

SPIHT IMAGE COMPRESSION AND RECONSTRUCTION ON

FIELD PROGRAMMABLE GATE ARRAY

Submitted by

Ursila Tanweer Khan

Supervisor:

Dr. Arshad Aziz

Thesis

Submitted to the Department of Electronic and Power Engineering

College of Marine Engineering (PNEC), Karachi

National University of Sciences and Technology, H-12, Islamabad

In partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

With Specialization in Communication

June 2011

IN THE NAME OF ALLAH SUBHANAHU WA TA’ALA, THE MOST GRACIOUS, MOST MERCIFUL

ABSTRACT

This thesis presents the implementation of the Set Partitioning in Hierarchical Trees (SPIHT)

Image Compression Algorithm on Reconfigurable platform. For flexibility of design and to

achieve optimized results, we have combined the high-level utility of MATLAB with the

flexibility and optimization of FPGA to implement this wavelet-based image compression coder

on a sample image. The design is a pipe-lined architecture comprising of four phases in which

Phase 1 and Phase 4 have been implemented on software and Phase 2 and Phase 3 on hardware.

The output of each phase serves as the input to the succeeding phase. Our hardware architecture

has been coded using Verilog HDL and our target devices are from Spartan 3E and Virtex-4

Family developed by Xilinx.

In Phase 1, we have computed the 4-level DWT of the image using Daubechies wavelets which

serve as input to the next phase. In Phase 2, we have designed the SPIHT encoder to code the

wavelets. In Phase 3, the decoding of the wavelets takes place and finally in Phase 4, IDWT is

carried out to reconstruct the image. The SPIHT encoder and decoder are designed on hardware

and contain four modules. Our hardware modules are implemented on cost effective devices and

are giving an appreciable threshold while occupying area resources efficiently.

© Copyright by Ursila Tanweer Khan
June 2011

All Rights Reserved

1

i

I dedicate my work to my parents Tanweer Ahmad Khan and Nuzhat Tanweer
without whom I would not be where I stand today.

ii

ACKNOWLEDGEMENTS

I begin with thanking The Almighty Allah (Subhanahu-Wa-Ta'ala) for granting me His Never-

ending Blessings and His extreme Kindness all of which contribute to where I stand today. It was

always a simple prayer to the Almighty that made the impossible appear simple and possible.

I want to express my gratitude to my parents and my brothers who never lost faith in me and

encouraged me during the most difficult times of my work. It is their support and patience

because of which I passed major roadblocks.

I am heartily thankful to my advisor Dr. Arshad Aziz who guided and motivated me throughout

my research work and kept me going even when the situation appeared very bleak. It's his

continuous driving force that has made the completion of my thesis possible.

During my daily work, I was blessed with people who were always supportive in some way or

the other. I express my sincere gratitude to Dr. Fawad Ahmed who always helped me during the

times when I faced serious problems in my work.

 I thank all the Guidance Committee members Dr. Pervez Akhtar, Dr. Valiuddin Abbas and Dr.

Bilal Kadri. I am also thankful to Cmdr(R) Riaz Mahmud, for always offering me warm

greetings, words of encouragement and most importantly his seat, for endless hours during my

work.

 Lastly, I offer my regards to all of those including my classmates who supported me in any way

during the completion of my research work.

iii

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

 1.1 Study Background ...…………………………….......... 1

 1.2 Thesis Scope …………………………………………… 2

 1.3 Thesis Structure …….………………………………….. 2

CHAPTER 2 INTRODUCTION TO DATA COMPRESSION

 2.1 Introduction …………………………………………….. 3

 2.2 Image Compression Schemes …………………………… 4

 2.3 Applications ……………………………………………… 5

CHAPTER 3 DISCRETE WAVELET TRANSFORM

 3.1 Introduction ……………………………………………... 6

 3.2 DWT Basics ……………………………………………... 6

 3.2.1 Haar Wavelets ………………………………… 6

 3.2.2 Daubechies wavelets ………………………….. 7

iv

 3.2.3 Biorthogonal Wavelets ……………………….. 8

 3.3 Applications …………………………………………….. 8

 3.4 DWT in Image Compression …………………………… 9

CHAPTER 4 FIELD-PROGRAMMABLE GATE ARRAY

 4.1 Introduction ...……………………………...................... 12

 4.2 Industrial Scope of FPGA ………………………………. 13

 4.3 Overview of Spartan 3E Family …………………………. 14

 4.4 Overview of Virtex-4 Family ……………………………. 15

CHAPTER 5 SET PARTITIONING IN HIERARCHICAL TREES

 5.1 Introduction ……………………………………………... 16

 5.2 SPIHT Coder ………….........…………………………… 17

 5.3 Properties ………………………………………………… 20

 5.4 SPIHT Coding Engine …………………………………... 21

 5.4.1 Initialization ……………………………………... 21

 5.4.2 Sorting Pass ……………………………………… 21

 5.4.3 Refinement Pass …………………………………. 23

 5.4.4 Quantization Step Update ……………………….. 24

 5.5. Decoder ………………………………………………….. 24

v

 5.6 Basic Algorithm ………………………………………….. 25

CHAPTER 6

OUR DESIGN ARCHITECTURE

 6.1 Introduction ...……………………………..................... 26

 6.2 Software Architecture …………………………………. 27

 6.3 Hardware Architecture …………………………………. 30

 6.3.1 Maximum Magnitude ……...........…………….. 31

 6.3.2 Threshold Computation ……………………..… 31

 6.3.3 SPIHT Encoder ……………………………….. 32

 6.3.4 SPIHT Decoder ………………………….…… 33

CHAPTER 7

IMPLEMENTATION RESULTS AND COMPARISONS

 7.1 Introduction ...……………………………..................... 35

 7.2 Implementation Results …………………………………. 36

 7.2.1 Maximum Magnitude Module …………………. 36

7.3

7.4

7.2.2 Threshold Module ……………………………...

7.2.3 SPIHT Encoder …………………………………

7.2.4 SPIHT Decoder …………………………………

Time Comparison …………………………………………

Throughput and Resource Utilization Comparison ………

37

38

39

40

41

vi

CHAPTER 8

CONCLUSION AND FUTURE WORK

 8.1 Conclusions ...……………………………..................... 43

 8.2 Future Work ……………………………………………. 44

 8.3

Publication …………………………………………….

List of Figures ………………………………………….

List of Tables …………………………………………..

List of References ……………………………………...

