

Data Set Security in a Physically Accessible System

Author

Muhammad Abdullah Abid

NUST201464150MSEECS63114F

Supervisor

DR. SHAHZAD SALEEM

A thesis submitted in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SECURITY (MS-IS)

DEPARTMENT OF COMPUTING (DoC)

SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE (SEECS)

 NATIONAL UNIVERSITY OF SCIENCES AND TECHNOLOGY (NUST)

ISLAMABAD, PAKISTAN

(July 2018)

i

Declaration

I certify that this research work titled “Data Set Security in a Physically Accessible System” is

my own work. The work has not been presented elsewhere for assessment. The material that has

been used from other sources it has been properly acknowledged/referred.

Signature of Student

Muhammad Abdullah Abid

NUST201464150MSEECS63114F

ii

Approval

It is certified that the contents and form of the thesis entitled “Data Set Security in a Physically

Accessible System” submitted by M Abdullah Abid have been found satisfactory for the

requirement of the degree.

Advisor: Dr. Shahzad Saleem

Signature: _____________________

Date: _____________________

External Supervisor: Dr. Mudassar Aslam

Signature: _________________________

Date: _________________________

Committee Member 1: Mr. Ubaid Ur Rehman

Signature: _________________________

Date: _________________________

Committee Member 2: Miss Hirra Anwar

Signature: _________________________

Date: _________________________

iii

THESIS ACCEPTANCE CERTIFICATE

 Certified that final copy of MS thesis written by Mr. Muhammad Abdullah Abid,

(Registration No NUST201464150MSEECS63114F), of SEECS (School/College/Institute), has

been vetted by undersigned, found complete in all respects as per NUST Statutes/Regulations, is

free of plagiarism, errors and mistakes and is accepted as partial fulfillment for award of MS/M

Phil degree. It is further certified that necessary amendments as pointed out by GEC members of

the scholar have also been incorporated in the said thesis.

Signature: ________________________________

Name of Supervisor: Dr. Shahzad Saleem

Date: ___________________________________

Signature (HOD): __________________________

Date: ___________________________________

Signature (Dean/Principal): __________________

Date: ___________________________________

iv

Copyright Statement

 Copyright in the text of this thesis rests with the student author. Copies (by any process)

either in full or of extracts, may be made only in accordance with instructions given by

the author and lodged in the Library of SEECS (NUST). Details may be obtained by the

Librarian. This page must form part of any such copies made. Further copies (by any

process) may not be made without the permission (in writing) of the author.

 The ownership of any intellectual property rights which may be described in this thesis is

vested in NUST, subject to any prior agreement to the contrary, and may not be made

available for use by third parties without the written permission of the SEECS (NUST),

which will prescribe the terms and conditions of any such agreement.

 Further information on the conditions under which disclosures and exploitation may take

place is available from the Library of SEECS (NUST).

v

Certificate of Originality

I hereby declare that this submission titled “Data Set Security in a Physically Accessible System”

is my own work. To the best of my knowledge, it contains no materials previously published or

written by another person, nor material which to a substantial extent has been accepted for the

award of any degree or diploma at NUST SEECS or at any other educational institute, except

where due acknowledgement has been made in the thesis. Any contribution made to the research

by others, with whom I have worked at NUST SEECS or elsewhere, is explicitly acknowledged

in the thesis.

I also declare that the intellectual content of this thesis is the product of my own work, except for

the assistance from others in the project’s design and conception or in style, presentation and

linguistics which has been acknowledged. I also verified the originality of contents through

plagiarism software.

Author Name: M Abdullah Abid

Signature: _________________

vi

Acknowledgments

I am very thankful to my Allah Almighty for all his help and blessings in every stage of my life.

I am also thankful to my parents, my wife and to my siblings for supporting and encouraging me

throughout my life.

I would like to give special thanks to my respected sir and supervisor Dr. Shahzad Saleem for his

help throughout my thesis. Besides my supervisor, I am also very thankful to Dr. Naveed Ahmed

for his guidance and support throughout the research period. GEC Committee members: Mr.

Ubaid Ur Rehman and Miss Ayesha Kanwal were very supportive too. So, I am thankful to all of

them for their efforts, encouragement, and support to overcome numerous obstacles I have been

facing throughout my research.

In addition, I would also like to thanks my fellow Mr. Zeeshan Qaiser and Mr. Umer Hayat and

all other friends for their virtuous support and cooperation.

Finally, I would like to express my gratitude to all the individuals who have rendered valuable

assistance to my study.

vii

This work is dedicated to

my adorable daughters

Eshaal and Aanabiya

viii

Abstract

The field of software engineering nowadays is of high importance due to its financial and daily

life implications. So attackers find them advantageous to analyze the executables dispatched by

software creating companies. In the last two decades, reverse engineering tools are increased by

many folds and also their effectiveness and diversity has expanded. Due to these competent

tools, the number of attacks by the malicious users have increased. Software has two types of

information namely functions and data. To be secure against attacks there are many solutions and

obfuscation is one of the techniques. Most of the obfuscation techniques are developed for the

obfuscation of functions. For the security purpose, cryptographic techniques and encryption keys

are embedded in the software executables as data. Using reverse engineering tools attacker may

extract the data embedded in the executable for financial benefit. In the past different data and

key storage technologies which includes hardware-based and software-based techniques. The

software-based solution includes encryption, virtualization, hiding keys within the executables

etc. Whereas hardware techniques involved usage of TPM chip, creating of binary state

machines etc.

In this research, a software-based technique is developed for the obfuscation of data present in

the executable. An application is developed that take a programming file as an input. The

application extracts the constants declared in the programming file and transforms that constants

into randomized code. The application then creates a new programming file, which includes the

old code with some modifications, randomized code generated against the data or key, de-

obfuscator function, and some supporting functions. This programming file is the output of the

obfuscation application. In the end, multiple tools were used to evaluate the effectiveness of the

obfuscation process designed. The evaluation done follows the techniques of static analysis. It

was found that it has become harder for an attacker to extract any useful information from the

executables.

Key Words: Key Security, Obfuscation, Cryptography, Key Hiding, Open System Security,

Software Security, Secure Executables

ix

Table of Contents

CHAPTER 1 .. 1

1 INTRODUCTION .. 1

1.1 Motivation .. 1

1.2 Categorization of Systems and their Security Needs ... 1

1.3 Cryptography and its usage in security implementations... 2

1.4 Software Implementation and Security .. 3

1.5 Reverse engineering helping the attackers ... 3

1.6 Attacks and their Security Counter-measures .. 4

1.7 Research Problem ... 6

1.8 Chapters Overview ... 6

CHAPTER 2 .. 8

2 LITERATURE REVIEW .. 8

2.1 A Key Hiding Based Software Encryption Protection Scheme [22] 8

2.1.1 Problem discussed ... 8

2.1.2 Proposed Solution ... 9

2.1.3 Paper Analysis/Review ... 9

2.2 Security Challenges for Open Embedded Systems [24] .. 10

2.2.1 Embedded Systems – An Overview ... 10

2.2.2 Security issues associated with Embedded Systems ... 10

2.3 Protecting Cryptographic keys on client platforms using virtualization and raw disk

image [35] .. 12

2.3.1 Problem discussed ... 12

2.3.2 Proposed Solution ... 12

2.3.3 Paper Analysis/Review ... 13

2.4 Secure Key Storage Using State Machines [39] .. 14

2.4.1 Problem discussed ... 14

2.4.2 Proposed solution .. 14

2.4.3 Paper Analysis/Review ... 15

2.5 Keeping Secret Keys Secret in Open Systems. [10] .. 15

2.5.1 Problem discussed ... 15

2.5.2 Proposed Solution ... 16

2.5.3 Paper Analysis/Review ... 16

x

2.6 Methods to Protect Cryptographic keys on Safety Critical Systems. [41] 17

2.6.1 Problem discussed ... 17

2.6.2 Proposed Solution ... 17

2.6.3 Paper Analysis/Review ... 18

2.7 Embedded Systems Security: Threats Vulnerabilities and Attack Taxonomy [45] 18

2.7.1 Problem discussed ... 18

2.7.2 Proposed Solution ... 19

2.8 Cryptographic key protection against FROST for mobile devices [48]......................... 21

2.8.1 Problem discussed ... 21

2.8.2 Implemented Solution ... 21

2.9 Embedded Systems Security Challenges [7] .. 22

2.9.1 Embedded Systems and their usage .. 22

2.9.2 Security Challenges associated with Embedded Systems 22

2.9.3 Possible Solutions to Security Challenges. ... 23

CHAPTER 3 .. 25

3 RESEARCH METHODOLOGY ... 25

3.1 Research ... 25

3.2 Types of Research .. 26

3.3 Thesis Research Methodology ... 28

3.4 Research Objectives ... 28

3.5 Research Approach .. 29

3.6 Literature Review ... 29

3.7 Problem Identification .. 30

3.8 Evaluation Process ... 30

CHAPTER 4 .. 34

4 PROPOSED SOLUTION .. 34

4.1 Module 1: Programming file parsing ... 35

4.2 Module 2: Data Transformation ... 36

4.3 Module 3: Modifying the Programming file .. 39

4.4 Inverse Transformation .. 41

CHAPTER 5 .. 43

5 IMPLEMENTATION AND RESULTS ... 43

5.1 Use Case Scenario .. 43

5.2 Choice of Implementation Language and platform.. 43

xi

5.3 Proof of Concept .. 44

5.4 Results and Discussions ... 46

5.4.1 Before Obfuscation Results .. 46

5.4.2 After Obfuscation Results ... 48

CHAPTER 6 .. 53

6 CONCLUSIONS .. 53

6.1 Future Directions .. 53

7 REFERENCES ... 54

xii

List of Figures

Figure 1: Analytical and Conceptual Phase of Research Work .. 31
Figure 2: Problem Identification and Solution Design Phase ... 32

Figure 3: Implementation and Evaluation Phase of Research Work .. 33
Figure 4: A Complete process in terms of phases, inputs, and outputs .. 34
Figure 5: Phase 1 - Parsing the Programming File ... 35
Figure 6: Phase 2 - Data Transformation Process ... 36
Figure 7: Phase 3 - Modifying the programming file ... 40

Figure 8: Code Under Test - Sample 1 ... 45
Figure 9: Code Under Test - Sample 2 ... 45
Figure 10: IDA Pro String Utility Output - CUT1 - Before Obfuscation 47

Figure 11: IDA Pro String Utility Output - CUT2 - Before Obfuscation 47
Figure 12: IDA Pro Hex Editor Output - CUT1 - Before Obfuscation .. 48
Figure 13: IDA Pro Hex Editor Output - CUT2 - Before Obfuscation .. 48

Figure 14: IDA Pro String Utility Output - OCO1 – After Obfuscation 49
Figure 15 IDA Pro Hex Editor Output - OCO1 - After Obfuscation.. 49

Figure 16: IDA Pro Hex Editor Output - OCO2 - After Obfuscation .. 50
Figure 17: IDA Pro Hex Editor - OCO2 - After Obfuscation... 50
Figure 18: Data -> Polynomial -> Function -> Disassembly.. 51

Figure 19: De-obfuscator Function Disassembly ... 51

List of Tables

Table 1: Randomization Similarity Checking Table .. 52

xiii

List of Acronyms

CD

Compact Disk

DVD Digital versatile disk

COTS Commercial off the shelf

STB Setup Box

SSL Secure Socket Layer

HMAC Hash Message authentication code

RAM Random Access Memory

FROST Forensics recovery of scrambled telephones

NLFSR Non-Linear Feedback Shift Register

IDS Intrusion Detection System

SK Secure Key

CUT1 Code Under Test – Sample 1

CUT2 Code Under Test – Sample 2

OCO1 Obfuscated Code Obtained against Sample 1

OCO2 Obfuscated Code Obtained against Sample 2

1

CHAPTER 1

1 INTRODUCTION

1.1 Motivation

We are living in the era of computing and machines. Most of the utilities and entertainment functions

that are available online or sent to end users are in the form of software executables. Sometimes these

executables are dispatched on the optical disk drives in form of CD or DVD, can be shared online on a

website. Software types range from games, documentation utilities, simulation software, personal

assistant and many more.

