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ABSTRACT 

 

This thesis presents the implementation of the Set Partitioning in Hierarchical Trees (SPIHT) 

Image Compression Algorithm on Reconfigurable platform. For flexibility of design and to 

achieve optimized results, we have combined the high-level utility of MATLAB with the 

flexibility and optimization of FPGA to implement this wavelet-based image compression coder 

on a sample image. The design is a pipe-lined architecture comprising of four phases in which 

Phase 1 and Phase 4 have been implemented on software and Phase 2 and Phase 3 on hardware. 

The output of each phase serves as the input to the succeeding phase. Our hardware architecture 

has been coded using Verilog HDL and our target devices are from Spartan 3E and Virtex-4 

Family developed by Xilinx. 

In Phase 1, we have computed the 4-level DWT of the image using Daubechies wavelets which 

serve as input to the next phase. In Phase 2, we have designed the SPIHT encoder to code the 

wavelets. In Phase 3, the decoding of the wavelets takes place and finally in Phase 4, IDWT is 

carried out to reconstruct the image. The SPIHT encoder and decoder are designed on hardware 

and contain four modules. Our hardware modules are implemented on cost effective devices and 

are giving an appreciable threshold while occupying area resources efficiently.   
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CHAPTER 1 

INTRODUCTION 

 

1.1 Study Background 

 

Image Compression Algorithms have been the answer to efficient and easy storage and 

transmission of image data for a long time. Various methods of Compression Algorithms have 

been the focus of research among which wavelet-based compression algorithms are found to 

have given better performance and highest compression ratios compared to other types like 

Vector Quantization, Fractals and DCT. Some popular image compression algorithms are; 

 

� EZW (Embedded zero-tree wavelet algorithm) 

� SPIHT (Set Partitioning in Hierarchical Trees) 

� JPEG (Joint Photographic Experts Group) 

 

Most Image Compression algorithms have high memory requirement and frequent 

modifications and alterations are required when designing the architecture. For this reason, a 

Reconfigurable Hardware i.e. The FPGA (Field-Programmable Gate Array) is a suitable option 

because it offers immense flexibility while maintaining speed, utilizing resources and 

optimizing performance. 

 

In this work, the SPIHT (Set Partitioning in Hierarchical Trees) Image Compression technique 

which was developed by Amir Said and William Pearlman has been explored and implemented 

on an FPGA [1]. We have combined software and hardware platforms to implement this 

algorithm and achieved good results. 
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1.2 Thesis Scope 

 
 In this thesis work, efforts are made to implement the SPIHT algorithm using both software 

and hardware platforms to achieve maximum optimization. The SPIHT can inherently be split 

into two phases. The first phase of calculating the wavelet coefficients have been implemented 

using software high-level language MATLAB. For the computationally intensive part of 

encoding and decoding, we employed the Hardware Description Language Verilog HDL for 

FPGA implementation. Our target platforms are the XC3S100E from Spartan 3E family and 

XC4VLX80 from Virtex- 4 family, both of which are developed by Xilinx®.  

 

1.3    Thesis Structure 

 

Chapter 2 briefly covers introduction to data compression, image compression and its area of 

application. 

In Chapter 3, we have discussed the Discrete Wavelet Transform and how it enhances the 

performance of compression algorithms. 

In Chapter 4, we have discussed briefly, the background of our Reconfigurable Hardware 

Platform i.e. The Field-Programmable Gate Array and the internal architecture of the Xilinx 

FPGA.  

Chapter 5 gives a detailed description of the basic SPIHT algorithm along with its 

characteristics and basic working mechanism. 

In Chapter 6 we have discussed in detail, our design architecture and the integration of 

software and hardware to optimize the performance of the SPIHT algorithm. This chapter 

also summarizes the implementation results of FPGA modules.  

In Chapter 7, we have summed up our implementation results and its comparison with the 

other known SPIHT implementations.  

Finally, in Chapter 8, conclusions, future possibilities and improvements of this work have 

been discussed and how this work can be extended to achieve further optimization.  
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CHAPTER 2 

INTRODUCTION TO DATA COMPRESSION 

 

2.1    Introduction 

Over the last decade, the growing need of data compression has been felt in every aspect of 

our lives. As technology has progressed, researchers have adopted newer and better forms of 

compression schemes and today there are very few areas where we do not see the obvious 

prevalence of data compression.  

Uncompressed multimedia data such as graphics, audio and video require substantial storage 

capacity and transmission bandwidth. Although the performance of modern systems, 

processor speeds and mass-storage capacity has seen dramatic increase, there is always room 

for higher bandwidth and storage capacity [2]. Compression has proved to be a solution to all 

the above mentioned problems and has therefore become an integral part of our daily lives. 

All around us, we find different forms of data compression in a diverse range of applications. 

All the images that we find on the Internet are compressed mostly in the JPEG or GIF format, 

while the PNG format is also observed in certain places. High-Definition TV is another 

example in which image data is compressed using MPEG-2 format. Internet browsers 

facilitate and optimize browsing in terms of time by making use of compression in its 

progressive image transmission when opening a web page. 

Data compression involves primary reliance on the fact that the data is redundant and that by 

removing its redundancy, it can be transformed to minimize the size of its representation. [3] 

It reduces the size of the data blocks to be transmitted over a network link enabling increase 

in media channel capacity.  

The mechanism of data compression incorporates a coding scheme at each end of a 

transmission link. At the sender end of the link, the coding scheme removes certain redundant 

data from the data blocks and accordingly replaces them correctly at the receiver end. 

Redundancy removal at the sender side reduces, both the size of data blocks and bandwidth 

requirement, thus allowing greater volumes of data to be transmitted at a time. A compressor 
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reduces the size of a file by deciding which data is more frequent and assigns it less bits than 

to less frequent data. Amount of compression that a certain algorithm offers varies depending 

upon the type of media (audio, video, images or text), size of the file and type of 

compression.  A typical compression scheme is shown in Figure 2.1.  

