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Abstract 
Cryptography, the encryption and decryption of data, is the need of the day. It fulfills 

the security requirements of computer and communication systems. Our banking transactions, 
email accounts, home appliances, hospital data, online transactions, all and more, are clients 
of cryptography. They are as safe as the encryption technique itself. In the year 2001, 
National Institute of Standards and Technology (NIST) announced the Advanced Encryption 
Standard (AES) to be the new US government standard for encryption. Since then, there has 
been rapid adoption of this standard by both government and private organizations.  

An encryption cipher may be implemented on a hardware device or on software. 
While software-based encryption provides flexibility, hardware-based encryption provides 
better system performance. Reconfigurable devices, Field Programmable Gate Arrays 
(FPGAs) to be specific, are unique in the sense that they combine the advantages of hardware 
and software implementations. 

The aim of this thesis is to present a novel area-efficient technique to implement AES 
on FPGA. Keeping in view the consistent demand of the programmable logic industry for 
low cost, this is an ideal method to reduce resource utilization and hence cut down on costs. 
SubBytes transformation, which is part of AES, is an intensive and resource-hungry 
transformation. The proposed method in this thesis optimizes the implementation of 
SubBytes transformation, using embedded BRAM in an FPGA. 
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1 Introduction  

1.1 Background 
Every day we come across examples of how our world is increasingly becoming 

automated. The more we rely on gadgets in our daily lives the more we communicate 
electronically. Today, professionals in the fields of medicine, commerce, engineering, human 
resource, social sciences and liberal arts; all store their work on computers and they all use 
computers to communicate with their peers. Cryptography is an essential need of this 
overwhelming and ongoing use of electronic devices for storage and communication of data. 
Email, cellular communications, secure web access and digital cash are just a few examples 
of daily life activities that require cryptography.  

Cryptography includes encryption and decryption. The purpose of cryptography is to 
achieve confidentiality, integrity, authenticity, availability and non repudiation. Encryption 
and decryption are both done by following a certain predefined algorithm and using a ‘key’. 
Encryption is the process of converting useful data, referred to as ‘plaintext’, into 
meaningless data, called ‘ciphertext’. Decryption is the process of converting the ciphertext 
back into the plaintext. Cryptography is of two types; Symmetric cryptography and 
Asymmetric cryptography. Symmetric cryptography, also known as secret key cryptography, 
uses the same key for both encryption and decryption. Asymmetric cryptography, also known 
as public key cryptography, uses a separate key for encryption and decryption.  

In 1997, the National Institute of Standards and Technology initiated a process to 
choose an Advanced Encryption Standard (AES) [1]. The standard used at that time was Data 
Encryption Standard (DES), which is now vulnerable to attack by key exhaustion [2]. NIST 
received significant feedback and interest from public interested in cryptography. In 1998, 
NIST announced the acceptance of fifteen candidate algorithms. After reviewing the security 
and efficiency of these algorithms, five were chosen for the final round of selection [3]. After 
further public analysis, NIST announced Rijndael cipher algorithm as the AES, on October 2, 
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2000 [4]. On November 26, 2001, NIST announced that AES was approved as Federal 
Information Processing Standards Publication 197, ‘FIPS PUB 197’ [5]. 

The choice of platform to use for implementation of this standard, in this thesis, is the 
Field Programmable Gate Array, FPGA. Other options are Application Specific Integrated 
Circuit, ASIC and Software only. Software is a low cost option, with a lot of flexibility in 
changing or upgrading one’s application. But software does not deliver good performance in 
terms of speed. ASICs on the other hand are better in performance than software, but they are 
very high in cost and lack flexibility completely. FPGAs, our choice for implementation for 
AES, provide maximum flexibility and speed with low costs. 

1.2 Aim of Thesis 
The aim of this research is to implement the AES on Xilinx FPGA by utilizing the 

FPGA’s dedicated embedded memories to store the S-box in a fully area-optimized way.  

1.3 Thesis Outline 
The rest of the chapters of this thesis are organized as follows: 

Chapter 2 gives an introduction of symmetric cryptography and AES. AES encryption 
is explained in detail. Chapter 3 covers details of the FPGA and its advantages. The 
architecture and function of the Spartan 3 FPGA family of Xilinx is also discussed. Chapter 4 
gives the complete detail of achieving the aim of this thesis. It highlights the architectural and 
software optimization in this thesis and also gives description of our proposed technique for 
efficient utilization of BRAM in SubBytes transformation. Chapter 5 presents a comparison 
of the results of our work with previously published works. Chapter 6 gives the conclusion 
and future work ideas. 
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2 Symmetric Cryptography 

2.1 Introduction 
Symmetric cryptography or symmetric key cryptography is a popular cryptographic 

technique. It uses a single private or secret key to both encrypt and decrypt the data. Since, 
the key at the sender and receiver end is same, that’s why the name ‘symmetric’. Symmetric 
cryptography has a number of advantages over asymmetric cryptography. It is relatively 
inexpensive to produce a strong key for these ciphers. The keys tend to be much smaller for 
the same level of protection [6]. Symmetric cryptography algorithms are relatively 
inexpensive to process [7]. Implementation of symmetric cryptography is also quite fast. 
Since the key is secret, the same publicly known algorithm can be used by all parties always, 
and no effort has to be made to develop new or secret algorithms.  

As long as the key remains secret with the sender and receiver, symmetric 
cryptography provides authentication as well as confidentiality. However, it is evident that 
incase the key is compromised, any third party can not only decrypt confidential encrypted 
data, but also encrypt any new message and send it as if it came from one of the parties 
originally authorized to use the key. So it is crucial that the key is exchanged securely 
between the authorized parties.  

One disadvantage of symmetric cryptography is that it has to be ensured that both 
sender and receiver have the same key. For this there has to be a way that they exchange a 
key. One way is to encrypt that key with another key, but then they must know this second 
key for decryption to obtain the first key. This leads to a vicious cycle of depending on keys. 

Symmetric cryptography is classified into two types, based on how the data is 
encrypted; ‘Block cipher’ and ‘stream cipher’. Block ciphers take the whole plaintext and 
divide it into n-bits blocks, and then encrypt each block individually. Whereas the stream 
ciphers encrypt the plaintext on the fly, in where plaintext is encrypted bit (or byte or word) 
by bit (or byte or word). So, stream ciphers do not need the whole plaintext before 
encrypting.  



 

 

4 

Popular symmetric ciphers are AES, Twofish, RC2, IDEA, Serpent, CAST5, DES and 3DES. 

