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Abstract 

The amount of data to be processed is significantly increasing day by day. The increase in data 

size is not only due to more number of records but also due to substantial number of attributes 

added to space. The phenomenon is leading to the dilemma called curse of dimensionality i.e. 

datasets with exponential number of attributes. The ideal approach is to reduce the number of 

dimensions such that resulted reduced set contains the same information as present in the entire 

set of attributes. There are various approaches to perform this task of dimensionality reduction.  

 

Recently, rough set-based approaches, which use attribute dependency to carry out feature 

selection, have been prominent. However, this dependency measure requires the calculation of the 

positive region, which is a computationally expensive task. In this research, we have proposed a 

new concept called the “Dependency Classes”, which calculates the attribute dependency without 

using the positive region. Dependency classes define the change in attribute dependency as we 

move from one record to another. By avoiding the positive region, they can be an ideal replacement 

for the conventional dependency measure in feature selection algorithms, especially for large 

datasets. A comparison framework was devised to measure the efficiency and effectiveness of the 

proposed measure. Experiments on various publically available datasets show that the proposed 

approaches provide significant computational performance with same accuracy as provided by 

conventional approach. We have also recommended seven feature selection algorithms using this 

measure. The experimental results have shown that algorithms using the classes were more 

effective than their counterparts using the positive region-based approach in terms of accuracy, 

execution time and required runtime memory.  
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Chapter 1: Introduction 

Knowledge is only valuable when it can be used efficiently and effectively; therefore knowledge 

management is increasingly being recognized as a key element in extracting its value. An example 

of this is Knowledge Discovery in Databases (KDD). Traditionally, data was turned into 

knowledge by means of manual analysis and interpretation. For many applications, this form of 

manual probing of data is slow, costly, and highly subjective. Indeed, as data volumes grow 

dramatically, this type of manual data analysis is becoming completely impractical in many 

domains. This motivates the need for filtering the data.  

 

At basic level KDD comprises of five steps as shown in figure 1.1.  

 

Figure-1.1: An overview of steps of KDD process taken from [2] 

 

Here is brief description of each of the step: 

 

 Data Selection 

Data selection comprises of selecting the data for knowledge discovery. This may require 

selecting the data from existing repository or creating a single source of data (a new 

repository) from multiple sources. The data is selected on the basis of the analysis task. 
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This is an important step where all the data relevant to analysis should be considered, failed 

to do so may lead to failure of the entire process. 

 

 Data Cleansing/ Pre-processing 

This step refers to increasing reliability and accuracy of data. Majority of the times, the 

selected data may contain records that are potentially outliers, may contain insufficient 

details (e.g. missing attribute values), noise or incorrect values etc. Using such data may 

lead to incorrect models, may affect classification accuracy or performance of induction 

algorithms etc. at later stages. Data cleansing or pre-processing refers to removal of all 

such factors to enhance the quality and reliability of selected data. There are many 

techniques for data cleansings. We may use outlier detection algorithms to find out outliers.  

 

 Data Transformation/Reduction 

This step refers to transforming the data to make it appropriate for underlying analysis and 

knowledge discovery. The data may contain redundant attributes that do not add much to 

our information or may contain totally irrelevant attributes. Such attributes are removed at 

this stage. Various techniques are used at this stage e.g. feature selection, feature extraction, 

attribute discretization etc. The basic purpose is to transform/reduce the data to enhance 

performance at later stages. 

 

 Data Mining 

Once the data is ready we can apply our data mining algorithms to actually discover the 

hidden information/patterns from our data. The use of a particular mining algorithm 

depends on the nature of the analysis and goal of the knowledge discovery e.g. either we 

want prediction or description on the basis of data? 

 

 Interpretation/Evaluation 

Once the knowledge has been discovered (patterns have been identified), it is evaluated on 

the basis of our defined goals to validate accuracy, usefulness, novelty etc. It should be 

noted that we may need to repeat previous steps to enhance the above mentioned measures, 

e.g. by including more number of features and repeating the steps again. 
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This research focuses on the third step i.e. data reduction of Knowledge Discovery in Datasets 

process. The size of a dataset comprises of two perspectives i.e. number of distinct samples to be 

processed per dataset and number of attributes per sample. The former only affects the training 

process in data mining, depending on its use, however, the latter i.e. number of attributes per 

sample also called dimensionality, effects training process as well as performance of algorithm. 

Many algorithms exhibit non polynomial execution time with respect to dimensionality. 

 

The large number of dimensions in a dataset lead to a phenomenon called curse of dimensionality. 

The term was first coined by Bellman [1] resulting out of the volume increase by adding extra 

dimensions to mathematical space. Curse of dimensionality is the problem faced by many data 

analysis algorithms for their practical implementation on datasets with larger size. As already 

mentioned that performance of data mining algorithms is inversely proportional to dimensionality 

of datasets, so higher dimensionality not only challenges performance of such algorithms but 

makes their implementation impractical for many real life applications where datasets increase 

beyond smaller size. 

 

The problems caused by curse of dimensionality lead towards finding the solution that could 

reduce the dimensionality without losing relevant information. There are various approaches, 

which can, broadly fall in two categories [2]: the ones that change or even destroy meaning of 

features and others that preserve semantics. Feature selection (FS) methods are semantic 

preserving where we select features from original on the basis of some evaluation function.  

 

1.1 Feature Selection 

Feature selection is the process of selecting a subset of features from dataset that provides most of 

the useful information [2]. The selected set of features can then be used on behalf of the entire 

dataset. So, a good feature selection algorithm should opt to select the features that tend to provide 

complete or most of the information as present in the entire dataset and ignore the irrelevant and 

misleading attributes. 
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The simple way to perform feature selection is to evaluate all possible subsets of features from 

entire dataset and evaluate their feasibility. However, exhaustive search is not possible due to its 

adherent implications as there will be need to evaluate 2n subsets to be evaluated for a dataset with 

n features. So, exhaustive search is only possible for datasets where n is very small. An alternative 

way, we can use random search where a candidate feature subset can be randomly generated [3]. 

On each iteration, a random feature subset is selected and evaluated against its fitness for 

satisfaction criteria, the process repeats until we find a feature subset, at any stage, which fulfils 

the required criteria.  The process also ends after a certain number of iterations are performed, 

predefined time period is elapsed or a certain number of subsets are tested. 

 

Third and most commonly used method uses heuristic approach [3] where some heuristics function 

is used to guide the search. Feature selection aims at removing unnecessary features which can be 

classified as irrelevant features and redundant features [2]. Irrelevant features have not effect on 

target concept, whereas redundant features do not add any new information to target concept, 

instead they negatively affect the classification performance and computational time [4]. An 

informative feature is one having high correlation with the decision concept(s) but highly 

uncorrelated with other features. In the same way, a feature subset is considered to be useful if it 

is highly relevant and non-redundant.  

 

In [5], authors defined two notions based on the relevancy of features:  strong relevance and weak 

relevance; strongly relevant features are the one that cannot be removed without losing predictive 

accuracy. Weakly relevant features, on the other hand, may contribute to the accuracy. However, 

these definitions do not depend upon specific learning algorithm used. 

 

Rough-Set Theory (RST) [6] provides a framework for dimensionality reduction. RST was 

proposed by Pawlak for knowledge discovery in datasets [6]. A dataset may contain number of 

redundant attributes can be eliminated without losing essential information. Using RST it is 

possible to reduce the dataset to one having lesser number of attributes but still providing 

maximum information. All the other attributes can be eliminated without losing information. In 

contrast to other co-relation based approaches minimum input is required by RST, it preserves data 

semantics which makes resulting models more accurate. Different algorithms have been proposed 
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on the basis of the concepts provided by rough set theory. Set approximation and dependency 

calculation are basic steps towards finding the relevant features (reducts) from the original dataset 

while still maintaining relevant information.  

 

RST has been used in various domains for data analysis including economy and finance [7, 35-

38], medical diagnosis [8,39-43], medical imaging [9, 44-45], banking [10,46], data mining [11, 

47-50] etc. 

1.2 Aims and Objectives 

Rough Set Theory provides a framework comprising of data structures and operations that can be 

performed on these data structures for data analysis. However, one of the drawbacks of the RST 

is its inherent complex operations. In this research, our objective was to propose heuristics based 

approaches for three of the most commonly used measures of Rough Set Theory. These measures 

include: 

 Lower approximation 

 Upper approximation 

 Dependency Calculation 

Using the heuristics based approach will let us avoid the underlying complex operations and thus 

enhancing the performance and efficiency of algorithms using these measures. 

We also aim at proposing feature selection algorithm using these measures which could efficiently 

be used to perform feature selection in case of large datasets. 

The proposed heuristics measures should poses the following characteristics: 

 They should provide the same accuracy as provided by the conventional Rough Set based 

measures. 

 Performance and efficiency should be significantly enhanced, so that the algorithms using 

these approaches could be used for datasets beyond larger size. 

 The memory requirements of the proposed approaches should be minimum as compared 

to the conventional approaches. 

Results have shown that these all of the aims and objectives were successfully met. 
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1.3 Research Contribution 

Rough Set Theory uses equivalence structures for calculating lower and upper approximations. 

The approximations are further used for performing different tasks during data analysis. 

Calculating equivalence class structures is computationally complex job, so in this research we 

have provided heuristics based approach for calculating both of these approximations. The 

heuristics based approach calculates these approximations without calculating equivalence class 

structures and thus significantly enhancing the efficiency.  

Similarly, Traditional rough set based approaches use positive region based dependency measure 

for feature selection process. However, using positive region is computationally expensive 

approach that makes it inappropriate to use for large datasets. We have developed an alternate way 

to calculate dependency comprising of dependency classes. A dependency class is a heuristic 

which defines how the dependency measure changes as we scan new records during traversal of 

the dataset.  

 

We start with first record and calculate the dependency of decision attribute on conditional attribute 

based on the derived heuristics. Then after adding each single record the dependency of a particular 

attribute is refreshed based on to which decision class, the value of that attribute leads to. On the 

basis of the heuristics used by dependency classes, two types of dependency classes are proposed 

as follows: 

 Incremental Dependency Classes  

 Direct Dependency Classes 

 

Proposed Incremental Dependency Classes (IDC) are set of four classes, which govern how 

dependency of a decision attributes changes as a new record in dataset is added. Using these 

classes, lets us avoid calculation of computationally expensive positive region. Incremental 

dependency classes provide same accuracy as provided by conventional approach with enhanced 

performance. 

 

In second phase of the research, four classes were further reduced to two without effecting the 

performance and accuracy. Proposed Direct Dependency Classes (DDC) are set of two classes 
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which categories the records in two categories. Those that are redundant on the basis of attributes 

considered and those which are non-redundant on the basis of attributes considered. New 

definitions of lower and upper approximations were also provided which are computational more 

efficient than traditional definitions. 

 

On the basis of heuristics proposed, feature selection was performed by using feature selection 

algorithms. Positive region based dependency calculation step in these algorithms was replaced 

with proposed heuristics based dependency calculation. Results were compared with original ones. 

It was observed that proposed heuristic dependency based feature selection algorithms provide 

same accuracy with substantial increase in overall performance. 

1.4 Structure Of The Thesis 

Overall the thesis is structured as follows: 

 

 Chapter 2: Background. This chapter provides overview of dimensionality reduction 

approaches. 

 

 Chapter 3: Rough Set Theory. Chapter 3 discusses preliminary concepts of Rough Set 

Theory. It also provides analysis of rough-set theory along with examples including its 

advantages and limitations. 

 

 Chapter 4: Rough-sets Based Feature Selection Techniques.  This chapter discusses 

various feature selection techniques available in literature using Rough Set Theory. 

 

 Chapter 5: Dependency Classes. In this chapter, proposed heuristics based dependency 

measure is discussed in detail, along with its advantages, calculation methods and analysis 

by comparing it with conventional rough set based dependency measure. 

 

 Chapter 6: Feature Selection Using Heuristics Based Dependency Classes. This 

chapter discusses different feature selection algorithms using conventional dependency 
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measure. These algorithms are then re-implemented to use them with proposed heuristics 

based dependency measure.  

 

 Chapter 7: Results and Analysis. This chapter discusses the results and why the proposed 

solution is better than the existing approaches. 

 

 Chapter 8: Summary and Future Work. This section concludes the thesis. Summary of 

all of the findings along with overview of future work is presented.  

1.5 Summary 

The amount of data to be processed is significantly increasing day by day. The increase in data 

size is not only due to more number of records but also due to substantial number of attributes 

added to space. The phenomenon is leading to the dilemma called curse of dimensionality i.e. 

datasets with exponential number of attributes. The ideal approach is to reduce the number of 

dimensions such that resulted reduced set contains the same information as present in the entire 

set of attributes. This research addresses and tempts to solve the dilemma of curse of 

dimensionality by providing computationally efficient method for calculating necessary features, 

so that dimensions could be reduced with 0% information loss. 
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Chapter 2: Background 

When faced with difficulties resulting from the dimensionality of a data space, one approach is to 

try to decrease the dimension, without losing relevant information in the data. Essentially, 

Dimension Reduction (DR) is used as a form of pre-processing. There are numerous methods to 

perform this task. An overview of techniques for dimensionality reduction is given in this chapter.  

2.1 Curse of Dimensionality 

The significant increase in the number of dimensions in datasets leads to phenomenon called curse 

of dimensionality. The curse of dimensionality is the problem caused by the exponential increase 

in volume associated with adding extra dimensions to a (mathematical) space [1]. Dimension 

Reduction (DR) is used as pre-processing [13]. The original feature space is mapped onto a new, 

reduced dimensionality space and the samples are represented in that new space [54]. There are 

various techniques to perform DR e.g. [55-59], but many of such techniques destroy the underlying 

semantics of data which makes them undesirable to many real world applications. 

 

So, primarily this thesis focuses on DR techniques that preserve original data semantics. In 

particular, the research work will focus on those techniques based on Rough Set Theory [6].  

Taxonomy of DR techniques is presented in figure 2.1. The presented techniques are classified 

into two categories: those that change the underlying semantics of data during DR process and 

those that preserve data semantics. The choice to choose one depends upon the underlying 

application, e.g. if an application needs to preserve original data semantics than the DR technique 

to be chosen ensure that it is preserved. However, if an application requires to discuss the 

relationships between attributes then the techniques that transforms the data into two or three 

dimensions while emphasizing these relationships may be selected. 
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Figure 2-1: Taxonomy Of Dimensionality Reduction 

 

 

 

Semantic preserving DR techniques “other” than feature selection have also been placed in this 

taxonomy. These are techniques which perform semantics-preserving dimensionality in sideline 

e.g. machine learning algorithm C4.5 [29].  In this chapter we will discuss sample techniques from 

each of the above category.  

2.2 Transformation-Based Reduction 

 These techniques are useful where the semantics of original features are not needed by any future 

process. These are classified into two categories: linear and nonlinear. 

2.2.1 Linear Methods 

Various linear methods for DR are proposed in literature and include techniques like Principal 

Component Analysis [30, 31,60-62] and Multidimensional Scaling [33]. 

2.2.1.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) [30,31] is a well-known tool for data analysis and 

transformation and is considered the canonical means of DR. PCA is mathematical tool that 

converts large number of correlated variables to smaller number of uncorrelated variables called 

components. The intention is to reduce the dimensions in dataset but still preserving original 
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variability in data. The first principal component accounts for maximum of variability possible 

and each of the succeeding component accounts for maximum of remaining variability. 

 

PCA represents variance covariance structure of high dimensional vector with few linear 

combinations of the original component variables. For example, for a p-dimensional random 

vector X = ( X1, X2, ..., Xp ), PCA will find k (univariate) random variables Y1, Y2, ..., Yk called K 

principal components and can be defined by the following formula: 

 

       (2.1) 

 

Here l1,l2 ,..etc coefficient vectors which are chosen on the basis of following conditions: 

 First Principal Component = Linear combination l1'X that maximizes Var(l1'X) and || l1 || 

=1 

 Second Principal Component = Linear combination l2'X that maximizes Var(l2'X) and || l2 

|| =1 and Cov(l1'X , l2'X) =0 

 j th Principal Component = Linear combination lj'X that maximizes Var(lj'X) and || lj || =1 

and Cov(lk'X , lj'X) =0 for all k < j 

 

It means that each principal component is a linear combination that maximizes variance of linear 

combination and has zero covariance with previous component.  

 

Thus PCA maximizes the variance of datasets sample vectors along their axes by locating a new 

co-ordinate system and suitably transforms the samples. The new axes are constructed in 

decreasing order of variance such that first variable in new axes has maximum variance and so on. 

Correlation in new sample space is reduced or totally removed consequently resulting in reduced 

redundancies. Thus DR can be performed on a dataset using PCA and then selecting appropriate 

number of first k principal components as per requirement and discarding the rest.  
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PCA, however, suffers from the following shortcomings: 

 

 It destroys the underlying semantics of data. 

 It can be used only for numeric datasets 

 It can only deal with linear projects and thus ignores any nonlinear structure in the data.  

 Finally, human input is also required to decide how many of first principal components 

will be kept. Thus, the operator’s task is to balance information loss against DR to suit the 

task at hand. 

2.2.2 Nonlinear Methods 

Linear DR methods are no doubt useful but their utility fails in case of nonlinear data. This 

motivated the development of nonlinear DR methods such as [63-68]. An example of nonlinear 

method is Locally Linear Embedding (LLE) [14], [15].  

2.2.2.1 Locally Linear Embedding 

LLE calculates reconstructions (embedding) which are low dimensional and neighbourhood 

preserving by using local symmetries of linear reconstructions (from high dimensional data). This 

can be explained better by considering the following informal analogy [15]. Initial data is three 

dimensional, however, taking shape of rectangular manifold (two dimensional) that has been 

moulded to a three dimensional S shaped curve. Now Scissors cut this manifold into small squares. 

Each square represents a locally linear patch of the non-linear surface. These squares are then 

arranged on flat surface however by preserving angular relationships between neighbouring 

squares. As all transformations comprise of translation, scaling or rotation only so this is a linear 

mapping. Through this process algorithm uses series of linear steps to find non-linear structure. 

  

In first step, it selects neighbours in data points. This selection can be achieved using Euclidean 

distance for k nearest neighbours [16]. In second step, LLE computes the weights that linearly 

reconstruct data points using least square problem. Following cost function is used: 

        (2.2)  
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Finally we compute low dimensional embedded vectors by minimizing the embedded cost 

function: 

        (2.3) 

 

Figure 2.2 summarizes LLE algorithm 

 
Figure 2-2: Summary of the LLE algorithm. 

 

To save the time and space, LLE also tends to accumulate very sparse matrices. It avoids dynamic 

programming problems as well. LLE, however, does not provide any indication about how to map 

a test data point from input space to manifold space or how to reconstruct a data point from its 

low-dimensional representation.  

 

Similar to LLE, Laplacian Eigenmaps attempts to find low-dimensional data representation while 

preserving local properties of the manifold [17]. In Laplacian Eigenmaps, the local properties are 

based on neighbours. Laplacian Eigenmaps minimizes the distance between a data point and its k 

nearest neighbours in an attempt to construct low low-dimensional representation of the data. 

Weights are used for this purpose, i.e., the distance between a datapoint and its first nearest 

neighbour contributes more to the cost function as compared to the distance between the datapoint 

and its second nearest neighbour which costs more as compared to distance between datapoint and 

its third neighbour and so on. Using spectral graph theory, the minimization of the cost function is 

defined as an Eigen problem.  
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2.3 Selection-Based Reduction 

In contrast to transformation based techniques, which destroy the underlying semantics of data, 

semantics-preserving DR techniques (called feature selection) preserve original data semantics.  

2.3.1 Feature Selection in Supervised Learning 

In supervised learning, feature subset selection explores feature space, generates candidate subsets 

and evaluates/rates them on the basis of criterion which serves as guide to search process. The 

usefulness of a feature or feature subset is determined by both its relevancy and redundancy [2]. 

A feature is relevant if it determines the value of decision feature(s), otherwise it will be irrelevant. 

A redundant feature is the one highly correlated with other features. Thus a good feature subset is 

the one highly correlated with decision feature(s) but uncorrelated with each other.  

 

The evaluation schemes used in both supervised and unsupervised feature selection techniques can 

generally be divided into two broad categories [2, 18]: 

 

1. Filter approaches. 

2. Wrapper methods. 

2.3.2 Filter Techniques 

Filter techniques perform feature selection independent of learning algorithms. Features are 

selected on the basis of some rank or score. A score indicating the “importance” of the term is 

assigned to each individual feature based on an independent evaluation criterion, such as distance 

measure, entropy measure, dependency measure and consistency measure [69]. Various feature 

filter based feature selection techniques have been proposed in literature e.g. [70-74]. In this 

section we will discuss some representative filter techniques along with advantages and 

disadvantages of each. 

2.3.2.1 FOCUS 

FOCUS [20] uses breadth-first search to find feature subsets that give consistent labelling of 

training data. It evaluates all the subsets of current size (initially one) and removes ones with least 
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inconsistency. The process continues until it finds a consistent subset or has evaluated all the 

possible subsets. Algorithm, however suffers from two major drawbacks: it is very sensitive to 

noise or inconsistencies in training datasets and algorithm furthermore, due to exponential growth 

of the features power set size, algorithm is not suitable for application in domains having large 

number of dimensions. 

