
I

In the name of ALLAH,

the most Beneficent, the most Merciful

II

III

IMPLEMENTATION OF RSA ALGORITHM

SECURE AGAINST TIMING ATTACKS

Submitted by:

Muhammad Aqeel Aslam

Supervisor:

Dr. Athar Mahboob

Thesis
Submitted to

Department of Electronic and Power Engineering,

College of Marine Engineering (PNEC), Karachi

National University of Sciences and Technology, Islamabad

In Partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING
 With Specialization in Communications

March 2012

IV

 Abstract

Data security is an important aspect of information transmission and storage in an electronic

form. Cryptographic systems are used to encrypt such information to guarantee its security. To

retrieve such information, the encrypted form must be first decrypted. One of the most popular

cryptographic systems is the RSA public key crypto system. The larger the RSA public modulus

size, the stronger will be the RSA cryptosystem. Unfortunately, the RSA is extremely vulnerable

to timing attacks which can deduce the private RSA exponent due to regularity of operations in

the straight forward implementation of exponentiation using the square and multiply method or

its variants. Timing attacks constitute a major threat to the all systems using RSA and hence,

implementations must be protected. The work reported here proposes Secure Implementation of

RSA algorithm against timing attacks. This implementation is done using Verilog HDL and

targeting Xilinx FPGA devices.

The “Secure Implementation of RSA Algorithm against Timing Attacks” is done by using the

output of a Random Number Generator, and blinding the exponentiation operation. The

Exponentiation is done by using Montgomery Reduction scheme which is the fastest known

technique of exponentiation. It does not require division, as the division in hardware is quite

complex. The random number generator is implemented using a Barrel shifter and to nullify the

effect of random number we implemented the Extended Euclidean Algorithm which provides

modulo inverse of the generated random number. To hide the operation time we multiply the

random number with the private key. After exponentiation the result is then further multiplied

with the inverse of the generated random number. By doing so the timing of the algorithm is

changed and hence, the desired result is achieved.

V

 Acknowledgment

With the grace of Almighty ALLAH, the most merciful and the kindest, who blessed me with

wisdom, knowledge and health to complete the master thesis which He always bestowed on me.

I am very thankful to ALLAH who gave me courage and strength to complete this thesis after

hard work of the course. I pray that, ALLAH may shower His countless blessings and peace

upon the last Holy Prophet Peace be Upon Him (P.B.U.H).

I am very thankful to my thesis supervisor Dr. Athar Mahboob, and I would like to express my

sincere gratitude to him for his kind and continuous guidance with great courage and patience. I

am very grateful to all GCE members and especially Dr. Arshad Aziz for his timely guidance

and advice that really helped me through difficult situations.

I am very thankful to my mother, brothers and sister who encouraged me during the MS

program. Last but not the least, I am also very obliged to my all class mates and seniors

especially, Kashif Latif who helped me a lot during the thesis phase.

VI

Contents
1.1 Background ... 1

1.2 Thesis Motivation ... 1

1.3 Thesis Organization .. 2

2.1 Introduction .. 3

2.2 RSA Key Generation .. 4

2.3 RSA Encryption .. 4

2.4 RSA Decryption ... 4

2.5 RSA Example ... 4

2.6 RSA Security .. 5

3.1 Addition .. 6

3.1.1 Types of Adder ... 6

3.1.1.2 Full Adder ... 7

3.1.1.3 Ripple Carry Adder ... 7

3.1.1.4 Carry Look Ahead Adder .. 8

 3.1.1.5 Carry save Adder ... 9

3.1.1.6 Comparison between Ripple Carry Adder and Carry Look Ahead Adder 9

3.2 Multiplication ... 9

3.2.1 Partial Product Array Generation ... 10

3.2.2 Partial Product Array Reduction .. 11

3.2.2.3 Wallace Data Tree Reduction Scheme.. 11

3.2.2.4 Dadda Tree Reduction Scheme ... 12

3.3 Final Addition ... 13

4.1 Introduction .. 14

4.2 Side Channel Attacks.. 14

4.2. Timing Attacks ... 14

4.2.2 Power Consumption Attacks .. 15

4.2.3 Electromagnetic Attacks ... 15

4.2.4 Acoustic Cryptanalysis ... 15

4.2.5 Cache Attacks ... 15

VII

4.2.6 Differential Fault Analysis ... 16

4.3 Preventing Side Channel Attacks ... 16

4.3.1 Constant Exponentiation Delay .. 16

4.3.2 Random Delay .. 16

4.3.3 Blinding .. 17

5.1 Introduction .. 18

5.2 Addition .. 18

5.3 Modular Multiplication... 20

5.4 Modular Exponentiation ... 22

5.4 Random Number Generator .. 23

5.5 Proposed Architecture .. 25

5.6 FPGA Design Flow .. 27

5.6.1 Design Entry………………………………………………………………………………………………..……28

5.6.2 Behavioral Simulation…………………………………………………….………………………………...28

5.6.3 Design Synthesis…………………………………………………………………………………………..…..28

5.6.4 Design Verification………………………………………………………………………………………..….28

5.6.5 Design Implementation…………………………………………..………………………………………..28

6.1 Introduction .. 29

6.2 FPGA Scope ... 30

6.3 Advantages of FPGA .. 30

6.4 Xilinx FPGA ... 30

7.1 Introduction .. 33

7.2 Simulation Results .. 33

7.3 Synthesis Results .. 33

8.1 Conclusion .. 37

8.2 Future Work .. 37

VIII

LIST OF TABLES

Table 2.1 Applications of RSA Algorithm…………………………………………………5

Table 3.1 Comparison between adders…………………………………………………......9

Table 3.2 Full Adder levels in Wallace Tree Reduction Scheme ………………………....13

Table 7.1 Synthesis Result of Random Number Generator………………………………..34

Table 7.2 Clock Cycles of Random Number Generator……………………………….......35

Table 7.3 Clock Cycles of Multiplication…………………………………………….........36

Table 7.4 Clock Cycles for RSA Exponentiation…………………………………….........37

Table 7.5 Clock Cycles for Blinded RSA …………………………………………….......37

 Table 7.6 Clock Cycles Difference ………………………………………………….......37

IX

LIST OF FIGURES

Figure 2.1 Public Key Algorithm Encryption and Decryption with different keys……………….3