Software distributed can be in one of the following categories i.e. Custom Software, COTS

(commercial off the shelf) or open-source software. Open-source software doesn’t have the issue of

privacy but Custom or COTS software implements the algorithm that is designed by the organization

itself or by the third party and they want end users to use the services provided by the software but

keep the algorithm secret [1]. These algorithms and the data associated with the software like serials,

product keys, and cryptographic keys are vital to the organization. Profitability of that organization is

directly dependent on the secrecy of the software they are creating. Either they will be selling that

software or using that software within the organization for their business process improvement [2]. If

someone plagiarizes or modifies the software, it will dent/decrease the earning patterns of the actual

owner organization by making illegal copies of that software. This can be visualized by looking at the

number of tempered software and games present online without the consent of the owners.

1.2 Categorization of Systems and their Security Needs

Usually, Systems in terms of accessibility are categorized into Open Systems and Closed

Systems. Now a day most of the systems can be categorized under Open Systems. Usually, these open

2

systems contain the software executables which contains Intellectual Property in the form of data, that

can be easily accessible by the attackers. Even though sometimes legal customers can be tempted to

attack the systems like STB to gain financial benefits [3]. So, in short getting access to a system and

applying the reverse engineering techniques on the executable is not difficult now as was in the past.

Irrespective of the system designated as an open system or closed, one can extract or analyze the

executable and systems hardware.

Embedded systems are the type of machines that are gaining popularity. These type of

machines are used in home automation, the textile industry, automobiles, avionics, customized

applications like STB and many more [4]. In these type of machines there is not separate software part

associated to them but come preinstalled and usually, it cannot be altered. In such machines, all the

necessary data that is categorized as Intellectual property are made part of such machines/hardware.

Hence anyone with the expertise can get the access to these type of machines, they can analyze and

eventually can extract all or very useful chunk of information. There is a research in which it is shown

that subsystems of automobiles like the brake subsystem can be accessed using wireless devices like

media players [5]. IoT [6] is one of the hot topics in the research domain. If there are N number of

devices, then accessing any one of them may lead to a system having administrative controls. So

looking at the important roles of the embedded systems, security is very important to these systems

[6]. In the past, some solutions were discussed by some of the researchers but this issue remains alive

for the researchers, due to the usage of the latest technologies by the attackers. So the software part of

these embedded systems needed to be secured to give them an extra layer of security.

1.3 Cryptography and its usage in security implementations

In a number of Government or strategic organizations, where there is a need for secure and

critical computations, these organizations then move to take help from the cryptographic mechanism.

The list of useful cryptographic mechanisms may include Digital Signatures, HMAC, Symmetric

Encryptions, Asymmetric Encryptions and many more [7]. These mechanisms are helpful in

implementing a better security on a single system as well as on the data moving over the network.

Usually, OpenSSL or similar libraries are used for the above-mentioned requirements. From the

attacker’s point of view, it’s way harder to attack the algorithm as these algorithms are international

3

standards and have been tested many times. Another important part of the cryptosystem is the security

keys [8]. As these are randomly selected or the user can select this key, so there can be a vulnerability

associated with the key. So now attacker will attack the set of keys associated with the cryptographic

mechanisms and if the key is compromised, everything related to cryptosystem is compromised as

well[8].

Cryptographic keys are one of the main tools that are used to secure multiple Intellectual

Property based contents present in the executable. With the advanced needs of security, different

cryptographic algorithms are implemented in the software especially encryption. Security of any

encryption algorithm is totally dependent on the security of the key and its distribution according to

Kirchhoff’s Rule [8]. So, sensing the need for securing cryptographic keys, White Box Cryptography

is the technique that is designed for such need [9]. This technique was created such that for any person

that has the access to an open system or software executable, even then make it harder for the attacker

to extract cryptographic keys present in the software executable.

1.4 Software Implementation and Security

Software implementation can be broken down into two parts, one is data and the other is

functions and both must be secured. Algorithm flow is usually coded as the functions, or services

assigned to objects are coded as functions [10]. Data may include definitions of a lot of different data

types. Not all but some of the definitions are much important for the secrecy of the software that may

include many types of cryptographic keys, serials, product keys and in the form of constants in the

software executables. For any designed software product, there is a need to keep the algorithm secret

as well as all of the other contents related to Intellectual Property [11]. There are multiple ways for

hiding each of these integral parts of the software i.e. data and functions in the executable or systems.

These include obfuscation, software encryption techniques, key hiding using virtualization, use of

binary state machines for storing keys etc.

1.5 Reverse engineering helping the attackers

With the advancements done in the field of reverse engineering, there are a lot of tools available

online that can reverse engineer the executable binaries for analysis. Some of the top-rated tools

4

include IDA Pro, Ollydbg, gdb, Nasm and many more that are available online. Some Linux based

utilities are also available for the analysis purpose, they include but not limited to Strings, strip, Idd,

nm and other such commands. Using any of the tools, one can get information about the implemented

algorithm in the form of functions and Intellectual Property present in the form of data [12] [13].

Due to the availability of multiple methods, tool, and techniques, it’s hard to describe a

unanimous method of reverse engineering any executable to extract anything useful. Usually, attackers

get access to the executables in the form of binaries. Attackers then converge their attacking ideas to

one or more productive components of executables. Next step usually applied is to convert this given

binary to assembly code, so that attacker may analyze it further. Assembly is far better to understand

the logic implemented or to extract anything useful. The software/tools used for the purpose are called

disassemblers. An attacker cannot get all of the information about the implementation language or

exact 1 to 1 algorithm implemented but the attacker can get to know about its working. There are

many disassemblers that can be used, some of the tools that can be used are IDA Pro, Hopper, x64dbg,

Immunity Debugger and many more that are available online. Once an attacker gets assembly code,

attacker selects some parts of the code to be analyzed in depth. As the analysis of the whole assembly

code is time-consuming and it’s hard for the attacker to analyze all the assembly code. Hence attacker

may select only some parts of the assembly code to analyze that looks like the code more relevant to

the goals finalized. An attacker cannot be stopped to convert binary to respective assembly code, but

we can make it harder for the attacker to analyze the assembly by applying obfuscation techniques. So

that the time taken to analyze the binary will increase. Better the obfuscation technique, the bigger the

time taken to analyze the binary [13] [14].

1.6 Attacks and their Security Counter-measures

Over the years, many techniques are designed to hide data and functions in an executable.

Obfuscation is one of the many techniques that can be used. Code obfuscation [15] [13] [14] changes

the physical appearance of code and keeping the functionality intact. Due to obfuscation, it becomes

hard for the attacker to reverse engineer the software. It is a useful technique for protecting the

Intellectual Property. There are many types of obfuscations that are designed, these types can be

evaluated using the parameters like cost, stealth, potency, resilience. Other technique that can be used,

5

is encrypting software code. it is one of the solutions that is used to hide the implementation of both

data and functions [16]. But for execution, the software has to be decrypted. As a result, software in

the unencrypted form is loaded into the memory (RAM). Then, an attacker can take an image of RAM

or can extract the information from process memory dump to get access to decrypted information

related to executable [17] [18]. This concept is used in many attacks like Cold bot attack. Cold bot

attack is a type of side channel attack in which emphasis is on the weak implementation rather than on

the algorithm itself. FROST [19] is one of the tools that is used in the domain of mobile forensics and

uses that concept of cold bot attacks. It recovers the important set of information from RAM by taking

the image of the RAM. In one of the related researches, it was shown that encryption keys can be

easily extracted using the tool named FROST. Hence in the context of security, securing both data and

functions in any software is important. In this research, we are only focusing on data part of the

software that often includes the data contents that comes under Intellectual Property.

 In the Recent past, there were multiple ways that were introduced besides the obfuscation that

can hide Intellectual Property. One of the categories of techniques includes the storage of keys in

hardware such as magnetic disks, CD/DVD drives, RFID cards or special onboard ROM chips

specially designed for this purpose. These can be stored in the plain text or encrypted but considering

encrypted storage better of the two. It also has the issues, as these will be loaded in the RAM as the

plain text and that can be extracted or analyzed using known techniques. RFID has the privacy issues

related to them even if it is kept at rest. So, these can work in some limited environments but these

cannot be preferred generally[17].

 One of the techniques that are in research is to store keys on chips present on board. That chip

implements the cryptographic algorithms. Off-chip storage is considered vulnerable due to the

presence of a large number of attacks possible. These chips can be volatile or non-volatile. Volatile

chips are considered better than the non-volatile ones. As volatiles chips offer more flexibility than

non-volatile but non-volatile saves space. Volatile chips also have the issue that they are subject to

cold boot attacks [17]. As volatile memories tend to keep keys in the memory for some time even after

the power is removed. While non-volatile memories keep the keys in the memories even till the time

keys are removed by another process. Hence these keys can be copied by the attacker [20]. To solve

6

the issue many solutions are presented that use NLFSR (Non-Linear Feedback Shift Register) to store

keys [21]. One such implementation will be discussed in the literature review section.

1.7 Research Problem

In this thesis, we will be discussing a proposed algorithm that can be used to hide different data

sets that are present in any software executables as constants. if the system is categorized as the open

system i.e. attacker has the access to the system or access of software executable. It will be hard for

the attacker to extract anything useful by using reverse engineering tools available.