 

 

 

 

 

 

Figure 2.1 Typical Compression Scheme 

 

2.2    Image Compression Schemes 

Image compression is different than compressing binary data in that its purpose is to remove 

the redundant data from an image in order to make it area and transmission time efficient. If 

general purpose compression programs are used to compress images, the result can be 

optimized only to a certain degree. Encoders which are designed for such compression 

techniques exploit the statistical properties of images. Image compression may be lossy or 

lossless. In case of lossy compression the finer details of an image can be compromised for 

saving bandwidth or storage capacity. However, in case of lossless compression, perfect 

reconstruction of all image data is required at the receivers end with no loss of fine details 

and the compressed data on recovery must be an exact replica of the original data. This is the 

case in compression of binary data such as executables, documents etc which need to be 

exactly reproduced after decompression. [4]  

Lossy compression may be applied to multimedia data such as images and music which does 

not require exact replication as long as there is tolerable error between the original signal and 

the compressed form and insignificant or no audible or visual loss is present. In case of an 

image file, an approximation of the original image can be used for most purposes except 

medical imaging which requires absolute recovery of all information.  
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2.3    Applications 

Media can be in form of text, audio, video and still images. Audio, Video and Image 

compression schemes are designed to reduce the transmission bandwidth requirement of 

digital streams and the storage size of files. [5] Data compression finds direct applications in 

MP3 players and computers. Digitally compressed audio streams are applied in most video 

DVDs; digital television, media streaming on the internet and in terrestrial radio broadcasts. 

Compression is used in digital cameras, to increase storage capacities with tolerable 

degradation of picture quality. Similarly, DVDs use MPEG-2 Video codec for video 

compression. 
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CHAPTER 3 

DISCRETE WAVELET TRANSFORM 

 

3.1    Introduction 

Wavelet Transform has gained widespread recognition and acceptance in the fields of Image 

compression and signal processing. The DWT (Discrete Wavelet Transform), is multi-resolution in 

nature and on account of this property, it has benefits in application areas where scalability and 

tolerable degradation are important. 

3.2    DWT Basics 

The wavelet transform decomposes a signal into a set of basic function called wavelets. A discrete 

wavelet transform (DWT) is a wavelet transform for which the wavelets are sampled at 

predefined units of time. There are several types of wavelets among which some of the 

commonly used ones are discussed in the following sections. 

3.2.1    Haar Wavelets 

The first DWT was invented by the Hungarian mathematician Alfréd Haar. The Haar 

wavelets transform works on an input represented by a list of 2n numbers. It pairs up the input 

values, retains the difference and passes the sum. This process is repeated recursively, pairing 

up the sums to provide the next scale: finally resulting in 2n − 1 differences and one final 

sum.  

The Haar wavelet's mother wavelet function ψ(t) can be described as 

ψ(t) =  

Its scaling function φ(t) can be described as; 



 
 
 

7 
 

φ(t) =  

 

3.2.2    Daubechies Wavelets 

Daubechies wavelets were formulated by the Belgian mathematician Ingrid Daubechies in 

1988 and are the most widely used set of discrete wavelet transforms. Many variations of the 

original wavelets have now been developed and are largely used in image compression 

schemes. The Daubechies wavelets generate finer discrete samples of a mother wavelet 

functions progressively. The wavelets make use of the recurrence relations between the 

scaling and wavelet functions such that each resolution is twice that of the previous scale. [7] 

We can take the example of Daubechies D4 wavelets which have four scaling function 

coefficients as follows; 

=  

=  

=  

=  

The wavelet function coefficient values are:  

g0 = h3 

g1 = -h2 
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g2 = h1 

g3 = -h0 

Each step of the wavelet transform applies the wavelet function to the input data. If the 

original data set has N values, the wavelet function will be applied to calculate N/2 

differences (reflecting change in the data). In the ordered wavelet transform the wavelet 

values are stored in the upper half of the N element input vector. The scaling and wavelet 

functions are calculated by taking the inner product of the coefficients and four data values. 

3.2.3    Bi-orthogonal Wavelets  

A bi-orthogonal wavelet is a wavelet where the associated wavelet transform is invertible but 

not necessarily orthogonal. Bi-orthogonal wavelets allow more freedom than orthogonal 

wavelets an example of which is the possibility to construct symmetric wavelet functions. [8] 

Bi-orthogonal wavelets make use of two scaling functions   , which may generate 

different multi-resolution analyses, and accordingly two different wavelet functions . So 

the numbers M and N of coefficients in the scaling sequences a,  may differ. The scaling 

sequences must satisfy the following bi-orthogonality condition 

 = 2.  

Then the wavelet sequences can be determined as  

,   and 

, . 

3.3    Applications 
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Discrete Wavelet Transform finds applications in Signal De-noising and Data Compression. 

DWT is a form that is appropriate to discrete data such as individual points or pixels in an 

image. On account of this property DWT is often used in Image compression schemes.  

 

 

 

3.4     DWT in Image Compression 

DWT is used in a number of Image compression schemes among which some of the notable 

ones are EZW (Embedded zero-tree wavelet), SPIHT and JPEG 2000. (Joint-Photographic 

Experts Group) The EZW used DWT for the decomposition of an image at each level and 

scans the wavelet coefficients in each sub-band in a zigzag manner. SPIHT is a highly refined 

version of the EZW and it gives higher image quality with higher PSNR and compression 

ratios as compared to the EZW.  

The JPEG 2000 standard does not have the limitations of the previous versions of JPEG 

because it has incorporated the use of wavelet technology. The JPEG 2000 uses Wavelet 

transform and Arithmetic Coding. For lossy compression, it uses the Daubechies (9,7) filters 

and Daubechies (5,3) filters for lossless compression. 

The discrete wavelet transform (DWT) is a form appropriate to discrete data such as 

individual points or pixels in an image. The DWT runs a high pass and a low pass filter over 

the image in one dimension which could be either horizontal or vertical. This produces a low 

pass and a high pass version of the data. These results are down sampled, yielding two sub-

bands, each of which is one half the size of the input stream. The result is a new image 

comprising of a high-pass and low-pass sub-band. For a multidimensional signal such as in 

image, this procedure of filtering and sampling is repeated in each dimension. [8] The vertical 

and horizontal transformations break up the image in four distinct sub-bands. The wavelet 

coefficients that represent the fine details are LH, HH and HL. LL represents the lower 

frequency component of the image. Figure 3.1 explains this process 
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                                  Figure 3.1 2-D Discrete Wavelet Transform of an image [9] 

 

Figure 3.2 explains a one-level wavelet transform over an image by two one-dimensional 

passes.  