Figure 3.1 Half bit Adder…………………………………………………………………………7

Figure 3.2 Full bit Adder…………………………………………………………………………7

Figure 3.3 Ripple Carry Adder…………………………………………………………………...8

Figure 3.4 Carry Look Ahead Adder…………………………………………………………….8

Figure 3.5 Digital Multiplication Flow…………………………………………………………10

Figure 3.6 Partial Product Generation of 8 * 8 bit multiplication………………………………10

Figure 3.7 Partial Product of 4 * 4 bit…………………………………………………………11

Figure 3.8 Wallace Tree Reduction Scheme…………………………………………………12

Figure 3.9 Dadda Tree Reduction Scheme__12

Figure 5.1 Addition of n-bits__23

Figure 5.2 RTL schematic of 64 bits Addition____________________________________23

Figure 5.3 Simulation Results of 16 bit Carry Look Ahead Adder____________________24

Figure 5.4 Simulation Results of 16 bit Ripple Carry Adder_________________________24

Figure 5.5 Block Diagram of Modular Multiplication______________________________25

Figure 5.6 Simulation Result of Shift and Add Multiplication_______________________25

Figure 5.7 Simulation Result of Montgomery Multiplication________________________26

Figure 5.8 RTL schematic of Modular Exponentiation____________________________ 26

Figure 5.9 Block Diagram of Random Number Generator _________________________ 27

Figure 5.10 Simulation Result of Random Number Generator______________________ 28

X

Figure 5.11 Block Diagram of Proposed Architecture_____________________________ 28

Figure 5.12 Simulation Result of Proposed Architecture___________________________29

Figure 6.1 Xilinc FPGA Internal Architecture___________________________________31

Figure 6.2 Generic FPGA Architecture___33

XI

ACRONYMS

 Half Adder (HA)

 Full Adder (FA)

 Ripple Carry Adder (RCA)

 Carry Save Adder (CSA)

 Carry Look Ahead Adder (CLA)

 Partial Product (PP)

 Partial Product Array (PPA)

 Partial Product Reduction (PPR)

 Simple Power Analysis (SPA)

 Differential Power Analysis (DPA)

 Multiplexer (MUX)

 Exclusive-OR (XOR)

 Greatest Common Divisor (GCD)

 Field Programmable Gate Array (FPGA)

 Direct Sequence Spread Spectrum (DSSS)

1

CHAPTER 1

INTRODUCTION

1.1 Background

Encryption is a well recognized technique for the protection of data and information. It is used

effectively to protect sensitive data. The transfer of data from one form to another form, which is

unreadable without the secret key, is called encryption. Several techniques have been used for

many years. Cryptographic systems are classified into two main categories secret key

cryptosystem and public key cryptosystem. Only one key is involved in Secret key cryptosystem.

This key is used for both encryption and decryption. However, public key cryptosystem uses two

different keys one for encryption and other one for the decryption.

Day by day the significance of FPGA (Field Programmable Gate Array) is increasing. FPGAs

are playing very important role in commercial area and research area as well. The technology of

FPGA is more affordable as compared to ASICs. FPGAs are reconfigurable platforms. The

choice of reconfigurable platforms for cryptographic algorithm appears to be practical and it

provides high speed in applications.

In 1978 RSA algorithm was first developed by Rivest, Shamir and Aldeman. RSA is an example

of public key algorithm. If the modulus size is large, the algorithm is secure. This algorithm is

computationally intensive and it operates on very large integers. RSA algorithm can be used for

encryption / decryption and digital signatures. RSA is the most popular method for the public

key cryptosystems. The key size determines the security of RSA algorithm. The larger is the key

size, more is the security.

1.2 Thesis Motivation

The motive of this thesis is to develop a secure implementation of RSA algorithm against timing

attacks. Kocher [2] in his paper at RSA Data Security and Crypto first discussed the timing

attacks in 1996. Timing attacks exploit the information about the time variation during the

2

cryptographic operations. Cryptographic algorithm operations take different amount of time for

every logical operation [2]. The idea behind this thesis is to secure RSA cryptographic algorithm

against timing attacks.

1.3 Thesis Organization

The thesis presents the Implementation of RSA Algorithm Secure against Timing Attacks.

Chapter 2 presents the basic concept of RSA algorithm.

Chapter 3 discusses the efficient method to implement arithmetic operations which includes

addition and multiplication on reconfigurable platform.

Chapter 4 chapter provides a vast knowledge on modular exponentiation. It also includes

different techniques which are being used.

Chapter 5 gives the fundamental concepts of side channel attacks and how we can protect

cryptographic modules against such attacks.

Chapter 6 discusses the hardware implementation of proposed architecture of RSA algorithm

against timing attacks.

Chapter 7 presents the basic knowledge of FPGA and it also summarizes the advantages of

FPGA over ASICs.

Chapter 8 shows the synthesis and simulation results of our implementation.

Chapter 9 gives the conclusion and possible future advancements.

3

CHAPTER 2

THE RSA ALGORITHM

This chapter discusses the details of the RSA Algorithm. The basic concept of the RSA

Algorithm is explained in the following sections. RSA Encryption / Decryption, RSA Security

and RSA example is stated in the following sections in order to develop better understanding of

the proposed work.

2.1 Introduction

RSA is an algorithm, which is used for encryption and authentication. The security of RSA

algorithm relies on a problem which is known as Integration Factoring Problem (IFP). RSA is a

public key crypto system, it can encrypt and decrypt with the same function. RSA involves two

keys, namely public key and private key. Public key is made publically available while the

private key is kept secret [1][3]. For encrypting the information public key is used whereas for

decryption process private key is used.

RSA algorithm involves computation complexity of factoring very large prime numbers. In

symmetric key cryptosystem two problems can occur. Fist the key exchange between sender and

receiver may be unsafe. Second problem is that no digital signature is available in secret key

cryptosystems. Asymmetric cryptosystem overcomes these two problems.

ENCRYPTION DECRYPTION

Encryption Key Decryption Key

Original Plain-text Cipher-text Plain-text

Figure 2.1 Public Key algorithm Encryption and Decryption with different keys

4

2.2 RSA Key Generation

The following steps are involved in the generation of RSA key.

1. Two prime numbers p and q are generated first.

2. Calculate n

3. Calculate (n)

 () ()()

4. Now, select a number such that 1 < e < (n)

 (())

and compute d with

 ()

5. Public Key = {e,n}and Private Key = {d,n}

2.3 RSA Encryption

The following formula is used for the calculation of encryption.

