classes:

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ (1)𝑚

𝑖=1 (5.2)

If we consider non-unique classes:

𝛾({𝑎𝑡𝑡}, 𝐷) = 1 −
1

𝑁
∑ (1)𝑛

𝑖=1 (5.3)

Where:

𝛾({𝑎𝑡𝑡}, 𝐷) 𝑖𝑠 𝑑ependency of attribute “D” on attribute {att}

{att} is current attribute under consideration

D is decision attribute (Decision class)

m is total number of values leading to unique decision classes

n is total number of values leading to non-unique decision classes

N is total number of records in dataset

5.1.1 Example

We consider the decision system given in table-5.2.

As per definitions of unique dependency classes:

({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑(1)

𝑚

𝑖=1

If consider attribute {b’}, there are three unique dependency classes i.e. there are three

occurrences of value “L” that lead to unique decision class, so:

𝛾({𝑏′}, 𝐷) =
1

10
∑(1)

3

𝑖=1

𝛾({𝑏′}, 𝐷) =
1

10
(1 + 1 + 1) =

3

10

Similarly for attribute {c’}:

𝛾({𝑐′}, 𝐷) =
1

10
∑(1)

2

𝑖=1

𝛾({𝑐′}, 𝐷) =
1

10
(1 + 1) =

2

10

On the other hand if we consider non-unique dependency classes:

52

𝛾({𝑎𝑡𝑡}, 𝐷) = 1 −
1

𝑁
∑(1)

𝑛

𝑖=1

If we consider attribute “b’”, note that there are seven non-unique dependency classes (four

occurrences of value “R” lead to two decision classes and three occurrences of value “N” lead to

three decision classes), so:

𝛾({𝑏′}, 𝐷) = 1 −
1

10
∑(1)

7

𝑖=1

= 1 −
1

10
(1 + 1 + 1 + 1 + 1 + 1 + 1) =

3

10

Similarly:

𝛾({𝑐′}, 𝐷) = 1 −
1

10
∑(1)

8

𝑖=1

= 1 −
1

10
(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) =

2

10

Note that there are three unique decision classes in attribute {b’} and seven in {c’}.

For a decision system:

No of unique classes + no of nonunique classes = size of universe

So we either need to calculate number of unique classes or non-unique classes.

The algorithm for DDC is shown in Figure-5.1.

Function FindNonUniqueDependency

Begin

InsertInGrid(X1)

For i=2 to TotalUnivesieSize

 IfAlreadyExistsInGrid(Xi)

 Index = FindIndexInGrid(Xi)

 If DecisionClassMatched(index,i) = False

 UpdateUniquenessStaus(index)

 End-IF

 Else

 InsertInGrid(Xi)

 End-IF

Dep=0

For i=1 to TotalRecordsInGrid

 If Grid(I,CLASSSTATUS) = 1

 Dep= Dep+ Grid(i,INSTANCECOUNT)

 End-IF

Return (1-Dep)/TotalRecords

End Function

Function InsertInGrid(Xi)

For j=1 to TotalAttributesInX

 Grid(NextRow,j) = Xi
j

End-For

 Grid(NextRow,DECISIONCLASS) = Di

 Grid(NextRow, INSTANCECOUNT) = 1

 Grid(NextRow, CLASSSTATUS) = 1 // 1 => uniqueness

Function FindUniqueDependency

Begin

InsertInGrid(X1)

For i=2 to TotalUnivesieSize

 IfAlreadyExistsInGrid(Xi)

 Index = FindIndexInGrid(Xi)

 If DecisionClassMatched(index,i) = True

 UpdateUniquenessStaus(index)

 End-IF

 Else

 InsertInGrid(Xi)

 End-IF

Dep=0

For i=1 to TotalRecordsInGrid

 If Grid(i,CLASSSTATUS) = 0

 Dep= Dep+ Grid(i,INSTANCECOUNT)

 End-IF

Return Dep/TotalRecords

End Function

Function InsertInGrid(Xi)

For j=1 to TotalAttributesInX

 Grid(NextRow,j) = Xi
j

End-For

 Grid(NextRow,DECISIONCLASS) = Di

 Grid(NextRow, INSTANCECOUNT) = 1

 Grid(NextRow, CLASSSTATUS) = 1 // 1 => uniqueness

53

End-Function

Function IfAlreadyExistsInGrid(Xi)

 For i=1 to TotalRecordsInGrid

 For j=1 to TotalAttributesInX

 If Grid(i,j) <> Xj

 Return False

 End-For

 End-For

Return True

End-Function

Function FindIndexInGrid(Xi)

 For i=1 to TotalRecordsInGrid

 RecordMatched=TRUE

 For j=1 to TotalAttributesInX

 If Grid(i,j) <> Xj

 RecordMatched=FALSE

 End-For

 If RecordMatched= TRUE

 Return j

 End-If

 End-For

Return True

End-Function

Function DecisionClassMatched(index,i)

 If Grid(index, DECISIONCLASS) = Di

 Return TRUE

 Else

 Return False

 End-If

End-Function

Function UpdateUniquenessStaus(index)

 Grid(index, CLASSSTATUS) = 1

End-Function

End-Function

Function IfAlreadyExistsInGrid(Xi)

 For i=1 to TotalRecordsInGrid

 For j=1 to TotalAttributesInX

 If Grid(i,j) <> Xj

 Return False

 End-For

 End-For

Return True

End-Function

Function FindIndexInGrid(Xi)

 For i=1 to TotalRecordsInGrid

 RecordMatched=TRUE

 For j=1 to TotalAttributesInX

 If Grid(i,j) <> Xj

 RecordMatched=FALSE

 End-For

 If RecordMatched= TRUE

 Return j

 End-If

 End-For

Return True

End-Function

Function DecisionClassMatched(index,i)

 If Grid(index, DECISIONCLASS) = Di

 Return TRUE

 Else

 Return False

 End-If

End-Function

Function UpdateUniquenessStaus(index)

 Grid(index, CLASSSTATUS) = 1

End-Function

DDC using non-unique classes DDC using Unique Classes
Figure-5.1: Pseudo code for directly finding dependency using unique and non-unique classes.

Grid is the main data structure used to calculate dependency directly without using positive region.

It is a matrix with following dimensions:

No. of rows = No. of records in dataset

No. of Columns = number of conditional attributes + number of decision attributes + 2

So if there are ten records in dataset, five conditional attributes and one decision class then grid

dimension will be 10x8 i.e. ten rows and eight columns. A row read from the dataset will first be

stored in grid if it does not already exist. The five conditional attributes will be stored in first five

columns; decision attribute will be stored in sixth column called DECISIONCLASS. Seventh

column called INSTANCECOUNT will store the number of times that record appears in actual

dataset, finally the last column called CLASSSTATUS will store the uniqueness of the record, the

54

value “0” mean record is unique and “1” means it is non-unique. If a record, read from dataset

already exists in Grid, its INSTANCECOUNT will be incremented. If the decision class of the

record is different from that already stored in Grid i.e. the same values of attributes now lead to

different decision class, CLASSSTATUS will be set to “1”. However, if the record is inserted for

the first time, INSTANCECOUNT is set to “1” and CLASSSTATUS is set to 0 i.e. it is considered

unique.

The functions “FindNonUniqueDependency” and “FindUniqueDependency” are main functions

to calculate the dependency. Functions insert the first record in Grid and then search for the same

record in the entire dataset. The status of the record is updated in Grid as soon as further

occurrences of the same record are found. Finally the functions calculate dependency value on the

basis of uniqueness/non-uniqueness of classes. Function “InsertInGrid” inserts the record in the

next row of the Grid. “FindIndex” finds the row no. of the current record in the Gird.

“IfAlreadyExistsInGrid” finds if the record already exists or not. Finally

“UpdateUniquenessStaus” function updates the status of the record in Grid.

5.2 Redefined Approximations

Unique decision classes lead to the idea of calculating lower and upper approximation without

using indiscernibility relation. Calculating lower and upper approximation requires calculating

equivalence classes (indiscernibility relation) which is computationally an expensive task. Using

unique decision classes lets us avoid this task and we can directly calculate lower approximation.

The new definitions are semantically same to the conventional definitions but provide

computationally more efficient method for calculating these approximations by avoiding

equivalence class structure. The following section discusses the proposed new definitions in detail.

5.2.1 Redefined Lower Approximation

The conventional rough set based lower approximation defines the set of objects that can with

certainty be classified as members of concept “X”. For attribute(s) 𝑐 ∈ 𝐶 and concept X, the lower

approximation will be:

 𝐶𝑋 = {𝑋|[𝑋]𝑐 ⊆ 𝑋}

55

This definition requires calculation of indiscernibility relation i.e. equivalence class structure [𝑋]𝑐,

where the objects belonging to one equivalence class are indiscernible with respect to the

information present in attribute(s) 𝑐 ∈ 𝐶.

Based on the concept of lower approximation provided by RST, we have proposed a new definition

as follows:

𝐶𝑋 = {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑎 ≠ 𝑏| 𝑥{𝑐∪𝑑} → 𝑎, 𝑥{𝑐∪𝑑} ↛ 𝑏} (5.2)

i.e. the lower approximation of concept “X” w.r.t. the attribute set “c”, is set of objects such that

for each occurrence of the object, the same value of conditional attribute “c” always leads to the

same decision class value. So, if there are “n” occurrences of an object, then all of them lead to

same decision class (for same value of attributes), which alternatively means that for a specific

value of an attribute, we can with surety say that object belongs to a certain decision class. This is

exactly equal to conventional definition of lower approximation.

So, the proposed definition is semantically same as conventional one, however, computationally

it is more convenient for calculating lower approximation, it avoids construction of equivalence

class structures to find the objects belonging to positive region. It directly scans the dataset and

finds the objects that lead to same decision class throughout thus enhancing the performance of

algorithm using this measure.

We will use the table-5.8 as sample to calculate lower approximation using both definitions.

Table-5.8: Sample decision system

U a B c d Z

X1 L 3 M H 1

X2 M 1 H M 1

X3 M 1 M M 1

X4 H 3 M M 2

X5 M 2 M H 2

X6 L 2 H L 2

X7 L 3 L H 3

X8 L 3 L L 3

X9 M 3 L M 3

X10 L 2 H H 2

56

We suppose the concept: 𝑋 = {𝑥 |𝑍(𝑥) = 2} i.e. we will find the objects about which could with

surety say that they lead to decision class “2”.

Conventional definition requires three steps given below:

Step-1: Calculate the objects belonging to the concept X. Here is our case concept 𝑋 =

 {𝑥 | 𝑍(𝑥) = 2}

So, we will identify the objects belonging to the concept. In our case:

X = {𝑋4, 𝑋5, 𝑋6, 𝑋10}

Step-2: Calculating equivalence classes using conditional attributes.

Here we will consider only one attribute “b” for simplicity i.e. 𝐶 = {𝑏}. So, we will calculate

equivalence classes using attribute “b", which in our case becomes:

[𝑋]𝑐 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋2, 𝑋3}{𝑋5, 𝑋6, 𝑋10}

Step-3: Find objects belonging to lower approximation

In this step we actually find the objects that belong to lower approximation of the concept w.r.t. to

considered attribute. Mathematically, this step involves finding objects from [𝑋]𝑐 which are subset

of X i.e. {[𝑋]𝑐 ⊆ 𝑋}

In our case:

𝐶𝑋 = {[𝑋]𝑐 ⊆ 𝑋} = {X5, X6, X10}

Using the proposed definition, we construct the lower approximation without using equivalence

class structures. We directly find the objects that under the given concept always lead to same

decision class (concept) for the current value of attributes.

In our case, we just pick an object and find if for the same values of attributes, it leads to some

other decision class or not. We find that objects X5, X6 and X10 always lead to same decision

class i.e. the concept under consideration for attribute “b”. On the other hand objects X2 and X3

do not lead to Concept X, so they will not be part of lower approximation. Similarly some

occurrences of objects X1, X4, X7, X8 and X9 also lead to different decision class than X, so they

57

also be excluded from lower approximation. So, we can with surety say that objects X5, X6 and

X10 belong to the lower approximation.

As discussed earlier, semantically both definitions are same but computationally the proposed

definition is more effective as it avoids construction of equivalence class structure. It directly

calculates the objects belonging to lower approximation by checking objects that always lead to

same decision class under consideration. Directly calculating the lower approximation in this way

lets us exclude complex equivalence class structure calculation which makes algorithms using this

measure more efficient. Using conventional definition on the other hand requires three steps

discussed in previous section. Performing these steps offers a significant performance bottleneck

to algorithms using this measure.

5.2.2 Redefined Upper Approximation:

Upper approximation defines the set of objects that can only be classified as possible members of

X w.r.t. the information contained in attribute(s) 𝑐 ∈ 𝐶. For attribute(s) 𝑐 ∈ 𝐶 and concept X, the

lower approximation will be:

𝐶̅𝑋 = {𝑋|[𝑋]𝐵 ∩ 𝑋 ≠ 0}

i.e. upper approximation is the set of objects that may belong to the concept X w.r.t. information

contained in attribute(s) c.

On the bases of the same concept a new definition of upper approximation was proposed as

follows:

𝐶𝑋 = 𝐶𝑋 ∪ {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑎 ≠ 𝑏| 𝑥{𝑐} → 𝑎, 𝑥′{𝑐} → 𝑏} (5.3)

This definition will be read as follows:

Provided that that objects x and x’ are indiscernible wr.t. to attribute(s) c, they will be part of an

upper approximation if either they belong to lower approximation or at least one of their

occurrences leads to decision class belonging to concept X. So objects x and x’ belong to upper

approximation if both occurrences of them lead to different decision class for the same value of

attributes. E.g. in Table-5.10 the objects X1, X4, X7,X8 and X9 lead to different decision class for

58

same value of attribute “b”. So all of them can be possible members of upper approximation of

concept Z=2.

As with redefined lower approximation, the proposed definition for the upper approximation is

semantically the same as conventional upper approximation. However, it helps us directly

calculate objects belonging to upper approximation without calculating the underlying equivalence

class structures.

Like the conventional definition of lower approximation, calculating upper approximation requires

three steps again. We will again use Table-1 as sample to calculate upper approximation using

both definitions. We suppose the concept: 𝑋 = {𝑥 | 𝑍(𝑥) = 2} as shown in example of lower

approximation.