 

 

(a)                                                           (b)                                                         (c) 
 

Figure 3.2 A 1-level wavelet built by two one-dimensional passes: (a) original image                 

(b) horizontal pass, and (c) vertical pass. [8] 

 

For the next level calculation, the horizontal and vertical transformations are carried out on 

the LL sub-band from the previous level. In Figure 3.3(a), 2-level DWT is shown. Similarly 

for a 3-level DWT the transformations will be carried out on LL sub-band from 2-level 

transform. Figure 3.3(b) shows the results of a 3-level transform. 
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                   Fig 3.3(a)   2-level DWT                                 Fig 3.3(b)   3-level DWT 

 

This process can go on for ‘n’ number of times with each level giving finer and finer details 

of an image. Figure 3.4(a) and Figure 3.3(b) help visualize the effects of the transform on a 

sample MRI image. 

 

 

 

 

 

 

 

 

 

 

            Fig 3.4(a)   3-level DWT effect                             Fig 3.4(b)   Sample medical image 
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CHAPTER 4 

FIELD-PROGRAMMABLE GATE ARRAY 

 

4.1   Introduction 
 
Field Programmable Array (FPGA) is a reconfigurable integrated circuit. It is called field 

programmable because it is an integrated circuit, designed in such a way that it can be 

configured by the customer or designer after it has been manufactured. It contains logic 

blocks and programmable resources to implement a wide number of hardware functions. 

These logic blocks are depicted in Figure 4.1. 

 

 

 

Figure 4.1 Basic building blocks of FPGA [11] 

 

FPGAs are configured using a hardware description language (HDL), Verilog HDL or VHDL 

(VHSIC HDL which is the abbreviation for Very-high-speed Integrated Circuit HDL). They 

can perform digital as well as analog functions.  

Today most industries around the globe have adopted FPGA based applications due to the 

fact that FPGAs offer a combination of the best characteristics of ASICs and processor-based 

systems. FPGAs provide high speed and reliability but unlike ASIC design, they do not 

require large memory space.  
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FPGAs contain programmable logic components called ‘logic blocks’ which are wired 

together by reconfigurable interconnects. These logic blocks can be configured according to 

the users requirements to perform complex combinational computations or simple logic 

functions such as AND, OR and XOR. The logic blocks in most FPGAs also include memory 

elements, which may be simple flip-flops or more complete memory blocks such as Block 

RAMs. [9] 

 

 

4.2 Industrial Scope of FPGA  

 

The FPGA industry sprouted from programmable read-only memory (PROM) and 

programmable logic devices (PLDs). Since the invention of the first commercially available 

FPGA by Xilinx in 1985, the worldwide FPGA market has grown from $14 million in 1987 

to an estimated $2.75 billion in 2010. 

The current FPGA market leaders are Xilinx Inc and Altera, which control 80% of the 

market. Xilinx reportedly represents over 50% of the market share. According to Moshe 

Gavrielov, the new CEO and president of Xilinx, “The programmable market is worth $4bn 

and is estimated to be worth $5bn in 2011, but the ‘opportunity’ market for programmable 

devices is $14bn” [10]. 

The first FPGA was invented by Xilinx in 1984 and the early devices were simple logic 

chips. Today they find applications in most signal processing systems and control 

applications, and are now rapidly replacing custom Application-Specific Integrated Circuits 

(ASICs).  
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4.3 Overview of Spartan 3E Family 
 
The Spartan-3 family architecture consists of five fundamental programmable functional 

elements [11]: 

 

� Configurable Logic Blocks (CLBs) contain flexible Look-Up Tables (LUTs) that 

implement logic plus storage elements used as flip-flops or latches. CLBs perform a 

wide variety of logical functions as well as store data. 

 

� Input/output Blocks (IOBs) control the flow of data between the I/O pins and the 

internal logic of the device. Each IOB supports bidirectional data flow plus 3-state 

operation. It supports a variety of signal standards, including four high-performance 

differential standards. 

 

� Block RAM (BRAM) provides data storage in the form of 18-Kbit dual-port blocks. 

 

� Multiplier blocks accept two 18-bit binary numbers as inputs and calculate the 

product. 

 

� Digital Clock Manager (DCM) blocks provide self-calibrating, fully digital solutions 

for distributing, delaying, multiplying, dividing, and phase shifting clock signals.  

 

A ring of IOBs surrounds a regular array of CLBs. Each device has two columns of block 

RAM. Each RAM column consists of several 18-Kbit RAM blocks. Each block RAM is 

associated with a dedicated multiplier. The DCMs are positioned in the center with two at the 

top and two at the bottom of the device. 

 

The Spartan-3E family features a rich network of traces that interconnect all five functional 

elements, transmitting signals among them. Each functional element has an associated switch 

matrix that permits multiple connections to the routing. 
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4.3 Overview of Virtex-4 Family 
 
 
The Virtex-4 family is divided in three sub-families which give very high performance logic 

applications solutions, for DSP applications and embedded platform applications. Following 

are some of the basic blocks of the Virtex-4 family [12]. 

 

CLBs, Slices, and LUTs 

Virtex-4 FPGA has number of slices ranging from 6,144 to 63,168 and maximum distributed 

RAM range from 96 Kb to 987 Kb. The configurable logic blocks (CLB) provide 

combinatorial and synchronous logic as well as distributed memory and shift register 

capability. 

 

500 MHz DSP Slices 
 
Cascadable embedded DSP slices with 18-bit x 18-bit dedicated multipliers, integrated 

Adder, and 48-bit accumulator. These DSP Slices give up to 100% speed improvement over 

previous generation devices. 

 

Clock Distribution 

Each Virtex-4 FPGA provides up to 20 Digital Clock Manager (DCM) modules offering 

flexible frequency synthesis, improved maximum input/output frequency and reduced output 

jitter. It gives self-calibrating, fully digital solutions for clock distribution delay 

compensation, clock multiplication/division, and coarse/fine-grained clock phase shifting. 

 

Block RAM 

Every Virtex-4 FPGA has between 48 and 552 dual-port block RAMs, each storing 18 Kbits. 

