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Abstract

The last couple of years have seen a radical shift in the cyber defense paradigm
from reactive to proactive, and this change is marked by the steadily increas-
ing trend of Cyber Threat Intelligence (CTI) sharing. Currently, there are
numerous Open Source Intelligence (OSINT) sources providing periodically
updated threat feeds that are fed into various analytical solutions. At this
point, there is an excessive amount of data being produced from such sources,
both structured (STIX, IOC, etc.) as well as unstructured (blacklists, etc.).
However, more often than not, the level of detail required for making in-
formed security decisions is missing from threat feeds, since most indicators
are atomic in nature, like IPs and hashes, which are usually rather volatile.
These feeds distinctly lack strategic threat information, like attack patterns
and techniques that truly represent the behavior of an attacker or an exploit.
Another vital information missing from CTI is the course of action taken by
a certain organization to combat a threat, which would make it easier for
organizations to formulate their own counter-mechanism against a certain
threat.
We propose the usage of natural language processing to extract threat feeds
by mining the unstructured cyber threat information sources, cleansing, ag-
gregating, tagging and indexing information, also providing output in stan-
dards, like STIX, that is a widely accepted industry standard that represents
CTI. The automation of an otherwise tedious manual task would ensure the
timely gathering and sharing of relevant CTI that would give organizations
the edge to be able to proactively defend against known as well as unknown
threats.



Chapter 1

Introduction

As the name suggests, this chapter introduces the premise of the thesis - why
cyber threat intelligence is important, how security, in general, has become
a big data problem and how using machine learning and natural language
processing can help alleviate a lot of the issues plaguing security analysts
today.

1.1 Background and Motivation

In 2016, there was a massive wave of ransomware attacks on numerous hos-
pitals across the US [1]. The ransomware called Locky [2] was introduced
into the systems of healthcare professionals through a spearphishing cam-
paign, where the emails had malicious attachments, e.g. Word documents
with macros that caused the encryption of files on the victims’ systems. A
similar attack was seen in 2017, with WannaCry [3] targeting many hospitals
that were a part of Britain’s National Health Service. This attack had an
identical infection vector, i.e. emails attached with malicious attachments or
links. Also common was the fact that they both used Tor network for their
command and control communication. These ransomwares moved laterally
once they had infected one system to try and infect others in the network.
There is a distinct overlap in the kill chains for these attacks, launched al-
most a year apart, and the former attack could have helped organizations
prepare for the latter. Ironically, these are just two in thousands of instances
where having knowledge of the previous attack could have been instrumen-
tal in circumventing the successive attacks, and yet, despite the information
already being out there, organizations were unable to take advantage of that.
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1.1.1 Security is hard

Achieving security is hard because it is a negative goal [4]. For example,
if you wanted to secure a classroom and restrict access to only those that
are enrolled, it is feasible to count and tally the students present against
a list, since it is a known quantity, easily accounted for. However, now
consider this from a defender’s point of view, where they have to defend the
classroom against the rest of the world with variable threats and unknowns.
The whitelist is a finite set of students, whereas the blacklist could ostensibly
contain the rest of the world, hence increasing the possibilities.

The large number of possibilities and the risk of unknowns notwithstand-
ing, there is also the fact that attackers today are more focused, sophisticated
and have enhanced capabilities and resources - both in terms of the tools
they use and their expertise in laying out and launching successful attacks.
As described in [5], these days targeted attackers pose Advanced Persistent
Threats (APTs) with the help of strategic kill chain mechanism, as shown in
Figure 1.1.

Figure 1.1: Lockheed Martin’s Kill Chain

The kill chain begins with reconnaissance or recon, which is where the
attacker begins by trying to gather as much information about the target as
possible. Once the attacker has enough information that would allow them
to strategize and plan their attack, they weaponize, develop or buy malware
or tools that will carry out the intended attack. Next, they Deliver said
malware to the targeted network. If all goes as planned, the malware exploits
previously discovered vulnerabilities to gain foothold into the network. Most
likely, the exploit would involve some sort of Command and Control which
would allow them to remotely interact with the network and gain control of
the network’s resources. Following that, usually a more persistent backdoor
is installed to make sure they retain control of the infected systems. And
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finally, they perform whatever action they had originally intended to perform,
whether it is stealing money or data or something else entirely.

1.1.2 Cyber Threat Intelligence (CTI)

Cyber Threat Intelligence (CTI) is contextual knowledge about a threat that
includes high-level indicators like campaign, motivation, Tactics, Techniques
and Procedures (TTPs), as well as low-level indicators including IPs, hashes,
network artifacts, etc. [6]. In recent years, it has become an indispensable
part of day to day security operations, to help organizations prioritize threats,
detect, mitigate or contain attacks in a timely manner. According to a recent
report by SANS [7], almost 60% of organizations are already using CTI and
25% have plans to incorporate it into their security operations soon. It goes
on to state that almost 47% of these organizations have dedicated teams for
CTI that implement and monitor CTI.

1.1.3 Indicators of Interest

CTI is all about indicators that could tip off analysts regarding the nature
of an attack or simply allow them to blacklist certain IPs. They vary from
high level to low level, in terms of detail and perspective. This thesis fo-
cuses specifically on the Structured Threat Information eXpression, or STIX,
branch of threat intelligence. STIX is an XML programming language for
conveying data about Cyber Security threats in a standard representation
that can be easily understood by humans and security technologies. The
following questions are to be considered when dealing with the eight core
concepts of the STIX architecture and their relationships with each other:

• Observable: What activity are we observing?

• Indicator: What threats should I look for on my networks and systems
and why?

• Incident: Where has this threat been seen?

• TTP: What does it do?

• ExploitTarget: What weaknesses does this threat exploit?

• Campaign: Why does it do this?

• ThreatActor: Who is responsible for this threat?