2.3.2.2 Selection Construction Ranking using Attribute Pattern (SCRAP):  

SCRAP [21] performs sequential search to determine feature relevance in instance space. It 

attempts to identify those features that change decision boundaries in dataset by considering one 

object (instance) at a time, these features are considered to be most informative. Algorithm starts 

by selecting a random object, which is considered as first point of class change (PoC). It then 

selects next PoC which usually is the nearest object having different class label. After this nearest 

object to this having a different class label which becomes the next PoC. These two PoCs define a 

neighbourhood and dimensionality of decision boundary between the two classes is defined by the 

features that change between them. If only one feature changes between them, then it is considered 

to be absolutely relevant and is included in feature subset otherwise their associated relevance 

weights (which initially are zero), are incremented. However, if objects in the same class are closer 

than this new PoC and differ only by one feature then relevance weight is decremented. Objects 

belonging to neighbourhood are then removed and this process continues until there is no 

unassigned object to any neighbourhood. Final feature subset is then selected comprising of 

features with positive relevance weight and those that are absolutely relevant. 

 

Major deficiency of the approach is that it regularly chooses large number of features. This 

normally happens in case when weights are decremented. Feature weights remain unaffected if 

more than one features change between a PoC and an object belonging to same class. 

2.3.3 Wrapper Techniques 

One of the criticism suffered by filter approaches is that the filter to select attributes is independent 

of the learning algorithm.  To overcome this issue, wrapper approaches use classifier performance 

to guide the search i.e. the classifier is wrapped in the feature selection process [19].  
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Four popular strategies are [2, 19]: 

 

1. Forward Selection (FS): Starting with an empty feature subset, it evaluates all features one 

by one, selects the best feature and combines this feature with others one by one. 

 

2. Backward Elimination (BE): Initially it selects all features, evaluates by removing each 

feature one by one and continues to eliminate features until it selects the best feature subset. 

 

3. Genetic Search applies genetic algorithm (GA) to search feature space. Each state is 

defined by chromosome that actually represents a feature subset. With this representation, 

implementation of GA for feature selection becomes quite simple. However, the evaluation 

of fitness function i.e. its classification accuracy, can be expensive.  

 

4. Simulated Annealing (SA), in contrast to GA which maintains the population of 

chromosomes (each chromosome represents a feature subset), considers only one solution. 

It implements a stochastic search as there is a chance that some deterioration in solution is 

accepted - this allows a more effective exploration of the search space. 

 

Forward elimination and backward elimination terminate when adding or deleting further features 

do not affect classification accuracy. However these greedy search strategies do not ensure best 

feature subset. GA and SA can be more sophisticated approaches and can be used to explore search 

space in a better way. 

2.3.4 Unsupervised Feature Selection 

Feature selection in unsupervised learning can however be challenging because the success 

criterion is not clearly defined. Various unsupervised feature selection techniques have been 

proposed in literature e.g. [83-87]. Feature selection in unsupervised learning has been classified 

in the same way as in supervised learning, i.e. unsupervised filters and unsupervised wrappers as 

discussed below. 
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2.3.4.1 Unsupervised Filters 

The main characteristics of filter based approaches is that features are selected on the basis of some 

rank or score which remains independent of the classification or clustering process. Laplacian 

Score (LS) is one of the examples of this strategy, which can be used for DR when motivation is 

that the locality is preserved.  The LS uses this idea for unsupervised feature selection [75]. LS 

selects features by preserving the distance between objects both in input and reduced output space. 

This criterion presumes all the features are relevant; the only thing is that they may just be 

redundant.  

 

LS is calculated using a graph G that realises nearest neighbour relationships between input data 

points. A square matrix S is used to represent G where: 

Sij = 0 unless xi and xj are neighbours, in which case: 

 

Here “t” is a bandwidth parameter. L = D - S represents Laplacian of the graph and D = degree of 

diagonal matrix as given below 

 

         (2.4)  

 

LS can be calculated using following calculations: 

         (2.5) 

          (2.6) 

Where mi is the vector of values for the ith feature and 1 is a vector or 1s of length n. 

 

All the features can be scored on this criterion i.e. how efficiently they preserve locality. This idea 

can be appropriate for domains where locality preservation is an effective motivation [75] e.g. 

image analysis. However, it may not be a sensible motivation in case of irrelevant features e.g. in 

analysis of gene expression data or text classification etc.  
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2.3.4.2 Unsupervised Wrappers 

Wrapper based techniques use classification or clustering process as part of feature selection to 

evaluate feature subsets. One such technique is proposed in [76]. Authors have used notion of a 

category unit (CU) [77] to present unsupervised wrapper-like feature subset selection algorithm.  

CU was used as evaluation function to guide the process of creating concepts and can be defined 

as follows: 

      (2.7) 

Here:  

C = {C1,…….Cl,……Ck} is the set of clusters  

F = {F1,…….Fi,……Fp} is the set of features.  

 

CU calculates the difference between the conditional probability of a feature i having value j in 

cluster l and its prior probability. The inner most sum is over r feature values, the middle sum is 

over p features and the outer sum is over k clusters. CU is used as key concept to score the quality 

of clustering in a wrapper like search.  

2.4 Summary 

In this chapter, we have presented an overview of various dimensionality reduction techniques. In 

general, DR techniques can be categorized in two categories: transformation based reduction and 

selection-based reduction. Approaches in transformation-based category reduce dimensions in 

data but transform the data thus by destroying the underlying semantics. Selection based 

techniques, instead of transforming the dimensions, select the features, thus by preserving the data 

semantics. Feature selection can further be categorized into supervised feature selection and 

unsupervised feature selection. Various algorithms have been presented in both of these categories.  
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Chapter 3: Rough Set Theory  

In this chapter the main aspects of Rough-Set theory (RST) are presented. The main objective of 

RST is to reduce data size. RST can reduce dimensionality using information contained within the 

dataset and, unlike other techniques mentioned in chapter 2, it also preserves the meaning of the 

features (i.e. it is semantics preserving). This chapter introduces the notions of indiscernibility, 

rough set and reduct, used to approximate information and to exclude redundant data.  

3.1 Rough Set Theory (RST) 

RST has become a topic of great interest over the past ten years and has been successfully applied 

to many domains by researchers. For a given dataset it is possible to find out a smaller attribute set 

(called reduct) that contains most of the information. So, attributes other than reduct set can be 

removed from dataset with minimal information loss. Pawlak has proposed RST for knowledge 

discovery in datasets [2, 6]. In contrast to conventional discrete sets, RST is based on the concepts 

of upper and lower approximations as discussed below. 

 

In a dataset, there may be redundant attributes which may be eliminated without much of the 

essential information loss. Rough sets [6] let us define strong and weak relevance levels, so that 

redundant attributes may be removed. The concept of the reduct is fundamental in RST. Being a 

subset of attributes, it can distinguish all the objects in a dataset which are discernible with respect 

to the entire attribute set. Another important notion in RST is that of core. A core is common set 

of attributes in all reducts of a dataset. Both reduct and core are important concepts that are used 

in feature selection and dimensionality reduction. Reducts and cores are discussed in more detail 

in the following section. 

3.1.1 Information Systems 

An information system is just like a flat table or view [6] comprising of objects and their attributes. 

An IS ( ) is defined by a pair (U,A) [6] as given below: 

   

Here: 
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U = finite non empty set of objects 

A = attributes of the objects 

Every attribute  has a value set represented by Va as shown below. Each value set of an 

attribute contains all possible values of that attribute. 

 

Table 3.1(a) is an information system = (U,A) where: 

 U = {x1, x2, x3, x4, x5, x6, x7}  

A={Age, Incom}.  

 

Table 3.1(a): Information System. 

Customer Age Income 

X1 35-40 30000-40000 

X2 35-40 30000-40000 

X3 40-45 50000-60000 

X4 25-35 20000-30000 

X5 40-45 50000-60000 

X6 25-35 20000-30000 

X7 25-35 20000-30000 

3.1.2 Decision Systems 

Decision systems (DS) [6] are a special form of Information System having decision attribute also 

called the class of the object. Every object belongs to a specific class. The value of the class 

depends on other attributes called conditional attributes. Formally: 

α = (U, C ∪ {D}) 

Where: 

C = set of conditional attributes 

D = Decision attribute (or class) 

 

Table 3.1(b) shows a decision system with policy as decision attribute (or class). 
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Table 3.1(b): Decision System. 

Customer Age Income Policy 

X1 35-40 30000-40000 Platinum 

X2 35-40 30000-40000 Platinum 

X3 40-45 50000-60000 Gold 

X4 25-35 20000-30000 Silver 

X5 40-45 50000-60000 Gold 

X6 25-35 20000-30000 Silver 

X7 25-35 20000-30000 Gold 

 

3.1.3 Indiscernibility 

A decision system represents all knowledge about a model. This table may be unnecessarily large 

by two ways: there may be identical or indiscernible objects having more than one occurrence and 

there may be superfluous attributes. The notion of equivalence is recalled first. A binary relation 

is called equivalence relation if it is reflexive i.e. an object is in relation with itself xRx, symmetric 

i.e. if xRy, then yRx and transitive i.e. if xRy and yRz then xRz. The equivalence class of an 

element consists of all objects such that xRy. 

 

Let A = (U, C ∪ {D}) be a decision system; indiscernibility defines an equivalence relation 

between objects in A. For any c ∈ C in A, there exists an indiscernibility relation INDA(C):  

 

𝐼𝑁𝐷𝐴(𝐶) = {(𝑂1 = 𝑂2) ∈  𝑈 2 |∀ 𝑐 ∈ 𝐶 𝑐(𝑂1) = 𝑐(𝑂2)}     (3.1) 

 

INDA(C) (also denoted by [x]c) is called a “C-indiscernibility” relation. If two objects (O1,O2) ∈ 

INDA(C), then these objects are indiscernible or indistinguishable w.r.t. C. Considering the Table-

3.1(a), objects x1,x2 are indiscernible w.r.t. attribute “Age”. Similarly objects x3 and x5 are 

indiscernible w.r.t. attribute “Income”. 

 

The subscript is normally omitted if we are sure about which information system is meant. In 

Table-3.1(a): 

 

IND({Age}) = {{x1, x2},{x3,x4},{x5,x6,x7}} 

IND({Income}) = {{x1},{x2},{x3, x4},x5, x6, x7}} 
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3.1.4 Approximations 

Most of the sets cannot be identified unambiguously, so we use approximation. For an information 

system where , we can approximate the decision class X by using the information contained 

in B. The lower and upper approximations are defined as follows [6]: 

 

         (3.2) 

          (3.3) 

 

Lower approximation defines the objects that are definitely member of X with respect to 

information in “B”. Upper approximation on the other hand contains objects that with respect to 

“B” can possibly be members of “X”. The boundary region defines the difference between lower 

and upper approximation.  

 

         (3.4) 

 

Using the decision system shown in Table 3.1(b), the situation can be sketched as Figure 3-1 

below. The lower boundary of “Policy” defines all the equivalence classes that can surely belong 

to class Policy=Gold. Upper boundary defines classes that can possibly belong to Policy=Gold.  

 

Figure 3-1: Approximation Diagram. 

𝐵𝑃𝑜𝑙𝑖𝑐𝑦 = {{𝑋3, 𝑋5}} 

𝐵𝑃𝑜𝑙𝑖𝑐𝑦 = {{𝑋3, 𝑋5}, {𝑋4, 𝑋6, 𝑋7}} 

  

The boundary region is 𝐵𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 − 𝐵𝐼𝑛𝑠𝑢𝑟𝑎𝑛𝑐𝑒 = {{𝑋4, 𝑋6, 𝑋7}}.  As it is non empty, so the 

set is rough set. 
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3.1.5 Positive Region 

Lower approximation is also called positive region. Let P and Q be equivalence relations over U, 

then the positive region can be defined as: 

 

         (3.5) 

Where P is the set of conditional attributes and Q is the Decision class. The positive region is union 

of all equivalence classes in [X]P that are subset of (or are contained by) target set. 

Considering the table 3-1(b), we calculate positive region for set Policy=”Gold” as follows: 

First we will calculate [X]P 

Here: 

P1 = {x1, X2} 

P2= {x3, x5} 

P3= {x4, x6, x7} 

 

Now we calculate [X]Q where Q implies the concept “Insurance=Gold”. 

Here: 

Q = {x3, x5, x7}  

 

It means we cannot distinguish between x3, x5 and x7 with respect to information contained in Q. 

 

Here for concept “Policy = Gold”, only P2 class belongs to Q. So, positive region for Q will be: 

POSP(Q) = {x3, x5} 

3.1.6 Dependency 

Dependency defines how uniquely value of an attribute determines the value of other attribute. 

Dependency defines how uniquely the value of an attribute determines the value of other attribute. 

An attribute “D” depends on other attribute “C” by degree “K” calculated by: 

𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
         (3.6) 

Where 

 

𝑃𝑂𝑆𝐶(𝐷) =  ⋃ 𝐶(𝑋)𝑋 ∈𝑈/𝐷          (3.7) 
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is called positive region of “U/D” w.r.t. “C” as discussed in Section-3.1.5. “K” is called degree of 

dependency and specifies the ratio of the elements that can positively be contained by partition 

induced by D i.e. U/D.  If K = 1, D fully depends on C, for 0 <K< 1, D depends partially on C and 

for K = 0, D does not depend on C. It is clear that if K=1 i.e. D totally depends on C then IND(C) 

⊆ IND (D), in simple words the U/C is finer than U/D.   

 

Finally dependency is calculated as follows: 

 

      𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
         (3.8) 

 

Calculating dependency using positive region requires three steps.  

1. First constructs the equivalence class structure using decision classes.  

2. Construct equivalence class structure using current attribute set. 

3. Calculate positive region using: 

 

Here we provide details of each of these steps. Consider the decision system 𝐷𝑆 =

{{𝑆𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛} ∪ {𝐽𝑜𝑏}} given in Table 3.1(c): 

 

Table 3.1(c): Sample decision 

system 

U  State Qualification Job 

x1 S1  Doctorate Yes 

x2 S1  Diploma No 

x3 S2  Masters No 

x4 S2  Masters Yes 

x5 S3  Bachelors No 

x6 S3  Bachelors Yes 

x7 S3  Bachelors No 

 

We will calculate 𝑘 = 𝛾({𝑠𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}, 𝐽𝑜𝑏) using positive region based approach.  
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Step-1: 

First step is calculating positive region based dependency measure is to calculate equivalence 

classes using decision attribute (“Job” in our case): 

 

Equivalence class structure specifies all the indiscernible objects i.e. the objects which w.r.t. to 

given attributes cannot be distinguished. In our case we will have two equivalence classes as 

follows: 

  

Q1 = {x1,x4,x6} 

Q2 = {x2,x3,x5,x7} 

 

Note that if consider the value of “Job” as “Yes” we cannot distinguish among x1, x4 and x6. 

 

Step-2:  

After calculating the equivalence classes using decision attribute, next step is to calculate 

equivalence class structure for decision attributes (in our case “{State, Qualification”}). 

Calculating equivalence classes using conditional attributes requires comparison of value of each 

attribute for each record to find indiscernible objects. The equivalence classes in our case will be:  

 

P1 = {x1} 

P2= {x2} 

P3= {x3,x4} 

P4={x5,x6,x7} 

 

Step-3:  

 

Positive region specifies which equivalence classes in Step-2 are contained by or subset of 

equivalence classes identified in Step-1. First we will check which classes from P1…P4 are subset 

of Q1 and then we will calculate which classes from P1…P4 are subsets of Q2. This process will 

be used for all classes in step-2 and we will identify all classes that are subset of equivalence 

classes in Step-1.  

 

Here: 

𝑃1 ⊆ 𝑄1  

𝑃2 ⊆ 𝑄2  



27 

 

  

 

No other class from P1,P2, P3 and P4 is subset of either of Q1 and Q2. So the dependency will be: 

 

 𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
=

|𝑃1|+|𝑃2|

|𝑈|
   

 

𝑘 = 𝛾({𝑆𝑡𝑎𝑡𝑒, 𝑄𝑢𝑎𝑙𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛}, 𝐽𝑜𝑏) =
2

7
  

  

This process will take a considerable amount of time for datasets with large numbers of attributes 

and instances. Thus, this factor makes a positive region-based dependency measure a bad choice 

for use in feature selection algorithms against these datasets. 

3.1.7 Reducts and Core 

One way of dimensional reduction is keeping only those attributes that preserve the indiscernibility 

relation i.e. classification accuracy. Using selected set of attributes provides the same set of 

equivalence classes that can be obtained by using the entire attribute set. The remaining attributes 

are redundant and can be reduced without effecting classification accuracy. There are normally 

many subsets of such attributes called reducts. Mathematically reducts can be defined using the 

dependency as follows: 

 

γ(C,D) = γ(C’,D) for C’ ⊆C         (3.9) 

 

i.e. an attribute set C’ ⊆ C will be called reduct w.r.t. D, if the dependency of D on C’ will be same 

as that of its dependency on C. 

 

Calculating the reducts comprises of two steps. First, we calculate dependency of the decision 

attribute on entire dataset. Normally this is “1”, however, for inconsistent datasets, this may be any 

value between “0” and “1”. In second step we try to find the minimum set of attributes on which 

decision attribute has same dependency value as that of its value on entire set of attributes. In this 

step we may use any Rough Set based feature selection algorithm. It should be noted that there 

may be more than one reduct sets in a single dataset. 

 

We will now explain it with the help of an example. Consider the table-3.2 given below. 



28 

 

Table 3-2: Sample decision system  

U a b c D 

X1 1 1 3 x 

X2 1 2 2 y 

X3 2 1 3 x 

X4 3 3 3 y 

X5 2 2 3 z 

X6 1 1 2 x 

X7 3 3 1 y 

 

For our first step, we calculate dependency of decision attribute “D” on conditional attributes 

C={a,b,c}. Here we find that: 

 

γ(C,D) = 1 

 

For the second step, we have to find the attribute subsets such that condition mentioned in equation 

(8) is satisfied. Here we see that we may have two subsets that satisfy the condition. 

 

γ({a,b},D) = 1 

γ({b,c},D) = 1 

Representing them with R1 and R2: 

R1={a,b} 

R2={b,c} 

 

So either of R1 and R2 provide the same classification accuracy as provided by entire of the 

conditional attribute set thus can be used to represent entire dataset. It is important that reduct set 

should be optimal i.e. it should contain minimum number of attributes to better realize its 

significance, however, finding optimal reduct is a difficult task as it requires exhaustive search 

with more number of resources. Normally exhaustive algorithms are used to find reducts in smaller 

datasets, however, for datasets beyond smaller size, the other category of algorithms i.e. random 

or heuristics based search are used, but the drawback of these algorithms is that they do not produce 

optimal result. So getting the optimal reducts is a trade-off between the resources and reduct size. 

Core is another important concept in Rough Set Theory. Normally the reduct set is not unique in 

a dataset i.e. we may have more than one reduct sets. Although reduct may contain the same 
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amount of information otherwise represented by entire attribute subset, but even in reduct there 

are attributes that are more important than others i.e. these attributes cannot be removed without 

effecting the classification accuracy of the reducts. Mathematically it can be written as 𝐶𝑜𝑟𝑒 =

 ⋂ 𝑅𝑖
𝑛
𝑖=1  where Ri is ith  Reduct Set. So, core is the attribute or set of attributes common to all reduct 

sets. In our example explained above it is clear that the attribute {b} is common in all reduct sets, 

so, {b} is core attribute here. Manually it can be seen that removing attribute {b} from either of 

the reducts effects dependency of decision class on rest of the attributes in that reduct and thus 

effecting the classification accuracy of the reduct. 

 

3.2 Summary  

RST provides many concepts to thoroughly analyse datasets and find irrelevant and redundant 

features. Given a dataset with discretized attribute values, it is possible to find a subset of the 

original attributes using RST that are the most informative: all other attributes can be removed 

from the dataset with minimum information loss. Unlike statistical correlation-reducing 

approaches, this requires no human input or intervention. Most importantly, it also retains the 

semantics of the data, which makes the resulting models more transparent to human scrutiny. 
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Chapter 4: Rough Set Based Feature 

Selection Techniques 

Rough Set Theory has been successfully used for feature selection techniques. The underlying 

concepts provided by RST help find representative features by eliminating the redundant ones. In 

this chapter we will present various feature selection techniques which use RST concepts. 

4.1 QuickReduct 

In QuickReduct (QR) [2], authors attempt to develop a forward feature selection mechanism 

without exhaustively generating all possible subsets. The algorithm starts with an empty set and 

adds attributes one by one which result in maximum increase in degree of dependency. Algorithm 

continues until maximum dependency value is achieved. After adding each attribute, dependency 

is calculated and attribute is kept if it results in maximum increase in dependency. If at any stage 

the value of selected attribute set becomes equal to that of the entire dataset algorithm terminates 

with current selected subset as reduct. Figure-4.1 show the pseudo code of the algorithm.  

 
Figure-4.1:Quickreduct algorithm taken from [2] 

 

Algorithm uses positive region based approach for calculating dependency at each step-5 and 8. 

However, using positive region based dependency measure requires three steps i.e. calculating 

equivalence classes using decision attribute, calculating dependency classes using conditional 
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attributes and finally calculating positive region. Using these three steps can be computationally 

expensive.  

 

REVERSEREDUCT [2] is another strategy for attribute reduction, however, it uses backward 

elimination in contrast with forward feature selection mechanism.  Algorithm starts by considering 

entire set of conditional attributes as reduct. It then removes one attributes at a time and calculates 

dependency until the removal of any further attribute becomes impossible without introducing 

inconsistency. Algorithm also suffers same problem as that faced by QuickReduct. It uses positive 

region based dependency measure and is equally unsuitable for larger datasets. 

4.2 Hybrid Feature Selection Algorithm Based On Particle Swarm 

Optimization (PSO): 

In [23] Hanna et al. presented a supervised hybrid feature selection algorithm based on Particle 

Swarm Optimization (PSO) and RST. Algorithm computes reducts without exhaustively 

generating all possible subsets. Algorithm starts with an empty set and adds attributes one by one.  

