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 Abstract 

Data security is an important aspect of information transmission and storage in an electronic 

form. Cryptographic systems are used to encrypt such information to guarantee its security. To 

retrieve such information, the encrypted form must be first decrypted. One of the most popular 

cryptographic systems is the RSA public key crypto system. The larger the RSA public modulus 

size, the stronger will be the RSA cryptosystem. Unfortunately, the RSA is extremely vulnerable 

to timing attacks which can deduce the private RSA exponent due to regularity of operations in 

the straight forward implementation of exponentiation using the square and multiply method or 

its variants. Timing attacks constitute a major threat to the all systems using RSA and hence, 

implementations must be protected. The work reported here proposes Secure Implementation of 

RSA algorithm against timing attacks. This implementation is done using Verilog HDL and 

targeting Xilinx FPGA devices.    

The “Secure Implementation of RSA Algorithm against Timing Attacks” is done by using the 

output of a Random Number Generator, and blinding the exponentiation operation. The 

Exponentiation is done by using Montgomery Reduction scheme which is the fastest known 

technique of exponentiation. It does not require division, as the division in hardware is quite 

complex.  The random number generator is implemented using a Barrel shifter and to nullify the 

effect of random number we implemented the Extended Euclidean Algorithm which provides 

modulo inverse of the generated random number. To hide the operation time we multiply the 

random number with the private key. After exponentiation the result is then further multiplied 

with the inverse of the generated random number.  By doing so the timing of the algorithm is 

changed and hence, the desired result is achieved.     
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CHAPTER 1 

INTRODUCTION 

 

1.1 Background 
 

Encryption is a well recognized technique for the protection of data and information. It is used 

effectively to protect sensitive data. The transfer of data from one form to another form, which is 

unreadable without the secret key, is called encryption. Several techniques have been used for 

many years. Cryptographic systems are classified into two main categories secret key 

cryptosystem and public key cryptosystem. Only one key is involved in Secret key cryptosystem. 

This key is used for both encryption and decryption. However, public key cryptosystem uses two 

different keys one for encryption and other one for the decryption.  

Day by day the significance of FPGA (Field Programmable Gate Array) is increasing. FPGAs 

are playing very important role in commercial area and research area as well. The technology of 

FPGA is more affordable as compared to ASICs. FPGAs are reconfigurable platforms. The 

choice of reconfigurable platforms for cryptographic algorithm appears to be practical and it 

provides high speed in applications.  

In 1978 RSA algorithm was first developed by Rivest, Shamir and Aldeman. RSA is an example 

of public key algorithm. If the modulus size is large, the algorithm is secure. This algorithm is 

computationally intensive and it operates on very large integers. RSA algorithm can be used for 

encryption / decryption and digital signatures. RSA is the most popular method for the public 

key cryptosystems. The key size determines the security of RSA algorithm. The larger is the key 

size, more is the security. 

1.2 Thesis Motivation 

The motive of this thesis is to develop a secure implementation of RSA algorithm against timing 

attacks. Kocher [2] in his paper at RSA Data Security and Crypto first discussed the timing 

attacks in 1996. Timing attacks exploit the information about the time variation during the 
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cryptographic operations. Cryptographic algorithm operations take different amount of time for 

every logical operation [2]. The idea behind this thesis is to secure RSA cryptographic algorithm 

against timing attacks.  

1.3 Thesis Organization 

The thesis presents the Implementation of RSA Algorithm Secure against Timing Attacks.  

 

Chapter 2 presents the basic concept of RSA algorithm.  

Chapter 3 discusses the efficient method to implement arithmetic operations which includes 

addition and multiplication on reconfigurable platform.  

Chapter 4 chapter provides a vast knowledge on modular exponentiation. It also includes 

different techniques which are being used.   

Chapter 5 gives the fundamental concepts of side channel attacks and how we can protect 

cryptographic modules against such attacks.  

Chapter 6 discusses the hardware implementation of proposed architecture of RSA algorithm 

against timing attacks.  

Chapter 7 presents the basic knowledge of FPGA and it also summarizes the advantages of 

FPGA over ASICs.  

Chapter 8 shows the synthesis and simulation results of our implementation. 

Chapter 9 gives the conclusion and possible future advancements.  
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CHAPTER 2 

THE RSA ALGORITHM 

This chapter discusses the details of the RSA Algorithm. The basic concept of the RSA 

Algorithm is explained in the following sections.  RSA Encryption / Decryption, RSA Security 

and RSA example is stated in the following sections in order to develop better understanding of 

the proposed work. 

2.1 Introduction 

 
RSA is an algorithm, which is used for encryption and authentication. The security of RSA 

algorithm relies on a problem which is known as Integration Factoring Problem (IFP). RSA is a 

public key crypto system, it can encrypt and decrypt with the same function. RSA involves two 

keys, namely public key and private key. Public key is made publically available while the 

private key is kept secret [1][3]. For encrypting the information public key is used whereas for 

decryption process private key is used.  