2.2 Encryption Using Advanced Encryption Standard 
The Advanced Encryption Standard (AES) [5] is a symmetric block cipher. It takes the 

plaintext and breaks it up into blocks of 128 bits. The key sizes allowed by this standard are 
128, 192 and 256 bits. Each block of 128 bits is arranged in a 4 x 4 array of bytes, as shown 
in figure 2.1. This is called the ‘State’. A single State has 16 bytes. The cipher repeats a round 
of four transformation Nr number of times, where Nr is a function of the key size. 

 
Figure 2.1  State  

 

Table 2.1  Number of Rounds as a Function of Key Size 
Key Length 128 bits 192 bits 256 bits 

Number of Rounds (Nr) 10 12 14 

 
AES, the most widely used encryption cipher [8], subjects the plaintext to some simple 

transformations to get the ciphertext. These transformations are explained in detail in the 
following sections.  The transformations implemented in AES are AddRoundKey, SubBytes, 
ShiftRows and MixColumns. The first transformation applied on the State is AddRoundKey. 
After this a round is implemented in the order of first SubBytes, then ShiftRows, then 
MixColumns and then AddRoundKey. This Round is repeated ‘Nr’ number of times as 
shown in table 1. However, the Nrth round omits the MixColumns transformation. This 
encryption flow is shown in figure 2.2. 

S 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 
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Figure 2.2  AES Encryption 

PLAINTEXT 

AddRoundKey 

SubBytes 

ShiftRows 

MixColumns 

AddRoundKey 

SubBytes 

ShiftRows 

AddRoundKey 

CIPHERTEXT 

Nr-1 Times 



 

 

6 

2.2.1 SubBytes 
The SubBytes transformation is a non linear transformation that operates on the state 

byte by byte. Each byte of the state is substituted by a byte from a pre defined look up table. 
The values of this pre defined table are calculated by performing two transformations, a 
multiplicative inverse in the finite field GF (28), and a standard affine transformation (over 
GF (2)). If the value of the byte to be substituted by another byte, is ‘01’ for example, then 
the substitution value would be the byte at the intersection of the row with index ‘0’ and the 
column with index ‘1’ in the S-box. Figure 2.3 depicts the SubBytes transformation. 

 

     Figure 2.3  SubBytes 

2.2.2 ShiftRows 
This is a transposition stage where each row of the state is shifted cyclically a certain 

number of times. The first row is not shifted at all. The second row is rotated to the left by 
one byte, third row by two bytes and fourth row by three bytes. This transformation ensures 
that the four bytes of one column are spread out to four different columns. In figure 2.4, this 
shift is depicted by the shifted subscripts in the state S' on the right. 

 
     Figure 2.4  ShiftRows 

S 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

S' 

s0,0 s0,1 s0,2 s0,3 

s1,1 s1,2 s1,3 s'1,0 

s2,2 s2,3 s2,0 s2,1 

s3,3 s3,0 s3,1 s3,2 

S 

s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

S' 

s'0,0 s'0,1 s'0,2 s'0,3 

s'1,0 s'1,1 s'1,2 s'1,3 

s'2,0 s'2,1 s'2,2 s'2,3 

s'3,0 s'3,1 s'3,2 s'3,3 

S-Box 
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2.2.3 MixColumns 
The MixColumns transformation operates on every column of the state such that each 

byte of a column is mapped into a new value that is a function of all four bytes in that 
column. Each column is considered as a four-term polynomial over GF (28) and multiplied 
modulo x4+1 with the fixed polynomial c(x): 

}02{}01{}01{}03{)( 23 +++= xxxxc  
The above can be written in terms of simple matrix multiplication. 
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As a result of this multiplication the four bytes in a column are replaced by the 
following equations, where ‘• ’ is simple multiplication and ‘⊕ ’ is bit-wise XOR:  
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{ }( ) { }( )
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•⊕•⊕⊕=
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⊕⊕•⊕•=

 

2.2.4 AddRoundKey 
This transformation adds a Round Key to the State by simple bitwise XOR operation. 

The round key for each round is derived from the cipher key or from the previous round key. 
Each round key is 128 bits long. The AddRoundKey transformation is depicted in figure 2.5. 
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Figure 2.5  AddRoundKey 

2.3 Key Expansion 
For AES-128, ten round keys are needed in addition to the cipher key. Each round key 

is derived from the last four bytes of the previous key. The process used for generation of 
round keys is called key expansion routine. This routine includes an XOR step, a substitution 
transformation and a cyclic permutation. The same key schedule (set of round keys) is used 
for encryption and decryption.  

2.4 Decryption 
The decryption algorithm for AES basically involves inverse of the transformations 

done in encryption. Decryption for AES 128 is done by performing an AddRoundKey 
transformation, and then performing nine rounds of AddRoundKey, InverseMixColumns, 
InverseShiftRows and InverseSubBytes. The tenth round then includes InverseShiftRows, 
InverseSubBytes and AddRoundKey only.  

AddRoundKey uses keys in the reverse order, as that of the key schedule for 
encryption. For InverseShiftRows, the direction of the shift is changed, while the number of 
shifts for each row remains the same as in encryption. An Inverse S-box is used to perform 
the substitutions in InverseSubBytes. InverseMixColumns is also done in the same way as the 
MixColumns transformation in encryption; however the coefficients of the polynomial are 
different here and subsequently, so are the values in the matrix. This decryption flow is 
shown in figure 2.6.  

S 
s0,0 s0,1 s0,2 s0,3 

s1,0 s1,1 s1,2 s1,3 

s2,0 s2,1 s2,2 s2,3 

s3,0 s3,1 s3,2 s3,3 

S' 
s'0,0 s'0,1 s'0,2 s'0,3 

s'1,0 s'1,1 s'1,2 s'1,3 

s'2,0 s'2,1 s'2,2 s'2,3 

s'3,0 s'3,1 s'3,2 s'3,3 

 

wi 

 

wi+1 

 

wi+2 

 

wi+3 

Round Key 
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Figure 2.6  AES Decryption 

CIPHERTEXT 

AddRoundKey 

InvShiftRows 

InvSubBytes 

InvMixColumns 

AddRoundKey 

InvShiftRows 

InvSubBytes 

AddRoundKey 

PLAINTEXT 

Nr-1 times 
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2.5 AES Key Sizes 
There are three key sizes allowed in the AES; 128-bit, 192-bit and 256-bit. The 

strength of the encryption increases with the increase in key size [9]. However, this also 
increases the computational and memory requirement for the encryption process [10]. 