It constructs a population of particles with random position and velocity in S dimensions. In the 

problem space. It then computes fitness function of each particle using RST based dependency 

measure. The feature with highest dependency is selected and the combination of all other features 

with this one are constructed. Fitness of each of these combination is selected. If the fitness value 

of this particle is better than previous best (pbest) value, this is selected as pbest. Its position and 

fitness are stored. It then compares the fitness of current particle with population’s overall previous 

best fitness (gbest). If it is better than gbest then gbest position is set to current the current particle’s 

position with the global best fitness updated. This position represents the best feature subset 

encountered so far, and is stored in R. algorithm then updates velocity and position of each particle. 

It continues until stopping criteria is met which is maximum number of iterations in normal case. 

According to the algorithm, the dependency of each attribute subset is calculated based on the 

dependency on decision attribute and the best particle is chosen. Algorithm uses positive region 

based dependency measure and is enhancement of QuickReduct algorithm.  

 

Velocity of each particle is represented using positive number from 1 to Vmax. It implies that how 

many bits of a particle should be changed to be the same as that of global best position. The number 



32 

 

of bits different between two particles imply the difference between their position e.g.  if Pgbest = 

[1,0,1,1,1,0,1,0,0,1], Xi = [0,1,0,0,1,1,0,1,0,1] then the difference between Pgbest and Xi is Pgbest 

− Xi=[1,−1,1,1,0,−1,1,−1,0,0]. ‘1’ means that this bit (each “1” represents the presence of feature 

and “0” represents absence) should be selected as compared to the global best position and “-1” 

means that this bit should not be selected. After velocity is updated, next task is to update position 

by new velocity. If the new velocity is V, and the number of different bits between the current 

particle and gbest is xg, then position is updated as per following conditions: 

 

•V ≤ xg. In this case random V bits, which are different from that of gbest, are changed. So 

the particle will move towards best position while keeping its exploration ability. 

• V > xg. In this case, apart from the bits to be the same as that of gbest, (V − xg) further 

bits should also be randomly changed. Hence, after the particle reaches the global best 

position, it keeps on moving some distance toward other directions, which gives it further 

exploration ability.  

 

Figure-4.2 shows the pseudo code of PSO-QR algorithm. 
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Figure-4.2: PSO-QR taken from [23] 
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4.3 Genetic Algorithm 

In [24] authors present a rough set based genetic algorithm (GA) for feature selection. The selected 

set of features was provided to artificial neural network classifier for further analysis. The 

algorithm uses positive region based dependency measure as fitness for generated candidates in 

proposed system. The proposed system uses RST based feature dependency value of each 

chromosome for finding the high performance optimal reducts. Stopping criterion was defined on 

the based on following equation: 

𝑘 = 𝛾(𝐶, 𝐷) =
|𝑃𝑂𝑆𝐶(𝐷)|

|𝑈|
 ≥  𝛼 

 

The candidates equal or greater than were accepted as result. Following equation was used to 

calculate solution addition type added to the solution: 

𝑅𝑆𝐶% = 100% − (𝐵𝑆𝐶% + 𝑊𝑆𝐶%) 

Where: 

RSC = Random Selected Chromosomes 

BSC = Best Solution Candidates 

WSC = Worst Solution Candidates 

 

Number of generations in each generation pool were 2*n where “n” is user defined parameter and 

can be changed by user for optimal performance and specifying the number of generations. In 

proposed version, these 2*n (2, 4, 6… n) generations were randomly initialized and used for 

generating the following generations. The last 2*n (4, 6, 8…) generations were used to construct 

the gene pool used to determine the intermediate region used for crossover and mutation operator. 

For crossover, order based and partially matched crossover methods were used. In order based 

method, random number of solution points are selected from parent chromosomes. In first 

chromosome selected gene will remain at its place whereas in second chromosome, the 

corresponding gene will be beside that of first chromosome that occupy the same place. Order 

based crossover method is shown in Figure-4.3 and 4.4. Figure-4.3 shows the selected 

chromosomes and Figure-4.4 shows the resultant chromosomes. 
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Figure-4.3: Selected Chromosomes for order based crossover method 

 

 
Figure-4.4: Selected Chromosomes for order based crossover method 

 

In partially matched method (PMX), two crossover points are randomly selected to give matching 

selection. Position wise exchange takes place then. It affects cross by position-by-position 

exchange operations. It is also called partially mapped crossover as parents are mapped to each 

other. Figure-4.5 and 4.6 show the process of partially mapped crossover method. 

  

 
Figure-4.5: Selected Chromosomes for partial mapped crossover method 

 

 
Figure-4.6: Chromosomes resulted after crossover operator 

 

For mutation, inversion and two change mutation operators were used. In inversion method a 

subtour is randomly selected by determining two points in chromosome and gene are inverted 

between selected points where as in adjacent two input change mutation method, adjacent two 

genes are selected and place of genes are inverted. Figure 4.7 and 4.8 show both mutation methods: 
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Figure-4.7: Inversion mutation method 

 

 

Figure-4.8: Adjacent two change mutation method 

 

4.4 Incremental Feature Selection Algorithm (IFSA): 

Qian et al. [25] present an incremental feature selection algorithm (IFSA) for feature subset 

selection. It starts with an original feature subset P. It then incrementally computes the new 

dependency function and evaluates P for either it is the required feature subset or not. If the new 

dependency function under P is equal to that under the whole feature set, P is also the new feature 

subset; otherwise, a new feature subset is computed from P. Algorithm proceeds to gradually select 

features with highest significance from C - P and adds them to feature subset. At final stage, 

algorithm removes the redundant features to ensure optimal feature subset output. Finally, 

redundant features are removed to ensure the optimal output in redundancy removing step.  

 

Proposed solution compares feature significance to select the surviving features. Algorithm uses 

the following definitions to measure significance of an attribute: 

 

Definition-1: Let DS = (U,A = C ∪ D) be a decision system, for B ⊆ C and a ∈ B. The significance 

measure of attribute “a” is defined by: 

sig1(a,B,D) = γB(D) − γB−{a}(D) 

If sig1(a,B,D) = 0, then the feature “a” can be removed otherwise not. 

 

Definition-2: Let DS = (U,A = C ∪ D) be a decision system, for B ⊆ C and a /∈ B. The significance 

of feature “a” is defined by: 

sig2(a,B,D) = γB∪{a}(D) − γB(D) 
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Figure-4.9 shows the pseudo code of the algorithm. 

 
Figure-4.9: IFSA taken from [25] 
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4.5 Feature Selection Method using Fish Swarm Algorithm (FSA): 

Chen et al. [26] present rough set based feature selection method using fish swarm algorithm 

(FSA). As first step, algorithm constructs the initial swarm of fish with each fish, searching for 

food, represents a subset of features. With passage of time, these fish change their position to 

search for food, communicate with each other to find a locally and globally best position, the 

position with minimum high density of food. After a fish achieves maximum fitness, it perishes 

by getting rough set Reduct. The next iteration starts after all the fish are perished. Process 

continues until it gets the same reducts in three consecutive iterations or maximum iteration 

threshold is met. Figure-4.10 shows the flow of FSA process. 

 

 
Figure-4.10: Flow of FSA 

 

 Some underlying concepts that must be considered before applying FSA to feature selection are: 
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4.5.1 Representation of Position: 

A fish position is represented by binary bit string of length N where N is total number of features. 

The presence of a feature in a fish is represented by binary bit “1” and absence of a feature is 

represented by “0”. E.g. if N=5, the following fish shown in figure-4.11 represents the presence of 

first, third and fourth feature from dataset 

 

1 0 1 1 0 
 

Figure-4.11: a sample fish 

 

4.5.2 Distance and centre of fish: 

Suppose two fish are represented by two bit strings X, Y representing the position of these two 

fish, hamming distance will be calculated by X XOR Y i.e. the number of bits at which strings are 

different. Mathematically: 

 

Where “ ” is modulo-2 addition, xi; yi  {0, 1}. The variable xi represents a binary bit in X. 

 

4.5.3 Position Update Strategies: 

In each iteration, every fish starts with a random position. Fish change their position one step 

according to searching, swarming and following behaviour. Authors have used fitness function to 

evaluate all of these behaviours. The behaviour with maximum fitness value updates the next 

position. 

 

4.5.4 Fitness Function: 

Following fitness function was used in the algorithm: 
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Where 𝛾𝑅(𝐷) is dependency of decision attribute “D” on “R” and R is number of “1” bits in a fish 

and |C| is the number of features in dataset.  

 

4.5.5 Halting Condition: 

When a fish achieves maximum fitness it is perished by getting rough set reduct. Next iteration 

starts after all the fish are perished. Algorithm stops when maximum iteration threshold is met or 

same feature reduct is obtained under three consecutive iterations.  

4.6 Feature Selection Method Based on QuickReduct and Improved 

Harmony Search Algorithm (RS-IHS-QR): 

Inbarani et al. [27] propose a feature selection method based on QuickReduct and improved 

harmony search algorithm (RS-IHS-QR). This algorithm emulates the music improvisation 

process where each musician improvises their instrument’s pitch by searching for a perfect state 

of harmony. The algorithm stops when it reaches the maximum number of iterations or finds a 

harmony vector with maximum fitness. It uses rough set based dependency measure as its objective 

function to measure the fitness of harmony vector which again is a performance bottleneck for 

larger datasets. 
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Table-4.1 shows the summary of all the rough set based approaches discussed so far. 

Table-4.1: Related algorithms based on RST 

Algorithm Technique used Advantages Disadvantages 

Supervised hybrid 

feature selection 

based on PSO and 

rough sets for 

medical diagnosis 

[22] 

 

Particle swarm 

optimization and 

rough set based 

dependency 

measure. 

PSO is an advance heuristics 

based algorithm to avoid 

exhaustive search 

Conventional dependency based 

measure is a performance 

bottleneck. 

Rough set based 

genetic algorithm 

[24]. 

 

 

Conventional 

positive region 

based dependency 

calculation. 

It is Based on randomness so the 

procedure may find reducts in 

few attempts. 

Uses conventional positive region 

based dependency measure. 

Quick Reduct 

approach for feature 

selection [23]. 

 

Rough set based 

dependency 

measure. 

Attempts to calculate reducts 

without exhaustively generating 

all possible subsets. 

Uses conventional dependency 

based measure, which is time 

consuming task. 

ResverseReduct 

[23]. 

 

 

Rough set based 

dependency 

measure. 

Backward elimination is utilized 

without exhaustively generating 

all possible combinations. 

Dependency is calculated using 

conventional positive region based 

approach. 

An Incremental 

Algorithm to Feature 

Selection in Decision 

Systems with the 

Variation of Feature 

Set [25] 

 

Incremental feature 

selection using 

rough set based 

significance 

measure of 

attributes. 

Presents Feature selection for 

dynamic systems where the 

datasets keep on increasing with 

time. 

Conventional dependency measure 

is used to measure attribute 

significance. Measuring 

significance requires measuring 

dependency twice, once with 

attribute and then without attribute. 

Fish Swarm 

Algorithm [26] 

Rough set based 

dependency used 

with fish swarm 

method for feature 

selection. 

 

Attempts to find rough set 

reducts using the swarm logic 

where swarms can discover best 

combination of features. 

Conventional dependency based 

measure is again a performance 

bottleneck. 

Rough Set Improved 

Harmony Search 

Quick Reduct [27] 

Rough set based 

dependency 

measure used with 

harmony search 

algorithm for 

feature selection 

Integrates rough set theory with 

“improved harmony search” 

based alsorithm with   

QuickReduct for feature 

selection. 

Uses conventional dependency 

based measure, which is time 

consuming. 

 

4.7 Alternative to Positive Region based Methods 

Many approaches have been proposed in literature to overcome computationally expensive task of 

calculating positive region. In this section we present few representative of these approaches. 
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In [28], Yu et al. proposed a “Compact Discernibility Information tree” also called CDI-tree for 

attribute reduction; The CDI-tree can map all nonempty elements to same path can allow them to 

share same prefix, which is recognized as a compact structure for storing non-empty elements in 

discernibility matrix. A heuristic algorithm, based on CDI-tree, is also proposed. As an 

approximate strategy, algorithm deletes the least important attribute in each iteration. The task is 

performed to ensure that only important attributes are kept by algorithm. At the same time, the 

algorithm uses to delete all paths including core node in each of iterations as well. However, their 

approach reduces execution time only by 44.14% as compared to its counterpart. 

 

In [32], In-Kyoo et al. propose information-theoretic dependency roughness (ITDR). ITDR 

considers information-theoretic attributes dependencies degree of categorical-valued information 

systems. A new algorithm minimum-minimum roughness (MMR) based on rough set theory was 

also proposed. However, the execution time required for calculating ITDR is not provided.  

 

In [29], Yuhua et al. propose an accelerator approach called forward approximation which can be 

used to accelerate algorithms of heuristic attribute reduction. Based on this framework they have 

also presented an improved heuristic feature selection algorithm (FSPA). Through the use of the 

accelerator, few heuristic fuzzy-rough feature selection algorithms have also been enhanced. 

However, their approach reduced the execution time of fuzzy positive region reduction approach 

by almost 50.4% and that of Fuzzy condition entropy based approach by almost 45% as compared 

to positive region.  

 

In [30], Anhui et al. present a matrix based algorithm for calculating positive region, they have 

proposed the minimal and maximal descriptions in a covering decision system which can be easily 

obtained by the matrix-based methods. These descriptions are then employed to construct a new 

discernibility matrix. It is also pointed that use of minimal and maximal descriptions, the total 

number of nonempty discernibility sets in discernibility matrix can be reduced. However the 

execution time comparison of calculating matrix based positive region with that using original 

rough set method is not provided.  
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In [31] Essam presents an improved harmony search algorithm where feature selection was 

performed using discernibility matrix and fuzzy lower approximation. A special fitness function 

was defined fusing the classical ranking methods with the fuzzy-rough method, and applying 

binary operations to speed up implementation. However, the proposed approach reduces the 

execution time by almost 51%.  The above discussed approaches are summarized in table-4.2 given 

below:  

Table-4.2: summary of approaches to reduce the execution time of positive region 

Algorithm Technique used Results 

Minimal attribute reduction with 

rough set based on compactness 

discernibility information tree 

[15] 

 

Discernibility information tree For twelve datasets, the algorithm reduced 

execution time only by 44.14%. 

Fuzzy-rough feature selection 

accelerator [27] 

Forward approximation For six datasets, approach reduced the 

execution time of fuzzy positive region 

reduction approach by almost 50.4% and 

that of Fuzzy condition entropy based 

approach by almost 45%. 

 

Matrix-based set approximations 

and reductions in covering 

decision information systems 

[31] 

 

Matrix-based Results not compared with that of original 

method 

Finding a Fuzzy Rough Set 

Reduct Using an Improved 

Harmony Search [7] 

 

Discernibility matrix For eighteen datasets, execution time is 

reduced by almost 51%. 

Rough set approach for clustering 

categorical data using 

information-theoretic 

dependency measure [23] 

Information-theoretic dependency Execution time of calculating ITDR is not 

provided 

 

 

4.8 Summary 

In this section we have presented feature selection algorithms using rough set based positive region 

and alternate ones. Positive region based approaches use conventional dependency measure 

comprising of three steps to measure the fitness of an attribute for being selected for reduct set. 

However, using positive region is computationally expensive approach that makes these 

approaches inappropriate to use for larger datasets. Alternate approaches are the one that don’t use 

positive region. However, application of such approaches has only been tested against smaller 

datasets which raises question for their appropriateness for larger datasets.  
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Chapter 5: Dependency Classes 

Majority of rough set based feature selection approaches use positive region based dependency 

measure as underlying criteria for feature selection. However, the problem with this approach is 

calculation of positive region is a computationally expensive task. In this section we will discuss 

the proposed dependency classes to show how they can overcame the limitations of positive region. 

5.1 Proposed Dependency Classes 

Calculating the dependency of an attribute D on C requires scanning of the dataset and calculating 

the positive region of D w.r.t. C, which is a time consuming job. We have developed an alternate 

way to calculate dependency comprising of dependency classes. A dependency class is a heuristic 

which defines how the dependency measure changes as we scan new records during traversal of 

the dataset.  

 

We start with first record and calculate the dependency of decision attribute on conditional attribute 

based on the derived heuristics. Then after adding each single record the dependency of a particular 

attribute is refreshed based on to which decision class, the value of that attribute leads to. On the 

basis of the heuristics used by dependency classes, two types of dependency classes are proposed 

as follows: 

 Incremental dependency classes  

 Direct dependency classes 

5.1.1 Incremental Dependency Classes (IDC) 

Incremental dependency classes comprise of four rules where each rule defines a class that governs 

how dependency of decision attribute “D” on “C” changes as we read each new record.  

 

We will explain each incremental dependency class with the help of example. Consider the 

following decision system shown in Table-5.1 taken from [31]: 
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Table-5.1: Decision System example 
U  a' b' c' d' D 

A M L 3 M 1 

B M L 1 H 1 

C L L 1 M 1 

D L R 3 M 2 

E M R 2 M 2 

F L R 3 L 3 

G H R 3 L 3 

H H N 3 L 3 

I H N 2 H 2 

J H N 2 H 1 

 

 

Here: 

C = {a’, b’, c’, d’} 

D = {D} and |U| = 10 

Initially we start with the |U| = 6 where U = {a, b, d, e, f, g}. We calculate the dependency of “D” 

on all attributes present in C (given at the end of each column in Table-5.2). 

 

Table-5.2: Decision System example 

U  a' b' c' d' D 

A M L 3 M 1 
B M L 1 H 1 
D L R 3 M 2 
E M R 2 M 2 
F L R 3 L 3 

G H R 3 L 3 

 0.16667 0.3333 0.3333 0.5   

 

Now we define different classes through which the dependency can be calculated, after adding a 

new record. 

5.1.1.1 Existing Boundary Region Class 

For an attribute a', if same value of attribute leads to different decision classes for example, in 

table-5.3, a’(L)->2,3 (i.e. the value “L” leads to decision class “2” and “3”)  then adding a new 

record with same value of a’ decreases the dependency of decision on that attribute. Adding a row 

in this case will simply decreases the dependency. 
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For example, in Table-5.3,  

γ(a′, D) =   
1

6
         

After adding new record i.e. object “C”, the new dataset with new dependency values are shown 

in Table-5.3 

Table-5.3: adding new object “C” 

U  a' b' c' d' D 

A M L 3 M 1 
B M L 1 H 1 
C L L 1 M 1 
D L R 3 M 2 

E M R 2 M 2 
F L R 3 L 3 

G H R 3 L 3 

 0.14286 0.4286 0.4286 0.4286   

 

Before adding new record: a'(L)-> 2,3 (in Table-5.3) 

After adding new record: a'(L)-> 1,2,3 (in Table-5.4) 

So by adding new record, the value “L” of attribute “a’” which initially was leading to two decision 

classes, now leads to three decision classes, so γ(a’,D) becomes: 

 γ(a′, D) =   
1

7
         

 

5.1.1.2 Positive Region Class 

For an attribute a', if adding a record, does not lead to a different decision class for same value of 

that attribute, then dependency will increase.  

For example in Table-5.3, b’(L)->1. Previous dependency value was 2/6. After adding new row 

(Object “C” as shown in table-5.4), b’(L)->1 sustains i.e. the value “L” of attribute b’ uniquely 

identifies the decision class, so the new dependency will be: 

γ(b′, D) =   
3

7
          

 

 

5.1.1.3 Initial Positive Region Class 

For an attribute a', if the value appears in the data set for the first time for that attribute, then 

dependency increases: 
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For example, adding new record (object “I”) as shown in Table-5.4: 

  

Table-5.4: adding new object “I” 

U  a' b' c' d' D 

A M L 3 M 1 
B M L 1 H 1 
C L L 1 M 1 
D L R 3 M 2 
E M R 2 M 2 
I H N 2 H 2 
F L R 3 L 3 

G H R 3 L 3 
 0/8 0.5 0.5 0.25  

 

b’(N)->2. Initially the value “N” for b’ attribute was not present. Now adding the record for this 

value of b’ leads to new dependency value as follows: 

 γ(b, D) =  
4

8
         

 

5.1.1.4 Boundary Region Class 

For an attribute a', if same value (which was leading to unique decision previously) of attribute 

leads to different decision, then adding the new record reduces the dependency.  

 

For example adding a record “H” in Table-5.5: 

 

Table-5.5: adding new object “H” 

U  a' b' c' d' D 

A M L 3 M 1 
B M L 1 H 1 
C L L 1 M 1 

D L R 3 M 2 
E M R 2 M 2 
I H N 2 H 2 
F L R 3 L 3 
G H R 3 L 3 
H H L 3 L 3 

 0 1/9 0.5 0.25   
 

The new dependency γ(b’,D) will be: 
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 γ(c, D) =  
1

9
         

Which was γ(c, D) =  
3

9
 before adding record “H”. 

Table-5.6 shows the summary of all decision classes: 

Table-5.6: Summary of IDC 

Decision 

class 

Definition Initial 

attribute 

value 

After adding 

new record 

Effect on 

dependency 

Existing 

Boundary 

region class 

If same value of attribute leads 

to different decision classes, it 

decreases the dependency 

 

a’(L)->2,3 a'(L)-> 1,2,3 Decreases 

 

 

Positive 

region class 

If adding a record, does not 

lead to a different decision 

class for same value of that 

attribute, then dependency will 

increase. 