RSA algorithm involves computation complexity of factoring very large prime numbers. In 

symmetric key cryptosystem two problems can occur. Fist the key exchange between sender and 

receiver may be unsafe. Second problem is that no digital signature is available in secret key 

cryptosystems. Asymmetric cryptosystem overcomes these two problems.  

     

   

    

 

 

  

ENCRYPTION DECRYPTION 

Encryption Key Decryption Key 

Original Plain-text Cipher-text Plain-text 

Figure 2.1 Public Key algorithm Encryption and Decryption with different keys 
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2.2 RSA Key Generation 
 
The following steps are involved in the generation of RSA key. 

1. Two prime numbers p and q are generated first. 

2. Calculate n 

      

3. Calculate   (n) 

  ( )  (   )(   ) 

 

4. Now, select a number such that 1 < e < (n) 

    (   ( ))    

and compute d with  

            ( ) 

5. Public Key = {e,n}and Private Key = {d,n} 

 

2.3 RSA Encryption 
 

The following formula is used for the calculation of encryption. 

           

Where C is the Ciphertext, and P is the Plaintext. 

2.4 RSA Decryption 
 
The decryption is calculated by the following formula. 

          

2.5 RSA Example 
 
For example pick p =11, q = 13 and compute. 

                

 ( )  (   )(   )            

For example e = 17. The private component d is computed by: 
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     (     ( )) 

          (   ) 

      

2.6 RSA Security 
 

RSA gets is difficulty from the factorization. The basis of RSA security is factoring large prime 

numbers. RSA Problem is also the fundamental part of the security of the RSA.  The condition of 

RSA problem makes sure that there is exactly only one unique n in the field. It is difficult to 

determine ø(n). Without the knowledge of ø(n), it would be hard to derive d based on the knowledge 

of e. This algorithm is used in security protocols. The following table shows some of the applications 

where RSA is used to provide security [1,4].    

 

Table 2.1 Applications of RSA Algorithm 
ISPSEC / IKE IP Data Security 

TLS / SSL Transport Data Security 

PGP Email Security 

SSH Terminal Connection Security 

SILC Conferencing Service Security 
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CHAPTER 3 

ARITHMETIC ON HARDWARE 

This chapter discusses the hardware implementation of arithmetic units. In this thesis we used 

unsigned addition and multiplication. Most of the cryptographic algorithms require some of the 

operations to be executed repeatedly. It is very important that these units should be implemented 

very efficiently.  

3.1 Addition 
 
Addition plays an important role in the cryptographic algorithm. RSA speed depends upon the 

speed of the addition unit. When we add two bits sum and carry bits are generated, the carry bit 

is used in addition with next two input bits, in that way this carry bit is propagated from LSB to 

MSB. Therefore, the design of adder should be such that it will minimize the delay. To minimize 

this delay we use fast adders.  

3.1.1 Types of Adder 
 
To add single bit we have the following two types of adder.  

3.1.1.1 Half Adder 

Two inputs namely A and B are used in half adder, with two outputs namely sum and carry out. 

Sum is obtained by implementing the logical operation of XOR to the two inputs A and B, 

whereas the carry output is attained by performing the logical operation of AND to the inputs A 

and B.    

S = A  B 

C = A • B  

We cannot use this adder because when multi bits are used, the half adder does not include the 

carry output.   
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Figure 3.1 Half bit adder 

 

 
3.1.1.2 Full Adder 

Full adder consists of three inputs A, B, Carry-in and it produces two outputs Sum and Carry-

out. Full adder can be used for the multi bit addition. Full adder can connected to the other full 

adder in order to achieve the multi bit addition. The sum and carry out for full adder is obtained 

by the following formula. 

inS A B C    

Cout = (A•B)+(Cin.• (A B)) 

 

 Figure 3.2 Full bit adder  

3.1.1.3 Ripple Carry Adder 

Multiple full bit adders used a logical circuit to add N-bit numbers. Each full adder uses Cin as 

the input, which was the output of the last adder. The response time of ripple carry adder is slow, 

as it has to wait for the carry bit to be calculated from the previous full adder. Each full adder 

requires three levels of logic. In a 32 bit ripple carry adder, the critical path delay is equal to 65 

gate delays.   
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Figure 3.3 Ripple carry adder 

 

3.1.1.4 Carry Look Ahead Adder 

Carry look-ahead adder reduces the computation time. A cell will generate a carry if both of cell’s 

data bits are 1. A cell will propagate a carry if either of the data bits and carry-in of the cell are 1. 

The generate gi and propagate pi are defined as: 

i i i

i i i

g a b

p a b
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3.1.1.5 Carry save Adder 
 
Currently Carry Save Adder (CSA) is the most widely used adder to implement the fast arithmetic 

on the hardware platform. It save the carry generated at each stage rather than propagate to the next 

adder. Each stage of adder produces two outputs sum(s) and carry(c).  