Where C is the Ciphertext, and P is the Plaintext.

2.4 RSA Decryption

The decryption is calculated by the following formula.

2.5 RSA Example

For example pick p =11, q = 13 and compute.

 () ()()

For example e = 17. The private component d is computed by:

5

 (())

 ()

2.6 RSA Security

RSA gets is difficulty from the factorization. The basis of RSA security is factoring large prime

numbers. RSA Problem is also the fundamental part of the security of the RSA. The condition of

RSA problem makes sure that there is exactly only one unique n in the field. It is difficult to

determine ø(n). Without the knowledge of ø(n), it would be hard to derive d based on the knowledge

of e. This algorithm is used in security protocols. The following table shows some of the applications

where RSA is used to provide security [1,4].

Table 2.1 Applications of RSA Algorithm
ISPSEC / IKE IP Data Security

TLS / SSL Transport Data Security

PGP Email Security

SSH Terminal Connection Security

SILC Conferencing Service Security

6

CHAPTER 3

ARITHMETIC ON HARDWARE

This chapter discusses the hardware implementation of arithmetic units. In this thesis we used

unsigned addition and multiplication. Most of the cryptographic algorithms require some of the

operations to be executed repeatedly. It is very important that these units should be implemented

very efficiently.

3.1 Addition

Addition plays an important role in the cryptographic algorithm. RSA speed depends upon the

speed of the addition unit. When we add two bits sum and carry bits are generated, the carry bit

is used in addition with next two input bits, in that way this carry bit is propagated from LSB to

MSB. Therefore, the design of adder should be such that it will minimize the delay. To minimize

this delay we use fast adders.

3.1.1 Types of Adder

To add single bit we have the following two types of adder.

3.1.1.1 Half Adder

Two inputs namely A and B are used in half adder, with two outputs namely sum and carry out.

Sum is obtained by implementing the logical operation of XOR to the two inputs A and B,

whereas the carry output is attained by performing the logical operation of AND to the inputs A

and B.

S = A B

C = A • B

We cannot use this adder because when multi bits are used, the half adder does not include the

carry output.

7

Figure 3.1 Half bit adder

3.1.1.2 Full Adder

Full adder consists of three inputs A, B, Carry-in and it produces two outputs Sum and Carry-

out. Full adder can be used for the multi bit addition. Full adder can connected to the other full

adder in order to achieve the multi bit addition. The sum and carry out for full adder is obtained

by the following formula.

inS A B C

Cout = (A•B)+(Cin.• (A B))

 Figure 3.2 Full bit adder

3.1.1.3 Ripple Carry Adder

Multiple full bit adders used a logical circuit to add N-bit numbers. Each full adder uses Cin as

the input, which was the output of the last adder. The response time of ripple carry adder is slow,

as it has to wait for the carry bit to be calculated from the previous full adder. Each full adder

requires three levels of logic. In a 32 bit ripple carry adder, the critical path delay is equal to 65

gate delays.

8

Figure 3.3 Ripple carry adder

3.1.1.4 Carry Look Ahead Adder

Carry look-ahead adder reduces the computation time. A cell will generate a carry if both of cell’s

data bits are 1. A cell will propagate a carry if either of the data bits and carry-in of the cell are 1.

The generate gi and propagate pi are defined as:

i i i

i i i

g a b

p a b

9

3.1.1.5 Carry save Adder

Currently Carry Save Adder (CSA) is the most widely used adder to implement the fast arithmetic

on the hardware platform. It save the carry generated at each stage rather than propagate to the next

adder. Each stage of adder produces two outputs sum(s) and carry(c).

3.1.1.6 Comparison between Ripple Carry Adder and Carry Look Ahead Adder

The following table shows the comparison between Ripple Carry Adder and Carry Look Ahead
Adder.

Table 3.1 Comparison between Adders

S. No Ripple Carry Adder Carry Look Ahead Adder

1. It is a straight forward way of adding two

or more than two bits.

Carry Look Ahead Adder calculates the carry bits

before the sum.

2. Wait time is much more because carry is

calculated alongside sum.

It reduces the wait time.

3. In 16 bit Ripple Carry Adder, we find

CPU : 2.89 / 3.06 s | Elapsed : 3.00 / 3.00

s

In 16 bit Carry Look Ahead Adder we get

CPU : 2.90 / 3.07 s | Elapsed : 3.00 / 3.00 s

4. In Ripple Carry Adder every carry out

has to be carry in of the next stage.

Carry Look Ahead Adder uses the logic of

generating and propagating carries.

3.2 Multiplication

Multiplication plays an important role in arithmetic units. Multiplication can be constructed by

sequential circuit or by combinational circuits. Combinational circuit is faster than the sequential

circuit but sequential multiplier require more clock cycles for the required operation. Combinational

circuit requires more area or silicon hardware.

Multiplication of two digital numbers is performed by addition and shifting of bits. Considering the

multiplication of two numbers, the multiplicand is a with there presentation of [a1,a2 ,a3 , ……………., an]

and multiplier b with the representation [b1 ,b2 , b3 ,…………….., bn] both are n bit numbers. The

resultant of the product is a and b is 2n bit wider. The entire steps of the multiplication are the

following.

10

b7 b0

(i) Partial Product Array Generation

(ii) Partial Product Array Reduction

(iii) Final Addition

It can be represented by the following figure.

3.2.1 Partial Product Array Generation

The first step in the digital multiplication we have to generate n shift copies of the multiplicand. This

implementation can be implemented by using a logical and operation which performs AND (ai , bj)

where i and j = 0 to n-1. This result is known as partial products. If we arrange these products by

their corresponding bit positions we may get the following figure. These partial product bits are

arranged in column to attain the final value. This trapezoidal structure is known as Partial Product

Array.

Figure 3.6 Partial Product Generation of 8*8 bit Multiplication
COLOUMNS ARE TO BE ADDED

a7 a0

11

3.2.2 Partial Product Array Reduction

The efficiency of multiplier depends upon the manner in which PPA bits are added. One method is

to add two partial products at the same time and their result is added to the next partial product. In

this way all the partial products are added. This is a very insufficient way in hardware

implementation. Each addition process contributes a delay in the final addition. This makes the

multiplier very slow. To reduce the critical path reduction techniques are used. Fast adders can be

used to reduce n number of iterations in to 2. The following techniques are used for the reduction

purposes along with the fast adders.

