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Abstract

Cryptographic Algorithms are essential methods to attain security in com-
puter and communication systems. In modern computer and communication
sciences, fast and Efficient implementation (in terms of throughput and re-
souce usage) of these cryptographic algorithms is an active area of research.
Hardware solutions for these cryptographic algorithms are often required to
optimize the performance and to concentrate on security issues. Reconfig-
urable Platforms i.e. FPGAs (Field Programmable Gate Arrays) are ultimate
choice among various hardware solutions because they combine flexibility,
speed and resource efficiency. Skein is one of the 14 candidates which ad-
vanced in the round 2 of NIST SHA-3 competition. We choose it on the basis
of its simplicity, security and speed. After the second round conference, Skein
is among the 5 short listed candidates in round 3 of the competition. An ef-
ficient hardware implementation of Skein-256 algorithm have been presented
in this thesis work and we have compared our results with other published
hardware implementations of Skein. This paper investigates the performance
characteristics of a high-speed hardware implementation of Skein on modern
FPGA.
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Chapter 1

INTRODUCTION

1.1 Motivation

Skein is one of the 14 candidates advanced to Round 2. Skein is a fast,
versatile, and secure hash function. It is a family of Hash functions based
on the tweakable block cipher Threefish and can be decomposed into the
Threefish Block Cipher and the Unique Block Iteration (UBI) construction.
In this thesis work, we have presented an efficient hardware implementation
of Skein algorithm and compare our results with available implementations.

Cryptographic hash functions take an arbitrary block of data as input
and output a fixed-size bit string, the (cryptographic) hash value. It is in
this way that an accidental or intentional change to the message will change
the hash value. The input is known as the message, and the hash value is
known as the message digest. Cryptographic hash functions have many
information security applications, particularly in digital signatures, message
authentication codes (MACs). Moreover, these can be used for fingerprinting,
data indexing in hash tables, to detecting duplicate data or to uniquely
identify files, and as checksums to detect accidental data corruption during
communication.

To ensure the long-term robustness of applications that use hash func-
tions, National Institute of Standards and Technology (NIST) USA has an-
nounced a public competition on November 2, 2007 to develop a new cryp-
tographic Hash algorithm called SHA-3. This competition is in response
to recent advances in the cryptanalysis of commonly used hash algorithms.
These algorithms include SHA family: SHA-0, SHA-1, SHA-256 and SHA-
512, MD4 and MD5. In previous few years, cryptanalysis of these algorithms
found serious vulnerabilities.

In response to NIST’s announcement 64 submissions were reported by

9



CHAPTER 1. INTRODUCTION 10

the submission deadline of October 31, 2008. Among these, fifty-one entries
were those which fulfilled the minimum submission requirements and were
selected as the first round candidates in December 2008.

After presentation review and analysis in the first SHA-3 candidate con-
ference in February 2009, these candidates reduced to 14 in Round 2 of the
competition. A year was allocated for the public review, implementation and
analysis of these algorithms.

The Second SHA-3 Candidate Conference was held on August 23-24, 2010
in University of California, Santa Barbara. Five short listed candidates, ad-
vanced in round 3 are BLAKE, Grostl, JH, Keccak and Skein. The tentative
timeline for the end of this competition and selection of the successful can-
didate for SHA-3 is in 4th quarter of 2012 [2].

For our research work, we have choose fast and efficient implementation of
Skein algorithm. Hardware solutions for these algorithms are often required
to optimize the performance as well as to address physical security issues.
Re-configurable Platforms i.e. FPGAs (Field Programmable Gate Arrays)
are ultimate choice among various hardware solutions to combine flexibility,
speed and resource efficiency.

1.2 Thesis Scope

In this thesis work, efforts are made to do an efficient hardware implemen-
tation of SHA-3 candidate Skein proposed by Bruce Schneier on FPGA, in
terms of performance. This work may be used as a contribution in finalizing
the candidate of new Secure hash Algorithm SHA-3. Out of two major hard-
ware description languages used in industry, VHDL and Verilog HDL, we
choose Verilog as Hardware Description Language (HDL) to implement the
design. FPGA devices from two major vendors, Xilinx and Altera, dominate
the market with about 90 percent of the market share. Out of these two
vendors, Xilinx leads, so we feel that, it is appropriate to focus on FPGA
devices from Xilinx. We used two Xilinx FPGA architectures Virtex 5 and
Spartan 3 for implementation and comparison of results.

In order to compare and validate the hardware results the algorithm is also
implemented in software using C language prior to hardware implementation.
Software implementation also helped us in understanding the algorithm and
gaining confidence.
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1.3 Chapter Organization

Chapters of the thesis are organized as follows: Chapter 2 gives some back-
ground knowledge of cryptographic hash functions and discusses essential
properties and applications of cryptographic hash functions. Moreover, it also
defines the requirement of the new secure hash algorithm (SHA-3). Chapter
3 covers description about secure hash algorithm SHA-3 candidate Skein Al-
gorithm in detail. Chapter 4 describes the background knowledge of FPGA
and its advantages over the ASIC designs. This chapter also summarizes
internal architecture of Xilinx’s FPGAs. Chapter 5 describes the methodol-
ogy adopted for this work and general design considerations for software and
hardware implementation. Chapter 6 explains the software implementation
of the Skein algorithm. Chapter 7 exclusively explains the hardware design
implementation of the Skein algorithm. In Chapter 8 we provide the results
of our work and compare it with some well known implementations. Finally,
Chapter 9 concludes the work experience and defines future directions to
extend and improve the existing achievement.



Chapter 2

CRYPTOGRAPHIC HASH
FUNCTIONS

2.1 Introduction

A cryptographic hash function is a conclusive method whose input is random
block of data and output is a fixed-size bit string, which is known as the
(Cryptographic) hash value. It is in this way that a fortuitous or intentional
change to the message will change the hash value. In general terms the ideal
cryptographic hash function has following major or significant properties:

• It should be very difficult to find two inputs that produce the same
message digest.

• It is easy to compute the hash value for any given message.

• It is very hard to find a message that has a given hash.

• It is infeasible to modify a message without changing its hash.

2.2 Properties

Now we more formally describe the various properties of a cryptographic
hash functions.

2.2.1 Preimage Resistance

Preimage resistance is the measure of difficulty to find an input message
from which a given hash value is computed. This means that hash functions
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CHAPTER 2. CRYPTOGRAPHIC HASH FUNCTIONS 13

are one-way functions. Functions that lack this property are vulnerable to
preimage attacks.

If we have given a hash value h it should be hard to find any message m
such that

h = hash(m)

2.2.2 Second Preimage Resistance

Given an input message m1, second preimage resistance is the measure of
difficulty to find another input message m2 such that both messages have
the same hash value. i.e.

hash(m1) = hash(m2)

where m1 6= m2
This property is sometimes referred to as weak collision resistance, and

functions that lack this property are vulnerable to second preimage attacks.

2.2.3 Collision Resistance

Collision resistance is the measure of difficulty to find two different messages
m1 and m2 such that:

hash(m1) = hash(m2)

Such pair of messages is called a cryptographic hash collision, a property
which is sometimes referred to as strong collision resistance.

These properties means that without changing hash value one cannot
modify input message. So it implies that if two messages have same hash
value, they are identical.

2.3 Hash Functions are not Encryption

Hash functions and encryption are different and it is important to understand
their difference. Encryption converts plaintext into ciphertext using a key
and by using the appropriate key it converts it back. The two texts roughly
correspond to each other with respect to size. This means that small plaintext
yields small ciphertext and so on. ”Encryption” is a two-way or reversible
operation.

On the other hand, hash function converts a stream of data into a fixed
size hash value. No matter how long the message is but its hash value will
be of fixed size and it is strictly a one way operation.
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2.4 Applications

Cryptographic hash functions have many information security applications,
particularly in digital signatures, message authentication codes (MACs), and
other types of authentication [3]. Moreover these can be used for fingerprint-
ing, for data indexing in hash tables, to detect duplicate data or uniquely
identify files, and as checksums to detect accidental data corruption during
communication.

2.4.1 Verifying File Integrity

Verifying file integrity is an important use of hash functions. When large files
are made available for download during transmission on networks, sometimes
an error may occur corrupting the file. To verify file integrity, websites
publish the original hash values of their download bundles. The recipient
finds out the hash of the received file and compares it with the original hash
value, to confirm that the received file is identical to the original.

2.4.2 Hashing Passwords

It is not a good idea to store password in their original form. It is because
somebody may get access to the database where they are stored. Therefore,
rather than storing the password itself, it is more protected to store hash
value of that password. Hashes are one way functions and are not reversible
so it is not feasible to find the actual password even after getting access to
the stored hash values.

2.4.3 Digital Signatures

A digital signature is a way to ensure the identity of the sender of a message
or the signer of a document. Moreover, it also guarantees that the message
which arrived at the receiver is intact. To ensure authentication digital sig-
natures are based on certain types of encryption. Digital signatures cannot
be duplicated and they are easily transportable.

Figure 2.1 illustrates that how the signature is represented and how does
one know whether a digital signature applies to a particular document or not:
It is obvious from the figure that instead of signing the message digitally; the
hash value of the message is signed. It is because computing digital signature
of long message is time consuming. To verify the signature the recipient
calculates the hash of the message and compares it with the fingerprint that
was signed. If they are the same, the received message is authentic.
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Digital Signature

I agree to pay 

you Rs.10000 

for that task.

Hash 

Function

FE5473CFEA420EE5

AF46578210BEBC3
Encrypt

Private Key

DF2ABC670AACB214

D870C3BA225AFF43

Signed Document Hash Value of Document

Figure 2.1: Digitally signing a document

2.5 Requirement of New Secure Hash Algo-

rithm SHA-3

There is a long list of cryptographic hash functions, although many have been
found to be vulnerable and should not be used. A successful attack against
a weakened variant of an algorithm destabilizes the experts’ confidence, al-
though if a hash function has never been broken, which lead to its rejection.
Such type of vulnerabilities were found in a number of hash functions in
August 2004 that were popular at the time, including SHA-0, RIPEMD,
and MD5. This leads to the long-term security of SHA-1, RIPEMD-128, and
RIPEMD-160 algorithms susceptible. SHA-1 is strengthened version of SHA-
0, while RIPEMD-128, and RIPEMD-160 are both strengthened versions of
RIPEMD.

As of 2009, the two most commonly used cryptographic hash functions are
MD5 and SHA-1. MD5 (Message Digest Algorithm 5) is the hash function
designed by Ron Rivest [4] in 1991 as a strengthened version of MD4 and
SHA-1 hash function was developed by the NSA.

In 2004, Xiaoyun Wang et al [5] [6] presented the collision for the full
MD5. Moreover there was a breakthrough in cryptanalysis of SHA-1 hash
Algorithm in August 2005. Professor Xiaoyun Wang and co-authors found
that it is possible to find a collision in SHA-1 in 263 [7]. Previously it was
thought that 280 operations are required to find a collision in SHA-1 for a
160-bit hash function. This attack is expected to find two different messages
having the same hash value i.e. the hash collision in 263 operations.
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Suppose we have a hash function that produces an n-bit long hash value
or message digest and we are trying to find some message which will produce
a particular message digest value y, then because each message digest value
is equally likely, we expect to have to try 2n possible input values. If we are
trying to find a collision, then by the birthday paradox, we would expect
that after trying 2n/2 possible input values we would have some collision.
Van Oorschot and Wiener [8] showed how such a brute-force attack might be
implemented.

Although no attacks have yet been reported on the SHA-2 variants, they
are algorithmically similar to SHA-1. However, to ensure the long-term ro-
bustness of applications that use hash functions National Institute of Stan-
dards and Technology (NIST) has announced a public competition in the
Federal Register Notice published on November 2, 2007 [9] to develop a new
cryptographic hash algorithm called SHA-3. This competition is to be final-
ized by the year 2012 [2].



Chapter 3

SHA-3 CANDIDATE (SKEIN)
HASH ALGORITHM

3.1 Introduction

Skein is one of the 14 candidates advanced to round 2. Skein is a fast,
versatile, and secure hash function. Skein is a family of hash functions based
on the tweakable block cipher Threefish and can be decomposed into the
Threefish Block Cipher and the Unique Block Iteration (UBI) construction.
The block and key size of the Threefish are equal and may be of 256, 512, or
1024 bits.

3.2 Description

Skein uses three simple operations of 64-bit adders along with shift, and XOR
to create the output message digest. It can be divided into two parts from
the implementation point of view.

• Threefish Block Cipher

• Unique Block Iteration (UBI) construction

3.2.1 Threefish Block Cipher

Skein’s compression function is based on Threefish which is a large tweakable
block cipher [4]. The block and key size of Threefish are equal and can be
set to 256, 512 or 1024 bits, and they are designated as: Threefish-256,
Threefish-512, and Threefish-1024 respectively. Threefish structural design
consists of round operations. Threefish-256 and Threefish-512 compression

17
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function is made of 72 consecutive round operations while the Threefish-1024
requires 80 rounds. Each round of the Threefish block cipher is made of two
instances of a Mix function along with a permutation module while a round
key is added to the data before the first round and after each 4 consecutive
rounds as shown in Figure 3.1

256 bits Message Block 

Addition of Subkey 0

Mixing Mixing

Permutation R
o

u
n

d
 0

Mixing Mixing

Permutation

Mixing Mixing

Permutation

Mixing Mixing

Permutation

R
o

u
n

d
 1

R
o

u
n

d
 2

R
o

u
n

d
 3

Addition of Subkey 1

Subkey 0

Subkey 1

Figure 3.1: First four round operations of the Threefish-256 cipher

The mix operation consists of addition modulo 264, XORs and left-rotates.
These operations are defined on the intermediate state organized in 64-bit
words. The MIX operation transforms two of these 64-bit words and is
common to all Threefish variants as shown in Figure 3.2:

Mix function has two input words (X0 and X1) and produces two output
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ADD 

64

<<< R

XOR

Modulo 

264

X0 (64 Bits) X1 (64 Bits)

Rotation 

Distance

Bit by Bit 

XOR

Y0 (64 Bits) Y1 (64 Bits)

Figure 3.2: Threefish MIX operation

words (Y0 and Y1) using the following relations:

Y0 = (X0 + X1)mod264

Y1 = (X1 <<< R) ⊕ Y0

Where ⊕ is the bit by bit XOR operation and <<< is the left rotate
operator and R (Rotation Distance) is a constant value depends on the Three-
fish block size, the round index and the position of the two 64-bit words in
the Threefish block [10]. All Threefish rounds are similar apart from rota-
tion constant in mixing operation. Rotation constants for different Threefish
variants are shown in Figure 3.3[10].

The subsequent permutation operation reorders 64-bit words constructed
from a Threefish block. Values for word permutation are fixed for each
Threefish variant as shown in Figure 3.4.

Subkeys or round keys are consisting of three contributions: an input key
words, tweak words, and a counter value. The key schedule turns the key
and tweak into a sequence of subkeys, each of which equal to the size of the
block.

Tweak depends upon number of factors including position and the bit
length of message block. Tweak is contructed as shown in Figure 3.5
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Figure 3.3: Rotation Constant (R)
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Figure 3.4: Values for the word permutation
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Figure 3.5: The fields in the tweak value
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Table 3.1: The fields in the tweak value
Name Bits Description

Position 0-95 Number of bytes of message processed so far
(including this block)

Reserved 96-111 For future use; must be 0
TreeLevel 112-118 Level of the tree when tree hashing is used;

0 for non-tree computations
BitPad 119 1 if the message block is padded and 0 otherwise
Type 120-125 The application-specific UBI function being

performed
F (First) 126 1 for first block of message and 0 otherwise
L (Last) 127 1 for last block of message and 0 otherwise

Skein has many possible parameters. Each parameter, whether optional
or mandatory, has its own unique type identifier and value. Type values are in
the range 0 . . . 63. Skein processes the parameters in numerically increasing
order of type value, as listed in Table 3.2.[10]

Table 3.2: Values for the type field
Symbol Value Description

Key 0 Information hashed is a key (for MACs and KDFs)
Cfg 4 For computing the configuration block

(initialization vector)
Prs 8 For personalized hashing
PK 12 Personalization using a public key

(for digital signature hashing)
Kdf 16 Key identifier
Non 20 Nonce (for stream cipher or randomized hashing)
Msg 48 Message that Skein is hashing
Out 63 For computing Skein output

3.2.2 Unique Block Iteration (UBI) construction

The UBI construction is a variant of the Cascade or (Merkle-Damgard) con-
struction. It uses a tweakable block cipher in Matyas-Meyer-Oseas mode to
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form a compression function, and uses the bit offset of the block being hashed
as the tweak. Figure 3.6 shows an example of UBI mode.

M2 (Last Msg Block)M1 (Second Msg

Block)

UBI_OUTXOR

Tweak 

(M2)

72 

rounds of 

Threefish

block 

cipher

XOR
72 
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Threefish

block 

cipher

Tweak 

(M1)

XOR
72 

rounds of 

Threefish

block 

cipher

Tweak 

(M0)

M0 (First Msg

Block)

UBI_IN

Figure 3.6: Unique Block Iteration (UBI) mode

It is supposed that the message M comprises of three message blocks(M0,
M1 and M2). UBI IN is the first Threefish encryption key which is used
along with the tweak value for the encryption of first message block. The
output of the Threefish block cipher is XORed with message block itself and
its output along with new tweak value is used for the encryption of the next
block of message. It means that a new key is used for the encryption of each
block. As mentioned above that the tweak values depend on the position
and bit length of the respective message block. UBI is used in Skein not only
for compression and the output transformation, but also for other optional
operation modes (e.g. tree hashing, keyed hashing).



Chapter 4

FIELD PROGRAMMABLE
GATE ARRAY

4.1 Introduction

In the family of reconfigurable hardware Field Programmable Gate Array
(FPGA) is one of the most pronounced name. FPGAs are reprogrammable
silicon chips. One can configure these chips using pre-built logic blocks and
programmable routing resources to implement custom hardware functional-
ity in relatively short time and very low cost as compared to ASICs. We can
develop digital computing tasks in software and compile them down to a con-
figuration file or bit stream that contains information on how the components
should be wired together. In addition, FPGAs are completely reconfigurable
and right away take on a brand new personality when we recompile a dif-
ferent configuration of circuitry. FPGA chip adoption across all industries
is driven by the fact that FPGAs combine the best parts of processor-based
systems and ASICs. FPGAs provide hardware-timed reliability and speed,
but they do not require mass production to justify the large upfront expense
of custom ASIC design. Reprogrammable silicon also has the same flexibility
of software running on a processor-based system, but it is not limited by the
number of processing cores available. Unlike processors, FPGAs are truly
parallel in nature so different processing operations do not have to compete
for the same resources. Each independent processing task is assigned to a
dedicated section of the chip, and can function autonomously without any
influence from other logic blocks. As a result, the performance of one part
of the application is not affected when additional processing is added.
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Figure 4.1: Different Parts of FPGA

4.2 FPGA’s Scope in Industry

FPGA technology continues to gain momentum, and the worldwide FPGA
market is expected to grow from 1.9 billion in 2005 to 2.75 billion by 2010
[11]. Since its invention by Xilinx in 1984, FPGAs have gone from being
simple glue logic chips to actually replacing custom Application-Specific In-
tegrated Circuits (ASICs) and processors for signal processing and control
applications.