1.8 Chapters Overview

This thesis is organized as a sequence of chapters that explain the implementation and research

done for this thesis.

“Introduction” is the chapter 1, this chapter describes the basics of topics associated with the

thesis. Initially, it explains the importance of software executables and their transportation to the client

end. Then how keys and data are important for the software executables is explained. There are

multiple ways that can be used to hide the keys some of the ways are explained and at the end, the

problem is pointed out about which this thesis is done.

“Literature Review” is the chapter 2, this chapter summarizes the different research projects

done in the domain. There are a large number of research projects done in this domain but we have

selected 9 research projects that are most related to our research. Each research project is summarized

and then it is compared to our idea.

“Research Methodology” is the chapter 3, this chapter explains different methodologies that are

used for research projects now a day. Out of those techniques Mixed Approach is selected for this

thesis. This chapter then explains how the mixed approach helped in completing each and every

objective of this thesis.

“Proposed Algorithm” is the Chapter 4. This chapter explains the algorithm designed for the

problem identified. It describes each and every step of the algorithm with the reasons for selecting

those steps. This algorithm is for the software distribution end, so in the end, chapters explain how any

7

software distribution can be helped with this and how this algorithm can be integrated with the

software.

“Implementation and Results” is the Chapter 5. This chapter consists of two portions. First

explains the implementation part of the algorithm. It is developed in Java SE. It also explains the main

characteristics of the implementations along with the limitations of our implementation i.e. it explains

what our implementation can do and what it can’t do. While the second portion is related to evaluation

and results. It deals with what are different types of attacks that are possible in the domain of our

research. It also explains the resistance our solution provides against the attacked outlined second

phase of this chapter. In the end, the results are shared.

“Conclusions” is the chapter 6. This chapter mainly summarizes our whole effort. It highlights

the background of the problem and then the solution that is proposed. It also highlights the main

discoveries of the algorithm. It is also explained how this algorithm can be used in the software

industry. In the end, some recommendations are listed that can be helpful in the relevant future

research projects.

8

CHAPTER 2

2 LITERATURE REVIEW

In order to get a deep knowledge and strong understanding of the software executable security

domain, numerous research papers have been studied that were presented by distinguishable authors

and we have also cited numerous online resources to understand the need and the gap present in the

current domain to accurately define the problem and its scope. Some of the notable citations are

briefed below and rest of citations are listed in references.

2.1 A Key Hiding Based Software Encryption Protection Scheme [22]

2.1.1 Problem discussed

Software is highly important in today’s life. Software is considered critical e-assets of a

company residing in their inventory or being sold to clients. Most of these e-assets contain valuable

information, this information may include but not limited to cryptographic keys, serial keys, product

keys, and functions. Advancements in the field of reverse engineering have opened new ways to

identify Intellectual Property information present in any software. Attackers may attack any

executable/bytecode of any software and extract major part of useful information residing in it [15].

Usually, the method adopted by the attackers is to decompile the executable/bytecode into the source

code. Obfuscation is one of the techniques that are new in research and provides a better protection

against reverse engineering [23]. It makes program’s control flow harder to understand by rigorous

rearranging and renaming but this cannot save the executable/bytecode from being decompiled. In this

research, it was proposed that a robust encryption technique can be better at hardening the

executable/bytecode to understand. In this technique it was proposed that to secure that Intellectual

Property item, it is better to encrypt the whole software at the vendor end before sending it to the

client. Encryption output must or should be randomized, hence randomized information in the

9

executable/bytecode will be useless for the attacker [22]. The security of this process relies on the

security of key(s). For the security of key, it was proposed that Trusted Runtime Environment (TRE)

must be placed on the user machine, similar to the one that exists in the context of TPM. In this

algorithm Static code is kept in encrypted form, concatenated with decryption algorithm. At runtime,

the hidden key recover algorithm is placed along with the software loader part. Key recover algorithm

outputs the key that is used for decrypting the software before the actual software is executed.

2.1.2 Proposed Solution

Encryption process was designed to support symmetric as well as asymmetric encryption

techniques. A key named SK (i.e. Secret Key) is used for the encryption. In the case of Symmetric

encryption, SK will be the only key and will be present in the software. Whereas in asymmetric

encryption, the encryption key will reside with the software vendor. Whereas SK will be the

decryption key and it will be present in the software. To secure the SK threshold key scheme was used

which can be Shamir’s (n, t) scheme [22]. Then protected SK named is PSK is concatenated with the

encrypted software. At last Key hiding, the algorithm is used, which mixes the key/key factors into the

encrypted software. Now, this secured and protected software can be released/dispatched.

 At the client end, protected software is input to the key recovery algorithm present in the

runtime environment. This recovery algorithm output any t key factors out of n where (t<n), encrypted

software and protected SK [22]. Protected SK and t key factors are passed into key protection scheme

that outputs SK that is used for decryption purpose.

2.1.3 Paper Analysis/Review

 The encryption tools used in the proposed algorithm [22] has already known vulnerability to

identify the encryption algorithm as well as keys. In this algorithm key is processed and mixed in the

ciphertext, this is a kind of key management. The algorithm proposed in [22] outputs the encrypted

software. So, ciphertext-only attacks can be launched on the encrypted software. Key stored in

executable can by extracted completely or partially by locating the key factors. There are a lot of

redundant key bits stored in the executable, hence there is a greater probability of finding key bits.

Let’s suppose one can find 40% key bits then lesser number of bits have to be brute forced. Secondly

10

the designed algorithm is a time-consuming process, software is supposed to be robust but in this case,

every time software is executed it must be decrypted and for this key has to be recovered every time.

2.2 Security Challenges for Open Embedded Systems [24]

2.2.1 Embedded Systems – An Overview

Embedded Systems are usually defined as computing systems that are designed for a specific

function and have a larger mechanical or electrical part. Embedded systems have found their usability

in different fields of daily life that range from automobiles, factories automation, home appliances that

come in smart homes, healthcare, transportation, sensors, commerce & finance etc. Traditionally

embedded systems are characterized as closed systems i.e. the systems that do not communicate with

the outside world and having all the necessary information that is needed for their operations. Now

with the advancement in the technologies and need for embedded systems, these systems find their

usage as open systems too. Embedded Systems with network connection or that can communicate with

the outside environment by any means is an open system. These open embedded systems deploy

standardized protocols. As these systems have the ability to communicate or share the information, so

these systems allow remote access, remote maintenance, and remote control. This remote access and

management make the open embedded system vulnerable.

2.2.2 Security issues associated with Embedded Systems

On possible attack, may cause to compromise any of the basic three pillars of security i.e.

Confidentiality, Integrity and Availability and may even cause lose total control of the device. In this

paper, two types of security challenges were discussed

● Device security

● Information Security

Device security includes the physical security as well as the logical control of the device.

Physical security is related to the deployments of embedded systems in any unsafe environments,

hence can be accessed by the adversaries. But bigger security issue is, adversaries can access the

devices remotely exploiting the flaws in software’s implementation [25]. There are many

vulnerabilities that can be present in any of the system. These vulnerabilities include programming

11

errors, access control, weak authentications, weakness in cryptographic implementations,

vulnerabilities in web-based implementations [24]. These problems usually arise because most of the

developers are not good at security. Secondly, due to a large number of projects that are in pipeline at

any organization, it’s near impossible to test each and every execution path present in the code [26].

By using some of the following ways we can avoid these problems

● Control Flow integrity to deal with buffer overflow attacks [26] [27]

● Secure set instructions to call functions [28]

● Use Safe Programming Language [29]

● Protection of OS Kernel E.g. Trust Zone [30]

● Effective use of Software Engineering Practices [11]

● Use of IDS/IPS for detection of Malicious software [31]

 Weak Authentication and access control is another problem which results in an adversary

taking control of a sensor node and may modify or block any data sent by the sensor node. An attacker

may also send sensitive data to an unauthorized person or application. Hence it may harm the node in

the context of confidentiality, Integrity, privacy, and availability [24]. There are multiple solutions or

remedies that can lessen the effect

● Implementation of the hierarchical or zone-based scheme rather than a flat one

● Encrypted exchange of authentication messages

● Strong password policy

● Dual or Multi-factor authentication

 Information is also an important part of any embedded system, there are many characteristics

that must be held in the process of information processing, collection, storage, and communication.

These characteristics include confidentiality, integrity, privacy, and availability. There are some basic

flaws in the embedded systems like cryptographic algorithms are usually not used to have better

performance, some have no authentication procedure while allowing remote connection. If these are

used, then keys related to them are usually easily guessable or being used for longer time durations.

12

DOS attacks are also possible as embedded systems can run out of battery in case of heavy

computations given by attacker. Solution or remedies to these problems can be

● Lightweight cryptographic algorithms can be implemented [32]

● Some of the workloads can be shifted to gateways or some other controllers [33]

● Battery Problems can be solved by having alternative solutions for power supply [34]

2.3 Protecting Cryptographic keys on client platforms using virtualization and

raw disk image [35]

2.3.1 Problem discussed

Secure key management is a serious challenge in the domain of software-based cryptosystems.

Due to advancements in the reverse engineering and forensics domain, it is now easier to attack such

systems. Due to changing trends, it is easier to steal cryptographic keys rather than attacking the

cryptographic algorithms. Usage of different cryptographic algorithms i.e. digital signatures,

encryptions are used to have secure communications, but there is a problem that systems itself remain

vulnerable. Any unverified application can be executed by the system user, which can exploit the

system [36]. Malware can be used to exploit such applications and bugs in it. True crypt [37]and Bit

locker [38]can allow the users to encrypt the data present in the system but applications can cause the

vulnerabilities in the system.

2.3.2 Proposed Solution

In this paper, there are two methods explained. In the first method, virtualization is used to

secure cryptographic keys. In the second method, there is an application that securely stores and

retrieve keys from the secondary storage. These methods are software based key hiding methodologies

as these can be used everywhere in each scenario as hardware-based methodologies are not feasible for

every class of users [35].

Virtualization provides the basic functionality of memory isolation. This property can be used

for storing keys in an untrusted system. The system in the proposed solution comprised of three main

components.

13

 Host OS

 VMM (Virtual Machine Monitor)

 Guest OS

Guest OS is the system, on which all of the services are running like FTP(File Transfer

Protocol) service, email, HTTP etc. The user uses the guest OS to perform any of the functionalities

that are required. VMM is installed on the host OS and have the role of managing all the guest OS

present in the host OS. Whereas host OS is the main OS and has no applications installed but just only

VMM and cryptographic keys and routines. Each guest OS cannot access any of the other guest OS,

VMM or the host OS. So, anything stored in the host OS is saved from the applications and attacks on

the guest OS. If the user executes any vulnerable applications still the attacker cannot access the host

OS and cryptographic keys.