Figure 3.7 Partial Products of 4*4 bits

3.2.2.3 Wallace Data Tree Reduction Scheme

The reduction is performed in parallel in groups of 3s. As the number of partial products increases

the size of the multiplier also increases. Each adder level incurs one Full Adder (FA) delay in the

path. The larger the number of adder levels, the bigger will be the critical path of the combination

cloud of the Partial Product Reduction (PPR) unit. Following figure shows the 4 x 4 example of

Wallace Tree Reduction Scheme.

Fig 3.8 Wallace Tree Reduction 4*4 Example

12

3.2.2.4 Dadda Tree Reduction Scheme

The compression rate of dada tree reduction scheme is similar to the Wallace tree reduction scheme.

Dadda tree reduction unit results in an optimal number of hardware blocks. The architecture of

dadda tree reduction scheme is simple to implement but it exhibits the larger critical path than the

Wallace tree reduction scheme.

 Fig 3.9 Dadda Tree Reduction 4*4

The following table 3.2 shows the number of full adders according to the number of partial products.

Number of Partial Products Number of full adder levels

3 1

4 2

 3

 4

 5

 6

 7

 8

 9

13

3.3 Final Addition

The final addition has to be done by fast adder like carry save adder, carry look-ahead adder or any

other carry propagate adder is used for purpose. The addition of 512 bits or more require a very time

consuming operation. A special attention should be paid on the multiplier architecture because if the

adder is a slower one than it may contribute a significant delay in the critical path. CLA / CSA tree

itself can be used for this purpose.

14

CHAPTER 4

SIDE CHANNEL ATTACKS ON

CRYPTOSYSTEM

4.1 Introduction

Side channel attacks can destroy any cryptosystem. Cryptosystem takes slightly different amount of

time to process different inputs. In side channel attack the information can be retrieved from the

encryption device that is neither the plaintext to be encrypted nor the cipher-text resulting from the

encryption process. In a side channel attack an attacker attempts to compromise a crypto system by

analyzing the time required to execute each operation. Each logical operation requires some time for

execution [3]. An attacker can work backward to find the input by the precise measurement of time.

It is generally agreed that RSA is secure from direct attack. Performance characteristic of the

cryptosystem depends upon the encryption key and data input.

4.2 Side Channel Attacks

Side Channel attacks comprises of following classes.

4.2.1 Timing Attacks

Timing attacks are a form of side channel attacks. Timing attacks are based on measuring time it

takes for a unit to perform operation [2]. Generally, encryption system requires different processing

time for different inputs. Some attacks can exploit the timing measurements to find the entire secret

key. Timing attacks can be used potentially against any cryptosystem including symmetric functions.

Calculating variances is fairly simple. It provides a improved way to make out correct bits. The

number of samples will allow recovering the information by the properties of signal and noise. If

noise is too much, than, more samples will be needed to find the actual information and the secret

key.

15

4.2.2 Power Consumption Attacks

Those attacks which are based upon the analyzing of power consumption of the unit when it is

performing encryption operation. An analyst can take out secret information such as undisclosed

keys. Simple Power Analysis (SPA) involves visual examination of different graphs of the current

used by a device over a period of time. As a device performs different operations variation in power

consumption occurs [5]. The implementation of squaring and multiplication in RSA can be

distinguished. An attacker can learn about the processes that are occurring inside the unit and can get

the required information.

Differential Power Analysis (DPA) involves statistically analyzing power consumption

measurements from a cryptosystem. Differential Power Analysis uses error correction and signal

processing.

4.2.3 Electromagnetic Attacks

These are the attacks which are based upon the leakage of the electromagnetic radiation. It can

provide directly plain-text and other information as well. Such measurements can be used to infer

cryptographic keys using techniques equivalent to those in power analysis, or it can be used in non-

cryptographic attack.

4.2.4 Acoustic Cryptanalysis

These are the attacks which exploit the sound produced during the computation rather than the

power analysis.

4.2.5 Cache Attacks

This kind of attacks reveals the information between the processes of computer.

16

4.2.6 Differential Fault Analysis

This type of attacks often reveals the information by introducing faults in the computation. All types

of attacks involve the physical effects. Useful secrets and information about the system can be

attained by the operation performed by the cryptosystem. This information may include

cryptographic key, partial state information, full or partial plaintext and so on. The term secret

degradation is sometimes used to express the degradation of secret key material resulting from side

channel leakage.

4.3 Preventing Side Channel Attacks

The ability to resist side channel attacks the designer of cryptographic modules should use any of the

following techniques in order to make the cryptosystem more reliable. Every operation performed by

the module should be data independent in their time consumption. Whenever, different sub

operations are performed according to the inputs, they should require same number of clock cycles.

Time required to perform operation should be fixed for every piece of data, this will exclude the all

possibilities of the timing attacks.

4.3.1 Constant Exponentiation Delay

This technique is also used for the prevention of side channel attacks. In this technique we make sure

that all the exponentiations takes the same amount of time before providing the result [2]. This is the

simplest way of preventing data from side channel attacks but it degrades the overall performance of

the algorithm as each operation requires different amount of time to execute but if we implement this

technique each and every operation would require same amount of time.

4.3.2 Random Delay

17

Random delay technique provides better performance of the algorithm as compared to the constant

exponentiation delay. In this technique we add random delay to the exponentiation in order to

confuse the timing attacks. Kocher [2] points out in his paper that if we do not add enough noise then

the observer can still succeed by collecting additional measurements which were made for the

compensation of the random delay.

4.3.3 Blinding

Blinding is far better technique than constant exponentiation delay and random delay. It is the most

widely accepted method in the defense of RSA. Blinding prevents the side channel attacks on

encryption system [34].

RSA blinding introduces the randomness. Blinding makes the timing information unusable. To

recover the input information of the cryptographic algorithm, a cryptanalysis gathers the algorithm’s

result. Blinding serves to alter the algorithm’s input into some unpredictable state. Blinding can

prevent some or all leakage of useful information which can be used for finding the actual inputs of

the cryptographic algorithm. Blinding can be employed against simple timing attacks. Ideally, a

random value r ∈ ZN is chosen for each signing operation. We compute (mr)
d

mod n, instead of

computing m
d
 mod n. Then, multiply the result with r

-1
mod. By doing so, the cryptanalyst can no

longer choose the messages being input to Montgomery Multiplication algorithm.

