
Proceedings of International Bhurban Conference on Applied Sciences & Technology
Islamabad, Pakistan, January 10 – 13, 2011

An Efficient Implementation of SPIHT Algorithm
on a Reconfigurable Hardware

Ursila Khan, Arshad Aziz and Valiuddin Abbas

National University of Sciences and Technology (NUST), H-12, Islamabad, Pakistan
Pakistan Navy Engineering College, Karachi-75350, Pakistan

ursila.khan@pnec.edu.pk, arshad@nust.edu.pk, v_uddin@.pnec.edu.pk

Abstract— This paper presents the implementation of the
Set Partitioning in Hierarchical Trees (SPIHT) Image
Compression Algorithm on reconfigurable platform. For
flexibility of design and to achieve optimized results, we
have combined the high-level utility of MATLAB with the
flexibility and optimization of FPGA to implement this
wavelet-based image compression coder on a sample 16 x 16
image. The initial and final stages of the design have been
implemented on MATLAB while the coding and decoding
being computationally intensive, are offloaded from the
main process to the FPGA.
.

I. INTRODUCTION

Over the last decade, the growing need of data
compression has been felt in almost every aspect of our
lives. With the ever growing technology, there has been a
requirement of more and more efficient compression
techniques. Multimedia (graphics, audio and video) data
requires considerable storage capacity and transmission
bandwidth and for this reason, they are compressed using
lossy or lossless compression techniques depending upon
the area of application. [1]

We have chosen the SPIHT algorithm which is known to
be implemented in Satellite Imaging, terrain imaging and
also in bio-imaging. The algorithm works in conjunction
with discrete wavelet transform and offers lossy but
optimized compression results.

The structure of the paper is as follows. In Section 2, we
have discussed the preliminaries and basic working of
SPIHT algorithm. In Section 3 we have described the
basic characteristics of a reconfigurable platform. Section
4 encompasses the software portion of our work, with
explanation of DWT on MATLAB. In Section 5 we have
described our design architecture and the coding and
decoding SPIHT engines on FPGA. This also includes the
integration of software and hardware platforms to achieve
optimized results. In Section 6 we have briefly mentioned
the implementation of our hardware design and tabulated
the results. Section 7 pertains to the conclusions that we
have arrived at, after combining the software and
hardware computations. This is followed by future work
in Section 8.

II. BASIC SPIHT ALGORITHM

SPIHT is an extension of the Embedded Zero Tree
Algorithm (EZW) and was developed by Amir Said and
William Pearlman in 1996. [2] It has been known to give
significantly impressive results in image compression as
compared to other techniques. The use of wavelets for
satellite imaging, medical imaging has been advocated
and its properties utilized in conjunction with SPIHT.

The SPIHT algorithm offers significantly improved
quality over other image compression techniques such as
vector quantization, JPEG and wavelets combined with
quantization. [3] It offers characteristics such as: [2]

• Good image quality with a high PSNR
• Optimized for progressive image transmission
• Fast coding and decoding
• Can be used for lossless compression
• Can be efficiently combined with error

protection

The SPIHT Algorithm works in two phases: First the
wavelet transform of the input image is computed and
then the wavelet coefficients are transmitted to the SPIHT
coding engine.
After the discrete wavelet transform of the image has
been computed, SPIHT divides the wavelets in to spatial
orientation trees. Each node in the tree corresponds to an
individual pixel. Each pixel in the transformed image is
coded on basis of its significance by comparing with a
threshold value at each level. If the value of a pixel or any
of its offspring is below the threshold, we can conclude
that all of its descendants are insignificant at that level
and need not be passed.