 

b’(L)->1 b’(L)->1 Increases 

Initial 

Positive 

region class 

If the value appears in the data 

set for the first time for that 

attribute, then dependency 

increases. 

 

- b’(N)->2 Increases 

Boundary 

region class 

If same value (which was 

leading to unique decision 

previously) of attribute leads 

to different decision, then 

adding the new record reduces 

the dependency 

b’(L)->1 b’(L)->1,3 Decreases 

 

 

5.1.1.5 Mathematical representation of IDC 

Now we provide mathematical representation of IDC and an example about how to calculate 

IDC. Mathematically: 

 

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ 𝛾′𝑘

𝑁
𝑘=1          (5.1) 

Where: 

 

𝛾′𝑘 =

[
 
 
 
 
   1 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠                            

   1 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎𝑛 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠            

−𝑛 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 𝑙𝑒𝑎𝑑𝑒𝑠 𝑡𝑜 𝑎 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦 𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠                         

0 𝑖𝑓 𝑉{𝑎𝑡𝑡},𝑘 ℎ𝑎𝑠 𝑎𝑙𝑟𝑒𝑎𝑑𝑦 𝑙𝑒𝑎𝑑 𝑡𝑜 𝑏𝑜𝑢𝑛𝑑𝑎𝑟𝑦  𝑟𝑒𝑔𝑖𝑜𝑛 𝑐𝑙𝑎𝑠𝑠  ]
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Where: 

 

𝛾({𝑎𝑡𝑡}, 𝐷) 𝑖𝑠 dependency of attribute “D” on attribute {att} 
 

{att} is current attribute under consideration 

 

D is decision attribute (Decision Class) 

 

𝛾′𝑘is dependency value contributed by object “k” for attribute {att}  
 

V{att},k is value of attribute {att} for object “k” in dataset 

 

n is total number of previous occurrences of V{att},k  

 

N is total number of records in dataset 

 

5.1.1.6 Example: 

Following example shows how IDC calculates dependency. We read each record and identify its 

dependency class. Based on the class we decide the factor by which dependency will be added in 

overall dependency value. We will consider dataset given in table-5.2. Using IDC: 

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ 𝛾′𝑘

𝑁

𝑘=1

 

Consider the attribute {a’}, we read first three records i.e. object “A”, as it appears for the first 

time, so it belongs to “Initial Positive Region” class, thus we will add “1” to overall dependency 

value. Reading objects “B” and “C” lead to “Positive region” class, so we will add “1” for both. 

Reading “D”, the value “L” now leads to decision class “2” (previously its one occurrence was 

leading to decision class “1”), so it belongs to “Boundary region” class and thus we will add the 

value “-1” to overall dependency. Reading object “E” at this stage, value “M” belongs to 

“Boundary region” class and it had two occurrences before, so, we will add “-2” in overall 

dependency. Reading object “F”, note that it has already lead to “Boundary region” class, so we 

will add “0” to overall dependency and so on. 

𝛾({𝑎′}, 𝐷) =
1

10
∑ 𝛾′

𝑘
=

10

𝑘=1

 (1 + 1 + 1 + (−1) + (−2) + 0 + 1 + 1 + (−2) + 0) =
0

10
= 0 

Similarly dependency of “D” on {b’, c’, d’} will be as follows: 

𝛾({𝑏′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + 1 + 1 + (−2) + 0 + 1 + (−1) + 0) =
3

10
 

𝛾({𝑐′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + (−1) + 1 + 0 + 0 + 0 + 1 + (−2)) =
2

10
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𝛾({𝑑′}, 𝐷) =
1

10
∑ 𝛾′𝑘 =

10

𝑘=1

 (1 + 1 + 1 + (−2) + 0 + 1 + 1 + 1 + (−1) + 0) =
3

10
 

Note that if a value of an attribute has already lead to boundary region class than adding a same 

value will simply be reflected by adding “0” as dependency. 

 

5.1.2 Direct Dependency Classes (DDC) 

Direct dependency classes are alternate to IDC for calculating dependency directly without 

involving positive region and exhibit almost same performance as shown by IDC. DDC determines 

the number of unique/non-unique classes in a dataset for an attribute C.  A unique class represents 

the attribute values that lead to unique decision class throughout dataset, so this value can be used 

to precisely define decision class.  

 

For example in Table-5.3 the value “L” of attribute b’ is unique class as all of its occurrences in 

the same table lead to a single/unique decision class (i.e. “1”).  Non-unique classes represent the 

attribute values that lead to different decision classes, so they cannot be precisely used to 

determine the decision class. For example in Table-5.3, the value “R” of attribute b’ represents 

non-unique class as some of its occurrences lead to decision class “2” and some occurrences lead 

to decision class “3”.  

 

Calculating unique/non-unique classes directly lets us avoid complex computations of positive 

region. The basic idea behind the proposed approach is that number of unique classes increase 

dependency and non-unique classes decrease dependency. For a decision class D, the dependency 

K of D on C is shown in Table-5.7. 

 

Table-5.7: How DDC calculates dependency 

Dependency No of unique/non-unique classes 

0 If there is no unique class 

1 If there is no non-unique class 

n Otherwise where 0 < n < 1 

 

The dependency using DDC approach can be calculated by the following formula: 
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If we consider the number of unique classes: 

𝛾({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑ (1)𝑚

𝑖=1                         (5.2) 

    

If we consider non-unique classes: 

𝛾({𝑎𝑡𝑡}, 𝐷) = 1 −
1

𝑁
∑ (1)𝑛

𝑖=1          (5.3) 

Where: 

𝛾({𝑎𝑡𝑡}, 𝐷) 𝑖𝑠 𝑑ependency of attribute “D” on attribute {att} 

{att} is current attribute under consideration  

D is decision attribute (Decision class) 

m is total number of values leading to unique decision classes 

n is total number of values leading to non-unique decision classes 

N is total number of records in dataset 

5.1.1 Example     

We consider the decision system given in table-5.2. 

As per definitions of unique dependency classes: 

({𝑎𝑡𝑡}, 𝐷) =
1

𝑁
∑(1)

𝑚

𝑖=1

 

If consider attribute {b’}, there are three unique dependency classes i.e. there are three 

occurrences of value “L” that lead to unique decision class, so: 

𝛾({𝑏′}, 𝐷) =
1

10
∑(1)

3

𝑖=1

 

𝛾({𝑏′}, 𝐷) =
1

10
(1 + 1 + 1) =  

3

10
 

 

Similarly for attribute {c’}: 

𝛾({𝑐′}, 𝐷) =
1

10
∑(1)

2

𝑖=1

 

𝛾({𝑐′}, 𝐷) =
1

10
(1 + 1) =  

2

10
 

 

On the other hand if we consider non-unique dependency classes: 
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𝛾({𝑎𝑡𝑡}, 𝐷) = 1 −
1

𝑁
∑(1)

𝑛

𝑖=1

 

If we consider attribute “b’”, note that there are seven non-unique dependency classes (four 

occurrences of value “R” lead to two decision classes and three occurrences of value “N” lead to 

three decision classes), so: 

𝛾({𝑏′}, 𝐷) = 1 −
1

10
∑(1)

7

𝑖=1

= 1 −
1

10
(1 + 1 + 1 + 1 + 1 + 1 + 1) =  

3

10
 

 

Similarly: 

 

𝛾({𝑐′}, 𝐷) = 1 −
1

10
∑(1)

8

𝑖=1

= 1 −
1

10
(1 + 1 + 1 + 1 + 1 + 1 + 1 + 1) =  

2

10
 

 

Note that there are three unique decision classes in attribute {b’} and seven in {c’}. 

For a decision system: 

No of unique classes +  no of nonunique classes =  size of universe 

So we either need to calculate number of unique classes or non-unique classes. 

The algorithm for DDC is shown in Figure-5.1. 

 
Function FindNonUniqueDependency 

Begin 

InsertInGrid(X1) 

For i=2 to TotalUnivesieSize 

     IfAlreadyExistsInGrid(Xi) 

            Index = FindIndexInGrid(Xi) 

            If DecisionClassMatched(index,i) =   False 

               UpdateUniquenessStaus(index) 

            End-IF 

    Else 

               InsertInGrid(Xi) 

   End-IF 

 

Dep=0 

 

For i=1 to TotalRecordsInGrid 

  If Grid(I,CLASSSTATUS)  = 1 

     Dep= Dep+ Grid(i,INSTANCECOUNT) 

 End-IF 

Return (1-Dep)/TotalRecords 

End Function 

 

Function InsertInGrid(Xi) 

For j=1 to TotalAttributesInX 

  Grid(NextRow,j) = Xi
j 

End-For 

  Grid(NextRow,DECISIONCLASS) = Di 

  Grid(NextRow, INSTANCECOUNT) = 1 

  Grid(NextRow, CLASSSTATUS) = 1 // 1 => uniqueness 

Function FindUniqueDependency 

Begin 

InsertInGrid(X1) 

For i=2 to TotalUnivesieSize 

     IfAlreadyExistsInGrid(Xi) 

            Index = FindIndexInGrid(Xi) 

            If DecisionClassMatched(index,i) =   True 

               UpdateUniquenessStaus(index) 

            End-IF 

    Else 

               InsertInGrid(Xi) 

   End-IF 

 

Dep=0 

 

For i=1 to TotalRecordsInGrid 

  If Grid(i,CLASSSTATUS)  = 0 

     Dep= Dep+ Grid(i,INSTANCECOUNT) 

 End-IF 

Return Dep/TotalRecords 

End Function 

 

Function InsertInGrid(Xi) 

For j=1 to TotalAttributesInX 

  Grid(NextRow,j) = Xi
j 

End-For 

  Grid(NextRow,DECISIONCLASS) = Di 

  Grid(NextRow, INSTANCECOUNT) = 1 

  Grid(NextRow, CLASSSTATUS) = 1 // 1 => uniqueness 
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End-Function 

 

Function IfAlreadyExistsInGrid(Xi) 

  For i=1 to TotalRecordsInGrid 

      For j=1 to TotalAttributesInX 

       If Grid(i,j) <> Xj 

                 Return False 

      End-For 

  End-For 

Return True 

End-Function 

 

Function FindIndexInGrid(Xi) 

  For i=1 to TotalRecordsInGrid 

      RecordMatched=TRUE 

      For j=1 to TotalAttributesInX 

       If Grid(i,j) <> Xj 

                 RecordMatched=FALSE 

      End-For 

   If RecordMatched= TRUE 

      Return j 

   End-If 

  End-For 

Return True 

End-Function 

 

Function DecisionClassMatched(index,i) 

    If Grid(index, DECISIONCLASS) = Di 

       Return TRUE 

    Else 

       Return False 

   End-If 

End-Function  

 

Function UpdateUniquenessStaus(index) 

   Grid(index, CLASSSTATUS) = 1 

End-Function 

 

End-Function 

 

Function IfAlreadyExistsInGrid(Xi) 

  For i=1 to TotalRecordsInGrid 

      For j=1 to TotalAttributesInX 

       If Grid(i,j) <> Xj 

                 Return False 

      End-For 

  End-For 

Return True 

End-Function 

 

Function FindIndexInGrid(Xi) 

  For i=1 to TotalRecordsInGrid 

      RecordMatched=TRUE 

      For j=1 to TotalAttributesInX 

       If Grid(i,j) <> Xj 

                 RecordMatched=FALSE 

      End-For 

   If RecordMatched= TRUE 

      Return j 

   End-If 

  End-For 

Return True 

End-Function 

 

Function DecisionClassMatched(index,i) 

    If Grid(index, DECISIONCLASS) = Di 

       Return TRUE 

    Else 

       Return False 

   End-If 

End-Function  

 

Function UpdateUniquenessStaus(index) 

   Grid(index, CLASSSTATUS) = 1 

End-Function 

 

DDC using non-unique classes DDC using Unique Classes 
Figure-5.1: Pseudo code for directly finding dependency using unique and non-unique classes. 

 

Grid is the main data structure used to calculate dependency directly without using positive region. 

It is a matrix with following dimensions:  

No. of rows = No. of records in dataset  

No. of Columns = number of conditional attributes + number of decision attributes + 2 

So if there are ten records in dataset, five conditional attributes and one decision class then grid 

dimension will be 10x8 i.e. ten rows and eight columns. A row read from the dataset will first be 

stored in grid if it does not already exist. The five conditional attributes will be stored in first five 

columns; decision attribute will be stored in sixth column called DECISIONCLASS. Seventh 

column called INSTANCECOUNT will store the number of times that record appears in actual 

dataset, finally the last column called CLASSSTATUS will store the uniqueness of the record, the 
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value “0” mean record is unique and “1” means it is non-unique. If a record, read from dataset 

already exists in Grid, its INSTANCECOUNT will be incremented. If the decision class of the 

record is different from that already stored in Grid i.e. the same values of attributes now lead to 

different decision class, CLASSSTATUS will be set to “1”. However, if the record is inserted for 

the first time, INSTANCECOUNT is set to “1” and CLASSSTATUS is set to 0 i.e. it is considered 

unique.  

 

The functions “FindNonUniqueDependency” and “FindUniqueDependency” are main functions 

to calculate the dependency. Functions insert the first record in Grid and then search for the same 

record in the entire dataset. The status of the record is updated in Grid as soon as further 

occurrences of the same record are found. Finally the functions calculate dependency value on the 

basis of uniqueness/non-uniqueness of classes. Function “InsertInGrid” inserts the record in the 

next row of the Grid. “FindIndex” finds the row no. of the current record in the Gird. 

“IfAlreadyExistsInGrid” finds if the record already exists or not. Finally 

“UpdateUniquenessStaus” function updates the status of the record in Grid. 

 

5.2 Redefined Approximations 

Unique decision classes lead to the idea of calculating lower and upper approximation without 

using indiscernibility relation. Calculating lower and upper approximation requires calculating 

equivalence classes (indiscernibility relation) which is computationally an expensive task. Using 

unique decision classes lets us avoid this task and we can directly calculate lower approximation. 

The new definitions are semantically same to the conventional definitions but provide 

computationally more efficient method for calculating these approximations by avoiding 

equivalence class structure. The following section discusses the proposed new definitions in detail. 

5.2.1 Redefined Lower Approximation 

The conventional rough set based lower approximation defines the set of objects that can with 

certainty be classified as members of concept “X”. For attribute(s) 𝑐 ∈ 𝐶 and concept X, the lower 

approximation will be: 

 𝐶𝑋 = {𝑋|[𝑋]𝑐 ⊆  𝑋}         
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This definition requires calculation of indiscernibility relation i.e. equivalence class structure [𝑋]𝑐, 

where the objects belonging to one equivalence class are indiscernible with respect to the 

information present in attribute(s) 𝑐 ∈ 𝐶. 

Based on the concept of lower approximation provided by RST, we have proposed a new definition 

as follows: 

𝐶𝑋 = {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶,  𝑎 ≠ 𝑏| 𝑥{𝑐∪𝑑} → 𝑎,  𝑥{𝑐∪𝑑} ↛ 𝑏}      (5.2) 

i.e. the lower approximation of concept “X” w.r.t. the attribute set “c”, is set of objects such that 

for each occurrence of the object, the same value of conditional attribute “c” always leads to the 

same decision class value. So, if there are “n” occurrences of an object, then all of them lead to 

same decision class (for same value of attributes), which alternatively means that for a specific 

value of an attribute, we can with surety say that object belongs to a certain decision class. This is 

exactly equal to conventional definition of lower approximation. 

 

So, the proposed definition is semantically same as conventional one, however, computationally 

it is more convenient for calculating lower approximation, it avoids construction of equivalence 

class structures to find the objects belonging to positive region. It directly scans the dataset and 

finds the objects that lead to same decision class throughout thus enhancing the performance of 

algorithm using this measure. 

 

We will use the table-5.8 as sample to calculate lower approximation using both definitions.  

 

Table-5.8: Sample decision system 

U a B c d  Z 

X1 L 3 M H 1 

X2 M 1 H M 1 

X3 M 1 M M 1 

X4 H 3 M M 2 

X5 M 2 M H 2 

X6 L 2 H L 2 

X7 L 3 L H 3 

X8 L 3 L L 3 

X9 M 3 L M 3 

X10 L 2 H H 2 
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We suppose the concept: 𝑋 =  {𝑥 |𝑍(𝑥) = 2}  i.e. we will find the objects about which could with 

surety say that they lead to decision class “2”. 

 

Conventional definition requires three steps given below: 

Step-1: Calculate the objects belonging to the concept X. Here is our case concept 𝑋 =

 {𝑥 | 𝑍(𝑥)  =  2} 

So, we will identify the objects belonging to the concept. In our case: 

X = {𝑋4, 𝑋5, 𝑋6, 𝑋10} 

Step-2: Calculating equivalence classes using conditional attributes. 

Here we will consider only one attribute “b” for simplicity i.e. 𝐶 =  {𝑏}. So, we will calculate 

equivalence classes using attribute “b", which in our case becomes: 

[𝑋]𝑐 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋2, 𝑋3}{𝑋5, 𝑋6, 𝑋10} 

Step-3: Find objects belonging to lower approximation 

In this step we actually find the objects that belong to lower approximation of the concept w.r.t. to 

considered attribute. Mathematically, this step involves finding objects from [𝑋]𝑐 which are subset 

of X i.e. {[𝑋]𝑐 ⊆  𝑋} 

In our case: 

𝐶𝑋 = {[𝑋]𝑐 ⊆  𝑋} = {X5, X6, X10}  

Using the proposed definition, we construct the lower approximation without using equivalence 

class structures. We directly find the objects that under the given concept always lead to same 

decision class (concept) for the current value of attributes. 

In our case, we just pick an object and find if for the same values of attributes, it leads to some 

other decision class or not. We find that objects X5, X6 and X10 always lead to same decision 

class i.e. the concept under consideration for attribute “b”. On the other hand objects X2 and X3 

do not lead to Concept X, so they will not be part of lower approximation. Similarly some 

occurrences of objects X1, X4, X7, X8 and X9 also lead to different decision class than X, so they 
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also be excluded from lower approximation. So, we can with surety say that objects X5, X6 and 

X10 belong to the lower approximation.  

As discussed earlier, semantically both definitions are same but computationally the proposed 

definition is more effective as it avoids construction of equivalence class structure. It directly 

calculates the objects belonging to lower approximation by checking objects that always lead to 

same decision class under consideration. Directly calculating the lower approximation in this way 

lets us exclude complex equivalence class structure calculation which makes algorithms using this 

measure more efficient. Using conventional definition on the other hand requires three steps 

discussed in previous section. Performing these steps offers a significant performance bottleneck 

to algorithms using this measure.  

5.2.2 Redefined Upper Approximation: 

Upper approximation defines the set of objects that can only be classified as possible members of 

X w.r.t. the information contained in attribute(s) 𝑐 ∈ 𝐶. For attribute(s) 𝑐 ∈ 𝐶 and concept X, the 

lower approximation will be: 

𝐶̅𝑋 = {𝑋|[𝑋]𝐵 ∩  𝑋 ≠ 0} 

i.e. upper approximation is the set of objects that may belong to the concept X w.r.t. information 

contained in attribute(s) c. 

On the bases of the same concept a new definition of upper approximation was proposed as 

follows: 

𝐶𝑋 = 𝐶𝑋 ∪ {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶,  𝑎 ≠ 𝑏| 𝑥{𝑐} → 𝑎,  𝑥′{𝑐} → 𝑏}     (5.3)  

This definition will be read as follows:  

Provided that that objects x and x’ are indiscernible wr.t. to attribute(s) c, they will be part of an 

upper approximation if either they belong to lower approximation or at least one of their 

occurrences leads to decision class belonging to concept X. So objects x and x’ belong to upper 

approximation if both occurrences of them lead to different decision class for the same value of 

attributes. E.g. in Table-5.10 the objects X1, X4, X7,X8 and X9 lead to different decision class for 
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same value of attribute “b”. So all of them can be possible members of upper approximation of 

concept Z=2.  

As with redefined lower approximation, the proposed definition for the upper approximation is 

semantically the same as conventional upper approximation. However, it helps us directly 

calculate objects belonging to upper approximation without calculating the underlying equivalence 

class structures. 

Like the conventional definition of lower approximation, calculating upper approximation requires 

three steps again. We will again use Table-1 as sample to calculate upper approximation using 

both definitions. We suppose the concept: 𝑋 =  {𝑥 | 𝑍(𝑥)  =  2}  as shown in example of lower 

approximation. 

Step-1: Calculate the objects belonging to the concept X. Here is our case concept 𝑋 =

 {𝑥 | 𝑍(𝑥)  =  2} 

We have already performed this step and calculated the objects belonging the concept X on the 

basis of decision class in previous example. So, 

X = {𝑋4, 𝑋5, 𝑋6, 𝑋10}  

Step-2: Calculating equivalence classes using conditional attributes. 

This step has also been calculated before and objects belonging to [𝑋]𝑐 were identified as follows 

by considering attribute “b”  

[𝑋]𝑐 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋2, 𝑋3}{𝑋5, 𝑋6, 𝑋10} 

Step-3: find the objects belonging to upper approximation 

In this step we finally calculate the objects belonging to lower approximation. The step is 

calculated by identifying the objects in [𝑋]𝑐 that have non-empty interaction with objects 

belonging to concept X. the intention is to identify all those objects at least one instance of which 

leads to the decision class belonging to the concept X. Mathematically [𝑋]𝑐 ∩ 𝑋 ≠ 0. In our case:  

𝐶̅𝑋 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋5, 𝑋6, 𝑋10} 
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Proposed definition of upper approximation avoids calculating computational expensive step of 

indiscernibility relation. It simply scans the entire dataset for the concept X using the attributes c 

and finds all the indiscernible objects such that any of their occurrence belongs to the concept X. 