Each block RAM has two completely independent ports that share nothing but the stored 

data. 

 

Input/output 

The number of I/O varies from 320 to 960 depending on device and package size. Each I/O 

pin is configurable and can comply with a large number of standards, using up to 2.5V. 
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CHAPTER 5 

SET PARTITIONING IN HIERARCHICAL TREES 

 

5.1   Introduction 

The SPIHT (Set-Partitioning in Hierarchical Trees) algorithm was developed in 1996 by 

Amir Said and William Pearlman and is an advancement of the Embedded Zerotree Wavelet 

algorithm (EZW) which was developed by J.M. Shapiro in 1993 [13]. The roots of SPIHT 

may be embedded in the EZW algorithm however it is not a simple extension of the later, and 

has proven to be a benchmark in the field of image compression algorithms.  

SPIHT brought about a revolution in the field of image compression because it broke the 

trend to complex compression algorithms. Previous research works involved using 

sophisticated vector quantization in various attempts to improve coding schemes. SPIHT 

achieved superior results compared to vector quantization while employing the simplest 

technique of uniform scalar quantization. Therefore, it is much easier to design fast SPIHT 

codecs. 

SPIHT is a wavelet-based image compression coder [1]. It is a simple and efficient algorithm 

with many unique and desirable properties such as low complexity, low memory usage and 

offering progressive transmission in both lossy and lossless coding.  First the wavelet 

coefficients of the image are computed using the discrete wavelet transform and then 

information about these coefficients is transmitted [14] SPIHT algorithm codes the pixels 

according to their significance.  
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5.2   SPIHT Coder 

SPIHT makes use of three lists namely  

List of Significant Pixels (LSP) 
 
List of Insignificant Pixels (LIP) 

List of Insignificant Sets (LIS) 

Some other important definitions which are used in the SPIHT coder are as follows; 

O (i,j): set of coordinates of all offspring of node (i,j). 

D (i,j): set of coordinates of all descendants of node (i,j). 

H (i,j): set of all tree roots (nodes in the highest pyramid level). 

L (i,j): D (i,j) – O(i,j) (all descendents except the offspring) 

 

Wavelet coefficients are compared with a threshold value at each level, and manipulated 

between the lists LIP, LIS and LSP. There are also two types of entries used. 

Type A entry: D(i,j) 

Type B entry: L(i,j) 

 If a pixel is significant its magnitude must be greater to or equal to the current threshold. An 

insignificant pixel value falls beneath the current threshold level. The following explanation 

clarifies this significant criterion.  

For a pixel: |c(i,j)| ≥ � Significant  

For a set S: max|c(i,j)|  ≥ �  Significant 

Similarly; 

For a pixel: |c(i,j)| <  � Insignificant 

For a set S: max|c(i,j)| < �  Insignificant 

Where n is the number of bits of the largest coefficient 
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The SPIHT coder follows a number of steps in a predefined form at every level of operation. 

There are two important steps in SPIHT namely, The Sorting Pass and the Refinement Pass. 

The number of Sorting Passes is always one less than the number of Refinement Passes. In 

the Sorting Pass, each pixel is compared with the threshold. If the magnitude of a pixel 

exceeds or equals the current threshold it is termed as significant. A pixel is termed as 

insignificant if its magnitude falls beneath the current threshold. An insignificant set can be 

one of two types of sets. The set H contains all the pixels in the last level of the wavelet 

transform that was performed, including the coarse and detail coefficients [14].  

After each level the threshold is decreased by a factor of and the process is repeated. 

After the initialization, the algorithm takes two stages for each level of threshold. First the 

sorting pass is carried out in which the lists are organized. Following the sorting pass, the 

refinement pass is carried out which does the actual progressive coding transmission. [15] 

The result is in the form of a bit stream. The detailed scheme of the complete algorithm is 

shown in Fig 5.1 
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                                                Figure 5.1 SPIHT coding workflow [16] 
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5.3    Properties 

SPIHT is the remarkable algorithm which has displayed all of the below discussed properties. There 

may be other image compression algorithms which give better performance in one area but the 

important consideration here is that SPIHT wins in the remaining criteria. The characteristics of 

SPIHT are discussed in detail in the following section. [16] 

� Shows good image quality and high PSNR, especially for color images. SPIHT exploits the 

properties of the wavelet-transformed images to increase its efficiency. 

� Progressive Image Transmission is an inherent quality of the SPIHT algorithm. This means 

that the quality at the decoder end improves as it receives more information about the 

original image. 

� Optimized Embedded coding; this is a special characteristic which enables compression 

of a single image in different sizes to suit the individual needs of different users. By 

using this technique an image need not be compressed each time for a different user 

and gives an image quality comparable or even superior to sophisticated non-

embedded encoders. 

� Symmetric encoding and decoding; the time taken for encoding is nearly equal to the 

time taken for decoding an image sequence. 

� It can be used for lossless compression and on account of this property can be 

effectively applied to medical imaging or areas where degradation or loss of 

information is a critical issue.  

� SPIHT can be efficiently combined with error protection. 

� SPIHT offers Multi-resolution scalability which means that the encoder and decoder 

track the resolution of bits automatically. 
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5.4    SPIHT Coding Engine 

 

The SPIHT coding engine performs the following four tasks in the given order, each of which 

is explained in the following sections. 

 

1. Initialization 

2. Sorting Pass 

3. Refinement Pass 

4. Quantization-step update 

 

 

5.4.1 Initialization 

 

It initializes the value of ‘n’ for testing significance of pixels and constructing significance 

map. The LSP is set as an empty list. The LIS is initialized to maintain all pixels in the low 

pass sub band that have descendents and hence act as roots of spatial trees. All these pixels 

are assigned to be of type A. LIP is initializing to contain all pixels in low pass pixels. The 

threshold with which all the pixels are compared is computed using the formula  where ‘n’ 

can be calculated by the formula in step 1.  

1. n =  where c( i,j ) is the coefficient at position (i, j) in the image. 

2. LIP = All elements in H 

3. LSP = Empty 

4. LIS = D’s or descendants of Roots 

 

5.4.2 Sorting Pass 
 

In the Sorting Pass, the magnitude of pixels is manipulated between the three lists LIP, LIS 

and LSP after being compared with the threshold value. In this pass, elements of the LIP may 

be moved to the LSP. Sets contained in LIS are broken down into the relevant tree type i.e. 