In the second method, an application is designed that writes key bits on the secondary storage

and on request key bits can be collected from the memory to be used in cryptographic processes.

Applications analyze the unused sectors of a file on the secondary storage. This all process doesn’t use

system calls of the operating system. Now key bits are spread all over the locations. This stored

information is made part of the program as key fetch block. These extra instructions are added to the

program as the junk instructions. In each of the installation, there are different locations on which key

bits are stored. Hence if any of system is compromised, the remaining of the systems with same

implementations will remain safe [35].

2.3.3 Paper Analysis/Review

These methods are better in the context these are software based key hiding methods but are

vulnerable against attacks, that include hardware-based methods to acquire cryptographic keys. i.e.

tools that can extract RAM contents or HDD image. In the first method, systems must be specially

designed having keys installed and cryptographic routines pre-installed. Guest OS performance is

never at par with the host OS. There is performance lack in this method. In the second method, RAM

image and HDD image is very useful for key extraction.

14

2.4 Secure Key Storage Using State Machines [39]

2.4.1 Problem discussed

This paper addresses the hardware-based storage of cryptographic keys. Cryptographic keys

can be stored in hardware as well as in software but when there is the hardware-based implementation

of the cryptographic algorithm then the key is preferred to be stored in some hardware-based module

likely an on-chip memory [40]. On-chip memories can be divided as volatile and non-volatile. Volatile

memories need a battery back-up so key remains there in the chip. This makes the hardware-based

solutions costly and in some solutions, there is not enough space to accommodate the battery.

whenever battery will be powered off, the key will be lost. Hence battery-backed systems are

vulnerable. Volatile memories are also vulnerable to Cold Bot Attacks [17]. While Non – Volatile

memories have the vulnerability, that attacker can take an image of the memory using any of the states

of the art imaging/forensics tools [20]. As key remains in the memory all the time so this is attack has

the higher chances to be successful. So, we face limitations in both the implementations. In this paper,

state machines are used to store keys. Binary State machines are preferred in the implementation

above the basic NLFSRs, there are multiple reasons explained but two important were

 Binary state machines will be smaller in size

 Binary state machines have a smaller propagation delay

2.4.2 Proposed solution

This implementation process starts with a key. Key can be of a variable length of any length till

a maximum of 1M bits. Key is divided into m-tuples. This division is there to reduce the size of the

implementation circuit required, this m can be of any value like 2,3,4…. Then these tuples are encoded

into a new set of data (encoded ones). Tuples are analyzed to find out that which combination is

repeating itself the most number of times and let call that number of repetition n. Then (log n)

determine the number of additional bits be appended at the end of each tuple to identify each tuple

separately, especially the repeating ones. The number of tuples that are not repeating has these bits as

don’t care bits. Then these modified tuples can be transformed into the functions that can change the

current state to next state. In this transformation, the table has don’t care in input as well as the output.

15

Hence the state machine implementation size can be further reduced. In this whole process, all the

steps can be standardized can gave good accuracy except the best circuit for feedback functions as we

have the standards/exact solutions for five bits but when the number of bits increases when don’t have

these but there are certain heuristics algorithms that can be used [39].

2.4.3 Paper Analysis/Review

 This Implementation was a move ahead for storing the key on a system that is in the un-

trustable environment. But the limitation remains that this is a hardware-based solution and uses

FPGA’s hence this solution can find its usability in a certain domain but can’t be applied generically

on each system. Secondly when we work in cryptographic domain using keys sometimes we have

multiple keys and each have different life spans i.e. master key, session key etc. when we have

implemented a set of keys and of the key is to be changed the whole process is to be executed again

and this loop will continue until the keys are changed. So, this problem still persists with this

implementation. Every time the key is changed the system will be changed the hardware

implementations of keys hence the time delays will be associated with this. So, this process can be

used but in the limited domain only.

2.5 Keeping Secret Keys Secret in Open Systems. [10]

2.5.1 Problem discussed

This paper describes the previous work done in this research work. Basically, cryptography is

centered around the importance of key i.e. if the key is safe then whole cryptosystems is safe [8].

whenever software is dispatched having the key in it. These types of software trust the host system that

its safe from attacks. One of the examples from real life is STB in these keys are embedded, users or

attackers may attack this STB for financial benefits [3]. Nowadays open systems or closed systems

being vulnerable to attacks due to recent research in forensics and reverse engineering. Hence memory

access from the attackers is a serious concern for the security of keys. Some of the hardware storages

may include the storage of keys in ROM, USB, RFID cards etc. but these all are vulnerable too with a

list of attacks [17]. There are multiple encryption techniques for the systems have evolved. These

techniques include full disk encryption, file vault. But whenever the code or data is to be used, it is

16

loaded into the memory as plaintext. Hence any of the memory attacks can be used to get the data

from the memory. There are some white box techniques that are in use, these techniques imply that

keys must be scattered in the executable binary [8]. So, that if the attacker has the access to binary

even then it will be hard for him to extract anything useful from the binary. There are multiple

solutions that were purposed by the researchers, these include some of the hardware-based solutions

and some were the software-based solutions [39]. Hardware-based solutions were better in security but

have very limited applications as compared to software-based solutions. Hardware-based solutions

include the State machines implementation in FPGA, while software-based implementations include

the code obfuscation, Code Encryption and some of white box cryptographic techniques.

2.5.2 Proposed Solution

 This data specific obfuscation’s process is divided into the following steps [10]

 Key is divided into randomized sized chunks. Using randomization source as the input.

 Each chunk is divided into respective mathematical functions. These are equations that

have basic additions and multiplications

 These functions are then converted into java syntax expressions. These include some junk

expressions too.

 As the last step, code obfuscation technique is applied. This code obfuscations technique

can be chosen from any of the known techniques.

 Then at last compiler created an executable that can be dispatched to the client

2.5.3 Paper Analysis/Review

In this implementation, a try is made to make data secured but there are some problems in this

implementation. If there are equations are a quite simple i.e. simple addition and multiplication. Hence

mapping of original and mapped data can be analyzed. Secondly, there are functions that return the

value of data, that may be present in the memory and is prone to memory attacks. A random number is

of 4-bit space and 12-bit space hence a number of combinations will be less hence can be mapped and

analyzed. So this is an easily attackable implementation.

17

2.6 Methods to Protect Cryptographic keys on Safety Critical Systems. [41]

2.6.1 Problem discussed

There is an increasing need for embedded systems and due to cost-effective solutions of

hardware components required for the embedded systems. But these systems have quite a large

number of vulnerabilities and issues related to them but there are certain safety-critical systems that

need special security attention [42]. There are attacks on its core functions i.e. memory management,

process management and data management. But there are some security issues such as data

confidentiality especially when we are dealing with Intellectual Property. These devices are also

vulnerable to MATE attacks [43]. There are some attacks make cryptographic keys disclosure. One of

the possible solutions for key protection is TPM [44] but it will increase the cost of the whole system

and also require hardware architecture redesigning. One way of handling this scenario without TPM is

using software-based solutions. One of the methods is data obfuscation it increases the cost of reverse

engineering. There are two types of obfuscation Static and dynamic [16]. Dynamic one is the difficult

one to attack than a static one. This paper proposes the strategy of learning attacker’s way of action

and then applying strategy accordingly.

2.6.2 Proposed Solution

This paper describes multiple implementations that are all software based solutions. There are

solutions that store keys in the processor using special instructions and these don’t require special

hardware for this implementation. One of the solutions uses software encryption and decryption to

hide the data and functions that are present in the software executables. Encrypted Software is

different to understand hence time for reverse engineering is increased. Another solution transforms

keys into randomized equations and adds that to code. If there are attackers, then it will hard for them

to reverse engineering these randomized equations to data. There are solutions which have virtual

machine monitor hiding keys in an open system. This paper presents multiple ways for saving

cryptographic keys. First are the dead execution spots that were created against strings attacks. It can

be created using call obfuscation, return obfuscation or false return obfuscation. If someone still gets

information using entropy analysis, then one of the possible solutions can be splitting cryptographic

18

keys to reducing the impact of entropy analysis. If these two strategies don’t work then false

instructions can be created and inserted. The number of instructions that are inserted into the software

depends on the size of the cryptographic key. Then Insertion of garbage instructions is the next

solution that can be applied. Later in the paper program diffing and recurrent attack can be applied on

static obfuscation. Then obfuscation engine with multiple algorithms can be the solution. Then insert

anti-debugging techniques can be a solution as well [41].

2.6.3 Paper Analysis/Review

In this paper, there are multiple solutions that are discussed but they have not described a

specific technique that can be applied. We have to apply all 6 techniques that may increase the

obfuscation creation code time and increased processing time and 5 out 6 have attacks that are well

known hence its easily attackable system. This paper can be treated as a survey of multiple techniques

present for the problem.

2.7 Embedded Systems Security: Threats Vulnerabilities and Attack Taxonomy

[45]

2.7.1 Problem discussed

This paper is about the study of the vulnerabilities and attacks related to embedded systems.

Embedded systems are the combinations of software, hardware, and the mechanical part. Due to an

increase in usability, most of the domains in everyday life are using embedded systems for example

cars, airplanes, hospital instruments, railway department instruments etc. [4]. Most of the systems are

connected to the internet and have physical and remote access features. Due to these features security

becomes an important feature. As many of the systems are safety critical systems, hence there is a

need for security implementations for these embedded systems [46]. There are many proposals that

were made in which taxonomy was discussed. There are many key factors related to embedded

systems like deployment scale, resource limitations, physical protection and securing of all factors is a

challenge [47]. While creating a taxonomy for the threats, vulnerabilities, and attacks. The first thing

to learn is that how the attack is made on the embedded systems hence learning the attack patterns is

important. This paper uses the above-explained methodology to create a learning-based taxonomy.

19

2.7.2 Proposed Solution

In this paper, the researchers have used the CVE (Common Vulnerabilities and Exposures) list of

vulnerabilities. For creating the taxonomy five attributes are being used [45]

 Precondition

 Vulnerability

 Target

 Attack Method

 Effect of the attack

There are multiple types that were selected under each of the above-listed attributes. Precondition have

multiple types that can be selected but the ones that were selected were [45]

 The set of devices that are constantly connected with the internet

 Set of devices that are on the network and allows local and remote access to any user.

 Set of devices that have direct access for the attackers

 Devices for which attacker can come in the physical proximity of the attacker. Like the area of

the range of Wi-Fi or radio frequency range

 A miscellaneous precondition, like device, may have to run a code or to do some

communication over the network.

 At last, there are some devices that have unknown preconditions.

The second attribute that was researched was a vulnerability and the types of vulnerabilities listed in

the research were [45]

 Programming errors, which may include control flow attacks, input parsing errors, memory

management errors.

