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Abstract 

 

Adverse Drug Reactions (ADRs) are significantly harmful for health. Existing studies 

utilize traditional and deep learning techniques to detect ADRs from the given text. 

Bidirectional Encoder Representations from Transformers (BERT) overcame the 

predominant neural networks bringing remarkable performance gains. However, 

training BERT is computationally expensive which limits determining the most 

important hyper parameters for the downstream task. Furthermore, developing an 

end-to-end ADR extraction system comprising two downstream tasks i.e. text 

classification for filtering text containing ADRs and extracting ADR mentions from the 

classified text is also challenging. In this work, we present an end-to-end system for 

modelling ADR detection from the given text by ne-tuning BERT with a highly modular 

Framework for Adapting Representation Models (FARM). FARM provides support for 

multi-task learning by combining multiple prediction heads which makes training of 

the end-to-end systems easier and computationally faster. In the proposed model, one 

prediction head is used for text classification and another is used for ADR sequence 

labelling. The model is fine-tuned on the data collected from Twitter and PubMed 

abstracts. The proposed model is compared with the state-of-the-art techniques and 

it is shown that it yields better results for the given task. 

Keywords: Multitask learning, Fine-tuning, BERT, FARM, ADR 
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Chapter 1 

Introduction 

 

Adverse Drug Reactions (ADRs) have harmful effects on health. ADR ac-cording to the 

definition of the World Health Organization (WHO) is a response to noxious 

medication which occurs as a result of normal doses used in man for diagnosing or 

curing a disease [1]. ADRs greatly affect quality of life and in worse cases can be a cause 

of death. A study showed that 3.5% of the patients were hospitalized because of ADRs 

[2]. It has been estimated ADRs were responsible for approximately 197,000 deaths 

annually in Europe [3]. The safety of a drug is monitored by the Food and Drug 

Administration (FDA) after its release. These surveillance activities, however, are 

largely reliant on a passive spontaneous reporting database known as Adverse Event 

Reporting System (AERS) [4]. Delayed and underreported events can make these 

systems inefficient. 

 

To address the limitations of passive surveillance, active pharmacovigilance 

techniques used for labeling ADRs analyze frequently updated sources of data. Data 

from social media particularly twitter because of its public nature and vast reach can 

be used as a source of carrying out post-market drug surveillance. Studies have 

observed significant correlations between ADRs reported in AERS and those 

mentioned in Twitter [5]. Several studies have been conducted on Twitter data [6, 7] 
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however, limitations arise due to informal language of social media. As compared to 

Twitter, very formal description is found in biomedical text. Hence, some studies use 

biomedical text collected from PubMed abstracts for ADR extractions [8, 9], while 

some utilize data from both social media and biomedical text [10, 11]. In this work, we 

also use datasets from both the sources i.e. Twitter and PubMed. 

ADR extraction has been performed using conventional machine learning models such 

as Support Vector Machine (SVM) [12], Random Forest (RF) [13], and Conditional 

Random Field (CRF) [14]. These models depend upon manual feature engineering. 

Most common features utilized by these models include n-grams, negated contexts, 

and semantic types from Unified Medical Language Sys- tem (UMLS), Part of Speech 

(POS) tags, drug names, and lexicon based features, and word embeddings [15]. 

Numerous studies utilize deep learning techniques such as Bidirectional Long-Short 

Term Memory (BLSTM) [11], Convolutional Neural Network (CNN) [16], and attention 

based deep neural networks [10]. Most recent studies have employed Bidirectional 

Encoder Representations from Transformers (BERT) and its different variants which 

significantly improved the performance of ADR detection [7, 17]. However, training 

these models is computationally expensive which limits the tuning of hyper 

parameters. Hence, determining the most contributing hyper parameters becomes 

challenging. Furthermore, ADR extraction from social media data firstly requires text 

classification to remove noise and filter text with ADR mentions. Text classification is 



 
 

3 
 

then followed by the task of ADR sequence labelling. Hence, a framework with the 

support of multi-task learning is needed for end-to-end modelling of the problem. 

