
Depth, Stanley Depth and Regularity
of Edge Ideals Associated with

Some Graphs

By

Ahtsham ul Haq

Supervised by

Dr. Muhammad Ishaq

Department of Mathematics

School of Natural Sciences
National University of Sciences and Technology

H-12, Islamabad, Pakistan
2020

c© Ahtsham ul Haq, 2020







I dedicate this thesis to my loving parents, venerable supervisor, respectable teachers
and fellows for their limitless support and encouragement.

1



Acknowledgement

All praises and glory is to Allah Almighty, the most beneficent and the most merciful,

who has created the whole universe. I stand highly grateful and obliged to Him for His

showering infinite blessings upon me and bestowing me with the ability and strength

to finish this thesis successfully and within time and also blessing me evermore than I

actually deserved.

I feel greatly indebted to my venerable supervisor Dr. Muhammad Ishaq, for his

never ending support and his honest guidance during my research. Had it not been

for his knowledge, expertise and assistance, this work would not have been possible.

Moreover, my entire understanding and appreciation of this field are entirely are mainly

because of his efforts and positive response to my queries. I would also like to extend

my thanks to the Principal, the Head of Department and the entire faculty of the

department of mathematics for their kind help during my research work.

My stay at NUST was made highly memorable and enjoyable by my class fellows

and friends. I would like to offer special appreciation to Muhammad Usman Rashid,

Muhammad Burhan Jafeer and Bakhtawar Shaukat for their invaluable help in com-

pletion of both this thesis and also the course work. I would always cherish their

suggestions and honest friendship. How can I forget mentioning my classmates Naeem

u Din, Naeem ur Rehman, Ahmer Qureshi, Zaheer Abbas, Hifsa Ismail and Mehwish

Aslam who where always there when i needed them. Of course, everyone in my class

has helped to provide me encouragement along with a friendly environment.

Lastly, I would like to acknowledge the support of my loving family and I would

like to extend huge thanks to them for supporting me financially and morally all the

way through my studies. Without any doubt, these words cannot fully express how

2



grateful I am for all of the sacrifices that they have made for me. Without their ded-

icated prayers and support, I would have never been able to reach my destination. I

am thankful to all those who have helped me directly or indirectly to complete my

research work.

Ahtsham ul Haq

3



Abstract

This dissertation addresses the algebraic invariants such as depth, Stanley depth,

projective dimension and regularity of some graphs. For this purpose, we investigate

certain types of monomial ideals of polynomial rings over the fields. Primarily, our

interest is to compute Stanley depth and depth of the edge ideals (or equivalently the

quotient of the polynomial ring by the monomial ideals) as module over the polynomial

ring. Indeed, this work is restricted to those ideals which are generated by square free

monomials of degree 2. The geometrical interpretation of such an ideal is the underlying

graph. This provides a bridge between algebraic objects and combinatorial objects,

that is, the monomial ideals and the graphs. From this correspondence, one can define

the algebraic invariants, Stanley depth and depth of graphs. The idea of projective

dimension is then explored through Auslander-Buchsbaum formula by using the former

concept of depth. Lastly, the regularity of underlying graph is computed by considering

minimal free resolutions of modules. In literature, some bounds and exact values of

depth and Stanley depth for the edge ideal associated with standard strong product

of graphs are given. This research is conducted to address such bounds of edge ideals

associated with restricted partial strong product, ladder and cubic circulant graphs.

Furthermore, we define a new family of circulant graphs and explore the algebraic

concepts of projective dimension and regularity by analyzing their bounds.
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Introduction

Monomial ideals play a crucial role in analyzing the relation between combinatorics

and commutative algebra. Generally, the combinatorics’ problems are translated as

monomial ideals and are solved using methods and techniques used in commutative

algebra. The upper bound conjecture proved by Stanley (for simplicial spheres) is

marked as the earliest attempt of exploiting this link between aforementioned fields.