2.6 AES in Practice 
AES is widely used for encryption at private, commercial and government levels [11]. 

Given its excellent security capability, the National Security Agency (NSA) of US has set 
AES as the standard for national security information [12]. It is used by BlackBerry services 
to encrypt and decrypt data [13].  AES is also used for encrypted compression by WinZip 
[14]. It has also been incorporated into Wireless 802.11n standard [15]. 

2.7 Summary 
In this chapter symmetric cryptography and its types were describes with detailed 

explanation given for Advanced Encryption Standard (AES). The transformations that form 
the AES encryption process were then explained in sequence. The decryption process of 
AES, the inverse of AES encryption, was briefly explained. At the end, the use of AES in the 
industry was illustrated. 

In the next chapter, FPGA, its advantages and its families are explained. The Spartan-
3 FPGA used in this research, its features and the software tool used to program it are also 
explained in the sub-sections of the chapter. 
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3 FPGA  

3.1 Introduction 
A Field Programmable Gate Array (FPGA) is a programmable integrated circuit that 

includes a two dimensional array of logic blocks. The design of an FPGA is standardized by 
its manufacturers, but its function is defined by the programmer solely. So, an FPGA is a 
reconfigurable device which instantly takes on a new function whenever we configure it with 
a new code.  

3.2 Advantages of FPGA 
An FPGA combines the best parts of hardware and software. It is cheaper and easily 

upgradable than Application Specific Integrated Circuits (ASICs). A new idea or concept can 
be tested and verified very quickly on an FPGA, instead of going through a long fabrication 
process which is required for ASICs.  

The cost of upgrading an FPGA system is negligible when compared to the cost of 
making changes to ASICs. Compared to a software implementation, an FPGA 
implementation offers more processing speed and demands lesser power. Owing to these 
advantages, most of the current cryptographic modules rely on FPGA implementations [16].  

3.3 XILINX FPGA 
The platform we choose to work on is the Xilinx FPGA. The reason of this choice is 

that for AES, the majority of research results, which we came across, are on Xilinx Platform. 
Also Xilinx FPGA is supported by software resources available in the college. Moreover, 
Xilinx is the choice of researchers in other institutes and industry in Pakistan. This allowed us 
to share expertise. Xilinx holds the larger part of the international programmable market 
place [17] [18]. Xilinx has many silicon devices that one can choose from. Our choice for our 
area-efficient design is the Spartan-3 FPGA. 
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3.4 Spartan-3 FPGA Family 
Various FPGA families differ in their sizes, in the way flip-flops and LUTs are 

packaged together, in their embedded features and in the performance they offer. The 
Spartan-3 family of FPGAs is specifically designed to meet the needs of high volume, cost-
sensitive consumer electronic applications. Because of their exceptionally low cost, Spartan-3 
FPGAs are ideally suited to a wide range of consumer electronics applications; including 
broadband access, home networking, display/projection and digital television equipment [19].  

The architecture and function of this family of FPGA are briefly discussed in the 
following sections. 

3.4.1 Architectural and Functional Overview 
The Spartan-3 family architecture consists of five fundamental programmable elements: 

• Configurable Logic Blocks (CLBs) 

• Input/Output Blocks (IOBs) 

• Block RAM (BRAM) 

• Multiplier blocks 

• Digital Clock Manager (DCM) 

These logic blocks can be connected to each other by a programmable interconnect 
architecture. FPGAs also have other specialized blocks, such as Block Random Access 
Memories (BRAMs) and Digital Signal Processors (DSPs). These specialized blocks perform 
many flexible yet specific tasks, and provide a lot of ease to the programmer.  

3.4.1.1 Configurable Logic Block (CLB) 
Each CLB is composed of four interconnected slices. Each slice has two logic 

function generators, two storage elements, wide-function multiplexers, carry logic and 
arithmetic gates. The function of these logic blocks is not specified by the manufacturer; 
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instead it is programmable by the user. CLBs can be programmed to perform some logical 
function or to store data.  

3.4.1.2 Input/Output Block (IOB) 
The CLBs are surrounded by configurable IOBs, as shown in Fig 3.1. The input/output 

blocks provide a bidirectional connection between these blocks and the FPGA’s internal 
logic. IOBs are used to drive any signal onto or off the FPGA. So, these are connection 
between external devices in the outside world and the FPGA. Each IOB supports 
bidirectional data flow plus 3-state operation. 

 

Figure 3.1      XILINX SPARTAN-3 Family Architecture [19] 

3.4.1.3 Block RAM (BRAM) 
The Block RAM is a salient feature of all Spartan-3 FPGAs. The Block RAM is 

organized as reconfigurable, synchronous 18kbit blocks. The Block RAM effectively 
provides storage for large amounts of data; and also offers configurable aspect ratio i.e. width 
vs. depth. Multiple Block RAMs can be cascaded in order to increase the total addressable 
locations. The Block RAM has a true dual port structure, with each port having its own 
dedicated set of data, control and clock lines for synchronous read and write operations.  
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The number of Block RAMs in one FPGA varies depending on the size of the device. 
The smallest Spartan 3 FPGA, XC3S50 has 4 Block RAMS, whereas the largest one, 
XC3S5000 has 104 Block RAMs.   

3.4.1.4 Multiplier Blocks 
All Spartan-3 FPGAs have embedded multipliers that accept two 18-bit words as 

inputs to produce a 36-bit product. The input buses to the multiplier accept data in two’s-
complement form (either 18-bit signed or 17-bit unsigned). Cascading multipliers permits 
multiplicands more than three in number as well as wider than 18-bits.  

3.4.1.5 Digital Clock Manager (DCM) 
The DCM is a valuable embedded feature, as it provides control over clock frequency, 

phase shift and skew. The three main functions supported by DCM are clock-skew 
elimination, frequency synthesis and phase shifting.   

3.5 XILINX ISE 
ISE is the central design suite, provided by Xilinx, for studying, simulating and 

automating designs for FPGAs. ISE Design Suite provides many features, including design 
entry and synthesis. It supports Verilog/VHDL, design verification and debug tools and 
creation of bit files for configuring the chips. Xilinx ISE provides an ideal software-based 
platform to examine and test a design for varying different inputs. It also helps to configure 
the target device using a programmer. In this thesis Xilinx ISE 10.1 is used [20].  

3.6 Summary 
In this chapter Field Programmable Gate Array (FPGA) was introduced and its 

various advantages were described. Xilinx Spartan-3FPGA was then described and its various 
components and features explained, with emphasis on those that were used in this research. 