44

vii

ix

45

vii

LIST OF FIGURES

Figure Page

2.1 Typical compression scheme... 4

3.1 2-D Discrete Wavelet Transform of an image …………………………….….. 10

3.2 1-level wavelet built by one-dimensional passes…………...…………………. 10

3.3(a) 2-level DWT …………………………………………………………………. 11

3.3(b) 3-level DWT …………………………………………………………………. 11

3.4(a) 3-level DWT effect …………………………………………………………… 11

3.4(b) Sample medical image ……………………………………………………… 11

4.1 Basic building blocks of FPGA …………………………………...…………. 12

5.1 SPIHT coding workflow ……………………………………...……………… 19

5.2 Sorting Pass ………………………………………………………………...… 22

5.3 Refinement Pass ………………………………………………………...……..23

6.1 Our Design architecture …………………………………………………...…...27

6.2 Workflow in Phase 1 on software ………………………………………...……28

6.3(a) Sample Image ………………………………………………………………….28

6.3(b) 4-level decomposition ………………………………………………………....28

6.4(a) Spatial Orientation Trees ……………………………………………………..29

6.4(b) Tree Axes …………………………………………………………………..29

viii

6.5 Workflow in Phase 1 on software ………………………………………...……...29

6.6 Hardware Architecture ……………………………………………………...30

6.7 SPIHT Encoder FPGA Architecture……………………………………………. 33

6.8 SPIHT Decoder FPGA Architecture……………………………………………. 34

ix

LIST OF TABLES

Table _____ Page

7.1 Implementation Results of Maximum Magnitude Module…………………… 36

7.2 Implementation Results of Threshold Module………………………………... 37

7.3 Implementation Results of SPIHT Encoder Module…………………………. 38

7.4 Implementation Results of SPIHT Decoder Module…………………………. 39

7.5 Comparison Result of SPIHT in terms of Time………………………..............40

7.6 Comparison Result of SPIHT in terms Throughput and Area…………………42

1

CHAPTER 1

INTRODUCTION

1.1 Study Background

Image Compression Algorithms have been the answer to efficient and easy storage and

transmission of image data for a long time. Various methods of Compression Algorithms have

been the focus of research among which wavelet-based compression algorithms are found to

have given better performance and highest compression ratios compared to other types like

Vector Quantization, Fractals and DCT. Some popular image compression algorithms are;

� EZW (Embedded zero-tree wavelet algorithm)

� SPIHT (Set Partitioning in Hierarchical Trees)

� JPEG (Joint Photographic Experts Group)

Most Image Compression algorithms have high memory requirement and frequent

modifications and alterations are required when designing the architecture. For this reason, a

Reconfigurable Hardware i.e. The FPGA (Field-Programmable Gate Array) is a suitable option

because it offers immense flexibility while maintaining speed, utilizing resources and

optimizing performance.

In this work, the SPIHT (Set Partitioning in Hierarchical Trees) Image Compression technique

which was developed by Amir Said and William Pearlman has been explored and implemented

on an FPGA [1]. We have combined software and hardware platforms to implement this

algorithm and achieved good results.

2

1.2 Thesis Scope

 In this thesis work, efforts are made to implement the SPIHT algorithm using both software

and hardware platforms to achieve maximum optimization. The SPIHT can inherently be split

into two phases. The first phase of calculating the wavelet coefficients have been implemented

using software high-level language MATLAB. For the computationally intensive part of

encoding and decoding, we employed the Hardware Description Language Verilog HDL for

FPGA implementation. Our target platforms are the XC3S100E from Spartan 3E family and

XC4VLX80 from Virtex- 4 family, both of which are developed by Xilinx®.

1.3 Thesis Structure

Chapter 2 briefly covers introduction to data compression, image compression and its area of

application.

In Chapter 3, we have discussed the Discrete Wavelet Transform and how it enhances the

performance of compression algorithms.

In Chapter 4, we have discussed briefly, the background of our Reconfigurable Hardware

Platform i.e. The Field-Programmable Gate Array and the internal architecture of the Xilinx

FPGA.

Chapter 5 gives a detailed description of the basic SPIHT algorithm along with its

characteristics and basic working mechanism.

In Chapter 6 we have discussed in detail, our design architecture and the integration of

software and hardware to optimize the performance of the SPIHT algorithm. This chapter

also summarizes the implementation results of FPGA modules.

In Chapter 7, we have summed up our implementation results and its comparison with the

other known SPIHT implementations.

Finally, in Chapter 8, conclusions, future possibilities and improvements of this work have

been discussed and how this work can be extended to achieve further optimization.

3

CHAPTER 2

INTRODUCTION TO DATA COMPRESSION

2.1 Introduction

Over the last decade, the growing need of data compression has been felt in every aspect of

our lives. As technology has progressed, researchers have adopted newer and better forms of

compression schemes and today there are very few areas where we do not see the obvious

prevalence of data compression.

Uncompressed multimedia data such as graphics, audio and video require substantial storage

capacity and transmission bandwidth. Although the performance of modern systems,

processor speeds and mass-storage capacity has seen dramatic increase, there is always room

for higher bandwidth and storage capacity [2]. Compression has proved to be a solution to all

the above mentioned problems and has therefore become an integral part of our daily lives.

All around us, we find different forms of data compression in a diverse range of applications.

All the images that we find on the Internet are compressed mostly in the JPEG or GIF format,

while the PNG format is also observed in certain places. High-Definition TV is another

example in which image data is compressed using MPEG-2 format. Internet browsers

facilitate and optimize browsing in terms of time by making use of compression in its

progressive image transmission when opening a web page.

Data compression involves primary reliance on the fact that the data is redundant and that by

removing its redundancy, it can be transformed to minimize the size of its representation. [3]

It reduces the size of the data blocks to be transmitted over a network link enabling increase

in media channel capacity.

The mechanism of data compression incorporates a coding scheme at each end of a

transmission link. At the sender end of the link, the coding scheme removes certain redundant

data from the data blocks and accordingly replaces them correctly at the receiver end.

Redundancy removal at the sender side reduces, both the size of data blocks and bandwidth

requirement, thus allowing greater volumes of data to be transmitted at a time. A compressor

4

reduces the size of a file by deciding which data is more frequent and assigns it less bits than

to less frequent data. Amount of compression that a certain algorithm offers varies depending

upon the type of media (audio, video, images or text), size of the file and type of

compression. A typical compression scheme is shown in Figure 2.1.

Figure 2.1 Typical Compression Scheme

2.2 Image Compression Schemes

Image compression is different than compressing binary data in that its purpose is to remove

the redundant data from an image in order to make it area and transmission time efficient. If

general purpose compression programs are used to compress images, the result can be

optimized only to a certain degree. Encoders which are designed for such compression

techniques exploit the statistical properties of images. Image compression may be lossy or

lossless. In case of lossy compression the finer details of an image can be compromised for

saving bandwidth or storage capacity. However, in case of lossless compression, perfect

reconstruction of all image data is required at the receivers end with no loss of fine details

and the compressed data on recovery must be an exact replica of the original data. This is the

case in compression of binary data such as executables, documents etc which need to be

exactly reproduced after decompression. [4]

Lossy compression may be applied to multimedia data such as images and music which does

not require exact replication as long as there is tolerable error between the original signal and

the compressed form and insignificant or no audible or visual loss is present. In case of an

image file, an approximation of the original image can be used for most purposes except

medical imaging which requires absolute recovery of all information.

5

2.3 Applications

Media can be in form of text, audio, video and still images. Audio, Video and Image

compression schemes are designed to reduce the transmission bandwidth requirement of

digital streams and the storage size of files. [5] Data compression finds direct applications in

MP3 players and computers. Digitally compressed audio streams are applied in most video

DVDs; digital television, media streaming on the internet and in terrestrial radio broadcasts.

Compression is used in digital cameras, to increase storage capacities with tolerable

degradation of picture quality. Similarly, DVDs use MPEG-2 Video codec for video

compression.