 If the device has a web-based interface for management tool of the device. These web-based

interfaces may be less regularly updated hence can have unpatched vulnerabilities

 Now a day almost every device has an authentication and access method implemented. So, any

of the weak authentication methods will be a vulnerability.

 Due to security requirements, many embedded systems contain the cryptographic tools.

Improper use of cryptographic tools or key mishandling lead to vulnerabilities

20

 There are a lot the vulnerabilities that are unknown can be identified any day, similar to the one

that is known as a zero-day vulnerability.

As for the targets, it can be any of the following

 Hardware

 Firmware/OS

 Application

 Protocol of communication used can also be under attack.

As per the attacks, there can be many attacks but majorly used attacks are

 Control Hijacking attacks

 Reverse Engineering

 Malware

 Injecting Crafted Packets or Input

 Eavesdropping

 Brute-force attacks

 Normal use of the device can lead to misusage of the device due to mal configuration of the

device.

 Unknown Attacks that can be used for the listed vulnerabilities

Possible effects of the above attacks can be

 DOS – Denial of Service

 Code Execution

 Integrity Violation

 Information leakage

 Illegitimate access

 Financial loss

 Degraded level of protection

 Miscellaneous- like for some effects there is not full information available like the redirected

traffic online

 Unknown

21

Using the above-listed types, a taxonomy was created. 3862 CVE list subset was tested and executed

successfully.

2.8 Cryptographic key protection against FROST for mobile devices [48]

2.8.1 Problem discussed

With the more advanced research and usage of IoT & mobile devices, there are ever increasing

privacy issues that are coming to these devices [49]. There are many reverse engineering tools that are

available for analysis of these devices. One of the tools is FROST [19] (forensic recovery of scrambled

telephones) that was proposed by Muller et al. The main problem that came with the IoT and mobile

devices is how to have convenience as well as better security in terms of privacy of information. Most

of the devices use Android due to its expendability and openness [50]. Android provides the option of

full disk encryption since 4.0 version. It may be problematic for some of the forensics tools when the

phone is locked and investigator can’t get into the phone to get the data. one of the options possible is

the cold bot attack [51] or simply the side channel attack which takes the image of the RAM to get the

maximum possible information from the RAM and there are certain conditions that can increase the

percentage of the information that is retrieved and this is all the logic of the FROST

implementations.one of the possible solutions to lessen the effect of FROST is to use the registers of

CPU for the storage of keys, but this can slow the execution of encryption and decryption process. As

per the Cold bot attack, there are certain things that can increase the information extracted from the

RAM [19]. RAM usually follows the remanence effect i.e. that data contents degrade with times and

this effect’s rate increases when the temperature is high and lower rate when the temperature is low.

As discussed FDE is the main feature of Android 4.0 and is a compulsory feature after version 5.0.

2.8.2 Implemented Solution

For the implementation Encryption key is very important hence its creation and storage is a

feature to look for. There is a data structure called crypto footer that stores the key generated after a

long key generation process along with the salt. In the research of changing the location of storage of

key. The steps of the process are as follows [48]

 Apply for the structure of encryption algorithm

22

 Calculate the Storage address of command line parameters

 Returns the address to the structure

 Set key and initial vector and data

 Fast reboot to recovery mode

 Key is covered by command line parameters

 Forensics tools failed to capture key.

With the usage of the above-said algorithm, the cost in terms of time is almost zero. The time

factor is increased by a factor of 1.03. Secondly, this method is limited to work only one key. If there

are multiple keys then this implementation will not work

2.9 Embedded Systems Security Challenges [7]

2.9.1 Embedded Systems and their usage

Embedded Systems are the major necessity of life now days having its applications in each and

every domain of daily routine from home use devices like washing machines, watches. These also

include components in the cars like the MP3 modules [5]. These devices have small sizes like watches

till the large size like PLC. Some of the devices are vital, time-critical applications and these devices

have many issues related to security like leakage of private information i.e. confidentiality of data,

Integrity of data and availability of data and services at any of these issues will be critical for the

system. Next generation is of IoT and these will be next generations of Embedded systems [6]

2.9.2 Security Challenges associated with Embedded Systems

This paper discusses different security challenges related to above mentioned embedded systems.

Three major physical layer security challenges are [7]

 Side Channel Attacks: These comprise a major set of attacks on the systems/devices when we

deal in the physical layer. This includes attacks on related modules but not on the main

application. These include getting a copy of RAM, run-time re-configuration can be exploited,

Self-recovery of a device as also be exploited.

 TPM (Trusted Platform Module) is considered a better solution when we are dealing with

security for individual devices. The challenge with these of modules are i.e. firstly as these are

23

microcontroller it can carry online a small information only and if we want to increase the

capacity then performance will decrease and cost of the overall system will be increased.

 Protection of Power supply: Most of the embedded systems are depended on the battery power

and if there is no power then it is considered as the availability issue and whole system or the

individual node will be off and services will be cut off, this scenario is known as a denial of

service attack

2.9.3 Possible Solutions to Security Challenges.

There are multiple ways to handle the above-mentioned challenges, one of them is access control.

Access system methodology depends on the hardware and services provided by the embedded system.

There are three types of access control that can be applied but correct implementation and selection of

any of these is a challenge.

 Profile-based authentication and access control

 Access code based authentication and access control

 Predefined topology like MAC filtering.

 Policy-based access control, this is XACML based architecture that comprises of the following

modules,

o Policy Enforcement Point (PEP)

o Policy Administration Point (PAP)

o Policy Decision Point (PDP)

o Policy Information Point (PIP)

o Context Handler

In the domain of Access control, irregular access can also create issues like DOS or DDOS. These

types of attacks can be launched at any OSI layer [52]. Hence are multiple ways to implement DOS

attacks but correct authentication and authorization along with integrity checking can save many

systems from these attacks.

For any security-based implementation, cryptography is an important tool that is used. All of the

modern-day cryptographic tools require relatively higher processing power than the older ways of

doing cryptography. As discussed embedded systems are small and have the lower processing power

24

and have low storage hence there is a limitation in the cryptography domain as well. This is also a

challenge for the creators/developers of the system. For this, there is a solution named lightweight

cryptography [53]. There are many algorithms that came under this heading. Another issue that is

related to cryptography is the key distribution [54]. There can be pre-shared key or runtime sharing of

the key by the server. Both ways have their own pros and cons. The pre-shared key issue will also be

solved in this research.

There are multiple challenges that are related to network communication and management but

most of them are out of scope for this thesis hence only those are listed. Following are the challenges

that are related

 Secure Resource management

 Reputation-based Schemes

 Anonymity and location privacy

 Secure Service discovery, composition, and delivery protocol

 Communication Security

In this paper multiple challenges are discussed related to open embedded systems, in the software

part of systems contains keys and data related to systems, there are challenges related to them as

discussed in paper and in this thesis, there is solution presented that can solve some of the listed

challenged i.e. storage of pre-shared key in the software so that no side channel attack can be launched

on that.

25

CHAPTER 3

3 RESEARCH METHODOLOGY

3.1 Research

Research usually represents a set of steps that are used to find an answer against any set of

problems and that answer is not present in the domain as yet. First steps follow to gather knowledge

and information from the domain of problem set. In this way, we are able to find out the existing

research in the particular domain and existing solutions and room for new research. This above-said

step is usually termed as a literature review by the researchers. In this existing solutions and

contributions made in the domain of the problem can be identified. In this, all process the problem set

can be refined and a clear scope can be defined as the problem according to the work done in the field.

According to the major group of researchers, research can be broken down into the following steps

[55]

 Defining and redefining problems

 Study existing Solutions (if there is any)

 Suggesting a new solution and formulating a hypothesis for that

 Implement/simulate the proposed solution, organize the collected data and evaluate

 Craft deductions and, draw conclusions based on the results

 Match/Test the deductions and conclusions with the above-finalized hypothesis

Research work or in short, the solutions that are under consideration need to have a logical proof.

As research work doesn’t allow guesswork and anything that is without any solid ground. For this

solid ground for the solution proof, a systematic and sequential approach is necessary besides the

innovation and initiatives that are required for the research work. There is a need for analysis, facts,

26

figures to explain any concept. Moreover, a research process is based on logical reasoning is more

meaningful than the one which is devoid of logical analysis. Logical reasoning rules consisting of

either inductive or deductive approach, govern a course of research [55]. Based on the role of usage of

other researcher knowledge in the research forms some categories describing different ways of doing

research. Some are listed below

 Research based on hypothesis and testing cycle

 Research based on diagnostics

 Research based on descriptive case studies

 Research based on explanations and formulae

3.2 Types of Research

There are many types of research that are in use by the researchers following is the list of these

types and their brief description

 Descriptive Research is a survey research. As per the name suggest it is a type of academic

research, that is based on data and a describe properties of the state of affairs as existent

presently. This type of research is important in the compilation of observations on the data

collected. It can also include the analysis of the data to draw conclusions from it.

 Analytical Research it is a type of research that involves analysis on the collected data and

existing data and algorithms. These set of analysis can be very helpful in creating logical

conclusions for the explanation of a particular phenomenon.

 Applied Research it is a type of research that can solve problems that are identified by

industry, businessman, society, economics. This is a type of research that can find immediate

remedies to the problems faced by the above set of people. This type of research may include

social problems and technological upgradations and advancements.

 Fundamental Research it is a type of research that is planned to accrue information and

awareness to build up and strengthen the existing body of knowledge. This research, in fact,

offers a foundation for the applied research to build upon. This kind of research is fueled by the

interest and curiosity of the scientists and researchers.

27

 Quantitative Research it is a type of research that focuses on establishing cause and effect

relationships to test a certain hypothesis. This research includes the use of statistical functions

that are applied to the collected data to validate propositions. The actual focus of this research

tests an issue that is already defined and the scope is defined.

 Qualitative Research it is a type of research that tries to explaining and understand the social

phenomenon, qualitative data is used. Some of the ways and means or procedures employed in

this type of research include but not limited to aptitude tests, opinion polls/tests, interviews,

literature reviews, program evaluation etc. [55].

 Conceptual Research it is a type of research that tries to develop new ideas and concepts

based on existing theories. In this methodology, an idea is identified and investigated. The

study is completed on the pros and cons of the idea and then reinterpreting it in a modified and

improved definition. So, this research aims at clarification and creating new idea and concepts

to explain and improve existing perceptions.

 Empirical Research it is a type of research that is divided into two phases. First, one is the

collection of facts and creating and drawing conclusions based on facts. In the second phase

verification of the conclusions that were created in the first phase. These create new notions

based on those conclusions, by observations and experimentation. This type of research

involves research, implementation, and practice. The main aim of this research involves

creating a hypothesis which is then evaluated and tested to be true or false [55].