Step-1: Calculate the objects belonging to the concept X. Here is our case concept 𝑋 =

 {𝑥 | 𝑍(𝑥) = 2}

We have already performed this step and calculated the objects belonging the concept X on the

basis of decision class in previous example. So,

X = {𝑋4, 𝑋5, 𝑋6, 𝑋10}

Step-2: Calculating equivalence classes using conditional attributes.

This step has also been calculated before and objects belonging to [𝑋]𝑐 were identified as follows

by considering attribute “b”

[𝑋]𝑐 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋2, 𝑋3}{𝑋5, 𝑋6, 𝑋10}

Step-3: find the objects belonging to upper approximation

In this step we finally calculate the objects belonging to lower approximation. The step is

calculated by identifying the objects in [𝑋]𝑐 that have non-empty interaction with objects

belonging to concept X. the intention is to identify all those objects at least one instance of which

leads to the decision class belonging to the concept X. Mathematically [𝑋]𝑐 ∩ 𝑋 ≠ 0. In our case:

𝐶̅𝑋 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋5, 𝑋6, 𝑋10}

59

Proposed definition of upper approximation avoids calculating computational expensive step of

indiscernibility relation. It simply scans the entire dataset for the concept X using the attributes c

and finds all the indiscernible objects such that any of their occurrence belongs to the concept X.

At least one occurrence should lead to decision class belonging to concept X. In our case, objects

X1, X4, X7, X8 and X9 are indiscernible and at least one of their occurrence leads to concept Z=2.

Objects X2 and X3 are indiscernible but none of their occurrence leads to required concept, so

they will not be part of upper approximation. Objects X5, X6 and X10 belong to lower

approximation so they will be part of upper approximation as well. In this way using the proposed

definition, we find the following objects as part of upper approximation:

𝐶̅𝑋 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋5, 𝑋6, 𝑋10}

That is the same as produced by using the conventional method.

Semantically proposed definition of upper approximation is same as conventional one i.e. it

produces the same objects that may possibly be classified as members of concept X. However, it

calculates these objects without calculating equivalence classes. So, the proposed approach is

computationally less expensive which consequently can result in enhanced performance of the

algorithms using proposed method. The conventional definition on the other hand again requires

three steps (as discussed above) to calculate upper approximation which impose computational

implications.

5.3 Redefined Preliminaries based Feature Selection (RPFS)

Based on our redefined approximation preliminaries, we have proposed a new feature selection

algorithm. The proposed algorithm uses lower approximation based dependency measure to

calculate dependency. Dependency defines how uniquely the value of attribute “D” is determined

by value of “C”. Conventional positive region based dependency measure uses indiscernibility

based equivalence class structures to calculate lower approximation for all decision classes. In our

proposed feature selection algorithm, instead of calculating indiscernibility relation for lower

approximation, we have used our proposed definition. Calculating dependency in this way results

in significant increase in performance of the algorithm based on this approach. Our proposed

algorithm has two main features:

1. Instead of using conventional dependency measure, it calculates dependency by using the

proposed lower approximation method.

60

2. It selects attributes on the basis of decreasing order of dependency i.e. attribute with highest

degree of dependency is selected first, and then attribute with second highest degree of

dependency and so on.

The proposed redefined preliminaries based feature selection (RPBFS) algorithm is a two-step

process:

1. Calculate the dependency of decision attribute on each individual conditional

attribute 𝑐 ∈ 𝐶.

2. Select the next potential candidate attribute having highest degree of dependency.

Figure-5.2 shows the diagrammatic representation of the proposed solution.

Figure-5.2: Algorithmic flow of

proposed Feature selection approach

Algorithm initially starts with empty Reduct set and calculates dependency of each individual

conditional attribute c ∈ C. Then the attribute having next maximum dependency value is selected

and added to reduct set R. Now the dependency of R is calculated using proposed lower

approximation based method. If dependency of R is equal to one (1) or γ(R, D) = γ(C, D),

algorithm stops by outputting R as required Reduct set. Figure-5.3 shows the pseudo code of the

algorithm.

61

C: C1,C2,…..Cn set of conditional attributes

D: Decision attribute

(a) R ←{}

(b) ∀𝑐 ∈ 𝐶
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑖 where i=1,2,3….n

(d) Do

(e) Select max(𝛾𝑖) //where ith attribute is

 the one with maximum

 dependency

(f) R ← R ∪ {𝑋𝑖}
(g) While 𝛾(𝑅, 𝐷) <> 𝛾(𝐶, 𝐷)

(h) Return R

Figure-5.3: Proposed algorithm

The proposed algorithm is based on the following two assumptions:

1. If we combine an attribute of higher dependencies with another attribute of higher dependency

then it is more likely that the dependency of resulting set will be more than if we combine

attribute of higher dependency with the attribute of lower dependency. For example, consider

Table-5.9 given below:

Table-5.9: Sample decision system

U a b c d Z

X1 L 3 M H 1

X2 M 1 H M 1

X3 M 1 M M 1

X4 H 3 M M 2

X5 M 2 M H 2

X6 L 2 H L 2

X7 L 3 L H 3

X8 L 3 L L 3

X9 M 3 L M 3

X10 L 2 H H 2

Here:

γ(B, Z) = 0.5

γ(C, Z) = 0.3

γ(A, Z) = 0.1

62

γ(D, Z) = 0.0

Now if we combine attribute “B” with “C” the dependency is likely to be more than if we

combine “B” with “A”. Similarly, combining “B” with “A” will likely result more increase

in dependency than if we combine “B” with “D”.

So using the above IS:

γ({B ∪ D}, Z) = 0.6

γ({B ∪ C}, Z) = 0.8

γ({B ∪ A}, Z) = 0.7

2. We have observed that dependency of union of two attributes is always greater than or equal

to the maximum dependency of any of these attributes. However, there is very rare chance that

dependency of union of two attributes being equal to that of the maximum one. Most of the

time dependency of resultant subset increases.

Example:

Proposed solution is explained with help of an example in this section We will consider the

decision system given in table-5.12.

Algorithm starts initially with empty Reduct set and computes dependency of each individual

attribute which in our case will be as follows:

R ←{}

γ(A, Z) = 0.1

γ(B, Z) = 0.5

γ(C, Z) = 0.3

γ(D, Z) = 0.0

Now we will select the attribute with maximum dependency and will be made part of Reduct set.

Here in our case it is Attribute “B”, so Reduct set becomes:

R={B}

We will then see if dependency of Reduct set is equal to that of entire dataset. So far it is not, so

we will select next attribute with maximum dependency, it is “C”, so R becomes:

R={B,C}

63

Again dependency of R is evaluated. So far condition is false so we will select next attribute with

highest dependency value which is “A”. Reduct set now becomes:

R = {B,C,A}

Now the condition becomes false, and algorithm will output R = {B,C,A} as required Reduct set.

The proposed method provides a lightweight feature selection method which attempts to find

feature subset based on the value of attribute dependency which makes it effective in three ways:

1. Selecting only the attributes with higher dependency makes it possible to avoid exhaustive

search and find feature subset with minimum effort which makes the approach

computationally efficient.

2. Efficiency of algorithm further increases by calculating dependency with proposed

preliminaries calculation method.

3. Selecting attributes based on value of attribute dependency ensures that resulted feature

subset is optimal and there is no irrelevant or redundant attribute.

5.4 Summary

Conventional rough set based dependency measure requires three steps to calculate dependency of

a decision attribute “D” on conditional attribute(s) “C”. The process consists of calculating

equivalence class structure using decision attribute, equivalence class structure using conditional

attribute and finally positive region calculation. The overall process is computationally too

expensive to make the positive region based approaches inappropriate for large datasets. To

overcome the problem, we have proposed two alternate methods for calculating rough set based

dependency measure called Incremental Dependency Classes (IDC) and Direct Dependency

Classes (DDC). Both of the approaches use different rules to calculate dependency as we read each

new record in dataset. We have discussed in details with examples about how to calculate

dependency using both of these approaches. In next section we will discuss feature selection based

on IDC and DDC.

64

Chapter 6: Feature Selection using

Dependency Classes

We have integrated dependency classes with various feature selection algorithms which in their

original form were using positive region based rough set dependency measure. We have replaced

all the steps using positive region based dependency measure with dependency classes. In this

section we will explain each of these algorithms.

6.1 Feature Selection Using Incremental Dependency Classes

Incremental Dependency Classes (IDC) can be used in any feature selection algorithm, by simply

replacing the positive region based dependency calculation with IDC. Here we have selected seven

most popular feature selection algorithms which are re-implemented with IDC. All the steps where

positive region based roughest dependency measure was used, were replaced with IDC based

dependency measure.

6.1.1 Genetic Algorithm Using IDC

Genetic Algorithm using IDC or in short GA (IDC) has all the features of conventional genetic

algorithms like crossover, mutation and fitness evaluation function etc. as given by [24]. However,

the slight changes made here were that IDC based dependency measure was used instead of

positive region based approach and crossover order was based on decreasing order of chromosome

dependency. The chromosome that shows the ideal fitness score i.e. dependency=1, at any

generation, was considered to be the optimum solution.

The main features of the proposed GA (IDC) are as follows:

 Each chromosome represents a subset of candidate features that can possibly be a Reduct

set.

 Fitness function was based on positive region based dependency.

 The chromosomes were selected for crossover in decreasing order of dependency as shown

in Table-6.1.

65

Table- 6.1: Example of Chromosomes crossover order in GA(IDC)

Chromosome

No.

Chromosome Fitness score Crossover order

1

a,b,c,d 0.86 Chromosome no. 1 will mate with

Chromosome no. 3

2

l,m,n,o 0.45 -

3

s,t,u,v 0.72 -

4 w,x,y,z 0.61 Chromosome no. 4 will mate with

Chromosome no. 2

The fitness score of each chromosome represents the dependency of the decision attribute. Cross

over with decreasing order of dependency makes results in quality offspring chromosomes having

higher fitness as compared to their parents. This is based on our observation that combining the

attributes with higher degree of dependency result in rapid increase in dependency of resultant

attributes as compared to combining those having low degree of dependency. So with above

mentioned crossover order higher quality chromosomes are generated in lesser number of

iterations.

Now we explain the execution of algorithm with example using “hepatitis” dataset taken from UCI

repository [26]. Initial chromosome size was equal to the number of attributes in dataset, a gene in

each chromosome used to represent presence of attribute. Gene were represented using the

sequence number of the attribute in dataset whereas absence of attribute was represented by “-1”.

Initial population size was set to “10” i.e. at any stage ten chromosomes were used. User can

specify any population size of 2*n where n=1, 2, 3…. N. Initially the selected population is shown

in the Figure-6.1. As GA(IDC) performs crossover in descending order of fitness value (which

actually represents the dependency value of the decision attribute on conditional attributes

represented by genes of the chromosome). So, chromosome no. 5 and 9 (Figure-6.2) having highest

dependency values among all population, will cross over with each other.

66

Figure-6.1: Initial Population.

Figure-6.2: chromosome with highest dependency

The chromosome with same colour will crossover with each other. Chromosome no. 6 and 10 are

next to crossover and so on. The resulted Offspring population is shown in Figure-6.3 below:

67

Figure-6.3: Offspring after first crossover

Figure-6.4: Offspring after mutation

The red highlighted genes show the positions where mutation took place in Figure-6.4. To keep

things simple, uniform mutation operator was used in which a random gene is selected and replaced

with a random value that represents a valid attribute. Process continues until we find a chromosome

with highest fitness value. Algorithm checks in each population, if any of the chromosomes has

fitness value of “1”. Algorithm stops if any of such chromosome is found. However if after “α”

68

number of generations, algorithm fails to find such chromosome, it stops with highest fitness value

chromosome as the output. In case of our example algorithm stopped after fourth generation.

Figure-6.5 shows the population in fourth generation along with the highlighted best chromosome:

Figure-6.5: Last generation.

Chromosome no. 2 is best one, so our reduct set will be:

R = {3, 11, 14, 17, 19}

Figure-6.6 shows the best chromosome in each generation along with its fitness value. Note that

how fitness increased with each generation:

Figure-6.6: Best chromosomes in all generations

Thus, GA(IDC) results in crossover of higher dependency value chromosomes with each other,

which means that required feature set is likely to be obtained with fewer generations.

69

6.1.2 QuickReduct Algorithm Using IDC

QuickReduct algorithm using IDC, QR(IDC) is modified form of conventional QuickReduct (QR)

algorithm [2]. In QR (IDC) the step of calculating positive region based rough set dependency was

replaced with IDC based dependency measure. Rest of the algorithm was same. Figure 6.7

highlights the points where the conventional dependency calculation step was replaced with

incremental dependency calculation method.

Figure-6.7:Quickreduct algorithm taken from [14]

6.1.3 ReverseReduct Algorithm Using IDC

ReverseReduct [2] approach is not often used for large datasets, as the algorithm must evaluate

large feature subsets (starting with the set containing all features), which is too costly, although

the computational complexity is, in theory, the same as that of forward-looking QuickReduct. In

ReverseReduct algorithm using IDC ReverseReduct (IDC), step of calculating the positive region

based dependency calculation step was replaced with IDC based method.

70

6.1.4 Incremental Feature Selection Algorithm (IFSA) using IDC

IFSA [25] is intended for feature selection in datasets where features vary dynamically in decision

systems. In its original version, IFSA uses conventional dependency measure where dependency

is calculated using positive region. Figure-6.8 shows the IFSA with highlighted steps where IDC

were used instead of positive region based approach.

Figure-6.8: IFSA taken from [25]

71

6.1.5 Supervised PSO Based Quick Reduct (PSO-QR) Using IDC

Supervised PSO based QuickReduct [23] is a supervised hybrid feature selection algorithm based

on Particle Swarm Optimization (PSO) and rough sets. In its original form, it uses positive region

based dependency measure for calculating the fitness of the particles. Algorithm suffers the same

drawbacks as by the others due to calculation of positive region. In PSO-QR (IDC) we have

calculated dependency using IDC. Figure-6.9 highlights the pints where positive region based

dependency measure was replaced with IDC based dependency.

Input: C, the set of all conditional features,

 D, the set of decision features.

