

A thesis submitted in partial fulfillment of the requirements for the degree

of Master of Science in Information Technology

Composability Verification of Complex

Systems

Using Colored Petri Nets

By

Syed Hassan Askari

00000118585

Supervisor

Dr. Imran Mahmood

Department of Computer Science

In

School of Electrical Engineering and Computer Science,

National University of Sciences and Technology (NUST),

Islamabad, Pakistan.

(2017)

 ii

Approval

It is certified that the contents and form of the thesis entitled “Composability

Verification of Complex Systems Using Colored Petri Nets” submitted by Syed

Hassan Askari has been found satisfactory for the requirement of the degree.

.

 Advisor: Dr. Imran Mahmood

 Signature:

 Date:

 Committee Member 1:

 Dr. Muhammad Sohail Iqbal

 Signature:

 Date:

 Committee Member 2:

 Dr. Safdar Abbas Khan

 Signature:

 Date:

 Committee Member 3:

 Dr. Anis ur Rahman

 Signature:

 Date:

 iii

THESIS ACCEPTANCE CERTIFICATE

 Certified that final copy of MS/MPhil thesis written by Mr. Syed Hassan

Askari, (Registration No 118585), of School of Electrical Engineering and

Computer Science (SEECS) (School/College/Institute) has been vetted by

undersigned, found complete in all respects as per NUST Statutes/Regulations, is

free of plagiarism, errors and mistakes and is accepted as partial fulfillment for

award of MS/M Phil degree. It is further certified that necessary amendments as

pointed out by GEC members of the scholar have also been incorporated in the

said thesis.

Signature: _______________________

Name of Supervisor: Dr. Imran Mahmood

Date: _________________________

Signature (HOD): ________________

Date: __________________________

Signature (Dean/Principal): _________

Date: __________________________

 Certificate of Originality

 iv

 Certificate of Originality

I hereby declare that this submission is my own work and to the best of my

knowledge it contains no materials previously published or written by another

person, nor material which to a substantial extent has been accepted for the award of

any degree or diploma at NUST SEECS or at any other educational institute, except

where due acknowledgement has been made in the thesis. Any contribution made to

the research by others, with whom I have worked at NUST SEECS or elsewhere, is

explicitly acknowledged in the thesis.

I also declare that the intellectual content of this thesis is the product of my own

work, except for the assistance from others in the project’s design and conception or

in style, presentation and linguistics which has been acknowledged.

 Author Name: Syed Hassan Askari

 Signature:

 Acknowledgment

 v

Acknowledgment

I pay my gratitude to Allah almighty for blessing me a lot and without His guidance I

couldn’t complete this task. I would like to dedicate my thesis to my Parents,

specially to my late father Mr. Syed Nasir Ahmad, my mother and my sister who

supported me and made me see this day.

I would specially like to thank my Supervisor Dr. Imran Mahmood for guiding and

encouraging me to complete my thesis. His timely and efficient contributions helped

me to shape the thesis into its final form and I express my gratefulness for his sincere

supervision all the way.

I am thankful to my GEC members Dr. Muhammad Sohail Iqbal, Dr. Safdar Abbas

Khan and Dr. Anis ur Rahman who helped me in my research phase by providing

valuable comments. I offer my tribute to the place of knowledge i.e. National

University of Sciences and Technology (NUST).

Finally I would like to thank my brother Syed Ali Raza and his Family, specially his

son Syed Muhammad Faiq Raza and his daughter Abeeha Batool.

 Publications

 vi

Publications

Conference Publications

Imran Mahmood, Syed Hassan Askari, Asad Waqar Malik, “Composability
Verification of Complex Systems using Colored Petri Nets ”, Models, 2018.

Submitted [04-05-2018].

 Table of Contents

 vii

Table of Contents

Introduction ... 1-1
1.1 CHALLENGE ... 1-2
1.2 PROBLEM STATEMENT ... 1-3
1.3 SOLUTION STATEMENT .. 1-3
1.4 KEY CONTRIBUTIONS ... 1-3
1.5 RESEARCH IMPACT .. 1-4
1.6 THESIS ORGANIZATION .. 1-4

1.6.1 Chapter 2: Background .. 1-4
1.6.2 Chapter 3: Literature .. 1-4
1.6.3 Chapter 4: Methodology .. 1-4
1.6.4 Chapter 5: Composability Verification of an Elevator Model 1-4
1.6.5 Chapter 6: Conclusion and Future work ... 1-5

 Background ... 2-6
2.1 COMPLEX SYSTEM .. 2-6
2.2 MODEL COMPONENTS .. 2-7
2.3 COMPONENT REUSE.. 2-7
2.4 COMPOSABILITY ... 2-8

2.4.1 Syntactic level... 2-9
2.4.2 Static-Semantic level .. 2-9
2.4.3 Dynamic-Semantic level ... 2-10

2.5 VERIFICATION .. 2-11
2.6 COLORED PETRI NETS TOOLS .. 2-12

2.6.1 Formal Definition of Colored Petri Nets ... 2-12
2.6.2 Elements of CPN ... 2-13

2.7 HIERARCHICAL COLORED PETRI NETS .. 2-13
2.8 STATE SPACE ANALYSIS .. 2-14

2.8.1 Reachability .. 2-16
2.8.2 Liveness .. 2-16

 Literature Review .. 3-17
3.1 MODEL COMPONENT .. 3-18
3.2 MODEL COMPOSABILITY .. 3-19
3.3 COMPOSABILITY VERIFICATION .. 3-21

3.3.1 Informal Techniques ... 3-22
3.3.2 Static Analysis .. 3-22
3.3.3 Dynamic Analysis ... 3-22
3.3.4 Formal Analysis .. 3-23

3.4 COLORED PETRI NETS .. 3-24
3.4.1 Pattern Language for Colored Petri nets .. 3-24

3.5 OUR POSITION IN THE STATE OF ART .. 3-25
 Methodology ... 4-26

4.1 COMPONENT COMPOSITION AND VERIFICATION ... 4-26
4.1.1 Static Analysis .. 4-26
4.1.2 Dynamic Analysis ... 4-26

4.2 REQUIREMENT SPECIFICATION... 4-26
4.2.1 Objectives ... 4-27
4.2.2 Constraints ... 4-27

4.3 DEVELOPMENT & COMPOSITION OF MODEL COMPONENTS .. 4-27
4.4 VERIFICATION OF THE COMPOSED CPN MODEL .. 4-27

4.4.1 General System Properties ... 4-28
4.4.2 Scenario Centric Properties .. 4-28
4.4.3 State-Space Query function.. 4-29

 Table of Contents

 viii

 Composability Verification of an Elevator Model ... 5-30
5.1 REQUIREMENT SPECIFICATION... 5-30
5.2 MODEL COMPONENTS .. 5-30

5.2.1 Generator ... 5-30
5.2.2 Queue ... 5-32
5.2.3 Panel .. 5-32
5.2.4 Door ... 5-33
5.2.5 Cabin .. 5-34
5.2.6 Motor ... 5-36

5.3 MODEL COMPOSITION .. 5-37
5.4 MODEL EXECUTION .. 5-37
5.5 COMPOSABILITY VERIFICATION .. 5-38

 Conclusion and Future Work .. 6-41
6.1 SUMMARY .. 6-41
6.2 CONCLUSION ... 6-41
6.3 FUTURE WORK .. 6-42

References ... 6-43

 List of Abbreviation

 ix

List of Abbreviation

CPN Colored Petri Nets

SSA State Space Analysis

SSL static-semantic level

DSL dynamic semantic level

CBSD Component Based software Development

HCPN Hierarchal Colored Petri Nets

CBD Component based development

RS Requirement Specification

V&V Verification and Validation

M&S Modeling and Simulation

 List of Tables

 x

 List of Tables

Table 1: Elements of CPN .. 2-13

Table 2: Literature Review .. 3-18

Table 3: Generator Component Code .. 5-31

Table 4: Queue Component Code .. 5-32

Table 5: Panel Component Code .. 5-33

Table 6: Door Component Code ... 5-34

Table 7: Cabin Component Code .. 5-35

Table 8: Motor Component Code ... 5-36

Table 9: Main Component Code ... 5-37

 List of Figures

 xi

List of Figures

Figure 1: Complex System .. 2-6

Figure 2: Component ... 2-7

Figure 3: Composability .. 2-8

Figure 4: Composability Level .. 2-9

Figure 5: Requirement Specification [19].. 2-11

Figure 6: FIFO Queue Component .. 2-13

Figure 7: Hierarchical Colored Petri Nets ... 2-14

Figure 8: State Space Analysis .. 2-15

Figure 9: Verification Techniques .. 3-22

Figure 10: CPN State Space Analysis ... 4-28

Figure 11: Generator Component .. 5-32

Figure 12: Queue Component .. 5-32

Figure 13: Panel Component .. 5-33

Figure 14: Door Component ... 5-34

Figure 15: Cabin Component ... 5-35

Figure 16: Motor Component ... 5-36

Figure 17: Elevator Composed Model ... 5-37

Figure 18: Initial Step .. 5-38

Figure 19: Final Step ... 5-38

Figure 20: State-Space of Elevator Model ... 5-39

Figure 21: Goal State Reachability Query ... 5-39

Figure 22: Constraint Unreachability Query .. 5-40

 Abstract

 xii

Abstract

The discipline of component-based modeling and simulation offers promising gains

including reduction in development cost, time, and system complexity. This

paradigm is becoming quite profitable as it promotes the use and reuse of modular