In this work, we use BERT fine-tuned via a novel framework FARM to detect ADRs on 

Twitter and PubMed datasets. FARM has a modular design for language models and 

prediction heads which makes transfer learning simpler. FARM is an adaptive model 

that provides support for combining multiple prediction heads on top of the language 

model. We present an end-to-end solution for ADR extraction by using two prediction 

heads with BERT; one for classifying text with ADR mentions and the other for labelling 

ADR sequences in the classified text. Moreover, FARM supports parallelized processing 

which makes learning computationally faster. The hyper parameters used in the 

standard BERT model are modified with FARM-BERT such that they best t the learning 

task. In short, primary contributions of this work are listed below: 

● A novel end-to-end model FARM-BERT based on highly modular design is 

proposed to detect ADRs 

● FARM-BERT is  fine-tuned with different set of hyperparameters as compared 

to the standard BERT 

Comparison of results shows that BERT ne-tuned using FARM outperforms state-of-

the-art techniques used for extracting ADRs. 

The rest of the paper is structured as follows: Section 2 presents the literature review, 

Section 3 proposes a framework for end-to-end detection of ADRs, Section 4 discusses 

experiments and results while Section 5 draws the conclusion. 
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Chapter 2 

Literature Review 

 

There has been a considerable amount of work for detecting ADRs from biomedical 

text automatically using machine learning approaches. Earlier works utilize traditional 

machine learning approaches with manual feature engineering. Liu et al. [12] passed 

a bag of words, bigrams and Part of Speech (POS) tags as features to SVM where the 

bag of words produced the best results. Bag of words approach is based on 

occurrences of words in a corpus. It ignores the semantics and syntactic of the text. 

Hence, this approach is not a reliable approach leading to false classifications. Alimova 

et al. [18] fed SVM and Logistic Regression (LR) with features including lexicon based 

features, sentiment features, semantic features, and word embeddings. Since, lexicon 

is based on a particular list of drugs, lexicon based features do not play a significant 

role in ADR identification. Sentiment and word embedding features have been found 

to be the most effective. Sarker et al. [19] used SVM fed with topic model features in 

combination with other features such as n-grams, sentiword scores, lexicon features, 

syn-set expansion features, UMLS semantic types etc. Bian et al. [20] also used 

semantic features based on UMLS in combination with other textual features. In the 

shared task Social Media Mining for Healthcare (SMM4H) 2017, the best performing 

system employed SVM fed with different domain specific, surface-form and sentiment 

features [21]. Aramaki et al. [22] used SVM and CRF for extracting adverse drug effects 
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using lexicon based features, POS tags, word chain etc. CRF has also been used in [14] 

which utilized contextual features, word embedding features, and dictionaries. 

Another approach [13] uses RF models fed with n-gram features, negation, sentiment 

etc. Traditional approaches rely upon manual feature engineering which needs 

considerable effort and time.  

Recent approaches for ADR detection employ deep neural networks. CNN initialized 

with Pyysalo’s word embeddings [23] has been used in [16] to detect ADRs. Huynh et 

al. [24] proposed Convolutional Recurrent Neural Network (CRNN) for ADR detection. 

In [11], BLSTM network was used with word embeddings as input features. In [24] a 

multi-task encoder-decoder framework has been proposed that provides end to end 

solution by modelling three ADR detection tasks i.e. classification of ADRs, ADR 

labeling and indication labelling. 

To tackle the problem of limited labelled data for ADR, Gupta et al. [25] proposed a 

semi-supervised approach based on co-training which can augment the labelled data 

with large amounts of unlabeled data. Semi supervised model was also proposed in 

[26]. For the unsupervised learning stage, drug name was predicted on the basis of its 

context in the given tweet using BLSTM model. The BLSTM model initiated with 

word2vec based word embeddings was trained in a supervised learning stage to 

predict the sequence labels in tweets. Zhang et al. [27] presented a weakly supervised 

CNN-LSTM model to identify ADRs. Weakly labelled data was employed to pertain to 

the model. The model parameters were further fine-tuned on the labelled dataset. 
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Some models combine deep neural networks with traditional models such as BLSTM-

CRF for sequence labelling [28]. They exploit both word embedding based features and 

other natural language processing features such as spelling features, n-gram features 

and POS features. 

Another BLSTM-CRF model uses character embeddings in addition to word 

embeddings [29]. In [30, 31] combination of CNN, LSTM and CRF has been proposed 

where word embeddings are augmented using character level CNN. Neural network 

models, when processing long texts, suffer from the problem of vanishing gradient. 