A-type or B-type and their offspring may be moved to LIP or LSP according to their 

significance. Each entry of the LIP is tested for significance with respect to the threshold. If it 
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passes the significance criterion, a 1 is transmitted followed by a sign bit representing sign of 

that pixel and the pixel coordinates are moved to LSP. If the entry is insignificant then a 0 is 

transmitted. The Sorting Pass process has been summarized in a step-by-step form as follows: 

 

1. Process LIP. 

a) For each coefficient (i,j) in LIP, Sn (i,j) is output where Sn (i,j) =1 when max |c(i,j)| >= 2n 

or Sn (i,j) = 0 for other. 

b) If Sn (i,j) =1 ,sign of coefficient (i,j): 0/1 is output and (i,j) is moved to the LSP. 

2. Process LIS. 

a) For each entry (i,j) in LIS and if the entry is of type D then output Sn(D(i,j)). 

i) If Sn(D(i,j)) = 1 then for each (k,l) ∈ O(i,j) output Sn(k,l).  

ii) If Sn(k,l) = 1, then add (k,l) to the LSP and output sign of coefficient: 0/1 . 

iii) If Sn(k,l)=0, then add (k,l) to the end of the LIP. 

b) If type L then output Sn(L(i,j)). 

i) If Sn(L(i,j)) =1 then add each (k,l)  ∈ O(i,j) to the end of the LIS as an entry of type D and 

remove (i,j) from the LIS. Figure 5.2 shows the workflow of the sorting pass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2   Sorting Pass [17] 
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5.4.3    Refinement pass 

 

The refinement pass follows the sorting pass and it processes the entries in the LSP from the 

previous sorting pass. The entries to the LSP from the current sorting pass are ignored and the 

nth MSB of the magnitude of each entry from the previous pass is transmitted to the decoder. 

It is important to note here that since refinement pass works upon entries from the previous 

sorting pass, no bits would be transmitted at the end of the first sorting pass because the LSP 

would contain no pixels prior to the current sorting pass. Refinement pass plays the main role 

in decoding or reconstruction as it is responsible for transmitting the bit corresponding to the 

current magnitude threshold for each entry in the LSP, which was not added in the previous 

sorting pass. The refinement pass process has been summarized in the following two steps. 

 

1. Process LSP. 

2. For each element (i,j) in LSP except those just added above in the sorting pass the nth most 

significant bit of coefficient is output. Figure 5.3 explains the refinement pass. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                        Figure 5.3   Refinement Pass [17] 
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5.4.4    Quantization Step Update 

 

The quantization step updates simply decrease the threshold by decreases the value of N. This 

step is repeated after the sorting and refinement pass for a certain threshold has completed. 

The value of N is decremented by 1 subsequently decreasing the threshold by a factor of  

.The algorithm then returns to the sorting pass at step 2 and continues in the defined order. 

The summary of the quantization step update is given in the following two steps. 

 

1. Decrement n by 1. 

2. Then go back to the Significance Map Encoding Step (Sorting Pass). 

 

 

5.5   Decoder 
 
 

In addition to performing the pre-defined job of decoding, the decoder also performs the task 

of updating the reconstructed image. For the value of n when a coordinate is moved to the 

LSP, the condition in equation 5.5.1 is known; 

 

2ⁿ ≤ | C i, j| < 2ⁿ ……………………………….. Eq (5.5.1) 

 

So, the decoder uses that information, plus the sign bit that is input just after the insertion in 

the LSP, to set the value of using Equation 5.5.2; 

 

C i, j = ± 1. 5 * 2ⁿ ………………………………Eq (5.5.2) 

 

Similarly, during the refinement pass the decoder adds or subtracts 2n - 1 to C i, j when it 

inputs the bits of the binary representation of | C i, j |.  
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5.6    Basic Algorithm 
 

The following gives a step-by step implementation of the SPIHT encoder. [18] 

1. Compute the threshold. Initialize LIP to all the root node coefficients. LIS to all the 

trees (assign Type-D to them), LSP to an empty set. 

 

2. Check the significance of all coefficients in LIP. 

� If significant, output 1, followed by a sign bit and move it to the LSP. 

� If not significant, output 0. 

 

3. Check the significance of all the tress in LIS according to tree type.  

a. For a tree of Type-D 

� If it is significant, output 1, and code its children 

� If a child is significant output 1, then a sign bit and add it to LSP. 

� If a child is insignificant, output 0 and add to the end of LIP. 

� If the children have descendants move the tree to the end of LIS as 

Type L, otherwise remove it from LIS. 

� If it is insignificant, output 0. 

 

b. For a tree of Type-L 

� If it is significant, output 1, add each of the children to the end of LIS as an 

entry of Type D and remove the parent tree from the LIS. 

� If it is insignificant, output 0. 
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CHAPTER 6 

OUR DESIGN ARCHITECTURE 

 

6.1    Introduction 

 

This chapter pertains to our design architecture and how we have integrated software and 

hardware platforms to achieve our goal. Our design has been split in two halves wherein half 

of the work is implemented on software and the remaining half on hardware. Our work 

comprises of four phases. Phases 1 and 4 have been incorporated in the software architecture 

and Phases 2 and 3 on hardware platform. Our software architecture has been designed on 

MATLAB and hardware architecture is implemented on FPGA.  

The DWT and Inverse DWT have been carried out in Phase 1 and Phase 4 respectively while 

the SPIHT encoder is designed on Phase 2 and SPIHT decoder is designed in Phase 3. In 

Phase 1, the DWT of the sample image is computed which yields the wavelet coefficients. In 

Phase 2, the wavelet coefficients are given to the SPIHT encoder which encodes the wavelet 

coefficients. In Phase 3, the coded wavelets are decoded in the decoder block. In Phase 4, the 

inverse DWT is carried out on the decoded wavelets to reconstruct the original image. Figure 

6.1 explains our design workflow. 
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Figure 6.1   Our Design Architecture 

 

6.2   Software architecture 

 

Discrete Wavelet Transform using HDL requires lengthy coding and a long verification 

exercise. For this reason, we employed the help of a high-level language i.e. MATLAB to 

compute the wavelet coefficients of the sample image. We have used Daubechies wavelets to 

compute four-level 2-D DWT of our image. We have used a simple 256 x 256 sample image 

to implement the SPIHT algorithm as shown in Fig 6.3(a). The sample image is read onto a 

MATLAB code which computes the 4-level DWT on the image using db-1 filters. Following 

a DWT, the image is divided in to Spatial Orientation Trees which are described in detail 

later in this section. The Spatial Orientation Trees are visible in Fig 6.3(b) which has been 

obtained using MATLAB wavelet toolbox. These trees are then converted to hexadecimal 

form and given as input to the SPIHT Encoder. Figure 6.2 shows the workflow of Phase 1, 

implemented on software. 
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Figure 6.2   Workflow in Phase 1 on Software 

 

 

The sample image and its decomposition have been shown in the figures below.  