components for adequate development of complex simulations. Achieving effective

and meaningful model reuse through the composition of components still remains a

daunting challenge. “Composability”, an integral part of this challenge, is the

capability to select and assemble model components in various combinations to

satisfy specific user requirements. Different researches in this area have given rise to

the development of different component reusability frameworks. However, lack of

support for composability verification makes it difficult to achieve effective and

meaningful reuse. For this reason there is a need for an adequate framework to verify

and validate composability of composed models and ensure the satisfaction of

desired system properties. In this thesis we propose the use of Colored Petri Nets for

component oriented model development, model composition and the verification of

composed models using state-space analysis technique. We present a case study of an

elevator model as a proof of concept. Our case study explains the proposed process

of developing and composing CPN based model components, and verifying the

composed model using state-space analysis. A verified composition asserts

meaningful reuse of model components by satisfying given requirement

specifications.

Keywords: Model Composition, Composability verification, Colored Petri Nets, State-space

Analysis, Elevator Model

Introduction

 1

Introduction

This chapter provides the opening and general information of the research to provide a clear

understanding about this thesis. It also covers the problem statement along with solution statement.

A system made by composing many components which interact with each other to

perform some task is called a complex system. A network can be used to represent

these systems in which the nodes will represent the components and the links

between them will represent the interactions between the components. Earth’s global

climate is the common example of complex system.

The behavior of complex systems is difficult to model because there are

dependencies and relationships between parts of a system. Complex systems have

unique properties due to the relationships like spontaneous order, feedback loops

etc. Because these systems are present in different kinds of fields, the similarity

between them is a new area for research [1].

A model component is an independent element, specified using a formalized

description, conforms to certain component standard, has well-defined interfaces,

and encapsulates certain behavior. A model component can be independently

deployed, and it is subject to third-party composition with or without modification

[2]. Component provides the solution to the modeler in making their model, while

avoiding redundant solutions to the problems. Components depend on experience,

as they provide a sound solution for problems that are continuously occurring in a

certain domain. Modeler working in similar domain experience reoccurrence of same

problem repeatedly. Sound understanding of a certain problem gives modelers a wide

choice for picking best possible solution by looking up in component catalog. This

consumes less effort and time in development while providing novel solution.

A software component is defined in terms of building components separately and

then merging different components in order to build a large complex model.

Different components can communicate with each other through input/output

ports. Detail of the component is hidden from the end user as they don’t need to go

Introduction

 2

inside of the component. Therefore it can be easily used by third party without

knowing the inner detail of components [3] [4].

Composability is the ability to select and merge various components in order to

satisfy user requirements. Reuse is defined in terms of using existing component for

different applications.

Colored Petri net (CPN) is a graphical modeling language for simulation and

modeling, as well as for the verification of discrete event systems. CPN models are

executable and are used to model and specify the behavior of parallel system. These

models are both state and action oriented. Moreover, CPN tool provides

components to simulate the proposed solution. It’s applicable in various domains not

only in work flow modeling but also in designing complex concurrent computer

systems.

We propose reusability of components and verify their relationship between

components and also allow easy navigation using Colored Petri Nets language.

Composability needs verification. We use verification technique named as “state

space analysis”. Using this technique, we ensure the correctness of system property

and also verify the models that fulfill the requirements. Through state space analysis

we can calculate all the reachable states and changes in states during execution. These

states are represented as a directed graph. Using these graphs, it’s possible to answer

a verification questions about the behaviors of system such as absence of deadlock,

the possibility to reach in a good state, and prevent entering in a bad state. The goal

is to make a component and the modelers need to search a component related to

problem in a solution catalog using these components. So that they don’t need to

develop a model from the scratch in order to satisfy the user requirements.

1.1 Challenge

Building a large system from the scratch is a challenging issue. Even for a small

system every time modeler builds a system from scratch, as it can increase the time

and cost of development. Another important issue is composition of reusable

components. Verification is essential to check the correctness of system.

Introduction

 3

1.2 Problem Statement

All the information and objectives/ constraints that define the problem are called

problem domain in the engineering terms. The goals which have to be achieved, the

context of the problem and all the rules which define the functions are included in

the problem domain. The environment in which the solution has to operate is

represented by the problem domain.

Building complex models through the Composability of reusable Components is a

challenging task. In order to achieve the above, it is a necessary condition to verify a

given composition of components, which fulfills the requirement specification, using

a suitable approach.

1.3 Solution Statement

The information that is used to define the proposed or expected solution of the

system is called solution domain. The concepts, laws, techniques, software architects,

algorithms and recommended ideas and practices which help in finding the solution

of the problem are included in the solution domain.

The solution statement is defined based on the approach proposed: “The verification

of component model includes that the components should be composable at all

levels and the requirement specifications are met according to the defined objectives

and fulfilling required constraints.”

The base components are re-usable in a correctly composed model thus rapid model

development is supported and the components can also be used again or in another

model.

1.4 Key Contributions

We build a component in colored petri nets tools. Once the components are made

we combine them according to their requirements. Instead of building model from

the scratch modelers need to search a component from repository and build a system

according to their requirements. Verification is used to check the correctness of

composable model. Different approaches are used to verify the system; we used state

space analysis approach to verify our system. Through verifying different verification

properties, we ensure that model is correctly connected and fulfills the desired goal.

Introduction

 4

1.5 Research Impact

Our proposed framework is to provide a component that will help the modeler in

making models of concurrent systems. Modelers must have domain knowledge in

order to find the component in solution catalog. It will help the modeler to reuse

existing components. Through reusability of existing components, it can reduce the

time and cost of development.

1.6 Thesis Organization

Rest of the thesis is organized in following chapters

1.6.1 Chapter 2: Background

Chapter 2 provides brief overview of model components, model composability and

verification of model explains its impact on real life. This chapter also explains CPN

tools which can be used to simulate our elevator model. Moreover, few preliminary

concepts, used in methodology chapter, have also been discussed.

1.6.2 Chapter 3: Literature

This chapter explains the work done so far related to model components, model

composability and verification of model and summarizes the hierarchal approaches

of model component and model composability and also formulates research

directions for this dissertation.

1.6.3 Chapter 4: Methodology

Our proposed component based model reuse has been presented in this chapter. As

we built component library in which modeler can build complex model using existing

components. We also verify the composed components in order to check the

correctness of model. Furthermore, working of different verification properties is

used to check the model's accuracy that has been discussed.

1.6.4 Chapter 5: Composability Verification of an Elevator Model

This chapter is dedicated to demonstration of the functionality of our proposed

framework. A case study of Elevator model has been used to provide the proof of

concept. The chapter is concluded by results and their detailed discussion.

Introduction

 5

1.6.5 Chapter 6: Conclusion and Future work

The work accomplished in this thesis has been concluded in this last chapter.

Moreover, the chapter also describes the future directions which can be done ahead

to this work.

Background

 6

Background

In this chapter we discussed the information about the topic which is being studied. It describes the

definitions and concepts of model components and model composability to get understanding about

this thesis.

2.1 Complex System

According to [5] complex systems consist of large connections between components

where there is no central control and complex collective behavior arises due to

simple individual rules. Thus, the collective behavior of a complex system arises from

the simple individual behavior of its parts. The emergent behavior is the property of

a whole system rather than of isolated parts of the system. For example,

consciousness is the collective property of the whole human body not of the isolated

neurons. Moreover, complex system can still manage to work even if some of the

parts of the system are removed because they adapt to the changes [6]. The

properties of a whole system can be called robust when it is compared with respect

to the loss of their parts. Lastly, the emergent properties only rise when the internal

components of the system interact with each other. The combination of related

multiple subsystems which are organized in a hierarchy is known to be a complex

system see Figure 1. The subsystems have to work together to get the required

output [7]. The same model which enforces working of components together is used

throughout the system. It is feasible for the modeler to break down a complex

system into subsystems according to their functionality.

Figure 1: Complex System

Background

 7

In other words, it can be said that each subsystem or component has a specific

functionality. Moreover, the complex systems do not merely have any top which

means their functionality totally depends on the components being used in them [8].

The individual components should be local and encapsulated for its own

functionality. That means that the components should be active and they should be

able to control their own actions.