The problem can be dealt with using an attention mechanism. In the attention 

mechanism, the decoder retrieves selective information from the most relevant parts 

of the source sentence instead of using all the information encoded into a fixed sized 

vector [32]. Ramamoorthy et al. [8] proposed self-attention based BLSTM model for 

facilitating intra-sequence interaction in the given text sequence. Ding et al. [10] 

proposed embedding level attention mechanism in Bidirectional Gated Recurrent Unit 

(BGRU) to allow the model to learn the most important features. The recent meeting 

of SMM4H held in 2019 showed further improvements in neural network techniques 

used for ADR detection [33]. Convolutional and recurrent neural architectures fed with 

word2vec or glove embeddings being the most popular architectures for tackling the 

task in 2018 were overtaken in 2019 by neural networks that used word embeddings 

pertained with BERT [34]. The approach of the winning team was based on retraining 

BERT on a large unlabeled tweets dataset collected from twitter using a list of drug 
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names [35]. In [7] domain specific preprocessing and an ensemble of different BERT 

implementations i.e. general BERTLARGE, domain specific BioBERT [36] and domain 

specific ClinicalBERT [37] have also been shown to be effective for ADR classification 

on social media. Li et al. [17] integrated BERT with CNN and utilized emotional 

information to distinguish between ADR and non-ADR tweets. Aroyehun et al. [6] used 

LSTM fed with a combination of three types of embeddings i.e. character embeddings, 

glove embeddings and BERT embeddings to detect ADR reportage in tweets. 
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Chapter 3 

Proposed Methodology: FARM-BERT 

We use BERT implemented via a novel framework FARM to detect ADRs. This section 

briefly discusses the architecture of BERT followed by a brief description of the 

pertained BERT used in our study. We then describe the fine-tuning of BERT with 

FARM. Figure 1 presents the overall architecture of the proposed system. 

 

 

Figure 1 
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3.1  BERT 

Training BERT involves two phases i.e. pretraining and fine-tuning. In the first phase 

i.e. pretraining, unlabeled data is used to train the model over different tasks. In fine-

tuning, the pretrained parameters are fine-tuned on a labelled dataset to model a 

downstream task. The architecture of BERT is based on bidirectional transformers in 

multiple layers [38]. In this work, we use a BERT base which consists of 12 layers 

denoted as L, 768 hidden units denoted as H, and 12 self-attention heads denoted as 

A. 

3.2 Input Representation 

BERT generates contextualized embeddings. Many models have widely been used to 

convert words into embeddings such as word2vec, fasttext, and glove. However, these 

models generate embeddings of a word without considering its context. In natural 

language, meanings of a similar word may vary in different contexts. Context 

dependent representation is not captured by these models resulting in the similar 

vector representations of a word having different meanings in different contexts. As 

opposed to the previous models, BERT generates contextualized embeddings. 

BERT takes as input a single sentence or a pair of sentences. BERT uses WordPiece 

model to tokenize the input sequence. Special tokens are added by the tokenizer at 
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the beginning and end of the input sequence. The first token that marks the 

beginning of every input sequence is [CLS]. Two sentences in the input sequence are 

divided by a special token [SEP]. Besides tokenizing the input sentences into words, 

individual words, if not found in the vocabulary, are also tokenized into subwords 

and characters. In this way, BERT generates embeddings for out of vocabulary words 

by generating embeddings of their constituent subwords and characters found in the 

vocabulary. In addition to producing the token embeddings, BERT generates 

sentence embeddings by adding embedding to each token in the tokenized text 

indicating whether the token belongs to the first or the second sentence. It further 

generates position embeddings indicating the position of a token in the input 

sequence. Finally, the input representation for a given token can be represented by 

concatenating its corresponding token embeddings, sentence embeddings and 

position embeddings. Let ti represent the token embedding of the word i, si 

represent its sentence embedding while pi represents its position embedding, then 

the embedding of a word i denoted as Ei can be represented as follows: 

𝑬 =  𝒕𝒊 ⊕  𝒔𝒊 ⊕  𝒑𝒊  ( 𝑺𝑬𝑸 𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 \∗  𝑨𝑹𝑨𝑩𝑰𝑪 𝟏) 

where ⊕ represents the concatenation operator. 