Output: Reduct R

Step 1: Initialize X with random position Vi with random velocity

∀∶ 𝑋𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛();
𝑉𝑖 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦();
Fit ← 0; globalbest ← Fit;

Gbest ← X1; Pbest(1) ← X1

For i = 1 … S

pbest(i) = Xi

Fitness(i) = 0

End For

Step 2: While Fit != 1 // stopping criterion

For i = 1 … S // for each particle

∀∶ 𝑋𝑖;

//Compute fitness of feature subset of Xi

R ← Feature subset of Xi (1’s of Xi)

∀ 𝑥 ∈ (𝐶 − 𝑅)

𝛾𝑅𝑈(𝑋)(𝐷) =
|𝑃𝑂𝑆𝑅𝑈(𝑋)(𝐷)|

|𝑈|

𝐹𝑖𝑡 = 𝛾𝑅𝑈(𝑋)(𝐷) ∀ 𝑥𝑐𝑅, 𝛾𝑥(𝐷) ≠ 𝛾𝑐(𝐷)

End For

Step 3: Compute best fitness

For i = 1:S

if(Fitness(i) > globalbest) // if current fitness is greater than global best fitness

globalbest ← Fitness(i); // assign current fitness value as global best fitness

gbest ← Xi ;

getReduct(Xi)

Exit

End if

72

End for

UpdateVelocity(); // Update velocity Vi’s of Xi’s

UpdatePosition(); // Update position of Xi’s

// Continue with the next iteration

End {while}

Output Reduct R

Figure-6.9: PSO-QR taken from [23]

6.1.6 Fish Swarm Algorithm (FSA) using IDC

FSA [26] uses the idea of fish swarm for rough set reduction problem. Like other algorithms, in

its original form, it uses positive region based dependency measure as part of fitness function.

However, in Fish Swarm Algorithm (FSA) using IDC i.e. FSA (IDC) we replaced this step with

IDC based dependency calculation method. Figure-6.10, 6.11, 6.12 and 6.13 highlight the steps

where positive region based dependency was replaced with IDC based measure.

73

Figure-6.10: FSA taken from [26]

74

Figure-6.11: FSA Searching algorithm taken from [26]

Figure-6.12: FSA Swarming algorithm taken from [26]

Figure-6.13: FSA fitness algorithm taken from [26]

75

6.1.7 Rough Set Improved Harmony Search Quick Reduct Using

IDC

Rough Set Improved Harmony Search Quick Reduct (RS-IHS-QR) [27] is a rough set based hybrid

algorithm that combines QuickReduct with improved harmony search method for feature

selection. The algorithm uses rough set based dependency measures as its objective function. In

Harmony Search Quick Reduct using IDC i.e. RS-IHS-QR (IDC), we replaced the objective

function with rough set based dependency measure using IDC i.e. Dep (IDC). Figure-6.14 shows

the steps where positive region based dependency was replaced with IDC based dependency.

6.2 Parameter Settings

QuickReduct and ReveseReduct are exhaustive algorithms having no special parameters. For the

rest of algorithms, the parameter details, their values and effect on algorithms is discussed in

following section.

6.2.1 Particle Swam Optimization Based QuickReduct Using IDC

PSO-QR(IDC):

In PSO-QR(IDC), inertia weights “w” were set between range 0.9 to 1.2 as given by [34] because

with this range of “w” there are lesser chances of algorithm to fail to find the global optimum

within a reasonable number of iterations. Range [1,
1

𝑁
× 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] was used for

velocity because the particles with velocity above this range fly far from optimal solution.

76

Figure-6.14: RS-IHS-QR taken from [27]

77

6.2.2 Genetic Algorithm Using IDC GA(IDC)

In GA(IDC) chromosome size was set to total number of found by QuickReduct algorithm to

ensure unbiased analysis. However, any encoding scheme can be used here. For mutation, one

point uniform mutation scheme was used in which a random gene is replaced with another

(randomly selected) gene representing an attribute. The reason behind was that in each generation,

decreasing order of dependency already resulted in high quality off-springs, so one point mutation

was considered to be sufficient in this regards.

6.2.3 Fish Swarm Algorithm (FSA) Using IDC

For FSA (IDC), all the parameters were used with their original value. However, to ensure

unbiased analysis, both FSA and FSA (IDC) were initialized with same fish positions.

Furthermore, stopping criteria was also slightly updated. The algorithm was made to terminate as

soon as the first fish found its optimal positions (i.e. fitness of “1”). This step was taken to complete

the algorithm as soon as possible for large datasets.

6.2.4 Rough Set Improved Harmony Search Quick Reduct using

IDC:

Just like FSA and FSA (IDC), both RS-HIS-QR and RS-HIS-QR (IDC) were initialized with same

harmony memory to avoid biasedness in comparison. No change was made in rest of the

parameters.

6.3 Feature Selection Using DDC

DDC can also be used in any feature selection algorithm, by simply replacing the positive region

based dependency calculation with DDC. Just like in IDC, we have re-implemented all of the

various algorithms discussed in related work section using DDC approach. Here we will discuss

these algorithms in short, as in previous sections these have already been discussed in detail.

78

6.3.1 Supervised PSO Based Quick Reduct Using DDC:

Supervised PSO based Quick Reduct [23], PSO-QR was originally designed to use positive region

based dependency measure. We re-implemented algorithm using direct dependency calculation

method.

6.3.2 Genetic Algorithm Using DDC:

Genetic Algorithm using DDC, GA(DDC) is the same as mentioned in section 6.1.1. The only

change made was that DDC based methods was used in fitness function in contrast with original

positive regional based dependency calculation method.

6.3.3 Incremental Feature Selection Algorithm (IFSA) Using DDC:

IFSA [23], in its original form, uses positive region based dependency measure. Just like IDC

based IFSA, we re-implemented it with DDC based method. All the steps calculating positive

region based dependency were replaced with DDC based method. Rest of the details of the

algorithm were kept intact.

6.3.4 Fish Swarm Algorithm (FSA) Using DDC:

FSA [24] used swarm based optimization to perform feature selection. Algorithm used positive

region based dependency measure for all searching, swarming and following behaviour. Stopping

criteria was also based on positive region based approach. We replaced all the positive region

based steps with DDC.

6.3.5 Rough Set Improved Harmony Search Quick Reduct (RS-IHS-

QR) Using DDC

RS-IHS-QR [25] proposes a hybrid approach for feature selection based on Rough set theory

combined with improved harmony search algorithm. Just like other positive region based methods,

it also uses conventional positive region based dependency measure. We, however, made this

algorithm to work with DDC based method.

79

6.4 Parameter settings

Parameter settings were for DDC was kept same as that in case of IDC. No further change was

made apart from those mentioned in section 6.3. Similarly stopping criteria was also kept same.

6.5 Summary

In this section we have discussed various algorithm that were used with IDC and DDC. Originally

these algorithms were designed for positive region based rough set dependency measure. However,

we re-implemented these algorithms to work with proposed dependency calculation methods. In

next section we will discuss results and analysis of the proposed dependency calculation methods

and feature selection techniques based on these methods.

80

Chapter 7: Results and Analysis

A comparison framework consisting of three components, percentage decrease in execution time

to generate the output, memory used and percentage accuracy is used to justify the validity and

effectiveness of both IDC and DDC. Experiments are conducted using various publically available

datasets from the UCI repository.

7.1 Comparison Framework

The experiments to justify the validity and effectiveness of both IDC and DDC were conducted in

two steps. In first step dependency calculated using both IDC and DDC itself were verified as per

components of comparison framework. After this, comparison was carried out between the

algorithms using IDC and DDC and those using positive region. Here we discuss all these

components one by one.

7.1.1 Percentage Decrease in Execution Time

Percentage decrease in execution time specifies the ecy of an algorithm in terms of how fast it is

and how much execution time it cuts down. For this purpose system stop watch was used, which

after feeding the input was started and after getting the results was stopped. The formula to

calculate the % decrease is as follows:

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 100 −
𝐸(1)

𝐸(2)
∗ 100 (7.1)

Where E(1) is execution time of one algorithm and E(2) is that of its competitor. However, as GA,

PSO-QR, FSA and RS-IHS-QR can have different number of iterations, in different executions,

based on the fitness of results, so, for these algorithms, the average execution time of single

iteration was considered while keeping the other parameters as same in both cases i.e. using

positive region and using IDC.

81

7.1.2 Memory Usage

Memory usage specifies the maximum amount of runtime memory taken by the algorithm to

complete the task taken during its execution. We manually calculated the memory by summing

the size of each of the intermediate data structure used.

7.1.3 Accuracy

The term accuracy implies that the IDC and DDC produce the same output as the one produced by

conventional positive region based method. We compared dependency of attributes using IDC and

DDC against the values generated by positive region based approach. For feature selection

algorithms, we compared the Reducts found using IDC with those using positive region. However,

in case GA, PSO-QR, FSA and RS-IHS-QR, accuracy was measured by analyzing the Reducts

against their fitness.

7.2 Experimental Analysis: IDC

Before explaining the details of experiments performed, the details of datasets used for

experimental purpose are shown in table-7.1, taken from UCI machine learning repository [26].

Table-7.1: Summary of datasets used

Dataset Instances Attributes Decision

classes

Dataset characteristics / Attribute

characteristics

Gisette 6000 5000 2 Multivariate / Integer

Isolet 7797 617 26 Multivariate/ Real

Musk-2 6598 168 2 Multivariate/ Integer

UJIindoorLoc 1112 529 5 Multivariate/ Integer, Real

Egg-Eye-style 14980 15 2 Multivariate, Sequential, Time-

Series / Integer, Real

Internet

advertisement

3279 1558 2 Multivariate/Categorical, Integer,

Real

82

7.2.1 Accuracy and Efficiency of IDC For Calculating Dependency

To prove the accuracy, percentage decrease in execution time and memory usage of the IDC, we

calculated the dependency of different set of attributes, for example, from “Gisette” dataset, three

attribute sets were taken each containing 1000, 2000 and 3000 attributes respectively. The

dependency, in this step, was calculated both through conventional rough set based dependency

measure using positive region method and the proposed IDC. In Table-7.2, from left to right is the

dataset name and instances/number of attributes in each set on which dependency was calculated.

Column three and four specify the attribute set name and number of attributes considered in that

attribute set. Columns five, six, seven and eight, nine, ten specify the dependency value, execution

time and memory used by positive region based approach and IDC respectively. Finally columns

eleven and twelve show the percentage decrease in execution time and memory usage taken by the

IDC as compared to positive region based dependency calculation method. End results clearly

show the effectiveness of the proposed IDC.

Table-7.2: Conventional positive region based approach vs IDC

Dataset Inst/ Att Attr.

Set ID

Attr.

Set

Size

Dep(P) Dep(IDC) %

dec

in

time

%

dec

in

memory

Dep Time

(s)

Mem

(MB)

Dep Time

(s)

Mem

(MB)

Gisette 6000/5000

G_1_1 1000 1.0 12.79 137.37 1.0 7.64
114.4

8 40.3% 16.7%

AS_G_2 2000 1.0 12.99 137.37 1.0 8.22
114.4

8 36.7% 16.7%

AS_G_3 3000 1 13.05 137.37 1.0 8.59
114.4

8 34.2% 16.7%

Isolet 7797/619

AS_T_1 200 1 11.45 231.96 1 3.330 18.35 70.9% 92.1%

AS_T_2 400 1 12.42 231.96 1 3.340 18.35 73.1% 92.1%

AS_T_3 600 1 13.13 231.96 1 3.620 18.35 72.4% 92.1%

Musk-2 6598/168

AS_M_1 50 1.0 7.22 166.13 1.0 2.03 4.27 71.9% 97.4%

AS_M_2 100 1.0 8.68 166.13 1.0 2.95 4.27 66% 97.4%

AS_M_3 150 1.0 8.6 166.13 1.0 4.04 4.27 53% 97.4%

UJIindoorLo

c
1112/529

AS_U_1 300 0.998 1.75 4.72 0.998 1.29 2.25 26.3% 52.3%

AS_U_2 400 0.998 1.55 4.72 0.998 1.17 2.25 24.5% 52.3%

AS_U_3 500 0.998 3 4.72 0.998 1.89 2.25 37% 52.3%

Egg-Eye-

style
14980/15

AS_E_1 5 1.0 37.22 856.12 1.0 11.551 0.97 69% 99.9%

AS_E_2 9 1.0 39.63 856.12 1.0 11.65 0.97
70.6% 99.9%

AS_E_3 13 1.0 39.71 856.12 1.0 11.68 0.97
70.6% 99.9%

Internet

advertisemen

t

3279/1558

AS_I_1 500 0.921 2.21 41.04 0.921 0.78 19.51 64.7% 52.5%

AS_I_2 1000 0.952 2.9 41.04 0.952 1.36 19.51 53.1% 52.5%

AS_I_3 1500 0.978 4.08 41.04 0.978 2.14 19.51 47.5% 52.5%

83

Figure-7.1: comparison of execution time between approaches using positive region and IDC

Figure-7.2: Memory comparison b/w between approaches using positive region and IDC

7.2.1.1 Percentage Decrease In Execution Time:

As it can be seen from the Table-7.2, the time consumed in case of the proposed IDC, Dep(IDC)

was always less than the conventional method, Dep(p). On average, IDC reduced the execution

84

time by 54.5% for 18 attribute sets. The reason behind is that the IDC have successfully avoided

the complex computations of calculating positive regions. We will use the decision system shown

in table-5.1 to further explain this point. Calculating the dependency using positive region requires

three steps. In the first step, we calculate equivalence class structure using decision attribute

(Qualification in this case). In the second step, we have to calculate the equivalence class structure

using condition attribute set on which dependency of decision attribute is to be calculated. It will

require to match the attribute values of record i with i+1, i+2, …,i+ n. Finally we need to calculate

positive region which actually calculates the cardinality of equivalence classes (based on

conditional attributes) that are subsets of equivalence classes (based on decision attribute).