 

3.1.1.6 Comparison between Ripple Carry Adder and Carry Look Ahead Adder 

The following table shows the comparison between Ripple Carry Adder and Carry Look Ahead 
Adder. 

Table 3.1 Comparison between Adders  

S. No Ripple Carry Adder Carry Look Ahead Adder 

1. It is a straight forward way of adding two 

or more than two bits. 

Carry Look Ahead Adder calculates the carry bits 

before the sum. 

2. Wait time is much more because carry is 

calculated alongside sum. 

It reduces the wait time. 

3. In 16 bit Ripple Carry Adder, we find 

CPU : 2.89 / 3.06 s | Elapsed : 3.00 / 3.00 

s 

In 16 bit Carry Look Ahead Adder we get  

CPU : 2.90 / 3.07 s | Elapsed : 3.00 / 3.00 s 

4. In Ripple Carry Adder every carry out 

has to be carry in of the next stage. 

Carry Look Ahead Adder uses the logic of 

generating and propagating carries. 

 

3.2 Multiplication 

Multiplication plays an important role in arithmetic units. Multiplication can be constructed by 

sequential circuit or by combinational circuits. Combinational circuit is faster than the sequential 

circuit but sequential multiplier require more clock cycles for the required operation. Combinational 

circuit requires more area or silicon hardware.  

Multiplication of two digital numbers is performed by addition and shifting of bits. Considering the 

multiplication of two numbers, the multiplicand is a with there presentation of [a1,a2 ,a3 , ……………., an] 

and multiplier b with the representation [b1 ,b2 , b3 ,…………….., bn] both are n bit numbers. The 

resultant of the product is a and b is 2n bit wider. The entire steps of the multiplication are the 

following. 
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b7 b0 

(i) Partial Product Array Generation 

(ii) Partial Product Array Reduction 

(iii) Final Addition 

It can be represented by the following figure. 

 

3.2.1 Partial Product Array Generation 

The first step in the digital multiplication we have to generate n shift copies of the multiplicand. This 

implementation can be implemented by using a logical and operation which performs AND (ai , bj) 

where i and j = 0 to n-1. This result is known as partial products. If we arrange these products by 

their corresponding bit positions we may get the following figure. These partial product bits are 

arranged in column to attain the final value. This trapezoidal structure is known as Partial Product 

Array. 

 
 

 

  

 

 

 

 

 

 

 

    

Figure 3.6 Partial Product Generation of 8*8 bit Multiplication 
COLOUMNS ARE TO BE ADDED 

  

a7 a0 
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3.2.2 Partial Product Array Reduction 

The efficiency of multiplier depends upon the manner in which PPA bits are added. One method is 

to add two partial products at the same time and their result is added to the next partial product. In 

this way all the partial products are added. This is a very insufficient way in hardware 

implementation. Each addition process contributes a delay in the final addition. This makes the 

multiplier very slow. To reduce the critical path reduction techniques are used. Fast adders can be 

used to reduce n number of iterations in to 2. The following techniques are used for the reduction 

purposes along with the fast adders.  

 

Figure 3.7 Partial Products of 4*4 bits 

 

3.2.2.3 Wallace Data Tree Reduction Scheme 

The reduction is performed in parallel in groups of 3s. As the number of partial products increases 

the size of the multiplier also increases. Each adder level incurs one Full Adder (FA) delay in the 

path. The larger the number of adder levels, the bigger will be the critical path of the combination 

cloud of the Partial Product Reduction (PPR) unit. Following figure shows the 4 x 4 example of 

Wallace Tree Reduction Scheme. 

 

Fig 3.8 Wallace Tree Reduction 4*4 Example 



12 
 

 

3.2.2.4   Dadda Tree Reduction Scheme 

The compression rate of dada tree reduction scheme is similar to the Wallace tree reduction scheme. 

Dadda tree reduction unit results in an optimal number of hardware blocks. The architecture of 

dadda tree reduction scheme is simple to implement but it exhibits the larger critical path than the 

Wallace tree reduction scheme.  

 

  Fig 3.9 Dadda Tree Reduction 4*4 

The following table 3.2 shows the number of full adders according to the number of partial products. 