 

 

 

 

 

 

 

 

 

                    Figure 6.3(a)   Sample Image                      Figure 6.3(b)   4-level Decomposition 

 

Following a DWT, the requirement of SPIHT scheme is for the image matrix to be split into 

Spatial Orientation Trees. The wavelet coefficients are then compounded together in a single 

matrix and converted to hexadecimal form so they can be read onto the FPGA. 

The Spatial Orientation trees basically define the parent-children relationship between the 

pixels in an image as depicted in Figures 6.4(a) and 6.4(b). In 6.4(a), the relationship between 

parent node and offspring is shown using arrows. Each node in a tree corresponds to an 

individual pixel. The offspring of a pixel are the four pixels in the same spatial location at the 

next finer scale of the wavelet. SPIHT uses this relationship between nodes and their 

descendants when coding the wavelets. 
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          Figure 6.4(a)   Spatial Orientation Trees [8]              Figure 6.4(b)   Tree Axes 

 

The last portion of our work is implemented on software which is the final Phase 4 of our 

design. In it the decoded wavelets from the FPGA decoder serve as input. After the 

decomposed wavelets are coded by the FPGA coder and consequently recovered by the 

decoder they have to be given to MATLAB again for the Inverse DWT to be performed. The 

IDWT results in the reconstruction of the original image. Since a 4-level DWT was 

performed on the original image in Phase 1, we performed a 4-level Inverse DWT on the 

decoded wavelets for the recovery of the image as depicted in Figure 6.5 

 

 

 

 

 

 

 

 

 

Figure 6.5   Workflow in Phase 4 on software 
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6.3   Hardware architecture 

 

As discussed in Section 6.1, our design architecture comprises of four phases amongst which 

Phase II and III i.e. the SPIHT encoder and decoder sections have been implemented on 

FPGA. Our design has four Verilog modules, three of which pertain to the encoder block and 

a single module for the decoder block. In Figure 6.5, these four modules have been combined 

in a block diagram to explain the workflow of our hardware design. 

 

 

 

 

 

Figure 6.6   Hardware Architecture 

 

 

In the following sections we have explained the functionality and implementation details of 

each module individually. 
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6.3.1   Maximum Magnitude 

 

The software portion of our design calculates the 16 x 16 wavelet array of the sample image. 

This array comprises of all elements represented in 32-bit hexadecimal format. The wavelet 

array is then given as input to the first module of the hardware which returns the maximum 

magnitude pixel after scanning all the elements in the image array. The target device for this 

module is a XC3S500E device from Spartan 3E family. The module uses 67 4-input LUTs 

and fits into 35 slices, thus utilizing 3% memory resources of the Spartan 3E device. It 

operates at a clock rate of 74 MHz and gives a throughput of 2368 Mbs.  

 

6.3.2    Threshold computation 

 

In this module, the maximum magnitude pixel value from Maximum Module is treated as 

input. First the log base 2 of this value is computed and then the floor of the log value is 

calculated. This floor value is then used to compute the threshold for Sorting Pass 1 of the 

SPIHT encoder. The variables calculated in this module will be used in the following 

equation, 

n = � log₂ (maximum magnitude) �  

In the above equation, the maximum magnitude value is taken from the previous module, and 

the output value ‘n’ will be used to compute the threshold ‘T’ using the following formula T 

= 2ⁿ. This value serves as the initial threshold for the first sorting pass in the encoder and 

with each preceding sorting pass, the threshold value decreases by a factor of  The 

target device for this module is XC3S100E from Spartan 3E Family. The module uses 133 4-

input LUTs and occupies 72 slices, thus utilizing 7% memory resources of the Spartan 3E 

device. It operates at a clock rate of 67 MHz and gives a throughput of 2144 Mbps. 
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6.3.3    SPIHT Encoder  

 

In the previous module, the threshold has already been calculated. This will be treated as the 

initial value in Sorting Pass 1. The threshold is decremented in each sorting pass by a ratio of 

. The encoder then goes through a series of Sorting Passes and Refinement Passes. As 

the encoder steps through the algorithm it inserts or deletes pixels from the three lists. All of 

the information required to keep track of the lists is output to the decoder. In this way the 

decoder maintains and generates an identical list order as the encoder. For the decoder to 

reproduce the steps taken by the encoder, the output statements in the encoder’s algorithm 

can be replaced with input for the decoder’s algorithm. [10] In our design, we have calculated 

till 5th Sorting Pass. At the end of the 5th Pass we have a coded bit stream output which will 

be given to the decoder. Figure 6.6 depicts the encoder workflow on FPGA. 

The encoder module has been implemented on XC4VLX80 Virtex-4 Device. The slice usage 

is 21327 which are 59 % of the total available resources. The reasons for using a high density 

device is the large number of slice LUTs   used to implement the design and the extensive 

data manipulation that takes place in the encoder module. The entire module uses 40389 

LUTs which rounds up to 56 % usage of available resources. It operates at a clock rate of 

3.143 MHz and gives a threshold of 6436 Mbps. 
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Figure 6.7  SPIHT Encoder Workflow 

 

6.3.4   SPIHT Decoder  

 

The decoder follows a list order which is identical to the one used by the encoder. The coded 

bit stream from the encoder contains the bits from the sorting pass and refinement passes. 