On the other hand, calculating the dependency using incremental dependency classes (IDC)

requires only single step, in which we will match record i with i+1, i+2, …,i+n and will update the

corresponding dependency variable as per the incremental dependency class the record will belong

to. This leads to simpler programming logic required by Dep(IDC) as compared to Dep(P). The

graph in Figure-7.1 also shows that for large datasets there is large difference in time that is

required to calculate dependency, which means for large datasets, the IDC are more suitable

method for calculating dependency. Based on above results and facts, we can conclude that IDC

can successfully replace conventional dependency calculation method (using positive region) in

any rough set based algorithm that calculate dependency of attributes “D” on “C”.

7.2.1.2 Accuracy

It can be seen from Table-7.2 that IDC show same accuracy as that of conventional approach in

calculating dependency. Dependency calculated by IDC was exactly same as that of calculated by

positive region based approach, while significantly cutting down the execution time.

7.2.1.3 Memory Usage

Memory taken by the IDC was less than positive region based approach in all cases. Figure-7.2

shows the memory taken by each approach in graphical form. On average almost 68.4% decrease

in memory was found. To calculate the memory, we used the size of major intermediate data

structures. By major we mean that the data structures that actually used to store intermediate results

85

and not simple variables that were used to control the logic for example loop counters, Boolean

flags etc. Here we elaborate the major data structures required in both cases. We will consider the

Table-5.1 to elaborate the example.

Two major matrices are required in case of positive region based approach:

1. The first one is to store the equivalence class structure of decision system w.r.t. decision

attribute(s). In Table-5.1, we have two classes and maximum number of instances in any

class is four (in class labeled “No”), so the required matrix will be of size 2x7 as shown

below in Figure-7.3. The size of this matrix will be [number of equivalence classes x

(maximum number of instances in any class+3)]. Both values can be calculated at runtime

if not known in advance. First column specifies the decision class, second column specifies

total number of instances in that class and third column specifies the last index having a

valid value in current row. Rest of the columns contains IDs of indiscernible objects using

current decision class.

Figure-7.3: Equivalence class structure w.r.t. decision attribute

2. Similarly a matrix is used to store the equivalence class structure for the current set of

conditional attributes. As there are seven instances in total so we need 7x8 matrix as shown

in Figure-7.4. The size of matrix will be [maximum number of instances x (total number

of instances+1)]. First column stores how many instances have been added so far in current

row. All other columns contain IDs of indiscernible objects using current decision class.

As we cannot predict in advance that how many instances will be similar, so we have to

define matrix of maximum size to cater all possible scenarios (that’s why here matrix size

was 7 x 8). Finally, we calculate positive region based on above mentioned matrices which

checks that which equivalence classes (constructed using conditional attributes) are

contained by (or are subset of) the equivalence classes constructed using decision attribute.

86

Figure-7.4: Equivalence class structure w.r.t. conditional

attributes

In case of IDC, on the other hand, we do not need to calculate equivalence classes (because we

don’t need positive region), so we simply develop a simple matrix to store instances along with

their attributes to keep track of how dependency will be refreshed as shown in Figure-7.5.

Figure-7.5: Grid for calculating IDC

The last column specifies status of attribute set that either these values of attributes have already

been considered or not. Second last column specifies the total number of occurrences of the current

value set in dataset (so that if same value of these attributes lead to a different decision class later,

we may subtract this number from current dependency value. Third last column specifies the

decision class and the first n-3 columns specify the values under current attribute set. This matrix

is filled for all the instances in dataset. Size of matrix will be [number of instances x {number of

attributes+3}].

7.2.2 Accuracy And Efficiency of Feature Selection Algorithms

using IDC

Two versions of each algorithm discussed in chapter 6 were implemented and compared with each

other i.e. using positive region and using IDC. So GA was compared with GA(IDC), QR was

compared with GA(IDC) as so on.

87

The tables 7.3 to 7.9 given below show the results of the experiments.

Table-7.3: comparison between QR and QR(IDC)

Dataset Instances Attribu

tes

QR(P)

Total

Reducts

Memory

used (MB)

QR(IDC)

Total

Reducts

Memory

used (MB)

X times

faster

%

Decrease

in Time

Gisette 6000 5000 9 137.37 9 114.48 97.67x faster 98%

Isolet 7797 617 2 231.96 2 18.35 5.32x faster 81.20%

Musk-2 6598 168 4 166.13 4 4.27 4.90x faster 79.60%

Egg-Eye-

style

14980 15 4 856.12 4 0.97 2.83x faster 64.70%

Internet

advertisem

ent

3279 1558 89 40.04 89 19.51 3.24x fater 69.14%

UIIndoorl

ock

1122 529 3 4.72 3 2.25 9.0 x faster 88.88%

 Table-7.4: comparison between GA and GA(IDC)

Dataset Instanc

es

Attribu

tes

GA(P)

Total

Reducts

Memory

used (MB)

GA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Gisette 6000 2 9 137.37 9 114.48 5.98x faster

83.28%

Isolet 7797 617 4 231.96 4 18.35 3.07 x faster 67.5%

Musk-2 6598 2 4 166.13 4 4.27 4.03 x faster 75.22%

Egg-Eye-

style

14980 2 4 856.12 4 0.97 2.31 x faster 56.84%

Internet

advertisem

ent

3279 2 89 40.04 89 19.51 8.68 x faster 88.48%

UIIndoorl

oc

1122 529 3 4.72 3 2.25 16.0 x faster 93.75%

88

Table-7.5: comparison between PSO-QR and PSO-QR(IDC)

Dataset Instanc

es

Attribu

tes

PSO-QR

Total

Reducts

Memory

used (MB)

PSO-QR

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Gisette 6000 5000 13 137.37 15 114.48 1.9 x faster 46%

Isolet 7797 617 10 231.96 9 18.35 4 x faster 75%

Musk-2 6598 168 15 166.13 12 4.27 3.9 x faster 74%

Egg-Eye-

style

14980 15 9 856.12 15 0.97 7.4 x faster 86.5%

Internet

advertisem

ent

3279 1558 105 40.04 99 19.51 6.6 x faster 84.9%

UIIndoorl

oc

1122 529 7 4.72 15 2.25 4.5 x faster 77.6%

Table-7.6: comparison between IFSA and IFSA(IDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Gisette 6000 5000 15 137.37 15 114.48 2.2 x faster 53.6%

Isolet 7797 617 10 231.96 10 18.35 3.5 x faster 71.1%

Musk-2 6598 168 10 166.13 10 4.27 4.1 x faster 75.8%

Egg-Eye-

style

14980 15 4 856.12 4 0.97 3.3 x faster 69.8%

Internet

advertisem

ent

3279 1558 80 40.04 80 19.51 1.8 x faster 44.4%

UIIndoorl

oc

1122 529 2 4,72 2 2.25 1.8 x faster 44.4%

Table-7.7: comparison between ReverseReduct and ReverseReduct(IDC)

Dataset Instanc

es

Attribu

tes

RevRed

Total

Reducts

Memory

used (MB)

RevRed(

IDC)Tot

al

Reducts

Memory

used

(MB)

X times

faster

% Decrease

in Time

Gisette 6000 5000 59 137.37 59 114.48 1.6 x faster 38.2%

Isolet 7797 617 3 231.96 3 18.35 7 x faster 85.7%

Musk-2 6598 168 8 166.13 8 4.27 324.1 x faster 99.7%

Egg-Eye-

style

14980 15 6 856.12 6 0.97 3.6 x faster 72%

Internet

advertise

ment

3279 1558 795 40.04 795 19.51 1.6 x faster 38.1%

UIIndoor

loc

1122 529 127 4.72 127 2.25 1.2 x faster 18.5%

89

Table-7.8: comparison between FSA and FSA(IDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Gisette 6000 5000 41 137.37 41 114.48 1.62 x faster 38.22%

Isolet 7797 617 10 231.96 10 18.35 3.2 x faster 68.73%

Musk-2 6598 168 10 166.13 10 4.27 2.5 x faster 60.03%

Egg-Eye-

style

14980 15 11 856.12 11 0.97 3.42 x faster 70.74%

Internet

advertisem

ent

3279 1558 138 40.04 138 19.51 2.79 x faster 64.14%

UIIndoorl

oc

1122 529 6 4.72 6 2.25 2.36 x faster 57.62%

Table-7.9: comparison between RS-IHS-QR and RS-IHS-QR(IDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Gisette 6000 5000 263 137.37 263 114.48 3.01 x faster 66.67%

Isolet 7797 617 32 231.96 32 18.35 1.14 x faster 12.38%

Musk-2 6598 168 14 166.13 11 4.27 1.4 x faster 28.35%

Egg-Eye-

style

14980 15 5 856.12 5 0.97 2.81 x faster 64.47%

Internet

advertisem

ent

3279 1558 95 40.04 95 19.51 8.21 x faster 87.81%

UIIndoorl

oc

1122 529 25 4.72 25 2.25 1.93 x faster 48.15%

In all the seven tables (7.3 to 7.9), columns from left to right show the datasets name, total number

of instances and attributes. Column four, five and six, seven show the total number of reducts

produced and memory used by both competitive algorithms i.e. one using positive region and other

using IDC. Column eight shows how faster the algorithm using IDC is than its counterpart whereas

column nine shows % decrease in time taken by algorithm using IDC. Following section shows

the effectiveness of IDC based algorithm in terms of percentage decrease in execution time,

memory and accuracy.

90

Figure-7.6: Execution time comparison b/w QR and QR(IDC)

Figure-7.7: Execution time comparison b/w GA and GA(IDC)

91

Figure-7.8: Execution time comparison between IFSA and IFSA(IDC)

Figure-7.9: Execution time comparison between PSO-QR and PSO-QR(IDC)

92

Figure-7.10: Execution time comparison between ReverseReduct and ReverseReduct(IDC)

Figure-7.11: Execution time comparison between FSA and FSA (IDC)

93

Figure-7.12: Execution time comparison between RS-IHS-QR and RS-IHS-QR (IDC)

Figure-7.13: Memory comparison b/w approaches using positive region and IDC

7.2.2.1 Percentage Decrease in Execution Time

It is evident from the results that IDC based algorithms require less time as compared to their

counterparts. These results support the argument that the proposed IDC can be more effective to

enhance the performance of algorithms based on calculation of dependency using positive region.

94

Calculations show that Overall IDC based algorithms resulted in almost 65.93% decrease in

execution time. The main reason behind the efficiency of IDC is that it avoids the calculation of

the time consuming positive region calculation. The theory behind IDC is that it is the ratio of total

number of attribute values that lead towards unique decision to total universe size. This is the point

which helps reduce the execution time in case of IDC. Conventional rough set based approach on

the other hand first creates equivalence class structure w.r.t. the decision attribute(s), then

equivalence class structure using the attributes under consideration (on which dependency is to be

measured) and finally the positive region is calculated. These steps consume too much time which

makes positive region based dependency measure method totally unsuitable for other than smaller

datasets.

As GA, PSO-QR, FSA and RS-IHS-QR can have different number of iterations, in different

executions, based on the fitness of results, so, for these algorithms, the average execution time of

single iteration was considered while keeping the other parameters as same in both cases i.e. using

positive region and using IDC. Figure-7.6 to Figure-7.12 show the comparison between positive

region based approaches and dependency class based approaches in graphical form.

7.2.2.2 Accuracy

Results show the equal numbers of reducts were generated both by IDC based algorithms as

compared to their counterparts. The generated sets of attributes were absolutely same. However,

in case of GA, PSO-QR, FSA and RS-IHS-QR, the reducts generated might be different due to

their random nature, e.g. the different execution of the same GA on same set of input may generate

different outputs i.e. sometimes it may find ideal solution but other executions may produce the

most “close to fitness score” output after X number (generations threshold value) of generations

depending on how algorithm proceeds at runtime. However, all the results were manually verified

against their fitness to ensure that they 100% fulfilled the exit criteria.

7.2.2.3 Memory Usage

In our experiments (both in positive region based algorithms and those using IDC), we used

intermediate data structures in their global scope. Maximum required memory was allocated at the

start of algorithm and was utilized throughout to avoid run time creation/deletion of memory

95

(consequently to enhance performance). Results have shown that algorithms using IDC consumed

less memory as compared to positive region based approach in all cases. Figure-7.13 shows the

memory comparison between positive region based approaches and those using IDC in graphical

form. Overall 68.4% decrease in runtime required memory was found in algorithms using IDC.

However note that common data structures used by both versions of an algorithm were not

considered in calculating the size of memory. For example, the size of data structure used to store

fish positions was equal in both FSA and FSA(IDC), so this data structure was not considered in

calculating memory size.

So, from all the above experiments we have observed that algorithms using IDC are more effective

in terms of decreasing the execution time and memory but still do not compromise on the accuracy.

IDC produce same dependency value as produced by conventional positive region based approach

which makes IDC more effective solution to replace positive region calculation and thus cutting

down in execution time. These factors also make IDC an ideal solution to be used for larger

datasets where calculating the dependency value is a time complex job. Based on our above

presented experimental analysis, we can conclude that IDC are effective alternate for positive

region based approaches, not only in feature selection algorithms but in any rough set based

algorithm which requires calculating dependency of decision attribute(s) on conditional attributes.

7.3 Experimental analysis: DDC

To justify the efficiency and effectiveness of the proposed DDC method and algorithms using

DDC, we performed detailed analysis using various datasets from UCI [26] repository. The details

of the datasets are given in Table-7.10.

96

Table-7.10: Summary of datasets used for DDC

Dataset Instan

ces

Attributes Dataset characteristics /

Attribute characteristics

Chess 3196 37 Multivariate / Integer

Handwriting

1593 266 Multivariate/ Real

Optidigits 1797 65 Multivariate/ Integer

Phishing 11055 31 Multivariate/ Integer, Real

Sat 2000 37 Multivariate, Sequential,

Time-Series / Integer, Real

Vehicle 846 19 Multivariate/ Categorical,

Integer, Real

7.3.1 Efficiency And Accuracy of DDC

Table 7-11 shows the results of experiment. First two columns specify dataset name, instances and

number of attributes in each dataset. Third and fourth columns specify attribute set name and

number of attributes in it. Fifth, sixth, seventh and eighth, ninth and tenth specify dependency

value, time taken and memory used for DDC based approach and positive region based method

respectively. Eleventh and twelfth column specify percentage decrease in execution time and

percentage decrease in memory taken by DDC based method.

97

Table-7.11: Conventional positive region based approach vs DDC

Dataset Inst/ Att Attr.