3.3 Pretrained BERT 

We use the general purpose BERT model pretrained on BBC news corpus. Pretraining 

BERT comprises two supervised tasks. In the first task, BERT uses the concept of 
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masking to mask some input tokens randomly and predict the masked tokens, hence 

learning bidirectional representations. The hidden representations of the masked 

tokens are passed to the softmax layer. The second task is next sentence prediction, 

the purpose of which is to understand the relationship between two sentences. 

3.4  Fine Tuning BERT with FARM for ADR Detection 

Transfer learning represents the idea of adapting learnings from one task to another. 

Knowledge learned by the pretrained BERT model can be used to model any 

downstream task. 

We use FARM to fine tune BERT for detecting ADRs from the given text sequences. 

FARM provides a framework that makes transfer learning with BERT simpler. It is built 

using transformers and provides a modular design for the language models and 

prediction heads. The pretrained language model is adapted to the downstream task 

using the prediction heads. The downstream task in our case is ADR extraction. FARM 

simplifies multitask learning by allowing to switch between multiple prediction heads 

on top of the language model. ADR detection is modelled as a sequence labelling 

problem in which a label is predicted for each token in the given sequence of tokens 

of the input text.  
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3.5 ADR Prediction 

Given in input sequence s, weight matrix w and bias value b, the probability of the 

given sequence s belonging to class c is computed by the softmax function as value of 

the variable x 

 

𝑃(𝑥 = 𝑐|𝑠; 𝑤; 𝑏 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (𝑤 . 𝑠 + 𝑏) 

=
𝑒𝑤𝑐.𝑠+𝑏𝑐

∑𝑛
𝑛=1 𝑤𝑛.𝑠 + 𝑏𝑛

                                                                   (2) 

where n denotes the total number of ADR categories. 

3.6 Optimization 

FARM-BERT is optimized using adam optimizer. The parameter update rule of adam 

is given as follows: 

𝑤𝑡 =  𝑤𝑡−1 −  𝜂
 𝑚𝑡̂

√𝑣̂𝑡+ ɛ
                                (3) 

where w represents weights of the model, m represents moving averages and η is 

the step size. 
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Chapter 4 

Experiments and Results 

In this section, we brief the experimental settings of models used for experiments. We 

also evaluate the models and discuss the results.. 

4.1 Datasets 

Experiments are performed on three datasets. The first dataset is the Twitter dataset 

used in [11] which was created by combining two datasets i.e. Twitter ADR dataset and 

Attention Deficit Hyperactivity Disorder (ADHD) dataset. 

Twitter ADR dataset was collected using the names of 81 drugs common in the US 

market [39]. The drugs used in the tweets of this dataset did not represent any specific 

condition but a wide range of different ADRs. The dataset was supplemented with 

additional ADHD dataset which contained the drug names used for treating ADHD. 

There are 844 tweets in the complete dataset, 95% of which contain at least 1 

indication mention or ADR. The dataset is divided into 75% train data and 25% test 

data. Sequence labelling is usually done using the standard I-O-B scheme according to 

which the tokens are labelled based on their positions either at beginning (B), inside 

(I), or outside (O) the given entity. The Twitter data has been labelled by adopting an 

I-O scheme having 4 categories: I-ADR indicating the given token is a part of an ADR, I-

Indication indicating the given token is a part of an indication, O-indication indicating 
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the token is outside any indication or ADR, and < P AD > indicating that the token is a 

padding. 

The second dataset comprising biomedical text has been collected from PubMed 

abstracts [40]. There are 6,821 sentences in the dataset, each containing at least one 

mention of ADR. The dataset is divided into train data, validation data, and test set in 

the ratio of 8:1:1. The similar I-O scheme has been used for annotating the PubMed 

dataset. However, the dataset does not contain any I-Indication category leaving 

behind 3 labels for each token i.e. I-ADR, O, or < P AD >. 

The third dataset is TwiMed corpus [41]. This dataset further comprises two parts, 

TwiMed-Twitter and TwiMed-PubMed. Three types of entities are labelled in the 

corpus i.e. drugs, symptoms and diseases. We consider symptoms and diseases as 

adverse reactions in our experiments. Moreover, there are three types of relations 

between these entities i.e. reason-to-use, outcome-negative, and outcome-positive. 