2.2 Model Components

A Inspired from the discipline of Component based Software Engineering, models are built

as building blocks and are referred to as “Model Components”. A model component is

an independent element, specified using a formalized description, conforms to

certain component standard, has well-defined interfaces, and encapsulates certain

behavior. A model component can be independently deployed, and it is subject to

third-party composition with or without modification [2]. A set of model

components are composed together to create complex models. The model

components can be composed if their interfaces match each other. However it is

difficult to say whether they will work together in a meaningful way, and will fulfill

desired requirements unless their composability is verified. The predictability of

guaranteeing the correctness of model composition is called Composability.

.

Figure 2: Component

2.3 Component Reuse

Software community faces different issues that are elevated with the help of fast and

cost effective development. To overcome this problem component reuse approach is

used which promises effective development of systems as it can reduce the

development cost and time. In component based development different application

can be developed by using existing components rather than a monolithic entity. A

single component can be used in many applications. Using component reuse

approach can reduce production cost by integrating the existing components instead

Background

 8

of building new components from the scratch. It will help the modeler to reuse

existing components according to their requirement. In order to reuse component,

we need Composability [9]. Hence, verification is required in order to achieve

successful Composability.

2.4 Composability

Composability is the ability to select and merge various components in order to

satisfy user requirements [10] [11]. Reuse is defined as using existing components for

different applications [9] [12] [13] [14]. If the components are not composable then

by definition their composability is not valid. Verification is required in order to

achieve successful Composability [2]. Figure 3 illustrate that model A and model B

can be built by composing different components. modeler can get components from

component library and build a model according to their requirements.

Figure 3: Composability

Two basic types were emphasized upon by Petty and Weisel which are syntactic and

semantic. They proposed the importance of these composability models in their

theory of composability. The composable components in syntactic should be built

with companionability like assumptions of timings, and passing parameters. The

syntactic composability deals with the connectivity of components i.e. either they can

be connected or not. On the other hand, semantic composability deals with the

complete model i.e. if the models are capable of forming a complete simulation

system and the composed model is valid according to semantics or not. It can be

possible that two components may be semantically invalid but they can pass

parameters to others. Different research group use different levels to understand

composability in depth. To understand the levels of composability, different levels of

Background

 9

agreement are required between them. Five distinct levels were recommended by

Davis which are syntax, semantics, pragmatics, assumptions and validity. These levels

can also be defined as different composability consistencies which are observed in

order to ensure model composability correctness. Nine levels are suggested by Petty

and Weisel when composability is studied in terms of a combination of composition

units. Levels of conceptual interoperability were described by Tolk to study the

functionality of composability and interoperability. This model consist of six layers

named as technical layer, syntactic layer, semantic layer, pragmatic layer, dynamic

layer, and the conceptual layer. Similarly, a four layer composability checking model

was introduced by Medjahed and Bouguettaya which checked the web service

composability. Figure 4 illustrate different level of composability which are:

Syntactic, Static Semantic, Dynamic Semantic and Qualitative level. These levels are

considered basic benchmarks for checking model composability. The idea of

composability of models is strictly dependent upon the levels’ consistency as

explained further.

Figure 4: Composability Level

2.4.1 Syntactic level

The structure of components is studied in this level to check whether they will fit

together or not i.e. one component’s output is given as input to other component

and it is checked if the syntactic information of under consideration components

match with each other or not i.e. message, action mode and total parameters.

2.4.2 Static-Semantic level

Meaningful connection of components is checked on static-semantic level (SSL). It

consists of having a complete and accurate understanding of the information

Background

 10

exchanged by the components involved in the model being composed. The same

understanding of the terms and messages is ensured on this level so this level

consists of exchanged information’s same meaning between components. For

example, if two components are assumed to process a value that is given to them by

considering the value in integer but one of the component processes the value as

float or character then the composability can result in a situation unwanted by the

user. The following example explains the level: If the distance has to be measured in

degrees but the component interprets it in a different unit then it will be a semantic

mismatch. The term static is used in this level because the values or information

checked here remains constant and does not change during the whole model

composability.

2.4.3 Dynamic-Semantic level

Dynamic consistency is ensured on dynamic semantic level (DSL) i.e. the

components have exactly the same behavior which is required to reach the desired

goal. Behavioral consistency and coherency is ensured to achieve the system model

goals in dynamic level composability. It can only be reached if the components work

properly according to the states and transitions. And the components should have a

behavior according to the requirements to collectively make progress i.e. two

behaviors are expected from a waiter component in a restaurant model. One of them

is that the order is taken by the waiter, food is served and payment is collected and

the other one is where the order is taken by the waiter, payment is collected and food

is served after preparation. The composability of model will be affected by correct

customer component and correct behavior of waiter. A customer who is expecting

the first behavior at a restaurant of second type will have to wait for the food

forever. So in order to make a model achieve its desired goals, correct dynamic

behaviors are necessary.

If the behavior is not right but the components are at their right state, the model goal

may not be achieved. e.g. Two machine components are produced by two machine

components in a manufacturing system which have to be joined later and a single

robot component is shared by both for input of material and for manufacturing. The

robot should be just providing equal chance to both machines to process. The final

result will be unbalanced if the robot is not just and the system will be deviated from

Background

 11

its goal. The term dynamic is used because the states and behavior change during the

model composability and components’ interaction.

2.5 Verification

Verification is defined as a process that can check model implementation accurately

[15] according to the specifications [16]. We use verification technique named “state

space analysis” to check the system properties and verify if models fulfill the

requirements [17] [18].

Figure 5: Requirement Specification [19]

Verification is concerned with building the model correctly in M&S. It is the process

of implementing the model right [15] and whether the system is according to the

specifications or not [20]. Verification deals with the correct translation of the

requirements into the model and the model should be executable which is the basic

principle of M&S. An abstract description of a real system [21] is a conceptual model

which is made on the basis of requirements and modeling purposes. The conceptual

model is then refined into a more concrete executable model [22]. A model design’s

subset can also be called conceptual modelling. Conceptual modeling includes

moving between problem situations where model requirements define what should

be modeled and does not depend on its implementation details which are later dealt

with in executable model. Figure 5 illustrate the modeler gathers the information

and formulates the requirement specifications.

Background

 12

2.6 Colored Petri Nets Tools

Colored Petri net (CPN) is a mathematical modeling language for simulation and

modeling, as well as for the verification of discrete event system. Essentially, it is a

powerful language that can be used to display parallel or concurrent activities in a

system [23]. Using CPN tool [24], a model is created for analyzing system

performance. Colored Petri nets are a buildup and well-researched means for system

modeling and simulation [25]. A Colored Petri net is a bipartite diagram in which we

have places, transition and arc. Arc runs from transition to place and vice versa, but

never between transition and between places.

2.6.1 Formal Definition of Colored Petri Nets

A colored Petri net is a nine tuple: CPN = (P, T, A, Σ, V, C, G, E, I) where:

1. P= {p1,p2,…,pn} is a finite set of places

2. T= {t1,t2,…,tm} is a finite set of transitions such that: P ∩ T = ∅

3. A ⊆ P×T ∪T ×P is a set of directed arcs.

4. Σ is a finite set of non-empty color sets.

5. V is a finite set of typed variables such that: Type[v] ∈ Σ for all variables v ∈

V.

6. C: P→Σ is a color set function that assigns a color set to each place.

7. G: T → Expression is a guard function that assigns a guard to each transition

8. E: A→ Expression is an arc expression function that assigns an arc

expression to each arc.

9. I: P → Expression is an initialization function that assigns an initialization

expression to each place p.

Detail explanation of colored Petri nets is beyond the scope of this paper therefore

interested readers are recommended to see [23] [24] [26]. CPN is a well-known tool

for the development of models, their verification using state-space analysis and

analysis of CPN models [24]. It provides integrated development environment (IDE)

for the development of CPN models. For efficiently executing timed and untimed

nets, it has a bundled simulator. State-space analysis is the most important feature of

CPN tools. It consists of different query functions and helps to create analysis report

which plays an important role in the verification process.

Background

 13

2.6.2 Elements of CPN

Colored Petri nets is a graphical language that is used in making model of concurrent

systems and their verification. A Colored Petri nets consist of Places, Transitions

and Arcs. Table 1 illustrates the elements of colored petri nets.

Elements Description

Circle represents the places and also explains the memory of the
system.

Rectangle represents the transitions that tell the action of the
process.

Arrow represents the arcs that tell the state of the system changes
when transition is fired.

Set of tokens is assign to each place, that carries tokens of
different data types like integer, string etc.

Table 1: Elements of CPN

Using these elements, we build a queue component. Figure 6 illustrate we store the

number of objects in a queue. We can add or remove object information from a

queue. Different types of queue can be used for adding and removing objects in a

queue e.g. Priority queue, Random queue, FIFO queue and LIFO queue. Using these

queues, we specify the order of objects in which they execute.