Number of Partial Products Number of full adder levels 

3 1 

4 2 

      3 

      4 

        5 

        6 

        7 

        8 

        9 
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3.3 Final Addition 

The final addition has to be done by fast adder like carry save adder, carry look-ahead adder or any 

other carry propagate adder is used for purpose. The addition of 512 bits or more require a very time 

consuming operation. A special attention should be paid on the multiplier architecture because if the 

adder is a slower one than it may contribute a significant delay in the critical path.  CLA / CSA tree 

itself can be used for this purpose. 
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CHAPTER 4 

SIDE CHANNEL ATTACKS ON 

CRYPTOSYSTEM 

4.1 Introduction 

Side channel attacks can destroy any cryptosystem. Cryptosystem takes slightly different amount of 

time to process different inputs. In side channel attack the information can be retrieved from the 

encryption device that is neither the plaintext to be encrypted nor the cipher-text resulting from the 

encryption process. In a side channel attack an attacker attempts to compromise a crypto system by 

analyzing the time required to execute each operation. Each logical operation requires some time for 

execution [3]. An attacker can work backward to find the input by the precise measurement of time. 

It is generally agreed that RSA is secure from direct attack. Performance characteristic of the 

cryptosystem depends upon the encryption key and data input.  

4.2 Side Channel Attacks 

Side Channel attacks comprises of following classes. 

4.2.1 Timing Attacks 
 

Timing attacks are a form of side channel attacks. Timing attacks are based on measuring time it 

takes for a unit to perform operation [2]. Generally, encryption system requires different processing 

time for different inputs. Some attacks can exploit the timing measurements to find the entire secret 

key. Timing attacks can be used potentially against any cryptosystem including symmetric functions.  

Calculating variances is fairly simple. It provides a improved way to make out correct bits. The 

number of samples will allow recovering the information by the properties of signal and noise. If 

noise is too much, than, more samples will be needed to find the actual information and the secret 

key. 
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4.2.2 Power Consumption Attacks 
 

Those attacks which are based upon the analyzing of power consumption of the unit when it is 

performing encryption operation. An analyst can take out secret information such as undisclosed 

keys. Simple Power Analysis (SPA) involves visual examination of different graphs of the current 

used by a device over a period of time. As a device performs different operations variation in power 

consumption occurs [5]. The implementation of squaring and multiplication in RSA can be 

distinguished. An attacker can learn about the processes that are occurring inside the unit and can get 

the required information.  

Differential Power Analysis (DPA) involves statistically analyzing power consumption 

measurements from a cryptosystem. Differential Power Analysis uses error correction and signal 

processing.  

4.2.3 Electromagnetic Attacks 
 

These are the attacks which are based upon the leakage of the electromagnetic radiation. It can 

provide directly plain-text and other information as well. Such measurements can be used to infer 

cryptographic keys using techniques equivalent to those in power analysis, or it can be used in non-

cryptographic attack.  

4.2.4 Acoustic Cryptanalysis 

 

These are the attacks which exploit the sound produced during the computation rather than the 

power analysis.  

4.2.5 Cache Attacks 
 

This kind of attacks reveals the information between the processes of computer.  
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4.2.6 Differential Fault Analysis 
 

This type of attacks often reveals the information by introducing faults in the computation. All types 

of attacks involve the physical effects. Useful secrets and information about the system can be 

attained by the operation performed by the cryptosystem. This information may include 

cryptographic key, partial state information, full or partial plaintext and so on. The term secret 

degradation is sometimes used to express the degradation of secret key material resulting from side 

channel leakage. 

4.3  Preventing Side Channel Attacks 

The ability to resist side channel attacks the designer of cryptographic modules should use any of the 

following techniques in order to make the cryptosystem more reliable. Every operation performed by 

the module should be data independent in their time consumption. Whenever, different sub 

operations are performed according to the inputs, they should require same number of clock cycles. 

Time required to perform operation should be fixed for every piece of data, this will exclude the all 

possibilities of the timing attacks. 

4.3.1 Constant Exponentiation Delay 
 

This technique is also used for the prevention of side channel attacks. In this technique we make sure 

that all the exponentiations takes the same amount of time before providing the result [2]. This is the 

simplest way of preventing data from side channel attacks but it degrades the overall performance of 

the algorithm as each operation requires different amount of time to execute but if we implement this 

technique each and every operation would require same amount of time. 

4.3.2 Random Delay 
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Random delay technique provides better performance of the algorithm as compared to the constant 

exponentiation delay. In this technique we add random delay to the exponentiation in order to 

confuse the timing attacks. Kocher [2] points out in his paper that if we do not add enough noise then 

the observer can still succeed by collecting additional measurements which were made for the 

compensation of the random delay.  

4.3.3  Blinding 
 

Blinding is far better technique than constant exponentiation delay and random delay. It is the most 

widely accepted method in the defense of RSA. Blinding prevents the side channel attacks on 

encryption system [34].  