In the next chapter, the core of this report is presented. 

 
 
 



 

 

15 

4 Our Work 

4.1 Overview 
FPGAs are a popular choice for cryptographic implementations because they combine 

the ease and flexibility of software with the speed and computational power of hardware. 
Initially, in the field of cryptography, the implementation of AES was verified on FPGA. 
Then the efforts were directed at improving the speed of these cores implemented on FPGA. 
Gradually, researchers started focusing on minimum FPGA resource utilization. 

Among the transformations of AES, AddRoundKey involves an XOR operation only 
and ShiftRows is only a cyclic shift of rows. So, no optimization needs to be done for these 
two transformations. The SubBytes is the only non linear transformation that operates 
independently on each byte of the state. It is also the most intensive in terms of resource 
utilization [21]. The S-box is presented in hexadecimal form in figure 4.1 [5]. 

 0 1 2 3 4 5 6 7 8 9 a b c d e f 
0 63 7c 77 7b f2 6b 6f c5 30 01 67 2b fe d7 ab 76 
1 ca 82 c9 7d fa 59 47 f0 ad d4 a2 af 9c a4 72 c0 
2 b7 fd 93 26 36 3f f7 cc 34 a5 e5 f1 71 d8 31 15 
3 04 c7 23 c3 18 96 05 9a 07 12 80 e2 eb 27 b2 75 
4 09 83 2c 1a 1b 6e 5a a0 52 3b d6 b3 29 e3 2f 84 
5 53 d1 00 ed 20 fc b1 5b 6a cb be 39 4a 4c 58 cf 
6 d0 ef aa fb 43 4d 33 85 45 f9 02 7f 50 3c 9f a8 
7 51 a3 40 8f 92 9d 38 f5 bc b6 da 21 10 ff f3 d2 
8 cd 0c 13 ec 5f 97 44 17 c4 a7 7e 3d 64 5d 19 73 
9 60 81 4f dc 22 2a 90 88 46 ee b8 14 de 5e 0b db 
a e0 32 3a 0a 49 06 24 5c c2 d3 ac 62 91 95 e4 79 
b e7 c8 37 6d 8d d5 4e a9 6c 56 f4 ea 65 7a ae 08 
c ba 78 25 2e 1c a6 b4 c6 e8 dd 74 1f 4b bd 8b 8a 
d 70 3e b5 66 48 03 f6 0e 61 35 57 b9 86 c1 1d 9e 
e e1 f8 98 11 69 d9 8e 94 9b 1e 87 e9 ce 55 28 df 
f 8c a1 89 0d bf e6 42 68 41 99 2d 0f b0 54 bb 16 
 

Figure 4.1  S-box in Hexadecimal format 
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The aim of our work is to design an area-efficient encryption AES core, with 
emphasis on the SubBytes transformation. In addition to developing an area-efficient 
technique for implementing the SubByte transformation, we also chose the iterative 
implementation for the AES core on FPGA, for better resource utilization.  

There are two ways of implementing the SubBytes round, as described in the 
following sections. 

4.1.1 Conventional Technique of Implementing SubBytes Transformation 
The conventional method used in implementing SubBytes Transformation is to 

calculate the S-box on the fly by performing two transformations. These transformations 
include; taking a multiplicative inverse in the finite field GF (28), and applying a standard 
affine transformation (over GF (2)). The computation of this multiplicative inverse, though 
hardware-demanding, can be divided into multiple sub stages to improve the frequency of the 
encryption core. 

4.1.2 BRAM Technique of Implementing SubBytes Transformation 
The second method to implement SubBytes transformation is to directly store pre-

calculated S-box values in a lookup table (LUT) and then access the required values with 
their respective addresses in the LUT. However, in this approach the delay of memory access 
is unavoidable. The possible memory storage choices can be; configuring the FPGA slices as 
distributed RAM, or using embedded BRAMs [22] of the device.  

When S-box is implemented using the FPGAs as LUT only, it utilizes more than 75% 
of the resources [23]. The state consists of 16 bytes, each of which has to be substituted by a 
byte from the S-box, in each SubBytes transformation. So the S-box has to be accessed 16 
times for every SubBytes transformation. Therefore, 16 instances of the S-box have to be 
hardwired for every SubBytes transformation.  The size of one S-box is 256 (16 x 16) bytes. 
So it takes only 2kbits for storage. But the S-box replicated 16 times, for just one round, 
requires considerable amount of memory. In addition to this, the key expansion routine also 
requires accessing the S-box four times for every round key.  

Our SubBytes round has been implemented using the embedded BRAMs in dual port 
configuration and Read Only mode. This is a simple LUT approach. By using BRAMs we 
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have avoided all the calculations needed for determining the S-box values. Efficient access of 
LUT demands utilization of large embedded memories. 

4.2 Choice of Architecture 
The choice of architecture to implement AES has an impact on the resource utilization 

and the throughput. The resource utilization refers to; area of the cryptographic unit, utilized 
to implement the cipher, which in our case is AES.  The throughput of the cryptographic unit 
to encrypt/decrypt the plaintext is measured by the number of bits encrypted or decrypted per 
unit of time (second).  

The architectures that offer varying area utilization and throughput are pipeline, sub 
pipeline and loop unrolled architectures. All these architectures offer different area and speed 
tradeoffs. We made our choice of architecture in accordance with our requirement of resource 
efficiency. Iterative architecture, a form of loop unrolled architecture, offers the least 
resource utilization at the expense of speed. Since, our aim is to propose a compact 
architecture for small and cost effective implementations of AES; we opted to implement the 
iterative architecture. All these three architectures are discussed below. 

4.2.1 Pipeline Architecture 
Pipelining inserts rows of registers between each round unit. After an initial delay, a 

fixed number of blocks are processed simultaneously. This increases the speed significantly 
at the cost of increase in resource utilization.    

4.2.2 Sub Pipeline Architecture 
Sub pipelining inserts registers inside the round units also. Like this each round is 

divided into smaller segments, with registers between rounds and inside rounds. Sub 
pipelining provides little increase in speed with considerable increase in resource utilization. 
In this architecture, although more blocks of data are processed simultaneously, but the 
average number of clock cycles to process one block also increases. 
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4.2.3 Loop Unrolled Architecture 
In this architecture, multiple rounds are performed in each clock cycle, but only one 

block of data is processed at a time. A loop unrolled architecture that performs only one 
round in one clock cycle is an Iterative architecture. Iterative architecture is a subset of loop 
unrolled architecture.  