• CourseOfAction: What can be done about it?
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Of these core concepts, our focus has been narrowed to TTP, or Tac-
tics, Techniques, and Procedures. Some literature will use Tools in place of
Tactics. Originally a military term, TTP defines the modus operandi of a
threat actor [8], what strategies, mechanisms and low-level methods they’re
employing in order to reach their intended goal of compromising a system.
For example, an attacker may use RAM scraping on a POS network to collect
debit/credit card information.

Figure 1.2: Pyramid of Pain

According to the Pyramid of Pain [9], as shown in Figure 1.2 there is a
hierarchy to the categories of indicators that can be gathered and analyzed.
As you go up the pyramid, the indicators get more and more complex, which
make it difficult for the defender to discover and it is equally difficult for
the attacker to maintain variability. Consider how easy it is to change the
hash of a file. You only have to replace a single letter for the file hash to be
completely altered. But as you move up, it gets harder for the attacker to
vary indicators and even trickier for the defender to evaluate these indicators,
that aren’t readily available via IDS/IPS, firewall or system logs. TTPs
are arguably the most important information a threat analyst could have
in their arsenal, because not only does it explain how an attack is being
executed, it provides information on the capability of the attacker, what
kinds of resources and expertise they have and it can help in the attribution
process by connecting the dots to similar attacks. It is not the easiest thing
for the attacker to change on a moment’s notice, unlike atomic indicators
like hashes, IP addresses and domains. It requires a lot of analysis on the
defender’s part to be able to take low-level indicators and extrapolate the
attacker’s strategy out of it. While low-level indicators are easily extracted
with the help of regular expressions from any available log sources, high-
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Figure 1.3: Examples of high-level indicators in descriptive text

level indicators are not as easy to fetch. These can be found in various
security blogs where analysts write about their findings on particular APTs
and exploits, as shown in Figure 1.3. However, an analyst would have to read
through a lot of them to be able to make a comprehensive list of all. And
this is where proactive security is even harder, because the attackers have a
lot more resources and we have seen time and again that even with all hands
on deck, security breaches do occur and continue to do so at an alarming
rate.

1.2 CTI Sources

Currently, there are numerous open sources providing periodically updated
CTI, both structured (STIX, IOC, etc.) as well as unstructured (blacklists,
etc.), a sample of which can be seen in Figure 1.4. The volume of intelligence
gathered from open sources, or OSINT, is definitely on the rise. Hailataxii
[10], a popular source for STIX-based threat feeds, that aggregates data
from around ten other sources, boasts over 800,000 indicators. According
to a Ponemon survey [11], 70% of the participants agree that they are over-
whelmed by the sheer volume of the CTI data. A Gartner report corroborates
this by declaring cyber security a big data problem [12]. Clearly, the issue
now is not the lack of data; rather, there is too much data to be sifted through
in order to find the metaphorical needle in the haystack. Another problem
with these sources of CTI is their sparse indicator categories that are mostly
atomic in nature, including IPs, hashes and domains. There is a distinct
lack of strategic threat information, like attack patterns and techniques that
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Figure 1.4: Examples of structured and unstructured sources

truly represent the behavior of an attacker or an exploit, which is rated by
47% organizations as the most important information in CTI [7].

This lack of contextual and strategic information can be overcome by
using blogs and articles that provide extensive information regarding attacks,
including indicators of compromise, as well as high-level information like the
attack patterns and the kill chain. However, extracting CTI from these
sources manually is not possible when there is simply too much data and
not enough time if the information is to be extracted in a timely manner.
Automating the process is the only way to go about it, but it is not without
its challenges. Another issue with this can be dealing with the signal to
noise ratio: dealing with the actual instances of CTI and indicators against
false positives , advertises and various other words that may be related to
security but do not provide information about the attack. Moreover, there is
a lot of redundancy in such texts, but also inconsistency if one source gives
a different account of an attack, there is no way to truly determine which
source is more credible.

1.2.1 Security and Machine Learning

Machine Learning is a very promising area of research that is being increas-
ingly used to process large volumes of data. It has shown great success in
things like sentiment analysis, weather reports, stock exchange, and checking
for spam email. Thus, applying Machine Learning to Cyber Security has a
lot of appeal.

When turning to machines for this help, there are several tough challenges
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when applying it to the Cyber Security domain that need to be considered:
even though technology improves every day, training incident data is both dif-
ficult and time consuming. There is a lack of documentation and framework
for this type of structure because the data is very diverse and heterogeneous,
containing low-level IP addresses, domain names, all the way to high level at-
tacker tactics like DoS. Thus, documentation is created from scratch because
there is not a list of defined threat vocabulary to classify. Machine Learning
does not have a standard language to use and there is not one definite way
for the machine to determine who breached the system, how they breached
the system, who the victim is, and what actions and steps are to be taken
once the system has been breached. Another definite challenge is gathering
and generating training data for supervised learning efforts.

1.3 Aims and Scope

The aim of this thesis is to develop a means for extracting high-level indi-
cators from textual content in order to minimize the efforts put into defense
in order to completely evaluate threats, given how they will always have to
play catch up with the infinitely more resourceful attackers. We pursue this
direction in order to achieve the following objectives:

• 1st Objective: To be able to use supervised machine learning, we have
to have a training set that will tell the machine to recognize high-level
indicator vocabulary terms when it encounters them in text.

• 2nd Objective: To be able to gauge the success we have had in training
the machine to detect high-level indicators from text, we evaluate the
model we generated using precision, recall and accuracy statistics.

• 3rd Objective: To be able to give any threat analysis document to
our system that will extract high-level indicators from textual content.

1.4 Research Contributions

The following are the research contributions of this thesis:

• Training Set and Supervised Model We have developed a training
set and a consequent supervised model that can be used by others in
the research community to test or to improve on our results.
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• Indicator Annotation and Extraction Tool We have developed
a tool for annotating text to be able to train a model for extracting
high-level indicators and said training model can be used to actually
recognize and extract indicators from other files.