RSA blinding introduces the randomness. Blinding makes the timing information unusable. To 

recover the input information of the cryptographic algorithm, a cryptanalysis gathers the algorithm’s 

result. Blinding serves to alter the algorithm’s input into some unpredictable state. Blinding can 

prevent some or all leakage of useful information which can be used for finding the actual inputs of 

the cryptographic algorithm. Blinding can be employed against simple timing attacks. Ideally, a 

random value r ∈ ZN is chosen for each signing operation. We compute (mr)
d 

mod n, instead of 

computing m
d
 mod n. Then, multiply the result with r

-1 
mod.  By doing so, the cryptanalyst can no 

longer choose the messages being input to Montgomery Multiplication algorithm.  
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CHAPTER 5 

HARDWARE IMPLEMENTATION 

 
5.1 Introduction 

This chapter includes the hardware implementation of the RSA Algorithm against Timing attacks. 

The RSA algorithm involves addition, modular multiplication and modular exponentiation. This 

chapter also includes the algorithms involved in the implementation of RSA.   

5.2 Addition 

Addition is the basic part of the Arithmetic Logic Unit (ALU), which is used in all other operations. 

The overall performance depends upon the speed of addition. We started our implementation by 

using Ripple Carry Adder. After some further literature review it came into notice that Ripple Carry 

Adder has some drawbacks in terms of delay. Therefore, we switched on to Carry Look Ahead 

Adder, which has less delay while propagating carry. As already mentioned, that addition operation 

is the most important and fundamental unit and it plays a major role in all operations. The delay 

effect is minimized by CLA. First, we made a Carry Look Ahead adder of 4 bits, we instantiate it to 

make a 16 bit adder. We instantiate these 16 bit adder to form the Carry Look Ahead Adder of 64 

bits and then these 64 bit adders cascaded to make the required adder of 512 bits. 

 

Fig 5.1 Addition of n bits 
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Figure 5.2: RTL schematic of 64 bits Addition 

The results of the Ripple Carry Adder and Carry Look ahead Adder has been shown in the following 

figure. A comparison between Ripple Carry Adder and Carry Look Ahead Adder has already shown 

in the section 3.1.1.6. Figure 5.2 shows the schematic diagram of 64 bit addition using CLA. 

 

Figure 5.3: Simulation Result of 16 bit Carry Look Ahead Adder 

Figure 5.3 shows the result of 16 bit CLA. There are two inputs namely A and B, whereas carry in is 

the bit which is of one bit and this bit is generated by the sum of the two inputs. Carry in is used as 

the third input, sum and carry output are the results of the addition. In figure 5.3, we have taken 
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different sets of inputs and getting the results in terms of sum and carry output. Carry in will be high 

whenever the sum of the inputs A and B are of two bits or of more than two bits. Each and every 

operation requires 100 ns.      

 

Figure 5.4: Simulation Result of 16 bit Ripple Carry Adder 

Figure 5.4, shows the simulation result of 16 bit Ripple Carry Adder. CLA and RCA both are fast 

adders. But RCA has some delay as compared to CLA. A and B are the two inputs, whereas Cin is 

the carry in. Carry out and Sum are the results. Carry out is of 1 bit whereas the sum is of 16 bit.  

Each operation requires 100ns.  

5.3 Modular Multiplication 

Multiplication was done by suing Shift and Add method. In Modular Multiplication this requires an 

additional module of division. Division is the most complex part of the hardware. We switch on to 

Booth multiplier and 16 bit multiplication results were shown in the following figure. Booth 

multiplication also has some limitations. Since we are working on the security of the system, so we 

have already loss some of the speed. There are two methods which are quite useful in Modular 

Arithmetic. They are Wallace Tree Reduction and Dadda Tree Reduction.  
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Fig 5.5 Block Diagram of Modular Multiplication 

Therefore, we proffered Wallace Tree Reduction Method in order to gain some speed in the RSA 

Algorithm. There are two inputs namely, input 1 and input 2, whereas the clock, reset and enables 

are the controlling signals. Output is denoted by output and done indicates that the output has been 

achieved.    

 

Fig 5.6 Shift and Add Multiplication 

 
The figure 5.6 shows the simulation result of shift and adds multiplication. There are two inputs 

namely, A and B. Output is denoted by P. A and B are of 16 bits, whereas P is of 32 bits. Each 

operation requires 10 ns to complete the result. From the figure it is obvious that every logical 

operation is requiring the same amount of time that is of 10ns.   
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Fig 5.7 Simulation Result of Montgomery Multiplication using Wallace Tree Reduction Method 

 

The figure 5.7 shows the simulation results of Montgomery Multiplication using Wallace Tree 

Reduction Method. It is formed using sequential logic. The output is high unless the reset bit goes 

low.   

 

5.4 Modular Exponentiation 

Square and multiply algorithm is used effectively to calculate Modular Exponentiation. In most of 

the cryptographic protocols this algorithm is used. 

 

Figure 5.8  View RTL schematic of Modular Exponentiation 
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The above figure represents the schematic diagram of Modular exponentiation. Square and multiply 

algorithm is much faster than simple multiplication algorithms. Therefore, we used square and 

multiply algorithm for exponentiation.  