At least one occurrence should lead to decision class belonging to concept X. In our case, objects 

X1, X4, X7, X8 and X9 are indiscernible and at least one of their occurrence leads to concept Z=2. 

Objects X2 and X3 are indiscernible but none of their occurrence leads to required concept, so 

they will not be part of upper approximation. Objects X5, X6 and X10 belong to lower 

approximation so they will be part of upper approximation as well. In this way using the proposed 

definition, we find the following objects as part of upper approximation: 

𝐶̅𝑋 = {𝑋1, 𝑋4, 𝑋7, 𝑋8, 𝑋9}{𝑋5, 𝑋6, 𝑋10} 

That is the same as produced by using the conventional method. 

Semantically proposed definition of upper approximation is same as conventional one i.e. it 

produces the same objects that may possibly be classified as members of concept X. However, it 

calculates these objects without calculating equivalence classes. So, the proposed approach is 

computationally less expensive which consequently can result in enhanced performance of the 

algorithms using proposed method. The conventional definition on the other hand again requires 

three steps (as discussed above) to calculate upper approximation which impose computational 

implications.  

5.3 Redefined Preliminaries based Feature Selection (RPFS) 

Based on our redefined approximation preliminaries, we have proposed a new feature selection 

algorithm. The proposed algorithm uses lower approximation based dependency measure to 

calculate dependency.  Dependency defines how uniquely the value of attribute “D” is determined 

by value of “C”. Conventional positive region based dependency measure uses indiscernibility 

based equivalence class structures to calculate lower approximation for all decision classes. In our 

proposed feature selection algorithm, instead of calculating indiscernibility relation for lower 

approximation, we have used our proposed definition. Calculating dependency in this way results 

in significant increase in performance of the algorithm based on this approach. Our proposed 

algorithm has two main features: 

1. Instead of using conventional dependency measure, it calculates dependency by using the 

proposed lower approximation method.  
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2. It selects attributes on the basis of decreasing order of dependency i.e. attribute with highest 

degree of dependency is selected first, and then attribute with second highest degree of 

dependency and so on. 

The proposed redefined preliminaries based feature selection (RPBFS) algorithm is a two-step 

process: 

1. Calculate the dependency of decision attribute on each individual conditional 

attribute 𝑐 ∈ 𝐶. 

 

2. Select the next potential candidate attribute having highest degree of dependency. 

 

Figure-5.2 shows the diagrammatic representation of the proposed solution.  

 
Figure-5.2: Algorithmic flow of 

proposed Feature selection approach  

 

Algorithm initially starts with empty Reduct set and calculates dependency of each individual 

conditional attribute c ∈ C. Then the attribute having next maximum dependency value is selected 

and added to reduct set R. Now the dependency of R is calculated using proposed lower 

approximation based method. If dependency of R is equal to one (1) or γ(R, D) = γ(C, D), 

algorithm stops by outputting R as required Reduct set. Figure-5.3 shows the pseudo code of the 

algorithm.  
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C: C1,C2,…..Cn set of conditional attributes 

D: Decision attribute 

 

(a) R ←{} 

(b) ∀𝑐 ∈ 𝐶   
𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒 𝛾𝑖   where i=1,2,3….n 

(d) Do 

(e) Select max(𝛾𝑖)  //where ith  attribute is             

                                  the one with maximum  

                                  dependency 

(f) R ← R ∪ {𝑋𝑖} 
(g) While 𝛾(𝑅, 𝐷) <> 𝛾(𝐶, 𝐷) 

(h) Return R 

Figure-5.3: Proposed algorithm 

 

 

The proposed algorithm is based on the following two assumptions: 

1. If we combine an attribute of higher dependencies with another attribute of higher dependency 

then it is more likely that the dependency of resulting set will be more than if we combine 

attribute of higher dependency with the attribute of lower dependency. For example, consider 

Table-5.9 given below: 

 

Table-5.9: Sample decision system 

U a b c d Z 

X1 L 3 M H 1 

X2 M 1 H M 1 

X3 M 1 M M 1 

X4 H 3 M M 2 

X5 M 2 M H 2 

X6 L 2 H L 2 

X7 L 3 L H 3 

X8 L 3 L L 3 

X9 M 3 L M 3 

X10 L 2 H H 2 

 

Here: 

γ(B, Z) = 0.5    

γ(C, Z) = 0.3    

γ(A, Z) = 0.1   
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γ(D, Z) = 0.0   

Now if we combine attribute “B” with “C” the dependency is likely to be more than if we 

combine “B” with “A”. Similarly, combining “B” with “A” will likely result more increase 

in dependency than if we combine “B” with “D”. 

So using the above IS: 

γ({B ∪ D}, Z) = 0.6    

γ({B ∪ C}, Z) = 0.8  

γ({B ∪ A}, Z) = 0.7    

2. We have observed that dependency of union of two attributes is always greater than or equal 

to the maximum dependency of any of these attributes. However, there is very rare chance that 

dependency of union of two attributes being equal to that of the maximum one. Most of the 

time dependency of resultant subset increases. 

Example: 

Proposed solution is explained with help of an example in this section We will consider the 

decision system given in table-5.12. 

Algorithm starts initially with empty Reduct set and computes dependency of each individual 

attribute which in our case will be as follows: 

R ←{} 

γ(A, Z) = 0.1   

γ(B, Z) = 0.5   

γ(C, Z) = 0.3   

γ(D, Z) = 0.0   

Now we will select the attribute with maximum dependency and will be made part of Reduct set. 

Here in our case it is Attribute “B”, so Reduct set becomes: 

R={B} 

We will then see if dependency of Reduct set is equal to that of entire dataset. So far it is not, so 

we will select next attribute with maximum dependency, it is “C”, so R becomes:  

R={B,C} 
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Again dependency of R is evaluated. So far condition is false so we will select next attribute with 

highest dependency value which is  “A”. Reduct set now becomes: 

R = {B,C,A} 

Now the condition becomes false, and algorithm will output R = {B,C,A} as required Reduct set. 

The proposed method provides a lightweight feature selection method which attempts to find 

feature subset based on the value of attribute dependency which makes it effective in three ways: 

 

1. Selecting only the attributes with higher dependency makes it possible to avoid exhaustive 

search and find feature subset with minimum effort which makes the approach 

computationally efficient. 

 

2. Efficiency of algorithm further increases by calculating dependency with proposed 

preliminaries calculation method.  

 

3. Selecting attributes based on value of attribute dependency ensures that resulted feature 

subset is optimal and there is no irrelevant or redundant attribute. 

 

5.4 Summary 

Conventional rough set based dependency measure requires three steps to calculate dependency of 

a decision attribute “D” on conditional attribute(s) “C”. The process consists of calculating 

equivalence class structure using decision attribute, equivalence class structure using conditional 

attribute and finally positive region calculation. The overall process is computationally too 

expensive to make the positive region based approaches inappropriate for large datasets. To 

overcome the problem, we have proposed two alternate methods for calculating rough set based 

dependency measure called Incremental Dependency Classes (IDC) and Direct Dependency 

Classes (DDC). Both of the approaches use different rules to calculate dependency as we read each 

new record in dataset. We have discussed in details with examples about how to calculate 

dependency using both of these approaches. In next section we will discuss feature selection based 

on IDC and DDC. 
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Chapter 6: Feature Selection using 

Dependency Classes 

We have integrated dependency classes with various feature selection algorithms which in their 

original form were using positive region based rough set dependency measure. We have replaced 

all the steps using positive region based dependency measure with dependency classes. In this 

section we will explain each of these algorithms. 

6.1 Feature Selection Using Incremental Dependency Classes 

Incremental Dependency Classes (IDC) can be used in any feature selection algorithm, by simply 

replacing the positive region based dependency calculation with IDC. Here we have selected seven 

most popular feature selection algorithms which are re-implemented with IDC. All the steps where 

positive region based roughest dependency measure was used, were replaced with IDC based 

dependency measure.  

6.1.1 Genetic Algorithm Using IDC 

Genetic Algorithm using IDC or in short GA (IDC) has all the features of conventional genetic 

algorithms like crossover, mutation and fitness evaluation function etc. as given by [24]. However, 

the slight changes made here were that IDC based dependency measure was used instead of 

positive region based approach and crossover order was based on decreasing order of chromosome 

dependency. The chromosome that shows the ideal fitness score i.e. dependency=1, at any 

generation, was considered to be the optimum solution. 

The main features of the proposed GA (IDC) are as follows: 

 

 Each chromosome represents a subset of candidate features that can possibly be a Reduct 

set. 

 Fitness function was based on positive region based dependency.  

 The chromosomes were selected for crossover in decreasing order of dependency as shown 

in Table-6.1. 
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Table- 6.1: Example of Chromosomes crossover order in GA(IDC) 

Chromosome 

No. 

Chromosome Fitness score Crossover order 

1 

 

a,b,c,d 0.86 Chromosome no. 1 will mate with 

Chromosome no. 3 

2 

 

l,m,n,o 0.45 - 

3 

 

s,t,u,v 0.72 - 

4 w,x,y,z 0.61 Chromosome no. 4 will mate with 

Chromosome no. 2 

 

 

The fitness score of each chromosome represents the dependency of the decision attribute. Cross 

over with decreasing order of dependency makes results in quality offspring chromosomes having 

higher fitness as compared to their parents. This is based on our observation that combining the 

attributes with higher degree of dependency result in rapid increase in dependency of resultant 

attributes as compared to combining those having low degree of dependency. So with above 

mentioned crossover order higher quality chromosomes are generated in lesser number of 

iterations.  

 

Now we explain the execution of algorithm with example using “hepatitis” dataset taken from UCI 

repository [26]. Initial chromosome size was equal to the number of attributes in dataset, a gene in 

each chromosome used to represent presence of attribute. Gene were represented using the 

sequence number of the attribute in dataset whereas absence of attribute was represented by “-1”. 

Initial population size was set to “10” i.e. at any stage ten chromosomes were used. User can 

specify any population size of 2*n where n=1, 2, 3…. N. Initially the selected population is shown 

in the Figure-6.1. As GA(IDC) performs crossover in descending order of fitness value (which 

actually represents the dependency value of the decision attribute on conditional attributes 

represented by genes of the chromosome). So, chromosome no. 5 and 9 (Figure-6.2) having highest 

dependency values among all population, will cross over with each other. 
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Figure-6.1: Initial Population. 

 

 

 

 
Figure-6.2: chromosome with highest dependency 

 

 

The chromosome with same colour will crossover with each other. Chromosome no. 6 and 10 are 

next to crossover and so on. The resulted Offspring population is shown in Figure-6.3 below: 
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Figure-6.3: Offspring after first crossover 

 

 

 
Figure-6.4: Offspring after mutation 

 

The red highlighted genes show the positions where mutation took place in Figure-6.4. To keep 

things simple, uniform mutation operator was used in which a random gene is selected and replaced 

with a random value that represents a valid attribute. Process continues until we find a chromosome 

with highest fitness value. Algorithm checks in each population, if any of the chromosomes has 

fitness value of “1”. Algorithm stops if any of such chromosome is found. However if after “α” 
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number of generations, algorithm fails to find such chromosome, it stops with highest fitness value 

chromosome as the output. In case of our example algorithm stopped after fourth generation. 

Figure-6.5 shows the population in fourth generation along with the highlighted best chromosome: 

 
Figure-6.5: Last generation. 

 

Chromosome no. 2 is best one, so our reduct set will be: 

 

R = {3, 11, 14, 17, 19} 

 

Figure-6.6 shows the best chromosome in each generation along with its fitness value. Note that 

how fitness increased with each generation: 

 
Figure-6.6: Best chromosomes in all generations 

 

Thus, GA(IDC) results in crossover of higher dependency value chromosomes with each other, 

which means that required feature set is likely to be obtained with fewer generations. 
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6.1.2 QuickReduct Algorithm Using IDC 

QuickReduct algorithm using IDC, QR(IDC) is modified form of conventional QuickReduct (QR) 

algorithm [2]. In QR (IDC) the step of calculating positive region based rough set dependency was 

replaced with IDC based dependency measure. Rest of the algorithm was same. Figure 6.7 

highlights the points where the conventional dependency calculation step was replaced with 

incremental dependency calculation method. 

 

 
Figure-6.7:Quickreduct algorithm taken from [14] 

 

 

6.1.3 ReverseReduct Algorithm Using IDC 

ReverseReduct [2] approach is not often used for large datasets, as the algorithm must evaluate 

large feature subsets (starting with the set containing all features), which is too costly, although 

the computational complexity is, in theory, the same as that of forward-looking QuickReduct. In 

ReverseReduct algorithm using IDC ReverseReduct (IDC), step of calculating the positive region 

based dependency calculation step was replaced with IDC based method.  
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6.1.4 Incremental Feature Selection Algorithm (IFSA) using IDC 

IFSA [25] is intended for feature selection in datasets where features vary dynamically in decision 

systems. In its original version, IFSA uses conventional dependency measure where dependency 

is calculated using positive region. Figure-6.8 shows the IFSA with highlighted steps where IDC 

were used instead of positive region based approach. 

 

 
Figure-6.8: IFSA taken from [25] 
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6.1.5 Supervised PSO Based Quick Reduct (PSO-QR) Using IDC 

Supervised PSO based QuickReduct [23] is a supervised hybrid feature selection algorithm based 

on Particle Swarm Optimization (PSO) and rough sets. In its original form, it uses positive region 

based dependency measure for calculating the fitness of the particles. Algorithm suffers the same 

drawbacks as by the others due to calculation of positive region. In PSO-QR (IDC) we have 

calculated dependency using IDC. Figure-6.9 highlights the pints where positive region based 

dependency measure was replaced with IDC based dependency.   

 

Input:  C, the set of all conditional features, 

 D, the set of decision features. 

Output: Reduct R 

 

Step 1: Initialize X with random position Vi with random velocity 

∀∶ 𝑋𝑖  ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑃𝑜𝑠𝑖𝑡𝑖𝑜𝑛(); 
𝑉𝑖  ← 𝑟𝑎𝑛𝑑𝑜𝑚𝑉𝑒𝑙𝑜𝑐𝑖𝑡𝑦(); 
Fit ← 0; globalbest ← Fit; 

Gbest ← X1; Pbest(1) ← X1 

For i = 1 … S 

pbest(i) = Xi 

Fitness(i) = 0 

End For 

 

Step 2: While Fit != 1   // stopping criterion  

For i = 1 … S  // for each particle  

∀∶ 𝑋𝑖; 

//Compute fitness of feature subset of Xi 

R ← Feature subset of Xi (1’s of Xi) 

∀ 𝑥 ∈ (𝐶 − 𝑅) 

𝛾𝑅𝑈(𝑋)(𝐷) =
|𝑃𝑂𝑆𝑅𝑈(𝑋)(𝐷)|

|𝑈|
 

𝐹𝑖𝑡 = 𝛾𝑅𝑈(𝑋)(𝐷)  ∀ 𝑥𝑐𝑅, 𝛾𝑥(𝐷) ≠ 𝛾𝑐(𝐷) 

End For 

 

Step 3: Compute best fitness  

For i = 1:S   

if(Fitness(i) > globalbest)  // if current fitness is greater than global best fitness 

globalbest ← Fitness(i); // assign current fitness value as global best fitness 

gbest ← Xi ; 

getReduct(Xi) 

Exit 

End if 
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End for 

UpdateVelocity(); // Update velocity Vi’s of Xi’s 

UpdatePosition(); // Update position of Xi’s 

// Continue with the next iteration  

End {while} 

Output Reduct R 

Figure-6.9: PSO-QR taken from [23] 

6.1.6 Fish Swarm Algorithm (FSA) using IDC 

FSA [26] uses the idea of fish swarm for rough set reduction problem. Like other algorithms, in 

its original form, it uses positive region based dependency measure as part of fitness function. 

However, in Fish Swarm Algorithm (FSA) using IDC i.e. FSA (IDC) we replaced this step with 

IDC based dependency calculation method. Figure-6.10, 6.11, 6.12 and 6.13 highlight the steps 

where positive region based dependency was replaced with IDC based measure. 
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Figure-6.10: FSA taken from [26] 
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Figure-6.11: FSA Searching algorithm taken from [26] 

 

 
Figure-6.12: FSA Swarming algorithm taken from [26] 

 

Figure-6.13: FSA fitness algorithm taken from [26] 
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6.1.7 Rough Set Improved Harmony Search Quick Reduct Using 

IDC 

Rough Set Improved Harmony Search Quick Reduct (RS-IHS-QR) [27] is a rough set based hybrid 

algorithm that combines QuickReduct with improved harmony search method for feature 

selection. The algorithm uses rough set based dependency measures as its objective function. In 

Harmony Search Quick Reduct using IDC i.e. RS-IHS-QR (IDC), we replaced the objective 

function with rough set based dependency measure using IDC i.e. Dep (IDC). Figure-6.14 shows 

the steps where positive region based dependency was replaced with IDC based dependency. 

6.2 Parameter Settings 

QuickReduct and ReveseReduct are exhaustive algorithms having no special parameters. For the 

rest of algorithms, the parameter details, their values and effect on algorithms is discussed in 

following section. 

6.2.1 Particle Swam Optimization Based QuickReduct Using IDC 

PSO-QR(IDC): 

In PSO-QR(IDC), inertia weights “w” were set between range 0.9 to 1.2 as given by [34] because 

with this range of “w” there are lesser chances of algorithm to fail to find the global optimum 

within a reasonable number of iterations. Range [1,
1

𝑁
× 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐴𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒] was used for 

velocity because the particles with velocity above this range fly far from optimal solution. 
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Figure-6.14: RS-IHS-QR taken from [27] 
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6.2.2 Genetic Algorithm Using IDC GA(IDC) 

In GA(IDC) chromosome size was set to total number of found by QuickReduct algorithm to 

ensure unbiased analysis. However, any encoding scheme can be used here. For mutation, one 

point uniform mutation scheme was used in which a random gene is replaced with another 

(randomly selected) gene representing an attribute. The reason behind was that in each generation, 

decreasing order of dependency already resulted in high quality off-springs, so one point mutation 

was considered to be sufficient in this regards. 

6.2.3 Fish Swarm Algorithm (FSA) Using IDC 

For FSA (IDC), all the parameters were used with their original value. However, to ensure 

unbiased analysis, both FSA and FSA (IDC) were initialized with same fish positions.  

Furthermore, stopping criteria was also slightly updated. The algorithm was made to terminate as 

soon as the first fish found its optimal positions (i.e. fitness of “1”). This step was taken to complete 

the algorithm as soon as possible for large datasets. 

6.2.4 Rough Set Improved Harmony Search Quick Reduct using 

IDC: 

Just like FSA and FSA (IDC), both RS-HIS-QR and RS-HIS-QR (IDC) were initialized with same 

harmony memory to avoid biasedness in comparison. No change was made in rest of the 

parameters. 

 

6.3 Feature Selection Using DDC 

DDC can also be used in any feature selection algorithm, by simply replacing the positive region 

based dependency calculation with DDC. Just like in IDC, we have re-implemented all of the 

various algorithms discussed in related work section using DDC approach. Here we will discuss 

these algorithms in short, as in previous sections these have already been discussed in detail. 
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6.3.1 Supervised PSO Based Quick Reduct Using DDC: 

Supervised PSO based Quick Reduct [23], PSO-QR was originally designed to use positive region 

based dependency measure. We re-implemented algorithm using direct dependency calculation 

method.  

6.3.2 Genetic Algorithm Using DDC: 

Genetic Algorithm using DDC, GA(DDC) is the same as mentioned in section 6.1.1. The only 

change made was that DDC based methods was used in fitness function in contrast with original 

positive regional based dependency calculation method. 

6.3.3 Incremental Feature Selection Algorithm (IFSA) Using DDC: 

IFSA [23], in its original form, uses positive region based dependency measure. Just like IDC 

based IFSA, we re-implemented it with DDC based method. All the steps calculating positive 

region based dependency were replaced with DDC based method. Rest of the details of the 

algorithm were kept intact. 

6.3.4 Fish Swarm Algorithm (FSA) Using DDC: 

FSA [24] used swarm based optimization to perform feature selection. Algorithm used positive 

region based dependency measure for all searching, swarming and following behaviour. Stopping 

criteria was also based on positive region based approach. We replaced all the positive region 

based steps with DDC. 

6.3.5 Rough Set Improved Harmony Search Quick Reduct (RS-IHS-

QR) Using DDC  

RS-IHS-QR [25] proposes a hybrid approach for feature selection based on Rough set theory 

combined with improved harmony search algorithm. Just like other positive region based methods, 

it also uses conventional positive region based dependency measure. We, however, made this 

algorithm to work with DDC based method.  



79 

 

6.4 Parameter settings 

Parameter settings were for DDC was kept same as that in case of IDC. No further change was 

made apart from those mentioned in section 6.3. Similarly stopping criteria was also kept same.  

6.5 Summary 

In this section we have discussed various algorithm that were used with IDC and DDC. Originally 

these algorithms were designed for positive region based rough set dependency measure. However, 

we re-implemented these algorithms to work with proposed dependency calculation methods. In 

next section we will discuss results and analysis of the proposed dependency calculation methods 

and feature selection techniques based on these methods. 
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Chapter 7: Results and Analysis 

A comparison framework consisting of three components, percentage decrease in execution time 

to generate the output, memory used and percentage accuracy is used to justify the validity and 

effectiveness of both IDC and DDC. Experiments are conducted using various publically available 

datasets from the UCI repository. 

7.1 Comparison Framework 

The experiments to justify the validity and effectiveness of both IDC and DDC were conducted in 

two steps. In first step dependency calculated using both IDC and DDC itself were verified as per 

components of comparison framework. After this, comparison was carried out between the 

algorithms using IDC and DDC and those using positive region. Here we discuss all these 

components one by one. 