6

CHAPTER 3

DISCRETE WAVELET TRANSFORM

3.1 Introduction

Wavelet Transform has gained widespread recognition and acceptance in the fields of Image

compression and signal processing. The DWT (Discrete Wavelet Transform), is multi-resolution in

nature and on account of this property, it has benefits in application areas where scalability and

tolerable degradation are important.

3.2 DWT Basics

The wavelet transform decomposes a signal into a set of basic function called wavelets. A discrete

wavelet transform (DWT) is a wavelet transform for which the wavelets are sampled at

predefined units of time. There are several types of wavelets among which some of the

commonly used ones are discussed in the following sections.

3.2.1 Haar Wavelets

The first DWT was invented by the Hungarian mathematician Alfréd Haar. The Haar

wavelets transform works on an input represented by a list of 2n numbers. It pairs up the input

values, retains the difference and passes the sum. This process is repeated recursively, pairing

up the sums to provide the next scale: finally resulting in 2n − 1 differences and one final

sum.

The Haar wavelet's mother wavelet function ψ(t) can be described as

ψ(t) =

Its scaling function φ(t) can be described as;

7

φ(t) =

3.2.2 Daubechies Wavelets

Daubechies wavelets were formulated by the Belgian mathematician Ingrid Daubechies in

1988 and are the most widely used set of discrete wavelet transforms. Many variations of the

original wavelets have now been developed and are largely used in image compression

schemes. The Daubechies wavelets generate finer discrete samples of a mother wavelet

functions progressively. The wavelets make use of the recurrence relations between the

scaling and wavelet functions such that each resolution is twice that of the previous scale. [7]

We can take the example of Daubechies D4 wavelets which have four scaling function

coefficients as follows;

=

=

=

=

The wavelet function coefficient values are:

g0 = h3

g1 = -h2

8

g2 = h1

g3 = -h0

Each step of the wavelet transform applies the wavelet function to the input data. If the

original data set has N values, the wavelet function will be applied to calculate N/2

differences (reflecting change in the data). In the ordered wavelet transform the wavelet

values are stored in the upper half of the N element input vector. The scaling and wavelet

functions are calculated by taking the inner product of the coefficients and four data values.

3.2.3 Bi-orthogonal Wavelets

A bi-orthogonal wavelet is a wavelet where the associated wavelet transform is invertible but

not necessarily orthogonal. Bi-orthogonal wavelets allow more freedom than orthogonal

wavelets an example of which is the possibility to construct symmetric wavelet functions. [8]

Bi-orthogonal wavelets make use of two scaling functions , which may generate

different multi-resolution analyses, and accordingly two different wavelet functions . So

the numbers M and N of coefficients in the scaling sequences a, may differ. The scaling

sequences must satisfy the following bi-orthogonality condition

 = 2.

Then the wavelet sequences can be determined as

, and

, .

3.3 Applications

9

Discrete Wavelet Transform finds applications in Signal De-noising and Data Compression.

DWT is a form that is appropriate to discrete data such as individual points or pixels in an

image. On account of this property DWT is often used in Image compression schemes.

3.4 DWT in Image Compression

DWT is used in a number of Image compression schemes among which some of the notable

ones are EZW (Embedded zero-tree wavelet), SPIHT and JPEG 2000. (Joint-Photographic

Experts Group) The EZW used DWT for the decomposition of an image at each level and

scans the wavelet coefficients in each sub-band in a zigzag manner. SPIHT is a highly refined

version of the EZW and it gives higher image quality with higher PSNR and compression

ratios as compared to the EZW.

The JPEG 2000 standard does not have the limitations of the previous versions of JPEG

because it has incorporated the use of wavelet technology. The JPEG 2000 uses Wavelet

transform and Arithmetic Coding. For lossy compression, it uses the Daubechies (9,7) filters

and Daubechies (5,3) filters for lossless compression.

The discrete wavelet transform (DWT) is a form appropriate to discrete data such as

individual points or pixels in an image. The DWT runs a high pass and a low pass filter over

the image in one dimension which could be either horizontal or vertical. This produces a low

pass and a high pass version of the data. These results are down sampled, yielding two sub-

bands, each of which is one half the size of the input stream. The result is a new image

comprising of a high-pass and low-pass sub-band. For a multidimensional signal such as in

image, this procedure of filtering and sampling is repeated in each dimension. [8] The vertical

and horizontal transformations break up the image in four distinct sub-bands. The wavelet

coefficients that represent the fine details are LH, HH and HL. LL represents the lower

frequency component of the image. Figure 3.1 explains this process

10

 Figure 3.1 2-D Discrete Wavelet Transform of an image [9]

Figure 3.2 explains a one-level wavelet transform over an image by two one-dimensional

passes.

(a) (b) (c)

Figure 3.2 A 1-level wavelet built by two one-dimensional passes: (a) original image

(b) horizontal pass, and (c) vertical pass. [8]

For the next level calculation, the horizontal and vertical transformations are carried out on

the LL sub-band from the previous level. In Figure 3.3(a), 2-level DWT is shown. Similarly

for a 3-level DWT the transformations will be carried out on LL sub-band from 2-level

transform. Figure 3.3(b) shows the results of a 3-level transform.

11

 Fig 3.3(a) 2-level DWT Fig 3.3(b) 3-level DWT

This process can go on for ‘n’ number of times with each level giving finer and finer details

of an image. Figure 3.4(a) and Figure 3.3(b) help visualize the effects of the transform on a

sample MRI image.

 Fig 3.4(a) 3-level DWT effect Fig 3.4(b) Sample medical image

12

CHAPTER 4

FIELD-PROGRAMMABLE GATE ARRAY

4.1 Introduction

Field Programmable Array (FPGA) is a reconfigurable integrated circuit. It is called field

programmable because it is an integrated circuit, designed in such a way that it can be

configured by the customer or designer after it has been manufactured. It contains logic

blocks and programmable resources to implement a wide number of hardware functions.

These logic blocks are depicted in Figure 4.1.

Figure 4.1 Basic building blocks of FPGA [11]

FPGAs are configured using a hardware description language (HDL), Verilog HDL or VHDL

(VHSIC HDL which is the abbreviation for Very-high-speed Integrated Circuit HDL). They

can perform digital as well as analog functions.

Today most industries around the globe have adopted FPGA based applications due to the

fact that FPGAs offer a combination of the best characteristics of ASICs and processor-based

systems. FPGAs provide high speed and reliability but unlike ASIC design, they do not

require large memory space.

13

FPGAs contain programmable logic components called ‘logic blocks’ which are wired

together by reconfigurable interconnects. These logic blocks can be configured according to

the users requirements to perform complex combinational computations or simple logic

functions such as AND, OR and XOR. The logic blocks in most FPGAs also include memory

elements, which may be simple flip-flops or more complete memory blocks such as Block

RAMs. [9]

4.2 Industrial Scope of FPGA

The FPGA industry sprouted from programmable read-only memory (PROM) and

programmable logic devices (PLDs). Since the invention of the first commercially available

FPGA by Xilinx in 1985, the worldwide FPGA market has grown from $14 million in 1987

to an estimated $2.75 billion in 2010.

The current FPGA market leaders are Xilinx Inc and Altera, which control 80% of the

market. Xilinx reportedly represents over 50% of the market share. According to Moshe

Gavrielov, the new CEO and president of Xilinx, “The programmable market is worth $4bn

and is estimated to be worth $5bn in 2011, but the ‘opportunity’ market for programmable

devices is $14bn” [10].