Set ID

Attr.

Set

Size

Dep(DDC) Dep(P) %

dec

in

time

%

dec

in

memory

Dep Time

(s)

Mem

(MB)

Dep Time

(s)

Mem

(MB)

Chess 3196/37

CH_1 10 0.121 0.62 0.475 0.121 0.529 38.9 88.3 98.8

CH_2 20 0.467 0.624 0.475 0.467 2.340 38.9 73.3 98.8

CH_3 30 0.751 1.576 0.475 0.751 3.354 38.9 53 98.8

Handwriti

ng
1593/266

HND_1 80 1 0.748 0.814 1 1.217 9.6 38.5 91.5

HND_2 160 1 0.748 0.814 1 1.280 9.6 41.6 91.5

HND_3 240 1 0.765 0.814 1 1.435 9.6 46.7 91.5

Optidigits 1797/65

OPT_1 20 1 0.734 0.459 1 1.622 12.3 54.7 96.3

OPT_2 40 1 0.811 0.459 1 1.669 12.3 51.4 96.3

OPT_3 60 1 0.749 0.459 1 1.654 12.3 54.7 96.3

Phishing 11055/31

PHI_1 10 0.393 0.500 1.476 0.393 9.407 466.2 94.7 99.7

PHI_2 20 0.833 2.808 1.476 0.833 13.713 466.2 79.5 99.7

PHI_3 30 0.967 6.84 1.476 0.967 19.344 466.2 64.6 99.7

Landsat-

satlite
2000/37

LND_1 5 0.957 0.531 0.297 0.957 1.451 15.2 63.4 98

LND_2 15 1 0.593 0.297 1 1.529 15.2 61.2 98

LND_3 30 1 0.593 0.297 1 1.622 15.2 63.4 98

vehicle 846/19

VEH_1 5 1 0.109 0.067 1 0.390 2.73 72.1 97.5

VEH_2 10 1 0.125 0.067 1 0.421 2.73 70.3 97.5

VEH_3 15 1 0.125 0.067 1 0.375 2.73 66.7 97.5

7.3.1.1 Percentage Decrease in Execution Time

Experiments conducted using 18 attribute sets have shown that Dep(DDC) reduces the execution

time almost by 63% as compared to positive region based approach Dep(P). The basic reason

behind is that Dep(DDC) directly calculates dependency thus lets us avoid the time consuming

positive region calculation. Dep(DDC) only needs to scan each record to update its

INSTANCECOUT AND CLASSSTATUS. After scanning complete dataset it simply calculates

dependency based on uniqueness/non-uniqueness of each class. On the other hand Dep(P) requires

three complex time consuming steps to calculate dependency. Firstly it computes equivalence class

structure using decision attribute(s); secondly it requires equivalence class structure using the

conditional attributes and finally it computers positive region on the base of which dependency is

calculated. All these steps make Dep(P) too time consuming to be used for feature subset selection.

98

7.3.1.2 Memory Usage

Dep(DDC) consumes less memory than Dep(P). Results have shown that Dep(DDC) reduced the

required runtime memory almost by 96% for eighteen datasets with different number of attributes

and records. The reason behind is that Dep(DDC) does not require to calculate equivalence class

structure as required by the first two steps of Dep(P). To calculate these class structures we require

substantial amount of memory. To calculate the equivalence class structure for decision attribute

we need memory of size calculated as:

 M([X]D) = Number of decision classes * (maximum number of records in any class+3)

The memory will be used in the form of two dimensional matrix having number of rows equal to

number of decision classes and number of columns equal to maximum number of records in any

class plus three extra columns. Note that three extra columns are for control purpose, they will

contain decision attribute value, total number of objects in current class and index of last object in

current row. In table-3-1(b) there are three decision classes (i.e. Platinum, Gold and Silver) and

“Gold” class has maximum number (three) of records in it. So, the size of matrix required to

calculate [X]D will be:

M([X]D) = {3,6}

If memory taken by one matrix element is 4 bytes, then the total memory required to calculate

[X]D will be:

M([X]D) = 3*(6)*4 = 52 bytes.

The matrix will have runtime contents shown by Figure-7.14:

Platinum 2 5 X1 X2

Gold 3 6 X3 X5 X7

Silver 2 5 X4 X6

Figure-7.14: Runtime Equivalence class

structure [X]D

Similarly to calculate [X]C, we require a two dimensional matrix having rows equal to number of

records in dataset and columns equal to number of records plus three extra columns. Note that

extra three columns are gain for control purpose. So the memory required by [X]C in our case will

be equal to:

99

M([X]D) = 7*(10)*4 = 280 bytes.

So overall we need 323 bytes of runtime memory to calculate Dep(P).

To calculate Dep(DDC) we need only a single grid as discussed in section-3. The Grid is again a

two dimensional matrix with following dimensions:

No. of rows = No. of records in dataset

No. of Columns = number of conditional attributes + number of decision attributes + 2

In our example:

No. of Rows = 7

No. of Columns = 2 +1 + 2 = 5

So, required memory = 7*5*4 = 140 bytes.

It is clear from above example that Dep(DDC) takes almost 50% less memory as compared to

Dep(P).

7.3.1.3 Accuracy

It is clear from Table-7.11 that Dep(DDC) shows same accuracy as that shown by conventional

positive region based approach. The reason behind is that Dep(DDC) calculates the same

unique/non-unique classes that represent positive region. However, instead of using equivalence

class structure and calculating positive region, it directly determines these unique/non-unique

classes based on the decision class the values of attributes lead to.

From the above measures it is clear that Dep(DDC) is more effective and accurate as compared to

Dep(P) and can safely be used in any of the feature selection algorithm.

7.3.2 Efficiency And Accuracy of Algorithms using DDC

Experimental analysis has shown that algorithms using DDC based approach have been more

effective both in terms of percentage decrease in execution time and memory still maintaining the

accuracy. Table-7.12 to Table-7.16 show the results of the analysis. First three columns in each

table provide dataset name, number of instances and number of attributes. Columns four, five and

six, seven show the number of attributes in reduct and memory used by DDC based approach and

its counterpart using positive region respectively. Finally columns eight and nine show the

percentage decrease in execution time and memory resulted in case of DDC based algorithms.

100

Table-7.12: comparison between IFSA and IFSA(DDC)

Dataset Instanc

es

Attribu

tes

IFSA

(DDC)

Total

Reducts

Memory

used (MB)

IFSA(P)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Chess 3196 37 36 0.243 36 19.5 4.1 75.4

Handwriti

ng

1593 266 28 0.817 28 4.84 2.8 64.2

Optidigits 1797 65 20 0.233 20 6.16 2.1 53.3

Phishing 11055 31 30 0.716 30 233.47 12.6 92

Sat 2000 37 20 0.164 20 7.63 1.6 38.6

Vehicle 846 19 5 0.035 5 1.36 3.8 73.7

Table-7.13: comparison between GA and IFSA(DDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Chess 3196 37 36 0.243 36 19.5 22.6 95.6

Handwriti

ng

1593 266 28 0.817 28 4.84 2.4 58.7

Optidigits 1797 65 20 0.233 20 6.16 2.8 64.4

Phishing 11055 31 30 0.716 30 233.47 24.5 95.9

Sat 2000 37 20 0.164 20 7.63 3 66.8

vehicle 846 19 5 0.035 5 1.36 2.2 54.3

Table-7.14: comparison between IHS and IHS(DDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Chess 3196 37 36 0.243 36 19.5 1.7 40.3

Handwriti

ng

1593 266 28 0.817 28 4.84 2.1 53.4

Optidigits 1797 65 20 0.233 20 6.16 1.6 39

Phishing 11055 31 30 0.716 30 233.47 3.3 69.4

Sat 2000 37 20 0.164 20 7.63 2.4 58.5

vehicle 846 19 5 0.035 5 1.36 2.1 51.8

101

Table-7.15: comparison between FSA and FSA (DDC)

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Chess 3196 37 36 0.243 36 19.5 1.5 33.3

Handwriti

ng

1593 266 28 0.817 28 4.84 1.6 38.7

Optidigits 1797 65 20 0.233 20 6.16 1.9 46.6

Phishing 11055 31 30 0.716 30 233.47 6 83.2

Sat 2000 37 20 0.164 20 7.63 91.2 98.9

vehicle 846 19 5 0.035 5 1.36 1.9 47.6

Table-7.16: comparison between PSO(DDC) and PSO

Dataset Instanc

es

Attribu

tes

IFSA

Total

Reducts

Memory

used (MB)

IFSA(IDC)

Total

Reducts

Memory

used (MB)

X times faster %

Decrease

in Time

Chess 3196 37 5 0.243 4 19.5 9.8 89.7

Handwriti

ng

1593 266 23 0.817 23 4.84 43.3 97.7

Optidigits 1797 65 12 0.233 37 6.16 12.3 91.9

Phishing 11055 31 12 0.716 18 233.47 37.6 97.3

Sat 2000 37 18 0.164 20 7.63 2.9 65.3

vehicle 846 19 12 0.035 13 1.36 1.3 22.2

7.3.2.1 Percentage Decrease in Execution Time

Experiments have shown that algorithms using DDC based method show a significant decrease in

execution time. We have observed decrease of almost 95% for six datasets. This justifies our claim

that algorithms using DDC method are more efficient as compared to those using positive region

based approach. As PSO,IHS, GA and FSA are random in nature, they may produce results in

different iterations in different runs, so to ensure the unbiased analysis we used the average time

for single iteration. The main reason behind is that the efficiency of DDC method, which avoids

positive region. The positive region based approaches on the other hand suffer from time

consuming task of positive region calculation, while DDC based methods simply calculate

dependency using number of unique/non-unique classes. Figure-7.15 to Figure-7.19 shows the

execution time comparison of both versions of each algorithm.

102

Figure-7.15: comparison of execution time b/w/ IFSA (DDC) & IFSA

Figure-7.16: comparison of execution time b/w/ GA (DDC) & GA

Figure-7.17: comparison of execution time b/w/ RS-IHS (DDC) & RS-IHS

103

Figure-7.18: comparison of execution time b/w/ FSA (DDC) & FSA

Figure-7.19: comparison of execution time b/w/ PSO-QR (DDC) & PSO

7.3.2.2 Memory Usage

Algorithms using DDC have taken less memory as compared to positive region based approaches.

Results have shown that DDC based approaches have shown almost 95% decrease in memory on

average for six datasets. The reason behind is that DDC based approaches require only one matrix

to calculate number of unique and non-unique classes. Positive region based approaches on the

other hand require two matrices to calculate equivalence class structure for first two steps as

discussed in section 2.5.

7.3.2.3 Accuracy

DDC based approaches have shown same accuracy as that of conventional approach. The attributes

in reduct set calculated by algorithms were different in some cases due to random nature of the

104

algorithms; however, the produced results were manually tested against their accuracy to be

represented as candidate feature subsets and they fully qualified. This justifies our claim that DDC

based approaches can successfully be used in any feature selection algorithm with absolute

accuracy.

7.4 Experimental analysis: Redefined Preliminaries

To verify the proposed definitions, lower and upper approximations were calculated using both

conventional and proposed method. Table-7.17 shows the result of lower and upper approximation

calculated by both methods. In this table, columns from left to right are dataset name, cardinality

of lower approximation using proposed definition, cardinality of lower approximation calculated

using conventional method, time required to calculate lower approximation using proposed

definition, time required to calculate lower approximation using conventional method, memory

required in calculating lower approximation by proposed method, memory required in calculating

lower approximation by conventional method, percentage decrease in execution time taken by

proposed method and percentage decrease in memory required by proposed method.

Table-7.17: Conventional Lower Approximation vs Redefined Lower Approximation

Datasets Cardinality
LA(RP)

Cardinality
LA(Ind)

Time
(sec) LA

(RP)

Time
(sec)

LA(Ind)

Memory
(MB)

LA(RP)

Memory
(MB)

LA(Ind)

%dec
in

time

%dec
in

memory

Vehicle 217 217 0.12 0.33 0.38 1.36 63.64 72.06

Musk1 207 207 0.05 0.1 0.34 1.46 50 76.71

Land-Sat 461 461 0.5 1.35 2.30 7.63 62.96 69.86

Handwriting 158 158 0.83 1.41 1.3 4.84 41.13 73.14

Musk2 1017 1017 1.992 6.19 7.5 83 67.82 90.96

Similarly Table-7.18 shows the results for proposed upper approximation calculation method.

105

Table-7.18: Conventional Upper Approximation vs Redefined Upper Approximation

Datasets Cardinality
UA(RP)

Cardinality
UA(Ind)

Time
(sec)

UA (RP)

Time (sec)
UA(Ind)

Memory
(MB)

UA(RP)

Memory
(MB)

UA(Ind)

%dec
in

time

%dec in
memory

Vehicle 217 217 0.12 0.33 0.37 1.36 63.64 72.79
Musk1 207 207 0.04 0.120 0.34 1.46 66.67 76.71
Land-Sat 461 461 0.51 1.94 2.3 7.73 73.71 70.25
Handwriting 158 158 0.72 1.38 1.3 4.84 47.83 73.14
Musk2 1017 1017 2.25 7.312 7.5 83 69.23 90.96

7.4.1 Accuracy

For accuracy, the results were compared both in case of lower and upper approximations. Table-

7.19 and Table-7.20 show the actual objects obtained by lower and upper approximations using

both approaches. First column in both tables shows dataset, second column shows the approach

used. For each dataset both redefined preliminaries based approach LA (RP) and indiscernibility

based approach LA (Ind) was used. Third and fourth columns specify the total number of objects

obtained and decision class used. Finally the fifth column specifies the actual objects obtained

using each approach. In dataset objects were numbers from one to n, where n=1 represents first

objects (i.e. row number one), n=2 represents second object and so on.