7.1.1 Percentage Decrease in Execution Time 

Percentage decrease in execution time specifies the ecy of an algorithm in terms of how fast it is 

and how much execution time it cuts down. For this purpose system stop watch was used, which 

after feeding the input was started and after getting the results was stopped. The formula to 

calculate the % decrease is as follows: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝐷𝑒𝑐𝑟𝑒𝑎𝑠𝑒 = 100 − 
𝐸(1)

𝐸(2)
∗ 100      (7.1) 

Where E(1) is execution time of one algorithm and E(2) is that of its competitor. However, as GA, 

PSO-QR, FSA and RS-IHS-QR can have different number of iterations, in different executions, 

based on the fitness of results, so, for these algorithms, the average execution time of single 

iteration was considered while keeping the other parameters as same in both cases i.e. using 

positive region and using IDC. 
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7.1.2 Memory Usage 

Memory usage specifies the maximum amount of runtime memory taken by the algorithm to 

complete the task taken during its execution. We manually calculated the memory by summing 

the size of each of the intermediate data structure used.  

7.1.3 Accuracy 

The term accuracy implies that the IDC and DDC produce the same output as the one produced by 

conventional positive region based method. We compared dependency of attributes using IDC and 

DDC against the values generated by positive region based approach. For feature selection 

algorithms, we compared the Reducts found using IDC with those using positive region. However, 

in case GA, PSO-QR, FSA and RS-IHS-QR, accuracy was measured by analyzing the Reducts 

against their fitness. 

7.2 Experimental Analysis: IDC 

Before explaining the details of experiments performed, the details of datasets used for 

experimental purpose are shown in table-7.1, taken from UCI machine learning repository [26]. 

 

Table-7.1: Summary of datasets used 

Dataset Instances Attributes Decision 

classes 

Dataset characteristics / Attribute 

characteristics 

Gisette 6000 5000 2 Multivariate / Integer 

Isolet 7797 617 26 Multivariate/ Real 

Musk-2 6598 168 2 Multivariate/ Integer 

UJIindoorLoc 1112 529 5 Multivariate/ Integer, Real 

Egg-Eye-style 14980 15 2 Multivariate, Sequential, Time-

Series / Integer, Real 

Internet 

advertisement 

3279 1558 2 Multivariate/Categorical, Integer, 

Real 
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7.2.1 Accuracy and Efficiency of IDC For Calculating Dependency 

To prove the accuracy, percentage decrease in execution time and memory usage of the IDC, we 

calculated the dependency of different set of attributes, for example, from “Gisette” dataset, three 

attribute sets were taken each containing 1000, 2000 and 3000 attributes respectively. The 

dependency, in this step, was calculated both through conventional rough set based dependency 

measure using positive region method and the proposed IDC. In Table-7.2, from left to right is the 

dataset name and instances/number of attributes in each set on which dependency was calculated. 

Column three and four specify the attribute set name and number of attributes considered in that 

attribute set. Columns five, six, seven and eight, nine, ten specify the dependency value, execution 

time and memory used by positive region based approach and IDC respectively. Finally columns 

eleven and twelve show the percentage decrease in execution time and memory usage taken by the 

IDC as compared to positive region based dependency calculation method. End results clearly 

show the effectiveness of the proposed IDC. 

Table-7.2: Conventional positive region based approach vs IDC 

Dataset Inst/ Att Attr. 

Set ID 

Attr. 

Set 

Size 

Dep(P) Dep(IDC) % 

dec 

in 

time 

% 

dec 

in 

memory 

Dep Time 

(s) 

Mem 

(MB) 

Dep Time 

(s) 

Mem 

(MB) 

Gisette 6000/5000 

G_1_1 1000 1.0 12.79 137.37 1.0 7.64 
114.4

8 40.3% 16.7% 

AS_G_2 2000 1.0 12.99 137.37 1.0 8.22 
114.4

8 36.7% 16.7% 

AS_G_3 3000 1 13.05 137.37 1.0 8.59 
114.4

8 34.2% 16.7% 

Isolet 7797/619 

AS_T_1 200 1 11.45 231.96 1 3.330 18.35 70.9% 92.1% 

AS_T_2 400 1 12.42 231.96 1 3.340 18.35 73.1% 92.1% 

AS_T_3 600 1 13.13 231.96 1 3.620 18.35 72.4% 92.1% 

Musk-2 6598/168 

AS_M_1 50 1.0 7.22 166.13 1.0 2.03 4.27 71.9% 97.4% 

AS_M_2 100 1.0 8.68 166.13 1.0 2.95 4.27 66% 97.4% 

AS_M_3 150 1.0 8.6 166.13 1.0 4.04 4.27 53% 97.4% 

UJIindoorLo

c 
1112/529 

AS_U_1 300 0.998 1.75 4.72 0.998 1.29 2.25 26.3% 52.3% 

AS_U_2 400 0.998 1.55 4.72 0.998 1.17 2.25 24.5% 52.3% 

AS_U_3 500 0.998 3 4.72 0.998 1.89 2.25 37% 52.3% 

Egg-Eye-

style 
14980/15 

AS_E_1 5 1.0 37.22 856.12 1.0 11.551 0.97 69% 99.9% 

AS_E_2 9 1.0 39.63 856.12 1.0 11.65 0.97 
70.6% 99.9% 

AS_E_3 13 1.0 39.71 856.12 1.0 11.68 0.97 
70.6% 99.9% 

Internet 

advertisemen

t 

3279/1558 

AS_I_1 500 0.921 2.21 41.04 0.921 0.78 19.51 64.7% 52.5% 

AS_I_2 1000 0.952 2.9 41.04 0.952 1.36 19.51 53.1% 52.5% 

AS_I_3 1500 0.978 4.08 41.04 0.978 2.14 19.51 47.5% 52.5% 

 



83 

 

 

 

 
Figure-7.1: comparison of execution time between approaches using positive region and IDC 

 

 
Figure-7.2: Memory comparison b/w between approaches using positive region and IDC 

 

7.2.1.1 Percentage Decrease In Execution Time: 

As it can be seen from the Table-7.2, the time consumed in case of the proposed IDC, Dep(IDC) 

was always less than the conventional method, Dep(p). On average, IDC reduced the execution 



84 

 

time by 54.5% for 18 attribute sets. The reason behind is that the IDC have successfully avoided 

the complex computations of calculating positive regions. We will use the decision system shown 

in table-5.1 to further explain this point. Calculating the dependency using positive region requires 

three steps. In the first step, we calculate equivalence class structure using decision attribute 

(Qualification in this case). In the second step, we have to calculate the equivalence class structure 

using condition attribute set on which dependency of decision attribute is to be calculated. It will 

require to match the attribute values of record i with i+1, i+2, …,i+ n. Finally we need to calculate 

positive region which actually calculates the cardinality of equivalence classes (based on 

conditional attributes) that are subsets of equivalence classes (based on decision attribute).  

 

On the other hand, calculating the dependency using incremental dependency classes (IDC) 

requires only single step, in which we will match record i with i+1, i+2, …,i+n and will update the 

corresponding dependency variable as per the incremental dependency class the record will belong 

to. This leads to simpler programming logic required by Dep(IDC) as compared to Dep(P). The 

graph in Figure-7.1 also shows that for large datasets there is large difference in time that is 

required to calculate dependency, which means for large datasets, the IDC are more suitable 

method for calculating dependency. Based on above results and facts, we can conclude that IDC 

can successfully replace conventional dependency calculation method (using positive region) in 

any rough set based algorithm that calculate dependency of attributes “D” on “C”.  

7.2.1.2 Accuracy 

It can be seen from Table-7.2 that IDC show same accuracy as that of conventional approach in 

calculating dependency. Dependency calculated by IDC was exactly same as that of calculated by 

positive region based approach, while significantly cutting down the execution time. 

 

7.2.1.3 Memory Usage 

Memory taken by the IDC was less than positive region based approach in all cases. Figure-7.2 

shows the memory taken by each approach in graphical form. On average almost 68.4% decrease 

in memory was found. To calculate the memory, we used the size of major intermediate data 

structures. By major we mean that the data structures that actually used to store intermediate results 
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and not simple variables that were used to control the logic for example loop counters, Boolean 

flags etc. Here we elaborate the major data structures required in both cases. We will consider the 

Table-5.1 to elaborate the example. 

 

Two major matrices are required in case of positive region based approach: 

 

1. The first one is to store the equivalence class structure of decision system w.r.t. decision 

attribute(s). In Table-5.1, we have two classes and maximum number of instances in any 

class is four (in class labeled “No”), so the required matrix will be of size 2x7 as shown 

below in Figure-7.3. The size of this matrix will be [number of equivalence classes x 

(maximum number of instances in any class+3)]. Both values can be calculated at runtime 

if not known in advance. First column specifies the decision class, second column specifies 

total number of instances in that class and third column specifies the last index having a 

valid value in current row. Rest of the columns contains IDs of indiscernible objects using 

current decision class. 

 

 
Figure-7.3: Equivalence class structure w.r.t. decision attribute 

 

2. Similarly a matrix is used to store the equivalence class structure for the current set of 

conditional attributes. As there are seven instances in total so we need 7x8 matrix as shown 

in Figure-7.4. The size of matrix will be [maximum number of instances x (total number 

of instances+1)]. First column stores how many instances have been added so far in current 

row. All other columns contain IDs of indiscernible objects using current decision class. 

As we cannot predict in advance that how many instances will be similar, so we have to 

define matrix of maximum size to cater all possible scenarios (that’s why here matrix size 

was 7 x 8). Finally, we calculate positive region based on above mentioned matrices which 

checks that which equivalence classes (constructed using conditional attributes) are 

contained by (or are subset of) the equivalence classes constructed using decision attribute. 
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Figure-7.4: Equivalence class structure w.r.t. conditional 

attributes 

 

In case of IDC, on the other hand, we do not need to calculate equivalence classes (because we 

don’t need positive region), so we simply develop a simple matrix to store instances along with 

their attributes to keep track of how dependency will be refreshed as shown in Figure-7.5. 

 
Figure-7.5: Grid for calculating IDC 

 

The last column specifies status of attribute set that either these values of attributes have already 

been considered or not. Second last column specifies the total number of occurrences of the current 

value set in dataset (so that if same value of these attributes lead to a different decision class later, 

we may subtract this number from current dependency value. Third last column specifies the 

decision class and the first n-3 columns specify the values under current attribute set. This matrix 

is filled for all the instances in dataset. Size of matrix will be [number of instances x {number of 

attributes+3}].  

7.2.2 Accuracy And Efficiency of Feature Selection Algorithms 

using IDC 

Two versions of each algorithm discussed in chapter 6 were implemented and compared with each 

other i.e. using positive region and using IDC. So GA was compared with GA(IDC), QR was 

compared with GA(IDC) as so on. 



87 

 

 

The tables 7.3 to 7.9 given below show the results of the experiments.  

 

Table-7.3: comparison between QR and QR(IDC) 

Dataset Instances Attribu

tes 

QR(P) 

Total 

Reducts 

Memory 

used (MB) 

QR(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times 

faster 

% 

Decrease 

in Time 

Gisette 6000 5000 9 137.37 9 114.48 97.67x faster 98% 

Isolet 7797 617 2 231.96 2 18.35 5.32x faster 81.20% 

Musk-2 6598 168 4 166.13 4 4.27 4.90x faster 79.60% 

Egg-Eye-

style 

14980 15 4 856.12 4 0.97 2.83x faster 64.70% 

Internet 

advertisem

ent 

3279 1558 89 40.04 89 19.51 3.24x fater 69.14% 

UIIndoorl

ock 

1122 529 3 4.72 3 2.25 9.0 x faster 88.88% 

 

 

 

 

 Table-7.4: comparison between GA and GA(IDC) 

Dataset Instanc

es 

Attribu

tes 

GA(P) 

Total 

Reducts 

Memory 

used (MB) 

GA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Gisette 6000 2 9 137.37 9 114.48 5.98x faster 

 

83.28% 

Isolet 7797 617 4 231.96 4 18.35 3.07 x faster 67.5% 

Musk-2 6598 2 4 166.13 4 4.27 4.03 x faster 75.22% 

Egg-Eye-

style 

14980 2 4 856.12 4 0.97 2.31 x faster 56.84% 

Internet 

advertisem

ent 

3279 2 89 40.04 89 19.51 8.68 x faster 88.48% 

UIIndoorl

oc 

1122 529 3 4.72 3 2.25 16.0 x faster 93.75% 
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Table-7.5: comparison between PSO-QR and PSO-QR(IDC) 

Dataset Instanc

es 

Attribu

tes 

PSO-QR 

Total 

Reducts 

Memory 

used (MB) 

PSO-QR 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Gisette 6000 5000 13 137.37 15 114.48 1.9 x faster 46% 

Isolet 7797 617 10 231.96 9 18.35 4 x faster 75% 

Musk-2 6598 168 15 166.13 12 4.27 3.9 x faster 74% 

Egg-Eye-

style 

14980 15 9 856.12 15 0.97 7.4 x faster 86.5% 

Internet 

advertisem

ent 

3279 1558 105 40.04 99 19.51 6.6 x faster 84.9% 

UIIndoorl

oc 

1122 529 7 4.72 15 2.25 4.5 x faster 77.6% 

 

 

Table-7.6: comparison between IFSA and IFSA(IDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Gisette 6000 5000 15 137.37 15 114.48 2.2 x faster 53.6% 

Isolet 7797 617 10 231.96 10 18.35 3.5 x faster 71.1% 

Musk-2 6598 168 10 166.13 10 4.27 4.1 x faster 75.8% 

Egg-Eye-

style 

14980 15 4 856.12 4 0.97 3.3 x faster 69.8% 

Internet 

advertisem

ent 

3279 1558 80 40.04 80 19.51 1.8 x faster 44.4% 

UIIndoorl

oc 

1122 529 2 4,72 2 2.25 1.8 x faster 44.4% 

 

 

Table-7.7: comparison between ReverseReduct and ReverseReduct(IDC) 

Dataset Instanc

es 

Attribu

tes 

RevRed 

Total 

Reducts 

Memory 

used (MB) 

RevRed(

IDC)Tot

al 

Reducts 

Memory 

used 

(MB) 

X times 

faster 

% Decrease 

in Time 

Gisette 6000 5000 59 137.37 59 114.48 1.6 x faster 38.2% 

Isolet 7797 617 3 231.96 3 18.35 7 x faster 85.7% 

Musk-2 6598 168 8 166.13 8 4.27 324.1 x faster 99.7% 

Egg-Eye-

style 

14980 15 6 856.12 6 0.97 3.6 x faster 72% 

Internet 

advertise

ment 

3279 1558 795 40.04 795 19.51 1.6 x faster 38.1% 

UIIndoor

loc 

1122 529 127 4.72 127 2.25 1.2 x faster 18.5% 
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Table-7.8: comparison between FSA and FSA(IDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Gisette 6000 5000 41 137.37 41 114.48 1.62 x faster 38.22% 

Isolet 7797 617 10 231.96 10 18.35 3.2 x faster 68.73% 

Musk-2 6598 168 10 166.13 10 4.27 2.5 x faster 60.03% 

Egg-Eye-

style 

14980 15 11 856.12 11 0.97 3.42 x faster 70.74% 

Internet 

advertisem

ent 

3279 1558 138 40.04 138 19.51 2.79 x faster 64.14% 

UIIndoorl

oc 

1122 529 6 4.72 6 2.25 2.36 x faster 57.62% 

 

 

 

 

Table-7.9: comparison between RS-IHS-QR and RS-IHS-QR(IDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Gisette 6000 5000 263 137.37 263 114.48 3.01 x faster 66.67% 

Isolet 7797 617 32 231.96 32 18.35 1.14 x faster 12.38% 

Musk-2 6598 168 14 166.13 11 4.27 1.4 x faster 28.35% 

Egg-Eye-

style 

14980 15 5 856.12 5 0.97 2.81 x faster 64.47% 

Internet 

advertisem

ent 

3279 1558 95 40.04 95 19.51 8.21 x faster 87.81% 

UIIndoorl

oc 

1122 529 25 4.72 25 2.25 1.93 x faster 48.15% 

 

In all the seven tables (7.3 to 7.9), columns from left to right show the datasets name, total number 

of instances and attributes. Column four, five and six, seven show the total number of reducts 

produced and memory used by both competitive algorithms i.e. one using positive region and other 

using IDC. Column eight shows how faster the algorithm using IDC is than its counterpart whereas 

column nine shows % decrease in time taken by algorithm using IDC. Following section shows 

the effectiveness of IDC based algorithm in terms of percentage decrease in execution time, 

memory and accuracy. 
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Figure-7.6: Execution time comparison b/w QR and QR(IDC) 

 

 

 
Figure-7.7: Execution time comparison b/w GA and GA(IDC) 
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Figure-7.8: Execution time comparison between IFSA and IFSA(IDC) 

 

 

 
Figure-7.9: Execution time comparison between PSO-QR and PSO-QR(IDC) 
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Figure-7.10: Execution time comparison between ReverseReduct and ReverseReduct(IDC) 

 

 

 

 
Figure-7.11: Execution time comparison between FSA and FSA (IDC) 
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Figure-7.12: Execution time comparison between RS-IHS-QR and RS-IHS-QR (IDC) 

 

 

 

 
Figure-7.13: Memory comparison b/w approaches using positive region and IDC 

 

 

7.2.2.1 Percentage Decrease in Execution Time 

It is evident from the results that IDC based algorithms require less time as compared to their 

counterparts. These results support the argument that the proposed IDC can be more effective to 

enhance the performance of algorithms based on calculation of dependency using positive region. 
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Calculations show that Overall IDC based algorithms resulted in almost 65.93% decrease in 

execution time. The main reason behind the efficiency of IDC is that it avoids the calculation of 

the time consuming positive region calculation. The theory behind IDC is that it is the ratio of total 

number of attribute values that lead towards unique decision to total universe size. This is the point 

which helps reduce the execution time in case of IDC. Conventional rough set based approach on 

the other hand first creates equivalence class structure w.r.t. the decision attribute(s), then 

equivalence class structure using the attributes under consideration (on which dependency is to be 

measured) and finally the positive region is calculated. These steps consume too much time which 

makes positive region based dependency measure method totally unsuitable for other than smaller 

datasets.  

 

As GA, PSO-QR, FSA and RS-IHS-QR can have different number of iterations, in different 

executions, based on the fitness of results, so, for these algorithms, the average execution time of 

single iteration was considered while keeping the other parameters as same in both cases i.e. using 

positive region and using IDC. Figure-7.6 to Figure-7.12 show the comparison between positive 

region based approaches and dependency class based approaches in graphical form. 

 

7.2.2.2 Accuracy 

Results show the equal numbers of reducts were generated both by IDC based algorithms as 

compared to their counterparts. The generated sets of attributes were absolutely same. However, 

in case of GA, PSO-QR, FSA and RS-IHS-QR, the reducts generated might be different due to 

their random nature, e.g. the different execution of the same GA on same set of input may generate 

different outputs i.e. sometimes it may find ideal solution but other executions may produce the 

most “close to fitness score” output after X number (generations threshold value) of generations 

depending on how algorithm proceeds at runtime. However, all the results were manually verified 

against their fitness to ensure that they 100% fulfilled the exit criteria.  

7.2.2.3 Memory Usage 

In our experiments (both in positive region based algorithms and those using IDC), we used 

intermediate data structures in their global scope. Maximum required memory was allocated at the 

start of algorithm and was utilized throughout to avoid run time creation/deletion of memory 
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(consequently to enhance performance). Results have shown that algorithms using IDC consumed 

less memory as compared to positive region based approach in all cases. Figure-7.13 shows the 

memory comparison between positive region based approaches and those using IDC in graphical 

form. Overall 68.4% decrease in runtime required memory was found in algorithms using IDC. 

However note that common data structures used by both versions of an algorithm were not 

considered in calculating the size of memory. For example, the size of data structure used to store 

fish positions was equal in both FSA and FSA(IDC), so this data structure was not considered in 

calculating memory size. 

 

So, from all the above experiments we have observed that algorithms using IDC are more effective 

in terms of decreasing the execution time and memory but still do not compromise on the accuracy. 

IDC produce same dependency value as produced by conventional positive region based approach 

which makes IDC more effective solution to replace positive region calculation and thus cutting 

down in execution time. These factors also make IDC an ideal solution to be used for larger 

datasets where calculating the dependency value is a time complex job. Based on our above 

presented experimental analysis, we can conclude that IDC are effective alternate for positive 

region based approaches, not only in feature selection algorithms but in any rough set based 

algorithm which requires calculating dependency of decision attribute(s) on conditional attributes.  

 

7.3 Experimental analysis: DDC 

To justify the efficiency and effectiveness of the proposed DDC method and algorithms using 

DDC, we performed detailed analysis using various datasets from UCI [26] repository. The details 

of the datasets are given in Table-7.10. 
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Table-7.10: Summary of datasets used for DDC 

Dataset Instan

ces 

Attributes Dataset characteristics / 

Attribute characteristics 

Chess 3196 37 Multivariate / Integer 

Handwriting 

 

1593 266 Multivariate/ Real 

Optidigits 1797 65 Multivariate/ Integer 

Phishing 11055 31 Multivariate/ Integer, Real 

Sat 2000 37 Multivariate, Sequential, 

Time-Series / Integer, Real 

Vehicle 846 19 Multivariate/ Categorical, 

Integer, Real 

 

 

 

 

7.3.1 Efficiency And Accuracy of DDC 

Table 7-11 shows the results of experiment. First two columns specify dataset name, instances and 

number of attributes in each dataset. Third and fourth columns specify attribute set name and 

number of attributes in it. Fifth, sixth, seventh and eighth, ninth and tenth specify dependency 

value, time taken and memory used for DDC based approach and positive region based method 

respectively. Eleventh and twelfth column specify percentage decrease in execution time and 

percentage decrease in memory taken by DDC based method.   
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Table-7.11: Conventional positive region based approach vs DDC 

Dataset Inst/ Att Attr. 

