National University of Sciences & Technology, Pakistan Pakistan Navy Engineering College, Karachi

Title of Thesis:
Control of Quadrotor Miniature Flying Robot
Submitted by:
Syed Mamnoon Akhter
MSEE Control
Supervised by:
Dr. Vali Uddin
(Associate Professor)
Guidance and Examination Committee:
Dr. Pervaiz Akhter
(Associate Professor)
Cdr. Dr. M Junaid Khan PN
(Associate Professor)
Lt. Cdr. Dr. Attaullah Memon PN

(Assistant Professor)

ACKNOWLEDGMENT

All praise for Almighty Allah and may He shower His blessings on Prophet Muhammad (peace be upon him), who is always a source of knowledge and guidance for humanity as a whole.

I offer my sincere gratitude to Dr. Vali Uddin Abbas, Professor, Faculty of Electronics and Power Engineering, National University of Science and Technology, for the supervision, guidance and advices which he furnished during the course of this study. I am deeply impressed not only with his professional abilities and academic proficiencies but also his valuable qualities as a person, being so kind and polite.

A special vote of thanks to my GEC members Cdr. Dr. Muhammad Junaid Khan PN, Dr. Pervaiz Akhter and Lt. Cdr Dr. Attaullah Memon PN, members of GEC for their valuable suggestions and kind cooperation in the studies.

I offer my sincere thanks to my class mates Mustafa Raza, Ijlal Haider and Lt. Cdr Muhammad Haseeb PN for their motivation and help.

I feel myself duty bound to express my deep sense of gratitude to my father who provided all facilities in every aspect and kept my mind free of domestic problems, to my mother for her keen interest in my educational career and rest of the family members for their encouragement throughout my research work.

Syed Mamnoon Akhter

ABSTRACT

An unmanned aerial vehicle (UAV) is an unpiloted aircraft which can either be controlled from any remote location or a preprogrammed flight plan is used to fly it. They are very useful in military and civil applications. Quadrotor is a successful design of rotating wing UAV with four horizontal rotors. Two of them rotate in clockwise and other two in counter clockwise direction. This movement is very effective in eliminating gyroscopic effect that occurs in helicopters. It is controlled by varying the speed of anyone or all. The ability of Quadrotor UAVs to take off and landing vertically and hovering at any point have become most popular among researchers. Quadrotor UAV has four inputs and six degrees of freedom. As Quadrotor is an underactuated system, we can track its three angular positions (Yaw, pitch and roll) and altitude. There is an additional advantage of quadrotor that is diameter of four rotors is smaller than the equivalent helicopter's rotor which allows it to consume less kinetic energy.

In this thesis first of all a model of Quadrotor is developed using Newton-Euler's formalism. Then a nonlinear adaptive backstepping strategy based on Lyapnov stability theory is proposed to track the desired trajectory in presence of disturbances. Backstepping control is a flexible method that allows building up a nonlinear control law without cancelling useful nonlinear dynamics. Consequently less control effort is used to track reference signal. In the proposed strategy un-modeled dynamics are taken as disturbances and four virtual control laws are designed to estimate disturbances and stabilize the quadrotor on desired position.

To validate theoretical design proposed controller is tested on SIMULINK. Responses are taken on different set points of altitude and three angular positions in presence of uncertainties. These simulations demonstrate that designed controller is very effective in controlling the position of Quadrotor UAV with very small settling time and overshoot.