Table-7.19: Lower approximation: Indiscernibility Vs redefined preliminaries based approach

Dataset Techni

que

No.

of

objec

ts

Decisi

on

class

Objects

Vehicle

LA(RP) 207 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,97,
106,118,121,124,131,132,133,139,141,149,151,154,159,163,164
,167,168,181,184,185,193,195,197,202,217,225,227,229,230,23
2,234,244,248,250,256,257,259,261,262,265,268,272,279,284,2
86,290,298,299,301,307,311,318,321,324,325,330,336,343,347,
352,355,358,361,362,363,366,368,377,378,379,387,395,401,408
,410,411,420,423,429,431,433,435,440,441,447,455,460,469,47
6,481,488,491,492,504,506,507,514,518,519,521,523,526,527,5
31,533,537,543,544,550,553,555,558,560,563,566,567,568,571,
572,576,577,583,584,594,600,604,606,615,621,623,624,625,626
,631,637,643,648,649,650,651,652,655,660,662,663,664,668,67
5,689,690,691,693,695,697,702,706,712,713,714,717,720,722,7
27,737,741,744,750,751,754,757,758,762,765,767,770,777,779,

106

781,784,787,789,790,798,807,808,810,818,820,821,833,834,835
,838,842,844,845

LA(Ind) 207 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,97,
106,118,121,124,131,132,133,139,141,149,151,154,159,163,164
,167,168,181,184,185,193,195,197,202,217,225,227,229,230,23
2,234,244,248,250,256,257,259,261,262,265,268,272,279,284,2
86,290,298,299,301,307,311,318,321,324,325,330,336,343,347,
352,355,358,361,362,363,366,368,377,378,379,387,395,401,408
,410,411,420,423,429,431,433,435,440,441,447,455,460,469,47
6,481,488,491,492,504,506,507,514,518,519,521,523,526,527,5
31,533,537,543,544,550,553,555,558,560,563,566,567,568,571,
572,576,577,583,584,594,600,604,606,615,621,623,624,625,626
,631,637,643,648,649,650,651,652,655,660,662,663,664,668,67
5,689,690,691,693,695,697,702,706,712,713,714,717,720,722,7
27,737,741,744,750,751,754,757,758,762,765,767,770,777,779,
781,784,787,789,790,798,807,808,810,818,820,821,833,834,835
,838,842,844,845

Musk-2 LA(RP) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects)

LA(Ind) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects)

Handwri
ting

LA(RP) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593

LA(Ind) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593

Land-sat LA(RP) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 1066-
1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 1185-
1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 1299-
1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 1417-
1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 1534-
1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623,
1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-1709,
1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-1859,
1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-1997

LA(Ind) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 1066-
1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 1185-
1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 1299-
1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 1417-
1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 1534-
1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623,
1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-1709,
1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-1859,
1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-1997

Musk-1 LA(RP) 207 X=1 Object 1 to object 207 (first 207 objects)

Musk-1 LA(Ind) 207 X=1 Object 1 to object 207 (first 207 objects)

107

Table-7.20: Upper approximation: Indiscernibility Vs redefined preliminaries based approach

Dataset Techni

que

No.

of

objec

ts

Decisi

on

class

Objects

Vehicle

LA(RP) 217 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,

97,106,118,121,124,131,132,133,139,141,149,151,154,159,1

63,164,167,168,181,184,185,193,195,197,202,217,225,227,2

29,230,232,234,244,248,250,256,257,259,261,262,265,268,2

72,279,284,286,290,298,299,301,307,311,318,321,324,325,3

30,336,343,347,352,355,358,361,362,363,366,368,377,378,3

79,387,395,401,408,410,411,420,423,429,431,433,435,440,4

41,447,455,460,469,476,481,488,491,492,504,506,507,514,5

18,519,521,523,526,527,531,533,537,543,544,550,553,555,5

58,560,563,566,567,568,571,572,576,577,583,584,594,600,6

04,606,615,621,623,624,625,626,631,637,643,648,649,650,6

51,652,655,660,662,663,664,668,675,689,690,691,693,695,6

97,702,706,712,713,714,717,720,722,727,737,741,744,750,7

51,754,757,758,762,765,767,770,777,779,781,784,787,789,7

90,798,807,808,810,818,820,821,833,834,835,838,842,844,8

45

LA(Ind) 217 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,

97,106,118,121,124,131,132,133,139,141,149,151,154,159,1

63,164,167,168,181,184,185,193,195,197,202,217,225,227,2

29,230,232,234,244,248,250,256,257,259,261,262,265,268,2

72,279,284,286,290,298,299,301,307,311,318,321,324,325,3

30,336,343,347,352,355,358,361,362,363,366,368,377,378,3

79,387,395,401,408,410,411,420,423,429,431,433,435,440,4

41,447,455,460,469,476,481,488,491,492,504,506,507,514,5

18,519,521,523,526,527,531,533,537,543,544,550,553,555,5

58,560,563,566,567,568,571,572,576,577,583,584,594,600,6

04,606,615,621,623,624,625,626,631,637,643,648,649,650,6

51,652,655,660,662,663,664,668,675,689,690,691,693,695,6

97,702,706,712,713,714,717,720,722,727,737,741,744,750,7

51,754,757,758,762,765,767,770,777,779,781,784,787,789,7

90,798,807,808,810,818,820,821,833,834,835,838,842,844,8

45

108

Musk-2 LA(RP) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects)

LA(Ind) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects)

Handwri
ting

LA(RP) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593

LA(Ind) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593

Land-sat

LA(RP) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047,

1066-1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163,

1185-1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279,

1299-1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404,

1417-1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524,

1534-1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623,

1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-

1709, 1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-

1859, 1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-

1997

LA(Ind) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047,

1066-1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163,

1185-1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279,

1299-1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404,

1417-1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524,

1534-1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623,

1625,1626,1636-1648,1659-1668,1671,1683-1694, 1704-

1709, 1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-

1859, 1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-

1997

Musk-1

LA(RP) 207 X=1 Object no. 1 to object no. 207

LA(Ind) 207 X=1 Object no. 1 to object no. 207

Results have shown that proposed definitions provide the same results for same concepts as

produced by conventional method. The reason behind is that proposed definitions are semantically

same as conventional definitions however, computationally they are efficient because the

computationally complex and expensive step of calculating equivalence classes is skipped. Instead

the lower and upper approximations are calculated directly by calculating the classes that lead to

109

same decision class (in case of lower approximation) or different decision class (in case of upper

approximation). Analysis has shown that proposed redefinitions have produced same results as

given by conventional definitions i.e. both the proposed redefinitions and the conventional

methods have given same objects for same concepts.

7.4.2 Percentage Decrease in Execution Time

For percentage decrease in execution time, system stopwatch was used. It was found that proposed

redefinitions have shown 57.1% decrease in execution time for redefined lower approximation and

64.2% decrease in case of redefined upper approximation, for five publically available datasets.

The reason behind is that proposed redefinitions do not require equivalence classes and calculate

the approximations in single step. The entire dataset is scanned and the objects leading to same or

different decision class for same value of attributes are calculated. On the other hand, in case of

conventional definitions, three steps are involved.

7.4.3 Memory Usage

Similarly required runtime memory was compared both in case of conventional definitions and

proposed redefinitions. It was found that for five datasets, proposed redefinitions have shown

76.5% decrease in required runtime memory. For this purpose major data structures used were

calculated. We used two dimensional arrays (Grids) for both approaches. In case of conventional

approach, the size of grid used was larger than the one used for proposed definitions. The reason

behind is that in conventional case the grid requires to store all the objects in the form of

equivalence class structure (every object belongs to one equivalence class), whereas in case of

proposed redefinitions we only need to store the objects that belong to the concept under

consideration.

So, for conventional definition of lower approximation, size of grid will be:

Size of Grid= [maximum no. of rows x (maximum no. of rows +1)] x datatype size

Note that the extra attribute (column in grid) is used for control purpose.

For proposed redefinitions, on the other hand, size of required grid is:

Size of Grid = [(no. of attribute + maximum number of objects in concept + 3) x (maximum no.

of rows)] x datatype size.

110

Again, extra three columns are for control purpose.

Here we need lesser memory because normally the total number of attributes and number of objects

belonging to any concept are lesser than total number of objects in dataset.

Here we explain it with an example. We will consider the “Vehicle” dataset take from [2] for this

purpose. This dataset comprises of 846 objects and 18 attributes (excluding decision class),

decision class (concept) D=1 contains maximum 217 objects.

So, memory required in calculating lower approximation using conventional approach:

 Size of Grid= [maximum no. of rows x (maximum no. of rows +1)] x datatype size

= (846*847)*2 = 1399.535156 Bytes = 1.36MB

Similarly, memory required using proposed redefinitions will be:

Size of Grid = [(no. of attribute + maximum number of objects in concept + 3) x (maximum no.

of rows)] x datatype size

Size of Grid = [(18 + 217+ 3) x (846)] x 2 = 393.2578125 bytes = 0.38MB

7.5 Experimental analysis: Redefined Preliminaries Based

Feature Selection

To justify the proposed algorithm, it was compared with four state of the art algorithms using

conventional indiscernibility based dependency measure i.e. PSO-QR(Ind) [22], GA(Ind) [24],

IFSA (Ind) [25], AFSA (Ind) [26] . Algorithms were executed using five publicly available

datasets and results were compared. For calculating decrease in execution time, system stopwatch

was used. It was started after reading the dataset and was stopped after output was generated.

Table-7.21 shows the results of the experiments.

Table-7.21: RPFS vs conventional indiscernibility based approaches
 RPFS PSO-QR [22] GA [24] IFSA [25] AFSA [26]

 Records
/
attributes

Reducts Time
(m)

Reducts Time
(m)

Reducts Time
(m)

Reducts Time
(m)

Reducts Time
(m)

Vehicle 846/19 4 0.07 8 0.44 7 0.11 5 0.138 13 0.2

Musk2 6598/168 18 5.18 81 237.5 79 6.34 20 57.5 78 59.3

handwriting 1593/266 9 0.33 130 24.1 123 0.51 28 16.13 133 8.43

Land-sat 2000/36 10 0.32 15 3.5 14 0.48 20 0.43 18 1.31

Musk1 476/168 2 0.1 136 1.43 19 0.1 20 1.19 121 1.6

111

Results were analyzed on two parameters i.e. accuracy and execution runtime.

Accuracy specifies the appropriateness of set of features selected as final feature subset. Two

aspects were considered in this regard i.e. the size of feature subset selected and the dependency

of selected subset. It was observed that the size of feature subset selected by proposed algorithm

was always lesser than competitive algorithms. The reason behind is that proposed algorithm

selects features on the basis of dependency value. So the feature with highest dependency i.e. the

features having more information are selected first which results in optimal feature subset.

Dependency of selected feature subsets was manually verified by calculating dependency using

conventional method to further ensure the accuracy. It was found that resulted features had

dependency equal to entire dataset which means that resulted subset was absolutely appropriate

candidate solution.

Results have shown that proposed solution is more efficient. It is observed that proposed solution

show a significant decrease in execution time.

The reason behind is that it only needs to check the dependency of each individual attribute and

then select the attributes with higher dependency to find out the optimal feature subset. Selecting

the attributes with higher degrees of dependency result in minimal number of combinations to be

tested to find the final subset. We have already discussed that combinations of features with higher

degree of dependency are likely to increase dependency value (of overall combination) more than

combinations of features of lower degree dependency. So, using this technique lets us find the

feature subset in very fewer attempts after dependency of each individual attribute is calculated,

thus algorithm results the output feature subset more efficiently as compared to other algorithms.

Furthermore, to calculate dependency we have used the proposed lower approximation

redefinitions rather than using the conventional dependency method, which substantially adds to

efficiency of algorithm. Results (given in Table-10) have shown that for five publicly available

datasets proposed algorithm showed 68.238% decrease in execution time on average.

By enhancing the efficiency with optimal feature subset, the proposed algorithm can save

substantial amount of time which can be utilized in further tasks e.g. classification, clustering, rule

extraction etc. Since the resulted feature subset has minimum number of attributes, so using

proposed algorithm as pre-processor can enhance the efficiency of other tasks which take this

feature subset as input.

112

7.6 Summary

A comparison framework was designed to perform experimental analysis. The framework

comprised of three components, percentage decrease in execution time, memory used and

accuracy. To justify the proposed solution, at first step both IDC and DDC based methods were

analyzed. In second step, feature selection algorithms based on IDC and DDC were tested. The

experimental results have shown that algorithms using IDC and DDC were more effective than

their counterparts using the positive region-based approach in terms of accuracy, execution time

and required runtime memory.

Chapter 8: Conclusion and Future work

The main objective of the current research was to propose alternate methods for calculating rough

set based Lower Approximation, Upper Approximation and Dependency measure. We have then

proposed new feature selection algorithm using these measures. The conventional methods for

calculating these measures are computationally too expensive to be used for performing feature

selection on large datasets. Experimental analysis have shown the significance of proposed

approaches both in terms of efficiency and effectiveness. In this chapter we will provide the overall

summary of our research work and will provide some insight into its future extension.

8.1 Lower And Upper Approximations

Conventional Rough Set Based Lower and Upper approximations use equivalence class structure

to calculate approximations which is computationally expensive job. However, on the concept of

lower approximation provided by RST, we have proposed a new definition as follows:

𝐶𝑋 = {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑎 ≠ 𝑏| 𝑥{𝑐∪𝑑} → 𝑎, 𝑥{𝑐∪𝑑} ↛ 𝑏}

i.e. the lower approximation of concept “X” w.r.t. the attribute set “c”, is set of objects such that

for each occurrence of the object, the same value of conditional attribute “c” always leads to the

same decision class value. So, if there are “n” occurrences of an object, then all of them lead to

same decision class (for same value of attributes), which alternatively means that for a specific

value of an attribute, we can with surety say that object belongs to a certain decision class. This is

exactly equal to conventional definition of lower approximation.

113

Similarly the following definition of upper approximation was proposed:

𝐶𝑋 = 𝐶𝑋 ∪ {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶, 𝑎 ≠ 𝑏| 𝑥{𝑐} → 𝑎, 𝑥′{𝑐} → 𝑏}

This definition will be read as follows:

Provided that that objects x and x’ are indiscernible wr.t. to attribute(s) c, they will be part of an

upper approximation if either they belong to lower approximation or at least one of their

occurrences leads to decision class belonging to concept X. So objects x and x’ belong to upper

approximation if both occurrences of them lead to different decision class for the same value of

attributes. Results have shown that the proposed heuristics based approach provide significant

increase in efficiency and performance without affecting accuracy.