Figure 6: FIFO Queue Component

2.7 Hierarchical Colored Petri Nets

CPN consists of different modules and the modules can be considered as black

boxes which perform all the processing on abstract level by concentrating on one

module at a time. Figure 7 illustrate Hierarchical colored petri nets in which entire

CPN model is replaced by a transition that can be connected to the main model to

Background

 14

make hierarchical CPN models using CPN tools. The entire model then can be

broken down into different smaller modules and can be used to help in modular

development [23] [24]. Colored Petri nets hierarchical features are used in our CPN

component model.

Figure 7: Hierarchical Colored Petri Nets

2.8 State Space Analysis

One of the most noticeable methods for formally analyzing and verifying system is

state space analysis. All possible system states are found in this method and are

represented as vertices of a directed graph while the transitions of system from one

state to another are represented by directed edges. Theoretically, state space consists

of nodes which represent each reachable state of the system and the arcs represent

the transitions. A formally built state space graph can be used to answer a lot of

questions about verification of system considering how the system behaves in

situations such a no deadlock, reaching good state, never reaching a bad state and the

surety that the system reaches its goal state(s). Using CPN tools we can analyze state

space step by step where they are located at [27]. Logical reasoning about why a

certain property does not hold on a system can be provided by state space methods

[26]. Figure 8 illustrate state space analysis of a system. Even for a small system,

there may have infinite number of reachable and goal states. This problem is

increased when time is also being considered in the system. A lot of research has

been done to discover methods to get rid of this problem. The full state space is not

taken under consideration in reduction methods [26]. When the model becomes

Background

 15

large, these reduction methods are one of the famous methods of reducing the

problem of state explosion.

More projects are being done on concurrent and distributed systems. There are a lot

of examples available which include large systems in telecom and World Wide Web

technology based application or embedded systems which may also be called small

systems. A concurrent system has multiple communicating methods which are

independent from each other. Thus, the system execution may be done in different

ways i.e. it may depend on the loss of messages, the process speed and the times on

which the system receives input. This makes the concurrent and distributed systems

complex whose designing is also complex. So the complexity has led to development

of processes which take computer aid to analyze, validate and verify the execution of

such systems.

Figure 8: State Space Analysis

Some of the most commonly used methods in this field are state space methods.

Computing all reachable states and changes of the system and representing them

using a directed graph is the main idea of this system. The visual representation of

state space using directed graph makes this possible to study the behavior of the

system e.g. verifying processes of system, studying different properties and checking

errors in the system. The main disadvantage of this process is state space explosion:

even small systems may have unlimited number of reachable states and this is the

most important limitation in the state space analysis. Therefore, to reduce the

complexity involved in this process, reductions methods are the main topic of

discussion. The representation of entire state space is avoided in this method or is

represented in a compact form. The reduction does not affect the properties of the

system and the reduced state space can be used to derive properties of the system.

Background

 16

The CPN tools have the State Space tool integrated which means that the user can

easily switch between different tools like the editor, simulator and the SS. A state

space node can be inspected in the simulator after it is found. The marking can be

seen directly on CPN model’s graphical representation. The enables transition

examples can be seen, investigated and simulations can be made. Similarly, a marking

in the simulator can be added to state space as new node.

There are a number of built in standard queries present in the State Space tool which

can be used for investigation of the CPN properties including reachability, liveness

and fairness [28]. A number of powerful search facilities are also present in the CPN

to formulate our own queries based on the criteria we want to search on. No

programming is required in standard queries. 2-5 lines code is needed in case of non-

standard queries. Different properties can be verified through query function. Some

of the properties are listed below.

2.8.1 Reachability

This property tells that there exists an occurrence of sequence from the marking of

initial node to the marking of next node. Using state space graph we investigate the

sequence between two nodes. Through query function we check the sequence

between nodes. Reachable (5, 3), returns true if there is sequence between marking

M5 (node 5) to the marking M3 (node 3).

2.8.2 Liveness

Dead marking tells that whether there exists a marking of dead node or not. Through

query function we check the dead marking. Deadmarking (8), return false this means

that M8 has some enabled binding elements.

Literature Review

 17

Literature Review

This chapter helps in explaining how similar is the work with that of others and how much it varies

from them. Moreover, it contributes in the understanding and development of the area of research.

Table 2 summarizes the literature work into separate categories whereas details of

these papers are described later.

Author (s) Category Paper Description Key Features

[29] Software
Component

Describe the component
models and classify them into
taxonomy

Discuss the technology named as cornerstone
of component based development

[30] Explained the reusability of
software components

Different architecture of component based
development has been discussed and also
explained benefits of reusing components

[31] Explained the domain specific
components framework.

Described the development of domain specific
components and its impact on component
based development.

[32] Explained the applications of
CDSE for the development of
university ERP.

Describe about the design and development of
a tailor made ERP of Nigerian University.

[9] Model
Composability

Describes heterogeneous
complex system.

Discuss the concepts of model composability.

[10] Focus on Composability
verification.

Discuss about the reusability framework such
as BOM.

[18] Focus on the composability
of real time systems

State space analysis is used to verify dynamic-
semantic composability

[33] Describe how reusability and
composability can be achieved
by using conceptual model

Explained the important characteristic of
reusability and composability

[34] Explained different level and
types of composability

Elaborates the difference between syntactic
and semantic composability and between
composability and interoperability

[15] Model
Verifications

Focus on VV&A activities
that are described in the
modeling and simulation life
cycle

Fifteen rules are introduced to help the
researchers and managers better know what
VV&A is all about

[16] Give an introductory tutorial
on verification and validation

A set of examples of verification and validation
are presented

[35] Explained the Design,
Implementation, Integration,
Qualification, Production,
Use/Maintenance

Discuss about the verification, validation and
testing

[36] Explained the techniques
which improve the quality of
software products

Software quality is the combinations of several
factors

Literature Review

 18

[37] Discuss about the UML and
SysML

Elaborates the quantitative and qualitative
techniques that combine automatic techniques

[38] Discuss about the formal
verification solutions

Provide in-depth understanding of scalable
SAT-based verification techniques

[39] Colored petri
Nets

Introduce the petri nets Focus on the nets and Petri created his major
scientific contribution

[40] Explained the petri nets tools Comparison of different petri nets tools in
different aspects

[41] Discuss the different petri
nets design pattern

Focus on patterns and components

[42] Discuss the workflow
modeling that represents the
sequence and cooperation

Suggests a process for modeling the multi-task
workflow with high concurrency

[43] Described the CPN patterns
language

Focus on interplay between control flow and
data flow

[44] Explained the composition of
nets

Present a variety of case studies

[45] Elaborates the extension of
classical petri nets

Present some new features that support the
CPN tools 3.0

Table 2: Literature Review

3.1 Model Component

Component based development (CBD) can be used in various application in order to

build a system. Component is constructed to solve a particular problem that is

occurring during development. A component is a separate part of a system that has

complete functionality and well defined interfaces and also encapsulates certain

behavior. Component is just like a pattern that forces the modeler to reuse existing

component instead of making new component from the scratch [30].

Basha et. el [31] discuss about the comparison of repositories which enables us to

select the most suitable one from the available ones for component extraction.

Specific advancements are required in Domain Specific Modelling and Domain

Specific Architectures to achieve a positive future. It is important to work more on

Domain Specific Services as not much work has been done on this domain and only

three metrics are discussed. It is possible to create components that are domain

specific and the effort can be reduced in cost and time by making reusable domain

specific components. A framework is needed for reusability so that multiple and

different components may be extracted from the same repository. The framework

proposed is to make the generic domain specific components and the work can then

be extended to make a tool which allows the users or modeler to extract components

for multiple domains from a single repository. The CBD-Arch-DE approach is used

Literature Review

 19

to obtain the proposed results which is said to be the best method in CBSD and

Domain Specific Engineering. Software architecture approach is also discussed in the

paper which is basically good for reuse. As our work mainly deals with reusability of

components so we have our main focus on Intelligent Software Architecture Reuse

Environment.

Lau and Wang [29] have explained Survey of software component model. The

authors have tried not to use a single terminology in almost all ideal CBD scenarios.

They, intentionally, did not use any term from a specific single component. The

terminologies used by them are according to the scenario. For example, they have

used the words “builder” and “assembler” for the same functionality in different

phases. If they only use a singular terminology in all phases it wouldn’t have been

unified term.

A taxonomy is proposed by generalization of components of software models that

have been examined by the authors previously. Categories of existing components

with respect to the desired data of CBD are clearly explained in this taxonomy.

There is no idea model developed till now. Composition will be possible in both

phase, design and development in an ideal model by using repository. Components

that are easy to use and operators enabling systematic composition will be used in

this kind of model. Encapsulation and compositionality characteristics must be one

of the main characteristics of such models.

Design and development of a tailor-made ERP is discussed in this paper for a

University of Nigeria. University admin and academic staff and students are the

target users [32]. A customized ERP was designed using CBSE approach which was

reliable, affordable and adaptable. The authors have made two contributions in the

ERP: First, a commercial software was developed which has practical value for the

university. Second, the research community was provided with a new case-study for

the application of CBSE which will add to the research already going on. In future,

their important module of e-administration using CBSE can be used for research.