1.5 Thesis Organization

This thesis is broken down into multiple chapters, where each explains various
phases of our research work. A brief overview of all these chapters is as
follows:

• Chapter 1 provides detailed introduction about CTI and machine
learning - the challenges and motivation on embarking on this thesis.
We end this chapter by highlighting the aim of this

• Chapter 2 will summarize our findings of the related literature and
tools that closely resemble our research.

• Chapter 3 will explain the research methodology we leveraged for
our purpose. We essentially used the scientific method and devised
hypotheses that we continually tested and came to conclusions.

• Chapter 4 is where we discuss in detail our proposed and developed
solution.

• Chapter 5 will show the evaluation results of our solution.

• Chapter 6 ends this document with conclusion and suggestions for
future work.



Chapter 2

Related Work

This chapter summarizes the existing work in the area of cyber threat intel-
ligence and data science that are relevant to this thesis. We start off with a
literature review which forces us to conclude that there are some works that
are using machine learning on security data for different end results. We
have also looked into open source tools that are used for gathering, storing
and analyzing threat indicators.

2.1 Literature Review

CTI has been gaining traction in the research community as well, with in-
creasing number of publications dedicated to the domain that focus on using
machine learning and big data analytics to solve the identified issues. In [13],
authors impress upon the fact that cyber security has become a big data prob-
lem. Thuraisingham et al. [14] argue that the future of cyber security lies
in embracing a data-driven approach to problem solving and categorize the
challenges broadly as attack detection and prevention, data trustworthiness
and policy-based sharing and risk-oriented security metrics. The paper fur-
ther discusses the state of the art and the future directions in each category.
[15] talks about the growing trend of intelligent systems in cyber security in
terms of automation, collaboration, and how the industry has been equip-
ping itself for the fight against proliferating attackers. Authors specifically
talk about supervised and unsupervised learning and give examples of how
they are being used in determining the risk factor of a particular user using
behavior analysis and anomaly detection, respectively. A data-driven ap-
proach to CTI is described in [16], where the authors experiment with using
the vulnerability exploitation data found on Twitter to create a model for
predicting future exploits. Another such work related to this is presented
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in [17], which goes further in improving the predictive model, especially by
being meticulous about the training dataset.

While the aforementioned works definitely highlight the recent hype about
machine learning and cyber security, they do not resemble our work in terms
of the goals. Liao and Beyah et al. [18], however, has similar goals: they
have developed a tool to automatically detect and extract CTI from blogs
and online articles. To that end, they have developed a vocabulary of context
terms, based on OpenIOC’s IOC terms, that make it easier to predict the
presence of an IOC in a sentence, and use a combination of regexes, graph
mining and NLP techniques including dependency parsing, topic filtering
and content term extraction to extract information from blogs and other
online sources to generate an IOC file, as per OpenIOC schema. While their
approach is indeed novel, their focus remains solely on providing context to
IOCs that remain primarily atomic, e.g. ok.zip is a file that was downloaded,
so ”ok.zip” becomes the IOC and ”downloads” is the context term. Although
the indicators they are looking to extract go beyond the standard picking of
IPs, hashes, and URLs, but they do not look for high-level strategic aspects
of an attack, like TTPs or phases of the kill chain, that we are interested in.

2.1.1 CTI Tools: Aggregation and Exchange

Over the last few years, a lot of tools have been created that deal with
different formats of CTI to collect, store and exchange them. A few hon-
orable mentions include CTX/Soltra Edge [19], Collaborative Research into
Threats (CRITS) [20], Collective Intelligence Frameworks (CIF) [21], Mal-
ware Information Sharing Platform (MISP) [22], Facebooks ThreatExchange
[23], IBMs X-Force [24] and ThreatConnect [25].

There are other tools as well that focus primarily on the parsing and
analysis of CTI, and that are more relevant to what we are proposing. Ac-
torTrackr [26], for instance, is one such tool that stores and links APT actors
information and it includes other information about the actual exploits exe-
cuted by said actors. It relies on users and certain repositories for the data
insertion, and does not automate the process. Automater [27] is an analysis
tool that includes support only for atomic indicators like IP addresses, hashes
and URLs. A Google powered APT Groups, Operations and Malware Search
Engine [28], which fetches threat information matching given keywords from
certain specified sources, but it will only retrieve pertinent links. Cacador
[29], Forager [30] and Jager [31] are tools that take in textual reports about
incidents and retrieve indicators from them, and while these are the most
similar in terms of what our solution does, they do not cater to the more
important high-level TTPs that we want to extract from text.
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2.1.2 Standards for Representing CTI

To date, there are various standards that are being used to represent CTI.
Mandiants OpenIOC [32] is an open standard that is used to structure and
share tactical CTI. The Verizons Vocabulary for Event Recording and Inci-
dent Sharing (VERIS) [33] is another well-known schema for storing security
incidents and their relevant information. The Incident Object Description
Exchange Format (IODEF) [34] defines a commonly-used language used by
Computer Security Incident Response Teams (CSIRTs) to share informa-
tion regarding cyber security incidents. MITRE has also played a huge role
in the last few years in defining standards for CTI. The Structured Threat
Information eXpression (STIX) [35] language is an industry standard for
representing CTI and is supported by various tools for ingesting actionable
information. The STIX schema also supports CybOX, CAPEC and MAEC
that are also used independently for their specialized use cases. The Cy-
ber Observable eXpression (CybOX) [36] language provides a basic atomic
structure for representing network and host artifacts. The Common Attack
Pattern Enumeration and Classification (CAPEC) [37] is a comprehensive
taxonomy of frequently-used attack patterns, as the name suggests, which is
a very helpful catalog that generalizes what a pattern is and what measures
can be used to defend your infrastructure from it. Another special standard
called Malware Attribute Enumeration and Characterization (MAEC) [38]
is used for mapping data related to malwares and their behavior. Trusted
Automated eXchange of Indicator Information (TAXII) [39] is an industry-
accepted standard for exchanging CTI that is in the STIX format.