4.3 Our AES Implementation Based on LUT Approach 
This efficient and compact, iterative architecture of AES Encryption core was 

implemented using the S-Box Approach. My colleagues, Dur e Shahwar and Qurat-ul-Ain; 
and I developed an iterative implementation of the AES encryption. The resources that are 
used for the first round are then reused for all subsequent rounds, thus saving on device 
resources significantly.   

In this work we have developed an iterative architecture as shown in figure 9. Figure 
2 may be referred to, for easy understanding of this proposed iterative architecture. Our 
cipher key was of length 128. So, in addition to the first AddRoundKey transformation, 10 
rounds had to be implemented.  

 
Figure 4.2  Architecture of AES Implementation 
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In our implementation of the AES, the required intermediate states are fed back 
through a MUX to the encryption core. The 2x1 MUX selects the input data for the initial 
round and then onwards it selects the feed-back data for all remaining rounds.  

As seen in figure 2.2, flow diagram for AES encryption, there are three blocks in total 
for the AddRoundKey transformation. AddRoundKey is the first transformation to be 
performed in AES encryption. In the following 10 rounds it is then the last transformation. In 
our AES architecture, we have saved resources by using only one AddRoundKey. After 
implementing the first AddRoundKey transformation, we used the resources of this 
AddRoundKey block for all the subsequent transformations of AddRoundKey. This was 
achieved by sending the AddRoundKey output to the feedback at appropriate stages during 
the encryption, by using the 4 x 1 multiplexer as shown in figure 4.2.  

Similarly, in figure two, there are two blocks each, for the SubBytes and ShiftRows 
transformation. Again, we made use of multiplexers to keep resource utilization to a 
minimum, by selecting the required transformation output and feeding it back into the round. 
The output for SubBytes is never selected as a feedback in a round. However, it is fed into the 
multiplexer to conform to the required 4 inputs. 

The logical flow of our AES implementation is given in order below: 

1. First DIN enters the AddRoundKey. It then goes through all the other 
transformation blocks and at the end the output of MC is fed back  

2. The fed back state undergoes AddRoundKey transformation. After going through 
the subsequent transformations, the output of MixColumns is again fedback. This 
process is repeated eight times. 

3. In the next iteration, to skip the mixcolumns transformation, the ShiftRows output 
is fed back.  

4. After that the AddRoundKey output is fed back in the last round.  

In this way, the complete AES encryption process was implemented without 
duplication of resources for any transformation. Each stage was implemented and tested as an 
individual module. The instantiations of these modules were used in the main code of our 
design. The resources used for the first round are then reused   for   all   subsequent   rounds, 
thus  saving on device resources significantly. 
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4.3.1 SubBytes 
In our design two S-boxes are stored per BRAM as shown in figure 4.3.  Thus, 8 

BRAMs are needed for each round. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3  2 S-Box per BRAM 
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The MixColumns transformation is done by multiplication modulo x4+1, in the Galois 

field (28). The input state of this round is multiplied by a constant matrix to obtain the output 
state. For encryption, multiplication of the bytes is done with the constants 2 or 3 only. 
Multiplication with 2 is done by left shift of each byte. Multiplication with 3 is done as a sum 
of the byte and its product with 2. 
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4.3.4 AddRoundKey 
In the AddRoundKey transformation, the already calculated round keys are stored in 

registers. For every round, the key is accessed and bitwise XOR operation is done with the 
state. 

4.3.5 Implementation Results 
We implemented our compact LUT-based AES design on Spartan-3(XC3S4000), using 

8 out of the total 96 BRAMs available (8.33% BRAM usage), while occupying 390 out of 
27,648 number of slices. The number of four input LUTs were 627 out of 55,296 and the 
number of slice flip flops utilized were 405 out of 55,296; with a maximum output frequency 
of 206.28 MHz. Henceforth, providing an excellent foundation for our ensuing work. 

4.4 Previous Designs on BRAM Approach 
BRAMs are the dedicated embedded memory blocks of an FPGA. In the BRAM of a 

Xilinx FPGA, only one memory location can be accessed per port per clock cycle. BRAMs 
are ideal for implementing SubBytes transformation, which involves accessing the S-Box. 
Since BRAM allows just one read operation per clock cycle, the first BRAM implementation 
accommodated only one S-Box per BRAM in a Single Port configuration. After that Dual 
Port configuration is used that allows synchronous read operations on the BRAM. This makes 
it possible that the stored S-Box is accessed twice in one clock cycle.  

During our research, various implementations of S-Boxes were studied with varying 
degree of memory utilization, area occupied and throughput. The work, relevant to this thesis 
is mentioned here and is also presented in Chapter 5 - Results. In the works of I. Algredo-
Badillo et al. [24], J. Zambreno et al. [25] and Swankoski et al. [26] 8 BRAMs were used in 
dual port configuration. In each clock cycle two substitution bytes were read from the S-Box 
in the BRAM. Therefore, in order to obtain 16 substitution bytes for the complete state, 8 
BRAMs were used. 

 In E. Lopez-Trejo et al.’s [27] work 16 BRAMs were used, each storing an S-Box. 
For a single SubByte transformation each BRAM contributed a substitution byte, 
corresponding to the 16 bytes of the state. Realizing the importance of area-efficiency and its 
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subsequent impact on the cost and size of the core, in the most recent work of Arshad Aziz et 
al. [28], 4 BRAMs were utilized to achieve SubBytes transformation. 

4.5 Drawbacks of Conventional BRAM Approaches 
Block Memories in Spartan-3 and Virtex-II Pro Series FPGAs are 18 Kbits; 16 Kbits 

(2000 bytes) for data and 2 Kbits for parity. The size of an S-Box is 256 bytes. The 
aforementioned conventional techniques for the implementation of SubBytes transformation 
are not fully area-efficient, implying that each BRAM is not utilized fully or near to its 
maximum available space.   

As a result, all these techniques use more than the minimum number of BRAMs 
needed to implement the SubBytes transformation. This results in higher memory 
requirement for the AES implementation and hence more area is required and that too at a 
higher cost. In this thesis, we have proposed a novel clocking technique that reduces this 
usage to only 2 BRAMs, hence reducing the area and cost of the AES implementation. 

4.6 Our Resource Efficient SubBytes Transformation 
We have proposed a technique that allows eight S-Boxes to be accommodated in one 

BRAM. Its architecture and design implementation are explained in this section. 