3.2 Model Composability

The purpose of this paper is to extend the work done by Balci – Ormby approach

which will achieve R&D, notation of good benefits and increase in effectivity of

Literature Review

 20

complex M&S design and development [33]. The purpose is explained in different

terms through:

 The advancement in the concept of R&C is explained with a component

model within development of application.

 Several difficulties occur in R&C within M&S applications. Identifying and

addressing these problems and considering the levels of modelling granularity

is also addressed in the paper.

 Challenges of R&D are explained at different abstractions of models.

 An application of Balci – Ormsby approach is discussed in terms of R&C

with a CM in ERM.

For developing heterogeneous complex systems, model composition is considered

important and they can also be used to explain the structure and behavior of system

in simulation models. Model composability concepts are discussed in this paper in

terms of modelling formalism [9]. These composability approaches are discussed

along with their challenges in terms of semiconductor supply chain manufacturing

systems.

The authors present a categorical breakdown of model composability approaches.

They describe each model’s composability approach formulation with respect to

modeling formalisms [9]. A multi-layer modeling vantage is used to describe the

approaches which highlight each formalism’s importance. A simplified example is

used to elaborate how model composability is affected by the formalisms.

Semiconductor supply chain is the most suitable example for this. The impact of the

choice of model composability and varying model composition degrees, limitations

and complexity of different composite models is described by the separation of

specifications of model and algorithm execution.

Petty and Weisel [34] explained the working on modeling and simulation,

composability is an important term. The meaning of composability differs depending

upon what or how components are being joined together. Being aware of these levels

of composability is beneficial as well as knowing the difference between semantic

and syntactic composability is important.

Mahmood, Ayani, Vlassov and Moradi [10] proposed a process which is used to

verify BOM based component at dynamic semantic levels. The term Composability

Literature Review

 21

means to select and merge segments in various combinations to fulfill client

requirements. In order to solve the problem using existing model, it can help

modeler and also reduce the development cost and time. To check the correctness of

compose model verification is required. A verification technique state space analysis

is used to verify the compose model.

A process of verification of dynamic composability was introduced in this paper

having a major focus on the composability of real time systems. Base object model is

used as conceptual framework and for executable modeling standard, CPN is used.

The extension of BOM to E-BOM is suggested, so that the necessary behavioral

details are present in it which are important for implementation and for time

function [18]. An automatic transformation method is provided to change E-BOM

into CPN component model with time functions. Representing the Model

component in CPN language is useful because the original structure and behavior do

not change at all in this language. A verification template is suggested for the

verification of dynamic-semantic composability which can use State-Space analysis to

verify the considered model.

3.3 Composability Verification

The definition of verification explained by Department of Defense Modelling and

Simulation office is defined as the process of making sure that the modeler’s

concepts are accurately represented by the implementation of model [35].

Generally, verification (V) is a process to check consistency of a product with respect

to the requirements and specifications [16]. The correctness of model is dealt with

verification and helps in building the model correctly i.e. a model that has no errors

and works correctly according to the requirements [15]. The accuracy of converting

the model’s requirements into a conceptual model and then the prepared conceptual

model is converted into an executable model [16].

The terms used in model definition are defined below:

Correct: Anything with no errors, in consistency with the facts, reason, anything that

conforms to the already made standards.

Correctness: The accordance of model, system or product with respect to its

specifications [46].

Literature Review

 22

How a system works and is it according to the defined requirements [36].

A model is said to be correct if its behavior matches with the specifications defined

by the user or modeler. Hence, the specifications are a major source to check

correctness of a model. A software is said to be correct if it complies with the

following three aspects: i) When it has been made according to the specifications ii)

When it has been developed incorrect against its specifications then it is defective

and iii) When the correctness cannot be checked according to some specification

then it will be unknown. The sum of all passing unit tests is the specification of

software entity. Specification can also be defined as property constraints and set of

goals that the composed model must perform [47]. Further, verification techniques

can be classified into four categories as show in Figure 9.

Figure 9: Verification Techniques

3.3.1 Informal Techniques

The most frequent techniques are informal techniques. Due to the methods

dependency on human reasoning and no use of mathematical formalism, they are

called informal [15]. There are well structured techniques and proper guidelines and

standard policies are defined for using them. However, these techniques are vague

and do not provide more effective result [37].

3.3.2 Static Analysis

These techniques are used for the assessment of static design of model and the

implementation of model without the execution of model. The aim of this analysis is

to check the structure model, the flow of data, syntactical accuracy and the

consistency.

3.3.3 Dynamic Analysis

The model is executed to evaluate the behavior of model of model in dynamic

analysis. The model is not only examined with respect to its execution but also the

Verification

Techniques

Informal

Analysis

Static

Analysis

Dynamic

Analysis

Formal

Analysis

Literature Review

 23

behavior is checked during execution. An additional code is added to the model’s

code to check the behavior of model during its execution. The additional code is

called instrumentation [37].

3.3.4 Formal Analysis

The mathematical analysis of a system with respect to its unambiguous property is

defined as formal analysis. These methods are called formal analysis and the

properties that are checked are called formal specifications. Complete coverage can

be provided on a model of the system by using forma verification. These methods

use finite state machines, PN or any other specification formulation method.

However, formal verification only checks the model’s correctness with respect to the

provided [38].

The V&V applications whole life cycle is considered really important for completing

M&S research on large scale. The sponsor of the M&S effort and the institution

which is conducting M&S must understand this point. The funds should be given by

the sponsor under a contract and the V&V should be applied by the contractor

throughout the whole cycle [15]. Application of V&V methods throughout is time

consuming and expensive. The contractors usually sacrifice the V&V and

documentation due to the time consumption pressure in M&S. For alleviating these

problems, the modelers require computer-aided assistance. More research can be

done to introduce automation in applying the V&V techniques.

Verification of BOM based models at the dynamic semantic level is considered in

this paper. An extension to the standard BOM is proposed to study important

behavior details and to convert it to a model that is executable like CPN [10].

Furthermore, an automatic conversion method is proposed to convert E-BOM into

CPN so that a model can be checked in its executable form while its original

structure and behavior do not change. After the transformation of all components,

all of them are assembled using CPN hierarchy tools and the model is analyzed using

state-space analysis. For verification, the modelers are required to make and verify

three types of properties: System properties, goal reachability and properties that

depend on the scenario. A case study of Field Artillery is discussed and its counter

example is provided to show how the framework helps in verification of a given

composed model at dynamic semantic level.

Literature Review

 24

3.4 Colored Petri nets

Carl Adam Petri proposed a universal useful scientific method for explaining

relations among circumstances and procedures (petri, 1962). He presented his work

between 1960 and 1962. At that point, he produced an impressive result about nets.

Those result were accepted in research [39], a few were represented in United States.

Petri net is a mathematical modeling language for modeling, simulation and analysis

of discrete event system. Basically it is a powerful language that can be used to

display parallel or concurrent activities in a system [40]. Using Petri nets tool, a

model is created for analyzing system performance. Petri nets are a buildup and well-

researched means for system modeling and simulation [41]. A Petri nets is a bipartite

graph in which we have places, transition and arc. Arc runs from transition to place

and vice versa, but never between transition and between places.

Workflow modeling [42] represents the sequence and collaboration that gives pattern

implementation by computer. One of the famous problems is Parallel workflow

pattern that is discussed in workflow modeling. Workflow uses Petri nets as a design

language to build complex and parallel system. Hierarchical Petri nets are also

discussed in this paper in which different segments need to perform a task

independently. Subnet that starts and ends with a transition, while replacing

transition with the complete subnet, the general system is also a valid Petri nets.

3.4.1 Pattern Language for Colored Petri nets

As we discussed earlier about colored petri nets so far there isn't any organized

structure and groups of patterns for colored petri nets. There are many patterns used

in Colored Petri Nets. Main focus of the pattern is on the interaction between data

flow and control flow [43]. Purpose of pattern language is to help modeler to

construct their model efficiently. Modelers don’t need to build a new model. They

must understand the nature of the problem and then find the solution of the

problem in the pattern catalog. Using existing solution of a problem rather than

building a new model, can save the modeler time and cost.

Reisig [44] describe that the idea used in composition of Nets is an interface that

serves as crossing point between two Nets joining them together as whole. Petri net

basically provides an interface for two meshed networks to work together as one,

thus giving required output. The nets initially are built separately each implementing

Literature Review

 25

its fundamental fragments and along with process continuation, are then combined

together to get an effective outcome. The interface ‘net’ defines a model for behavior

of a particular phenomenon with a sequence of work flow. This provides ease in

understanding an interface working of a complex model. The arrangement of

interfaces is assembled in an altering manner (so-called as commutative) and

elements between interfaces are shared among each other. Along with this the order

of composition of nets can also vary.