He used square-free monomial ideals to interlink these two streams (combinatorics and

commutative algebra) of mathematics. In the year 1982, Stanley [1] introduced an

invariant for finitely generated Zn-graded modules over the commutative ring, known

as Stanley depth. He also provided a conjecture linking the Stanley depth and depth

of a module. Later on it was proved by Duval et al. [2] in year 2015 that Stanley’s

conjecture generally does not hold for P/E type modules, where P is defined as a ring

of polynomials with n variables and E is a monomial ideal. Nevertheless, discovery for

classes that still fulfill the conjecture is still a challenging phenomena.

In this thesis, some improved lower and upper bounds of Stanley depth and depth are

computed for edge ideals associated to the restricted partial strong product of path

and cycles. Moreover, it highlights the bounds of regularity, depth and Stanley depth

of edge ideal corresponding to the ladder graph and some families of circulant graphs.

This thesis consist of six chapters

Chapter 1 includes the fundamental concepts, basic definitions and results from

abstract algebra and commutative algebra. It starts with a brief overview of algebra

which is followed later by definitions and examples of ring theory. Moreover, it includes

types, basic properties, standard operations and primary decompositions of edge ideal.

Furthermore, it encompasses some basic of module theory including the generation of
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modules, exact sequences and graded rings. Toward the end, the chapter enlists sim-

plicial complexes and Stanley-Reisner ideal with some basic examples.

In Chapter 2, a brief introduction of graph theory and fundamental products of

graphs (cartesian product, standard strong product, partial and restricted partial

strong product) is presented. In addition to that, the chapter also includes some basics

of circulants. The chapter concludes with cubic circulants and its previously published

results.

Commencing with the introduction of depth and regular sequences, Chapter 3 is

comprised of Stanley decomposition, Stanley depth of modules and well known Stan-

ley’s conjecture. Additionally, it entails a detailed introduction to compute the Stan-

ley depth for square free monomial ideals. It also includes a concise introduction to

Castelnuovo-Mumford regularity of an ideal. Finally, the chapter concludes with some

worked out examples of edge ideal and regularity (using graded minimal free resolution

of edge ideal).

In Chapter 4, the edge ideal associated to partial strong product of some graphs

are introduced and their Stanley depth and depth are computed by using the principle

of mathematical induction and depth lemma on short exact sequences.

In Chapter 5, the edge ideal associated to a specific family of circulant graphs are

presented and their bounds of regularity are computed by using some well known re-

sults.

The edge ideals associated with ladder and cubic circulant graphs are introduced in

Chapter 6 and their Stanley depth and depth are determined by making use of principle

of mathematical induction and depth lemma on short exact sequences.
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Chapter 1

Ring theory and module theory

1.1 Introduction

The branch of mathematics which deals with algebraic structures called rings is

known as ring theory. For instance, the structure properties of rings and polynomials

are explored as rings. Modern ring theory is known to be a very active mathematical

discipline that endeavors to study rings in their own right. Ring theory is basically

classified into two sections: (1) Commutative ring theory and (2) Non-commutative

ring theory. The commutative algebra generally deals with ideas and problems occur-

ring naturally in algebraic number theory and algebraic geometry. Polynomial rings,

fields, ring of integers of a number field and coordinate rings of an affine algebraic va-

riety are a few important examples of commutative rings. Likewise, the corresponding

theory for non-commutative ring takes examples from non-commutative division ring,

representation theory, functional analysis and so on.

The primary concept of a ring first came to surface from an early attempt to prove

Fermat’s last theorem, which could be traced back to Richard Dedekind [3]. Adolf

Fraenkel [4] gave the first axiomatic definition of ring, however, his axioms were more

rigorous than those in the most recent definition. After certain attempts from different

fields, primarily number theory, the generalized and modern notion of ring (commuta-

tive) was established by Emmy Noether and Wolfgang Krull [5].
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Recently, the idea of associating a graph with a specific algebraic structure and

exploring the interactions between the structure of the algebraic objects and the graph

theoretic properties of the graphs connected with them is an absorbing and active area

of research. The idea of associating a graph to a commutative ring was initiated by I.

Beck in [6].

1.2 Ring theory

In the realm of algebra, the algebraic structures are dealt under the flag of ring

theory, which have defined operations of multiplication and addition.

Definition 1.2.1. A non empty set R alongside the well defined operations

“ + ” and “ × ” forms a ring if it fulfills the following axioms:

• R under “ + ” is an abelian group.