There are two main concepts related to research. These concepts are Research Methods and

Research Methodology. The former is the collection of tasks, procedures, processes, etc. which a

researcher conducts and employs during the duration of his research work. On the other hand, research

methodology stipulates guidelines on how to carry out research, outlining the rules of the game to steer

and regulate a systematic and structured research. Research methodology is a general term which

covers research methods as well. Researchers need to understand and pick research methods which are

most apt and applicable in given scenarios. The basic premise of each research method and its

applicability in the actual situation must be understood by the potential researchers. Research

28

methodology bears broader scope than research methods. It constitutes research methods and

techniques as well as the logic behind using certain methods for particular scenarios.

3.3 Thesis Research Methodology

Thesis research methodology is based on the defined research objectives that are created to add

to the domain of problem that is identified by proposing a suitable solution. In this thesis research

cryptographic is the domain. A problem is the storage of cryptographic keys and Intellectual property

present in the software. There is a number of attacks using the technology of reverse engineering tools.

These attacks are usually launched due to implementation issues of the software. In research on the

above problem, method of attacks and implementation of software are important to look into to get to

a proper solution. There are multiple reverse engineering tools that open executable and a lot of

information can be extracted from that special keys, product keys, serial keys etc. As for the

cryptography, all the security lies in the key so securing key will be important. In this thesis research,

our research matches two of the research types listed above descriptive research and applied research.

As we have to study about the already methods of obfuscation designed by other researchers, flaws if

any and to solve the problems that still exist in the domain. Applied Research is as obfuscation is

already implemented but it can be applied in every scenario hence it can be seen as a problem faced by

business and industry [55]. Hence new methods will be designed and will be verified using the data

analysis against the older methods developed hence analytical and empirical research will be involved

as well. Then, during the second part of our endeavor, we follow the edicts of “Empirical Research” in

which we exhaustively implement the hypothesized solutions, collect data and analyze results. Based

on those results we refined and narrowed the approach to implementation of the solution while

recording the improvements.

3.4 Research Objectives

Following are the research objectives for this thesis research

 Study different attacks on the executables and ways of data extraction using Reverse

Engineering tools and techniques

29

 Design a randomized transformation which may be applied to the Dataset and outputs the

result in the form of:

o y = f(x)

 Design an application which applies this particular transformation on any given program

 Design an attack model to verify the security level, enhanced by the algorithm

3.5 Research Approach

The first research objective is achieved using the descriptive research as it needs the survey of the

domain so that all the existing solutions can be studied and collected. This involved collecting all the

implementations made in the domain related to the problem statement. In this thesis, we are searching

for obfuscation. In this thesis, a total of nine techniques were studied. Then data collected is analyzed

using analyzing research. Then a hypothesis is generated a design is generated related to the

hypothesis. Now it comes to the next stage in which implementation and testing will be done. So, this

phase comprises of

 A new implementation conforms to the requirements of its proposed design.

 New implementation succeeds or fails to address the weaknesses and vulnerabilities of existing

setup which it was supposed to improve.

 The implemented module introduces new weaknesses or vulnerabilities of its own.

3.6 Literature Review

The first of the research objective is the survey or the literature review. This includes the study

of different implementations made related to obfuscation techniques. All different techniques and their

vulnerabilities were studied. The literature review also includes the security challenges of the systems

that are physically assessable. At last literature review includes the all the attacks that can be launch on

such systems. Attacks patterns will allow us to create better solutions, that can mitigate such attacks in

the future.

30

3.7 Problem Identification

Using the descriptive research and empirical research first phase, it was possible to identify the

problem statement for the research. Problem statement for this thesis research is

 Key and another important dataset are mostly embedded in the executable.

 With the advancements in reverse engineering techniques, attacks on the devices and their

executable cause the leakage of information, leading to the creation of illegal software copies.

 There must be a platform independent transformation technique which transforms the data set

in such a way that it becomes much harder for the attacker to extract any information

3.8 Evaluation Process

We understand that our research effort has been iterative in nature where evaluation of one

module leads to the other. While we observed that our developed applications conformed to the

requirements of design and also, they did not introduce any handicaps of their own, yet we also

observed that they needed improvements.

31

Figure 1: Analytical and Conceptual Phase of Research Work

32

Figure 2: Problem Identification and Solution Design Phase

33

Figure 3: Implementation and Evaluation Phase of Research Work

34

CHAPTER 4

4 PROPOSED SOLUTION

In this thesis, we are proposing a data obfuscation technique. Each executable has some data

present in it. This data can be cryptographic keys and some other intellectual property items that may

include product keys, serial numbers etc. These data are often present in the form of primitive data

types or some other data structure that can hold data i.e. array, string. The task in this thesis is to

transform the data discussed above into compile-able programming instructions, such that these

Figure 4: A Complete process in terms of phases, inputs, and outputs

programming instructions can be used in place of the data present. For this purpose, an algorithm is

designed to obfuscate the data present and there is a process that reverses a module the transformation

for the runtime usage. The whole process of obfuscation is divided into three modules as shown in

35

Figure 4 with the input and output of each phase of the process. In this process, each module has two

or more smaller tasks/steps involved. These three modules are following

 Programming file parsing

 Data Transformation

 Modifying programming file

4.1 Module 1: Programming file parsing

The main role of this module to read/parse the programming file, to identify the data present in that

file. This programming file can be in C, C++, Java or C# .NET. There will be a program that can be

implemented using the standards of RegEx or simple conditional Statements. The program scans the

code present in the files. It reads the code line by line and looks for the data variables present in the

files. Some of the data variables hold static data or constants. These types of variables with constants

are identified and separated. Cryptographic keys and data that comes under intellectual property are

stored as constants in code and hence they are comparatively easier to trace in the executable. So, as

the output we have the constants declared as the integer, String, Array or any data type. Now, this data

will be processed in the next module. In short, this module comprises of the following steps

 Take any programming file as the input. This file can be .c, .cpp, .java etc.

 Parse that file using conditional statements or RegEx to extracts the constants present in the

code. There can be single constant or as many constants as needed hence theoretically there is

no limit on this.

Figure 5: Phase 1 - Parsing the Programming File

36

4.2 Module 2: Data Transformation

The main responsibility of this module is to convert every constant to a separately randomized

polynomial, i.e. same string when passed through the same data transformation process generates

different polynomial every time, with the likelihood of generating the same polynomial is very low.

Figure 6: Phase 2 - Data Transformation Process

37

To implement the above-said responsibility for different tasks were designed. Following are the

list of tasks that were assigned to this module

 Convert each constant to String and then convert each char present in the string to a respective

number.

 Generate multiple random numbers and place them randomly in the array of points formed

above.

 Now we have a list of numbers, convert these numbers into points format like (x, y).

 Create a trace of the randomized data and insert it with the data inside the array.

 Using the implementation of any standard polynomial theory. Convert the above created

randomized data into a polynomial. Effectively we have the all the coefficients associated with

the polynomial.

When we have the constants as the input from the module 1, we have to process them to a

randomized chunk of data and then to a polynomial. So, the first step is to convert each and every

constant into a string. This is done to make all the constants into one form. As constants can be an

integer, char, string or any other data structure hence converting to a single data structure that is a

string so that one processing logic can be applied to each constant. If all of the different data structure

is kept in same then different processing logic will be required and they may not be equally effective.

Now there is a string against each constant. In terms of length, there is no minimum or maximum limit

associated with the size of the constants. These constants can be made of any number of alphanumeric

characters. As the string is a combination of chars, we can convert these string chars into respective

numbers. There are n number of ways that can use to convert these string to list of number, the

following is the one that is easier to apply

 Use the standard ASCII table for the conversion against each character. Now the output has a

list of numbers have numbers equal to the number of chars present in the string i.e. a = 97, B =

66, 2 = 50 and so on.

 Use the personalized conversion table for the conversion against each char. Still, now the

output has a list of numbers have numbers equal to the number of chars present in the string a =

0, b = 1, A = 26, etc.

38

 Use of combinations of chars to form numbers using ASCII table or personalized tables. In this

case, the quantity of number will be at least half of the number of characters present. i.e. AB =

6566, Aa = 6597, Z9= 9057 etc.

Now we have the list of numbers present and we want to form polynomial we must convert that to

(x, y) pair form. But with this way every time the polynomial will be the same against the serial key.

Hence there is a need for inserting randomized data in the list of numbers got from step 1 of module 2.

There must be at least 3 random numbers to be inserted and at maximum, there can be random

numbers equal to the number of numbers present in the list. These random numbers are the sequence

of numbers generated by a TRNG function. After inserting the random number in random locations

now. The list is now transformed into (randomized data + actual data). As the inserted garbage at a

random location hence there will be a lesser chance of attack that can separate actual data from the

garbage randomized data inserted.

Next step is to convert this updated list of numbers having some garbage as random numbers into

(x, y) pairs so that it can be converted into the polynomial. In this transformation, there can be

multiple ways but the way used is

 Any number present in the list is called y and its position in the list as x. The positions in the

list start from 1.

We need a reversal process at the at the program execution time. The process reverses the impact

of randomization and obfuscation. Random data is needed to be deleted with 100% accuracy so that

original and exact key/intellectual property thing is calculated back. To accurately implement this

property, there must a trace of random numbers that are added into the list of randomized (x, y) pairs.

This trace includes a hint of multiple attributes such as possible locations, the total number of

characters in actual string etc. This trace can be inserted at any location in the randomized list but for

simplicity of implementation zeroth location can be used. Importance of trace to be stored and its

location is explained in chapter 5 with an example.

In the last step, now when we have a list of randomized (x, y) pairs having actual data, random

garbage data and trace of randomized garbage data. This list is to be converted into the polynomial.

This conversion is done using the process of polynomial interpolation and we get the coefficients of

39

the polynomial. Interpolation is defined as a process of creating or defining new data points from the

existing data points. In this case, we have a list of randomized data points and we input that into the

interpolation process. So, polynomial interpolation is the interpolation of the given set of data points to

output the lowest degree of the polynomial that passes from the each of the given data point. Usual

output is in the form of coefficients. There are multiple ways of doing the polynomial interpolation but

two methods that were used in this research were

 Newton series

 Lagrange polynomial

Newton series uses the concept of Newton forward difference equations. This outputs the

coefficients in the decimal points and it has the problem of storage and accuracy. So, if this method is

used there will be an upper limit on the constant size that can be used as a key in software executable.

But the Lagrange polynomial method uses the modulo operator, hence don’t have the limitation related

to the size of a constant that is used as a key.

4.3 Module 3: Modifying the Programming file

The main responsibility of this module is to modify the code that is present in the programming

file. Till now only data is extracted from the file that is the constants but no change is yet made in the

programming file. Now the process of modifying the code consists of the following steps.