TABLE OF CONTENTS

Α	CKNO'	WLEDGEMENT	iiii
Α	BSTR/	4 СТ	iv
T	ABLE (OF CONTENTS	V
L	ST OF	FIGURES	vvii
L	ST OF	TABLES	ix
L	ST OF	ABBREVIATIONS	x
1	INTRO	ODUCTION	1
	1.1	INTRODUCTION	1
	1.2	HISTORY	2
	1.3	QUADROTOR UAV	2
	1.4	ADVANTAGES OF QUADROTOR	4
	1.5	DISAD VANTAGE	4
	1.6	APPLICATIONS	4
	1.7	FUNDAMENTAL ISSUES	4
	1.8	CURRENT RESEARCH AND FUTURE	5
2	LITER	RATURE SURVEY	6
	2.1	INTRODUCTION	6
	2.2	REVIEW OF PREVIOUS WORK	6
	2.3	APPLIED CONTROL SYSTEMS	8
	2.4	CONCLUSION	9
3	MATH	HEMATICAL MODELLING	.10
	3.1	INTRODUCTION	.10
	3.2	SYSTEM DESCRIPTION	.10
	3.3	MATHEMATICAL MODELLING	.11
	3 4	STATE SPACE MODEL	14

	3.5	SIMULINK MODEL	15
	3.6	CONCLUSION	16
2	CON	TROLLER DESIGN	17
	4.1	INTRODUCTION	17
	4.2	PROPOSED STRATEGY	17
	4.3	CONTROLLER DESIGN	18
	3.6	CONCLUSION	23
5	SIMU	JLATION AND RESULTS	24
	5.1	INTRODUCTION	24
	5.2	MATLAB	24
	5.3	SIMULINK MODEL	25
	5.4	OPEN LOOP RESPONSE	29
	5.5	CLOSED LOOP RESPONSE	34
	5.6	COMPARISON	46
6	CON	CLUSION AND FUTURE WORK	47
	6.1	CONCLUSION	47
	6.2	FUTURE WORK	47
	RFFF	FRENCES	48

LIST OF FIGURES

Figure 1-1 Quadrotor UAV	1
Figure 1-2 Direction of four rotors of QR UAV	3
Figure 1-3 Variations in positions of UAV by applying torque	3
Figure 2-1 Quattrocopter	7
Figure 2-2 Quadrotor designed in Pennsylvania State University	7
Figure 2-3 Quadrotor Developed in University of British Columbia	8
Figure 3-1 Structure of QR UAV	10
Figure 3-2 Inertial frame of reference	12
Figure 3-3 SIMULINK model	15
Figure 5-1 Controller for altitude	25
Figure 5-2 Controller for yaw	26
Figure 5-3 Controller for pitch	27
Figure 5-4 Controller for roll	28
Figure 5-5 SIMULINK model to find open loop response	29
Figure 5-6 Open loop response of altitude	30
Figure 5-7 Open loop response of yaw	31
Figure 5-8 Open loop response of pitch	32
Figure 5-9 Open loop response of roll	33
Figure 5-10 SIMULINK model for closed loop simulations	34
Figure 5-11 Altitude with setpoint=1m	35
Figure 5-12 Altitude with setpoint=5m	35
Figure 5-13 Altitude with setpoint=0.5m	36
Figure 5-14 Yaw angle with setpoint=0.5Radian	37
Figure 5-15 Yaw angle with setpoint=0.25Radian	38

Figure 5-16 Yaw angle with set point=0 Radian and initial condition of 0.2 Rad	39
Figure 5-17 Response of Pitch with set point =0.5 Radian	.40
Figure 5-18 Response of Pitch with set point =0.8 Radian	.41
Figure 5-19 Response of Pitch with set point =0 Radian and initial condition of 0.3 Radians	
Figure 5-20 Roll with set point = 0.5 Radians	.43
Figure 5-20 Roll with set point = 0.25 Radians	.44
Figure 5-21 Roll with set point=0 Radians and initial condition of 0.3 Rad	.45

LIST OF TABLES

Table 3-1 Numerical values for system parameters11	
Table 5-1 Comparison46	

LIST OF ABBREVIATIONS

BC Before Christ

UAV Unmanned Air Vehicle

KW Kilo Watt

VTOL Vertically Take Off and Landing

PID Proportional Integral Derivative

LQR Least Quadratic Regulator

QR Quadrotor

MEMS Micro Electromechanical Motion Sensors

GPS Global Positioning System

IMU Inertial Measurement Unit

PD Proportional Derivative

NN Neural Network

SGUUB Semi Globally Uniformly Ultimately Bounded