• Associative law under “ × ” holds in R.

• Distributive laws (left and right) holds in R.

If a ring R is commutative w.r.t multiplication, then it is called a commutative ring.

The ring R is known to have an identity 1 ∈ R if ∀ r ∈ R

r × 1 = 1× r = r.

Example 1.2.2. Following are a few instances of ring.

1. Z, Q , R and C are examples of commutative rings having identity 1.

2. Z/nZ with multiplicative identity 1 under multiplication and addition of residue

classes, forms a commutative ring.

3. Suppose R = R3, then R is a non commutative ring without unity, where the

operation of addition to be the usual addition of vectors and multiplication is the

cross product of vectors.
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1.2.1 Ring of polynomials

The polynomial ring is a particular type of ring which is formed by a set of polyno-

mials. These polynomials are in one or more than one variable where the coefficients

belong to a ring or maybe a field. Polynomial rings are used in several fields of math-

ematics and the investigation of their properties is among the primary inspirations for

the advancement of Commutative Algebra and Ring theory.

Definition 1.2.3. Let R be a commutative ring having unity, a polynomial in variable

x has the form

r0 + r1x+ · · ·+ rn−1x
n−1 + rnx

n,

with n ∈ Z+ ∪ {0} and every ri ∈ R. The polynomial is of degree n if rn 6= 0. Such a

set of polynomials is denoted by

R[x] = {r0 + r1x+ · · ·+ rn−1x
n−1 + rnx

n : n ∈ Z+ ∪ {0}, ri ∈ R}.

R[x] is a commutative ring with unity under polynomial addition and polynomial

multiplication and the unity of R[x] is the unity of coefficient R.

Definition 1.2.4. The polynomial ring in the variables y1, y2, . . . , yn and coefficients

belonging to R (commutative with identity) is defined inductively

R[y1, y2, . . . , yn] = R[y1, y2, . . . , yn−1][yn].

A ring homomorphism is a map from one ring to another that respects the same

additive and multiplicative structures.

Definition 1.2.5. Consider two rings R1 and R2. A ring homomorphism is a map

H : R1 → R2 which satisfies the following axioms for all r1, r2 ∈ R1

• H(r1 + r2) = H(r1) +H(r2),

• H(r1r2) = H(r1)H(r2),

A ring homomorphism which is both injective and surjective is known as ring isomor-

phism.
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1.2.2 Standard operations and properties of ideals

Proposition 1.2.6. A non-empty subset I of a ring R is known to be an ideal if and

only if s1 − s2 ∈ I , sr ∈ I and rs ∈ I for all s1, s2, s ∈ I and r ∈ R.

Definition 1.2.7. For a proper ideal I, a quotient ring R/I can be formed, which

consists of cosets r + I, where r ∈ R, and the product of cosets is defined as:

(r1 + I)(r2 + I) = r1r2 + I.

Next there are the isomorphism theorems for rings.

Theorem 1.2.8. (Isomorphism Theorems)

1. For a ring homomorphism π : R1 → R2, π(R1) is isomorphic to R1/ker(π), i.e.,

R1/ker(π) ∼= π(R1).

2. Consider the ideals I1 and I2 of ring R1, with I1 ⊆ I2, then I2/I1 is an ideal of

R1/I1. Also

(R1/I1)/(I2/I1) ∼= R1/I2.

For ideals I and K of the ring R, the set of sums a + b with a ∈ I, b ∈ K is not

only a subring of R but also is an ideal in R (the set is clearly closed under addition

and α(a+ b) = αa+ αb ∈ I +K since αa ∈ I and αb ∈ K).

Definition 1.2.9. Assume that I1 and I2 be the ideals of ring R. Product of two

ideals, say I1 and I2, is a set consisting of all possible finite sums of the form s1s2,

where s1 ∈ I1 and s2 ∈ I2. It is represented by I1I2.