 Convert the coefficients of polynomial obtained as the output of module 2 into appropriate

code.

 Remove the data/constants from the programming file and replace that with functions.

 Pass the code through any of the standard obfuscation techniques and then compile and

dispatch the executable

In the first step, we transformed the coefficients of a polynomial into the appropriate set of

instructions in any of the programming language using the respective coding syntax. There will be a

function for each constant’s polynomial. If there are N number of polynomial coefficients sets then

there will be N respective functions and these functions will be named against the name of the data

variable of that polynomial. So that they can be identified by the implementation logic. This function

40

will have a calling of reversal process implementation which removes the randomization hence returns

the string back. For example, for a data variable name “secret_key” is converted to polynomial giving

coefficients a1, a2, a3, a4, a5 then function will look like

Public String secret_key_fun ()

{

 int [] arr; //to contain list of numbers extracted from the code

 For (quantity of numbers required in list)

{

 ///code of polynomial having coefficients a1, a2, a3, a4, a5

 //number is concatenated at the end of arr

}

arr = remove_random(arr);

return num2string(arr);

}

Figure 7: Phase 3 - Modifying the programming file

41

In this code remove_random () is the reverse process algorithm that will remove the randomized

data from the actual data taking help from the traces stored in module 2 of the algorithm. The whole

process of this remove_random () will be explained later in this chapter. Num2string () is also the part

of the reverse process, hence will be explained in that section. Now, this function will be used in space

of the data variables, for example, if (secret_key ==entered_key) will be modified as if

(secret_key_fun () ==entered_key), All the code will be modified on the similar pattern. All the

constants in the code are replaced with the corresponding functions after the modification. The whole

process is designed as to transform data part of the code to respective randomized functions. This

process doesn’t alter any part of the code. So, in the end, we can apply any state of art code obfuscator

on the newly created modified code. After this code obfuscation, the output is the actual output of the

process. In the end, we will compile the code and dispatch the executable to the client, who can

execute that on an untrusted system.

4.4 Inverse Transformation

The inverse transformation is executed on the runtime; it doesn’t need to be executed separately

before the execution of the actual program. Secondly looking at the whole transformation process

module 1 and module 3 are the modules that don’t need any reversals as these are the modules that

deals will the code obfuscation and data extraction from the code hence no reversal needed. We will

only require inverse transformation for the process of module 2. In short module 2 transforms any

constants present to randomized polynomial and saving randomization traces at a particular location.

So, the trace is important in the inverse transformation process. Inverse transformation process

comprises of the following steps

 As the polynomial can also be expressed as y = f(x) and we can extract all the possible values

of numbers list by just providing different values for x.

 First, we to extract the trace, location of the trace in the randomized list of numbers will be

already known to the software. The location of the trace is by default zero, it can also be

changed. For the extraction of the trace, we input location i.e. x= 0 to f(x) and then we can

calculate y. This calculated value of y is the trace. Using trace, we calculate the values of

attributes stored in it.

42

 One of the attributes stored in the trace is the size of the randomized list. Execute the “for

loop” for the number of iterations, according to the value got from the trace.

 Another important attribute stored in the trace is randomization information. Using this value,

remove all the randomization present in the list obtained in the last step.

 Transform back number into characters and concatenate them as a string and return this string.

43

CHAPTER 5

5 IMPLEMENTATION AND RESULTS

This technique was developed with the aim of making it harder for the attacker to extract any

useful information, related to data present in the executables, by the use of reverse engineering tools.

Our technique will make it harder to extract any data information by static analysis of the executables.

5.1 Use Case Scenario

The algorithm designed in this research process is a generalized process of obfuscating data

present in any code. Each programming language has its own programming syntax, so to implement an

application that has the ability of obfuscation any programming language is out of scope from the

objectives finalized for this research thesis. So, there is a need to finalized a scenario for the

implementation of POC. For the implementation, our designed POC can analyze an input code

implemented in C++ language. Hence produce a resultant obfuscated code also in C++. In the

algorithm as explained in chapter 4, we work on the constants defined in the CUT (Code under test).

There can be any number of constants and any types of constants but in our use case scenario we are

only considering String constants and we are only analyzing single String constant. So, we are

working on C++ input code and will analyze and extract 1 String constant and obfuscate.

5.2 Choice of Implementation Language and platform

Java was used as a coding medium to implement the research modules. It covered all three

phases of the research work: Programming file analysis, Data Transformation and Programming file

modification. In-depth details of implementing these phases in Java are explained in the 5.3 heading.

44

Java is a high-level language and it affords the programmer much room to encode diverse

requirements. In addition to that, it offers a modular approach where the different modules can interact

with ease. Reusability, troubleshooting and easy alteration of the code were also the added benefits.

Common libraries of interpolation, cryptology available free over the Internet were also helpful during

the course of the thesis.

For the implementation phase, NetBeans v8.2 is used as an IDE for the implementation of all the

modules. It’s a versatile encoding environment which offers a comfortable coding experience. Moreover,

its diagnostic platform comes handy during trial runs of the code. It helped to test more than one module of

the research work simultaneously. Built-in syntax checking of the IDE and corrective suggestions free the

programmer from typos and laborious search for applicable code functions

5.3 Proof of Concept

As discussed in the previous sections, Java-based implementation is done. Our implementation

is done in three modules, with each of them working separately. Files created and required for the

success of the process implementation are kept in H:/ directory of the system. For the first module, it

read the CUT (Code under test) from the H:/ directory. There were multiple codes that were tested

with the implemented modules. Two of them are shown as screenshots in Figure 8 and Figure 9. We

have kept simple codes so that demonstration can be done easily. We will be referring to Figure 8 as

CUT1 and Figure 9 as CUT2. In CUT1 there are two strings present and that is “tested” and “Enter a

positive integer” while in CUT2 we have three strings constants i.e. tested, done and Enter a positive

integer.

45

Figure 8: Code Under Test - Sample 1

Figure 9: Code Under Test - Sample 2

We have passed this two code along with the other code samples through our obfuscation

process and output is tested and evaluated. During the obfuscation the required functions and codes are

entered by the application itself, hence no modifications are to be made. Which includes the

polynomial function and de-obfuscation function. So, that it can be dynamically reversed at the client

end.

46

5.4 Results and Discussions

For the evaluation of the process implemented we selected multiple utilities that can use. The

aim of the research thesis was to design and implement an obfuscation process for data present in the

executable. Obfuscation is done to defy the attacker from the static analysis of the system. So, during

the evaluation process comprised of tools for static analysis of the executables. In this topic, we will be

discussing the results got against the static analysis of the executables. Results are collected against the

multiple tools and utilities and are evaluated.

5.4.1 Before Obfuscation Results

In the evaluation process, the multiple tools were used for the process of collecting results and

comparison of results between different tool against the same utilities. In this heading, results from

IDA Pro are presented. Figure 10 is the output of the string utility executed on the executable of code

labeled CUT1 and it clearly shows the string constant “tested” and “Enter any positive Integer” in it.

That reflects the situation that if this string is an important key then it could be extracted by simple

analysis. Same string is also visible in the HEX Editor Utility of IDA Pro in Figure 12. Whereas, when

CUT2 was passed through the same process as expected we have all constants i.e. tested, enter any

positive integer and as well as done. These two string constants can be seen in IDA Pro String utility

output in Figure 11 and the same thing is visible in the HEX Editor utility of IDA Pro in Figure 13. So

both of the Codes under test shows the same results as expected i.e. showing the string constants

present in it.

47

Figure 10: IDA Pro String Utility Output - CUT1 - Before Obfuscation

Figure 11: IDA Pro String Utility Output - CUT2 - Before Obfuscation

48

Figure 12: IDA Pro Hex Editor Output - CUT1 - Before Obfuscation

Figure 13: IDA Pro Hex Editor Output - CUT2 - Before Obfuscation

5.4.2 After Obfuscation Results

Once the results are collected before the obfuscation process, both of the code under test CUT1

and CUT2 were passed through the obfuscation process separately to get two obfuscated codes. Let’s

name the obfuscated code of CUT1 as OCO1 Obfuscated code obtained 1 and obfuscated code of

CUT2 as OCO2 Obfuscated code obtained 2. During the obfuscation the required functions and codes

are entered by the application itself, hence no modifications are to be made. So, we executed the

codes OCO1 and OCO2 got from the obfuscation process and executables formed from these codes

49

were analyzed. First, we analyzed the OCO1, in Figure 14 you can see the string “tested” is not visible

and is obfuscated. The string is not shown by the IDA Pro String Utility. The same thing can be

verified by the IDA Pro Hex Editor output for the OCO1, String “tested” is not visible.

Figure 14: IDA Pro String Utility Output - OCO1 – After Obfuscation

Figure 15 IDA Pro Hex Editor Output - OCO1 - After Obfuscation

Similarly, when we analyzed the OCO2 using both String utility and Hex Editor, we can see in Figure

16 and Figure 17 that string to be obfuscated i.e. tested cannot be seen in either of the images and

hence is successfully obfuscated remaining string constants are present and are visible in both Figure

16 and Figure 17.

50

Figure 16: IDA Pro Hex Editor Output - OCO2 - After Obfuscation

Figure 17: IDA Pro Hex Editor - OCO2 - After Obfuscation

It was of greater concern that code generated might not leak any information about the polynomial

coefficients, that may lead to data visibility to the attacker. Hence in Figure 18, you can see the

disassembly of the polynomial function code generated by the application and nothing useful can be

extracted from this disassembly. Similar is the case for the disassembly for de-obfuscator function as

shown in Figure 19. Nothing useful can be extracted from that disassembly either.

51

Figure 18: Data -> Polynomial -> Function -> Disassembly

Figure 19: De-obfuscator Function Disassembly

The last thing that was evaluated is when the same string is obfuscated multiple times from the

obfuscation application what is the similarity factor between the coefficients of the polynomial. So the

string obfuscated “tested” is passed to obfuscation application 5 times and results are shown in Table

1. As we can see that none of the five runs generate the different polynomial coefficients hence a

different code. So for a company which sends the same software to different clients can obfuscate

from our application and send different copies to everyone.