18

CHAPTER 5

HARDWARE IMPLEMENTATION

5.1 Introduction

This chapter includes the hardware implementation of the RSA Algorithm against Timing attacks.

The RSA algorithm involves addition, modular multiplication and modular exponentiation. This

chapter also includes the algorithms involved in the implementation of RSA.

5.2 Addition

Addition is the basic part of the Arithmetic Logic Unit (ALU), which is used in all other operations.

The overall performance depends upon the speed of addition. We started our implementation by

using Ripple Carry Adder. After some further literature review it came into notice that Ripple Carry

Adder has some drawbacks in terms of delay. Therefore, we switched on to Carry Look Ahead

Adder, which has less delay while propagating carry. As already mentioned, that addition operation

is the most important and fundamental unit and it plays a major role in all operations. The delay

effect is minimized by CLA. First, we made a Carry Look Ahead adder of 4 bits, we instantiate it to

make a 16 bit adder. We instantiate these 16 bit adder to form the Carry Look Ahead Adder of 64

bits and then these 64 bit adders cascaded to make the required adder of 512 bits.

Fig 5.1 Addition of n bits

19

Figure 5.2: RTL schematic of 64 bits Addition

The results of the Ripple Carry Adder and Carry Look ahead Adder has been shown in the following

figure. A comparison between Ripple Carry Adder and Carry Look Ahead Adder has already shown

in the section 3.1.1.6. Figure 5.2 shows the schematic diagram of 64 bit addition using CLA.

Figure 5.3: Simulation Result of 16 bit Carry Look Ahead Adder

Figure 5.3 shows the result of 16 bit CLA. There are two inputs namely A and B, whereas carry in is

the bit which is of one bit and this bit is generated by the sum of the two inputs. Carry in is used as

the third input, sum and carry output are the results of the addition. In figure 5.3, we have taken

20

different sets of inputs and getting the results in terms of sum and carry output. Carry in will be high

whenever the sum of the inputs A and B are of two bits or of more than two bits. Each and every

operation requires 100 ns.

Figure 5.4: Simulation Result of 16 bit Ripple Carry Adder

Figure 5.4, shows the simulation result of 16 bit Ripple Carry Adder. CLA and RCA both are fast

adders. But RCA has some delay as compared to CLA. A and B are the two inputs, whereas Cin is

the carry in. Carry out and Sum are the results. Carry out is of 1 bit whereas the sum is of 16 bit.

Each operation requires 100ns.

5.3 Modular Multiplication

Multiplication was done by suing Shift and Add method. In Modular Multiplication this requires an

additional module of division. Division is the most complex part of the hardware. We switch on to

Booth multiplier and 16 bit multiplication results were shown in the following figure. Booth

multiplication also has some limitations. Since we are working on the security of the system, so we

have already loss some of the speed. There are two methods which are quite useful in Modular

Arithmetic. They are Wallace Tree Reduction and Dadda Tree Reduction.

21

Fig 5.5 Block Diagram of Modular Multiplication

Therefore, we proffered Wallace Tree Reduction Method in order to gain some speed in the RSA

Algorithm. There are two inputs namely, input 1 and input 2, whereas the clock, reset and enables

are the controlling signals. Output is denoted by output and done indicates that the output has been

achieved.

Fig 5.6 Shift and Add Multiplication

The figure 5.6 shows the simulation result of shift and adds multiplication. There are two inputs

namely, A and B. Output is denoted by P. A and B are of 16 bits, whereas P is of 32 bits. Each

operation requires 10 ns to complete the result. From the figure it is obvious that every logical

operation is requiring the same amount of time that is of 10ns.

22

Fig 5.7 Simulation Result of Montgomery Multiplication using Wallace Tree Reduction Method

The figure 5.7 shows the simulation results of Montgomery Multiplication using Wallace Tree

Reduction Method. It is formed using sequential logic. The output is high unless the reset bit goes

low.

5.4 Modular Exponentiation

Square and multiply algorithm is used effectively to calculate Modular Exponentiation. In most of

the cryptographic protocols this algorithm is used.

Figure 5.8 View RTL schematic of Modular Exponentiation

23

The above figure represents the schematic diagram of Modular exponentiation. Square and multiply

algorithm is much faster than simple multiplication algorithms. Therefore, we used square and

multiply algorithm for exponentiation.

Figure 5.9 Simulation Result of Modular Exponentiation

Figure 5.9 shows the simulation result of Modular exponentiation. We get the result, when the exp

done bit is high. As long as exp done bit is low, the output is zero.

5.4 Random Number Generator

Random number plays a vital role in the encryption / decryption. RNG changes the exact time of the

operation. It changes the time of operation such sufficiently that the attacker cannot find the exact

operation time. Pseudo Random Number Generators are implementing in hardware. For practical use

we established 32 bit random number. It provides 2
32

 combinations which are sufficient and have a

wide range. We use Barrel shifter for generation of random number. Barrel Shifter has multiple

usages in digital design systems. These registers can be used in Encryption / Decryption, Digital

Signal Processing, Wireless Communications, Data Integrity Checksum, Data Compression,

Random Numbers Generation, Direct Sequence Spread Spectrum (DSSS), Scrambler / Descrambler

and Optimized Counters. The following figure shows the block diagram of the Random Number

Generator.

24

Fig 5.10 Block Diagram of Random Number Generator

Figure 5.10 shows the block diagram of Random Number Generator. Output is attained when the

done bit is high. Clock, reset and enable are of 1 bit, whereas initial value and key is of 32 bit.

Output is also of 32 bit.

Fig 5.11 Random Number Generator 32 bit

Figure 5.11 indicates the simulation result of 32 bit random number generator. Output is obtained

when the reset is low and enable bit is high. The clock cycles of random number generator output is

40 ns.

25

5.5 Proposed Architecture

Our proposed structure of Secure Implementation of RSA Algorithm against Timing Attacks

consists of the following steps. First we implemented random number generator using barrel shifter.

The random number generated using barrel shifter comprises of 32 bits. A barrel shifter shifts the

data in a digital circuit. It shifts a particular number of bits in one cycle.

Extended Euclidean Algorithm implemented to find out the modulus inverse of the generated

random number. The effect of the random number has to be vanished from the original data. In order

to remove the effect of the generated random number, we calculated modulo inverse of random

number. The Extended Euclidean Algorithm is derived from Euclidean Algorithm. Highest Common

Factor is finding through Extended Euclidean Algorithm. The greatest common divisor and inverse

modulo number is obtained by using Extended Euclidean Algorithm.