 

Figure 5.9 Simulation Result of Modular Exponentiation 

Figure 5.9 shows the simulation result of Modular exponentiation. We get the result, when the exp 

done bit is high. As long as exp done bit is low, the output is zero.  

5.4 Random Number Generator 

Random number plays a vital role in the encryption / decryption. RNG changes the exact time of the 

operation. It changes the time of operation such sufficiently that the attacker cannot find the exact 

operation time. Pseudo Random Number Generators are implementing in hardware. For practical use 

we established 32 bit random number. It provides 2
32

 combinations which are sufficient and have a 

wide range. We use Barrel shifter for generation of random number. Barrel Shifter has multiple 

usages in digital design systems. These registers can be used in Encryption / Decryption, Digital 

Signal Processing, Wireless Communications, Data Integrity Checksum, Data Compression, 

Random Numbers Generation, Direct Sequence Spread Spectrum (DSSS), Scrambler / Descrambler 

and Optimized Counters. The following figure shows the block diagram of the Random Number 

Generator.  
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Fig 5.10 Block Diagram of Random Number Generator 

Figure 5.10 shows the block diagram of Random Number Generator. Output is attained when the 

done bit is high. Clock, reset and enable are of 1 bit, whereas initial value and key is of 32 bit. 

Output is also of 32 bit.   

 

Fig 5.11 Random Number Generator 32 bit 

Figure 5.11 indicates the simulation result of 32 bit random number generator. Output is obtained 

when the reset is low and enable bit is high. The clock cycles of random number generator output is 

40 ns.  
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5.5 Proposed Architecture 

Our proposed structure of Secure Implementation of RSA Algorithm against Timing Attacks 

consists of the following steps. First we implemented random number generator using barrel shifter. 

The random number generated using barrel shifter comprises of 32 bits. A barrel shifter shifts the 

data in a digital circuit. It shifts a particular number of bits in one cycle.  

Extended Euclidean Algorithm implemented to find out the modulus inverse of the generated 

random number. The effect of the random number has to be vanished from the original data. In order 

to remove the effect of the generated random number, we calculated modulo inverse of random 

number. The Extended Euclidean Algorithm is derived from Euclidean Algorithm. Highest Common 

Factor is finding through Extended Euclidean Algorithm. The greatest common divisor and inverse 

modulo number is obtained by using Extended Euclidean Algorithm. 

Modular Exponentiation was developed by using Montgomery Multiplication along with Wallace 

Tree Reduction scheme. Montgomery multiplication was chosen because it does not involve 

division. Additional module of division is omitted in Montgomery Multiplication and Wallace tree 

reduction is used in order to shorten the addition steps. We introduce random time to make the 

timing information unusable.  
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Fig 5.12 Block Diagram of Architecture 

 

The following diagram shows the simulation result of the proposed architecture of RSA Algorithm 

 

 
 

Fig 5.13 Simulation Result of proposed architecture of RSA 

 

The above figure 5.13 shows the simulation result of the proposed architecture of RSA.   
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5.6 FPGA Design Flow 

FPGA Design flow is shown in the following figure.  

 

 

 

  

Design Entity 

Design Synthesis 

 
 
 

Design Implementation 

 

Behavioral Simulation 

Functional Simulation 

Timing Simulation 

Fig 5.14 FPGA Design Flow 
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5.6.1 Design Entity 

The 1
st
 step is to enter our design. This is done by creating source files. These source files can be 

created in the forms of schematic or Hardware Descriptive Language.  

5.6.2 Behavioral Simulation 

The logical functionality of the design is tested by using user defined test benches.  

5.6.3 Design Synthesis 

The synthesis creates the technology dependent files from the different source files.   

5.6.4 Design Verification 

This step is done at different stages. This is the important step of the design. The simulator is used to 

verify the functionality of the circuit.  

5.6.5 Design Implementation  

After generating the synthesis step the implementation is converted into a logical design.  
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CHAPTER 6 

FIELD PROGRAMMABLE GATE ARRAY 

 

6.1 Introduction 

Field Programmable Gate Array (FPGA) belongs to a reconfigurable hardware family. FPGAs are 

silicon chips which are programmable.  Reconfigurable silicon chips provide same flexibility of 

software running on a processor-based system. FPGAs are absolutely reconfigurable. In recent years 

FPGAs are using for commercial as well as in military applications. Using these chips, we did not 

require pick the breadboard and soldering iron. Each dedicated section of the assigned a particular 

task and each block performs its function without the influence of any other logic blocks. 

 

Fig 6.1  Xilinc FPGA Internal Architecture 

Due to this, the performance of the one part of the process is not affected when additional task is 

added. FPGA provides reliability and hardware high speed [1]. FPGAs functions according to the 

user’s program rather than the manufacturer of the device. FPGA contains (64 to 10,000) identical 

cells.   
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6.2 FPGA Scope 

FPGA technology is gaining the momentum day by day and worldwide value of FPGA was first 

invented by Xilinx in 1984, FPGAs have now replaced  

6.3 Advantages of FPGA 

FPGAs have many advantages over ongoing other resources; some of these advantages are 

summarized as follows. 