The first FPGA was invented by Xilinx in 1984 and the early devices were simple logic

chips. Today they find applications in most signal processing systems and control

applications, and are now rapidly replacing custom Application-Specific Integrated Circuits

(ASICs).

14

4.3 Overview of Spartan 3E Family

The Spartan-3 family architecture consists of five fundamental programmable functional

elements [11]:

� Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that

implement logic plus storage elements used as flip-flops or latches. CLBs perform a

wide variety of logical functions as well as store data.

� Input/output Blocks (IOBs) control the flow of data between the I/O pins and the

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state

operation. It supports a variety of signal standards, including four high-performance

differential standards.

� Block RAM (BRAM) provides data storage in the form of 18-Kbit dual-port blocks.

� Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the

product.

� Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions

for distributing, delaying, multiplying, dividing, and phase shifting clock signals.

A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block

RAM. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is

associated with a dedicated multiplier. The DCMs are positioned in the center with two at the

top and two at the bottom of the device.

The Spartan-3E family features a rich network of traces that interconnect all five functional

elements, transmitting signals among them. Each functional element has an associated switch

matrix that permits multiple connections to the routing.

15

4.3 Overview of Virtex-4 Family

The Virtex-4 family is divided in three sub-families which give very high performance logic

applications solutions, for DSP applications and embedded platform applications. Following

are some of the basic blocks of the Virtex-4 family [12].

CLBs, Slices, and LUTs

Virtex-4 FPGA has number of slices ranging from 6,144 to 63,168 and maximum distributed

RAM range from 96 Kb to 987 Kb. The configurable logic blocks (CLB) provide

combinatorial and synchronous logic as well as distributed memory and shift register

capability.

500 MHz DSP Slices

Cascadable embedded DSP slices with 18-bit x 18-bit dedicated multipliers, integrated

Adder, and 48-bit accumulator. These DSP Slices give up to 100% speed improvement over

previous generation devices.

Clock Distribution

Each Virtex-4 FPGA provides up to 20 Digital Clock Manager (DCM) modules offering

flexible frequency synthesis, improved maximum input/output frequency and reduced output

jitter. It gives self-calibrating, fully digital solutions for clock distribution delay

compensation, clock multiplication/division, and coarse/fine-grained clock phase shifting.

Block RAM

Every Virtex-4 FPGA has between 48 and 552 dual-port block RAMs, each storing 18 Kbits.

Each block RAM has two completely independent ports that share nothing but the stored

data.

Input/output

The number of I/O varies from 320 to 960 depending on device and package size. Each I/O

pin is configurable and can comply with a large number of standards, using up to 2.5V.

16

CHAPTER 5

SET PARTITIONING IN HIERARCHICAL TREES

5.1 Introduction

The SPIHT (Set-Partitioning in Hierarchical Trees) algorithm was developed in 1996 by

Amir Said and William Pearlman and is an advancement of the Embedded Zerotree Wavelet

algorithm (EZW) which was developed by J.M. Shapiro in 1993 [13]. The roots of SPIHT

may be embedded in the EZW algorithm however it is not a simple extension of the later, and

has proven to be a benchmark in the field of image compression algorithms.

SPIHT brought about a revolution in the field of image compression because it broke the

trend to complex compression algorithms. Previous research works involved using

sophisticated vector quantization in various attempts to improve coding schemes. SPIHT

achieved superior results compared to vector quantization while employing the simplest

technique of uniform scalar quantization. Therefore, it is much easier to design fast SPIHT

codecs.

SPIHT is a wavelet-based image compression coder [1]. It is a simple and efficient algorithm

with many unique and desirable properties such as low complexity, low memory usage and

offering progressive transmission in both lossy and lossless coding. First the wavelet

coefficients of the image are computed using the discrete wavelet transform and then

information about these coefficients is transmitted [14] SPIHT algorithm codes the pixels

according to their significance.

17

5.2 SPIHT Coder

SPIHT makes use of three lists namely

List of Significant Pixels (LSP)

List of Insignificant Pixels (LIP)

List of Insignificant Sets (LIS)

Some other important definitions which are used in the SPIHT coder are as follows;

O (i,j): set of coordinates of all offspring of node (i,j).

D (i,j): set of coordinates of all descendants of node (i,j).

H (i,j): set of all tree roots (nodes in the highest pyramid level).

L (i,j): D (i,j) – O(i,j) (all descendents except the offspring)

Wavelet coefficients are compared with a threshold value at each level, and manipulated

between the lists LIP, LIS and LSP. There are also two types of entries used.

Type A entry: D(i,j)

Type B entry: L(i,j)

 If a pixel is significant its magnitude must be greater to or equal to the current threshold. An

insignificant pixel value falls beneath the current threshold level. The following explanation

clarifies this significant criterion.

For a pixel: |c(i,j)| ≥ � Significant

For a set S: max|c(i,j)| ≥ � Significant

Similarly;

For a pixel: |c(i,j)| < � Insignificant

For a set S: max|c(i,j)| < � Insignificant

Where n is the number of bits of the largest coefficient

18

The SPIHT coder follows a number of steps in a predefined form at every level of operation.

There are two important steps in SPIHT namely, The Sorting Pass and the Refinement Pass.

The number of Sorting Passes is always one less than the number of Refinement Passes. In

the Sorting Pass, each pixel is compared with the threshold. If the magnitude of a pixel

exceeds or equals the current threshold it is termed as significant. A pixel is termed as

insignificant if its magnitude falls beneath the current threshold. An insignificant set can be

one of two types of sets. The set H contains all the pixels in the last level of the wavelet

transform that was performed, including the coarse and detail coefficients [14].

After each level the threshold is decreased by a factor of and the process is repeated.

After the initialization, the algorithm takes two stages for each level of threshold. First the

sorting pass is carried out in which the lists are organized. Following the sorting pass, the

refinement pass is carried out which does the actual progressive coding transmission. [15]

The result is in the form of a bit stream. The detailed scheme of the complete algorithm is

shown in Fig 5.1

19

 Figure 5.1 SPIHT coding workflow [16]

20

5.3 Properties

SPIHT is the remarkable algorithm which has displayed all of the below discussed properties. There

may be other image compression algorithms which give better performance in one area but the

important consideration here is that SPIHT wins in the remaining criteria. The characteristics of

SPIHT are discussed in detail in the following section. [16]

� Shows good image quality and high PSNR, especially for color images. SPIHT exploits the

properties of the wavelet-transformed images to increase its efficiency.

� Progressive Image Transmission is an inherent quality of the SPIHT algorithm. This means

that the quality at the decoder end improves as it receives more information about the

original image.

� Optimized Embedded coding; this is a special characteristic which enables compression

of a single image in different sizes to suit the individual needs of different users. By

using this technique an image need not be compressed each time for a different user

and gives an image quality comparable or even superior to sophisticated non-

embedded encoders.

� Symmetric encoding and decoding; the time taken for encoding is nearly equal to the

time taken for decoding an image sequence.

� It can be used for lossless compression and on account of this property can be

effectively applied to medical imaging or areas where degradation or loss of

information is a critical issue.