Example 1.2.10. Let I1 = 14Z and I2 = 21Z in Z. Then I1 +I2 comprises all integers

of the form 14s1 + 21s2 with s1, s2 ∈ Z. For each such type of integer is divisible by

7, so 14Z + 21Z ⊆ 7Z. On the other hand, 7 = 14(−1) + 21(1) shows that 7Z is

contained in 14Z + 21Z, hence 14Z + 21Z = 7Z. In general, p1Z + p2Z = dZ, whereas
d = (p1, p2). The product I1I2 comprises all possible finite sums of the components of

the form (14s1)(21s2) where s1, s2 ∈ Z, which clearly gives the ideal 294Z.
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Definition 1.2.11. For a ring R, principal ideal is an ideal with a single element in

its generating set. Finitely generated ideal is an ideal with a finite elements in its

generating set.

Definition 1.2.12. A maximal idealM in a ring R is a proper ideal such that there

is no proper ideal in betweenM and R.
In other words, if J is an ideal containsM, then eitherM = J or J = R.

Definition 1.2.13. Local ring is a ring R with unique maximal ideal.

Example 1.2.14. Ideal generated by (2) = {0, 2, 4, 6} is the maximal ideal in Z8. (2)

is also the unique maximal ideal in Z8. So Z8 is a local ring.

Definition 1.2.15. A prime ideal P is a proper ideal of a ring R such that if for

p1, p2 ∈ R, p1p2 ∈ P , then either p1 ∈ P or p2 ∈ P .

Definition 1.2.16. For a ring R, let us suppose two ideals I1 and I2. Then their ideal

quotient is defined as

(I1 : I2) = {s ∈ R : sI2 ⊆ I1}.

Definition 1.2.17. Let R be a ring and I is an ideal of R. Then (0 : I) is an ideal

known as the annihilator of I represented as Ann(I) defined as

Ann(I) = {r ∈ R : rI = 0}.

Definition 1.2.18. An ideal N of R is primary ideal if s1s2 ∈ N , for s1, s2 ∈ R, then
either s1 ∈ N or sk2 ∈ N for some k ≥ 1.

When N is a primary ideal, P is a prime ideal and also P =
√
N , then N is called

P-primary.

1.2.3 Monomial ideal

Let S = K[x1, . . . , xn] be a ring over field K, monomials forms the natural K-basis for

S. Let b = (b1, . . . , bn) ∈ Rn where every bj ≥ 0. A monomial is any product of the
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form xb11 . . . x
bn
n with bj ∈ Z+. If w = xb11 . . . x

bn
n is a monomial, then we write w = xb

with b = (b1, . . . , bn) ∈ Zn+, and

xb1xb2 = xb1+b2 .

An ideal whose generating set only consists of monomials is said to be a monomial

ideal. Mon(S) denotes the set of all monomials in S and it forms the basis of S. For

any polynomial f ∈ S and for bw ∈ K

f =
∑

w∈Mon(S)

bww,

where support of f is defined as

supp(f) = {w ∈Mon(S) : bw 6= 0}.

Proposition 1.2.19. Consider two monomial ideals I1 and I2. Then

1. I1 ∩ I2 is a monomial ideal, and {lcm(p, q) : p ∈ G(I1) , q ∈ G(I2)} is the

generating set of I1 ∩ I2.

2. (I1 : I2) is a monomial ideal and (I1 : I2) =
⋂
q∈G(I2)

(I1 : (q)).

A monomial xb is said to be squarefree if b has components 0 and 1. An ideal with a

generating set containing only squarefree monomials is known as squarefree monomial

ideal.

1.2.4 Primary decomposition

For an ideal J , primary decomposition is a way of representing J as an intersection

J =
⋂n
m=1Nm, whereas each Nm is a primary ideal. Let {Pm} = Ass(Nm). If none of

the Nm can be omitted in this intersection and Pr 6= Ps for all r 6= s then it is called

irredundant primary decomposition.
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Example 1.2.20. Let I = ( y21y3 , y
3
4 , y

4
2y

2
4 , y1y2y

3
3 ), then

I = (y21 , y
3
4 , y

4
2y

2
4 , y1y2y

3
3 ) ∩ (y3 , y

3
4 , y

4
2y

2
4 , y1y2y

3
3 )

= (y21 , y
3
4 , y

4
2y

2
4 , y1y2y

3
3 ) ∩ (y3 , y

3
4 , y

4
2y

2
4 )

= (y21 , y
3
4 , y

4
2 , y1y2y

3
3 ) ∩ (y21 , y

3
4 , y

2
4 , y1y2y

3
3 ) ∩ (y3 , y

3
4 , y

4
2 ) ∩ (y3 , y

3
4 , y

2
4 )

= (y21 , y
3
4 , y

4
2 , y1y2y

3
3 ) ∩ (y21 , y

2
4 , y1y2y

3
3 ) ∩ (y3 , y

2
4 , y

4
2 ) ∩ (y3 , y

2
4 ).