Colored Petri nets expand the classical Petri nets formalism with information time

and hierarchy [45]. Using these extensions, we build a complex model as CPN. CPN,

a powerful tool supports the design and analysis of these processes. Modeler needs

to understand the problem domain. Inexperienced modeler may design a pattern that

is unnecessary. We have a set of patterns using which, modeler need to learn how to

solve a typical design problem in terms of CPN.

3.5 Our Position in the State of Art

We build a component that helps the modeler to reuse existing component instead of

building new component from the scratch. We use hierarchal approach that act as a

black box in which detail of the component is hidden from the user. Moreover, our

solution proposes the use of state space analysis technique for verifying dynamic

composability of components. State space analysis has been appreciated in CPN

community for generic verification but has never been used for Composability

verification.

Methodology

 26

Methodology

In this chapter we proposed solution to component based model reuse in Colored Petri Nets. All

components are integrated into a unified framework refer to as: composability verification framework.

4.1 Component Composition and Verification

In this section, different techniques for proposed Composability verification are

discussed in detail. These methods are referred to as CBM&S cycle’s building blocks

and their connection will be with different phases [48] [49]. For reading

Composability verification, these details are compulsory.

4.1.1 Static Analysis

Two types of static analysis are proposed by the authors. Syntactic matching and

semantic matching [11] [34]. The Composability at static-semantic and syntactic level

is evaluated by using these procedures. They are pre-defined rules and no execution

is required and the data on which these are applied is also static.

4.1.2 Dynamic Analysis

The behavior of conceptual model is evaluated using dynamic analysis. A component

matching process is performed on components for evaluating the consistency of

behavior. After the successful evaluation, the in-depth verification at dynamic-

semantic Composability level is performed. One of the proposed dynamic analysis

techniques is chosen, as the execution is required at different levels that is why these

analyses are called dynamic analysis.

4.2 Requirement Specification

The information is gathered by the modeler in this step and the modeler then

outlines requirements using our proposed template.

RS = 〈O, S〉

Where: O = {o1, o2, o3 …, on} is a set of objectives

S = {s1, s2, s3 …, sn} is a set of constraints

Methodology

 27

4.2.1 Objectives

In modeling terms, an objective oi ∈ O is defined to represent certain “Reachable

final state(s)” of the components within a composition, an aggregated desirable

output or an emergent effect produced by the composed model which cannot be

produced by individual components. In software engineering terms, an objective

represents a functional requirement of the composed system.

4.2.2 Constraints

In modeling terms, a system constraint sj ∈ S is defined as a property that must be

satisfied; for instance a desirable state which must be reached, or an undesirable state

which must never be reached during the execution. System constrains can be defined

in terms of general system properties such as deadlock freedom, fairness etc. or

scenario specific properties. The notions of constraints are different from the

Objectives, because they are the kind of requirements which are not the ultimate

goals of the system model but are necessary conditions to achieve the desirable goals.

They can be considered as non-functional requirements from the software

engineering point of view.

4.3 Development & Composition of Model Components

Individual components are developed by the modeler using CPN tools. A CPN

component consists of i) Colors which represent structured data-types also called

places ii) tokens: Colors of different places are represented by tokens iii) Transitions

consisting of actions, time delays and events iv) arcs which use arc variables to

transfer tokens from one place to another (i.e. from one element to another) and

communication ports are also used to connect the components for input and output.

All these four parts are combined and a functional model component is formed. The

individual components are then connected to each other by communication ports.

4.4 Verification of the Composed CPN model

The state space analysis is performed in the next step. CPN state space calculation

tool generates state-space of the composed CPN model. The state space can be

explored by using different query functions for various verification purposes. Query

functions can be defined as steps to explore state-space graph. Properties of Petri

nets can be verified by using these algorithms and these are based on theory concepts

Methodology

 28

of colored Petri nets. A system property in requirement specification is translated

into PN property. The literature has many methods and proposed approaches on

how to efficiently translate requirement into PN property. In CPN state-space

analysis, existing process or algorithms can be used for the development of query

function for their respective properties. CPN tool also has some built in functions

for tasks related to common queries.

4.4.1 General System Properties

For verifying system properties like no-deadlocks, starvation or time synchronization,

state-space analysis is beneficial technique. The modeling objectives determine the

choice of one of these properties as verification criteria and for the correctness of the

composition, the fulfillment of these conditions becomes necessary. The property

has to be specified in CPN terms and a query function has to be defined for checking

its satisfaction or violation. The deadlock freedom property can be defined as there

are no outgoing arcs marking in the whole state space graph. A function

ListDeadMarking () is used to extract all no-outgoing markings. Empty list means

that there are no deadlocks in model.

Figure 10: CPN State Space Analysis

4.4.2 Scenario Centric Properties

Safety assumptions that are particular to the scenario are proposed to be designed.

Desirable situations are represented by safety assumptions. These properties might

be necessary conditions but they are not the ultimate goal. Figure 22 illustrate the

working of safety algorithm which calculates all the nodes through SearchNodes ()

function. We have two components Door and Motor in which we have multiple

places such as RotateRight, RotateLeft, EnteredF1, EnteredF2 and so on that

System Property

State Space
CPN Translation

Composed CPN Model

Query function

(Algorithm)
Function
Library

Violated Satisfied

Methodology

 29

contain tokens. These values are stored in different variables. Using if condition we

ensure that either we have tokens in EnteredF1, EnteredF2 and so on places or we

have tokens in RotateRight and RotateLeft places. In other words, we simply say that

if door is open then motor component must be stopped otherwise it violates the

safety property. These two components don’t work at the same time otherwise safety

property doesn’t hold.

4.4.3 State-Space Query function

For performing the verification of properties, custom functions are built using

CPN_ML. Below are some functions.

4.4.3.1 Goal State

Finding goal-state depends on the way in which goal state is defined and finding goal

state reachability is not a standard function in CPN. Library functions are used to

specify a new predicate and that predicate is then used to search nodes which satisfy

that predicate using PredAllNodes () function. Presence of one or two nodes

satisfying the predicate means that the goal-state is reachable. PredAllNodes ()

function is used with the predicate if it is also important to know that how the goal is

reachable and what transitions between states will lead to the goal. Figure 21

illustrate the working of goal reachability algorithm in which it searches all the nodes

in graph. We store tokens in variables. We check the desired goal. If the condition is

correct it returns true, otherwise, it returns false.

Composability Verification of an Elevator Model

 30

Composability Verification of an

Elevator Model

In this section, we provided the details of the case study of an elevator model we assume an elevator

which servers 6 floors. For the sake of simplicity and reduced space, we initialize each florr with 3-4

passengers (though the actual model is capable of taking a large number of incoming passengers).

We discussed composability verification and propose the use of Colored Petri Nets

for component oriented model development, composition and the verification of

composed models using state-space analysis technique. We presented a case study of

an elevator model as a proof of concept. Our case study explains the proposed

process of developing and composing CPN based model components, and verifying

the composed model using state-space analysis.

Following steps demostrate the composability verification process of our model:

5.1 Requirement Specification

We define RS= O1, S1 where

Objective O1 = {All the arrived passengers must reach their destination floor}

Constraint S1 = {The door should never be opened when the elevator is moving}

5.2 Model Components

Six basic components were developed for the construction of an elevator model:

5.2.1 Generator

Figure 11 illustrate the generator component. It can generate the passenger id,

current floor and desired floor. A transition name generator in which we used

NextPassenger () function and a guard condition [id<Max] which check the limit of

passengers. Table 3 illustrate the detail of colset that is used in making of motor

component.

Composability Verification of an Elevator Model

 31

Table 3: Generator Component Code
Declaration Explanation

colset tint = INT timed; Timed colset tint can be used.

colset Passenger = product INT*INT*INT timed; Define the type used for the Passenger.

colset INT=int; Integer type colset INT is used.

[id<Max] Condition is used to check the number of
passenger is generated must not exceed more
than 25.

if cf<>df then b+1

else b

We count the total number of passenger that
are generated using NextPassenger () function.
If current floor is not equal to desired floor
then we add plus 1 in variable b. Starting value
of b is 0.

fun exponentialTime(mean : int)=

 let

val Mean = Real.fromInt mean

val rv = exponential((1.0)/Mean)

 in

 floor(rv+0.5) end;

Exponential distribution function is used with
a mean equal to 5.

fun NextPassenger(id) =

let

val nb = discrete(1,6);

val nf = discrete(1,6);

in

(id,nf,nb) end;

Function NextPassenger () is used to generate
passenger id, current floor and desired floor
range between 1 and 6.

if cf<>df andalso cf=1

then 1`(i,cf,df)

else empty

We have six floors in our model and using if
condition we check if current floor is not equal
to desired floor and current floor must be equal
to 1 if condition is true then passenger arrived
at floor 1.