Outcome-negative indicates that drugs in the given input sequence can be a cause of 

adverse reactions. We consider the sentence as ADR-positive if the relationship 

between drugs and adverse reactions was annotated as outcome-negative. Similar 

considerations have also been made in the experiments conducted by Zhange et. Al 

[42] 
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4.2 Evaluation Metrics 

Precision (P), Recall (R), and F Score (F) are used to evaluate the performance of the 

model. We choose these metrics because they have widely been used for evaluating 

the models in state-of-the-art works. 

Precision measures relevancy of the results. In other words, it describes how many 

samples predicted to be belonging to a certain class actually belong to that class. It 

shows how often our model misclassified other classes as this class. 

 

𝑃 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑖𝑠𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                      (4) 

Recall measures how many actual relevant results have been returned. It calculates how 

many actual samples belonging to a certain class are correctly predicted by the model giving 

insight into misclassification of this class as another class. 

𝑅 =  
𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒 𝑃𝑜𝑖𝑠𝑡𝑖𝑣𝑒𝑠+𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
                                 (5) 

Very often, precision and recall are inversely related to each other. To overcome this 

imbalance, F score is used which is the harmonic mean of precision and recall. 

𝐹 =  
2.𝑃.𝑅

𝑃+𝑅
                                    (6) 

4.3 Proposed Model Configuration 

The learning rate in FARM-BERT is set to 3e-5. The model is fine-tuned using a batch 

size 8 for 5 epochs. 
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4.4 Comparison with Baseline Models 

Experiments are performed with the following conventional and deep learning 

models on Twitter and PubMed datasets. The results of these models are compared 

with the proposed model. 

● Support Vector Machine (SVM): We use a linear kernel SVM to detect ADR based 

on word n-grams, sentence embeddings, and lexical features i.e. names of drugs 

and ADRs. 

● Multilayer Perceptron (MLP): We use MLP classifier fed with word ngrams, sentence 

embeddings, and lexical features i.e. names of drugs and ADRs. Batch size is set to 

16, and Adam is used as an optimizer. 

● Convolutional Neural Network (CNN): We initialize the embedding layer of CNN 

with word embeddings. Three filters of heights 3, 4 and 5 are used in the 

convolutional layer.1-max pooling is applied over the convolved feature maps to 

select the most salient features and reduce the output dimension. The resultant 

features are concatenated and passed to the output layer which detects the 

presence of ADR in the given input sequences. We use the batch size of 16 and 

Adam as the optimization algorithm. 

● Long Short-Term Memory (LSTM): We initialize the embedding layer of LSTM with 

word embeddings. The sequences returned by this layer are passed to LSTM layer 

followed by a dense layer. The final layer is the output layer which uses softmax 
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activation function to detect ADRs. We use batch size of 16 and rmsprop as an 

optimizer. 

● Bidirectional Encoder Representations from Transformers (BERT): BERT is 

bidirectional transformer encoder having multiple layers. We use the pretrained 

BERTbase where the number of transformer blocks/ layers L is 12, hidden size H is 

768, while the number of self-attention heads A is 12. The model is fine-tuned for 

detecting ADRs using 5 epochs. Batch size and learning are set to 16 and 2e-5 

respectively. 

Table 1 

 

Table 1: Comparison of results yielded by FARM-BERT with the results yielded by 

baseline models applied on Twitter and PubMed datasets 
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Table 1 shows the results of the baseline models and the proposed model. It is 

observed that deep learning techniques in general yield better results than the 

conventional models i.e. SVM and MLP. Among the conventional models, MLP 

performs better than SVM. We find that ADR and drug terms alone do not play a 

substantial role in identifying ADRs. This indicates that spotting keywords in the given 

sentence cannot lead to extracting adverse drug reactions effectively as the problem 

depends more on the context. Incorporating contextual information using word n-

grams and semantic information using sentence embeddings improves the 

performance of these models. However, word n-grams in these models are 

represented as their term frequencies which are not enough for effective 

classification. 