Modular Exponentiation was developed by using Montgomery Multiplication along with Wallace

Tree Reduction scheme. Montgomery multiplication was chosen because it does not involve

division. Additional module of division is omitted in Montgomery Multiplication and Wallace tree

reduction is used in order to shorten the addition steps. We introduce random time to make the

timing information unusable.

26

Fig 5.12 Block Diagram of Architecture

The following diagram shows the simulation result of the proposed architecture of RSA Algorithm

Fig 5.13 Simulation Result of proposed architecture of RSA

The above figure 5.13 shows the simulation result of the proposed architecture of RSA.

27

5.6 FPGA Design Flow

FPGA Design flow is shown in the following figure.

Design Entity

Design Synthesis

Design Implementation

Behavioral Simulation

Functional Simulation

Timing Simulation

Fig 5.14 FPGA Design Flow

28

5.6.1 Design Entity

The 1
st
 step is to enter our design. This is done by creating source files. These source files can be

created in the forms of schematic or Hardware Descriptive Language.

5.6.2 Behavioral Simulation

The logical functionality of the design is tested by using user defined test benches.

5.6.3 Design Synthesis

The synthesis creates the technology dependent files from the different source files.

5.6.4 Design Verification

This step is done at different stages. This is the important step of the design. The simulator is used to

verify the functionality of the circuit.

5.6.5 Design Implementation

After generating the synthesis step the implementation is converted into a logical design.

29

CHAPTER 6

FIELD PROGRAMMABLE GATE ARRAY

6.1 Introduction

Field Programmable Gate Array (FPGA) belongs to a reconfigurable hardware family. FPGAs are

silicon chips which are programmable. Reconfigurable silicon chips provide same flexibility of

software running on a processor-based system. FPGAs are absolutely reconfigurable. In recent years

FPGAs are using for commercial as well as in military applications. Using these chips, we did not

require pick the breadboard and soldering iron. Each dedicated section of the assigned a particular

task and each block performs its function without the influence of any other logic blocks.

Fig 6.1 Xilinc FPGA Internal Architecture

Due to this, the performance of the one part of the process is not affected when additional task is

added. FPGA provides reliability and hardware high speed [1]. FPGAs functions according to the

user’s program rather than the manufacturer of the device. FPGA contains (64 to 10,000) identical

cells.

30

6.2 FPGA Scope

FPGA technology is gaining the momentum day by day and worldwide value of FPGA was first

invented by Xilinx in 1984, FPGAs have now replaced

6.3 Advantages of FPGA

FPGAs have many advantages over ongoing other resources; some of these advantages are

summarized as follows.

Performance: The performance of the FPGA is much better than other resources. It provides fast

hardware response time.

Time to Market: FPGA provides flexibility. We can check the idea and any concept using

FPGAs before performing the fabrication process of custom ASIC.

Cost: As requirements of the system changes over time very rapidly, the cost of adding additional

components in FPGA is very negligible when this is compared to the large expense of the re-

spinning an ASIC.

Reliability: For any processor core, only one instruction can execute at one time but FPGA

provides the flexibility for executing more than one instruction at the same time.

Long-term Maintenance: FPGA provides long term availability. A device manufactured in one

generation and migrates to the next generation the code will remain unchanged. FPGA chips are

upgradeable.

6.4 Xilinx FPGA

Five fundamental programmable functional elements are involved in the Spartan-3 family.

Configurable Logic Blocks (CLBs) A CLB has four slices; each slice has two logic cells. Each

logic cell has two Look Up Tables (LUTs) plus a storage element such as flip flops. Slices can be

configured as LUT, Distributed RAM and Shift register.

Input / Output Blocks (IOBs) The purpose of the IOBs is to control the flow of data from input

pins to the output pins and the internal logic of the device. Each IOB supports bidirectional flow of

data but IOB can be used as unidirectional flow of data. IOB provides interface between the package

pins and CLBs. Outputs can be forced to high impedance. For high performance Inputs and Outputs

can be registered.

Block RAM (BRAM) provides data storage in the form of 18 k-bits. BRAM is the most efficient

memory implementation. It contains 4 to 104 memory blocks. BRAM can be used for the larger

31

memories. It builds both single and dual port RAMs. BRAM is different from Distributed RAM as

it is synchronous to write and read.

Multiplier Blocks provides fast arithmetic functions. It takes two 18 bit binary numbers and

calculates the product. It also can be used for 2’s complement signed operation. Multiplier block is

asynchronous.

Digital Clock Manager Blocks (DCM) provides fully digital solutions distributing, delaying,

multiplying, dividing and phase shifting clock signals.

DCM provides daughter clocks. One important feature of DCM is jitter removal. Clock edges a bit

early or a bit late. The FPGA clock manager is used for detect and correct this jitter and provides a

clean daughter clock signal for use inside the device. The other main feature of DCM is frequency

synthesis.

 Fig 6.2 Generic FPGA Architecture

The frequency of the clock signal provided to the FPGA outside may not be the exactly what a

designer wants. The DCM generates daughter clocks with frequencies that are derived by

multiplying or dividing the original signal. DCM may also be used for phase shifting. Designer may

32

want the clocks which are delayed with respect to each other. DCM provides the feature of phase

shifts of common values such as 120
O
 and 240

o
. The DCMs are positioned in the center with two at

the top and two at the bottom of the device.

33

CHAPTER 7

RESULTS

7.1 Introduction

The result of the research is summarized in this chapter. The simulation results and synthesis results

are presented in this chapter. The layout of the proposed architecture was shown in Chapter 6.

7.2 Simulation Results

This section shows the Simulation Result of the proposed architecture of “Secure Implementation of

RSA Algorithm against Timing Attacks”.

7.3 Synthesis Results

This section shows the individual synthesis results of each of the module which are used in the

Implementation of the proposed title.

The synthesis result for the implementation of Random Number Generator is expressed in the

following table:

Table 7.1 Synthesis Results of Random Number Generator

Logic Components Used

Adder / Sub tractors 3-bit Adder (1) &32-bit adder (2)

Registers / Flip Flops 101

Xors 32-bit Xor

34

The following table shows the clock cycles of each operation. A random number of 32 bits was

generated.