Composability Verification of an Elevator Model

 32

Figure 11: Generator Component

5.2.2 Queue

FIFO queue component is used in order to entertain the passengers. A passenger

arriving first will always be served first. Figure 12 illustrate Queue component.

Table 4 illustrate the detail of colset that is used in making of queue component.

Declaration Explanation

colset Passenger = product INT*INT*INT timed; Define the type used for the Passenger.

var i,cf,df:INT; Integer type variable is used to save integer
value that is passenger I represent passenger id,
cf represent current floor and df represent
desired floor

var p:Passengers; Variable p is used for Passengers

Table 4: Queue Component Code

Figure 12: Queue Component

5.2.3 Panel

It is the button panel that is installed on each floor outside the elevator door. When

the passengers arrive, they press the panel buttons to call the elevator at their current

Composability Verification of an Elevator Model

 33

floor. Figure 13 illustrate the design of the panel component. It takes the passenger

tokens as input in their respective floors, process them in a FIFO queue, construct a

list of trips and pass on the passenger tokens to the output. Table 5 illustrate the

detail of colset that is used in making of panel component.

Declaration Explanation

colset TRIPS = list INT timed; Timed list type colset TRIPS can be used.

colset Passenger = product INT*INT*INT timed; Define the type used for the Passenger.

var ps: Passenger; Variable ps is used for Passenger

var trips: TRIPS; Variable trips is used for TRIPS

#2 ps::trips Pick the second element in the ps.

List.nth(trips, 0) Selects an element from the list trips

Table 5: Panel Component Code

Figure 13: Panel Component

5.2.4 Door

The door opens and closes on arriving at each floor and allows the passengers to

enter the cabin according to the capacity. The place ‘current floor’ represents the

current floor. The place ‘Load’ represents the current load in the cabin. Only those

passengers can enter which are at the current floor. The door closes when there are

Composability Verification of an Elevator Model

 34

no more passengers or the maximum capacity has been reached. Figure 14 illustrate

the door component. Table 6 illustrate the detail of colset that is used in making of

door component.

Declaration Explanation

var floor,load:INT; Integer variables floor and load is used.

colset Passenger = product INT*INT*INT timed; Define the type used for the Passenger.

var ps: Passenger; Variable ps is used for Passenger

val MAX_CAPACITY = 10; MAX_Capacity variable is used to check the
number of passenger enter in elevator must not
exceeds more than 10.

colset Passengers = list Passenger timed; Timed list type colset Passengers can be used.

var p:Passengers; Variable p is used for Passengers

ps::p FIFO Queue is used in which a passenger is
arriving first will be served first.

p<>[] Timed list type variable p is used and check the
condition if p is not equal to empty then value
of p is forward to the next place.

Table 6: Door Component Code

Figure 14: Door Component

5.2.5 Cabin

It is the carriage for a maximum of 10 passengers. When the passengers enter the

cabin they wait until their desired floor has arrived. When the passengers enter the

Composability Verification of an Elevator Model

 35

cabin, their desired floor is selected and a list of trips is created after removing the

duplicates. The passengers wait until the elevator arrives at their desired destination

Figure 15 illustrate cabin component. Table 7 illustrate the detail of colset that is

used in making of cabin component.

Table 7: Cabin Component Code
Declaration Explanation

colset TRIPS = list INT timed; Timed list type colset TRIPS can be used.

colset Passenger = product INT*INT*INT timed; Define the type colset used for the Passenger.

var ps: Passenger; Variable ps is used for Passenger

var trips: TRIPS; Variable trips is used for TRIPS

#3 ps::trips Pick the third element in the ps.

var floor,load:INT; Integer variables floor and load is used.

trips <>[] If the value of trips not equal to empty it can
generates more trips.

colset INT=int; Integer type colset INT is used.

[#3 ps = 1 andalso floor = 1] Condition is used to check the value of current
floor and desired floor are equal then door will
open and passenger will leave the floor.

Figure 15: Cabin Component

Composability Verification of an Elevator Model

 36

5.2.6 Motor

It takes a list of trips as input from the cabin (the internal button panel selection for

the desired floor) or from the floors (outer panel) and moves the motor right to go

upwards or left to go downwards. Motor has brakes, which are applied when the

desired floor is reached. This component is responsible to change the ‘current floor’.

Figure 16 illustrate Motor component. Table 8 illustrate the detail of colset that is

used in making of motor component.

Declaration Explanation

colset TRIPS = list INT timed; Timed list type colset TRIPS can be used.

colset Passenger = product INT*INT*INT timed; Define the type used for the Passenger.

var ps: Passenger; Variable ps is used for Passenger

var trips: TRIPS; Variable trips is used for TRIPS

var floor:INT; Variable floor is used for Integer.

[trip < floor] If the value of trips is less than floor then
motor will move downward.

[trip > floor] If the value of trips is greater than floor then
motor will move upward.

colset INT=int; Integer type colset INT is used.

colset MOTOR = product INT*INT timed; Define the type colset used for the Passenger.

[trip = floor] If the value of trip is equal to the floor than
motor will stop at desired floor.

Table 8: Motor Component Code

Figure 16: Motor Component

Composability Verification of an Elevator Model

 37

5.3 Model Composition

All the components are composed together to form an elevator model as shown in
Figure 17.

Figure 17: Elevator Composed Model

5.4 Model Execution

Figure 18 & Figure 19 illustrate the initial state and the final state of the model's

execution. The tokens in the initial state represent passengers as a tuple: {Passenger

ID, Current Floor, and Desired Floor}. Note that in the final state, all the

passengers reach their desired floor. Table 9 illustrate the detail of colset that is used

in making of main component.

Table 9: Main Component Code
Declaration Explanation

colset Passenger = product INT*INT*INT timed; Define the timed type used for the Passenger.

Composability Verification of an Elevator Model

 38

Figure 18: Initial Step

Figure 19: Final Step

5.5 Composability Verification

In this step, we perform the state- space analysis. After generating the state-space of

the composed model, we visualize it in Gephi tool as shown in Figure 20. In the

state space, Node 1 is the initial node and Node 1227 is the goal state. The shortest

path to reach the goal state is shown in red color.

Composability Verification of an Elevator Model

 39

Figure 20: State-Space of Elevator Model

We developed and performed the query functions, shown in Figure to prove that

goal state is reachable and constraint will never be reached. The goal is to ensure that

all the passengers arrive at their desired floors, so we check that there exists a

marking that satisfies this criterion. The constraint is to ensure that the door will

never be opened when the elevator is moving. We prove that if there are tokens in

‘Entered’ place of any floor, meaning the door is opened, then the ‘Rotating Left’ or

‘Rotating Right’ place is empty and vice versa. The satisfaction of goals and

constraints assert that all the components are consistent and their behavioral

composability is verified as per given requirement specification.

Figure 21: Goal State Reachability Query

Composability Verification of an Elevator Model

 40

Figure 22: Constraint Unreachability Query

Conclusion and Future Work

 41

Conclusion and Future Work

This chapter provides the discussion, conclusion and future work of the thesis.

6.1 Summary

In this thesis, we discussed composability verification and propose the use of

Colored Petri Nets for component oriented model development, composition and

the verification of composed models using state-space analysis technique. We

presented a case study of an elevator model as a proof of concept. Our case study

explains the proposed process of developing and composing CPN based model

components, and verifying the composed model using state-space analysis.

6.2 Conclusion

A verified composed model ensures consistent structure and compatible behavior of

the composites to guarantee the satisfaction of its objectives and required

constraints, given in the requirement specifications. This helps in rectifying any

possible defects in the model design of a complex system before it is actually

implemented to serve its purpose, and thus saves a significant amount of time, cost

and achieve robustness. Moreover this process supports reusability as the entire

process can easily be repeated to compose same components for different scenarios

with varied configurations or with different requirement specifications.

We used verification techniques named as state space analyses. Using state space

analysis, we verified the Composability of components and thus ensure successful

reusability. We verified different properties in our elevator model including safety,

Goal-reachability property. In order to ensure that our model works correctly, we

verified these properties. For efficient and accurate verification of models, colored

Petri nets and its techniques are very beneficial as it is one of the competitive tools

for development of models for systems. CPN’s role in Composability verification is

very constructive, because it also focuses on dynamic Composability level. CPN

communities have been working on the analysis techniques to improve the

Conclusion and Future Work

 42

performance of CPN tools and their work provides a notable and efficient reasoning

when working on the model correctness.

6.3 Future Work

In future, we intend to deploy the composability verification framework in different

application areas, particularly in safety critical systems, to evaluate its potential and to

make use of its valuable features in the verification of complex system design and its

correctness analysis. We further aim to extend our approach for heterogeneous

model composability.

 References

 43

References

[1] M. Serrano Zanetti, A complex systems approach to software engineering, vol. 2,
Germany: Suedwestdeutscher Verlag fuer Hochschulschriften, 2013, p. 184.

[2] I. Mahmood, "A Verification Framework for Component Based Modeling and
Simulation: Putting the pieces together," KTH, Stockholm, 2013.