Performance: The performance of the FPGA is much better than other resources. It provides fast 

hardware response time.   

Time to Market: FPGA provides flexibility. We can check the idea and any concept using 

FPGAs before performing the fabrication process of custom ASIC.  

Cost: As requirements of the system changes over time very rapidly, the cost of adding additional 

components in FPGA is very negligible when this is compared to the large expense of the re-

spinning an ASIC.  

Reliability: For any processor core, only one instruction can execute at one time but FPGA 

provides the flexibility for executing more than one instruction at the same time.       

Long-term Maintenance: FPGA provides long term availability. A device manufactured in one 

generation and migrates to the next generation the code will remain unchanged.   FPGA chips are 

upgradeable.  

6.4 Xilinx FPGA 

Five fundamental programmable functional elements are involved in the Spartan-3 family.     

Configurable Logic Blocks (CLBs) A CLB has four slices; each slice has two logic cells. Each 

logic cell has two Look Up Tables (LUTs) plus a storage element such as flip flops.  Slices can be 

configured as LUT, Distributed RAM and Shift register.  

Input / Output Blocks (IOBs) The purpose of the IOBs is to control the flow of data from input 

pins to the output pins and the internal logic of the device. Each IOB supports bidirectional flow of 

data but IOB can be used as unidirectional flow of data. IOB provides interface between the package 

pins and CLBs.  Outputs can be forced to high impedance. For high performance Inputs and Outputs 

can be registered.      

Block RAM (BRAM) provides data storage in the form of 18 k-bits. BRAM is the most efficient 

memory implementation. It contains 4 to 104 memory blocks. BRAM can be used for the larger 
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memories. It builds both single and dual port RAMs.  BRAM is different from Distributed RAM as 

it is synchronous to write and read.  

Multiplier Blocks provides fast arithmetic functions. It takes two 18 bit binary numbers and 

calculates the product. It also can be used for 2’s complement signed operation. Multiplier block is 

asynchronous.  

Digital Clock Manager Blocks (DCM) provides fully digital solutions distributing, delaying, 

multiplying, dividing and phase shifting clock signals.  

DCM provides daughter clocks. One important feature of DCM is jitter removal. Clock edges a bit 

early or a bit late. The FPGA clock manager is used for detect and correct this jitter and provides a 

clean daughter clock signal for use inside the device. The other main feature of DCM is frequency 

synthesis. 

 
 
 Fig 6.2 Generic FPGA Architecture  

 

The frequency of the clock signal provided to the FPGA outside may not be the exactly what a 

designer wants. The DCM generates daughter clocks with frequencies that are derived by 

multiplying or dividing the original signal.  DCM may also be used for phase shifting. Designer may 
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want the clocks which are delayed with respect to each other. DCM provides the feature of phase 

shifts of common values such as 120
O
 and 240

o
.  The DCMs are positioned in the center with two at 

the top and two at the bottom of the device.       
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CHAPTER 7 

RESULTS 

7.1 Introduction  

The result of the research is summarized in this chapter. The simulation results and synthesis results 

are presented in this chapter. The layout of the proposed architecture was shown in Chapter 6.  

7.2 Simulation Results 
 

This section shows the Simulation Result of the proposed architecture of “Secure Implementation of 

RSA Algorithm against Timing Attacks”.  

7.3 Synthesis Results 
 
This section shows the individual synthesis results of each of the module which are used in the 

Implementation of the proposed title. 

The synthesis result for the implementation of Random Number Generator is expressed in the 

following table: 

Table 7.1 Synthesis Results of Random Number Generator 

Logic Components Used 

Adder / Sub tractors 3-bit Adder (1) &32-bit adder (2) 

Registers / Flip Flops 101 

Xors 32-bit Xor 
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The following table shows the clock cycles of each operation. A random number of 32 bits was 

generated.  

Table 7.2 Clock Cycles of Random Number Generator 

Initial Value Key Generated Random 

Number 

Hamming 

weight  

Clock Cycles 

32’h EA 32’h511 32’hF8EDBAAD 21 40 

32’h 2654 32’hB3A 32’hC1F6A7CA 18 40 

32’h1987 32’h800 32’h3E6A5A38 16 40 

32’h6DD61 32’h302F 32’h7F81C7E8 18 40 

32’h48FFEA 32’h23BACA 32’h25E38CCE 16 40 

32’hBC6146 32’h96B43F 32’h6B5F7A09 18 40 

32’h3C413 32’hCF3658 32’h7315FAE 17 40 

32’h9C4800 32’h64000A 32’h3BE75E9C 20 40 

32’h8180209 32’hECAABC0 32’h6E0F29B3 17 40 

32’h48FA533C 32’h5B38E80B 32’h6BA931A4D 18 40 

32’h499602D2 32’h499602D2 32’h4668CD10 12 40 

 

The above table indicates that when we change the initial value or key, anew random number is 

generated but the number of cycles for each operation remains the same. In every execution a new 

random number is attained. The every generated number is different from the previous number, 

hence introducing the random number.    