 After each pass, the threshold is divided by two and the
algorithm proceeds further. This way information about
the most significant bits of the wavelet coefficients will
always precede information on lower-order significant
bits, which is referred to as bit-plane ordering. [3]

mailto:ursila.khan@pnec.edu.pk�
mailto:arshad@nust.edu.pk�
mailto:v_uddin@.pnec.edu.pk�

Proceedings of International Bhurban Conference on Applied Sciences & Technology
Islamabad, Pakistan, January 10 – 13, 2011

Figure 1: Spatial-Orientation Trees [2]

Figure 2: Scan order for coding the wavelet coefficients [4]

Fig 1 shows the root nodes with arrow pointing to the
offspring of the nodes at each scale.By observing the
above figure we can see that every node in the tree
corresponds to an individual pixel. The descendants of a
pixel are the four pixels in the same spatial location of the
same sub band at the next finer scale of the wavelet. [3]
The wavelet coefficients are scanned in a zigzag pattern
as shown in the figure. By following this manner of scan,
an insignificant root automatically shows that its
offspring are also insignificant. Fig 2 depicts this pattern.

As the algorithm proceeds, data are manipulated between
three lists namely, the list of insignificant pixels (LIP),
the list of insignificant sets (LIS) and the list of
significant pixels (LSP). The LIP contains the pixels
which on comparison with the threshold fall below it and
are considered insignificant during that pass.
LIS contains sets of wavelet coefficients which are
defined by tree structures, and which had been found to
have magnitude smaller than a threshold (are
insignificant). The sets exclude the coefficient
corresponding to the tree or all sub-tree roots, and have at
least four elements. [4] LSP contains the pixels which
have values higher than the threshold and can be passed
to the decoder during the current pass. Fig 3 shows how
data are processed between the three lists.

III. FIELD-PROGRAMMABLE GATE ARRAY

A reconfigurable platform (FPGA) has been chosen due
to its immense flexibility in terms of coding and memory
allocation and manipulation. Our algorithm is
computationally intensive and includes frequent
manipulation of data between registers. For these reasons,
the FPGA was chosen because it offers significant
potential for the efficient implementation of a wide range
of computationally intensive signal and image processing
algorithms. [5]

Reconfigurable hardware also offers the advantage of
look-up tables, which is used to replace a runtime
computation with a simpler array indexing operation. The
savings in terms of processing time can be significant,
since retrieving a value from memory is often faster than
undergoing an 'expensive' computation or input/output
operation.[7] The FPGA also offers an additional
advantage of its built-in hardware blocks such as the
Block RAM, DCM modules etc, which we can utilize for
better performance.

IV. DISCRETE WAVELET TRANSFORM

One of the most popular applications of wavelets has
been to image compression. [4] Over the past several
years, the wavelet transform has gained widespread
acceptance in signal processing in general and in image
compression research in particular. Wavelet based coding
schemes have been known to give better performance in
comparison to the schemes that use DCT. Also, wavelet-
based coding is more robust under transmission and
decoding errors, and also facilitates progressive
transmission of images. [1]

In most image compression schemes, the Discrete
Wavelet Transform (DWT) architecture is selected for
exploiting the correlation among the image pixels and
conveniently ignoring redundancies.

V. OUR DESIGN ARCHITECTURE

Our design architecture includes combination of software
and hardware to implement the SPIHT algorithm. Since
it’s a wavelet-based coder, we computed the wavelet
coefficients of our sample image on MATLAB and then
used FPGA for coding and decoding the wavelets. After
decoding, we reverted once again to MATLAB for the
inverse wavelet transform of the coefficients to recover
the original image in compressed form. We have
explained the software and hardware implementation of
our work separately.

http://en.wikipedia.org/wiki/Input/output�

Proceedings of International Bhurban Conference on Applied Sciences & Technology
Islamabad, Pakistan, January 10 – 13, 2011

In our software implementation, we have discussed how
we used the build-in toolbox of MATLAB to generate
visual image decomposition. In the hardware
implementation portion, we have explained the FPGA
encoder and decoder working with flow charts. The
charts explain the different modules of our coding. Fig 4
shows the workflow of our design.