52

Table 1: Randomization Similarity Checking Table

Coefficients

Location

1st Run 2nd Run 3rd Run 4th Run 5th Run

X0 63.0 66.0 64.0 66.0 63.0

X1 -1202.263095 336.190476 1232.126190 337.357142 -1197.596428

X2 3005.8697420 -582.891666 -2669.111111 -585.7222222 2997.075297

X3 -2665.160416 429.298611 2218.231944 431.866666 -2660.372916

X4 1152.638715 -162.583333 -899.923611 -163.722222 1152.290798

X5 -271.1625 33.361111 189.815277 33.625000 -271.6

X6 35.4246527 -3.5249999 -19.965277 -3.555555 35.566319

X7 -2.413988 0.1498015 0.826587 0.151190 -2.430654

X8 0.0668898 -- -- -- 0.0675843

53

CHAPTER 6

6 CONCLUSIONS

The software is one of the major commercial products that exist in the world today. Due to a large

variety of reverse engineering tools and financial benefits, the number of attacks on software are

exponentially increased. There are many solutions present for the functions obfuscation and security

but a lesser number of solutions exist for data portion of the software, In the obfuscation process we

designed and formulated a way to disperse the data present in the executable. So, by using the analysis

tools, it will be much harder for the attacker to extract anything useful present as data constants from

the executable.

6.1 Future Directions
In this research thesis, we developed a generic data obfuscation that can be widely applied but for

the POC we have implemented it with some limitations i.e. one string constant and C++ as input and

output language. This concept can be extended to the next level. Here are some of the

recommendations

 The POC implemented is for one string constant and can be extended to multiple strings in a

single code. Then it can also be enhanced for different data types or data structures.

 We faced the limitation due to significant figures precision that we can obfuscate only 6-8

characters’ maximum, this limitation can be removed. This implementation can be enhanced to

the obfuscation of any length of the polynomial.

 Our Algorithm can be enhanced to different language-specific derivatives.

54

7 REFERENCES

[1] T. Fraser, L. Badger, and M. Feldman, "Hardening COTS software with generic software

wrappers," in IEEE Symposium on Security and Privacy, Oakland, USA, 1999.

[2] T. C. Sander T., " On Software Protection via Function Hiding," in Information Hiding. IH 1998.

Lecture Notes in Computer Science, Berlin, Heidelberg, 1998.

[3] T. H. a. C. Wenz, "DRM under attack: weakness in existing systems," Digital Rights

Management, pp. 206-223, 2003.

[4] P. Marwedel, "Embedded system design: Embedded systems foundations of cyber-physical

systems.," in Springer Science & Business Media, 2010.

[5] K. C. A. R. F. P. S. K. T. S. M. D. K. B. A. D. Koscher, "Experimental security analysis of a

modern automobile," Symposium on Security and Privacy, pp. 447-462, 2010.

[6] S. C. M. M. R. a. N. J. Alam, "Interoperability of security-enabled Internet of Things," Wireless

Personal Communications, vol. 61, p. 567–586, 2011.

[7] G. H. K. R. A. P. Konstantinos Fysarakis, "Embedded Systems Security Challenges," 2014.

[8] B. Wyseur, "White Box Cryptography (Ph.D. Thesis)," Katholieke Universiteit, Heverlee,

Belgium, 2009.

[9] P. E. H. J. P. C. V. S. Chow, "White-Box Cryptography and an AES Implementation," in Selected

Areas in Cryptography, 2003.

[10] N. A. A. G. A. Irfan Azhar, "Keeping Secret Keys Secret in Open systems," in International

Conference on Open Source systems and technologies, Lahore, Pakistan, 2014.

[11] A. R. a. C. S. Ravi, "Tamper Resistance mechanisms for secure embedded systems," in a 17th

International conference on VLSI design, 2004.

[12] J. H. J. a. j. C Wang, "Software Temper Resistance: Obstructing static analysis of programs,"

2000.

[13] S. D. Cullen Linn, "Obfuscation of executable code to improve resistance to static disassembly,"

Proceedings of the 10th ACM conference on Computer and communications security, pp. 290-

299, 2003.

[14] Y. M. S. a. A. M. T Ogiso, "Software Obfuscation on a theoretical basis and its implementation,"

in IEEE Trans. Fundamentals, 2003.

[15] J. a. Y. W. Chan, "Advanced Obfuscation Techniques for Java bytecode," Jornal of Systems and

software, vol. 71, pp. 1-10, 2001.

55

[16] J. N. a. C. Collberg, Surreptitious Software: Obfuscation, Watermarking, and Tamperproofing for

Software Protection, Pearson Education, 2009.

[17] S. D. S. N. H. J. A. Halderman, "Lest we remember: Cold Bot attacks on encryption keys," 17th

USENIX Security Symposium, vol. 52, no. 5, pp. 388-397, 2008.

[18] M. h. a. S. Taylor, "Memory Encryption: A survey of existing techniques," ACM Computing

Surveys, vol. 46, no. 4, p. 53, 2014.

[19] T. S. Müller, "Frost," in International Conference on Applied Cryptography and Network

Security, NY, 2013.

[20] S. Skorobogatov, "Semi-invasive attacks - a new approach to hardware security analysis,"

University of Cambridge, April 2005.

[21] C. J. Jansen, "Investigations on Non-linear Streamcipher Systems: Construction and Evaluation

Methods," Technical University of Delft, 1989.

[22] Q. W. W. T. A.-F. S. Jian Jun Hu, "A key Hiding based Software Encryption Protection Scheme,"

in IEEE 13th International Conference on Communication Technology, Jinan, China, 2011.

[23] C. C. a. C. Thompson, "Watermarking, Tamper-proofing and Obfuscation - Tools for Software

protection," Computer Science Department, University of Auckland, Auckland, 2000.

[24] M. F. Z. Long Zheng Cai, "Security challenges for open embedded systems," in IEEE,

International Conference on Engineering Technology and Technopreneurship (ICE2T), Kuala

Lumpur, Malaysia, 2017.

[25] D. M. a. L. B. Z. Papp, "Embedded Systems Security: Threats, Vulnerabilities and Attack

Taxonomy," in 13th Annual Conference on Privacy, Security and Trust, Izmir, Turkey, 2015.

[26] D. F. a. C. Castelluccia, "Defending Embedded Systems against control flow attacks," in 1st ACM

Workshop on the secure execution of untrusted code, Newyork, 2009.

[27] N. S. a. E. McCluskey, "Control-flow Checking Using Watch Dog Assists and Extended-

Precision Checksum," IEEE Trans. Comput., vol. 39, pp. 554-559, 1990.

[28] W. a. Y. S.Das, "A Fine-grained control flow integrity approach against runtime memory attacks

for embedded systems," in IEEE Trans. VLSI Systems, 2016.

[29] S. P. a. T. Wolf, "Embedded Systems Security - An Overview," Des. Autom. Embed. Syst, vol. 12,

pp. 173-183, 2008.

[30] ARM, "TrustZone," 2016. [Online]. Available:

www.arm.com/products/processors/technologies/trustzone/.

[31] H. L. a. E. B. M. Rahmatian, "Hardware-Assisted detection of malicious software in embedded

systems," IEEE Embedded System Letter, vol. 4, pp. 94-97, 2012.

[32] H. Gebotys, "Low Energy Security optimization in Embedded Cryptographic Systems," in

International Conference on Hardware/Software Co-Design and System Synthesis, Washington

DC, 2004.

[33] B. P. a. F. M. Feng, "Embedded System for sensor communication and security," IET Information

Security, vol. 2, pp. 111-121, 2012.

[34] M. A. a. N. M.M.kermani, "Emerging Frontiers in Embedded Security," in 26th International

56

conference on VLSI design, 2013.

[35] J. L. a. R. Sujit Sanjeev, "Protecting Cryptographic keys on client platforms using virtualization

and raw disk image access," in IEEE International Conference on privacy security risk and trust,

2011.

[36] T. J. a. E.J.Weyuker, "The Distribution of Faults in a large industrial software system," in ACM,

SIGSOFT International Symposium on Software testing and analysis, 2002.

[37] TrueCrypt, [Online]. Available: www.truecrypt.com.

[38] Microsoft, [Online]. Available: www.windows.microsoft.com/en-

US/windows7/products/features/bitlocker.

[39] S. S. E. D. Nan Li, "Secure Key Storage Using State Machines," in IEEE 43rd International

Symposium on Multiple-Valued Logic, 2013.

[40] H. C. v. Tilborg, Encyclopedia of cryptography and security, NJ USA: Springer-Verlag New

York, 2005.

[41] D. B. RAFAEL COSTA, "Methods to Protect Cryptographic Keys on Safety-Critical Systems,"

WSEAS TRANSACTIONS on INFORMATION SCIENCE and APPLICATIONS, vol. 12, 2015.

[42] B. N. B. C. a. Z. H. H. Dong, "Automatic train control system development and simulation for

high-speed railways," IEEE Circuits and Systems Magazine, vol. 10, pp. 6-18, 2010.

[43] M. S. N. B. A. G. E. A. M. S. S. F. A. H. A. Akhunzada, " Man-At-The-End attacks: Analysis,

taxonomy, human aspects, motivation and future directions," J. Netw. Comput. Appl., vol. 48, pp.

44-57, 2015.

[44] S. L. Kinney, Trusted Platform Module Basics: Using TPM in Embedded Systems, Newnes,

2006.

[45] Z. M. L. B. Dorottya Papp, "Embedded Systems Security: Threats, Vulnerabilities, and Attack

Taxonomy," in Thirteenth Annual Conference on Privacy, Security, and Trust (PST), 2015.

[46] R. Langner, "Stuxnet: Dissecting a cyber warfare weapon," Security and Privacy, vol. 9, no. 3,

pp. 49-51, 2011.

[47] D. N. Serpanos and A. G. Voyiatzis, "Security challenges in embedded systems," ACM

Transactions on Embedded Computing Systems (TECS), vol. 12, no. 1, p. 66, 2013.

[48] X. Z.-a. T. X. Z. L. Z. Zheng, "Cryptographic key protection against FROST for mobile devices,"

Cluster Computing, vol. 20, no. 3, p. 2393–2402, 2017.

[49] B. Gupta, Handbook of Research on Modern Cryptographic Solutions forComputer andCyber

Security, Hershey: IGI Global, 2016.

[50] M. S. C. J. Y. S. M.-W. L. K. Z. C. D. Xu, "Toward engineering a secure Android ecosystem: a

survey of existing techniques," in ACM Computing Survey, 2016.

[51] R. B. C. S. Carbone, "An in-depth analysis of the cold boot attack," Defence Research and

Development Canada, Canada, 2011.

[52] G. K. G. B. R. R. a. R. S. Carl, "Denial-of-service attack detection techniques," IEEE Internet

Computing, vol. 10, no. 1, pp. 82-89, 2006.

[53] M. R. a. S. K. M. S. Doomun, "Analytical comparison of cryptographic techniques for resource-

57

constrained wireless security," International Journal of Network Security, vol. 9, no. 1, pp. 82-94,

2009.

[54] C. L. M. N. R. a. P. A. Kuo, "Message-in-a-bottle: User-friendly and secure key deployment," in

5th International Conference on Embedded Networked Sensor Systems, Sydney, Australia, 2007.

[55] C. Kothari, Research methodology: methods and techniques, New Age International, 2009.