Table 7.2 Clock Cycles of Random Number Generator

Initial Value Key Generated Random

Number

Hamming

weight

Clock Cycles

32’h EA 32’h511 32’hF8EDBAAD 21 40

32’h 2654 32’hB3A 32’hC1F6A7CA 18 40

32’h1987 32’h800 32’h3E6A5A38 16 40

32’h6DD61 32’h302F 32’h7F81C7E8 18 40

32’h48FFEA 32’h23BACA 32’h25E38CCE 16 40

32’hBC6146 32’h96B43F 32’h6B5F7A09 18 40

32’h3C413 32’hCF3658 32’h7315FAE 17 40

32’h9C4800 32’h64000A 32’h3BE75E9C 20 40

32’h8180209 32’hECAABC0 32’h6E0F29B3 17 40

32’h48FA533C 32’h5B38E80B 32’h6BA931A4D 18 40

32’h499602D2 32’h499602D2 32’h4668CD10 12 40

The above table indicates that when we change the initial value or key, anew random number is

generated but the number of cycles for each operation remains the same. In every execution a new

random number is attained. The every generated number is different from the previous number,

hence introducing the random number.

The following table shows the number of clock cycles in each operation of multiplication.

35

Table 7.3 Number of clock cycles for Multiplication

Multiplicand Multiplier Multiplication Result Clock Cycles

135790 864203 11220 100

2345678 456789 12868 98

2468761 98791 8604 101

147952 290541 737233 101

246789 123678 385537 99

The above table shows that for different multiplicand and multiplier, we are obtaining different

results, but the number of clock cycles for each operation is the same. This indicates that for

different number of bits, the clock cycles are same.

The following table indicates the number of clock cycles when RSA simulated.

Table 7.4 Number of Clock Cycles for RSA

Base Exponent Result Clock Cycles

161984 161998 43310 1023ns

236789 456721 23334 1021ns

194023 196507 51104 1020ns

251992 201999 93548 1020ns

The above table shows the result of the RSA. In the last column clock cycles are showing that for

each operation we have same number of clock cycles irrespective of the base and exponent. The

result of the exponentiation is varying but the time required to execute the operations is the same.

The following table shows the clock cycles for each operation when blinding is performed on the

RSA.

36

Table 7.5 Number of Clock Cycles for Blinded RSA

RNG Base Exponent Clock Cycles

YES 251992 201999 1020ns

YES 161984 161998 1200ns

YES 236789 456721 1197ns

YES 975310 864209 1200ns

YES 194023 196507 12020ns

This table shows the result of the proposed architecture of RSA algorithm. The results are taken

when Random Number is used; due to the addition of randomness the clock cycles are changed for

each operation.

This table indicates the comparison between the above two tables.

Table 7.6 Difference between Clock Cycles

Base Exponent Clock Cycles Base Exponent Clock Cycles Difference

251992 201999 1120ns 251992 201999 1020ns 100ns

161984 161998 1200ns 161984 161998 1023ns 177ns

The above table shows that the difference between clock cycles when Modular Exponentiation is

performed without blinding, and when the Modular Exponentiation is performed along with the

blinding. Taking same base and exponent values, we are getting different amount of time for same

operation. This indicates that when we are performing blinding the execution time for operation

changes slightly as randomness is included in the algorithm..

37

CHAPTER 8

CONCLUSION AND FUTURE WORK

8.1 Conclusion

In this research we have developed a hardware model of RSA cryptographic system which provides

more security to our cryptographic system. The thesis begins with the introductory description of the

cryptographic systems. RSA technique is the most popular and widely method, which is used for the

encryption. The goal set in this thesis assignment was fulfilled. The thesis presented the

enhancement of the security. The implemented RSA algorithm is much more secure. The above

thesis was under taken in order to develop a secure Implementation of RSA algorithm against

Timing Attacks.

The methodology implemented for the security of RSA was blinding. Blinding was used in order to

avoid the timing attacks and improve the security of the general RSA algorithm. Montgomery

multiplier was used as it is fastest multiplication technique till now.

8.2 Future Work

The goal of the thesis was achieved by establishing a random number. The random number was 32

bit long. It produces 2
32

 combinations. Every value was repeated after at least 2
32

 iterations. In future

as the progress is going on, in the field of cryptography, the number of combinations should be much

more as it is now. The modulus inverse of the generated random number was calculated using

Extended Euclidean Algorithm. Instead of using Extended Euclidean Algorithm, we can use other

methods to calculate modulo inverse of the generated random number. The other method for

calculating multiplicative inverse would be Laszlo Hars modification due to less number of slice

consumption. It will allow us to build a much larger RSA system with high throughput.

We use Montgomery exponentiation which uses Montgomery multiplication technique along with

Wallace tree reduction method for the exponentiation, Dadda tree reduction can also be used instead

of Wallace tree reduction. Study the use of faster adder and serial multiplier architectures. For

38

example tree adder implementation may have O (log n) delay, while typical architectures have linear

delay.

Even with the use of blinding the sharing will expose the average time per operation. This can be

used to infer the hamming weight of the exponent. Before performing exponentiation a random

multiple can be added to the exponent. Addition process should not have timing characteristics in

itself, which may expose the random multiple. This method may be helpful in preventing attacks that

gain information leaked during the modular exponentiation operation due to electromagnetic

radiation, system performance fluctuations, changes in power consumption, since the exponent bits

change with each operation.

39

REFENRENCES:

[1] Implementation of Efficient Modular Exponentiation on Reconfigurable Platforms, August

2008, Kashif Latif, Department of Electronic and Power Engineering, College of Marine

Engineering (PNEC), Karachi, National University of Sciences and Technology, Rawalpindi

[2] Timing Attacks on Implementation of RSA, Diffie-Hellman, DSS and Other systems, Paul C.

Kocher, Cryptography Research, Inc. 607 Market Street, 5
th

 Floor San Francisco, CA 94105,

USA

[3] Attacks on the RSA Cryptosystem, VaibhavVaish, Department of Computer Science &

Engineering, Indian Institute of Technology, New Delhi, India, 1999

[4] Implementing a 1024 bit RSA on FPGA, 2003, Jing Lu and Wan Qian, Reconfigurable

Network Group, Applied Research Lab, Department of Computer Science and Engineering,

Washington University in St. Louis

[5] Timing Attacks on software Implementation of RSA, Project Report, Harshman Singh

903-40-5260, June 07, 2004

[6] Efficient Hardware Design and Implementation of AES Cryptosystem, Pravin B. Ghewari et

al. International Journal of Engineering Science and Technology, Vol. 2(3), 2010, 213-219

[7] FPGA Implementation of RSA, Public-Key Cryptographic Coprocessor, MiCE Department,

Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 8 13 10 UTM Skudai,

Johor, Malaysia.