Figure 4: Design Workflow

A. DWT ON MATLAB

In our design, the wavelet coefficients of our image are
calculated using MATLAB which are then transferred to
the SPIHT Encoder. The encoder has been designed on
Verilog to be used on FPGA. Similarly, the decoder has
also been coded on Verilog for FPGA implementation.
After decoding, the reconstructed wavelets are obtained,
which are again given to MATLAB for the computation
of the inverse wavelet transform. After the inverse dwt,
the reconstructed image is retrieved.

We have used the Daubechies wavelet filter [9] to
decompose our image at 4 levels. After computing the
transform, the pixel coefficients are input to the FPGA
encoder. Once the encoder has coded the pixels and the
decoder has decoded the coefficients to retrieve the
wavelets, an inverse wavelet transform is done to recover
the image.
In our work we have decomposed a sample image using
the wavelet toolbox from MATLAB [10], and shown the
axes on which it has been decomposed. Also, we have
shown the reconstructed image which has been obtained
using the toolbox. This image serves as the target image
which we intend to obtain using FPGA coding. The
figures below show (Fig 5a) original sample image, (Fig
5b) its 4-level decomposition, (Fig 5c) axes of the image
and (Fig 5d) target image reconstruction.

Figure 3: SPIHT Flowchart [8]

Proceedings of International Bhurban Conference on Applied Sciences & Technology
Islamabad, Pakistan, January 10 – 13, 2011

Figure 5a: Original Image Figure 5b: Decomposition

Figure 5c: Image Axes [9] Figure 5d: Reconstruction

B. SPIHT CODING AND DECODING ON FPGA

We have decomposed our image on four levels and coded
it through five sorting passes. The number of sorting
passes is continued till there remain no more sets in the
LIS. Initially, our encoder takes the pixel coefficients in
text files and computes the maximum magnitude pixel
value in the file max.v as shown in the flow diagram Fig
6.This maximum value is then input to the Log.v file
where its log base 2 and floor are calculated. This floor
value is then used to compute the threshold, which is the
base for all the comparisons in the sorting and refinement
passes of our algorithm. After each pass on individual
levels, a bit-stream is output which shall be used by the
decoder to recover the image level by level. We have
continued our algorithm for six Sorting Passes, till there
remain no more sets in LIS. Fig 6 shows the work flow of
our FPGA encoder.
At the decoder end, exactly the same pattern as the
encoder is observed. The coded bit-stream is compared
with the pixel locations and the values are reconstructed
using a two-bit quantizer. The output bit-stream from
each level of the encoder is used to reconstruct the
wavelets at each level. After the entire image matrix is
decoded, it is used to compute the inverse DWT by using
MATLAB. The decoder working is shown in Fig 7.

Figure 6: FPGA Encoder

Figure 7: FPGA Decoder

Proceedings of International Bhurban Conference on Applied Sciences & Technology
Islamabad, Pakistan, January 10 – 13, 2011

C. INTEGRATION

We have computed the Discrete Wavelet Transform of
our sample image on MATLAB. This is because image
decomposition on a high-level language was considered a
more convenient option. Also, decomposition on Verilog
HDL requires very lengthy coding. This way, we
employed MATLAB for the quick and easy wavelet
computations. However, we chose FPGA for the coding
process because it allows ease of rotating data within the
memory arrays and registers and is a flexible option for
algorithms which involve extensive computations and
signal processes.

VI. IMPLEMENTATION RESULTS

We have successfully synthesized the first module of our
FPGA encoder. The first module takes the wavelet
coefficients of the image and computes the maximum
value coefficient. This maximum magnitude coefficient is
further used to compute threshold. Table 1 below gives
the Device Utilizations and Timing details of the above
mentioned module.
The remaining modules our work have been successfully
checked for coding and are giving accurate results,
however synthesis and implementation of design are
currently in progress.

TABLE I.