The following table shows the number of clock cycles in each operation of multiplication.  
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Table 7.3 Number of clock cycles for Multiplication 

Multiplicand Multiplier Multiplication Result Clock Cycles 

135790 864203 11220 100 

2345678 456789 12868 98 

2468761 98791 8604 101 

147952 290541 737233 101 

246789 123678 385537 99 

The above table shows that for different multiplicand and multiplier, we are obtaining different 

results, but the number of clock cycles for each operation is the same. This indicates that for 

different number of bits, the clock cycles are same.    

The following table indicates the number of clock cycles when RSA simulated. 

Table 7.4 Number of Clock Cycles for RSA 

Base Exponent Result Clock Cycles 

161984 161998  43310  1023ns  

236789 456721 23334 1021ns 

194023  196507 51104 1020ns 

251992  201999 93548 1020ns 

The above table shows the result of the RSA. In the last column clock cycles are showing that for 

each operation we have same number of clock cycles irrespective of the base and exponent. The 

result of the exponentiation is varying but the time required to execute the operations is the same.    

The following table shows the clock cycles for each operation when blinding is performed on the 

RSA. 
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Table 7.5 Number of Clock Cycles for Blinded RSA 

RNG Base Exponent Clock Cycles 

YES 251992 201999 1020ns 

YES 161984 161998 1200ns 

YES 236789 456721 1197ns 

YES 975310 864209 1200ns 

YES 194023 196507 12020ns 

This table shows the result of the proposed architecture of RSA algorithm. The results are taken 

when Random Number is used; due to the addition of randomness the clock cycles are changed for 

each operation.      

This table indicates the comparison between the above two tables. 

Table 7.6 Difference between Clock Cycles 

Base Exponent Clock Cycles Base Exponent Clock Cycles Difference 

251992 201999 1120ns 251992 201999 1020ns 100ns 

161984 161998 1200ns 161984 161998 1023ns 177ns 

The above table shows that the difference between clock cycles when Modular Exponentiation is 

performed without blinding, and when the Modular Exponentiation is performed along with the 

blinding. Taking same base and exponent values, we are getting different amount of time for same 

operation.  This indicates that when we are performing blinding the execution time for operation 

changes slightly as randomness is included in the algorithm..  
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CHAPTER 8 

CONCLUSION AND FUTURE WORK 

 

8.1 Conclusion  

In this research we have developed a hardware model of RSA cryptographic system which provides 

more security to our cryptographic system. The thesis begins with the introductory description of the 

cryptographic systems. RSA technique is the most popular and widely method, which is used for the 

encryption. The goal set in this thesis assignment was fulfilled. The thesis presented the 

enhancement of the security. The implemented RSA algorithm is much more secure. The above 

thesis was under taken in order to develop a secure Implementation of RSA algorithm against 

Timing Attacks. 

The methodology implemented for the security of RSA was blinding. Blinding was used in order to 

avoid the timing attacks and improve the security of the general RSA algorithm. Montgomery 

multiplier was used as it is fastest multiplication technique till now.     

8.2 Future Work 

The goal of the thesis was achieved by establishing a random number. The random number was 32 

bit long. It produces 2
32

 combinations. Every value was repeated after at least 2
32

 iterations. In future 

as the progress is going on, in the field of cryptography, the number of combinations should be much 

more as it is now. The modulus inverse of the generated random number was calculated using 

Extended Euclidean Algorithm. Instead of using Extended Euclidean Algorithm, we can use other 

methods to calculate modulo inverse of the generated random number. The other method for 

calculating multiplicative inverse would be Laszlo Hars modification due to less number of slice 

consumption. It will allow us to build a much larger RSA system with high throughput.    

We use Montgomery exponentiation which uses Montgomery multiplication technique along with 

Wallace tree reduction method for the exponentiation, Dadda tree reduction can also be used instead 

of Wallace tree reduction. Study the use of faster adder and serial multiplier architectures. For 
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example tree adder implementation may have O (log n) delay, while typical architectures have linear 

delay. 

Even with the use of blinding the sharing will expose the average time per operation. This can be 

used to infer the hamming weight of the exponent. Before performing exponentiation a random 

multiple can be added to the exponent. Addition process should not have timing characteristics in 

itself, which may expose the random multiple. This method may be helpful in preventing attacks that 

gain information leaked during the modular exponentiation operation due to electromagnetic 

radiation, system performance fluctuations, changes in power consumption, since the exponent bits 

change with each operation. 
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