Set ID 

Attr. 

Set 

Size 

Dep(DDC) Dep(P) % 

dec 

in 

time 

% 

dec 

in 

memory 

Dep Time 

(s) 

Mem 

(MB) 

Dep Time 

(s) 

Mem 

(MB) 

Chess 3196/37 

CH_1 10 0.121 0.62 0.475 0.121 0.529 38.9 88.3 98.8 

CH_2 20 0.467 0.624 0.475 0.467 2.340 38.9 73.3 98.8 

CH_3 30 0.751 1.576 0.475 0.751 3.354 38.9 53 98.8 

Handwriti

ng 
1593/266 

HND_1 80 1 0.748 0.814 1 1.217 9.6 38.5 91.5 

HND_2 160 1 0.748 0.814 1 1.280 9.6 41.6 91.5 

HND_3 240 1 0.765 0.814 1 1.435 9.6 46.7 91.5 

Optidigits 1797/65 

OPT_1 20 1 0.734 0.459 1 1.622 12.3 54.7 96.3 

OPT_2 40 1 0.811 0.459 1 1.669 12.3 51.4 96.3 

OPT_3 60 1 0.749 0.459 1 1.654 12.3 54.7 96.3 

Phishing 11055/31 

PHI_1 10 0.393 0.500 1.476 0.393 9.407 466.2 94.7 99.7 

PHI_2 20 0.833 2.808 1.476 0.833 13.713 466.2 79.5 99.7 

PHI_3 30 0.967 6.84 1.476 0.967 19.344 466.2 64.6 99.7 

Landsat-

satlite 
2000/37 

LND_1 5 0.957 0.531 0.297 0.957 1.451 15.2 63.4 98 

LND_2 15 1 0.593 0.297 1 1.529 15.2 61.2 98 

LND_3 30 1 0.593 0.297 1 1.622 15.2 63.4 98 

vehicle 846/19 

VEH_1 5 1 0.109 0.067 1 0.390 2.73 72.1 97.5 

VEH_2 10 1 0.125 0.067 1 0.421 2.73 70.3 97.5 

VEH_3 15 1 0.125 0.067 1 0.375 2.73 66.7 97.5 

 

7.3.1.1 Percentage Decrease in Execution Time 

Experiments conducted using 18 attribute sets have shown that Dep(DDC) reduces the execution 

time almost by 63% as compared to positive region based approach Dep(P). The basic reason 

behind is that Dep(DDC) directly calculates dependency thus lets us avoid the time consuming 

positive region calculation. Dep(DDC) only needs to scan each record to update its 

INSTANCECOUT AND CLASSSTATUS. After scanning complete dataset it simply calculates 

dependency based on uniqueness/non-uniqueness of each class. On the other hand Dep(P) requires 

three complex time consuming steps to calculate dependency. Firstly it computes equivalence class 

structure using decision attribute(s); secondly it requires equivalence class structure using the 

conditional attributes and finally it computers positive region on the base of which dependency is 

calculated. All these steps make Dep(P) too time consuming to be used for feature subset selection.  
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7.3.1.2 Memory Usage 

Dep(DDC) consumes less memory than Dep(P). Results have shown that Dep(DDC) reduced the 

required runtime memory almost by 96% for eighteen datasets with different number of attributes 

and records. The reason behind is that Dep(DDC) does not require to calculate equivalence class 

structure as required by the first two steps of Dep(P). To calculate these class structures we require 

substantial amount of memory. To calculate the equivalence class structure for decision attribute 

we need memory of size calculated as:  

  

 M([X]D) = Number of decision classes * ( maximum number of records in any class+3) 

 

The memory will be used in the form of two dimensional matrix having number of rows equal to 

number of decision classes and number of columns equal to maximum number of records in any 

class plus three extra columns. Note that three extra columns are for control purpose, they will 

contain decision attribute value, total number of objects in current class and index of last object in 

current row. In table-3-1(b) there are three decision classes (i.e. Platinum, Gold and Silver) and 

“Gold” class has maximum number (three) of records in it. So, the size of matrix required to 

calculate [X]D will be: 

M([X]D) = {3,6} 

If memory taken by one matrix element is 4 bytes, then the total memory required to calculate 

[X]D will be: 

M([X]D) = 3*(6)*4 = 52 bytes. 

The matrix will have runtime contents shown by Figure-7.14: 

  

Platinum 2 5 X1 X2  

Gold 3 6 X3 X5 X7 

Silver 2 5 X4 X6  

Figure-7.14: Runtime Equivalence class 

structure [X]D 

 

Similarly to calculate [X]C, we require a two dimensional matrix having rows equal to number of 

records in dataset and columns equal to number of records plus three extra columns. Note that 

extra three columns are gain for control purpose. So the memory required by [X]C in our case will 

be equal to: 
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M([X]D) = 7*(10)*4 = 280 bytes. 

So overall we need 323 bytes of runtime memory to calculate Dep(P). 

To calculate Dep(DDC) we need only a single grid as discussed in section-3. The Grid is again a 

two dimensional matrix with following dimensions: 

No. of rows = No. of records in dataset  

No. of Columns = number of conditional attributes + number of decision attributes + 2 

In our example: 

No. of Rows = 7 

No. of Columns = 2 +1 + 2 = 5 

So, required memory = 7*5*4 = 140 bytes. 

It is clear from above example that Dep(DDC) takes almost 50% less memory as compared to 

Dep(P). 

7.3.1.3 Accuracy 

It is clear from Table-7.11 that Dep(DDC) shows same accuracy as that shown by conventional 

positive region based approach. The reason behind is that Dep(DDC) calculates the same 

unique/non-unique classes that represent positive region. However, instead of using equivalence 

class structure and calculating positive region, it directly determines these unique/non-unique 

classes based on the decision class the values of attributes lead to.  

 

From the above measures it is clear that Dep(DDC) is more effective and accurate as compared to 

Dep(P) and can safely be used in any of the feature selection algorithm. 

7.3.2 Efficiency And Accuracy of Algorithms using DDC 

Experimental analysis has shown that algorithms using DDC based approach have been more 

effective both in terms of percentage decrease in execution time and memory still maintaining the 

accuracy. Table-7.12 to Table-7.16 show the results of the analysis. First three columns in each 

table provide dataset name, number of instances and number of attributes. Columns four, five and 

six, seven show the number of attributes in reduct and memory used by DDC based approach and 

its counterpart using positive region respectively. Finally columns eight and nine show the 

percentage decrease in execution time and memory resulted in case of DDC based algorithms. 
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Table-7.12: comparison between IFSA and IFSA(DDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

(DDC) 

Total 

Reducts 

Memory 

used (MB) 

IFSA(P) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Chess 3196 37 36 0.243 36 19.5 4.1 75.4 

Handwriti

ng 

1593 266 28 0.817 28 4.84 2.8 64.2 

Optidigits 1797 65 20 0.233 20 6.16 2.1 53.3 

Phishing 11055 31 30 0.716 30 233.47 12.6 92 

Sat 2000 37 20 0.164 20 7.63 1.6 38.6 

Vehicle 846 19 5 0.035 5 1.36 3.8 73.7 

 

 

 

 

Table-7.13: comparison between GA and IFSA(DDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Chess 3196 37 36 0.243 36 19.5 22.6 95.6 

Handwriti

ng 

1593 266 28 0.817 28 4.84 2.4 58.7 

Optidigits 1797 65 20 0.233 20 6.16 2.8 64.4 

Phishing 11055 31 30 0.716 30 233.47 24.5 95.9 

Sat 2000 37 20 0.164 20 7.63 3 66.8 

vehicle 846 19 5 0.035 5 1.36 2.2 54.3 

 

 

Table-7.14: comparison between IHS and IHS(DDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Chess 3196 37 36 0.243 36 19.5 1.7 40.3 

Handwriti

ng 

1593 266 28 0.817 28 4.84 2.1 53.4 

Optidigits 1797 65 20 0.233 20 6.16 1.6 39 

Phishing 11055 31 30 0.716 30 233.47 3.3 69.4 

Sat 2000 37 20 0.164 20 7.63 2.4 58.5 

vehicle 846 19 5 0.035 5 1.36 2.1 51.8 
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Table-7.15: comparison between FSA and FSA (DDC) 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Chess 3196 37 36 0.243 36 19.5 1.5 33.3 

Handwriti

ng 

1593 266 28 0.817 28 4.84 1.6 38.7 

Optidigits 1797 65 20 0.233 20 6.16 1.9 46.6 

Phishing 11055 31 30 0.716 30 233.47 6 83.2 

Sat 2000 37 20 0.164 20 7.63 91.2 98.9 

vehicle 846 19 5 0.035 5 1.36 1.9 47.6 

 

 

Table-7.16: comparison between PSO(DDC) and PSO 

Dataset Instanc

es 

Attribu

tes 

IFSA 

Total 

Reducts 

Memory 

used (MB) 

IFSA(IDC) 

Total 

Reducts 

Memory 

used (MB) 

X times faster % 

Decrease 

in Time 

Chess 3196 37 5 0.243 4 19.5 9.8 89.7 

Handwriti

ng 

1593 266 23 0.817 23 4.84 43.3 97.7 

Optidigits 1797 65 12 0.233 37 6.16 12.3 91.9 

Phishing 11055 31 12 0.716 18 233.47 37.6 97.3 

Sat 2000 37 18 0.164 20 7.63 2.9 65.3 

vehicle 846 19 12 0.035 13 1.36 1.3 22.2 

 

 

7.3.2.1 Percentage Decrease in Execution Time 

Experiments have shown that algorithms using DDC based method show a significant decrease in 

execution time. We have observed decrease of almost 95% for six datasets. This justifies our claim 

that algorithms using DDC method are more efficient as compared to those using positive region 

based approach. As PSO,IHS, GA and FSA are random in nature, they may produce results in 

different iterations in different runs, so to ensure the unbiased analysis we used the average time 

for single iteration. The main reason behind is that the efficiency of DDC method, which avoids 

positive region. The positive region based approaches on the other hand suffer from time 

consuming task of positive region calculation, while DDC based methods simply calculate 

dependency using number of unique/non-unique classes. Figure-7.15 to Figure-7.19 shows the 

execution time comparison of both versions of each algorithm. 
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Figure-7.15: comparison of execution time b/w/ IFSA (DDC) & IFSA 

 

 
Figure-7.16: comparison of execution time b/w/ GA (DDC) & GA 

 

 
Figure-7.17: comparison of execution time b/w/ RS-IHS (DDC) & RS-IHS 
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Figure-7.18: comparison of execution time b/w/ FSA (DDC) & FSA 

 

 
Figure-7.19: comparison of execution time b/w/ PSO-QR (DDC) & PSO 

 

 

 

7.3.2.2 Memory Usage 

Algorithms using DDC have taken less memory as compared to positive region based approaches.  

Results have shown that DDC based approaches have shown almost 95% decrease in memory on 

average for six datasets. The reason behind is that DDC based approaches require only one matrix 

to calculate number of unique and non-unique classes. Positive region based approaches on the 

other hand require two matrices to calculate equivalence class structure for first two steps as 

discussed in section 2.5.  

7.3.2.3 Accuracy 

DDC based approaches have shown same accuracy as that of conventional approach. The attributes 

in reduct set calculated by algorithms were different in some cases due to random nature of the 
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algorithms; however, the produced results were manually tested against their accuracy to be 

represented as candidate feature subsets and they fully qualified. This justifies our claim that DDC 

based approaches can successfully be used in any feature selection algorithm with absolute 

accuracy. 

 

7.4 Experimental analysis: Redefined Preliminaries 

To verify the proposed definitions, lower and upper approximations were calculated using both 

conventional and proposed method. Table-7.17 shows the result of lower and upper approximation 

calculated by both methods. In this table, columns from left to right are dataset name, cardinality 

of lower approximation using proposed definition, cardinality of lower approximation calculated 

using conventional method, time required to calculate lower approximation using proposed 

definition, time required to calculate lower approximation using conventional method, memory 

required in calculating lower approximation by proposed method, memory required in calculating 

lower approximation by conventional method, percentage decrease in execution time taken by 

proposed method and percentage decrease in memory required by proposed method. 

 

Table-7.17: Conventional Lower Approximation vs Redefined Lower Approximation 

Datasets Cardinality 
LA(RP) 

Cardinality 
LA(Ind) 

Time 
(sec) LA 

(RP) 

Time 
(sec) 

LA(Ind) 

Memory 
(MB) 

LA(RP) 

Memory 
(MB) 

LA(Ind) 

%dec 
in 

time 

%dec 
in 

memory 

Vehicle 217 217 0.12 0.33 0.38 1.36 63.64 72.06 

Musk1 207 207 0.05 0.1 0.34 1.46 50 76.71 

Land-Sat 461 461 0.5 1.35 2.30 7.63 62.96 69.86 

Handwriting 158 158 0.83 1.41 1.3 4.84 41.13 73.14 

Musk2 1017 1017 1.992 6.19 7.5 83 67.82 90.96 

 

 

Similarly Table-7.18 shows the results for proposed upper approximation calculation method. 
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Table-7.18: Conventional Upper Approximation vs Redefined Upper Approximation 

Datasets Cardinality 
UA(RP) 

Cardinality 
UA(Ind) 

Time 
(sec) 

UA (RP) 

Time (sec) 
UA(Ind) 

Memory 
(MB) 

UA(RP) 

Memory 
(MB) 

UA(Ind) 

%dec 
in 

time 

%dec in 
memory 

Vehicle 217 217 0.12 0.33 0.37 1.36 63.64 72.79 
Musk1 207 207 0.04 0.120 0.34 1.46 66.67 76.71 
Land-Sat 461 461 0.51 1.94 2.3 7.73 73.71 70.25 
Handwriting 158 158 0.72 1.38 1.3 4.84 47.83 73.14 
Musk2 1017 1017 2.25 7.312 7.5 83 69.23 90.96 

 

7.4.1 Accuracy 

For accuracy, the results were compared both in case of lower and upper approximations. Table-

7.19 and Table-7.20 show the actual objects obtained by lower and upper approximations using 

both approaches. First column in both tables shows dataset, second column shows the approach 

used. For each dataset both redefined preliminaries based approach LA (RP) and indiscernibility 

based approach LA (Ind) was used. Third and fourth columns specify the total number of objects 

obtained and decision class used. Finally the fifth column specifies the actual objects obtained 

using each approach. In dataset objects were numbers from one to n, where n=1 represents first 

objects (i.e. row number one), n=2 represents second object and so on. 

 

Table-7.19: Lower approximation: Indiscernibility Vs redefined preliminaries based approach 

Dataset Techni

que 

No. 

of 

objec

ts 

Decisi

on 

class 

Objects  

Vehicle 
 
 

LA(RP) 207 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,97,
106,118,121,124,131,132,133,139,141,149,151,154,159,163,164
,167,168,181,184,185,193,195,197,202,217,225,227,229,230,23
2,234,244,248,250,256,257,259,261,262,265,268,272,279,284,2
86,290,298,299,301,307,311,318,321,324,325,330,336,343,347,
352,355,358,361,362,363,366,368,377,378,379,387,395,401,408
,410,411,420,423,429,431,433,435,440,441,447,455,460,469,47
6,481,488,491,492,504,506,507,514,518,519,521,523,526,527,5
31,533,537,543,544,550,553,555,558,560,563,566,567,568,571,
572,576,577,583,584,594,600,604,606,615,621,623,624,625,626
,631,637,643,648,649,650,651,652,655,660,662,663,664,668,67
5,689,690,691,693,695,697,702,706,712,713,714,717,720,722,7
27,737,741,744,750,751,754,757,758,762,765,767,770,777,779,
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781,784,787,789,790,798,807,808,810,818,820,821,833,834,835
,838,842,844,845 

LA(Ind) 207 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,97,
106,118,121,124,131,132,133,139,141,149,151,154,159,163,164
,167,168,181,184,185,193,195,197,202,217,225,227,229,230,23
2,234,244,248,250,256,257,259,261,262,265,268,272,279,284,2
86,290,298,299,301,307,311,318,321,324,325,330,336,343,347,
352,355,358,361,362,363,366,368,377,378,379,387,395,401,408
,410,411,420,423,429,431,433,435,440,441,447,455,460,469,47
6,481,488,491,492,504,506,507,514,518,519,521,523,526,527,5
31,533,537,543,544,550,553,555,558,560,563,566,567,568,571,
572,576,577,583,584,594,600,604,606,615,621,623,624,625,626
,631,637,643,648,649,650,651,652,655,660,662,663,664,668,67
5,689,690,691,693,695,697,702,706,712,713,714,717,720,722,7
27,737,741,744,750,751,754,757,758,762,765,767,770,777,779,
781,784,787,789,790,798,807,808,810,818,820,821,833,834,835
,838,842,844,845 

Musk-2 LA(RP) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects) 

LA(Ind) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects) 

Handwri
ting 

LA(RP) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593 

LA(Ind) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593 

Land-sat LA(RP) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 1066-
1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 1185-
1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 1299-
1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 1417-
1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 1534-
1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623, 
1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-1709, 
1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-1859, 
1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-1997 

LA(Ind) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 1066-
1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 1185-
1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 1299-
1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 1417-
1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 1534-
1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623, 
1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-1709, 
1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-1859, 
1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-1997 

Musk-1 LA(RP) 207 X=1 Object 1 to object 207 (first 207 objects) 

Musk-1 LA(Ind) 207 X=1 Object 1 to object 207 (first 207 objects) 
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Table-7.20: Upper approximation: Indiscernibility Vs redefined preliminaries based approach 

Dataset Techni

que 

No. 

of 

objec

ts 

Decisi

on 

class 

Objects  

Vehicle 
 
 

LA(RP) 217 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,

97,106,118,121,124,131,132,133,139,141,149,151,154,159,1

63,164,167,168,181,184,185,193,195,197,202,217,225,227,2

29,230,232,234,244,248,250,256,257,259,261,262,265,268,2

72,279,284,286,290,298,299,301,307,311,318,321,324,325,3

30,336,343,347,352,355,358,361,362,363,366,368,377,378,3

79,387,395,401,408,410,411,420,423,429,431,433,435,440,4

41,447,455,460,469,476,481,488,491,492,504,506,507,514,5

18,519,521,523,526,527,531,533,537,543,544,550,553,555,5

58,560,563,566,567,568,571,572,576,577,583,584,594,600,6

04,606,615,621,623,624,625,626,631,637,643,648,649,650,6

51,652,655,660,662,663,664,668,675,689,690,691,693,695,6

97,702,706,712,713,714,717,720,722,727,737,741,744,750,7

51,754,757,758,762,765,767,770,777,779,781,784,787,789,7

90,798,807,808,810,818,820,821,833,834,835,838,842,844,8

45 

LA(Ind) 217 X=1 3,10,12,19,25,27,28,30,32,39,44,45,50,51,52,57,77,78,91,93,

97,106,118,121,124,131,132,133,139,141,149,151,154,159,1

63,164,167,168,181,184,185,193,195,197,202,217,225,227,2

29,230,232,234,244,248,250,256,257,259,261,262,265,268,2

72,279,284,286,290,298,299,301,307,311,318,321,324,325,3

30,336,343,347,352,355,358,361,362,363,366,368,377,378,3

79,387,395,401,408,410,411,420,423,429,431,433,435,440,4

41,447,455,460,469,476,481,488,491,492,504,506,507,514,5

18,519,521,523,526,527,531,533,537,543,544,550,553,555,5

58,560,563,566,567,568,571,572,576,577,583,584,594,600,6

04,606,615,621,623,624,625,626,631,637,643,648,649,650,6

51,652,655,660,662,663,664,668,675,689,690,691,693,695,6

97,702,706,712,713,714,717,720,722,727,737,741,744,750,7

51,754,757,758,762,765,767,770,777,779,781,784,787,789,7

90,798,807,808,810,818,820,821,833,834,835,838,842,844,8

45 
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Musk-2 LA(RP) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects) 

LA(Ind) 1017 X=1 Object no. 1 to Object no. 1017 (i.e. first 1017 objects) 

Handwri
ting 

LA(RP) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593 

LA(Ind) 158 X=1 180-199, 379-398, 579-597, 778-796, 1156-1195, 1554-1593 

Land-sat 
 

LA(RP) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 

1066-1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 

1185-1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 

1299-1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 

1417-1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 

1534-1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623, 

1625,1626,1636-1648, 1659-1668, 1671,1683-1694, 1704-

1709, 1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-

1859, 1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-

1997 

LA(Ind) 461 X=1 915,941,962,981-984, 1004-1008, 1023-1025, 1042-1047, 

1066-1069, 1085-1090, 1112-1115, 1131-1134, 1156-1163, 

1185-1189, 1205-1211, 1229-1234, 1254-1256, 1273-1279, 

1299-1304, 1323-1329, 1350-1355, 1375-1383, 1392-1404, 

1417-1428, 1441-1452, 1461-1477, 1485-1495, 1510-1524, 

1534-1549, 1556-1572, 1580-1587, 1597-1605, 1613-1623, 

1625,1626,1636-1648,1659-1668,1671,1683-1694, 1704-

1709, 1729-1750, 1759-1774, 1791-1804, 1815-1829, 1845-

1859, 1873-1893, 1904-1917, 1930-1948, 1955-1972, 1979-

1997 

Musk-1 
 

LA(RP) 207 X=1 Object no. 1 to object no. 207 

LA(Ind) 207 X=1 Object no. 1 to object no. 207 

 

Results have shown that proposed definitions provide the same results for same concepts as 

produced by conventional method. The reason behind is that proposed definitions are semantically 

same as conventional definitions however, computationally they are efficient because the 

computationally complex and expensive step of calculating equivalence classes is skipped. Instead 

the lower and upper approximations are calculated directly by calculating the classes that lead to 
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same decision class (in case of lower approximation) or different decision class (in case of upper 

approximation). Analysis has shown that proposed redefinitions have produced same results as 

given by conventional definitions i.e. both the proposed redefinitions and the conventional 

methods have given same objects for same concepts.  