� SPIHT can be efficiently combined with error protection.

� SPIHT offers Multi-resolution scalability which means that the encoder and decoder

track the resolution of bits automatically.

21

5.4 SPIHT Coding Engine

The SPIHT coding engine performs the following four tasks in the given order, each of which

is explained in the following sections.

1. Initialization

2. Sorting Pass

3. Refinement Pass

4. Quantization-step update

5.4.1 Initialization

It initializes the value of ‘n’ for testing significance of pixels and constructing significance

map. The LSP is set as an empty list. The LIS is initialized to maintain all pixels in the low

pass sub band that have descendents and hence act as roots of spatial trees. All these pixels

are assigned to be of type A. LIP is initializing to contain all pixels in low pass pixels. The

threshold with which all the pixels are compared is computed using the formula where ‘n’

can be calculated by the formula in step 1.

1. n = where c(i,j) is the coefficient at position (i, j) in the image.

2. LIP = All elements in H

3. LSP = Empty

4. LIS = D’s or descendants of Roots

5.4.2 Sorting Pass

In the Sorting Pass, the magnitude of pixels is manipulated between the three lists LIP, LIS

and LSP after being compared with the threshold value. In this pass, elements of the LIP may

be moved to the LSP. Sets contained in LIS are broken down into the relevant tree type i.e.

A-type or B-type and their offspring may be moved to LIP or LSP according to their

significance. Each entry of the LIP is tested for significance with respect to the threshold. If it

22

passes the significance criterion, a 1 is transmitted followed by a sign bit representing sign of

that pixel and the pixel coordinates are moved to LSP. If the entry is insignificant then a 0 is

transmitted. The Sorting Pass process has been summarized in a step-by-step form as follows:

1. Process LIP.

a) For each coefficient (i,j) in LIP, Sn (i,j) is output where Sn (i,j) =1 when max |c(i,j)| >= 2n

or Sn (i,j) = 0 for other.

b) If Sn (i,j) =1 ,sign of coefficient (i,j): 0/1 is output and (i,j) is moved to the LSP.

2. Process LIS.

a) For each entry (i,j) in LIS and if the entry is of type D then output Sn(D(i,j)).

i) If Sn(D(i,j)) = 1 then for each (k,l) ∈ O(i,j) output Sn(k,l).

ii) If Sn(k,l) = 1, then add (k,l) to the LSP and output sign of coefficient: 0/1 .

iii) If Sn(k,l)=0, then add (k,l) to the end of the LIP.

b) If type L then output Sn(L(i,j)).

i) If Sn(L(i,j)) =1 then add each (k,l) ∈ O(i,j) to the end of the LIS as an entry of type D and

remove (i,j) from the LIS. Figure 5.2 shows the workflow of the sorting pass.

Figure 5.2 Sorting Pass [17]

23

5.4.3 Refinement pass

The refinement pass follows the sorting pass and it processes the entries in the LSP from the

previous sorting pass. The entries to the LSP from the current sorting pass are ignored and the

nth MSB of the magnitude of each entry from the previous pass is transmitted to the decoder.

It is important to note here that since refinement pass works upon entries from the previous

sorting pass, no bits would be transmitted at the end of the first sorting pass because the LSP

would contain no pixels prior to the current sorting pass. Refinement pass plays the main role

in decoding or reconstruction as it is responsible for transmitting the bit corresponding to the

current magnitude threshold for each entry in the LSP, which was not added in the previous

sorting pass. The refinement pass process has been summarized in the following two steps.

1. Process LSP.

2. For each element (i,j) in LSP except those just added above in the sorting pass the nth most

significant bit of coefficient is output. Figure 5.3 explains the refinement pass.

 Figure 5.3 Refinement Pass [17]

24

5.4.4 Quantization Step Update

The quantization step updates simply decrease the threshold by decreases the value of N. This

step is repeated after the sorting and refinement pass for a certain threshold has completed.

The value of N is decremented by 1 subsequently decreasing the threshold by a factor of

.The algorithm then returns to the sorting pass at step 2 and continues in the defined order.

The summary of the quantization step update is given in the following two steps.

1. Decrement n by 1.

2. Then go back to the Significance Map Encoding Step (Sorting Pass).

5.5 Decoder

In addition to performing the pre-defined job of decoding, the decoder also performs the task

of updating the reconstructed image. For the value of n when a coordinate is moved to the

LSP, the condition in equation 5.5.1 is known;

2ⁿ ≤ | C i, j| < 2ⁿ ……………………………….. Eq (5.5.1)

So, the decoder uses that information, plus the sign bit that is input just after the insertion in

the LSP, to set the value of using Equation 5.5.2;

C i, j = ± 1. 5 * 2ⁿ ………………………………Eq (5.5.2)

Similarly, during the refinement pass the decoder adds or subtracts 2n - 1 to C i, j when it

inputs the bits of the binary representation of | C i, j |.

25

5.6 Basic Algorithm

The following gives a step-by step implementation of the SPIHT encoder. [18]

1. Compute the threshold. Initialize LIP to all the root node coefficients. LIS to all the

trees (assign Type-D to them), LSP to an empty set.

2. Check the significance of all coefficients in LIP.

� If significant, output 1, followed by a sign bit and move it to the LSP.

� If not significant, output 0.

3. Check the significance of all the tress in LIS according to tree type.

a. For a tree of Type-D

� If it is significant, output 1, and code its children

� If a child is significant output 1, then a sign bit and add it to LSP.

� If a child is insignificant, output 0 and add to the end of LIP.

� If the children have descendants move the tree to the end of LIS as

Type L, otherwise remove it from LIS.

� If it is insignificant, output 0.

b. For a tree of Type-L

� If it is significant, output 1, add each of the children to the end of LIS as an

entry of Type D and remove the parent tree from the LIS.

� If it is insignificant, output 0.

26

CHAPTER 6

OUR DESIGN ARCHITECTURE

6.1 Introduction

This chapter pertains to our design architecture and how we have integrated software and

hardware platforms to achieve our goal. Our design has been split in two halves wherein half

of the work is implemented on software and the remaining half on hardware. Our work

comprises of four phases. Phases 1 and 4 have been incorporated in the software architecture

and Phases 2 and 3 on hardware platform. Our software architecture has been designed on

MATLAB and hardware architecture is implemented on FPGA.

The DWT and Inverse DWT have been carried out in Phase 1 and Phase 4 respectively while

the SPIHT encoder is designed on Phase 2 and SPIHT decoder is designed in Phase 3. In

Phase 1, the DWT of the sample image is computed which yields the wavelet coefficients. In

Phase 2, the wavelet coefficients are given to the SPIHT encoder which encodes the wavelet

coefficients. In Phase 3, the coded wavelets are decoded in the decoder block. In Phase 4, the

inverse DWT is carried out on the decoded wavelets to reconstruct the original image. Figure

6.1 explains our design workflow.