In the above example, the obtained primary decomposition is irredundant as Pr 6=
Ps for 1 ≤ r, s ≤ 4. But generally it does not happen, as in the following example.

Example 1.2.21. Let I = ( y42 , y
4
3 , y

3
2y

3
4 , y2y3y

3
4 , y

3
3y

3
4 ), then

I = ( y42 , y
4
3 , y

3
2 , y2y3y

3
4 , y

3
3y

3
4 ) ∩ ( y42 , y

4
3 , y

3
4 , y2y3y

3
4 , y

3
3y

3
4 )

= ( y32 , y
4
3 , y2y3y

3
4 , y

3
3y

3
4 ) ∩ ( y42 , y

4
3 , y

3
4 )

= ( y32 , y
4
3 , y2 , y

3
3y

3
4 ) ∩ ( y32 , y

4
3 , y3y

3
4 , y

3
3y

3
4 ) ∩ ( y42 , y

4
3 , y

3
4 )

= ( y2 , y
4
3 , y

3
3y

3
4 ) ∩ ( y32 , y

4
3 , y3y

3
4 ) ∩ ( y42 , y

3
3 , y

3
4 )

= ( y2 , y
4
3 , y

3
3 ) ∩ ( y2 , y

4
3 , y

3
4 ) ∩ ( y32 , y

4
3 , y3 ) ∩ ( y32 , y

4
3 , y

3
4 ) ∩ ( y42 , y

3
3 , y

3
4 )

= ( y2 , y
3
3 ) ∩ ( y2 , y

4
3 , y

3
4 ) ∩ ( y32 , y3 ) ∩ ( y42 , y

4
3 , y

3
4 )

= ( y2 , y
3
3 ) ∩ ( y32 , y3 ) ∩ ( y42 , y

4
3 , y

3
4 ).

It is the primary decompostion of I but not irredundant. Here Ass( y2 , y
3
3 ) = Ass( y32 , y3 ) =

{( y2 , y3 )}. Now for irredundant primary decomposition, take an intersection of ( y2 , y
3
3 )

and ( y32 , y3 ), that is

( y2 , y
3
3 ) ∩ ( y32 , y3 ) = ( y32 , y2y3 , y

3
3 ).

Hence

I = ( y42 , y
4
3 , y

3
4 ) ∩ ( y32 , y2y3 , y

3
3 ).

Example 1.2.22. Let U = ( %1%2 , %3%5 , %2%3 , %2%4 , %3%4 , %1%4 ) be an ideal of S, then
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U = (%1%2, %3%5, %2%4, %3%4, %1%4)

= (%1, %4, %5) ∩ (%3, %1%2, %2%4, %1%4)

= (%2, %4, %5, ) ∩ (%1, %3, %2) ∩ (%1%2, %3, %4)

= (%2, %4, %5) ∩ (%2, %4, %3) ∩ (%1, %3, %4) ∩ (%1, %2, %3)

= (%2, %4, %5) ∩ (%1, %3, %4) ∩ (%2, %4, %3) ∩ (%1, %2, %3).

Since U is square free monomial ideal, so it can be seen that (%2, %4, %5), (%1, %3, %4),

(%1, %2, %3) and (%2, %4, %3) are minimal prime ideals of U .

1.3 Module theory

Definition 1.3.1. Consider a commutative ringR, anR-moduleM is an commutative

group w.r.t addition, along with a scalar multiplication map · : R×M→M, defined

as · ((α, %)) = α%, which holds the succeeding axioms

1. α(%1 + %2) = α%1 + α%2,

2. (α1 + α2)% = α1%+ α2%,

3. (α1α2)% = α1(α2%),

4. 1% = %,

∀ α1, α2 ∈ R and %1, %2 ∈M.