4.6.1 Architecture of Our Resource Efficient SubBytes Transformation 
To have an area-efficient design we have used the following embedded features of 

Xilinx FPGA: 

i. Digital Clock Manager (DCM) 

ii. Block RAM (BRAM) 

The DCM [29] has been used to access the BRAMs at four times clock speed than the 
rest of the system. Verilog and VHDL code templates for generating a DCM are available in 
the Xilinx ISE. Another method for generating DCM is to use the clocking wizard. The 
clocking wizard has a front end that allows the user convenient and quick generation of 
DCM. Main system clock, CLK is sent as an input to the DCM. Main system clock is the one 
at which all other AES transformations are performed.  
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We have used the DCM to generate a clock CLK0, CLK2X and CLKFX. CLK0 has the 
same frequency and phase as CLKIN. CLK0 is also conditioned to 50% duty cycle because 
we have enabled the duty cycle correction feature of the DCM in this work. CLK2X is a clock 
signal that has a frequency twice that of CLK0. CLKFX is configured to have a frequency 
four times that of CLK0. This has been done by using ‘multiply value (M)’ as 4 and ‘divide 
value (D)’ as 1. Like this we get an output clock, CLK4X, which has four times the frequency 
of the input clock. CLK0, CLK2X and CLK4X (CLKFX) are all in phase with each other. 

Like the Clocking Wizard, the Block Memory Generator is a useful feature of Xilinx 
ISE. We used it to generate a block memory that had all parameters according to the 
requirements of our design. We have configured the BRAM as a Dual Port ROM. This means 
that both ports can be read simultaneously. Thus, allowing us to access two memory locations 
per clock cycle. Our design, shown in figure 4.4, uses two BRAMS to implement the 
SubBytes transformation. 

The S-Box is stored in a coefficient (COE) file, which is loaded in the BRAM to 
initialize its memory locations. The S-Box stored in the COE file is in the form of a lookup 
table of width 8 and depth 256. The addresses of this table correspond to the rows and 
columns of the S-box and the values stored against these addresses correspond to the values 
of the S-box.  

In the Dual Port ROMs, each port functions as an individual ROM, Port A and Port B, 
for the first BRAM and Port C and Port D, for the second BRAM. We have to give two 
inputs to each port. An address that has to be read and a clock signal. Each port will be 
synchronous to its own clock. The output of DCM, CLK4X, is used as an input to CLKA, 
CLKB, CLKC and CLKD of the dual port BRAMs. Thus, both the ports of both BRAMs are 
synchronous with CLK4X. This means that we can access the S-box four times in one system 
clock and consequently get four outputs from each port of the BRAM, in one system clock. 

Our proposed resource-efficient module produces four outputs from each port of the 
two BRAMs, in one CLK0. This means that we get eight substitution bytes from one BRAM, 
in each CLK0 cycle. So, using two BRAMs operating synchronously makes a total of sixteen 
outputs per system clock. 
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Figure 4.4  Resource Efficient S-Box Architecture 

In our design, the inputs to the ADDRA, ADDRB, ADDRC and ADDRD, is a byte of 
the state. This input is changed at every rising edge of CLK4X, and is used as an address of 
the lookup table we loaded in the BRAM initially. From this we get the value in the lookup 
table at that address, DOUTA, DOUTB, DOUTC and DOUTD after clock to out time of the 
BRAM. This value is then registered at its correct location in the state. How are ADDRA, 
ADDRB, ADDRC and ADDRD changed at every CLK4X in our design? This is explained in 
detail in the following content. 

As shown in figure 4.4, the addressing circuit of the BRAM1 comprises of a DCM 
and six 2x1 multiplexers. The first stage of multiplexers includes the multiplexers M0, M1, 
M2 and M3. The select signal for these multiplexers is the CLK0. The second stage includes 
multiplexers M8 and M9. The select signal for M8 and M9 is the CLK2X.  
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The S-Box module shown in figure 4.4, receives a state at every rising edge of CLK0. 
Eight bytes of the state are sent to one BRAM via its addressing circuit, and eight bytes are 
sent to the second BRAM via its addressing circuit. The complete flow, from input to output 
of our S-box module; of the eight bytes sent to BRAM1 is explained here in full detail. Two 
bytes are sent to ADDR S0A and ADDR S0B of M0, two bytes to ADDR S2A and ADDR S2B 
of M1, two bytes to ADDR S1A and ADDR S1B of M2 and two bytes to ADDR S3A and 
ADDR S3B of M3. When CLK0 is high, M0 selects ADDR S0A, M1 selects ADDR S2A, M2 
selects ADDR S1A and M3 selects ADDR S3A. When CLK0 is low, M0 selects ADDR S0B, 
M1 selects ADDR S2B, M2 selects ADDR S1B and M3 selects ADDR S3B. The output of 
these first stage multiplexers is sent to M8 and M9. 

The input that M8 receives from M0 and M1, and the input that M9 receives from M2 
and M3, both are changed at every change in CLK0. When CLK2X, the select signal of M8 
and M9, is high, M8 selects ADDR A1 and M9 selects ADDR B1. When CLK2X is low, M8 
selects ADDR A2 and M9 selects ADDR B2. The outputs of M8 and M9 are sent to ADDRA 
and ADDRB of the BRAM. The changing of inputs of M8 and M9 at every change in CLK0 
(i.e. every rising edge of CLK2X) and the select signal of M8 and M9 being CLK2X, both 
ensure that ADDRA and ADDRB change at every change in CLK2X (i.e. every rising edge of 
CLK4X). All data paths are eight-bit wide as shown in figure 4.4. 

When ADDRA and ADDRB of the BRAM receive an input, it is used as an address to 
look up the corresponding substitution byte value stored in the BRAM. As already mentioned 
above, both ports of our BROM are synchronous with CLK4X. So, for every change in 
ADDRA and ADDRB, we get outputs DOUTA and DOUTB, after clock-to-out time [30] of 
the BRAM. These outputs are registered in there appropriate locations in the state.  

The outputs of the BRAMs in our S-Box architecture change four times in every 
CLK0. So, to register ADDRA at four separate locations we have used a 2-bit counter and de-
multiplexer De-Mux 1. The counter is incremented four times, synchronously with CLK4X, 
in every CLK0 cycle. DOUTA is sent as an input to De-Mux 1. The output value Count [1:0] 
is used as a select signal for assigning DOUTA to one of the four outputs of De-Mux1. These 
values DOUTA0, DOUTA1, DOUTA2 and DOUTA3 remain valid for one complete CLK0 
cycle and are registered at their appropriate locations in the state. Similarly, outputs 
appearing at DOUTB, DOUTC and DOUTD are also assigned to four separate locations in 
each CLK0 cycle. 
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The architecture and function of the addressing circuit at the input and de-multiplexer 
at the output of BRAM1 have been explained. Figure 4.4 shows that BRAM2 has a similar 
architecture, and hence, function also. BRAM2 also receives eight bytes of the state and 
performs synchronously with BRAM1, to provide eight substitution bytes. 