27

Figure 6.1 Our Design Architecture

6.2 Software architecture

Discrete Wavelet Transform using HDL requires lengthy coding and a long verification

exercise. For this reason, we employed the help of a high-level language i.e. MATLAB to

compute the wavelet coefficients of the sample image. We have used Daubechies wavelets to

compute four-level 2-D DWT of our image. We have used a simple 256 x 256 sample image

to implement the SPIHT algorithm as shown in Fig 6.3(a). The sample image is read onto a

MATLAB code which computes the 4-level DWT on the image using db-1 filters. Following

a DWT, the image is divided in to Spatial Orientation Trees which are described in detail

later in this section. The Spatial Orientation Trees are visible in Fig 6.3(b) which has been

obtained using MATLAB wavelet toolbox. These trees are then converted to hexadecimal

form and given as input to the SPIHT Encoder. Figure 6.2 shows the workflow of Phase 1,

implemented on software.

28

Figure 6.2 Workflow in Phase 1 on Software

The sample image and its decomposition have been shown in the figures below.

 Figure 6.3(a) Sample Image Figure 6.3(b) 4-level Decomposition

Following a DWT, the requirement of SPIHT scheme is for the image matrix to be split into

Spatial Orientation Trees. The wavelet coefficients are then compounded together in a single

matrix and converted to hexadecimal form so they can be read onto the FPGA.

The Spatial Orientation trees basically define the parent-children relationship between the

pixels in an image as depicted in Figures 6.4(a) and 6.4(b). In 6.4(a), the relationship between

parent node and offspring is shown using arrows. Each node in a tree corresponds to an

individual pixel. The offspring of a pixel are the four pixels in the same spatial location at the

next finer scale of the wavelet. SPIHT uses this relationship between nodes and their

descendants when coding the wavelets.

29

 Figure 6.4(a) Spatial Orientation Trees [8] Figure 6.4(b) Tree Axes

The last portion of our work is implemented on software which is the final Phase 4 of our

design. In it the decoded wavelets from the FPGA decoder serve as input. After the

decomposed wavelets are coded by the FPGA coder and consequently recovered by the

decoder they have to be given to MATLAB again for the Inverse DWT to be performed. The

IDWT results in the reconstruction of the original image. Since a 4-level DWT was

performed on the original image in Phase 1, we performed a 4-level Inverse DWT on the

decoded wavelets for the recovery of the image as depicted in Figure 6.5

Figure 6.5 Workflow in Phase 4 on software

30

6.3 Hardware architecture

As discussed in Section 6.1, our design architecture comprises of four phases amongst which

Phase II and III i.e. the SPIHT encoder and decoder sections have been implemented on

FPGA. Our design has four Verilog modules, three of which pertain to the encoder block and

a single module for the decoder block. In Figure 6.5, these four modules have been combined

in a block diagram to explain the workflow of our hardware design.

Figure 6.6 Hardware Architecture

In the following sections we have explained the functionality and implementation details of

each module individually.

31

6.3.1 Maximum Magnitude

The software portion of our design calculates the 16 x 16 wavelet array of the sample image.

This array comprises of all elements represented in 32-bit hexadecimal format. The wavelet

array is then given as input to the first module of the hardware which returns the maximum

magnitude pixel after scanning all the elements in the image array. The target device for this

module is a XC3S500E device from Spartan 3E family. The module uses 67 4-input LUTs

and fits into 35 slices, thus utilizing 3% memory resources of the Spartan 3E device. It

operates at a clock rate of 74 MHz and gives a throughput of 2368 Mbs.

6.3.2 Threshold computation

In this module, the maximum magnitude pixel value from Maximum Module is treated as

input. First the log base 2 of this value is computed and then the floor of the log value is

calculated. This floor value is then used to compute the threshold for Sorting Pass 1 of the

SPIHT encoder. The variables calculated in this module will be used in the following

equation,

n = � log₂ (maximum magnitude) �

In the above equation, the maximum magnitude value is taken from the previous module, and

the output value ‘n’ will be used to compute the threshold ‘T’ using the following formula T

= 2ⁿ. This value serves as the initial threshold for the first sorting pass in the encoder and

with each preceding sorting pass, the threshold value decreases by a factor of The

target device for this module is XC3S100E from Spartan 3E Family. The module uses 133 4-

input LUTs and occupies 72 slices, thus utilizing 7% memory resources of the Spartan 3E

device. It operates at a clock rate of 67 MHz and gives a throughput of 2144 Mbps.

32

6.3.3 SPIHT Encoder

In the previous module, the threshold has already been calculated. This will be treated as the

initial value in Sorting Pass 1. The threshold is decremented in each sorting pass by a ratio of

. The encoder then goes through a series of Sorting Passes and Refinement Passes. As

the encoder steps through the algorithm it inserts or deletes pixels from the three lists. All of

the information required to keep track of the lists is output to the decoder. In this way the

decoder maintains and generates an identical list order as the encoder. For the decoder to

reproduce the steps taken by the encoder, the output statements in the encoder’s algorithm

can be replaced with input for the decoder’s algorithm. [10] In our design, we have calculated

till 5th Sorting Pass. At the end of the 5th Pass we have a coded bit stream output which will

be given to the decoder. Figure 6.6 depicts the encoder workflow on FPGA.

The encoder module has been implemented on XC4VLX80 Virtex-4 Device. The slice usage

is 21327 which are 59 % of the total available resources. The reasons for using a high density

device is the large number of slice LUTs used to implement the design and the extensive

data manipulation that takes place in the encoder module. The entire module uses 40389

LUTs which rounds up to 56 % usage of available resources. It operates at a clock rate of

3.143 MHz and gives a threshold of 6436 Mbps.

33

Figure 6.7 SPIHT Encoder Workflow

6.3.4 SPIHT Decoder

The decoder follows a list order which is identical to the one used by the encoder. The coded

bit stream from the encoder contains the bits from the sorting pass and refinement passes.

These are given as input to the decoder. Also, initially included in the decoder module is a

blank image array. Once the coded bit stream from the encoder is given to the decoder; the

pixels are mapped on to the image matrix according to their location. Next, the correction bits

are computed and these are used to overwrite on the image matrix. This overwritten result is a

closer version of the original DWT. If there are more bit sequences in pipeline, this process of

mapping and overwriting will be repeated. When all the bits from the encoder output have

been mapped upon the image matrix, we have a reconstruction of the original wavelet

34

transform. The decoder maintains an identical list order as the encoder. Figure 6.6 elaborates

the workflow of the SPIHT decoder.

The target platform for the decoder module is XC3S100E device from Spartan-E Family. The

decoder module utilizes 112 4-input LUTs and 62 slices which comprise of 6% of the

available resources. It operates at a clock rate of 222 MHz and gives a throughput of 1776

Mbps.

Figure 6.8 SPIHT Decoder workflow

35

CHAPTER 7

IMPLEMENTATION RESULTS AND COMPARISIONS

7.1 Introduction

In this chapter we have compiled the implementation results of our hardware architecture and

compared them with previous known implementations. As discussed in Chapter 6, our

hardware design architecture comprises of four modules namely Maximum magnitude,

Threshold, SPIHT encoder and SPIHT decoder. We have tabulated the results of each module

in terms of clock rate and FPGA area utilization.

Furthermore we have compared our results with previous implementations of SPIHT on

FPGA. As we have observed that previously SPIHT has been implemented on hardware by

taking different kinds of approach. Researchers have made a number of criteria, the centre of

their focus. Some projects have been implemented while taking device performance, clock

rate, system frequency and throughput in consideration while others have been compared and

optimized in terms of PSNR, Image quality, compression ratios and bits per pixel usage.