IMPLEMENTATION TOOLS AND RESULTS

Target FPGA Device xc3s500e-5-vq100

Module Name Max_value.v
Device Utilization

Used Available Utilization

Number of Slices

35 960 3 %

Number of IOs 65
Number of 4 input LUTs 67 1920 3 %
Number of bonded IOBs 65 66 98%

IOB Flip Flops 32
Number of GCLKs 1 24 4 %

Timing Report

Speed Grade

-5

Maximum Period No path found
Minimum input arrival time

before clock

1.731ns

Maximum output required
time after clock

11.752ns

Maximum combinational path
delay 13.581ns

VII. CONCLUSION

We have successfully accomplished the software and
hardware integration to implement the SPIHT algorithm
on a sample 16 x 16 image. The reconstruction of our
sample image is still under process and will require
further work.

VIII. FUTURE WORK

In the future, this work can further be optimized to carry
out all the phases on Verilog HDL. The Verilog HDL
code can be optimized to achieve the desired results in
lesser time and fewer storage elements. Also, the newer
FPGA families being introduced in the market offer
better performance and more storage elements to enhance
performance and yield better results.

REFERENCES

[1] Subhasis Saha-“Image Compression - From DCT to Wavelets: A
Review”, Crossroads, Volume 6 , Issue (March2000)

 Pages: 12 -
21 Year of Publication: 2000 ,ISSN:1528-4972

[2] A. Said, W. A. Pearlman, “SPIHT Image Compression: Properties
of the Method”

 http://www.cipr.rpi.edu/research/SPIHT/spiht1.html

[3] Thomas W. Fry and Scott Hauck, “SPIHT Image Compression on
FPGAs”, Circuits and Systems for Video Technology, IEEE
Transactions on , Vol 15 Issue: 9, pp 1138 – 1147, Sept. 2005

[4] Amir Said and William Pearlman “Example of Application
for Image Compression”
http://www.cipr.rpi.edu/~pearlman/papers/ex_spiht-ezw.pdf

[5] Miriam Leeser, Srdjan Coric, Eric Miller, Haiqian Yu, Marc
Trepanier, “Parallel-Beam Backprojection: an FPGA
Implementation Optimized for Medical Imaging”, The Journal of
VLSI Signal Processing Volume 39, Number 3, 295-311, DOI:
10.1007/s11265-005-4846-5

[6] Khalid Sayood, “Introduction to Data Compression”, Academic
Press, Second Edition, Published 1996, pp 500-512

 [7] Ian Kuon, Russell Tessier & Jonathan Rose- “FPGA
ARCHITECTURE Survey and Challenges”, Foundation and
Trends in Electronic Design Automation, Volume 2 No 2, 2007,
pp 135-253

[8] Nikola Sprljan, MATLAB Image and Video Compression
Depot, SPIHT Algorithm Flowchart,

http://sprljan.com/nikola/matlab/ztree.html

[9] Ingrid Daubechies, “Ten Lectures on Wavelets”, Society for
Industrial and Applied Mathematics,

Year of Publication: 1992,
ISBN:0-89871-274-2

[10] Wavelet Toolbox, MATLAB®, MathWorks, 2009.

http://www.cipr.rpi.edu/research/SPIHT/spiht1.html�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76�
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=76�
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=32227�
http://www.springerlink.com/content/0922-5773/�
http://www.springerlink.com/content/0922-5773/�
http://www.springerlink.com/content/0922-5773/�
http://www.springerlink.com/content/0922-5773/39/3/�

	Introduction
	BASIC SPIHT ALGORITHM
	FIELD-PROGRAMMABLE GATE ARRAY
	DISCRETE WAVELET TRANSFORM
	OUR DESIGN ARCHITECTURE
	DWT ON MATLAB
	SPIHT coding and decoding on FPGA
	INTEGRATION

	IMPLEMENTATION RESULTS
	CONCLUSION
	FUTURE WORK
	References