4.6.2 Implementation of the Proposed System 
Figure 4.5 shows the timing diagram for implementation of the resource efficient S-

box architecture in figure 11. Figure 12 shows the timing diagrams of each port for one 
CLK0 cycle. CLK0 is the main system clock and CLK4X is the input to CLKA, CLKB, CLKC 
and CLKD of Port A, Port B, Port C and Port D respectively, of BRAM1 and BRAM2.  

For Port A, at point 0, the synchronized rising edge of CLK, CLK2X and CLK4X; 
ADDR S0A and ADDR S0B of multiplexer M0; each receive a byte, sin0,0 and sin0,1 
respectively, of the state. ADDR S0A (sin0,0) is selected when CLK0 is high, and ADDR S0B 
(sin0,1) is selected when CLK0 is low. ADDR S2A and ADDR S2B of multiplexer M1; each 
receive a byte, sin2,0 and sin2,1 respectively, of the state. ADDR S2A (sin2,0) is selected when 
CLK0 is high, and ADDR S2B (sin2,1) is selected when CLK0 is low. The outputs of M0 and 
M1 are connected to the address lines of M8. M8 selects ADDR A1 (sin0,0) when CLK2X is 
high and ADDR A2 (sin2,0) when CLK2X is low. 

The output of M8 is sent to ADDRA, the input of Port A of the BRAM1. So, ADDRA 
changes at every change in CLK2X (i.e. every rising edge of CLK4X). This ADDRA is used as 
a look up address for the S-Box stored in the BRAM. This address is registered into the 
memory at next rising edge of CLK4X. The substitution value at this address is available at 
DOUTA, after clock to out time of the BRAM. The function of multiplexer set M2 and M3 
(of Port B), M4 and M5 (of Port C), and M6 and M7 (of Port D) is similar to the set M0 and 
M1. The function of M9, M10 and M11  is similar to M8. At point 1, the inputs to M0, M1, 
M2, M3, M4, M5, M6, M7 are changed because of a change in the ‘state’ at every rising edge 
of CLK0. 

After we get the DOUT, DOUT of each port is sent to four separate locations to be 
registered so that it is available when needed. These four separate lines are also shown in the 
timing diagram. 
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  Figure 4.5  Timing Diagram 
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The timing diagram in figure 4.5 shows all clock, input and output signals for one 
CLK0 cycles. In this figure, sixteen substitution bytes are read from the S-Box in BRAM in 
one CLK0 cycle, eight bytes from BRAM1 and eight from BRAM2.  

4.6.3 Implementation Results 
Our resource efficient SubBytes transformation design was implemented on Spartan-

3(XC3S4000), using just 2 out of the total 96 BRAMs available (2.08% BRAM usage), while 
occupying only 194 out of 27,648 number of slices. The number of four input LUTs were 
only 102 out of 55,296 and the number of slice flip flops utilized were 354 out of 55,296.  
One out of the four available DCM was used giving a maximum output frequency of 155.198 
MHz. These results clearly indicate dramatic improvement in resource utilization and they 
will be further discussed and compared in Chapter 5. 

4.7 Our AES Iterative Architecture Based on Resource 
Efficient SubBytes Transformation   
The iterative architecture rules over other architectures when it comes to area and cost 

effectiveness. After successfully developing a synchronous clocking technique to utilize two 
BRAMs only, to implement the resource efficient SubBytes transformation; we incorporated 
this S-Box module in our iterative AES implementation presented in section 4.5.  

This implementation of the AES was improved further by merging the SubBytes 
transformation and ShiftRows transformation. This was done by assigning the substitution 
values of the SubBytes transformation to the positions in the output state that corresponds to 
the output of the ShiftRows transformation, as shown in figure 4.6. Like this, the ShiftRows 
transformation becomes a part of the SubBytes transformation but without any additional 
delay or resource utilization in the original SubBytes transformation 

4.7.1 Implementation Results 
Our AES iterative architecture was implemented on Spartan-3(XC3S4000), using only 

2 out of the total 96 BRAMs available (8.33% BRAM usage), while occupying 483 out of 
27,648 number of slices. The number of four input LUTs were 794 out of 55,296 and the 
number of slice flip flops utilized were 491 out of 55,296. One out of the four available DCM 
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was used giving a maximum output frequency of 155.198 MHz. These results again prove the 
excellent resource utilization achieved using our approach.   

 

Figure 4.6  Optimization of ShiftRows Transformation 

4.8 Summary 
This chapter is the core of this thesis. It first described the options of architectures for 

an AES encryption core, the options for implementing the SubBytes transformation and the 
previous work done that is related to the proposed work in this thesis. Then our work was 
covered in detail in the chapter. 

The first proposed work was an iterative implementation of the AES encryption 
cipher. The next proposed work was a unique clocking technique to implement a resource 
efficient SubBytes transformation. Finally this work was incorporated in our iterative AES 
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encryption core to give the excellent results with respect to resource utilization. In the 
following chapter, these results are compared with results of other work done in this field. 
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5 Results  
In the following section results of our implementation are compared with various 

other implementations. 

5.1 Results of Implementation of S-Box Based AES 
We have compared our results with previous conventional FPGA based BRAM 

implementation of AES [24-28] that uses the S-Box approach with data path of 128 bits. The 
FPGA used by Algredo-Badillo et al. [24] and Zambreno et al. [25] are Virtex-II series, 
similarly the FPGA used by Swankoski et al. [26] is Virtex-II Pro series and by Lopez-Trejo 
et al. [27] and Arshad Aziz et al. [28] is Spartan-3 series. In all these devices, the size of 
BRAM is 18kbit. 

  To make fair comparison we have also utilized the same series devices, i.e. Spartan-3, 
having BRAM size of 18Kbit for our proposed S-box design. Our encryption core uses only 8 
BRAMs and 405 slices and by comparing it with results of Lopez-Trejo et al. because of use 
of same device as given in Table 5.1, it is considered to be an area efficient.  