Some algorithms have also been modified in terms of resource utilization and speed. A

common factor that we have so far observed is that the SPIHT algorithm has been

implemented either entirely on hardware or entirely on software. Our work is different in the

sense that we have tried to integrate the individual capabilities of both hardware and software

to achieve optimized results. We have studied a number of research works and compared our

results individually with the common parameters found in these works.

Our proposed designs have been implemented using Xilinx ISE Foundation 11.3 tool and

have successfully passed synthesis and Place and Route processes. We have successfully

tested each module for correct results using ISE Simulator. In Section 7.3 we have compared

our simulation time with that of previous results. In Section 7.4 we have compared our FPGA

area utilization with other projects.

36

7.2 Implementation Results

Our hardware design is build on four modules in which three modules have been

implemented on Spartan 3A device and one module on Virtex 4 device. Since our encoder

module is most computation extensive, we decided to implement it on a higher density

Virtex-4 device which offers faster processing speed and higher resources as compared to the

cost effective Spartan 3E device. We have carried out the post-synthesis process on each of

our modules and implemented the design successfully. In the following sections we have

tabulated the synthesis results of each module in their order of execution.

7.2.1 Maximum Magnitude Module

The target device is XC3S500E from Spartan 3E Family. It computes the maximum

magnitude pixel from the wavelet coefficient image array, computed in MATLAB and given

to the Verilog program in hexadecimal form. This module scans the array for the maximum

value pixel and returns the output. It operates at a clock rate of 74 MHz and gives a

throughput of 148 MPixels/sec while occupying an FPGA area of 3% in terms of slices.

Table 6.1 gives the implementation results of Maximum Magnitude module.

Table 7.1 Implementation Results of Maximum Magnitude module

Target FPGA Device XC3S500E-5

Module Name Maximum Magnitude

Clock Rate 74 MHz

Throughput 148 MPixels/sec

Device Utilization Percentage of total available resources

Number of Slices 3 %

Number of 4 input LUTs 3 %

Number of bonded IOBs 98%

37

7.2.2 Threshold Module

The target device is XC3S100E from Spartan 3E Family. It takes the maximum pixel value

from the maximum magnitude module and performs two functions on it. First the log base 2

of the maximum value is computed and then the floor of the previous result is computed. The

final result is used to calculate the initial threshold. This module performs a small function

but involves extensive arithmetic computations. The module operates at a clock rate of 67

MHz and fits into 7% of the total available slices. It gives a throughput of 268 MPixels/sec.

Table 7.2 tabulates the synthesis results of the threshold module

Table 7.2 Implementation Results of Threshold module

Target FPGA Device XC3S100E-5

Module Name Threshold

Clock Rate 67 MHz

Throughput 268 MPixels/sec

Device Utilization Percentage of total available resources

Number of Slices 7 %

Number of 4 input LUTs 6 %

Number of bonded IOBs 88 %

38

7.2.3 SPIHT Encoder

The target device is XC4VLX80 from Virtex-4 Family. The encoder module involves most

computations as compared to the other hardware modules. It goes through a pipelined process

of sorting and refinement passes whereby each pixel is scanned and manipulated individually.

The coder operates at a clock rate of 98 MHz and gives a throughput of 294 MPixels/sec

while using 59% of available slices. Results of the encoder block are tabulated in Table 7.3.

Table 7.3 Implementation Results of Encoder module

Target FPGA Device XC4VLX80

Module Name SPIHT Encoder

Clock Rate 98 MHz

Throughput 294 MPixels/sec

Device Utilization Percentage of total available resources

Number of Slices 59%

Number of Slice Flip-Flops 3%

Number of 4 input LUTs 56%

Number of IOs 200

39

7.2.4 SPIHT Decoder

The target platform for decoder module is XC3S100E device from Spartan-E Family. The

coded bit sequence from the encoder is processed by the decoder and individual mapping of

pixels on the wavelet reconstruction array takes place. The decoder module works at a clock

rate of 69 MHz and gives a throughput of 276 MPixels/sec while occupying 6% of the

available area resources. Table 6.4 shows the implementation results of the decoder module.

Table 7.4 Implementation Results of Decoder module

Target FPGA Device XC3S100E-5

Module Name SPIHT Decoder

Clock Rate 69 MHz

Throughput 276 MPixels/sec

Device Utilization Percentage of total available resources

Number of Slices 6 %

Number of 4 input LUTs 5 %

Number of bonded IOBs 37 %

40

7.3 Time Comparison

Our Maximum magnitude module, threshold module and decoder have been implemented on

Xilinx Spartan-3E devices while the encoder has been implanted on a Virtex-4 device. We

have made comparison with Fry et al [8] who have used a Virtex 2000E device to implement

a modified fixed order SPIHT scheme and lifting wavelet transform. We have also compared

results with Yin-hua Wu et al [19] who have used a Xilinx XC3S5000 to implement the

encoder module of a modified SPIHT coder. In Table 7.5, we have given the simulation time

for individual modules of our design. Our modules simulate in an order of nanoseconds

which is less compared to the other implementations considering our choice of cost effective

Spartan 3E device and Virtex-4 devices.

Table 7.5 Comparison Result of SPIHT in terms of Time

Implementation Device Frequency Time to completion

Fry et al [8]

Encoder only

Xilinx Virtex2000E

56 MHz 1.101 seconds

Yin-hua Wu et al [19]

Encoder only
Xilinx XC3S5000 50 MHz 2.29 ms

Our Maximum

Magnitude module only

Xilinx Spartan 3E

XC3S500E
74 MHz 13.581ns

Our Threshold only
Xilinx Spartan 3E

XC3S100E
67 MHz 15.020ns

Our Encoder Module

only

Xilinx Virtex-4

XC4VLX80
98 MHz 318.212 ns

Our Decoder Module

only

Xilinx Spartan 3E

XC3S100E
69 MHz 14.489ns

41

7.4 Throughput and Resource Utilization Comparison

First we shall compare our results with those of Fry et al [8]. Our maximum magnitude

module is implemented on a XC3S500E and occupies 3 % of the available resources in slices

while giving a throughput of 2368 Mbps. Fry et al [8] have used a Virtex2000E device which

has 97% greater number of slices compared to our device and 80% more logic gates

compared to the XC3S500E which has a mere 960 slices and is much more cheaper than the

Virtex 2000E. It is evident that our maximum magnitude module is far more efficient in

terms of area and cost.

Now if we compare our design modules with that of Yin-hua Wu et al [19], each of our

modules give a higher throughput in Mbps, in spite of the fact that we have used smaller less

costly devices. Corsonello et al [21] have used 15% of total available slices d 18 Block

RAMs to implement their encoder module only. In contrast, our encoder may have higher

slice utilization but we have not used any Block RAM in our design. In Table 7.6 we have

depicted the above discussed comparisons.