These are given as input to the decoder. Also, initially included in the decoder module is a 

blank image array. Once the coded bit stream from the encoder is given to the decoder; the 

pixels are mapped on to the image matrix according to their location. Next, the correction bits 

are computed and these are used to overwrite on the image matrix. This overwritten result is a 

closer version of the original DWT. If there are more bit sequences in pipeline, this process of 

mapping and overwriting will be repeated. When all the bits from the encoder output have 

been mapped upon the image matrix, we have a reconstruction of the original wavelet 
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transform. The decoder maintains an identical list order as the encoder. Figure 6.6 elaborates 

the workflow of the SPIHT decoder. 

The target platform for the decoder module is XC3S100E device from Spartan-E Family. The 

decoder module utilizes 112 4-input LUTs and 62 slices which comprise of 6% of the 

available resources. It operates at a clock rate of 222 MHz and gives a throughput of 1776 

Mbps.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

                                                
 

Figure 6.8   SPIHT Decoder workflow 
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CHAPTER 7 

IMPLEMENTATION RESULTS AND COMPARISIONS 

 

7.1    Introduction 

 

In this chapter we have compiled the implementation results of our hardware architecture and 

compared them with previous known implementations. As discussed in Chapter 6, our 

hardware design architecture comprises of four modules namely Maximum magnitude, 

Threshold, SPIHT encoder and SPIHT decoder. We have tabulated the results of each module 

in terms of clock rate and FPGA area utilization. 

Furthermore we have compared our results with previous implementations of SPIHT on 

FPGA. As we have observed that previously SPIHT has been implemented on hardware by 

taking different kinds of approach. Researchers have made a number of criteria, the centre of 

their focus. Some projects have been implemented while taking device performance, clock 

rate, system frequency and throughput in consideration while others have been compared and 

optimized in terms of PSNR, Image quality, compression ratios and bits per pixel usage. 

Some algorithms have also been modified in terms of resource utilization and speed. A 

common factor that we have so far observed is that the SPIHT algorithm has been 

implemented either entirely on hardware or entirely on software. Our work is different in the 

sense that we have tried to integrate the individual capabilities of both hardware and software 

to achieve optimized results. We have studied a number of research works and compared our 

results individually with the common parameters found in these works.  

Our proposed designs have been implemented using Xilinx ISE Foundation 11.3 tool and 

have successfully passed synthesis and Place and Route processes. We have successfully 

tested each module for correct results using ISE Simulator. In Section 7.3 we have compared 

our simulation time with that of previous results. In Section 7.4 we have compared our FPGA 

area utilization with other projects. 
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7.2    Implementation Results 

 

Our hardware design is build on four modules in which three modules have been 

implemented on Spartan 3A device and one module on Virtex 4 device. Since our encoder 

module is most computation extensive, we decided to implement it on a higher density 

Virtex-4 device which offers faster processing speed and higher resources as compared to the 

cost effective Spartan 3E device. We have carried out the post-synthesis process on each of 

our modules and implemented the design successfully. In the following sections we have 

tabulated the synthesis results of each module in their order of execution. 

 

7.2.1   Maximum Magnitude Module 

 

The target device is XC3S500E from Spartan 3E Family. It computes the maximum 

magnitude pixel from the wavelet coefficient image array, computed in MATLAB and given 

to the Verilog program in hexadecimal form. This module scans the array for the maximum 

value pixel and returns the output. It operates at a clock rate of 74 MHz and gives a 

throughput of 148 MPixels/sec while occupying an FPGA area of 3% in terms of slices. 

Table 6.1 gives the implementation results of Maximum Magnitude module.  

 

Table 7.1   Implementation Results of Maximum Magnitude module 

 

Target FPGA Device XC3S500E-5 

Module Name Maximum Magnitude 

Clock Rate 74 MHz 

Throughput 148 MPixels/sec 

Device Utilization Percentage of total available resources 

Number of Slices 3 % 

Number of 4 input LUTs 3 % 

Number of bonded IOBs 98% 
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7.2.2    Threshold Module 

 

The target device is XC3S100E from Spartan 3E Family. It takes the maximum pixel value 

from the maximum magnitude module and performs two functions on it. First the log base 2 

of the maximum value is computed and then the floor of the previous result is computed. The 

final result is used to calculate the initial threshold. This module performs a small function 

but involves extensive arithmetic computations. The module operates at a clock rate of 67 

MHz and fits into 7% of the total available slices. It gives a throughput of 268 MPixels/sec. 

Table 7.2 tabulates the synthesis results of the threshold module 

 

 

Table 7.2   Implementation Results of Threshold module 
 

Target FPGA Device XC3S100E-5 

Module Name Threshold  

Clock Rate 67 MHz 

Throughput 268 MPixels/sec 

Device Utilization Percentage of total available resources 

Number of Slices 7 % 

Number of 4 input LUTs 6 % 

Number of bonded IOBs 88 % 
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7.2.3    SPIHT Encoder  

 

The target device is XC4VLX80 from Virtex-4 Family. The encoder module involves most 

computations as compared to the other hardware modules. It goes through a pipelined process 

of sorting and refinement passes whereby each pixel is scanned and manipulated individually. 

The coder operates at a clock rate of 98 MHz and gives a throughput of 294 MPixels/sec 

while using 59% of available slices. Results of the encoder block are tabulated in Table 7.3. 

 

 
Table 7.3   Implementation Results of Encoder module 

 

Target FPGA Device XC4VLX80 

Module Name SPIHT Encoder 

Clock Rate 98 MHz 

Throughput 294 MPixels/sec 

Device Utilization Percentage of total available resources 

Number of Slices   59% 

Number of Slice Flip-Flops 3% 

Number of 4 input LUTs   56% 

Number of IOs 200 
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7.2.4   SPIHT Decoder  

 

The target platform for decoder module is XC3S100E device from Spartan-E Family. The 

coded bit sequence from the encoder is processed by the decoder and individual mapping of 

pixels on the wavelet reconstruction array takes place. The decoder module works at a clock 

rate of 69 MHz and gives a throughput of 276 MPixels/sec while occupying 6% of the 

available area resources. Table 6.4 shows the implementation results of the decoder module. 