The effective frequency of previous implementations ranges from 75MHz to 165MHz 
while our effective frequency is 206.28MHz as clearly shown in Table 5.1.  
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Table 5.1 Comparison of Results of Implementation of S-Box based AES 

Implementation Device Data 
Path 

Area 
(Slices) 

BRAMs Frequency 
(MHz) 

Throughput 
(Gbps) 

I. Algredo-Badillo 
[24] 

Virtex-II 
(XC2V1000) 128 586 10 96.42 1.450 

J. Zambreno [25] Virtex-II 
(XC2V4000) 128 387 10 110.16 1.41 

E. J. Swankoski 
[26] 

Virtex-II  Pro 
(XC2VP50) 128 1319 16 145.052 1.857 

E. Lopez-Trejo 
[27] 

Spartan-3 
(XC3S4000) 128 713 53 100.08 1.051 

Arshad Aziz [28] Spartan-3 
(XC3S50) 128 - 4 165 - 

Our Design Spartan-3 
(XC3S4000) 128 405 8 206.28 2.640 

5.2 Results of Implementation of Resource Efficient 
SubBytes Transformation 
The resource efficient technique proposed in this thesis, for the implementation of 

SubBytes transformation, employs the BRAM for the storage and access of S-Box. Table 5.2 
shows the comparison of the results of this technique and the results of other AES 
implementations on FPGA.  

We implemented our work on the Spartan-3 XC3S4000 device, and also on Virtex-II 
XC2VP2. We can see that the utilization of BRAMs has been reduced by 50% as compared 
to the most recent previous work of Arshad Aziz [28]. Our work utilizes only two embedded 
BRAMs for the implementation of the SubBytes transformation. 
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Table 5.2 Comparison of Results of Resource-Efficient SubBytes Transformation 

Implementation Device  Data Path BRAMs Frequency 
(MHz) 

J. Zambreno [25]  Virtex-II (XC2V4000) 128 8 110.16 

I. Algredo-Badillo [24]  Virtex-II (XC2V1000) 128 8 96.42 

E. J. Swankoski [26]  Virtex-II Pro (XC2VP50) 128 8 145.052 

E. Lopez-Trejo [27]  Spartan-3 (XC3S4000) 128 16 100.08 

Arshad Aziz [28]  Spartan-3 (XC3S50) 128 4 165 

Arshad Aziz [28]  Virtex-II Pro (XC2VP2) 128 4 210 

Our S-Box Module only  Spartan-3 (XC3S4000) 128 2 155.198 

Our S-Box Module only   Virtex-II Pro (XC2VP2) 128 2 206.186 

5.3 Results of Our AES Iterative Architecture Based on 
Resource Efficient SubBytes Transformation 

The design of our AES iterative architecture based on resource efficient SubBytes 
transformation was implemented on the Spartan 3 device XC3S4000. The maximum 
frequency for this design is 155.198 MHz. For better comparison with the previous results of 
BRAM based approach of AES, our design was then also implemented on the Virtex II 
device XC2VP2.   

In table 5.3, the column for BRAMs shows the number of BRAMs used in the SubBytes 
transformation only of these implementations. The column for Area (slices) shows the 
utilization of resources other than the BRAMs, and even for the same design, this quantity 
varies with the target device also. It is evident from the table that in our design there is a 
drastic reduction in number of BRAMs while offering the maximum frequency 155.198 MHz 
for Spartan 3. This frequency has been achieved by our efficient AES implementation even 
when we are using a quadrupled clock in our work. 
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Table 5.3     Comparison of Results of Our AES Iterative Architecture Based on Resource Efficient            
SubBytes Transformation with Results of Previous Works 

Implementation Device  Data 
Path 

BRAMs Area 
(Slices) 

Frequency 
(MHz) 

J. Zambreno [25]  Virtex-II (XC2V4000) 128 8 387 110.16 

I. Algredo-Badillo [24]  Virtex-II (XC2V1000) 128 8 586 96.42 

E. J. Swankoski [26]  Virtex-II Pro (XC2VP50) 128 8 1319 145.052 

E. Lopez-Trejo [27]  Spartan-3 (XC3S4000) 128 16 713 100.08 

Arshad Aziz [28]  Spartan-3 (XC3S50) 128 4 - 165 

Arshad Aziz [28]  Virtex-II Pro (XC2VP2) 128 4 - 210 

Our Design  Spartan-3 (XC3S4000) 128 2 483 155.198 

Our Design  Virtex-II (XC2VP2) 128 2 443 206.186 
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6 Conclusion and Future Work 

6.1 Conclusion 
The aim of this research was to implement the AES on Xilinx FPGA by utilizing the 

FPGA’s dedicated embedded memories, to store the S-box in a fully area-optimized way. 
This aim has been successfully achieved by optimizing the implementation of SubBytes 
transformation, using embedded BRAMs in an FPGA.  

The number of BRAMs available on an FPGA device is limited and varies according 
to the device size; and so does the cost. Specially, when we are implementing AES as part of 
a larger system, we may require additional BRAMs for some other application on the same 
FPGA. The most recent ROM based approach of implementing the SubBytes transformation 
utilized four BRAMs for one complete SubBytes transformation in one clock cycle. We 
aimed to make the ROM approach for area-efficient and to actually halve this utilization of 
BRAMs.  

The challenge for this thesis work was to develop a suitable synchronous clocking 
technique. This was done effectively as explained in chapter 4 of this thesis. The work 
presented in this thesis successfully accesses the S-Box in one BRAM, eight times in one 
clock cycle; and uses only two BRAMs for implementing the complete SubBytes 
transformation in one clock cycle only. 

6.2 Future Work 
To give a complete cryptographic unit, the incorporation of Key Scheduler and AES 

decryption process in our area-efficient AES encryption core, may be taken up as future 
work. All this work would ideally be done with consistent focus on improving throughput 
and size of this core. To achieve this, research should be focused on the target device, 
clocking techniques and area constraints.  
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For future, we recommend to store the S box and inverse S box in the same BRAM 
and implement the clocking technique presented in this thesis, to implement a resource-
efficient encryption and decryption AES core. Furthermore, appropriate pipelining of the 
design and use of efficient embedded FPGA resources may result in very high throughput 
rates. 

6.3 Publications 
• A Compact AES Encryption Core on Xilinx FPGA, Dur-e-Shahwar Kundi, Saleha 

Zaka, Qurat-Ul-Ain, Arshad Aziz, International Conference on Computer, Control 
and Communication (IC4), 14-15 February 2007, available at 
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4909251&tag=1. 

 
• Area Efficient S-Box Approach for SubBytes transformation in AES, Saleha Zaka, 

Arshad Aziz, Submitted to IEE Electronic Letters and is under review.  
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