7.4.2 Percentage Decrease in Execution Time 

For percentage decrease in execution time, system stopwatch was used. It was found that proposed 

redefinitions have shown 57.1% decrease in execution time for redefined lower approximation and 

64.2% decrease in case of redefined upper approximation, for five publically available datasets. 

The reason behind is that proposed redefinitions do not require equivalence classes and calculate 

the approximations in single step. The entire dataset is scanned and the objects leading to same or 

different decision class for same value of attributes are calculated. On the other hand, in case of 

conventional definitions, three steps are involved. 

7.4.3 Memory Usage 

Similarly required runtime memory was compared both in case of conventional definitions and 

proposed redefinitions. It was found that for five datasets, proposed redefinitions have shown 

76.5% decrease in required runtime memory. For this purpose major data structures used were 

calculated. We used two dimensional arrays (Grids) for both approaches. In case of conventional 

approach, the size of grid used was larger than the one used for proposed definitions. The reason 

behind is that in conventional case the grid requires to store all the objects in the form of 

equivalence class structure (every object belongs to one equivalence class), whereas in case of 

proposed redefinitions we only need to store the objects that belong to the concept under 

consideration.   

 

So, for conventional definition of lower approximation, size of grid will be: 

Size of Grid= [maximum no. of rows x (maximum no. of rows +1)] x datatype size 

Note that the extra attribute (column in grid) is used for control purpose. 

For proposed redefinitions, on the other hand, size of required grid is: 

Size of Grid = [(no. of attribute + maximum number of objects in concept + 3) x (maximum no. 

of rows)] x datatype size. 
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Again, extra three columns are for control purpose. 

Here we need lesser memory because normally the total number of attributes and number of objects 

belonging to any concept are lesser than total number of objects in dataset. 

Here we explain it with an example. We will consider the “Vehicle” dataset take from [2] for this 

purpose. This dataset comprises of 846 objects and 18 attributes (excluding decision class), 

decision class (concept) D=1 contains maximum 217 objects. 

So, memory required in calculating lower approximation using conventional approach: 

 Size of Grid= [maximum no. of rows x (maximum no. of rows +1)] x datatype size 

= (846*847)*2 = 1399.535156 Bytes = 1.36MB 

Similarly, memory required using proposed redefinitions will be: 

Size of Grid = [(no. of attribute + maximum number of objects in concept + 3) x (maximum no. 

of rows)] x datatype size 

Size of Grid = [(18 + 217+ 3) x (846)] x 2 = 393.2578125 bytes  = 0.38MB 

 

7.5 Experimental analysis: Redefined Preliminaries Based 

Feature Selection 

To justify the proposed algorithm, it was compared with four state of the art algorithms using 

conventional indiscernibility based dependency measure i.e. PSO-QR(Ind) [22], GA(Ind) [24], 

IFSA (Ind) [25], AFSA (Ind) [26] . Algorithms were executed using five publicly available 

datasets and results were compared. For calculating decrease in execution time, system stopwatch 

was used. It was started after reading the dataset and was stopped after output was generated. 

Table-7.21 shows the results of the experiments. 

Table-7.21: RPFS vs conventional indiscernibility based approaches 
    RPFS PSO-QR [22] GA [24] IFSA [25] AFSA [26] 

  Records 
/ 
attributes 

Reducts Time 
(m) 

Reducts Time 
(m) 

Reducts Time 
(m) 

Reducts Time 
(m) 

Reducts Time 
(m) 

Vehicle 846/19 4 0.07 8 0.44 7 0.11 5 0.138 13 0.2 

Musk2 6598/168 18 5.18 81 237.5 79 6.34 20 57.5 78 59.3 

handwriting 1593/266 9 0.33 130 24.1 123 0.51 28 16.13 133 8.43 

Land-sat 2000/36 10 0.32 15 3.5 14 0.48 20 0.43 18 1.31 

Musk1 476/168 2 0.1 136 1.43 19 0.1 20 1.19 121 1.6 
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Results were analyzed on two parameters i.e. accuracy and execution runtime.  

Accuracy specifies the appropriateness of set of features selected as final feature subset. Two 

aspects were considered in this regard i.e. the size of feature subset selected and the dependency 

of selected subset. It was observed that the size of feature subset selected by proposed algorithm 

was always lesser than competitive algorithms. The reason behind is that proposed algorithm 

selects features on the basis of dependency value. So the feature with highest dependency i.e. the 

features having more information are selected first which results in optimal feature subset. 

Dependency of selected feature subsets was manually verified by calculating dependency using 

conventional method to further ensure the accuracy. It was found that resulted features had 

dependency equal to entire dataset which means that resulted subset was absolutely appropriate 

candidate solution. 

Results have shown that proposed solution is more efficient. It is observed that proposed solution 

show a significant decrease in execution time. 

The reason behind is that it only needs to check the dependency of each individual attribute and 

then select the attributes with higher dependency to find out the optimal feature subset. Selecting 

the attributes with higher degrees of dependency result in minimal number of combinations to be 

tested to find the final subset. We have already discussed that combinations of features with higher 

degree of dependency are likely to increase dependency value (of overall combination) more than 

combinations of features of lower degree dependency. So, using this technique lets us find the 

feature subset in very fewer attempts after dependency of each individual attribute is calculated, 

thus algorithm results the output feature subset more efficiently as compared to other algorithms. 

Furthermore, to calculate dependency we have used the proposed lower approximation 

redefinitions rather than using the conventional dependency method, which substantially adds to 

efficiency of algorithm. Results (given in Table-10) have shown that for five publicly available 

datasets proposed algorithm showed 68.238% decrease in execution time on average.  

By enhancing the efficiency with optimal feature subset, the proposed algorithm can save 

substantial amount of time which can be utilized in further tasks e.g. classification, clustering, rule 

extraction etc. Since the resulted feature subset has minimum number of attributes, so using 

proposed algorithm as pre-processor can enhance the efficiency of other tasks which take this 

feature subset as input. 
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7.6 Summary 

A comparison framework was designed to perform experimental analysis. The framework 

comprised of three components, percentage decrease in execution time, memory used and 

accuracy. To justify the proposed solution, at first step both IDC and DDC based methods were 

analyzed. In second step, feature selection algorithms based on IDC and DDC were tested. The 

experimental results have shown that algorithms using IDC and DDC were more effective than 

their counterparts using the positive region-based approach in terms of accuracy, execution time 

and required runtime memory. 

Chapter 8: Conclusion and Future work 

The main objective of the current research was to propose alternate methods for calculating rough 

set based Lower Approximation, Upper Approximation and Dependency measure. We have then 

proposed new feature selection algorithm using these measures. The conventional methods for 

calculating these measures are computationally too expensive to be used for performing feature 

selection on large datasets. Experimental analysis have shown the significance of proposed 

approaches both in terms of efficiency and effectiveness. In this chapter we will provide the overall 

summary of our research work and will provide some insight into its future extension. 

8.1 Lower And Upper Approximations 

Conventional Rough Set Based Lower and Upper approximations use equivalence class structure 

to calculate approximations which is computationally expensive job. However, on the concept of 

lower approximation provided by RST, we have proposed a new definition as follows: 

𝐶𝑋 = {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶,  𝑎 ≠ 𝑏| 𝑥{𝑐∪𝑑} → 𝑎,  𝑥{𝑐∪𝑑} ↛ 𝑏}      

i.e. the lower approximation of concept “X” w.r.t. the attribute set “c”, is set of objects such that 

for each occurrence of the object, the same value of conditional attribute “c” always leads to the 

same decision class value. So, if there are “n” occurrences of an object, then all of them lead to 

same decision class (for same value of attributes), which alternatively means that for a specific 

value of an attribute, we can with surety say that object belongs to a certain decision class. This is 

exactly equal to conventional definition of lower approximation. 
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Similarly the following definition of upper approximation was proposed: 

 

𝐶𝑋 = 𝐶𝑋 ∪ {∀ 𝑥 ∈ 𝑈, 𝑐 ∈ 𝐶,  𝑎 ≠ 𝑏| 𝑥{𝑐} → 𝑎,  𝑥′{𝑐} → 𝑏}       

This definition will be read as follows:  

Provided that that objects x and x’ are indiscernible wr.t. to attribute(s) c, they will be part of an 

upper approximation if either they belong to lower approximation or at least one of their 

occurrences leads to decision class belonging to concept X. So objects x and x’ belong to upper 

approximation if both occurrences of them lead to different decision class for the same value of 

attributes. Results have shown that the proposed heuristics based approach provide significant 

increase in efficiency and performance without affecting accuracy. 

8.2 Dependency Classes 

Majority of feature selection algorithms use rough set based dependency measure for feature 

selection. However, using conventional concept of dependency provided by rough set is 

computationally expensive approach. It uses positive region for calculating dependency which 

involves three steps i.e. calculating equivalence class structure for decision class, calculating 

equivalence class for conditional attributes and finally calculating positive region. The complex 

computation involved in positive region based approach makes it inappropriate for algorithms 

performing feature selection for larger datasets. To overcome the issue two alternate methods were 

proposed based on dependency classes. A dependency class is a rule that defines how degree of 

dependency of decision class “D” on conditional attribute “C” changes as we read new record in 

dataset. 

8.2.1 Incremental Dependency Classes 

Incremental dependency classes are set of four rules that govern, how dependency value changes 

with each new record.  
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They are: 

 Existing boundary region class: If same value of attribute leads to different decision 

classes, it decreases the dependency 

 Positive region class: If adding a record, does not lead to a different decision class for same 

value of that attribute, dependency will increase. 

 Initial positive region class: If the value appears in the data set for the first time for that 

attribute, then dependency increases. 

 Boundary region class: If same value (which was leading to unique decision previously) of 

attribute leads to different decision, then adding the new record reduces the dependency. 

8.2.2 Direct Dependency Classes 

Direct dependency classes specify how dependency value change as new record is read in dataset. 

For a decision class D, the dependency K of D on C is as shown in table 8-1. 

 

Table-8.1: How DDC calculates dependency 

Dependency No of unique/non-unique classes 

0 If there is no unique class 

1 If there is no non-unique class 

N Otherwise where 0 < n < 1 

 

 

It means that reading a record belonging to unique class will increase the dependency and reading 

a record belonging to non-unique class will decrease dependency. 

8.3 Feature Selection Using Dependency Classes 

On the basis of the proposed incremental and direct dependency classes, various feature selection 

algorithms, originally using positive region based dependency measure were re-implemented. In 

these algorithms, step of calculating positive region based dependency measure was replaced with 

dependency classes based methods.  
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8.4 Experimental Analysis 

Experiments were performed to justify the significance of proposed solutions. Experiments were 

carried out in two steps. In first step accuracy and efficiency of dependency classes themselves 

was analyzed. Results have shown the significance of dependency classes by considerably 

reducing the execution time and runtime memory utilization while still not compromising 

accuracy. On average, IDC reduced the execution time by 54.5% for 18 attribute sets. The reason 

behind is that the IDC have successfully avoided the complex computations of calculating positive 

regions. Memory taken by the IDC was less than positive region based approach in all cases. On 

average almost 68.4% decrease in memory was found. Experiments conducted using 18 attribute 

sets have shown that Dep(DDC) reduces the execution time almost by 63% as compared to positive 

region based approach Dep(P). Dep(DDC) consumes less memory than Dep(P). Results indicated 

that Dep(DDC) reduced the required runtime memory almost by 96% for eighteen datasets with 

different number of attributes and records. The reason behind is that Dep(DDC) does not require 

to calculate equivalence class structure as required by the first two steps of Dep(P).  

 

In second step performance of algorithms using dependency classes based dependency calculation 

methods was analyzed. Again results justified the efficiency and effectiveness of the algorithms 

using dependency classes based methods. These results support the argument that the proposed 

IDC can be more effective to enhance the performance of algorithms based on calculation of 

dependency using positive region. Calculations show that Overall IDC based algorithms resulted 

in almost 65.93% decrease in execution time. The main reason behind the efficiency of IDC is that 

it avoids the calculation of the time consuming positive region calculation. The theory behind IDC 

is that it is the ratio of total number of attribute values that lead towards unique decision to total 

universe size. This is the point which helps reduce the execution time in case of IDC. Conventional 

rough set based approach on the other hand first creates equivalence class structure w.r.t. the 

decision attribute(s), then equivalence class structure using the attributes under consideration (on 

which dependency is to be measured) and finally the positive region is calculated. These steps 

consume too much time which makes positive region based dependency measure method totally 

unsuitable for other than smaller datasets. In our experiments (both in positive region based 

algorithms and those using IDC), we used intermediate data structures in their global scope. 

Maximum required memory was allocated at the start of algorithm and was utilized throughout to 
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avoid run time creation/deletion of memory (consequently to enhance performance). Results have 

shown that algorithms using IDC consumed less memory as compared to positive region based 

approach in all cases. Overall 68.4% decrease in runtime required memory was found in algorithms 

using IDC.   

 

Similarly experiments showed that algorithms using DDC based method show a significant 

decrease in execution time. We have observed decrease of almost 95% for six datasets. This 

justifies our claim that algorithms using DDC method are more efficient as compared to those 

using positive region based approach. Algorithms using DDC have taken less memory as 

compared to positive region based approaches.  Results have shown that DDC based approaches 

have shown almost 95% decrease in memory on average for six datasets. The reason behind is that 

DDC based approaches require only one matrix to calculate number of unique and non-unique 

classes. Positive region based approaches on the other hand require two matrices to calculate 

equivalence class structure 

8.5 Future Work 

The following has been suggested for future. 

8.5.1 Dependency Classes For Unsupervised Learning 

So far dependency classes were used only for supervised datasets. This is because dependency 

classes require class labels to predict the degree of dependency as new record is read. This happens 

in case of both incremental dependency classes and direct dependency classes. However, we may 

come along the situation where data is not labelled i.e. in case of unsupervised learning.  So the 

application of dependency classes may be challenging in this case and a scenario still to be tested.  

As part of our future work we intend to apply dependency classes for unsupervised model and 

motivation comes from [88] where authors have presented unsupervised QuickReduct algorithm.  

This would be beneficial in many real world applications including clinical decision support 

systems, Vehicle identification and tracking and weather forecasting etc. 

Figure-8.1shows the pseudo code of the algorithm.  
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Figure-8.1: unsupervised QuickReduct taken from [88] 

 

Authors have used positive region based dependency measure to calculate dependency of 

attributes, however, as in unsupervised learning we are not provided with data labels, so the 

dependency of attributes on each other is checked and the attributes that provide maximum 

increase in dependency of other attributes on them are selected.  So instead of an explicitly 

available decision class, C – {x} attributes act as decision class for attribute {x}.  However, the 

drawback with this approach is that using positive region based approach makes it impossible to 

apply for large datasets, so our intension is to use dependency classes where features could be 

selected without applying positive region. We have attempted to dry run incremental dependency 

classes to calculate dependency using dependency classes.  

 

Table-8.2 taken from [88] shows the dataset used for experimentation.  
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Table-8.2: Sample IS taken from 

[88] 

U  a b c d 

1 1 0 2 1 
2 1 0 2 0 
3 1 2 0 0 
4 1 2 2 1 
5 2 1 0 0 
6 2 1 1 0 
7 2 1 2 1 

 

Dependency calculated by unsupervised QuickReduct algorithm for the datasets given in Table-

8.3 

Table-8.3: Dependency values calculated by 

[88] 
y|x {a} {b} {c} {d} 

A 1 1 0.1429 0 
B 0.4286 1 0.1429 0 
C 0 0.2857 1 0.4286 
D 0 0 0.4286 1 

 

 

Where each column specifies the degree of dependency of other attributes on a particular attribute 

e.g. third row specifies value of attribute {b} on {a}, fourth row specifies degree of dependency 

of {c} on {a} and fifth row specifies degree of dependency of {d} on {a}. We have dry run 

dependency classes for calculating dependency and results obtained when compared with those 

calculated by positive region based dependency measure were same. Following section shows how 

dependency was calculated in unsupervised mod for these attributes using dataset given in Table-

8.3. 

 

Here we need to calculate dependency of {a} on {a}, {b} on {a}, {c} on {a} and {d} on {a}. For 

description purpose we will only calculate dependency of {b} on {a} using IDC. So, in this case 

{b} will be considered as decision class and {a} will be considered as conditional attribute. 
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So if we read the first record, value of attribute {a} is “1”, decision class is “0”, since record 

appears for the first time, so as per rules of IDC, the applied IDC will be “Initial Positive Region” 

class. Since UDV value before reading this record was “0” (as before this we had no record read) 

so dependency will be: 

γ(c, D) =  
UDV + 1

|U′| + 1
 

γ(a, b) =  
0 + 1

|0| + 1
 

γ(a, b) =  
1

1
 

γ(a, b) =  1  

 

Value of UDV becomes “1” as we have only one unique record so far. After reading second record 

i.e. object “2”, we see that this object has already appeared with same vale of condition and 

decision attributes, so applied dependency class will be “Positive Region” class. Dependency will 

be calculated as: 

 

γ(c, D) =  
UDV + 1

|U′| + 1
 

γ(a, b) =  
1 + 1

|1| + 1
 

γ(a, b) =  
2

2
 

γ(a, b) =  1 

 

Value of UDV will become “2” because so far we have two unique records. Similarly after reading 

all the records and applying relevant dependency classes,  

γ(a, b) =  3/7 

 

After calculating dependency of all attributes, we have found dependencies equal to that calculated 

by unsupervised QuickReduct. 
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Similar to incremental dependency classes, direct dependency classes were also applied to 

calculate dependency. If we consider total number of unique classes then by formula: 

 

𝑘 = 𝛾(𝐶, 𝐷) =
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑒𝑠

|𝑈|
 

𝑘 = 𝛾(𝑎, 𝑏) =
3

|7|
 

𝑘 = 𝛾(𝑎, 𝑏) =
3

7
 

However, if we consider number of non-unique classes then dependency can be calculated by 

formula: 

 

𝑘 = 𝛾(𝐶, 𝐷) = 1 −
𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑛𝑜𝑛 − 𝑢𝑛𝑖𝑞𝑢𝑒 𝑐𝑙𝑎𝑠𝑠𝑠𝑒𝑠

|𝑈|
 

𝑘 = 𝛾(𝐶, 𝐷) = 1 −
4

|7|
 

𝑘 = 𝛾(𝐶, 𝐷) =
3

7
 

 

Similarly we calculated dependency of all attributes using direct dependency classes (DDC), and 

result was found to be equal to that calculated by unsupervised QuickReduct.  

 

However, this was only experimented using the above given dataset and only accuracy was 

measured. Other two components of comparison framework i.e. percentage decrease in execution 

time and memory usage was not analyzed and will be worked on as part of future work. 

8.5.2 Dependency Classes For Unsupervised Feature Selection 

Algorithms 

There are algorithms for feature selection designed for unsupervised mode e.g. feature selection 

for detecting social behaviour in case of social media applications, documents classification and 

fraud detection in banking applications. As far as accuracy is concerned, we can use dependency 

classes as replacement for positive region based approaches but the computation time and memory 

usage factors still need to be tested. If dependency classes prove to be successful for unsupervised 
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models in terms of all components of comparison framework, it will be a good help for performing 

unsupervised feature selection in large datasets by enhancing the efficiency and effectiveness of 

the underlying algorithms. Figure-8.2 highlights the steps where dependency classes based 

dependency measure can be used instead of positive region based dependency calculation. 

 

Figure-8.2: Unsupervised QuickReduct with highlighted adaptations taken from [88] 

8.5.3 Dependency Classes For Other Algorithms 

So far dependency classes have been applied to feature selection algorithms only. However a 

number of other algorithms including prediction algorithms, decision making algorithms, rule 

extraction algorithms etc. also use positive region based rough set dependency measure. So, 

apparently we can conclude that dependency classes can also be applied in these algorithms. 

However their effectiveness still needs to be analyzed and can be a track for future to further proof 

benefits of dependency classes. 
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8.6 Final Word 

The aim of this investigation was to investigate methods capable of achieving dimensionality 

reduction which are also computationally effective. The main objective of RST is to reduce data 

size. Traditional rough set based approaches use positive region based dependency measure for 

feature selection process. However, using positive region is computationally expensive approach 

that makes it inappropriate to use for large datasets. We have developed an alternate way to 

calculate dependency comprising of dependency classes. A dependency class is a heuristic which 

defines how the dependency measure changes as we scan new records during traversal of the 

dataset.  On the basis of the heuristics used by dependency classes, two types of dependency classes 

were proposed i.e. Incremental Dependency Classes (IDC) and Direct Dependency Classes 

(DDC). Experimental results justified the efficiency and effectiveness of proposed solution. Future 

directions include dependency classes for unsupervised datasets, dependency classes for 

unsupervised feature selection and dependency classes for algorithms other than feature selection. 
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