[8] Implementation of RSA Cryptosystem Using Verilog, Chiranth E, Chakravarthy H.V.A,

Nagamohanareddy P, Umesh T.H, Chethan Kumar M, International Journal of Scientific &

Engineering Research Volume 2, Issue 5, May-2011 1, ISSN 2229-5518, IJSER © 2011

[9] The Protection of Modular Exponentiation Operands from Their Reconstruction by Simple

Power Analysis, Akram A. Moustafa and Saleh Alomar, Proceedings of the World Congress

on Engineering and Computer Science 2009 Vol I, WCECS 2009, October 20-22, 2009, San

Francisco, USA

40

[10] The Implementation of the 1024-bit RSA Encryption/Decryption Algorithms Based on

FPGA, Yingjie Qu, and Qing Zhao Qingdao University of Science & Technology, Qingdao,

China, ISBN 978-952-5726-04-6 (Print), 978-952-5726-05-3 (CD-ROM) Proceedings of the

International Symposium on Intelligent Information Systems and Applications (IISA’09)

Qingdao, P. R. China, Oct. 28-30, 2009, pp. 420-423

[11] Assorted Attacks on the RSA Cryptographic Algorithm Edmond J. Murphy, Boston College

Computer Science Department Professor Howard Straubing May 9, 2005

[12] An Efficient VLSI Architecture for Rivest-Shamir-Adleman Public-key Cryptosystem,

Department of Electrical Engineering Tamkang University, Tamsui, Taiwan 251, R.O.C.,

Tamkang Journal of Science and Engineering, Vol. 7, No 4, pp. 241_250 (2004)

[13] Protecting RSA Against Fault Attack: The Embedding Method, Marc Joye, Thomson R&D,

Security Competence Center, Published in L. Breveglieri et al., Eds, Fault Diagnosis and

Tolerance in Cryptography (FDTC 2009), IEEE Computer Society, pp. 41–45, 2009

[14] VLSI Implementation of RSA Encryption System Using Ancient Indian Vedic Mathematics,
Himanshu Thapliyal and M.B Srinivas, International Institute of Information Technology,

Hyderabad-500019, India

[15] Carry-Save Montgomery Modular Exponentiation on Reconfigurable Hardware, A. Cilardo,

A. Mazzeo, L. Romano, G. P. Saggese, Universit`a degli Studi di Napoli Federico II, Italy,

Volume 3, IEEE Computer Society Washington, DC, USA @ 2004

[16] An Overview of Side Channel Attacks and Its, Countermeasures using Elliptic Curve

Cryptography M.Prabu R.Shanmugalakshmi, M.Prabhu et. al. / (IJCSE) International Journal

on Computer Science and Engineering, Vol. 02, No. 04, 2010, 1492-1495

[17] A Review of Modular Multiplication Methods and Respective Hardware Implementations,

Nadia Nedjah, Department of Electronics Engineering and Telecommunications, Engineering

Faculty, Informatica 30 (2006) 111–129 111

[18] FPGA Implementation of RSA Encryption Engine with Flexible Key Size, Muhammad I

Ibrahimy, Mamun B. I Reaz, International Journal of Communications, Issue 3, Volume 1,

200707)

[19] Hardware Implementation of RC4A Stream Cipher, Abdullah Al Noman, Roslina Mohd.

Sidek, Abdul Rahman Ramli, International Journal of Cryptology Research 1(2): 225-233

(2009)

41

[20] RSA & Public Key Cryptography in FPGAs, John Fry, Altera Corporation – Europe, Martin

Langhammer, Altera Corporation

[21] Timing Attacks on Secure Systems, Dan Halperin, April 13, 2006

[22] Differential Power analysis resistant hardware implementation of the RSA cryptosystem,

Turk J Elec Eng & Comp Sci, Vol.18, No.1, 2010, c T¨UB˙ITAK doi:10.3906/elk-0904-4

[23] A Hardware Model of an Expandable RSA Cryptographic System, Adnan Abdul-Aziz M.S.

Gutub, Faculty of The College of Graduate Studies King Fahad University of Petroleum &

Minerals Dhahran, Saudi Arabia, December 1998

[24] Implementation of a Generic Modular Cryptosystem for the RSA on Reconfigurable

Hardware, Deepak Krishnankutty, Department of Computer Science & Engineering, National

Institute of Technology, Rourkela, India, 2009

[25] Hardware Attacks on Cryptographic Devices, Implementation Attacks on Embedded Systems

and Other Portable Devices, Jem Berkes, University of Waterloo 2006

[26] Design and Implementation of PRBS Generator Using VHDL, Sandeep Mukharjee & Ruchir

Pandey, Department of Computer Science & Engineering, National Institute of Technology,

Rourkela, India, 2009

[27] Selected RNS Bases for Modular Multiplication, J.C. Bajard, LIRMM, CNRS-Univ.

Montpellier2, M. Kaihara, EPFL Lausanne & T. Plantard, Univ. Wollongong, Australia ,

2009 19th IEEE International Symposium on Computer Arithmetic

[28] Montgomery Algorithm for Modular Multiplication, Professor Dr. D. J. Guan, August 25,

2003

[29] Differential Power Analysis Resistant Hardware Implementation of the RSA Cryptosystem,

Keklik ALPTEK_N BAYAM, Institute of Science & Technology, Istanbul Technical

University, May 2007

[30] Modular Multiplication using Montgomery method, Haoxin (Larry) Song, ECE 543 Final

Project Report

[31] Automatic Verification of Arithmetic Circuits in RTL using Term Rewriting Systems,

Shobha Vasudevan, The University of Texas at Austin, December 2003

[32] http://en.wikipedia.org/wiki/Adder_(electronics)

[33] Handbook of Applied Cryptography, Alfred J. Menezes, Paul C. Van, Oorschot Scott A.

Vanstone, CRC Press ISBN: 0-8493-8523-7, August 2001

[34] Cryptography and Network Security, 3
rd

 Edition, William Stalling

http://en.wikipedia.org/wiki/Adder_(electronics)