8.2 Dependency Classes

Majority of feature selection algorithms use rough set based dependency measure for feature

selection. However, using conventional concept of dependency provided by rough set is

computationally expensive approach. It uses positive region for calculating dependency which

involves three steps i.e. calculating equivalence class structure for decision class, calculating

equivalence class for conditional attributes and finally calculating positive region. The complex

computation involved in positive region based approach makes it inappropriate for algorithms

performing feature selection for larger datasets. To overcome the issue two alternate methods were

proposed based on dependency classes. A dependency class is a rule that defines how degree of

dependency of decision class “D” on conditional attribute “C” changes as we read new record in

dataset.

8.2.1 Incremental Dependency Classes

Incremental dependency classes are set of four rules that govern, how dependency value changes

with each new record.

114

They are:

 Existing boundary region class: If same value of attribute leads to different decision

classes, it decreases the dependency

 Positive region class: If adding a record, does not lead to a different decision class for same

value of that attribute, dependency will increase.

 Initial positive region class: If the value appears in the data set for the first time for that

attribute, then dependency increases.

 Boundary region class: If same value (which was leading to unique decision previously) of

attribute leads to different decision, then adding the new record reduces the dependency.

8.2.2 Direct Dependency Classes

Direct dependency classes specify how dependency value change as new record is read in dataset.

For a decision class D, the dependency K of D on C is as shown in table 8-1.

Table-8.1: How DDC calculates dependency

Dependency No of unique/non-unique classes

0 If there is no unique class

1 If there is no non-unique class

N Otherwise where 0 < n < 1

It means that reading a record belonging to unique class will increase the dependency and reading

a record belonging to non-unique class will decrease dependency.

8.3 Feature Selection Using Dependency Classes

On the basis of the proposed incremental and direct dependency classes, various feature selection

algorithms, originally using positive region based dependency measure were re-implemented. In

these algorithms, step of calculating positive region based dependency measure was replaced with

dependency classes based methods.

115

8.4 Experimental Analysis

Experiments were performed to justify the significance of proposed solutions. Experiments were

carried out in two steps. In first step accuracy and efficiency of dependency classes themselves

was analyzed. Results have shown the significance of dependency classes by considerably

reducing the execution time and runtime memory utilization while still not compromising

accuracy. On average, IDC reduced the execution time by 54.5% for 18 attribute sets. The reason

behind is that the IDC have successfully avoided the complex computations of calculating positive

regions. Memory taken by the IDC was less than positive region based approach in all cases. On

average almost 68.4% decrease in memory was found. Experiments conducted using 18 attribute

sets have shown that Dep(DDC) reduces the execution time almost by 63% as compared to positive

region based approach Dep(P). Dep(DDC) consumes less memory than Dep(P). Results indicated

that Dep(DDC) reduced the required runtime memory almost by 96% for eighteen datasets with

different number of attributes and records. The reason behind is that Dep(DDC) does not require

to calculate equivalence class structure as required by the first two steps of Dep(P).

In second step performance of algorithms using dependency classes based dependency calculation

methods was analyzed. Again results justified the efficiency and effectiveness of the algorithms

using dependency classes based methods. These results support the argument that the proposed

IDC can be more effective to enhance the performance of algorithms based on calculation of

dependency using positive region. Calculations show that Overall IDC based algorithms resulted

in almost 65.93% decrease in execution time. The main reason behind the efficiency of IDC is that

it avoids the calculation of the time consuming positive region calculation. The theory behind IDC

is that it is the ratio of total number of attribute values that lead towards unique decision to total

universe size. This is the point which helps reduce the execution time in case of IDC. Conventional

rough set based approach on the other hand first creates equivalence class structure w.r.t. the

decision attribute(s), then equivalence class structure using the attributes under consideration (on

which dependency is to be measured) and finally the positive region is calculated. These steps

consume too much time which makes positive region based dependency measure method totally

unsuitable for other than smaller datasets. In our experiments (both in positive region based

algorithms and those using IDC), we used intermediate data structures in their global scope.

Maximum required memory was allocated at the start of algorithm and was utilized throughout to

116

avoid run time creation/deletion of memory (consequently to enhance performance). Results have

shown that algorithms using IDC consumed less memory as compared to positive region based

approach in all cases. Overall 68.4% decrease in runtime required memory was found in algorithms

using IDC.

Similarly experiments showed that algorithms using DDC based method show a significant

decrease in execution time. We have observed decrease of almost 95% for six datasets. This

justifies our claim that algorithms using DDC method are more efficient as compared to those

using positive region based approach. Algorithms using DDC have taken less memory as

compared to positive region based approaches. Results have shown that DDC based approaches

have shown almost 95% decrease in memory on average for six datasets. The reason behind is that

DDC based approaches require only one matrix to calculate number of unique and non-unique

classes. Positive region based approaches on the other hand require two matrices to calculate

equivalence class structure

8.5 Future Work

The following has been suggested for future.

8.5.1 Dependency Classes For Unsupervised Learning

So far dependency classes were used only for supervised datasets. This is because dependency

classes require class labels to predict the degree of dependency as new record is read. This happens

in case of both incremental dependency classes and direct dependency classes. However, we may

come along the situation where data is not labelled i.e. in case of unsupervised learning. So the

application of dependency classes may be challenging in this case and a scenario still to be tested.

As part of our future work we intend to apply dependency classes for unsupervised model and

motivation comes from [88] where authors have presented unsupervised QuickReduct algorithm.

This would be beneficial in many real world applications including clinical decision support

systems, Vehicle identification and tracking and weather forecasting etc.

Figure-8.1shows the pseudo code of the algorithm.

117

Figure-8.1: unsupervised QuickReduct taken from [88]

Authors have used positive region based dependency measure to calculate dependency of

attributes, however, as in unsupervised learning we are not provided with data labels, so the

dependency of attributes on each other is checked and the attributes that provide maximum

increase in dependency of other attributes on them are selected. So instead of an explicitly

available decision class, C – {x} attributes act as decision class for attribute {x}. However, the

drawback with this approach is that using positive region based approach makes it impossible to

apply for large datasets, so our intension is to use dependency classes where features could be

selected without applying positive region. We have attempted to dry run incremental dependency

classes to calculate dependency using dependency classes.

Table-8.2 taken from [88] shows the dataset used for experimentation.

118

Table-8.2: Sample IS taken from

[88]

U a b c d

1 1 0 2 1
2 1 0 2 0
3 1 2 0 0
4 1 2 2 1
5 2 1 0 0
6 2 1 1 0
7 2 1 2 1

Dependency calculated by unsupervised QuickReduct algorithm for the datasets given in Table-

8.3

Table-8.3: Dependency values calculated by

[88]
y|x {a} {b} {c} {d}

A 1 1 0.1429 0
B 0.4286 1 0.1429 0
C 0 0.2857 1 0.4286
D 0 0 0.4286 1

Where each column specifies the degree of dependency of other attributes on a particular attribute

e.g. third row specifies value of attribute {b} on {a}, fourth row specifies degree of dependency

of {c} on {a} and fifth row specifies degree of dependency of {d} on {a}. We have dry run

dependency classes for calculating dependency and results obtained when compared with those

calculated by positive region based dependency measure were same. Following section shows how

dependency was calculated in unsupervised mod for these attributes using dataset given in Table-

8.3.

Here we need to calculate dependency of {a} on {a}, {b} on {a}, {c} on {a} and {d} on {a}. For

description purpose we will only calculate dependency of {b} on {a} using IDC. So, in this case

{b} will be considered as decision class and {a} will be considered as conditional attribute.

119

So if we read the first record, value of attribute {a} is “1”, decision class is “0”, since record

appears for the first time, so as per rules of IDC, the applied IDC will be “Initial Positive Region”

class. Since UDV value before reading this record was “0” (as before this we had no record read)

so dependency will be:

γ(c, D) =
UDV + 1

|U′| + 1

γ(a, b) =
0 + 1

|0| + 1

γ(a, b) =
1

1

γ(a, b) = 1

Value of UDV becomes “1” as we have only one unique record so far. After reading second record

i.e. object “2”, we see that this object has already appeared with same vale of condition and

decision attributes, so applied dependency class will be “Positive Region” class. Dependency will

be calculated as:

γ(c, D) =
UDV + 1

|U′| + 1

γ(a, b) =
1 + 1

|1| + 1

γ(a, b) =
2

2

γ(a, b) = 1

Value of UDV will become “2” because so far we have two unique records. Similarly after reading

all the records and applying relevant dependency classes,

γ(a, b) = 3/7

After calculating dependency of all attributes, we have found dependencies equal to that calculated

by unsupervised QuickReduct.

120

Similar to incremental dependency classes, direct dependency classes were also applied to

calculate dependency. If we consider total number of unique classes then by formula:

𝑘 = 𝛾(𝐶, 𝐷) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

|𝑈|

𝑘 = 𝛾(𝑎, 𝑏) =
3

|7|

𝑘 = 𝛾(𝑎, 𝑏) =
3

7

However, if we consider number of non-unique classes then dependency can be calculated by

formula:

𝑘 = 𝛾(𝐶, 𝐷) = 1 −
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑠𝑒𝑠

|𝑈|

𝑘 = 𝛾(𝐶, 𝐷) = 1 −
4

|7|

𝑘 = 𝛾(𝐶, 𝐷) =
3

7

Similarly we calculated dependency of all attributes using direct dependency classes (DDC), and

result was found to be equal to that calculated by unsupervised QuickReduct.

However, this was only experimented using the above given dataset and only accuracy was

measured. Other two components of comparison framework i.e. percentage decrease in execution

time and memory usage was not analyzed and will be worked on as part of future work.

8.5.2 Dependency Classes For Unsupervised Feature Selection

Algorithms

There are algorithms for feature selection designed for unsupervised mode e.g. feature selection

for detecting social behaviour in case of social media applications, documents classification and

fraud detection in banking applications. As far as accuracy is concerned, we can use dependency

classes as replacement for positive region based approaches but the computation time and memory

usage factors still need to be tested. If dependency classes prove to be successful for unsupervised

121

models in terms of all components of comparison framework, it will be a good help for performing

unsupervised feature selection in large datasets by enhancing the efficiency and effectiveness of

the underlying algorithms. Figure-8.2 highlights the steps where dependency classes based

dependency measure can be used instead of positive region based dependency calculation.

Figure-8.2: Unsupervised QuickReduct with highlighted adaptations taken from [88]

8.5.3 Dependency Classes For Other Algorithms

So far dependency classes have been applied to feature selection algorithms only. However a

number of other algorithms including prediction algorithms, decision making algorithms, rule

extraction algorithms etc. also use positive region based rough set dependency measure. So,

apparently we can conclude that dependency classes can also be applied in these algorithms.

However their effectiveness still needs to be analyzed and can be a track for future to further proof

benefits of dependency classes.

122

8.6 Final Word

The aim of this investigation was to investigate methods capable of achieving dimensionality

reduction which are also computationally effective. The main objective of RST is to reduce data

size. Traditional rough set based approaches use positive region based dependency measure for

feature selection process. However, using positive region is computationally expensive approach

that makes it inappropriate to use for large datasets. We have developed an alternate way to

calculate dependency comprising of dependency classes. A dependency class is a heuristic which

defines how the dependency measure changes as we scan new records during traversal of the

dataset. On the basis of the heuristics used by dependency classes, two types of dependency classes

were proposed i.e. Incremental Dependency Classes (IDC) and Direct Dependency Classes

(DDC). Experimental results justified the efficiency and effectiveness of proposed solution. Future

directions include dependency classes for unsupervised datasets, dependency classes for

unsupervised feature selection and dependency classes for algorithms other than feature selection.

123

References

[1] R. Bellman, "Dynamic programming: Princeton Univ. press." (1957).

[2] R. Jensen and Q. Shen. “Computational intelligence and feature selection: rough and fuzzy

approaches.” Vol. 8. John Wiley & Sons, 2008.

[3] J. Hua, D. T. Waibhav and E. R. Dougherty. "Performance of feature-selection methods in the

classification of high-dimension data." Pattern Recognition 42.3 (2009): 409-424.

[4] E. Hancer et al. "A multi-objective artificial bee colony approach to feature selection using

fuzzy mutual information". 2015 IEEE Congress on Evolutionary Computation (CEC). IEEE,

2015.

[5] G. H. John, R. Kohavi and K. Pfleger. "Irrelevant features and the subset selection problem."

Machine learning: proceedings of the eleventh international conference. 1994.

[6] Z. Pawlak. "Rough sets-theoretical aspect of reasoning about data." (1991): 29-29.

[7] M. Podsiadło and H. Rybiński. "Rough sets in economy and finance." Transactions on Rough

Sets XVII. Springer Berlin Heidelberg, 2014. 109-173.

[8] V. Prasad, T. S.Rao and M. S. P. Babu. "Thyroid disease diagnosis via hybrid architecture

composing rough data sets theory and machine learning algorithms." Soft Computing 20.3 (2016):

1179-1189.

[9] C. Xie, L. Yong-Jun and J. Y. Chang. "Medical image segmentation using rough set and local

polynomial regression." Multimedia Tools and Applications 74.6 (2015): 1885-1914.

[10] G. A. Montazer, S. ArabYarmohammadi. “Detection of phishing attacks in Iranian e-banking

using a fuzzy–rough hybrid system.” Applied Soft Computing 35 (2015): 482-492.

[11] M.P. Francisco, J.V. Berna-Martinez, A.F. Oliva and M.A.A. Ortega, Algorithm for the

detection of outliers based on the theory of rough sets, Decision Support Systems 75 (2015): 63-

75.

[12] UCI machine learning repository: archive.uci.edu.pk. Access date: 02-Jan-2015.

[13] J. Yan et al. "Effective and efficient dimensionality reduction for large-scale and streaming

data preprocessing." IEEE transactions on Knowledge and Data Engineering 18.3 (2006): 320-

333.

124

[14] X. Zeng and S. Luo. "Generalized locally linear embedding based on local reconstruction

similarity." In: Fifth IEEE International Conference on Fuzzy Systems and Knowledge Discovery

(2008): 305-309.

[15] L. K. Saul et al. "Spectral methods for dimensionality reduction." Semisupervised learning

(2006): 293-308.