In deep learning models, words in the input sequence are represented as word 

embeddings, and hence, the contextual information is learned utilizing the semantic 

representation of the words in the form of embeddings through multiple layers of the 

network. Among deep neural networks, BERT performs better than CNN, and CNN 

performs better than LSTM. We find CNN performing better than LSTM because CNNs 

capture local patterns while LSTMs capture global patterns in the input. We observe 

that in most of the cases, input sequences comprise short text. Hence, information 

from the local key phrases which is effectively extracted by applying CNN plays a 

primary role in ADR extraction. LSTMs on the other hand are good at capturing long 
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range dependencies. When applying LSTM, the input sentence is encoded as a long 

example. As a result, some important phrases may not be learned as a salient feature. 

We also observe the effects of different embedding models i.e. word2vec, Fasttext and 

Glove on CNN and LSTM. We find that both CNN and LSTM perform better when 

initialized with Fasttext embeddings than word2vec and glove embeddings. Fasttext 

model takes into account morphology of the words by extracting information from the 

internal structure of the words rather than considering just the whole words in the 

context. Fasttext represents each word by the sum of their char n-grams. By 

considering the subword information, fasttext, unlike word2vec and glove, generates 

the embeddings for out of vocabulary words as well. The training data used for any 

machine learning model, no matter how big it may be, can still not include all the words 

in a language’s vocabulary. If such unseen words are found in the test data, their 

representations are not generated by word2vec and glove embedding models. 

However, fasttext overcomes this limitation and represents the out of vocabulary 

words by adding the embeddings for the constituent char n-grams found in the 

vocabulary. 

BERT outperforms both CNN and LSTM. The reason for better performance of BERT is 

that it learns contextualized embeddings in bidirectional way. In natural language, a 

word is likely to convey multiple meanings based on the context in which it is used. 

Word2vec, fasttext and glove produce the same representations of a word even if it 

has different meanings in different contexts. BERT, on the other hand, produces 
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context dependent embeddings of a word. In BERT, an input word is represented by 

the sum of its token embeddings, sentence embeddings and position embeddings. 

The proposed model FARM-BERT outperforms all the models by yielding the F-Scores 

of 89.6% and 97.6% on Twitter and PubMed datasets respectively. FARM-BERT 

performs better than BERT by 2% on Twitter and by 6% on PubMed datasets. Better 

performance of FARM-BERT than the standard BERT indicates the effectiveness of fine-

tuning BERT with FARM with the modified values of hyperparameters. 

4.5 Comparison of computational performance of FARM-BERT 

with BERT 

In this section, we compare the computational time consumed by training and testing 

BERT and FARM-BERT on Twitter and PubMed datasets. Table 2 shows the 

computation time of training both the models for each epoch in seconds while Table 

3 shows the test time of both the models in seconds. Training time of both the models 

on PubMed and Twitter datasets is also demonstrated in Figure 2a and Figure 2b 

respectively. Similarly, test time of both the models on both the datasets is 

demonstrated in Figure 3. 
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Table 2 

 

Table 2: Comparison of training time of BERT and FARM-BERT for each epoch on 

Twitter and PubMed datasets 

  

(a) Training time of BERT and FARM-BERT for 
each epoch on PubMed dataset 

(b) Training time of BERT and FARM 
BERT for each epoch on Twitter dataset 

Figure 2 

Figure 2: Training time of BERT and FARM-BERT for each epoch on Twitter and 

PubMed datasets 
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Table 3 

 

Table 3: Comparison of test time of BERT and FARM-BERT on Twitter and PubMed 

datasets 

 

Figure 3 

Figure 3: Test time of BERT and FARM-BERT on Twitter and PubMed datasets 
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The experiments show that training BERT in each epoch takes more time than training 

FARM-BERT. Similar observations have been made while testing BERT and FARM-BERT. 

Hence, FARM-BERT works computationally faster than the standard BERT during both 

training and testing. FARM-BERT is computationally faster than BERT because FARM 

supports parallel processing. Furthermore, support for using multiple prediction heads 

for multi-task learning also makes FARM-BERT faster than the standard BERT. The 

analysis of the computational performance of both of the models indicate the 

effectiveness of using FARM-BERT for ADR prediction instead of the standard BERT. 

4.6 Comparison with State-of-the-Art Works 

In this section we compare the results of our proposed approach with the state-of-the-

art works performed on the three datasets i.e PubMed dataset, Twitter dataset, and 

TwiMed dataset. 