42

Table 7.6 Comparison Result of SPIHT in terms Throughput and Area

Implementation Module Device
Clock Rate

(MHz)

Throughput

(MPixels/sec)

FPGA

Area

(Slices)

Fry et al [8]
Maximum

Magnitude

Xilinx

Virtex2000E

73 146 62%

Fry et al [8]

Encoder

and

Decoder

modules

Xilinx

Virtex2000E

56 224 34%

Yin-hua Wu et al

[19]
SPIHT

Xilinx

XC3S5000
50 200 47%

Jyotheswar et al

[20]
SPIHT

Xilinx

Virtex4

XC4VLX25

35 280 Mbps 65%

Corsonello et al

[21]

Encoder

module only

Xilinx

XC2V1000
100 - 15 %

Our Design

Maximum

Magnitude

only

Xilinx

Spartan 3E

XC3S500E

74 148 3%

Our Design

Threshold

module

only

Xilinx

Spartan 3E

XC3S100E

67 268 7%

Our Design

Encoder

Module

only

Xilinx

Virtex-4

XC4VLX80

98 294 59%

Our Design

Decoder

Module

only

Xilinx

Spartan 3E

XC3S100E

69 276 6%

43

CHAPTER 8

CONCLUSIONS AND FUTURE WORK

This chapter includes the conclusions that we have reached upon at the completion of our

work. Also included are suggestions for future improvements in our work and our

publications.

8.1 CONCLUSIONS

The SPIHT compression scheme was introduced in 1996 and has since then gone through a

number of evolutions. However, to our knowledge through extensive study, we have seen

implementations either entirely on hardware or entirely on software.

Our target was to combine the capabilities of hardware and software to implement the

original SPIHT. We have implemented the DWT and IDWT on MATLAB which has a large

number of built-in functions for easy arithmetic calculations. Our coding and decoding

portion was carried out on hardware (FPGA) which provides immense flexibility for blocks

with extensive mathematical calculations.

We have successfully managed to implement the SPIHT coder in a time effective architecture

while using an average of less that 50% of resources of FPGA devices which are far more

cost effective as compared to the devices used by previous implementations. There are three

main factors to be considered in design comparison which are cost, area and throughput.

There is a trade-off between area and throughput in our design, and we have tried to the give

the maximum manageable throughput from a cost effective device at a compromise of area in

our encoder module.

44

8.2 FUTURE WORK

Our recommendations for future work are as follows:

1. Our proposed design architecture can be applied to any square image of dimensions

32x32, 128x 128, 256 x 256 and so on. However for an image with unequal dimensions

certain changes must be made in our encoder and decoder architecture.

2. We have implemented our design on cost effective devices with fewer resources

compared to high density modern Xilinx FPGA devices which incorporate new features

such as DSP Slices and embedded microprocessor. If our design is implemented using

embedded features, it can further increase the throughput and simulation time.

8.3 PUBLICATION

Ursila Khan, Arshad Aziz and Valiuddin Abbas, “An Efficient Implementation of SPIHT

Algorithm on a Reconfigurable Hardware”, IEEE, 8th International Bhurban Conference on

Applied Sciences and Technology Conference (IBCAST), Islamabad, 11-14 January 2011.

45

REFERENCES

[1] A. Said, W. A. Pearlman, “A New Fast and Efficient Image Codec Based on Set
Partitioning in Hierarchical Trees,” IEEE Transactions on Circuits and Systems for Video
Technology, Vol. 6, pp 243 - 250, June 1996

[2] Subhasis Saha-“Image Compression - From DCT to Wavelets: A Review”, Crossroads,

Volume 6, Issue (March2000) Pages: 12 - 21 Year of Publication: 2000, ISSN: 1528-
4972

[3] Stephen Wolfram, A New Kind of Science, Notes for Chapter 10: Processes of Perception
and Analysis, Section: Data Compression, Page 1069

[4] Satish Kumar, An Introduction to Image Compression, 2001-2003, available at
http://www.debugmode.com/imagecmp

[5] ‘The Ear as a Communication Receiver’, English translation of Das Ohr also
Nachrichtenempfänger by Eberhard Zwicker and Richard Feldtkeller, Translated from
German by Hannes Müsch, Søren Buus, and Mary Florentine. Originally published in
1967; Translation published in 1999.

[6] Charles K. Chui, ‘An Introduction to Wavelets, (1992), Academic Press, San Diego,
ISBN 0585470901

[7] Stéphane Mallat: A Wavelet Tour of Signal Processing (ISBN 0-12-466606-X)

[8] Thomas W. Fry and Scott Hauck, “SPIHT Image Compression on FPGAs”, Circuits and
Systems for Video Technology, IEEE Transactions on , Vol 15 Issue: 9, pp 1138 – 1147,
Sept. 2005

46

[9] Clive Maxfield, book, "The Design Warrior's Guide to FPGAs".Published by Elsevier,
2004. ISBN 0750676043, 9780750676045. Retrieved February 5, 2009

[10] David Manners, Xilinx CEO: FPGA industry at a turning point, available at
http://www.electronicsweekly.com, Monday 31 March 2008 18:00,
http://www.electronicsweekly.com/Articles/2008/03/31/43433/xilinx-ceo-fpga-industry-
at-a-turning-point.htm

[11] Xilinx Inc, “Spartan-3E FPGA Family: Complete datasheet”,
http://www.xilinx.com/support/documentation/data_sheets/ds312.pdf, April 2008

[12] Xilinx Inc, “Virtex-4 FPGA Family: Complete datasheet”,
http://www.xilinx.com/support/documentation/data_sheets/ds112.pdf, April 2008

[13] J.M. Shapiro ,1993,”Embedded Image Coding Using Zerotrees of Wavelet Coefficients”,
IEEE Transactions on Signal Processing, vol. 41, no. 12, pp.3445-3462.

[14] Ms.Mansi Kambli ,Ms.Shalini Bhatia, Fingerprint Image Compression, Mansi Kambli et

al, International Journal of Engineering Science and Technology, Vol. 2(5), 2010, 919-
928

[15] J. Malý, P. Rajmic, DWT-SPIHT Image Codec Implementation, Department of

Telecommunications, Brno University of Technology, Brno, Czech Republic.

[16] A. Said, W. A. Pearlman, “SPIHT Image Compression: Properties of the Method”,

http://www.cipr.rpi.edu/research/SPIHT/spiht1.html

[17] SPIHT Algorithm available at “http://www.ws.binghamton.edu/fowler/fowler%20persona

1%20page/EE523_files/SPIHT_Charts.pdf”

[18] Jie Liang, Presentation on ‘Multimedia Communications Engineering, available at

http://www.ensc.sfu.ca/~jiel/courses/424/slides/11_LTWT_5.pdf

47

[19] Yin-hua Wu, Yin-hua Wu, Long-xu Jin, Hong-jiang Tao, “An improved fast parallel

SPIHT algorithm and its FPGA implementation”, Future Computer and Communication
(ICFCC), 2010 2nd International Conference, Issue Date: 21-24 May 2010, pp. V1-191 -
V1-195, Print ISBN: 978-1-4244-5821-9

[20] J. Jyotheswar, Sudipta Mahapatra, “Efficient FPGA implementation of DWT and

modified SPIHT for lossless image compression”, Journal of Systems Architecture 53
(2007) 369–378

[21] Pasquale Corsonello, Stefania Perri, Paolo Zicari, Giuseppe Cocorullo, “Microprocessor-
based FPGA implementation of SPIHT image compression subsystems”,
Microprocessors and Microsystems Volume 29, Issue 6, 11 August 2005, Pages 299-305.

���
���
���

