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Abstract

Machine reliable operation is of key importance especially when they are used for

critical applications. In order to guarantee machine reliability and life estimation, ma-

chine fault diagnosis and prognosis is of great importance. This work aims to develop an

understanding towards machine fault diagnosis algorithms and to develop a fault pro-

gression model that can be used for estimation of remaining machine useful life. Time

frequency methods are used in analysing the transient machine faults. Further faults

classification is done. In this work healthy machine and faulty machines data is ob-

tained. On the data a non intrusive analysis is done to identify the electrical fault with

the help of the field oriented currents analysis in the permanent magnet synchronous

motors.
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Chapter 1

Introduction

In the industrial world, electrical machines fault diagnosis and prognosis field is gain-

ing a lot of attention because of the need of reliability, performance efficiency and cost

effectiveness as they act as critical component in several process. Machines are more

susceptible to failures as they get mature making their maintenance activity difficult

and costly. The tasks related to their maintenance can be curative or preventive [26].

Prognosis as defined in some research works as Remaining Useful Life (RUL) [21].

• Curative: In this, components are replaced when they are not able to complete

the task for which they are designed. The demerit of this solution is occurrence of

fault i.e happening of unwanted state. In order to avoid this, significant parameter

monitoring is needed. Component replacement is done when parameters exceeded

the threshold value. This is also called Condition Based Monitoring (CBM).

• Preventive: As fault arises non availability of the resources or spare parts can delay

the maintenance so predictive one is a better choice in comparison to curative one.

In this health state of the system is predicted and suitable plans are made for its

maintenance. It can be seen as a prognosis activity.

For machine maintenance diagnosis of faults and prognosis for RUL of a machine can

be done. For diagnosis of faults several techniques are available whereas prognosis is a

1



Chapter 1. Introduction 2

relatively new field. Diagnosis refer to as the detection of early faults whereas prognosis

which is generally performed after the diagnosis estimates the remaining machine life.

Prognosis requires a large amount of historical data. It is difficult to do the prognosis

of system when a system model is not present. In this work, data of healthy and faulty

machine is sampled and then analysis is done on that data. Fault diagnosis and failure

Figure 1.1: Diagnosis vs Prognosis [26]

prognosis has a wide variety of applications such as health assessment systems, electro-

mechanical systems, computer software fault detection and prediction methods, and

manufacturing systems etc. If the system is complex, noisy, non-linear and contains

different subsystem then this field of diagnosis and prognosis becomes difficult to realize.

Modelling a system is important for prognosis.

Figure 1.2: Fault diagnosis and analysis areas
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Objectives of this work includes non intrusive algorithm development for efficient

diagnosis of complex systems using supervised learning approach and to forecast the

upcoming fault. Also to develop a fault progression model for RUL of system. Permanent

Magnet AC Machine (PMAC) was the target system in this work. Data samples were

taken from the machine in the healthy condition and with the occurrence of faults and

this is provided by my supervisor.

1.1 Thesis Organization

This thesis report is organized as follows:

• Chapter 1 contains the importance and objectives of this research along with the

details of thesis organization.

• Chapter 2 provides a comprehensive details about techniques that have been in

practise for diagnosis of faults and prognosis of machine failures.

• Chapter 3 presents the problem statement of the research work and the proposed

approach adopted as a solution.

• Chapter 4 describes the details of parameters involve in experiment setup along

with the details of explored fault.

• Chapter 5 provides details of the issues involved in implementing adopted ap-

proach along with obtained results.

• Chapter 6 aims at concluding this work and proposing future work that can be

done in this field.



Chapter 2

Literature Review

2.1 Chapter Scope

Before failure there must be some sudden changes in the behaviour of the electrical drive

[2] during its normal operation. So a developing fault will ultimately lead to a failure.

In order to protect machine from failure some earlier fault mitigation techniques can be

applied. For the diagnosis of fault and prognosis of failure various algorithms are available

in literature. So for understanding of those methods a review of them is presented here.

This will allow to develop an understanding towards merits and demerits of them. The

available methods comprised of the different concepts related to time frequency analysis,

clustering, classification and estimation.

2.2 Fault Diagnosis

For the fault diagnosis there are two methods such as intrusive and non intrusive meth-

ods. Intrusive method requires addition of external item that increases the cost and it

is classical method whereas non intrusive method does not require any additional instal-

lations and sensors. In this kind of method current or voltage of the motor is taken as

a dataset and analysis is done on that dataset.This method has gained attention over

the recent years. Non intrusive methods are divided in to three categories model based,

signal based and data based[31].

4
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Figure 2.1: Fault diagnosis

2.2.1 Model Based

The diagnosis based on machine model which further can be used for fault signature

prediction. Model-based diagnosis relies on theoretical analysis of machine whose model

will be used to predict fault signatures [25]. There are different types of fault diagnosis:

2.2.2 Data Based

In this type of diagnosis no knowledge of machine parameters are required. It is com-

prised on signal processing and clustering techniques .

2.2.3 Signal Based

In this type of diagnosis, sampled quantities from actual machine are taken for iden-

tification of known fault signatures. Using suitable signal processing techniques these

signatures are monitored. Frequency, Time or time frequency analysis techniques can

be of interest. In the recent years this has gained a lot of attention. For signal to noise

ratio enhancement and data normalization it plays an important role.
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Figure 2.2: Fault diagnosis types

2.3 Failure Prognosis

Estimation of the remaining usable life and prediction of the future state is machine

failure prognosis. This is an important field as it helps in timely machine maintenance

and also to protect it from disastrous failures. Following are the techniques of machine

failure prognosis.

• Model Based (Physics of failure)

• Data Based

• Hybrid

This classification is according to four criteria: cost, precision, applicability and com-

plexity [9]. The fault is considered continuously variable, whose evolution is defined by

a deterministic or stochastic law. In model based method a set of mathematical laws are
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used to represent the physical component and its degradation phenomenon which will

be further used for RUL. The data driven approach transforms sensors monitored data

in to reliable degradations behavioural model. The data driven models are suitable for

systems where to monitor data and transformation in to degraded behavioural model is

easy.

Figure 2.3: Prognosis

2.4 Types of Faults Occur in Electrical Drives

Following are the types of faults that are generally expected to occur in the electrical

drives[25].

• Insulation: over-voltage, initial manufacturing quality, temperature.

• Bearing faults: environment, affected by wear, temperature, loading.

• Connections: corrosion, welding, crimping.

• Rotor bar breakage in induction motors: starting cycles, manufacturing problems.

• Rotor eccentricity: manufacturing, loading, wear.
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• Power electronics components: capacitors, switches, gate drivers.

• Permanent magnet demagnetization: load, temperature, controller error, noise.

• Gears.

• Sensor failure (e.g. current sensor,rotor position sensor,).

2.5 Motor Current Signature Analysis

For fault diagnosis in electrical machines, there are various condition monitoring tech-

niques which includes vibration monitoring, acoustic monitoring, chemical and thermal

monitoring etc but as they require specialized sensors and other tools so the most suitable

is to monitor current [10]. This method uses current spectrum for the location of fault

frequencies. Motor Current Signature Analysis (MCSA) has been extensively used in the

domain of electrical machines for diagnosis and prognosis [12, 17, 30, 27, 29, 6]. Even

some of the research works provide a comparison as to which method is more preferable

for condition monitoring using comparative approach [24]. MCSA is a maintenance tool

Figure 2.4: MCSA

which is used for valuable prediction of machine behaviour. It has gained much accep-

tance in nowadays world. By this approach mechanical faults can also be found. In this
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approach the current is recorded and analysis is done in time frequency domain. It has

been in practice since 1985 and used over the years. In time domain format the current

samples are taken. Reference [10] provides a detailed background of how MCSA has

been applied in order to find out wide variety of machine faults.

2.6 Methodology

This sections presents a comprehensive review of the available techniques that are adopted

for feature extraction, classification and for prognosis [30]. Among the available tools

and techniques, relevant techniques have been adopted.

2.6.1 Feature Extraction

For the extraction of features a transformation is needed since observing the signals with

respect to different domains is of vital importance as different domain representation

reveals different aspects of signal. While time domain representation seems enough

but it is actually incomplete. For complete analysis different domain representation is

required. Further knowledge can be obtained if it is represented in frequency domain.

So time frequency analysis together aims at reconciling spectral and temporal analysis

within a single distribution. Applications involve physiological origin, radar and sonar

signals, acoustic signals, astrophysical data, etc. So time frequency transformation is

applied.

Our lives are generally measured with respect to time so we are more comfortable

to represent quantities w.r.t to time. When representing signals in time domain we

get time-amplitude representation but applications of signal processing mostly requires

the frequency content in the signal and hence via frequency representation properties

such as spectrum, bandwidth and roll off can be obtained easily. The time frequency

transformation had been effectively used for the fault analysis of electrical machines

[8]. For frequency representation the most common time to frequency transform is

Fourier Transform whose continuous form can be applied to continuous time signal and

discrete one can be applied to discrete time sequences. Discrete Fourier transform is

seen as first choice with the advent of its fast computation method namely Fast Fourier
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Figure 2.5: Stationary Signal

Figure 2.6: Nonstationary Signal
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Transform (FFT). Talking about the Fourier Transform and transform similar to it.

They just give information that how much of each frequency is present in the signal but

does not tell at which time it is existing. Information regarding frequency content of

a signal locally in time is of viable importance if the signal is non stationary. Signal

whose frequency content does not change with time is called stationary signals. In

such case same frequency content exists through out the signal duration and hence time

information is not that important. The signals encountered in real life are mostly non-

stationary examples of such signals are music signals, sinusoidal or linear FM signals,

chirp signals etc.

Figure 2.7: FFT Tiling

Consider the signal plotted in Figure 2.5 the frequency content as identified by its

FFT is existed throughout. Hence its time information is not really needed.

Now consider the Figure 2.6 both stationary and non stationary signals have the

same FFT. Thus the signals in both the figures are unable to differentiate whether the

frequency components are lying throughout the spectrum or are localized in time. There

are various time to frequency transformation techniques that are commonly used. Some

of these techniques are as under. If we consider time frequency plane tiling of FFT then

it indicates no time axis information is available whereas frequency plane is divided in

to several bands as in Figure 2.7
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2.6.1.1 Short Time Fourier Transform

Previously from Figure 2.5 and Figure 2.6 it was seen that FFT does not work for non

stationary signals. Here the main consideration is some portions of the non stationary

signals can be assumed as if they are stationary. The size of the portion is known as the

window size. Window length must satisfy the criteria that the signal segment must be

stationary where the window is applied [18]. The ’Uncertainty principle’ is the problem

associated with the Short time Fourier Transform (STFT) which says that exact time

and frequency location of a signal is not known. What maximum one can know is which

frequency band exists in which time interval and hence due to this, resolution problem

exists in STFT.

Figure 2.8: STFT Tiling

The performance of the STFT are affected due to the window size. If the window size

is narrow then it gives poor resolution in time. Furthermore, wide windows can violate

the condition of stationarity. The problem with the STFT is resolved with the Wavelet

Transform (WT). In order to see the phenomenon of how spectrum w.r.t time changes

see Figure 2.8. The mathematical expression for STFT is as below.

STFT (t, f) =

∫ ∞
−∞

h(t− τ)x(τ)e−j2πfτdτ (2.1)

where h is the window function.
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A design tradeoff in implementing the STFT is taken in to consideration between

resolution of time and frequency. A limitation due to uncertainty principle is made that

limits time bandwidth product lower bound.

TB ≥ 1

2
(2.2)

Here B is bandwidth and T is duration.

2.6.1.2 Wavelet Transform

The wavelet transform allows multi-resolution analysis . As its name implies, it analyses

the signal at different frequency with variable resolutions. The purpose of this is to give

for shorter durations high frequency components and for longer durations low frequency

components[32]. Wavelets unique property is of finite energy. The basis function, scaling

and wavelet function all have energy concentrated around a point. There are variety

of basis functions that can be used in the Wavelet analysis in comparison to Fourier

transform that uses fixed sinusoid. For desired application the best suitable wavelet can

be chosen [35].

Figure 2.9: DWT Tiling

Considering the tiling in Figure 2.9 which is variable and has the property of good

resolution in frequency at the lower frequency and at higher frequency it has good resolu-
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tion in time. It also has a demerit that this transformation is not shift invariant. Various

types of wavelets can be applied in building the detection and classification algorithm for

machines [7]. A comparison of results by applying various mother wavelets for prognosis

of failures in electric motors is presented in [34].

2.6.1.3 Wigner Ville Distribution

The distribution of energy as time and frequency function is given by this transform.

The resolution problem that we have encountered in STFT, it doesn’t have that problem

of resolution. Signal s(t) Wigner Ville Distribution (WVD) [5] is given as

W (t, ω) =
1

2π

∫
s∗(t− τ

2
)s(t+

τ

2
)e−jτωdτ (2.3)

WVD is a quasi probability distribution. Eugene Wigner in 1932 introduces this in

classical mechanics to study quantum corrections [28]. Then in 1948 J.Ville derived it

again independently as a representative of local time frequency energy of signal. The im-

portant property of this distribution is the correlation of signal with time and frequency

version of itself. It doesn’t contain a windowing function and this one reason frees it

from smearing effect. WVD provides the highest time and frequency plane resolution.

The properties a WVD [4] has are the reality i.e its transformation is always real even

if the signal is complex, symmetric in nature i.e if the frequency spectra is symmetric

then the transformation is also symmetric whereas for the time symmetric real signal

the distribution will be symmetric in time.

W (t, ω) = W (t,−ω) For Real Signals ≡ symmetrical spectraS(ω) = S(−ω) (2.4)

W (t, ω) = W (−t, ω) For Real Signals ≡ symmetrical spectraS(t) = S(−t) (2.5)

Marginals in time and frequency are satisfied in this distribution [3]∫
W (t, ω)dω = |s(t)|2 (2.6)

∫
W (t, ω)dt = |S(t)|2 (2.7)
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Time shift and the frequency shift i.e if the signal is shifted in time or in frequency

the distribution is shifted accordingly [31].

if s(t)→ s(t− t0) then W (t, ω)→ W (t− t0, ω)

if s(t)→ ejω0ts(t) then W (t, ω)→ W (t, ω − ω0)

The demerit of this transformation are the cross terms which comes when WVD

applied to multicomponent signals and makes WVD difficult to understand. The unique

characteristic of this generated interference term is of its highly oscillatory nature in

comparison to the the auto terms which are representative of the original signal. Due to

this nature of the interference term, idea can be inferred that these cross terms can be

attenuated using domain kernel functions without any significant effect on the signal.

2.6.1.4 Choi Williams Distribution

In approach to suppress interference terms encountered in the WVD a kernel in WVD

is placed. This added kernel is a two dimensional Low Pass Filter (LPF) and has the

capability of suppressing interference term in time and frequency plane. There are wide

range of kernels constructed for this purpose each of them has their own advantages

but the most popular of them is Choi Williams Distribution (CWD) [4]. Mathematical

expression for the Choi Williams distribution of a signal is given by [5]

C(t, f) =

∫ ∫ ∫
φ(θ, τ)s(u− τ

2
)s∗(u− τ

2
)ej(θu−θτ−τω)dudθdτ (2.8)

where φ(θ, τ) = e(− (θ,τ)2

σ
) is a kernel function. It acts as signal autocorrelation

function filter. The amount of smoothing is controlled by σ. Due to this smoothing

phenomenon the cross terms are removed and resolution is reduced.

• If kernel satisfies the identical conditions φ(θ, τ) = φ∗(−θ,−τ) then its distribution

will be a real distribution.

• This distribution satisfies the time frequency marginals

∫
C(t, ω)dω = |s(t)|2 (2.9)
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∫
C(t, ω)dt = |S(t)|2 (2.10)

if φ(θ, 0) = 1 and φ(0, τ) = 1 respectively. Total energy is preserved if kernel

function satisfies φ(0, 0) = 1.

• Distribution is time shift invariant as kernel is independent of time. The distribu-

tion will be shifted according to the signal shifted in time as if s(t) → s(t − t0)

then C(t, ω)→ C(t− t0, ω)

• The distribution will be shifted as according to the signal shifted in spectrum. The

kernel is independent of frequency so the distribution is frequency shift invariant.

if s(t)→ ejω0ts(t) then W (t, ω)→ W (t, ω − ω0)

2.6.2 Principal Component Analysis

The Principal Component Analysis (PCA) is a statistical data analysis technique. The

aim of PCA is to find out from a given multivariate data to a less redundant smaller

variable data set that in the same time is the most efficient representative of available

data. In PCA the merit of redundancy is correlation between elements of data [13]. PCA

application ranges from neuroscience to computer graphics.

Consider a vector x with n elements. A sample x(1),.....,x(n) available from this random

variable. It is important that vector are correlated and there is some redundancy making

compression possible. If elements are independent, PCA cannot achieve anything. In

PCA transform first mean is subtracted from x :

x← x− E{x} (2.11)

After centering x is transformed linearly to vector y having n elements, so m<n and

hence redundancy due to correlations is removed. This is achieved by finding rotated

orthogonal coordinate system such that elements of x becomes uncorrelated in new

coordinates. The variances of x projections on the new coordinates at the same time

are maximized, due to this the maximal variance is along the first axis, second axis
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corresponds to maximal variance in the first axis orthogonal direction and so on.

PCA can be employed for selecting features. It can be used in selecting significant

individuals from feature vector [22]. Thus dimensionality is reduced without affecting

the accuracy.

2.6.3 Pattern Recognition

Once signal features are available the next step is to determine the type and severity of

fault which is done with the help of classifiers. The process of creating groups of objects

in such a way that the objects in the same group have same properties and the distinct

objects are in other groups is called clustering. Groups are called clusters. The clustering

phenomenon can be seen from Figure 2.10. Then comes the classification phase that

refers to assign these data points to pre-defined classes. There are two approaches for

clustering process

• Supervised Learning Approach:

Data used for training specifies what classes we try to learn. Difficulty lies with in

the implementation if data classification is unknown.

• Unsupervised Learning Approach:

The task is to learn classification from data. For clustering no predefined classifi-

cation is required.

In order to categorize data there are two ways dynamic or static. For the dynamic

one the criteria is usually the intra-cluster distance i.e compactness and for inter-cluster

distance is separation. For one dimensional dataset X and division in j clusters i.e C1,

C2,. . . , Cm Let zi be the cluster center for cluster Ci. It can be defined intra-cluster and

inter-cluster distance as [19].

Dintra =
1

n

m∑
i=1

∑
x∈Ci

‖x− zi‖2 (2.12)

Dinter = min
1≤i<j≤m

‖zi − zj‖2 (2.13)
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Groups
Data points


Figure 2.10: Three clusters are shown; the similarity measure is “distance”

Mean of cluster can be defined as,

mj =
1

nj

∑
∀zp∈cj

zp (2.14)

where nj is the number of data points that belong to cluster j and cj is the subset of

data vectors that form cluster j. where n is the number of data points of X. For good

clusteringDinter should be a large value and Dintra should be a small value .

2.6.3.1 Similarity Measures

The association between two data points are indicated by the similarity measure . Sup-

pose v= (v1, v2, . . . , vd) and u= (u1, u2, . . . , ud) be two d -dimensional data points. The

measure of similarity between v and u will be their attribute values function,

f(u,v) = f(u1, u2, . . . , ud, v1, v2, . . . , vd) (2.15)

f is a metric and it is a distance function whose definition is in a set E having following

properties:

1. reflexivity: f(u,v) = 0⇐⇒ u = v;

2. non-negativity: f(u,v) ≥ 0;

3. triangle inequality: f(u,v) ≤ f(u,w) + f(v,w),
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4. commutativity: f(u,v) = f(v,u);

where u, v, and w are arbitrary data points.

For applications, distance selection is important and the best one can be attained

with experience as well as knowledge. Some of the common measures are:

2.6.3.1.1 Euclidean Distance Euclidean distance between two data points p=(p1, p2, . . . , pn)

and q=(q1, q2, . . . , q3) in n-dimension is given as,

Deuc(p,q) =

√√√√ n∑
i=1

(pi − qi)2 (2.16)

where pi and qi are the values of ith attribute of p and q, respectively.

2.6.3.1.2 Tchebychev Distance Tchebychev or Chebyshev distance between two

points is defined as,

Dcheb(p,q) = max
i
|pi − qi| (2.17)

where pi and qi are the values of ith attribute of p and q, respectively. It is also known

as “maximum distance”.

2.6.3.1.3 Manhattan Distance Manhattan distance between two points is given

as

Dman(p,q) =
n∑
i=1

|pi − qi| (2.18)

where pi and qi are the values of ith attribute of p and q, respectively. Manhattan

distance is also called “city block distance”.

2.6.3.1.4 Minkowski Distance The generalization of Euclidean,Manhattan and

Tchebychev is the Minkowski distance . The Minkowski distance can be defined be-

tween two data points as,

Dmink(p,q) =

(
n∑
i=1

|pi − qi|r
) 1

r

(2.19)
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where pi and qi are the values of ith attribute of p and q, respectively. If we get r =1

and 2 then we get Euclidean as well as Manhattan distance, respectively. In the limiting

case of r reaching infinity, we get Tchebychev distance:

lim
r→∞

(
n∑
i=1

|pi − qi|r
) 1

r

= max
i
|pi − qi| (2.20)

The other distances to measure numerical data are Mahalanobis distance, Average

distance and so on. According to application one can choose the suitable one.

2.6.3.2 Supervised Learning Approach

The classifiers that are used by convention in machine fault diagnosis and prognosis

includes:

2.6.3.2.1 Linear Discriminant Classifier Linear Discriminant Classifier (LDC) is

trained on input vectors comprised on known faults set. Feature space is divided in C

sub-regions, where C is number of known fault classes, each of different severity. The

weighting coefficients are computed for each class. These coefficients are such that they

maximize the corresponding input vector linear discriminant function. It is defined as

Dc(x) = x1α1c + x2α2c + · · ·+ xkαkc + αk+1,c, wherec = 1, 2, · · ·C (2.21)

where x is is k dimensional feature vector and α is normalized weighting coefficients for

Cth class. A sample will be said to belong a particular class if the discriminant function

for that class is greater than any other. x belongs to class p if

Dp(x) > Dk(x) (2.22)

Through a training procedure the weighing coefficients are adjusted from initial guess.

This procedure algorithm makes adjustments to weighting coefficients till correct classi-

fication of training sample vector.

2.6.3.2.2 Multiple Discriminant Classifier Multiple Discriminant Analysis (MDA)

analyses fault signals. Fault analysis with different time frequency transforms indicates



Chapter 2. Literature Review 21

time frequency features have unnecessary information. In order to choose optimal trans-

formation suitable data reduction techniques are required. The basic concept of MDA

is to transform feature space from high dimension to lower dimension and to maximize

different classes discrimination. MDA can be seen as an extended version of Fisher

Discriminant Ratio which uses intra-class to inter-class scatter ratio. If time frequency

feature vectors x and class labels are given, inter-class and intra class scatter matrices

can be calculated. Inter-class scatter matrix is given as

∑
b

=
C∑
i=1

Ki(mi −M)(mi −M)T (2.23)

Intra-class scatter matrix is given as

∑
w

=
C∑
i=1

∑
xεC

(x−mi) (x−mi)
T (2.24)

Here mi is average of class, Total average is indicated by M and the number of samples

in class i is given as Ki. An optimal linear transformation is selected which project C

classes data to C-1 space along with the consideration that lower dimensional space gives

maximum separation between different clusters.

2.6.3.2.3 Support Vector Machine Classifier For regression analysis and various

classifiers, machine learning algorithms utilize supervised learning models that analyze

data for certain patterns or statistical parameters, called Support Vector Machine (SVM)

or Support Vector Networks. An SVM works by taking input a training data set, pre-

assigned with given categories, to build a statistical model based on which new inputs

can be assigned to one of the given categories. An SVM model can be viewed as the

representation of the training data set as points in space mapped to different categories

based on localization, so that new points falling into vicinity of a particular group can

be assigned to the respective category. A simplest SVM assigns each given input to two

possible classes or categories, called binary linear classifier. Such classification is non-

probabilistic or linear; however non-linear classification can be achieved by employing

high-dimensional feature spaces.
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2.6.3.2.4 The k-Nearest Neighbor Algorithm The k -Nearest Neighbor is one of

the simple classification method. It may also be known as Single-link method. It was

first introduced by Florek in 1951 and then independently by McQuitty and Sneath in

1957. The k -NN algorithm is summarized in Algorithm 3.2 . It simply treats each data

point as single cluster, tries to connect each data point on the bases of closeness. Let

ci, cj, ck be the centroid of three groups of data points. Then the distance between ck

and ci ∪ cj can be defined, using Lance-Williams Equation as follow:

D(ck, ci ∪ cj) = min(D(ck, ci), D(ck, cj)) (2.25)

where D(., .) is distance between two clusters can be calculated using Equation 2.16.

In the k -NN the choice of how many k neighbors have to be merged depends upon

the data set. Generally large value of k reduce the effect of noise but make boundaries

between the classes less distinct. The selection of a good k can be done by heuristically.

Its computational complexity is O(n2 log n) but it can be improved to O(n log n) using

the graph theory.

2.6.3.3 Unsupervised Learning Approach

There are many techniques that are used for unsupervised clustering analysis. The most

common of which is and it is generally employed in machine fault diagnosis and prognosis

[23]. The conventional k -means algorithm is first described by James MacQueen in

1967. The k -means clustering algorithm groups data vectors into pre-defined number

of clusters, based on the Euclidean distance as similarity measure. Each data point is

assigned to the cluster based on the closeness, i.e. the minimum distance between a data

point and a centroid, and is associated with one centroid which represents the“mid-point”

of that cluster. The k -means algorithm is summarized in Algorithm 2.1.

The k -means clustering algorithm can be stopped if any one of the following criterion

are satisfied:

• Maximum number of iterations has been reached

• When the centroid value does not change over a number of iterations

• Required tolerance value of centroid is achieved after some iterations
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Require: Data set , Number of cluster k

Initialize:

Randomly select the k cluster means

repeat:

(a) for each data vector, assign the vector to the class with the closest mean,

using Equation( 2.16)

(b) recalculate the k cluster means, using Equation( 2.14)

until stopping criteria are met

Algorithm 2.1: Conventional k -means clustering algorithm

One of the drawbacks of the k -means algorithm is trapped into local optima. The k -

means algorithm is also depending on initialization of randomly selected cluster centroid.

The k -means is efficient in clustering of large data sets. The conventional k -means

has several variations, which are used to minimize the problem of local optima, such as

fuzzy-k -means, PSO-k -means, etc.

2.6.4 Curve Fitting

Curve fitting is used to find the best fit line or curve for a series of data points. It is also

known as regression analysis. Curve fitting usually helps in the visualization of data, to

deduce values of a function where no data is available, and to find out the relationships

among two or more variables.

Curve fitting can involve either interpolation or extrapolation.

2.6.4.1 Interpolation

Interpolation new data points are constructed within the range of a discrete set of known

data points. We usually have a number of data points, obtained by sampling or exper-

imentation, which represent the values of a function for a limited number of values of

the independent variable. In some cases we need to estimate the value of that function

for an intermediate value of the independent variable. This may be achieved by curve

fitting. Interpolation errors are usually present during data estimation depending on the
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method used.

2.6.4.2 Extrapolation

If data points are estimated, beyond the original observation interval, on the basis of

its relationship with another variable then this process is called extrapolation. It is

similar to interpolation, which produces estimates between known observations, but

in extrapolation there is greater uncertainty and higher risk of producing meaningless

results. Extrapolation is basically the extension of a method, assuming similar methods

can be applicable to data set beyond the observed data interval.

Basically in curve fitting, the trend among the data points is captured by assigning a

single function across the entire range. Different techniques for curve fitting are available

involving both linear and non linear methods. Some of them are described briefly.

2.6.4.3 Least Square Curve Fits

Least Square curve fitting methods minimize the square of the error between the original

data and the values predicted by the equation. This technique of curve fitting may not

be statistically robust method of fitting yet it is simple and easy to understand. The

major drawback of this technique of curve fitting is its sensitivity to data points that

are wide apart. If a data point is widely different from the majority of the data, it can

skew the results of the regression. Therefore the data points must be examined sensibly

before using this type of fitting. Different least square curve fits are:

1. Linear

The following function try to fit a straight line through data.

y = a1 + a2 ∗ x (2.26)

No restrictions on data is associated with this type of curve.

2. Polynomial

The following is the polynomial curve fitting equation.

y = a1 + a2 ∗ x+ a3 ∗ x2 + a4 ∗ x3 + ...+ a10 ∗ x9 (2.27)
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As the complexity of data curvature increases the polynomial order required for

fitting also increases. No restrictions on data is associated with this type of curve.

3. Exponential

Following is the governing equation for exponential curve fit

y = a1 ∗ e(a2∗x) (2.28)

Generally this type of curve is used where the data decreases or increases at a

higher rate. Data equal to zero or negative data cannot be fitted with this curve.

4. Logarithmic

The governing equation for this curve is

y = a1 + a2 ∗ log(x) (2.29)

The data which is fitted with type of curve is one that spans decades (100, 101, 102...

and so on) Data equal to zero or negative data cannot be fitted with this curve.

5. Power

The governing equation for this type of curve is

y = a1 ∗ xa2 (2.30)

Data equal to zero or negative data cannot be fitted with this curve.

2.6.5 Prognosis Methods

2.6.5.1 Kalman Filtering

It is an estimator which is optimal in nature. The parameters in which one is interested

in can be obtained via inaccurate, uncertain and indirect measurements. It is recursive.

Optimality refers to if all noise is Guassian then Kalman filter mean square error of

estimated parameter is minimized. The popularity of Kalman filter is because of practical

good results attainment due to structure. It is convenient for online real time processing.

If given a basic understanding its formulation and implementation is easy. Inversion of

measurement equations is not needed. It has been employed in various applications which
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includes: From limited earth observations, determination of planet orbit parameters.

To track targets aircraft, missiles using RADAR, Localization of Robot and Building

map from range sensors. The Kalman filtering approach consists of first a recursive

Kalman estimator and then a Kalman predictor. Here the representation of pattern

vector component is done by recurrent linear first order model. With this a modal state

space representation is obtained

xk+1 = Fkxk +Gkuk + wk (2.31)

yk = Ckxk + vk (2.32)

The table 2.6.5.1 from [15] presents the correspondence between a Kalman Filter from

system view in correspondence with view. They have applied Kalman Filter in operation

modes tracking.

Table 2.1: Kalman Filter variables dimension and it correspondence with PR variables

System point of view PR point of view Dimension

x k State Vector Pattern Vector (d x 1)

uk Control Input Severity Degree (1 x 1)

yk Measurement Polynomial Evolution (d x 1)

wk vk Noises - (1 x 1)

F k State Transition Matrix Evolution Matrix (d x d)

G k Control Matrix Severity Degree Weighting Matrix (d x 1)

Ck Output Matrix Identity Matrix (d x d)

Lk Observation Matrix Identity Matrix (d x d)

K Evolution Variable Severity Degree Modification -

2.6.5.2 Particle Filters

It is a Bayesian method, recursive estimation is used for filtering problem solution.

Estimation of the first two state vector moments is the filtering problem. Dynamic state

space model along with noisy observation is what the space vector is governed. Following
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are the equations for particle filtering.

xk = fk(xk−1, wk−1) (2.33)

measurement equation yε<k is given as

yk = hk(xk, vk) (2.34)

The equation 2.33 is the state equation where as equation 2.34 is called the output

equation. Instead of future state vector the probability of future state vector is estimated

in Bayesian form. Using the pattern update equation the prior Probability Density

Function (pdf) is calculated and from measurement equation posterior pdf is calculated.

Particle Filters are analogus to Markov chain Monte Carlo (MCMC) batch methods.

Sometimes they are even similar to importance sampling methods. It can be used as

alternative to Extended Kalman Filter (EKF) or Unscented Kalman Filter (UKF) and

with added advantage that with the availability of sufficient samples, they will lead to

Bayesian optimal estimate. In that case they can be more accurate than EKF or UKF.

2.6.5.3 Hidden Markov Modelling

For signal monitoring Hidden Markov Model (HMM) is a stochastic technique through

finite states. An HMM assumes states as hidden and system to be a Markov system.

Main aim is to characterize state with the observation given. At time k state Sk is a state

which is hidden, Ok is the observation sequence with the assumption of C possible states.

From the observable parameters hidden parameters are to be computed.The main issues

to be solved by HMM are as under:

• When observation sequence y = y1, y2, · · · , yk and model parameter set θ = π,A,B

is given then when model is given how to efficiently compute p(y) which is obser-

vation sequence probability.

• Observation sequence y = y1, y2, · · · , yk and model parameter set θ = π,A,B

is given then for optimal observation sequence generation how to choose state

sequence x = x1, x2, · · · , xk. Maximum likelihood can be optimal measure.

• θ = π,A,B parameter adjustment for maximization of observation sequence like-

lihood.
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Problem Statement and Solution

3.1 Chapter Scope

Aim of this chapter is to develop a problem statement and to discuss the approach

adopted as a solution.It also identify the inputs and data required for processing.The

functional block diagram of overall algorithm is also given in this chapter.

3.2 Problem Statement

In this work, fault diagnosis of electromechanical systems with a focus on PMAC drive

is addressed. The faults that occur in machine is of different natures. The problem here

is to propose a cost effective diagnosis technique in order to deal the non-catastrophic

electrical faults occurring in PMAC drive. Then forecasting of future machine state in

order to detect upcoming fault behaviour falls in category of prognosis. Major problem

with prognosis is system non-linearity and most important is non availability of system

model.

3.3 Approach Adopted

. For the cost effective technique non intrusive analysis is preferred as recommended

in [31]. As the machine fault is apparent in the current of the machine, MCSA is the

28
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Figure 3.1: Methodology Adopted
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best non-intrusive way to deal with faults as proposed in[17]. Among three different

approaches that are discussed in section 2.2 and section 2.3 the approach adopted here

is signal based approach and the two other approach which includes the data based and

the model based is left. The model based approach requires a model which is impractical

as electromechanical systems are complex and extensive efforts and approximations are

required. In data based approach huge amount of data along with patterns of faults

are required which is not practical. Using the supervised learning approach signal based

method is adopted.

3.3.1 Feature Extraction Methods

The signals can be analysed in time, frequency or time frequency domains. As fault will

arises from intermittent increased contact resistance so the fault will be transient one.

Either time or frequency domain information separately is not enough for the extraction

of features. Hence time frequency distribution can efficiently extract features from the

signal. The joint representation of signal in time and frequency domains have three axis,

one for time, one for frequency and one to indicate the amplitude of the signal. Here

for the extraction of features Wigner Ville is applied. It is a bilinear transform and

the computations it require is more than (N2logN). This is adopted because bilinear

transform produces better results [37]. Fault inception is detected by setting a threshold

on the energy of the analysis coefficients.

3.3.2 Principal Component Analysis

Principal Component Analysis by variance maximization has been implemented in order

to obtain the most discriminant features from the signal. The algorithm implemented

for this is given in Algorithm 3.1. The algorithm works on Eigen Values and Eigen

Vector calculation. For the observed data space, analysis of Principal component for

correlation matrix results in orthonormal eigen-basis. The base largest eigen value refers

to principal-components associated to most of co-variability in number of observed data.
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Require: Arranged Data set.

Procedure:

Calculate size of the matrix.

Subtract mean of the input signal from each input sample.

Taking covariance of input samples.

Obtain Eigen Values and Eigen Vectors from covariance matrix.

Select the highest Eigen value and obtain the corresponding Eigen Vector.

Multiply the selected Eigen Vector to the zero mean shifted signal.

Each class samples are discriminated.

Calculate mean of each class sample that will act as each class representative point.

Algorithm 3.1: Principal Component Analysis

3.3.3 KNN Classifier

This was also adopted in [23] before applying clustering. K Nearest Neighbour (KNN) is

selected as a classification technique because of its simplicity and efficiency. The distance

metric used for KNN is Euclidean and Mahalanobis. The classification aims to classify

different severity faults.

Require: Data set , Number of neighbors k which is set to 1.

Initialize:

construct distance matrix of data set using Equation( 2.16)

repeat:

(a) find the closest k neighbor using Equation ( 2.16)

(b) merge the pair ci, cj where i 6= j, −→ cij

(c) find the neighbor of cij and update the distance matrix

until stopping criteria are met; i.e. desired numbers of cluster of k neighbors

Algorithm 3.2: k -Nearest Neighbor clustering algorithm

Some of the data is taken as training data whereas some of the data is taken as test

data. The class representative points obtained from PCA is taken as training. Processes
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are applied on the same lines on the test data. Single representation is obtained from

each test vector and distance of each training sample is calculated from the training

means in order to classify from which class the each test point belongs to.

3.3.4 Forecasting the Future State

The phase of prognosis starts after the diagnosis phase. It refers to track the behaviour

of machine’s operating mode in order to estimate the machine useful life. Diagnosis

and prognosis phase in terms of implementation can be seen from figure below showing

algorithm flow. In order to track the evolution of fault, polynomial evolution approach

is adopted [14] as it is relatively new and interesting. Using each fault representation a

polynomial is fitted on those points to obtain a fault model also with this fault evolution

can be extrapolated to know the future values. The problems with the Kalman Filtering

[1] is that fault progression model is needed. The fault model obtain from polynomial

approach will be used as seed model for Kalman Filtering.

3.3.5 Polynomial Curve Fitting

In order to obtain the fault progression model curve fitting tool in from MATLAB is

applied. The parameter selected for curve fitting is polynomial one among the other

methods. Coefficients are calculated on the basis of least squares method. It is an

excellent tool that provides complete analysis of the fitted curve. It calculates residuals,

show equations and offer variety of different methods for fitting of curve.
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Figure 3.2: Algorithm Flow
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Figure 3.3: Curve Fitting Tool of MATLAB



Chapter 4

Experimental Setup and Explored

Fault

The electrical machine in focus is Permanent Magnet Synchronous Machine (PMSM) of

12 V used in automotive application. The power rated is 1 hp and the no load speed

is 3000 r/min approximately. Machine operated using constant control of torque-angle

in a drive vector with set torque angle of pi/2 [20]. By this mode machine losses are

minimized and this is suitable to speed of operation up to base speed. To determine fault

type and severity a collection of data from both healthy and faulty drives are obtained.

The synchronous machine rotor is equipped with one or more damper windings and

field winding and in general all windings of rotor have different electrical characteristics.

Variable change for rotor variables offers no benefit as a result of rotor asymmetries.

However for stator variables, change of variables is advantageous [16]. In order to de-

tect and classify faults machine stator currents are analysed. Mostly, stator variables is

transformed to reference frame fixed in rotor as in Park‘s Equation [11]. Rather than

analysing three phase machine current independent to each other field oriented currents

iqs and ids are used. By this the benefit is non presence of fundamental electrical fre-

quency. The complete representation of stator currents can be obtained with iqs and

ids. However it is seen that with only iqs achievement of accurate fault detection and

classification can be obtained. Test condition are as follows:

1) The torque producing component of stator current command was iqs=0.3pu

35
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2) Flux is held weakening component ids=0

3) Dynamometer speed is held constant to 400rpm

The recommended practice for data collection along with fault introduction and detec-

tion is experimental. Fault considered here is non catastrophic that implies continuous

motor operation with the likelihood of increased failure. The fault explored in this work

is intermittently increased contact resistance between motor and controller. For fault

creation series resistance is added with normal closed switch in parallel to one of the

phases of motor [38, 36]. By opening of switch fault is initiated for short time interval

which causes current flow through resistance [33]. Different severity faults were intro-

Figure 4.1: Series Resistance Fault

duced in the form of intermittent increased contact resistance. In comparison to the

stator resistance the series resistance is almost ten times the value of stator resistance.

As soon as fault is initiated the phase current rises to 95 percent of peak amplitude.

The fault durations are 5ms and 10ms in order to know result invariances with respect

to this parameter. Table 4.1 show the different fault severities in terms of pu.



Chapter 4. Experimental Setup and Explored Fault 37

Table 4.1: Fault Severity

Type of Fault severity Increased Contact Resistance

Fault Severity 1 2.14pu

Fault Severity 2 2.80 pu

Fault Severity 3 4.03 pu

Fault Severity 4 6.33 pu

Fault Severity 5 15.84 pu

A computer running on Linux used as project controller. The computer running on

Linux was used a controller for the project. Computer is superior to a Digital Signal

Processor in terms of cost, central processing unit power and capacity of memory. The

limitation in input and output capability of a computer is biggest hindrance. As a

remedy custom Xilinx FPGA based input output board was developed. The resources of

this board were twelve analog channels and quadrature encoder counter. Outputs were

twelve digital and four analog channels. Parallel port is used for communication between

input output board and computer.

Using current transducers with the rated accuracy of 0.45 percent two phases cur-

rents were measured having bandwidth of zero to two hundred kilohertz. For single line

calibration single line-line was also measured. With the quadrature encoder count value

of 1024 per revolution (4096 for quadrature) and with a pulse of index rotor position can

be measured. A conducting electronic switch bidirection in nature was designed for the

initiation of fault in stator.

This experimental setup was arranged with the permanent magnet synchronous mo-

tor along with the other circuitry to measure current. The fault phenomenon that will

be addressed here will be transient and non catastrophic. The acceptable method for

collection of data is that the fault development and detection strategy remains exper-

imental. The experiments are conducted in order to mimic the electrical faults. From

continous sampled signals data from these faults were extracted. There will be some

issues that needs to be addressed in order to deal with the transient fault detection one

is to make detection invariant to duration of fault and with the start of fault when fault
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is incepted. Algorithms are compared based on torque producing component analysis of

field oriented stator currents in alternating current PMSM.



Chapter 5

Implementation and Obtained

Results

The objective of this chapter is to present the results that are obtained by the imple-

mentation of different algorithms. Issues related to implementation is also discussed.

MATLAB is the implementation platform. The results obtained are presented in the

relevant sections. There are twelve samples from each class i.e healthy as well as faulty

Figure 5.1: Healthy and Faulty Motor Current
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machines. Each sample has 8192 observations. Some of the samples are taken as training

and some are taken as test data. The figure 5.1 shows the healthy and faulty motor

behaviour in time domain. Seeing the behaviour it can be concluded that motor faults

are intermittent and non catastrophic.

5.1 Wigner Ville Distribution Results

As nature of signals is transient Wigner Ville time frquency transformation is applied up

to 16 levels. Wigner Ville time frequency transformation was applied because it provides

highest time frequency plane resolution. The time frequency features resulted will be

taken as machine health indicators. The Wigner Ville Transform of the healthy motor

in comparison to faulty motors can be seen as smooth in graph. This can be seen by a

series of figures below. The fault was detected by thesholding energy to be 25 percent

greater than the largest which was observed in all samples from healthy machine data.

Figure 5.2: Wigner Ville Transformation of Healthy Motor
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Figure 5.3: Wigner Ville Transformation of Fault Severity 1

Figure 5.4: Wigner Ville Transformation of Fault Severity 2
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Figure 5.5: Wigner Ville Transformation of Fault Severity 3

Figure 5.6: Wigner Ville Transformation of Fault Severity 4
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Figure 5.7: Wigner Ville Transformation of Fault Severity 5

5.2 Principal Component Analysis Results

All the data obtained from time frequency analysis is then formed in to a matrix. After

applying time frequency analysis coefficients at each level of frequency is aligned to

make a 1D matrix of that samples. All such coefficients are concatenated in matrix for

application of PCA. Resulted Eigen values showed that the first Eigen value is very large

in comparison to others. Data is projected according to first Eigen value. Plotting the

resulted data shows each class of data discriminatingly. Each class data mean is taken

as a representative of that class. The figure 5.8 shows how each class is represented

discriminatingly.

5.3 KNN Classifier Results

The test data according to the same lines was classified with the help of the training data

using the KNN algorithm with two different distance metric Euclidean and Mahalanobis.
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Figure 5.8: Data Class Represented with Points

When the training data set is 60 percent of the data and the test data set was forty

percent of the test data accurate results were observed as indicated in table 5.1 and

table 5.2. But when the training and test dataset was fifty percent of the data accurate

results were not found with this implemented table 5.3. The value of K in KNN classifier

is taken to be equal to 1.
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Figure 5.9: Fault Classification

Table 5.1: KNN Algorithm Performance Using Euclidean and Mahalanobis Distance(Training

50 percent of data Test 50 percent of data)

S.No Test Description False Detection Total Samples/Detected/Classified

1 Healthy 0 4/0/0

2 Contact Resistance 2.14 pu 0 4/4/0

3 Contact Resistance 2.80 pu 0 4/4/4

4 Contact Resistance 4.03 pu 0 4/4/4

5 Contact Resistance 6.33 pu 0 4/4/4

6 Contact Resistance 15.84 pu 0 4/4/4
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Table 5.2: KNN Algorithm Performance Using Euclidean Distance(Training 60 percent of

data Test 40 percent of data)

S.No Test Description False Detection Total Samples/Detected/Classified

1 Healthy 0 4/0/4

2 Contact Resistance 2.14 pu 0 4/4/4

3 Contact Resistance 2.80 pu 0 4/4/4

4 Contact Resistance 4.03 pu 0 4/4/4

5 Contact Resistance 6.33 pu 0 4/4/4

6 Contact Resistance 15.84 pu 0 4/4/4

Table 5.3: KNN Algorithm Performance Using Mahalanobis Distance(Training 60 percent of

data Test 40 percent of data)

S.No Test Description False Detection Total Samples/Detected/Classified

1 Healthy 0 4/0/4

2 Contact Resistance 2.14 pu 0 4/4/4

3 Contact Resistance 2.80 pu 0 4/4/4

4 Contact Resistance 4.03 pu 0 4/4/4

5 Contact Resistance 6.33 pu 0 4/4/4

6 Contact Resistance 15.84 pu 0 4/4/4

5.4 Polynomial Approach for Fault Model Results

A polynomial approach can be employed for fault modelling. If there are C classes then

when a fault is present C − 1 represent the system evolution when failure is present as

indicated in [14],[15].As this progression is slow in nature polynomial function with the

following expression will be used.

x(i) = a(i) +
C−1∑
j=1

(bjµ
j) (5.1)

where µ is the degree of fault severity where i is the number of dimension. So in order

to see the trend each class representation is taken and polynomial is obtained through

this. The fault progression polynomial will have one healthy and other faulty class. On
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the same lines using the techniques for the curve fitting techniques a fault progression

polynomial is obtained. Figure 5.10 shows when there are six different classes the

polynomial of degree five will yield the results with lowest residuals. The fault model

obtained is

x = 13000 + 12000µ− 8300µ2 + 2700µ3 − 390µ4 + 21µ5 (5.2)

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
−300

−200

−100
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100

200

300
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Quadratic: norm of residuals = 338.7927
Cubic: norm of residuals = 248.6081
4th degree: norm of residuals = 158.9769
5th degree: norm of residuals = 1.5697e−010
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y = 60*x2 + 8.5e+002*x − 7.6e+003
y = − 29*x3 + 3.6e+002*x2 − 54*x − 6.9e+003
y = − 21*x4 + 2.7e+002*x3 − 1e+003*x2 + 2.6e+003*x − 8.4e+003
y = 21*x5 − 3.9e+002*x4 + 2.7e+003*x3 − 8.3e+003*x2 + 1.2e+004*x −
      1.3e+004

data 3
   quadratic
   cubic
   4th degree
   5th degree

Figure 5.10: Fault Progression Model

Now, in order to go for prediction, polynomial function is extrapolated from the fault

fault 4 severities to further severe faults in order to see the future trend. Seeing the

forecast of the polynomial approach it is seen that it does not yield very good results.

This fault model will be used as a seed fault model in Kalman Filtering system.
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Figure 5.11: Forecasting Fault Evolution through Polynomial Approach



Chapter 6

Conclusion and Future

Recommendations

6.1 Conclusion

This research work is composed of two phases one is diagnosis in which a technique of

principal component analysis is introduced leaving the traditional ones. All the analysis

has been done using the torque producing component of the stator current. The devel-

oped algorithm for diagnosis was tested on the test data. In the other phase of prognosis

a fault model is developed using the polynomial approach. But this approach is unable

to give appreciable results for forecasting. As it cannot model the dynamics involved

from one fault to another. So the developed model is proposed to be used as a seed

model for the Kalman Filtering approach with the expectation to give better results.

The approach can be adopted on industrial scale in order to schedule maintenance of

machines.

6.2 Future Recommendations

The technique developed for diagnosing and prognosis of faults focusing a specific electri-

cal machine. These technique can be applied to other machines. The developed technique

can be used at system level maintenance with the addition of monitoring. The algorithms
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developed so far for mitigating these faults and to protect machine from failures includes

signal processing techniques, statistical technique and prediction techniques so there is a

room of selecting better approaches in these domains instead of the adopted algorithms.

The main outlines for the future recommendations are:

• The algorithms developed has been tested on the offline machine data. This can

also be used for online machine fault diagnosis and prognosis.

• For online analysis this work can also be implemented on reconfigurable platform

such as Field Programmable Gate Array (FPGA). Other than FPGA, Digital Sig-

nal Processor (DSP) is also a good choice.

• The developed technique can also be implemented on other machine such as DC

machines and induction machines.

• The modelling with the Kalman Filter can give more accurate results with the

better estimated parameters.

• For the failure prognosis several other techniques can also be implemented other

than HMM and Kalman Filtering. Particle Filtering and Neuro fuzzy techniques

can be used for prognosis.

• A comparative analysis of various prognosis techniques in terms of accuracy, im-

plementation complexity and cost can also be done to find out the best suitable one.



Appendix A

Acronyms

CBM Condition Based Monitoring

CWD Choi Williams Distribution

DSP Digital Signal Processor

DWT Discrete Wavelet Transform

EKF Extended Kalman Filter

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

HMM Hidden Markov Model

LDC Linear Discriminant Classifier

LPF Low Pass Filter

MCMC Markov chain Monte Carlo

MCSA Motor Current Signature Analysis

MDA Multiple Discriminant Analysis

OSH Optimal Separating Hyperplane
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PCA Principal Component Analysis

pdf Probability Density Function

PMAC Permanent Magnet AC Machine

PMSM Permanent Magnet Synchronous Machine

RUL Remaining Useful Life

STFT Short time Fourier Transform

SVM Support Vector Machine

UKF Unscented Kalman Filter

WT Wavelet Transform

WVD Wigner Ville Distribution
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