Table 4 tabulates the results of the proposed method and previous works performed 

on PubMed and Twitter datasets. F-Scores achieved by these models are visually 

displayed in Figure 4a and Figure 4b respectively. 

Table 4 
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Table 4: Comparison of results yielded by FARM-BERT with the results yielded by state-
of-the-art models on Twitter and PubMed datasets 

 

 

  

(a) F-Scores yielded on Twitter dataset (b) F-Scores yielded on PubMed dataset 

Figure 4 

Figure 4: F-Scores achieved by different models on Twitter and PubMed datasets 

The comparisons are made with the works performed by Cocos et al. [11], 

Ramamoorthy et al. [8], and Ding et al. [10]. The model by Cocos et al. [11] uses BLSTM 

which combines forward and reverse RNNs. 400 dimensional pretrained embeddings 

are used to initialize the embedding layer [43]. The model has been applied on Twitter 

dataset. Ramamoorthy et al. [8] uses BLSTM initialized with a combination of charCNN 

embedding, word2vec word embedding and PoS embeddings. The model uses a self-

attention mechanism and has been applied on a PubMed dataset. Ding et al. [10] uses 

BGRU with a combination of charLSTM embeddings and 300-dimensional Glove word 
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representations [43] through embedding level attention mechanism. The output of the 

embedding level attention layer is used as an auxiliary classifier and added to the BGRU 

output layer to identify ADRs. This model has been applied on both PubMed and 

Twitter datasets. It is evident from table 4 that the proposed model FARM-BERT 

outperforms all the state-of-the-art models applied on Twitter and PubMed datasets. 

In terms of F-score, FARM-BERT performs better than Cocos et al. [11] by 

approximately 14% on Twitter dataset. It performs better than Ramamoorthy et al. [8] 

by approximately 10% on PubMed dataset. It yields better performance than Ding et 

al. [10] by approximately 5% and 7% on Twitter and PubMed datasets respectively. 

Table 5 compares the results achieved by FARM-BERT with results achieved by the 

previous works on TwiMed corpus. F-scores of the models on Twimed-Twitter and 

TwiMed-PubMed datasets are also demonstrated in Figure 5a and Figure 5b 

respectively. 
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Table 5 

 

Table 5: Comparison of results yielded by FARM-BERT with the results yielded by 
state-of-the-art models on Twimed corpus 
 

  

(a) F-Scores yielded on TwiMed-Twitter dataset (b) F-Scores yielded on TwiMed-PubMed dataset 

Figure 5 

Figure 5: F-Scores yielded by different models on TwiMed dataset 

The first two models in Table 5 i.e. SVM and interactive attention network (IAN) have 

been used by Alimova et al. [44] on TwiMed dataset. IAN uses attention mechanism to 
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learn target and contextual representations. The experiments using CNN based 

method, multichannel CNN, joint AB-LSTM, and Multihop Self-Attention Mechanism 

(MSAM) have been performed by [42] on TwiMed corpus. CNN based method was 

proposed by Liu et al. [45] and Quan et al. [46] for relationship detection. Joint AB-

LSTM was proposed by Kumar et al. [47]. MSAM has been proposed by [27] which uses 

a multihop mechanism to learn complex semantic information by focusing on different 

segments of a sentence. It can be seen from the table that the FARM-BERT approach 

proposed by our work performs better than all the other approaches. 
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Chapter 5 

Conclusion  

In this work we tuned BERT with FARM using multi-task learning to present an end-to-

end solution for identifying ADRs on Twitter, PubMed and TwiMed datasets. The 

proposed model FARM-BERT uses modified hyperparameters as compared to the 

standard BERT. These hyperparameters include different learning rate, number of 

epochs, and batch size. We performed multiple experiments and compared the results 

with different baseline models i.e. SVM, MLP, CNN, LSTM, and standard BERT. We also 

compared the results with other state-of-the-art works. Experiments show that the 

proposed FARM-BERT outperforms all the models yielding the F-scores of 89.6%, 

97.6%, 84.9%, and 95.9% on Twitter, PubMed, TwiMed-Twitter and TwiMed-PubMed 

datasets respectively. 
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