4.3 Advantages of FPGA

National Instruments published an excellent article about the advantages of
FPGAs [12]. These advantages are being summarized as follows:

Performance: FPGA provides faster response time due to hardware level
control of I/Os. Moreover, taking advantage of hardware parallelism, FPGAs
exceed the computing power of digital signal processors (DSPs) by breaking
the paradigm of sequential execution and accomplishing more per clock cycle.
BDTI, a noted analyst and benchmarking firm, released benchmarks showing
how FPGAs can deliver many times of processing power per dollar of a DSP
solution in some applications [13].

Time to Market: FPGA technology offers flexibility and rapid prototyp-
ing capabilities in the face of increased time-to-market concerns. You can
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test an idea or concept and verify it in hardware without going through the
long fabrication process of custom ASIC design [14].

Cost: As system requirements often change over time, the cost of making
incremental changes to FPGA designs are quite negligible when compared to
the large expense of respinning an ASIC.

Reliability: For any given processor core, only one instruction can execute
at a time, and processor-based systems are continually at risk of time-critical
tasks pre-empting one another. FPGAs, which do not use operating systems,
minimize reliability concerns with true parallel execution and deterministic
hardware dedicated to every task.

Long-term Maintenance: FPGA chips are field-upgradable and do not
require the time and expense involved with ASIC redesign. Being reconfig-
urable, FPGA chips are able to keep up with future modifications that might
be necessary. As a product or system matures, we can make functional en-
hancements without spending time redesigning hardware or modifying the
board layout.

4.4 Xilinx FPGA

The Spartan-3 family architecture consists of five fundamental programmable
functional elements [1]:

Configurable Logic Blocks (CLBs) : CLB’s contain flexible Look-
Up Table (LUTs) that implement logic plus storage elements used as flipflops
or latches. CLBs perform a wide variety of logical functions as well as store
data.

Input/Output Blocks (IOBs) : IOBs control the flow of data be-
tween the I/O pins and the internal logic of the device. Each IOB supports
bidirectional data flow plus 3-state operation. IOBs support a variety of
signal standards including four high-performance differential standards.

Block RAM (BRAM) : Block RAM provides data storage in the form
of 18-Kbit dual-port blocks.
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Multiplier blocks : Multiplier blocks accept two 18-bit binary num-
bers as inputs and calculate the product.

Digital Clock Manager (DCM) blocks : DCM blocks provide
self-calibrating, fully digital solutions for distributing, delaying, multiplying,
dividing, and phase shifting clock signals.

These elements are organized as shown in Figure 4.2. A ring of IOBs
surrounds a regular array of CLBs. Each device has two columns of block
RAM. Each RAM column consists of several 18-Kbit RAM blocks. Each
block RAM is associated with a dedicated multiplier. The DCMs are posi-
tioned in the center with two at the top and two at the bottom of the device.
The Spartan-3E family features a rich network of traces that interconnect all
five functional elements, transmitting signals among them. Each functional
element has an associated switch matrix that permits multiple connections
to the routing.

Figure 4.2: Spartan-3E Family Architecture [1]



Chapter 5

GENERAL DESIGN
CONSIDERATIONS

5.1 Introduction

This chapter includes a discussion about general design consideration and de-
sign flow of the thesis. The discussion starts from the software implementa-
tion of the algorithm in high level language to the hardware implementation.
Moreover there is a discussion about the tools which are used for designing
purpose.

5.2 Design Flow

The thesis was completed using following design flow:

1. Background Knowledge: This step includes study of the various
algorithms proposed by different candidates for SHA-3 competition.
We choose Skein proposed by Bruce Schneier for our work because of
its simplicity, speed and security.

2. Software Implementation: The algorithm which was chosen in pre-
vious step i.e. step 1 is implemented in a high level language i.e C
language.

3. Architecture Designing: Designing of a suitable architecture appro-
priate for hardware implementation.

4. Hardware Implementation: By using hardware description lan-
guage (HDL) i.e Verilog, the architecture which is designed is imple-
mented.
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5. Simulation and Verification: Verification of the hardware design
through behavioral simulation and comparing results with software im-
plementation at step 2.

6. Synthesize the Hardware: A netlist of the design depends on dif-
ferent technologies is used as a input to field programable gate array
implementation. The generation of netlist is the synthesization of the
hardware.

7. Simulation and Verification: By comparing the software results,
again simulate the design and verify it at gate level.

8. Optimization: Design optimization.

5.3 Background Knowledge

Among a number of submissions to NIST only 14 advanced to round 2. The
first step involved is to choose an algorithm for implementation. We choose
Skein for our work because of its simplicity, security and speed . In order to
know about the general design considerations and chose a best architecture, it
is very significant to thoroughly study about the available implementations.
There exists very few such implementations particularly on FPGA. Two of
which studied in detail are [15] and [16].

5.4 Software Implementation

In order to get confidence and fully understand the algorithm of chosen can-
didate, software implementation using a high level language is very beneficial.
Additionally, it is also advantageous in verifying results achieve by hardware
implementation. Initially skein-256 was implemented using C language then
it is upgraded to Skein-512. Software implementation includes simple and
basic operations i.e. addition, XOR and left shift.

5.5 Architecture Designing

From the designing point of view it is a good practice to separate a design
architecture into control and data paths. Data path contains set of registers
and combinational logics it is responsible for register load/unload and com-
putational operations. Control path consists of finite state machine (FSM),
counter, state registers. FSM is implemented through state encoding and it
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is used for controlling various operations of data path. The control path and
data path are interfaced to each other through status and control signals.

5.6 Hardware Implementation

There may be two design methodologies to implement a design on to hard-
ware: combinational and sequential. In our work we implemented hardware
using both sequential and combinational methodologies and compare our re-
sults with available implementations for each of them. The time required
to process input’s first bit to the output’s last bit is the measure of the
maximum operating frequency in combinational designs. The maximum op-
erating frequency is defined by the critical path length of a design. On the
other hand, the maximum combinational path delay between two registers
defines the critical path length in sequential design.

5.7 FPGA Design Flow

A typical FPGA Design Flow is shown in 5.1:

Design Entry

Design Synthesis

Design 

Implementation

Device 

Programming

Behavioral 

Simulation

Timing 

Simulation

Functional 

Simulation

Figure 5.1: FPGA Design Flow
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Design Entry

Design entry is the first step in FPGA design flow. To enter a design source
files are created. Different formats are used to create source files which
includes a Hardware Description Language (HDL) e.g. VHDL and Verilog or
a schematic. A FPGA design includes a top-level source file and a number
of lower-level source files in any format of the format i.e. either a schematic
or a HDL file. For design entry Verilog is used in this research work.

Behavioral Simulation

The design is tested in terms of its logical functionality or behavior of the
design by the help of a test bench which is defined by a user. Again different
formats such as a Hardware Description Language (HDL) or a schematic may
be used to define a test bench.

Design Synthesis

Technology dependant netlist files are created from a number of source files
in design synthesis step. The netlist files acts as input to the implementation
module and the gate level architecture is defined by these netlist files. The
design may be optimized either for minimum area utilization or for better
throughput. This option is provided while mapping the design at the gate
level by various synthesis tools.

Design Verification (Simulation)

The functionality and behavior of a design verified by functional simulation,
while timing is verified by timing simulation of the design. Implementing
the circuit in FPGA defines the actual placement and routing of the circuit
and timing simulation need to know it so we do the timing simulation after
implementing the design to find the exact speed and timing of the circuit.
Design verification is very important step that should be done at different
stages of the design.

Design Implementation

After synthesis step in which netlist file is generated, the design implemen-
tation step converts the logic design into a physical file. This physical file
can be downloaded on the target device (e.g. Spartan or Virtex FPGA). De-
sign implementation includes these three sub-steps: Translating the netlist,
Mapping and Place and Route.
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Device Programming

Device programming is the downloading of the programming file to the target
device. It is the actual configuration of the FPGA device.



Chapter 6

SOFTWARE
IMPLEMENTATION

6.1 Introduction

We implement Skein-512-512 using C, that is the block size and hash value
both are of 512 bits. Presently only few software implementations of Skein
are available, using java, .net, C] etc. According to the best of our knowledge
no software implementation using C language is available.

6.2 Key and Tweak Extension

In our implementation prior to the key schedule module, extended key and
extended tweak are calculated by the help of key preprocessing circuit as
shown in Figure 6.1.

The IVs, t0 and t1 are the seed for key scheduling, specified by message
input. The preprocessing circuit yields k0 . . . k8 and t0 . . . t2.

6.3 Subkey Schedule Module

Sequence of subkeys is generated based on k0 . . . k7 and t0 . . . t1. Initial key
k0 . . . k7 is provided for the first time only, the hash value calculated for each
block, acts as key for the next block of message. Tweak value is calculated
for each block which depends upon the offset of the message block and bit
length of the message block. On the basis of these two i.e. key and tweak,
key schedule module calculates round keys prior to processing each block as
shown in Figure 6.2:
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Figure 6.1: Preprocessing Circuit for Skein-512
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Key (K0....K8)

Tweak (t0....t2)

Figure 6.2: Key Scheduling

These round keys are stored as two dimensional array. Key schedule
module basically comprises of addition of 64 bit words modulo 264. Each
subkey is a combination of all but one of the extended key words, two of the
three extended tweak words, and the subkey number.

6.4 Threefish Operation

After key schedule all 72 rounds of Threefish operation are executed. Each
Threefish round comprises of Mix and Permutation operations. A Subkey
is added after every four consecutive rounds. Mix operation includes three
basic operations: Addition of 64 bit words modulo 264, 64 bit words XOR
operation and left rotate operation as described in chapter 3. The value of the
rotation distance R is a constant value depends on the Threefish block size,
the round index and the position of the two 64-bit words in the Threefish
block. According to these three parameters value of R is given in Skein
hash Function Family version 1.2 submitted to NIST [10]. The rotation
constants for the MIX operation repeat after eight rounds. Therefore for
the implementation of Skein-512, an array of 8 x 4 is used. The subsequent
permutation operation reorders 64-bit words constructed from a Threefish
block. Values for word permutation are fixed for each Threefish variant. In
software implementation these values are given in an array.

6.5 UBI Chaining

After all 72 rounds of Threefish operation the output of threefish is XORed
with current block of message being Hashed. This is required for UBI chain-
ing. The output of the Unique Block Iteration construction is either the
required hash value or it is used as key value to process the next [17] block
of message.
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The overall processing of the software implementation of a block of mes-
sage is shown in Figure 6.3

Permutation

NO

YES

Hash Value

Last Subkey Addition

if 

round<72

ThreeFish Output

YES

Block of data

Subkey Addition

if round 

mod 4=0

NO

Mixing Process

round=round +1 

Figure 6.3: Software Implementation Flow chart

6.6 Result

This implementation calculates the hash value of a given message at a speed
of 4.9 Mbytes per second on Intel Core2Duo 2GHz processor.



Chapter 7

HARDWARE
IMPLEMENTATION

We have implemented the core functionality of Skein basic variant from
scratch i.e. Skein-256-256 and used two different architectures for hardware
module. One is combinational and the other is sequential design.

7.1 Combinational Design

Combinational hardware architecture design is shown in Figure 7.1. The
block of input message is stored inside a 256 bit input register(In Reg).
Moreover tweak value and initial key are also stored inside two different
registers of 128 bits and 256 bits respectively. Subkey Schedule Mod-
ulegenerates sequence of subkeys (subkey0-subkey18) on the basis of tweak
value and initial key. Each subkey is 256 bits long. First subkey(subkey0) is
added to the original message block in a 256 bit adder then after every four
consecutive rounds each of the subkeys is added to the result of the previous
round. In this way for 72 round of Skein-256, 19 subkeys are required. The
round process consists of Mix and Permute operations. 256 bits message is
divided into four 64 bits words as defined in section 3.2.1 and Figure 3.1.
After all 72 rounds there exists a one level of XOR gate, to create the UBI
construction of the algorithm. Final hash value is stored in a 256 bit output
register(Out Reg).
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Figure 7.1: Hardware architecture used for compression function of Skein-256
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7.2 Sequential Design

7.2.1 Data and Control Paths

The implementation can be divided into control and data paths. Control path
consists of Finite State Machine, State register, clock and counter. Data path
consists of Input and Output registers, key and tweak registers, Key Schedule
module, Round E and Round O modules and Add Subkey module as shown
in Figure 7.2. Input message is stored in In Reg and output hash value is
stored in Out Reg.
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Figure 7.2: Hardware architecture seperated in Control and Data paths

7.2.2 Add Subkey module

Add Subkey module is a 256 bit adder having inputs from key schedule mod-
ule and Mux 1. Select input (S1) of the Mux 1 is at logic 0 only for the first
clock cycle and pass the original message block to Add Subkey module to
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add it with subkey0. After first clock S1 remains at high logic and pass
the result of the previous round to add it with the next subkey. Output of
Add Subkey is used as input of Demux 1. Demux 1 and Mux 2 have same
select input S2. If S2 is at logic 1, the data path through module Round O
will be selected otherwise data path is through module Round E. Each round
consist of Mix and Permutation operations as described in section 3.2.1 and
Figure 3.1. Complete Hardware architecture using sequential technique is
depicted in Figure 7.3.
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Figure 7.3: Hardware Implementation using Sequential Design

7.2.3 Threefish Rounds

Round E and Round O modules are same, except the value of left shift con-
stant R involved in Mix operation. Modules Round E and Round O are
explained in Figure 7.4.
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7.2.4 Key Schedule Module

Hardware architecture of key schedule module is shown in Figure 7.5. A
preprocessing circuit as explained in section 6.2 generates and provides ex-
tended key(k4) and extended tweak(t2) to key schedule module. We had
supposed that the two parameters k4 and t2 are available at the start of the
circuit operation and are loaded into the circular shift registers k(320 bits)
and t(192 bits).
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(Round 
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256 bits Subkeys

64 bits

k3 k2 k1t2 t1 t0 k0

64-bit 

Adder

64-bit 

Adder

64-bit 
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64 bits64 bits 64 bits
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Figure 7.5: Key Schedule Module

Key Schedule module generates subkeys on every falling edge of clock
on the basis of initial key(k0,k1,k2,k3) and tweak value(t0,t1). Add Subkey,
Round O, and Round E modules give output on the rising edge of each clock
pulse. Next subkey is available on falling edge of the same clock. In this
way one clock cycle is required to complete four rounds, subkey addition and
subkey generation. Therefore to complete 72 rounds and 19 Subkey addition
of Skein-256, 19 clocks will be required. Final hash value will be available
after 19 clock cycles at the output of the XOR gate (which is to create the
UBI construction of the algorithm).
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RESULTS

In this chapter, we reported our results and compared these with other avail-
able implementations in terms of area, throughput and throughput per area.

8.1 Achieved Results

For synthesis targeting the Xilinx FPGAs, the ISE tools (v9.2) have been
used. The target devices were a Xilinx Spartan 3 5000, speed grade 5, pack-
age FG900 (xc3s5000-5fg900) and a Xilinx Virtex 5 LX100, speed grade
3, package FF1760 (xc5vlx110-3ff1760). For both FPGA architecture, the
device resource usage in terms of number of slices and clock frequency esti-
mation after synthesis are reported. For Spartan 3, a slice consists of two
4-input LUTs and two flip flops [1], while for Virtex 5, a CLB slice contains
four 6-input look-up tables (LUTs) and four configurable flipflops [18]. No
other functional blocks (e.g., Block RAMs) have been used by our implemen-
tations.

Table 8.1 shows the result of combinational design while Table 8.2 shows
the results of design with sequential architecture.

Table 8.1: Synthesis Results of Combinational Design for Skein-256
FPGA Area Clock Freq. Time Delay(t)

[Slices] [MHz] [nSec]

Xilinx Spartan 3 8239 3.539 282.537
Xilinx Virtex 5 3658 8.531 117.214
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Table 8.2: Synthesis Results of Sequential Design for Skein-256
FPGA Area Clock Freq. Time Delay(t)

[Slices] [MHz] [nSec]

Xilinx Spartan 3 2317 43.530 23.209
Xilinx Virtex 5 821 119.712 8.353

8.2 Throughput

From the results given in previous section, we can calculate throughput of
design. The throughput of a given design can be calculated by

Throughput(T.P ) =
BlockSize

T
(8.1)

where BlockSize is the block size of message in bits, which is 256 bits for
Skein-256. T is the total time required to calculate hash value which is given
by

T = TimeDelay(t) · Required Clock Cycles (8.2)

Therefore throughput of combinational design is shown in Table 8.3

Table 8.3: Throughput of Combinational Design for Skein-256
FPGA Area Time Delay(t) Throughput

= 256 / t
[Slices] [nSec] [Gbits/sec]

Xilinx Spartan 3 8239 282.537 0.906
Xilinx Virtex 5 3658 117.214 2.18

As mentioned in section 7.2 that 19 clock cycles are required to calculate
the final hash value. Throughput of sequential designs is shown in Table 8.4.

8.3 Comparison with previous work

Table 8.5 shows the comparison of results with available implementations in
terms of throughput.

Table 8.6 shows the comparison of results with available implementations
in terms of area.
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Table 8.4: Throughput of Sequential Design for Skein-256

FPGA Area Time Delay(t) Total Time Delay T.P
T = t X 19 = 256 / T

[Slices] [nSec] [nSec] [Gbits/sec]

Xilinx
Spartan 3 2317 23.209 440.971 0.580

Xilinx
Virtex 5 821 8.353 158.707 1.61

Table 8.5: Throughput Comparison of Skein-256
FPGA OurDesign [15] [16] [19] [20] [21]

[Gbps] [Gbps] [Gbps] [Gbps] [Gbps] [Gbps]

Comb Sequ
Xilinx

Spartan 3 0.906 0.580 0.669 - - - -
Xilinx

Virtex 5 2.18 1.61 1.751 0.409 1.567 0.973 1.402

Table 8.6: Area Comparison of Skein-256
FPGA OurDesign [15] [16] [19] [20] [21]

[Slices] [Slices] [Slices] [Slices] [Slices] [Slices]

Comb Sequ
Xilinx

Spartan 3 8239 2317 2421 - - - -
Xilinx

Virtex 5 3658 821 937 932 843 893 854
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Then we compare throughput per area of implementations. Throughput
per area is an important parameter to compare the implementation results.
Table 8.7 shows the comparison of results with available implementations in
terms of throughput/area.

Table 8.7: ThrouArea Comparison of Skein-256
FPGA OurDesign [15] [16] [19] [20] [21]

Mbps/Slices Mbps/ Mbps/ [Mbps/ Mbps/ Mbps/
Slices Slices Slices Slices Slices

Comb Sequ
Xilinx

Spartan 3 8239 2317 2421 - - - -
Xilinx

Virtex 5 3658 821 937 932 843 893 854



Chapter 9

CONCLUSION

9.1 Concluding Remarks

In this work we presented the design of our high-speed hardware implemen-
tation of the hash function Skein-256. We reported the performance figures
of our implementation in terms of throughput, area and throughput/area in
addition we compare our results with available results. Achieved results in
this work are meeting/exceeding to the various well known implementations
in past years.

9.2 Future Work

We used the basic variant i.e. Skein-256 for our implementation. Other
variants of Skein are Skein-512 and Skein-1024. Present work may easily
be modified for Skein-512 because it contains the same number of rounds.
However, Skein-1024 requires 80 rounds rather than 72 rounds.

We chose Skein out of the 14 candidates which advanced to round 2. Now
NIST has announced the five short listed candidates for the round 3 of the
competition. One or more candidates other than the Skein may be chosen
for future work.

Furthermore, pipelining the design at appropriate points may result in
very high throughput rates. Existing design may be enhanced by using
pipelining techniques.
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