[16] R. Liu et al. "Semi-supervised learning by locally linear embedding in kernel space", In:

Proceedings of 19th IEEE International Conference on Pattern Recognition, (2008): 1-4.

[17] S. Gerber, T. Tasdizen, and R Whitaker. "Robust non-linear dimensionality reduction using

successive 1-dimensional Laplacian eigenmaps." In: Proceedings of the 24th ACM International

conference on Machine learning, (2007): 281-288.

[18] P. Cunningham. “Dimension Reduction.” University College Dublin, Technical Report, 2007.

[19] H. Liu, H. Motoda, Computational Methods of Feature Selection, Chapman & Hall/Crc Data

Mining and Knowledge Discovery Series, 2007.

[20] H. Almuallim and T.G. Dietterich. Learning with many irrelevant features. In the 9th National

Conference on Artificial Intelligence, MIT Press, (1991): 547–552.

[21] B. Raman and R. I. Thomas. "Instance-based filter for feature selection." Journal of Machine

Learning Research 1.3 (2002): 1-23.

[22] J. R. Quinlan. "C4. 5: Programming for machine learning." Morgan Kauffmann (1993): 38.

[23] H. H. Inbarani, A. T. Azar and G. Jothi. “Supervised hybrid feature selection based on PSO

and rough sets for medical diagnosis.” Computer methods and programs in biomedicine 113.1

(2014) 175-185.

[24] K. Zuhtuogullari, N. Allahverdi and N. Arikan. “Genetic Algorithm and Rough Sets Based

Hybrid Approach for Reduction of the Input Attributes in Medical Systems.” International Journal

of innovative computing and information control 9 (2013) 3015-3037.

[25] Q. Wenbin, W. Shu, B. Yang and Z. Changsheng, “An Incremental Algorithm to Feature

Selection in Decision Systems with the Variation of Feature Set.” Chinese Journal of Electronics,

24 (2015) 128-133.

[26] Y. Chen, Q. Zhu and H. Xu. “Finding rough set reducts with fish swarm

algorithm.” Knowledge-Based Systems 81 (2015) 22-29.

http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_1?_encoding=UTF8&search-type=ss&index=books&field-author=Huan%20Liu
http://www.amazon.com/exec/obidos/search-handle-url/ref=ntt_athr_dp_sr_2?_encoding=UTF8&search-type=ss&index=books&field-author=Hiroshi%20Motoda

125

[27] H. H. Inbarani, M. Bagyamathi and A. T. Azar. “A novel hybrid feature selection method

based on rough set and improved harmony search.” Neural Computing and Applications (2015) 1-

22.

[28] Y. Jiang and Y. Yu. “Minimal attribute reduction with rough set based on compactness

discernibility information tree.” Soft Computing (2015) 1-11.

[29] Y. Qian, Q. Wang, H. Cheng, J. Liang and C. Dang. “Fuzzy-rough feature selection

accelerator.” Fuzzy Sets and Systems 258 (2015) 61-78.

[30] A. Tan, J. Li, Y. Lin and G. Lin. “Matrix-based set approximations and reductions in covering

decision information systems.” International Journal of Approximate Reasoning 59 (2015) 68-80.

[31] E. A. Daoud. “An Efficient Algorithm for Finding a Fuzzy Rough Set Reduct Using an

Improved Harmony Search.” International Journal of Modern Education and Computer Science

2.8 (2015) 16-23.

[32] I. Park and G. SeokChoi. “Rough set approach for clustering categorical data using

information-theoretic dependency measure.” Information Systems 48 (2015) 289-295.

[33] L. V. D. Maaten, E.O. Postma and H. J. V. D. Herik, “Technical report on Dimensionality

Reduction: A Comparative Review.” http://ticc.uvt.nl/∼lvdrmaaten/Laurens_van_der_Maaten/

Publications.html. Access Date 15-Jan-2015.

[34] Y. Shi, and R. Eberhart. “A modified particle swarm optimizer.” In: proceedings of IEEE

International Conference on Evolutionary Computation (1998): 69-73.

[35] C. Bai, D. Dhavale and J. Sarkis. "Complex investment decisions using rough set and fuzzy

c-means: An example of investment in green supply chains." European Journal of Operational

Research 248.2 (2016): 507-521.

[36] J. D. Cabedo and J. M. Tirado. “Rough Sets And Discriminant Analysis Techniques For

Business Default Forecasting.” Fuzzy Economic Review 20.1 (2015): 3-37.

[37] S. Kusi-Sarpong et al. "Green supply chain practices evaluation in the mining industry using

a joint rough sets and fuzzy TOPSIS methodology." Resources Policy 46 (2015): 86-100.

[38] S. Mishra et al. "Importance of Location Classification using Rough Set Approach for the

Development of Business Establishment." International Journal of Computer Applications 119.24

(2015).

126

[39] B. S. Panda, S. S. Gantayat and A. Misra. "Rough set rule-based technique for the retrieval of

missing data in malaria diseases diagnosis." Computational Intelligence in Medical Informatics.

Springer Singapore (2015): 59-71.

[40] S. Pramanik and K. Mondal. "Cosine similarity measure of rough neutrosophic sets and its

application in medical diagnosis." Global Journal of Advanced Research 2.1 (2015): 212-220.

[41] Prasad, V., T. Srinivasa Rao, and M. Surendra Prasad Babu. "Thyroid disease diagnosis via

hybrid architecture composing rough data sets theory and machine learning algorithms." Soft

Computing (2015): 1-11.

[42] V. Prasad, T. S. Rao and M. S. P. Babu. "Thyroid disease diagnosis via hybrid architecture

composing rough data sets theory and machine learning algorithms." Soft Computing (2015): 1-

11.

[43] K. K. Ghanyet al. "A rough set-based reasoner for medical diagnosis." In: Proceedings of

IEEE International Conference on Green Computing and Internet of Things (2015): 429-434.

[44] C. Xie. L. Yong-Jun and J. Chang. "Medical image segmentation using rough set and local

polynomial regression." Multimedia Tools and Applications 74.6 (2015): 1885-1914.

[45] A. Salam, A. Kalam and A. V. Deorankar. "Assessment on Brain Tumor Detection using

Rough Set Theory." Intemational Journal of Advance Research in Computer Science and

Management Studies, 2327782.3 (2015).

[46] R. Vashist and A. Vashishtha. "An Investigation into Accuracy of CAMEL Model of Banking

Supervision Using Rough Sets." Computational Intelligence Applications in Modeling and

Control. Springer International Publishing (2015): 1-25.

[47] L. Chen and Chih-Tsung Tsai. "Data mining framework based on rough set theory to improve

location selection decisions: A case study of a restaurant chain." Tourism Management 53 (2016):

197-206.

[48] A. Janusz et al. "Rough Set Tools for Practical Data Exploration", Rough Sets and Knowledge

Technology. Springer International Publishing (2015): 77-86.

[49] H. Chen et al. "A decision-theoretic rough set approach for dynamic data mining." Fuzzy

Systems, IEEE Transactions on 23.6 (2015): 1958-1970.

[50] J. W. Grzymala-Busse. "A Rough Set Approach to Incomplete Data." Rough Sets and

Knowledge Technology. Springer International Publishing (2015): 3-14.

127

[51] R.L .Villars, C.W. Olofson and M. Eastwood. “Big data: what it is and why you should care.”

(http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf), access

date: 14-Feb-2016.

[52] S. Kaisler, F. Armour, J. A. Espinosa and W. Money. “Big Data: Issues and Challenges

Moving Forward.” In: Proceedings of the 46th IEEE Hawaii International Conference on System

Sciences (2013): 995–1004.

[53] N. Jothi , N. A. Rashid, W. Husain. “Data Mining in Healthcare – A Review.” Procedia.

Computer Science 72 (2015): 306 – 313.

[54] Y. Han et al. "Semisupervised feature selection via spline regression for video semantic

recognition." In: IEEE Transactions on Neural Networks and Learning Systems 26.2 (2015): 252-

264.

[55] C. Boutsidis et al. "Randomized dimensionality reduction for-means clustering." In: IEEE

Transactions on Information Theory 61.2 (2015): 1045-1062.

[56] M. B. Cohen et al. "Dimensionality reduction for k-means clustering and low rank

approximation." In: Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of

Computing (2015):163-172.

[57] J. Bourgain, D. Sjoerd and Je. Nelson. "Toward a unified theory of sparse dimensionality

reduction in euclidean space." Geometric and Functional Analysis 25.4 (2015): 1009-1088.

[58] F. Radenović. J. Hervé and O. Chum. "Multiple measurements and joint dimensionality

reduction for large scale image search with short vectors." In: Proceedings of the 5th ACM

International Conference on Multimedia Retrieval (2015): 587-590.

[59] A. T. Azar and A. E. Hassanien. "Dimensionality reduction of medical big data using neural-

fuzzy classifier." Soft computing 19.4 (2015): 1115-1127.

[60] E. J. Candes, X. Li, Y. Ma, and J. Wright. Robust principal component analysis? Journal of

the ACM, 58(3):11:1–11:37, 2011.

[61] Kao, Yi-Hao, and Benjamin Van Roy. "Learning a factor model via regularized PCA."

Machine learning 91.3 (2013): 279-303.

[62] K. R. Varshney and A. S. Willsky. "Linear dimensionality reduction for margin-based

classification: high-dimensional data and sensor networks." In: IEEE Transactions on Signal

Processing 59.6 (2011): 2496-2512.

http://www.tracemyflows.com/uploads/big_data/idc_amd_big_data_whitepaper.pdf

128

[63] A. Gisbrecht, A. Schulz and B. Hammer. "Parametric nonlinear dimensionality reduction

using kernel t-SNE." Neurocomputing 147 (2015): 71-82.

[64] L. Gottlieb and R. Krauthgamer. "A nonlinear approach to dimension reduction." Discrete &

Computational Geometry 54.2 (2015): 291-315.

[65] A. Gisbrecht and B Hammer. "Data visualization by nonlinear dimensionality

reduction." Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery 5.2 (2015):

51-73.

[66] B. Abolhasanzadeh. "Nonlinear dimensionality reduction for intrusion detection using auto-

encoder bottleneck features." In: Proceedings of 7th IEEE Conference on Information and

Knowledge Technology (2015):1-5.

[67] X. Wei, M. Kleinsteuber and H. Shen. "Invertible Nonlinear Dimensionality Reduction via

Joint Dictionary Learning." Latent Variable Analysis and Signal Separation. Springer International

Publishing (2015): 279-286.

[68] M. Alessio and C. V. Cannistraci. "Nonlinear Dimensionality Reduction by Minimum

Curvilinearity for Unsupervised Discovery of Patterns in Multidimensional Proteomic Data." 2-D

PAGE Map Analysis: Methods and Protocols (2016): 289-298.

[69] b. Tang, S. Kay and H. Haibo. "Toward optimal feature selection in naive Bayes for text

categorization." In: IEEE Transactions on Knowledge and Data Engineering 28.9 (2016): 2508-

2521.

[70] F. Jiang, S. Yuefei and Lin Zhou. "A relative decision entropy-based feature selection

approach." Pattern Recognition 48.7 (2015): 2151-2163.

[71] D. Singh et al. "Feature Selection Using Rough Set For Improving the Performance of the

Supervised Learner.” International Journal of Advanced Science and Technology 87 (2016): 1-8.

[72] J. Xu et al. "L1 graph based on sparse coding for feature selection." International Symposium

on Neural Networks. Springer Berlin Heidelberg (2013): 594–601.

[73] N. Hamdi, K. Auhmani and M. M. Hassani. “Quantum Clustering-Based Feature Subset

Selection for Mammographic Image Classification.” International Journal of Computer Science &

Information Technology 7.2 (2015): 127-133

[74] G. Roffo, S. Melzi and M. Cristani. "Infinite Feature Selection." In: Proceedings of the IEEE

International Conference on Computer Vision (2015): 4202-4210.

129

[75] X. He, D. Cai and P. Niyogi. “Laplacian score for feature selection.” Advances in Neural

Information Processing Systems 18 (2005): 21-26.

[76] M. Devaney and R. Ashwin. "Efficient feature selection in conceptual clustering." In:

Proceedings of the Fourteenth International Conference on Machine Learning (1997): 92-97.

[77] M. Gluck. "Information, uncertainty and the utility of categories." In: Proceedings of the

Seventh Annual Conf. on Cognitive Science Society (1985): 283-287.

[78] J. Yang, X. Hua and J. Peifa. "Effective search for genetic-based machine learning systems

via estimation of distribution algorithms and embedded feature reduction

techniques." Neurocomputing 113 (2013): 105-121.

[79] M. B. Imani, M. R. Keyvanpour and R. Azmi. "A novel embedded feature selection method:

a comparative study in the application of text categorization." Applied Artificial Intelligence 27.5

(2013): 408-427.

[80] M. Viola et al. "A generalized eigenvalues classifier with embedded feature

selection." Optimization Letters (2015): 1-13.

[81] S. Maldonado et al. "Feature selection for support vector machines via mixed integer linear

programming." Information sciences 279 (2014): 163-175.

[82] Z. Xiao et al. "ESFS: A new embedded feature selection method based on SFS." Rapports de

recherché (2008).

[83] L. Du and S. Yi-Dong. "Unsupervised Feature Selection with Adaptive Structure

Learning." In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (2015): 209-218.

[84] J. Li et al. "Unsupervised Streaming Feature Selection in Social Media." In: Proceedings of

the 24th ACM International on Conference on Information and Knowledge Management (2015):

1041-1050.

[85] D. A. A. G. Singh, S. A. A. Balamurugan and E. J. Leavline. "An unsupervised feature

selection algorithm with feature ranking for maximizing performance of the

classifiers." International Journal of Automation and Computing 12.5 (2015): 511-517.

[86] P. Zhu et al. "Unsupervised feature selection by regularized self-representation." Pattern

Recognition 48.2 (2015): 438-446.

[87] N. Zhou et al. "Global and local structure preserving sparse subspace learning: an iterative

approach to unsupervised feature selection." Pattern Recognition 53 (2016): 87-101.

130

[88] C. Velayutham and K. Thangavel. "Unsupervised quick reduct algorithm using rough set

theory." Journal of Electronic Science and Technology 9.3 (2011): 193-201.