 

 

Table 7.4   Implementation Results of Decoder module 

 

Target FPGA Device XC3S100E-5 

Module Name SPIHT Decoder 

Clock Rate 69 MHz 

Throughput 276 MPixels/sec 

Device Utilization Percentage of total available resources 

Number of Slices 6 % 

Number of 4 input LUTs 5 % 

Number of bonded IOBs 37 % 
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7.3    Time Comparison 

 

Our Maximum magnitude module, threshold module and decoder have been implemented on 

Xilinx Spartan-3E devices while the encoder has been implanted on a Virtex-4 device. We 

have made comparison with Fry et al [8] who have used a Virtex 2000E device to implement 

a modified fixed order SPIHT scheme and lifting wavelet transform. We have also compared 

results with Yin-hua Wu et al [19] who have used a Xilinx XC3S5000 to implement the 

encoder module of a modified SPIHT coder. In Table 7.5, we have given the simulation time 

for individual modules of our design. Our modules simulate in an order of nanoseconds 

which is less compared to the other implementations considering our choice of cost effective 

Spartan 3E device and Virtex-4 devices.  

 

Table 7.5 Comparison Result of SPIHT in terms of Time 

 

Implementation Device Frequency Time to completion 

Fry et al [8] 

Encoder only 

Xilinx Virtex2000E 

 
56 MHz 1.101 seconds 

Yin-hua Wu et al [19] 

Encoder only 
Xilinx XC3S5000 50 MHz 2.29 ms 

Our Maximum 

Magnitude module only 

Xilinx Spartan 3E 

XC3S500E 
74 MHz 13.581ns 

Our Threshold only 
Xilinx Spartan 3E 

XC3S100E 
67 MHz 15.020ns 

Our Encoder Module 

only 

Xilinx Virtex-4 

XC4VLX80 
98 MHz 318.212 ns 

Our Decoder Module 

only 

Xilinx Spartan 3E 

XC3S100E 
69 MHz 14.489ns 
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7.4    Throughput and Resource Utilization Comparison 

 

First we shall compare our results with those of Fry et al [8]. Our maximum magnitude 

module is implemented on a XC3S500E and occupies 3 % of the available resources in slices 

while giving a throughput of 2368 Mbps. Fry et al [8] have used a Virtex2000E device which 

has 97% greater number of slices compared to our device and 80% more logic gates 

compared to the XC3S500E which has a mere 960 slices and is much more cheaper than the 

Virtex 2000E. It is evident that our maximum magnitude module is far more efficient in 

terms of area and cost.  

Now if we compare our design modules with that of Yin-hua Wu et al [19], each of our 

modules give a higher throughput in Mbps, in spite of the fact that we have used smaller less 

costly devices. Corsonello et al [21] have used 15% of total available slices d 18 Block 

RAMs to implement their encoder module only. In contrast, our encoder may have higher 

slice utilization but we have not used any Block RAM in our design. In Table 7.6 we have 

depicted the above discussed comparisons. 
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Table 7.6 Comparison Result of SPIHT in terms Throughput and Area 

 

Implementation Module Device 
Clock Rate 

(MHz) 

Throughput 

(MPixels/sec) 

FPGA 

Area 

(Slices) 

Fry et al [8] 
Maximum 

Magnitude 

Xilinx 

Virtex2000E 

 

73 146 62% 

Fry et al [8] 

Encoder 

and 

Decoder 

modules 

Xilinx 

Virtex2000E 

 

56  224 34% 

Yin-hua Wu et al 

[19] 
SPIHT 

Xilinx 

XC3S5000 
50  200 47% 

Jyotheswar et al 

[20] 
SPIHT 

Xilinx 

Virtex4 

XC4VLX25 

35  280 Mbps 65% 

Corsonello et al 

[21] 

Encoder 

module only 

Xilinx  

XC2V1000 
100  - 15 % 

Our Design 

Maximum 

Magnitude 

only 

Xilinx 

Spartan 3E 

XC3S500E 

74  148 3% 

Our Design 

Threshold 

module 

only 

Xilinx 

Spartan 3E 

XC3S100E 

67  268 7% 

Our Design 

Encoder 

Module 

only 

Xilinx 

Virtex-4 

XC4VLX80 

98 294 59% 

Our Design 

Decoder 

Module 

only 

Xilinx 

Spartan 3E 

XC3S100E 

69 276 6% 
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CHAPTER 8 

CONCLUSIONS AND FUTURE WORK 

This chapter includes the conclusions that we have reached upon at the completion of our 

work. Also included are suggestions for future improvements in our work and our 

publications.  

 

8.1   CONCLUSIONS 

 

The SPIHT compression scheme was introduced in 1996 and has since then gone through a 

number of evolutions. However, to our knowledge through extensive study, we have seen 

implementations either entirely on hardware or entirely on software.  

Our target was to combine the capabilities of hardware and software to implement the 

original SPIHT. We have implemented the DWT and IDWT on MATLAB which has a large 

number of built-in functions for easy arithmetic calculations. Our coding and decoding 

portion was carried out on hardware (FPGA) which provides immense flexibility for blocks 

with extensive mathematical calculations.   

We have successfully managed to implement the SPIHT coder in a time effective architecture 

while using an average of less that 50% of resources of FPGA devices which are far more 

cost effective as compared to the devices used by previous implementations. There are three 

main factors to be considered in design comparison which are cost, area and throughput. 

There is a trade-off between area and throughput in our design, and we have tried to the give 

the maximum manageable throughput from a cost effective device at a compromise of area in 

our encoder module.  
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8.2   FUTURE WORK 

 

Our recommendations for future work are as follows: 

1. Our proposed design architecture can be applied to any square image of dimensions 

32x32, 128x 128, 256 x 256 and so on. However for an image with unequal dimensions 

certain changes must be made in our encoder and decoder architecture.  

2. We have implemented our design on cost effective devices with fewer resources 

compared to high density modern Xilinx FPGA devices which incorporate new features 

such as DSP Slices and embedded microprocessor. If our design is implemented using 

embedded features, it can further increase the throughput and simulation time. 

 

8.3   PUBLICATION 

 

Ursila Khan, Arshad Aziz and Valiuddin Abbas, “An Efficient Implementation of SPIHT 

Algorithm on a Reconfigurable Hardware”, IEEE, 8th International Bhurban Conference on 

Applied Sciences and Technology Conference (IBCAST), Islamabad, 11-14 January 2011.  
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