While the presence of these standards and solutions points to the fact that
there is definitely work being done in the domain but it is still in the nascent
stages, far from being mature at this stage. Since there are many sources
to gather data from, a lot of the tools focus on collecting, aggregating and
disseminating. Moreover, most of the focus of the community remains on
atomic indicators, as discussed. There is need to address the fact that, while
crucial to detection, atomic indicators have a high variability factor - i.e. it is
easy for attackers to change IPs and domains. On the other hand, high-level
indicators like attack patterns and TTPs are harder for attackers to change,
and are therefore, incredibly significant in the grand scheme of things, and
our work is a key stepping stone in that direction.
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Research Methodology

We have used scientific methodology in order to carry out applied research
that produces reproducible results.

3.1 Introduction

Scientific method is essentially the process of deliberate experimentation in
order to decide the accuracy of a hypothesis. It leads to exploration and
consequent discovery of knowledge that may be novel [40]. The purpose of
research is to find solutions to known problems [41]. Research according to
the scientific method typically follows this trajectory:

1. Choose and study a particular domain.

2. Find an interesting problem to solve.

3. Formulate hypothesis based on your study and deduction.

4. Develop predictions that can be evaluated and experiment.

5. If the experiment is successful, analyze the data and conclude by de-
vising a theory. Otherwise, troubleshoot, learn where it went wrong,
re-evaluate the hypothesis and repeat until satisfactory resolution is
found.

3.1.1 Research Types

A comparison of the most common research types will be discussed below:
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3.1.1.1 Descriptive versus Analytical Research

Although both descriptive and analytic research are survey techniques, that
differ in the questions they are fundamentally trying to answer. Where the
former focuses on the ”what” question, the latter addresses the ”why” and
”how” questions. [42]

3.1.1.2 Fundamental versus Applied Research

Fundamental research is all about gathering knowledge, not necessarily as a
means to any end, but just for the sake of learning. Applied research, on
the contrary, is research carried out for a specific outcome in the form of a
product, which is more often than not commercial [40].

3.1.1.3 Quantitative versus Qualitative Research

The major difference between quantitative and qualitative research lies in
their data, where one involves numerical data and the other involves descrip-
tive data. This type of research includes both mechanisms for generating
and analyzing the aforementioned data [43].

3.1.1.4 Conceptual versus Empirical Research

Conceptual research is theoretical in nature whereas the empirical method
is where practical experiments are carried out in order to prove hypotheses.
Scientific method is a hybrid method that combines the two, where some
element is researched theoretically and some practical experiments are carried
out as well [44].

3.2 Methodology Used for Thesis

With this thesis, we aim to engineer a solution for extracting high-level threat
indicators using machine learning. We have approached this research with a
hybrid model of empirical and applied research.

3.2.1 Research Domain

Initially, we carried out conceptual research in order to narrow down and
decide the research domain. We executed a comprehensive study of cyber
threat intelligence in order to completely understand the domain.
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3.2.2 Literature Survey

We conducted a comprehensive literature review in search of solutions similar
to the one that we proposed. Despite the growing interest in Cyber Threat
Intelligence, there is not much literature to be found on the topic, save for a
few white papers, which primarily market proprietary solutions. Some work
can be found on malware detection using data analytics, as well as predicting
vulnerability exploits by analyzing data from the social media. Since our
thesis involves cyber security as well as machine learning, this narrows down
the number of relevant texts available. Therefore, we have also included a
survey of all the open tools available to the threat intelligence community
that help gather, store or analyze data.

3.2.3 Problem Statement

Based upon our research, we have devised the following problem statement:

To apply natural language processing on a diverse set of cyber
threat data (structured and unstructured) in order to extract the
attack patterns, tactics, techniques and procedures, to enrich and
aggregate feeds.

3.2.4 Hypothesis

The hypothesis this thesis revolves around is:

Can NLP be used to extract high-level indicators from textual
content?

3.2.5 System Design and Implementation

We propose the usage of Natural Language Processing (NLP) to enrich these
feeds by mining the cyber threat information sources, cleansing, aggregating,
tagging and indexing information, also providing output in standards, like
STIX, easy to consume. To that end, we designed and implemented:

1. a system for annotating documents for a supervised model.

2. a solution for training and testing the model based on multiple



16 Research Methodology

3.2.6 Evaluation

The system is evaluated on the basis of the precision, accuracy and recall
of the supervised model. These metrics determine whether the experiment
worked and proves our hypothesis.



Chapter 4

Design and Implementation

This chapter details the design and implementation of the proposed solution,
how we engineered it, the process for classification and the outcome.

4.1 Introduction

In this chapter, we present an in-depth description of the architecture and
implementation of the solution. Since the primary focus is the NLP-based
learning of an NER model for extracting CTI from textual content, the chap-
ter is further separated into three sections where we begin with the technical
background on NLP and Stanford Core NLP, then we explain the process of
machine learning and generating the NER model, and in the end, we describe
the production system that uses this model to extract relevant information
and processes it before storing and disseminating.

4.2 Technical Background

Natural Language Processing (NLP) is the use of machines to automati-
cally understand the nuances of natural languages and extract meaningful
information from it [45]. NLP is used for a myriad of tasks, from splitting
sentences and assigning parts of speech to each word in a sentence, to parsing
dependencies in sentences, trying to find the meaning behind the string of
words in a way the computer comprehends and even generating text that
would sound natural to a human.

In this thesis, we required NLP for achieving the main objective of our
work which entails extraction of high-level indicators from textual threat
reports. While this task is usually done by cyber threat analysts manually,
who read multitudes of reports on a daily basis and aggregate and format
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that data to be fed to security controls, we wanted to be able to do this task
automatically, which would greatly improve its effectiveness. Information
extraction systems generally have the following architecture [46], as shown
in Figure 4.1:

Figure 4.1: Information extraction architecture

1. Sentence Segmentation: Initially, the text is broken down into sen-
tences, which have recognizable parts of speech.

2. Tokenization: This entails further breaking down a sentence into to-
kens, that may be words or punctuation marks.

3. PoS Tagging: The tokens of a sentence are then categorized into their
associated part of speech, like a noun, a verb, etc., which allows the
computer to understand who the subject is and what action is being
performed.

4. Entity Detection: Also known as Named Entity Recognition (NER),
this step is where the system spots terms that are important to it, that
could be anything, like a person’s name, or a location name, etc.

5. Relation Detection: Ultimately these entities of interest are merged
into tuples of relations, i.e. how one entity is connected to another. For
example a person may live in a certain place, or could just be visiting
it.

The scope of our thesis is limited to Entity Detection, however, a future
direction is to incorporate Relation Detection.
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4.2.1 Named Entity Recognition

Named Entity Recognition (NER) is the task in information extraction wherein
the objective is to find and classify categories of information that are of in-
terest. They may be a person’s name, a country’s name, name of the days
or anything else. This is a form of information extraction where we find and
understand limited relevant parts of text. The information is gathered from
many pieces of text to produce a structured representation of this relevant
information, with the goal to organize the information so that it is useful to
humans. Computer algorithms make inferences from the semantically precise
form of the information [47].

In our case, the entities are handpicked from the STIX vocabulary, as
described in section 4.3.2. However, the problem with some of our entities,
especially the TTP and Intended Effect is that they are usually phrases and
not just proper nouns that makes them difficult to annotate and consequently
to detect.

4.2.2 Conditional Random Field

In classification, there are some use cases that would make more sense if
taken in context, keeping the sequence in mind. For example, if we were to
try to tag parts of speech for a sentence taking one word at a time, without
taking into account where the word is and how it relates to the previous
word, we would never be able to achieve accuracy. Conditional Random
Fields (CRFs) are a statistical prediction model that decides on a class not
just on its individual characteristics, but also on the previous labels [?].

In linear-chain CRF, which calculates tags in a linear fashion, each feature
extractor is a function that takes in the following parameters:

1. a sentence s

2. position i of the current word

3. tag ti of the current word

4. tag ti−1 of the previous word

Each feature function fj is assigned a weight λj. These weightages are as-
signed on the basis of the training data. For example, a function f1(s, i, ti, ti−1) =
1 if ti = LOCATION and ti−1 = LOCATION as well; 0 otherwise. Which
means that instances of LOCATION tag appear in close clusters, where if
one word is Location then the likelihood that the next one is a Location as
well is high.
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Therefore, we can score the tagging of sentences as the summation of the
weighted features over all tokens in a sentence:

score(t|s) =
m∑
j=1

n∑
i=1

λjfj(s, i, ti, ti−1) (4.1)

These scores are then used to calculate the probability that a tag belongs
with a certain token with the following formula:

p(t|s) =
exp[score(t|s)]∑
t exp[score(t|s)]

=
exp[

∑m
j=1

∑n
i=1 λjfj(s, i, ti, ti−1)]∑

t exp[
∑m

j=1

∑n
i=1 λjfj(s, i, ti, ti−1)]

(4.2)

4.2.3 Stanford NER

Stanford NER is a subset of the Stanford Core NLP library that is specifically
used for entity recognition. As per Figure 4.1, Stanford Core NLP provides
sentence splitting, tokenization, PoS tagging, as well as numerous feature
extractors for NER that makes it a state of the art library to use for this
purpose. Their NER classifier is based on linear-chain CRF, as described in
section 4.2.2, and has numerous features that include shape of word, n-grams
for setting a window of contiguous token labels for better prediction, gazettes
as a pre-determined bag of words that need to always be recognized, etc.

4.3 Learning to Extract CTI

Most NLP libraries have default named entity classifiers that are trained to
recognize generic classes, like names, locations, organizations. NER is incred-
ibly domain-specific, in that a model trained for one domain will definitely
not be suitable to use for another. To the best of our knowledge, though, we
are the first ones to have used and created a sequential model trained on and
specifically for CTI. The output of this process is the trained model, which
is then fed into the main architecture for further processing as can be seen
in Figure 4.2.

4.3.1 Collecting CTI Documents

We collected a number of CTI documents containing relevant information
about cyber threats as candidate documents for our training set. We gath-
ered over 50 documents from different sources that include FireEye[48] and
Kaskpersky Security Lab [49], specifically picked based on the following crite-
ria: i) the frequency with which they post incident reports, ii) the thorough
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Figure 4.2: Architecture of the solution

research they are known to do on threats, and iii) their reputation in the
information security industry based on their well-known detective and defen-
sive mechanisms.

4.3.2 Annotating CTI Documents

For an NLP model to learn to recognize certain terms, we need to provide
it with supervised data that contains continuous text that may or may not
contain a term to be recognized. To prepare such a dataset, we created a
web-based UI that would make the manual task of annotation easier. We also
devised a set of terms that we would like the model to be able to recognize.

1. Actor: The team of hackers attributed to a certain attack, e.g. Car-
banak cybergang, APT30, etc.

2. Targeted Industry: The industry targeted by the attack, e.g. finan-
cial institutions, government, military, etc.
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Figure 4.3: Annotation Process Example

3. Targeted Location: The specific geographical target of the attack,
e.g. South Asia, Turkey, US, etc.

4. Intended Effect: The goal of the attacker, e.g. cyber espionage,
financial gain, steal information, etc.

5. Technique (TTPs): The high-level techniques employed by the at-
tacker, e.g. spearphishing emails, social engineering, watering hole,
etc.

6. Tool Used: The tools used by the attacker, e.g. backdoor, reverse
shell, Mimikatz, etc.

7. Targeted Application: The applications whose vulnerabilities the
attackers wish to exploit, e.g. MS Word, PowerShell, etc.

This list also included other, low-level indicators, that were parsed using
regexes, as they always follow certain patterns: IP Addresses, Hashes, Do-
main Names, URLs, Registry Keys, Files, and Vulnerabilities. These indica-
tors were easily parsed using the following patterns:

SHA256_PATTERN=r’\b(?<sh256>[a-hA-H0-9]{64})\b’
APP_PATH=r’(?<apppath>\%APPDATA\%(?:.*)\.*(?:\.[a-zA-Z]+|ˆ)

)’
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DOMAIN_PATTERN=r’(?<domain>[a-zA-Z0-9\_\-]+(?:\.|\[(?:dot
|\.)])+[a-zA-Z+\.\[\]]+)’

SHA1_PATTERN=r’\b(?<sh1>[a-hA-H0-9]{40})\b’
CVE_PATTERN=r’(?<cve>CVE-\d{4}-\d{4})’
SHA384_PATTERN=r’\b(?<sha384>[A-Ha-h0-9]{96})\b’
REGISTRY_PATTERN=r’\b(?<registry>(?:[HK][A-Z\_]+|[A-Z]+)\+\

s+(?:.*)\+[a-zA-Z]+)\b’
IPv4_PATTERN=r’((?<![0-9])

(?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})
[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})
[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})
[.](?:25[0-5]|2[0-4][0-9]|[0-1]?[0-9]{1,2})(?![0-9]))’

EMAIL_PATTERN=r’(?<email>(?:[a-zA-Z0-9.]+)@(?:[a-z]+.)(?:[a
-z]{2,62}.[a-z]{2}|[a-z]{2,62}))’

URL_PATTERN=r’(?<url>(?:[a-z0-9\-]+\.)(?:[a-z]{2,18}\.[a-z
]{2}|[a-z]{2,18}))’

MD5_PATTERN=r’\b(?<md5>[a-hA-H0-9]{32})\b’

From the UI, the annotation is made by selecting a group of words and
allocating the corresponding tag to it, as shown in Figure 4.3. Once the
annotated document is saved, the backend service ensures that the document
is readied to become a part of the training set. It first cleanses the incoming
text to ensure that it doesn’t contain any unicode characters. The next step
in the process is to tokenize sentences, which returns a list of sentences in the
given text. In a loop over the sentences, each sentence is tokenized such that
every word is a separate token. The default had to customize the tokenizer
to make sure it would tokenize registry keys and IP addresses, and other
such indicators that contain special characters, properly. Then the tokenized
terms are POS-tagged, which essentially means that the tokens are tagged
as per the part of speech (POS) they represent in the sentence, eg. NN for
noun, VB for verb, etc. For every tokenized word, there is a tag attached to
it which tells the algorithm whether or not it needs to be recognized.

The final output is a tab-separated document, where the first column
corresponds to the token and the latter represents the given tag label. We
have annotated over 50 documents to make an unbiased training and testing
dataset.

4.3.3 Training the CTI NER Model

We have used the Conditional Random Fields (CRFs) algorithm, which is
a well-known method for pattern recognition. CRFs are used a lot in NLP
because they take into account the context and produce sequential models.
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In other words, linear chain CRF predicts a label for a sample while taking
into account the labels for neighboring samples, which is extremely important
in NER because the label for the previous sample would help determine the
label for the next one. To train the model, we provide the annotated training
set and run it through the CRFs algorithm. The resultant model is fed into
the NLP component of the production system, which is used to extract the
CTI terms.

4.4 System Architecture

Our system is separated into three main components: the natural language
processing component, the analytics component, and the production compo-
nent, represented in Figure 4.2. We will describe them all in this subsection.

4.4.1 Natural Language Processing Component

This component is responsible for making sense of the textual data and ex-
tracting CTI from the text based on the model. It also consists of a regex
parsing portion for the CTI that we extract using custom regex patterns for
IPs, hashes, etc. And finally we normalize that information to store it as a
STIX JSON, for further processing.

4.4.2 Analytics Component

Having extracted the data and normalized it, this component correlates the
information we already have to remove redundancies and to aggregate the
data regarding one specific attack and/or campaign. It is also responsible
for ranking the sources, which is extremely important from the consumer’s
perspective. It will essentially allow consumers to see which sources are
producing the latest data and how good the quality of the produced data is,
based on the entropy and the signal-to-noise ratio in the data. We finally
tag the data and send it off to be indexed for easy retrieval.

4.4.3 Production Component

The production component deals with the dissemination of CTI information.
Not only do we expose an API that will enable organizations to import the
information and use it as required, we also provide a TAXII-based publisher-
subscriber model so that STIX can be imported into any defensive or detec-
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tive tool that supports TAXII and take advantage of the timely and effective
intelligence.

4.4.4 Implementation and System Flow

In this subsection, we will discuss the specifics of the implementation and
the flow of the sytem.

4.4.4.1 Tools and Libraries

Stanford NLP [50] and NLTK [51] are the most famous NLP libraries out
there, where the former is fairly recent but well-liked in the research com-
munity and the latter has been around for a lot longer and is a lot more
customizable. Both are open sourced, with different licenses, Stanford hav-
ing the more restrictive license of the two. We implemented the CRF classifier
using both, just so we could compare the performance of the two and choose
the better library for our system. With NLTK, which is based in Python,
we used pycrfsuite [52] and scikitlearn [53] in addition to train and test our
model. For our front-end, we used AngularJS and the API that interacts
with it is written in Python Flask. We used JetBrains’ community version
IDEs for development, Pycharm for Python and IDEA for Java.The front-
end will require a web server, that maybe Apache HTTP Server or Nginx
or any other preferred web server. Most of our development and testing has
been done on Linux systems but the code is compatible and should work on
Windows and MacOS, given the environment is configured correctly. Our
code repo can be found here [54], which includes the training and testing
corpus as well as the model.

4.4.4.2 Initial Feasibility Tests

Initially, we tested the feasibility of our hypothesis with a very small biased
training set with Stanford NLP. The only entity we were interested in at this
point was high-level TTPs, so we only tagged them.

We prepared training data in the form of .tsv files manually. Configured
the Stanford NER classifier to get training data from our files. Once done,
we trained our first test model using the following command:

java -cp stanford-corenlp-3.6.0.jar:joda-time.jar:
jollyday-0.4.7.jar:slf4j-api.jar:/slf4j-simple.jar edu
.stanford.nlp.ie.crf.CRFClassifier -prop <propertyFile
>
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Figure 4.4: Test model generation

The output for running this command was the trained NER model. For
testing a file on this trained NER model, we used a text file with content
that we intended to perform NER tagging on. First, we had to tokenize the
text file and tagging all tokens as O by default. We developed a custom
Tokenize class for this purpose:

java -cp :stanford-corenlp-3.6.0.jar Tokenize <testFile>

The given file will be tokenized and converted to a TSV, which is our
input to the NER tagger. For tagging, we used:

java -cp stanford-corenlp-3.6.0.jar
edu.stanford.nlp.ie.crf.CRFClassifier
-loadClassifier <trainedModelPath>
-testFile <testFilePath>

Figure 4.5: Test file shows True Positive results
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4.4.5 Workflow

The system flow consists of two separate functionalities that comprise the
system: annotation, training and testing. For both annotation and test-
ing purposes, the initial methods of loading the file are similar, but where
the annotation is a preprocessing step, where we’re working to enhance and
improve the model, testing is where we submit random threat related files to
see how effective our model is in extracting the indicators.

4.4.5.1 Annotation

1. Navigate to the application on your favorite browser.

Figure 4.6: Main page of the application

2. Load the file that you intend to annotate. You may also choose to
copy-paste or to fetch text from a link.

Figure 4.7: Load file
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3. You can then proceed to annotate the file by tagging all the indicators
that you encounter as you read along.

Figure 4.8: Annotate indicators

4. Once satisfied with your annotation, save the file.

Figure 4.9: Save annotated file

5. At the backend, the annotated file will be converted into tokenized and
IOB-tagged file, ready to be fed into a classifier for training.
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Table 4.1: Excerpt from a sample annotated file

Token POS Tag Annotation
How WRB O
the DT O
Carbanak NNP ACTOR
cybergang NN ACTOR
compromised VBD O
its PRP$ O
victims NNS O
The DT O
investigation NN O
confirmed VBD O
that IN O
the DT O
kill NN O
chain NN O
started VBD O
with IN O
a DT O
spear JJ TECHNIQUE
phishing NN TECHNIQUE
attack NN TECHNIQUE
that WDT O
targeted VBD O
banks NNS B-INDUSTRY
internal JJ O
staff NN O
0 0 O

This concludes the annotation part of the process.

4.4.5.2 Training

The training mechanism is built into the Stanford NLP library, and we only
need to use that code to train a classifier based on our own training data
that we have developed via annotation.

1. We first need to configure the NER classifier according to our require-
ments, so that it doesn’t use default settings when it runs.

trainDataPath = /path/to/training-set
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testFile= /path/to/testing-set
#location where you would like to save (serialize to)

your classifier; adding .gz at the end
automatically gzips the file, making it faster and
smaller

serializeTo = g4ti-ner-model.ser.gz
#structure of your training file; this tells the

classifier that the word is in column 0 and the
correct answer is in column 1

map = word=0,answer=2
#these are the features we’d like to train with some

are discussed below, the rest can be understood by
looking at NERFeatureFactory

useClassFeature=true
useWord=true
useNGrams=true
#no ngrams will be included that do not contain either

the beginning or end of the word
noMidNGrams=true
useDisjunctive=true
maxNGramLeng=6
usePrev=true
useNext=true
useSequences=true
usePrevSequences=true
maxLeft=1
#the next 4 deal with word shape features
useTypeSeqs=true
useTypeSeqs2=true
useTypeySequences=true
wordShape=none

2. Then we run the code that allows us to train the model based on
Stanford NLP’s CRFClassifier, which results in the generation of a
serialized classifier. The following is an excerpt of the logs generated
while training:

25-06-2018 23:07:20 [INFO] CRFClassifier:88 - Time to
convert docs to feature indices: 2.8 seconds

25-06-2018 23:07:21 [INFO] CRFClassifier:88 -
numClasses: 10 [0=O,1=ACTOR,2=EFFECT,3=TECHNIQUE,4=
TOOL,5=MALWARE,6=LOCATION,7=APP,8=INDUSTRY,9=OS]

25-06-2018 23:07:21 [INFO] CRFClassifier:88 -
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numDocuments: 50
25-06-2018 23:07:21 [INFO] CRFClassifier:88 -

numDatums: 25750
25-06-2018 23:07:21 [INFO] CRFClassifier:88 -

numFeatures: 82754
25-06-2018 23:07:21 [INFO] CRFClassifier:88 - Time to

convert docs to data/labels: 0.8 seconds
25-06-2018 23:07:21 [INFO] CRFClassifier:88 -

numWeights: 3232430
25-06-2018 23:07:21 [INFO] QNMinimizer:88 -

QNMinimizer called on double function of 3232430
variables, using M = 25.

25-06-2018 23:09:37 [INFO] QNMinimizer:88 - Total time
spent in optimization: 133.88s

25-06-2018 23:09:37 [INFO] Timing:88 - Seems like we’
re done! done [139.1 sec].

25-06-2018 23:09:41 [INFO] CRFClassifier:88 -
Serializing classifier to g4ti-ner-model.ser.gz...
done.

This is usually done in the background, but for the sake of demonstra-
tion, we have also created a separate application.

4.4.5.3 Testing

Testing is possible in one of two ways: we could manually run the tests or we
could use the UI. For demonstration purposes, we will use a hybrid method,
since we have developed an application for testing.

1. We provide a file for testing, and provide as argument file path of the
testFile.

sudo java -cp stanford-corenlp-3.8.0.jar edu.stanford.
nlp.ie.crf.CRFClassifier -loadClassifier <modelName
> -testFile <testFilePath>

2. Then we run the code for testing which yields results in multiple for-
mats.
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Table 4.2: Tagged result for test file

Token Tag
The O
APT30 ACTOR
threat O
actor O,
as O
dubbed O
by O
FireEye O,
has O
prosecuted O
a O
long O
running O
campaign O
of O
corporate O
and O
governmental EFFECT
espionage EFFECT
since O
at O
least O
2005 O.
They O
primarily O
target O
victims O
in O
Southeast LOCATION
Asia LOCATION
and O
India LOCATION,
possibly O
including O
classified O
government O
networks O.
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3. We can now see this file in the UI, for easy viewing.

Figure 4.10: View test file in UI



Chapter 5

Evaluation

According to famous mathematician George Box, ”All models are wrong,
some are useful”. In this chapter, we summarize the evaluation results of
our model.

5.1 Introduction

The main objective of the research is to be able to extract high-level indica-
tors from textual content using a combination of NLP and machine learning.
In information retrieval and extractions systems, evaluation is carried out
by using Precision and recall method, which determines how relevant the
information retrieved by the model actually is.

5.2 Precision, Recall and F-measure

Precision, Recall and F-measure are defined by true positives, false positives
and false negatives. Accurate labeling is a True Positive (TP), inaccurate
labeling is a False Positive (FP) and a missed label is a False Negative (FN).

Precision (P) is the number of tokens that the model identified correctly,
out of the sum of tokens of that particular type.

P = TP/(TP + FP ) (5.1)

Recall (R) represents the number of tokens that the model identified correctly,
out of the total number of tokens of that type.

R = TP/(TP + FN) (5.2)

The F-measure (F1) or F1 score is a combination of precision and recall.
Precision and Recall for a model may be high, despite the quality of the
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model; therefore, F1 is the representation of the overall quality of the model’s
performance.

F = 2 ∗ ((P ∗R)/(P +R)) (5.3)

5.3 Evaluation Results and Analysis

We set aside 10% of the files we annotated for testing, while the other 90%
was used for training. We have 7 major classes of text that we annotated
and we wanted to classify them from text. While the number of TPs was
satisfyingly high, the number of false positives was also higher than wanted.
So while the model has satisfactory precision, the recall is not as good as it
could have been. The reason is that the confusion between certain terms is
high and it is difficult for the model to have been adequately knowledgable
with the relatively small size of our training set with just 50 documents.

Table 5.1: Evaluation Results

Entity P R F1
ACTOR 1 0.33 0.5

APP 0.33 0.25 0.29
EFFECT 1 0.71 0.83

INDUSTRY 1 0.67 0.8
LOCATION 0.5 1 0.67

TECHNIQUE 0.58 0.54 0.56
TOOL 0.5 0.5 0.5
Totals 0.69 0.56 0.62
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Conclusion and Future Work

This chapter describes the synopsis of our research work, what we concluded
from our experimentation and how we can see this research extended in the
future.

6.1 Synopsis

The focus of this thesis has been primarily on extracting cyber threat intel-
ligence concepts from textual data sources and using them to perform ana-
lytics. In order to do so, we trained a supervised model over a data corpus
of unstructured texts from well-reputed security blog. This would provide
security analysts with enough context to make them capable of inferring
relationships between seemingly disconnected cyber attacks and attributing
attackers by similarity in strategies.

The evaluation results from Chapter 5 prove our hypothesis that it is in-
deed possible to extract high-level indicators from textual data by sufficiently
training the model to expect all kinds of text and format.

6.2 Future Work

Since this work is accompanied by stable code and the supervised model is
open sourced, the work is not only reproducible but also extendable. The
annotation tool can actually be used by security analysts all over the world
so that they can help improve the precision and recall of the model and then.
Our end goal is to create an open portal for users to load threat intelligence
documents where the system does a real time scan of the document and
returns the appropriate tagged information.
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In this proof-of-concept, we have used a limited vocabulary that includes
TTPs, Intended Effect, Location, etc. In the future, vocabulary can be added
to further enhance the information extracted. Though not its original pur-
pose, this system can also be used to rate information sources, based on
signal-to-noise ratio, duplication and other parameters, like Pinto’s Threa-
tIQ.

6.3 Conclusion

Our work will not only help the community in extracting CTI from unstruc-
tured sources, but since it will be openly available to use, we want to engen-
der a community of CTI information sharing that will improve the system
by helping us train our system further and increasing our data set to include
more disparate sources. We have taken into account the state-of-the-art in-
dustry standards and have settled on STIX to extract from it a vocabulary
of terms that would aptly describe the CTI information that we are trying
to extract. Another important contribution for CTI is that we are ranking
the indicators and the sources they come from, so that it will help consumers
find and use only high-quality and reliable information. Finally, our solution
provides an automated way for extracting CTI that will help organizations
generate valuable information from data that is already out there, so that
they can take timely and effective actions to circumvent cyber attacks.

This solution is beneficial to everyone involved in the threat intelligence
community, those sharing information, those receiving information and those
who are in triage mode, trying to find out more about an exploit. It will re-
duce the number of sources security analysts have to look at to the most
relevant information, which have been enriched to provide a broad perspec-
tive of the pertinent threats. Not only would this make proactive defense
more than just a pipe dream, it will render potential threats ineffective with
timely, trustworthy, comprehensive and actionable intelligence. It will help
in dealing with mitigation as well as investigation of attacks. CTI produc-
ers and consumers alike will benefit from the reputation system. It will
incentivize good quality threat information sharing. This could allow or-
ganizations to create their own threat intelligence without having to resort
to third party solutions. It could also contribute towards the robustness of
already established intelligence products.
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