[3] C. Szyperski, Component Software: Beyond Object-Oriented Programming, 2nd
ed., Boston, MA: Addison-Wesley Longman Publishing Co., Inc., 2002.

[4] R. G. Bartholet, D. C. Brogan, P. F. Reynolds and J. C. Carnahan, "J.C.: In
search of the philosopher’s stone: Simulation composability versus component-
based software design," in Proceedings of the Fall Simulation Interoperability Workshop,
Arlington, Virginia, 2004.

[5] M. Mitchell, Complexity: A Guided Tour, New York, NY, USA: Oxford
University Press, Inc., 2009.

[6] D. Rickles, P. Hawe and A. Shiell, "A simple guide to chaos and complexity,"
Journal of Epidemiology & Community Health, vol. 61, no. 21, pp. 933-937, 2007.

[7] N. R. Jennings, "An Agent-based Approach for Building Complex Software
Systems," Commun. ACM, vol. 44, no. 4, pp. 35-41, 4 2001.

[8] B. Meyer, Object-Oriented Software Construction, 1st ed., Upper Saddle River,
NJ, USA: Prentice-Hall, Inc., 1988.

[9] H. S. Sarjoughian, "MODEL COMPOSABILITY," in Proceedings of the 2006
Winter Simulation Conference, Berlin, 2006.

[10] I. Mahmood, R. A. V. V. and F. M. ,
"Verifying Dynamic Semantic Composability of BOM-
Based ComposedModels Using Colored Petri Nets," in PADS '12 Proceedings of
the 2012 ACM/IEEE/SCS 26th Workshop on Principles of Advanced and Distributed
Simulation, Washington, 2012.

[11] M. D. Petty and E. W. Weisel , "A theory of simulation composability," in
Proceedings of the Spring 2003 Simulation Interoperability Workshop, Orlando, 2004.

[12] S. Kasputis, "Composable Simulations," in 2000 Winter Simulation Conference
Proceedings, Washington, DC, 2000.

[13] P. K. Davis and R. H. Anderson, "Improving the composability of department
of defense models and simulations," RAND Corporation, United States, 2003.

[14] F. Moradi, "A Framework for Component Based Modelling and Simulation
using BOMs and Semantic Web Technology," KTH, Stockholm, 2008.

[15] O. Balci, "Verification, Validation and Accreditation of simulation models," in
Proceedings of the Winter Simulation Conference, Atlanta, GA, 1997.

 References

 44

[16] M. D. Petty, "Verification and Validation," in Principles of Modeling and Simulation:
A multidisciplinary approach, Canada, Wiley; 1 edition, 2009, p. ch. 6.

[17] K. Jensen and L. M. Kristensen, "Colored Petri Nets: A Graphical Language for
Formal Modeling and Validation of Concurrent Systems," Communications of the
ACM, vol. 58, no. 6, pp. 61-70, June, 2015.

[18] I. Mahmood, R. A. V. V. and F. M. , "Composability Verification of Real Time
System Models using Colored Petri Nets," in UKSim 15th International Conference
on Computer Modelling and Simulation, Washington, DC, 2013.

[19] I. Mahmood, "A Verification Framework for Component Based Modeling and
Simulation : Putting the pieces together," KTH, Stockholm, 2013.

[20] M. D. Petty, "Verification and Validation," in Principles of Modeling and Simulation,
New York, John Wiley & Sons, 2009, pp. 121-149.

[21] S. Robinson, R. Brooks, K. Kotiadis and D. J. Van Der Zee, Conceptual
Modeling for Discrete-Event Simulation, 1st ed., Boca Raton, FL, USA: CRC
Press, Inc., 2010.

[22] P. A. Fishwick, Simulation Model Design and Execution: Building Digital
Worlds, 1st ed., Upper Saddle River, NJ, USA: Prentice Hall PTR, 1995.

[23] K. Jensen and L. M. Kristensen, Coloured Petri Nets Modelling and Validation
of Concurrent Systems, New York: Springer-Verlag Berlin Heidelberg, 2009, p.
382.

[24] C. Tools, "CPN Tools," December 2017. [Online]. Available:
http://cpntools.org/.

[25] M. Naedele and J. W. Janneck, "Design patterns in petri net system modeling,"
in Fourth IEEE International Conference on Engineering of Complex Computer Systems,
Monterey, 1998.

[26] L. M. Kristensen, "State Space Methods for Coloured Petri Nets," Kluwer
Academic, Denmark, 2000.

[27] K. Jensen, S. C. and L. M. Kristensen, "CPN Tools State Space Manual,"
Department of Computer Science, Aarhus, 2006.

[28] K. Jensen, S. Christense and L. M. Kristensen, "CPN Tools State Space
Manual," Department of Computer Science, Aarhus , Denmark, 2006.

[29] K. K. Lau and Z. Wang, "Software Component Models," IEEE Transactions on
Software Engineering, vol. 33, no. 10, pp. 709-724, 10 2007.

[30] M. R. J. Qureshi and S. A. Hussain, "A reusable software component-based
development process model," Advances in Engineering Software, vol. 39, no. 2, pp.
88-94, 2008.

[31] N. M. J. Basha and S. A. Moiz, "Component based software development: A
state of art," in IEEE-International Conference On Advances In Engineering, Science And
Management, Singapore, 2012.

 References

 45

[32] E. Okewu and O. Daramola, "Component-based software engineering approach
to development of a university e-administration system," in 2014 IEEE 6th
International Conference on Adaptive Science Technology (ICAST), Covenant University,
Canaanland, Ota, Ogun State,Nigeria., 2014.

[33] O. Balci, J. D. Arthur and W. F. Ormsby, "Achieving reusability and
composability with a simulation conceptual model," Journal of Simulation, vol. 5,
no. 3, pp. 157-165, 01 8 2011.

[34] M. D. Petty and E. W. Weisel, "A Composability Lexicon," in in Proceedings of the
Spring 2003 Simulation Interoperability Workshop, Orlando, April 2003..

[35] A. Engel, Verification validation and testing of engineered systems, Hoboken,
NJ: J Wiley & Sons, 2010.

[36] B. Meyer, Object-oriented Software Construction (2nd Ed.), Upper Saddle
River, NJ, USA: Prentice-Hall, Inc., 1997.

[37] M. Debbabi, F. Hassane, Y. Jarraya, A. Soeanu and L. Alawneh, Verification and
Validation in Systems Engineering: Assessing UML/SysML Design Models, 1st
ed., New York, NY, USA: Springer-Verlag New York, Inc., 2010.

[38] M. K. Ganai and A. Gupta, SAT-Based Scalable Formal Verification Solutions,
USA: Springer, 2007.

[39] C. A. Petri, Kommunikation mit Automaten, University in Darmstadt, Germany:

Bonn : Mathematisches Institut der Universita ̈t Bonn, 1962.

[40] W. J. Thong and M. Ameedeen, "A Survey of Petri Net Tools," in Proceedings of
the 1st International Conference on Communication and Computer Engineering, Malacca,
2015.

[41] M. Naedele and J. W. Janneck, "Design patterns in Petri net system modeling,"
in Proceedings. Fourth IEEE International Conference on Engineering of Complex Computer
Systems, Monterey, California, 1998.

[42] L. G. Xue and Y. W. Yao, "A Method for Modeling Multi-task Workflow Based
on High-Level Petri Nets," in 2009 Second International Workshop on Computer
Science and Engineering, Canada, 2009.

[43] N. Mulyar and W. M. v. d. Aalst, "Towards a Pattern Language for Colored Petri
Nets," in Conference: Proceedings of the Sixth Workshop on the Practical Use of Coloured
Petri Nets and CPN Tools (CPN 2005), Netherland, 2005.

[44] W. Reisig, Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies, Berlin, Germany: Springer Publishing Company, Incorporated,
2013.

[45] W. M. P. Aalst, C. Stahl and M. Westergaard, "Strategies for Modeling Complex
Processes Using Colored Petri Nets," in Transactions on Petri Nets and Other Models
of Concurrency VII, Berlin, 2013.

[46] S. McConnell, Code Complete, Second Edition, Redmond, WA: Microsoft
Press, 2004.

 References

 46

[47] Matthew Wilson, "Quality Matters: Correctness, Robustness and Reliability,"
Overload Journal Process Topics, vol. 11, no. 93, pp. 23-34, October 2009.

[48] L. D. d. Silva and A. P. , "A Model-Based Approach to Formal Specification and
Verification of Embedded Systems Using Colored Petri Nets," in Component-
Based Software Development for Embedded Systems, Berlin, Heidelberg, Springer-
Verlag, 2005., pp. 35--58.

[49] K. C. Gorgonio and A. P. , "Adaptation of Coloured Petri Nets Models of
Software Artifacts for Reuse," in ICSR-7 Proceedings of the 7th International
Conference on Software Reuse: Methods, Techniques, and Tools, London, 2002.