Examples 1.3.2. 1. For a commutative group D, let d ∈ D and z ∈ Z, then define

· : Z×D → D, such that

·(z, d) = zd =


(−d) + · · ·+ (−d) , if z < 0;
d+ d+ · · ·+ d , if z > 0;
0 , if z = 0.

Then D is a Z-module.

2. The ideals of the ring are also R-modules.
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Definition 1.3.3. For a ring R, let us suppose U and V be R-modules. A function

f : U → V is known as R-module homomorphism if

• f(%1 + %2) = f(%1) + f(%2), for all %1, %2 ∈ U .

• f(r%) = rf(%), for all r ∈ R , % ∈ U .

If f is injective and onto then it becomes an R-module isomorphism.

Examples 1.3.4. 1. For a ring R, consider R-module R. Then R-module homo-

morphism (even from R into itself) needs not to be a ring homomorphism. Con-

sider R = Z, then Z-module homomorphism x 7→ 2x is not a ring homomorphism.

2. When R = F [y], the ring homomorphism φ : h(y) 7→ h(y2) is not an F [y]-module

homomorphism.

Definition 1.3.5. Consider a ring R, and a submodule Q of R-module M. Then

(additive abelian) quotient groupM/Q becomes an R-module by using scalar multi-

plication defined as

r(m+Q) = rm+Q

∀ r ∈ R , m+Q ∈M/Q.

1.3.1 Generation of modules

For any subset W of R-module M , let

RW = {r1w1 + · · ·+ rnwn : r1, . . . , rn ∈ R , w1, . . . , wn ∈ W and n ∈ Z+}.

If W is a finite set, {w1, . . . , wn}, then RW = Rw1 +Rw2 + · · ·+wan. Let M1 = RW

for some subset W of M and say M1 is a submodule of M . W is the generating set for

M1. A submodule M1 is said to be finitely generated if for M1 = RW , W is a finite

subset of M .

Definition 1.3.6. Let S be an R-module then it is called free on the subset T of S if

for 0 6= s ∈ S, there are unique non-zero elements r1, . . . , rk of R and unique t1, . . . , tk
in T , such that

s = r1t1 + · · ·+ rktk.
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Definition 1.3.7. Let S be a commutative ring, consider a chain of prime ideals in

the ring of length mi

Q0 ( Q1 ( Q2 ( · · · ( Qmi
,

then dimension of ring S is defined as

dimS = sup{mi}.

Suppose N be an S-module, then Krull dimension of N is

dim(N ) = dim(S/Ann(N )).

For the modules of the type S/I

dim(S/I) = max{dim(S/Ji) : Ji ∈ Ass(S/I)}.

1.3.2 Exact sequences

Definition 1.3.8. Let S be a commutative ring, Consider a sequence of S-homomorphisms

on S-modules

. . . −→ Uj−1
hj−−→ Uj

hj+1−−−→ Uj+1
hj+2−−−→ . . .

it is exact at Uj if Im(hj) = ker(hj+1). The sequence is known to be exact if it is

observed to be exact at every Uj. Particularly, 0 −→ V ′
h−−→ U is exact at V ′ if and

only if h is one to one, and U g−−→ V ′′ −→ 0 is exact at V ′′ if and only if g is onto.

Proposition 1.3.9. The sequence

0 −→ V ′
h−−→ U g−−→ V ′′ −→ 0

is an exact sequence if and only if h is one to one, g is onto and Im(h) = ker(g).

Remark 1.3.10. The sequence in Proposition 1.3.9 is called a short exact sequence.

Proposition 1.3.11. Let γ be a poset with respect to ≤. Then the following are

equivalent.

12



1. Any increasing sequence α1 ≤ α2 ≤ . . . ≤ αr ≤ . . . in γ is stationary, that is

there exist r ∈ N for which αs = αr, for all s ≥ r.

2. Any ∅ 6= W ⊂ γ possesses a maximal element.

Let γ be the set of submodules ofN which is ordered w.r.t the relation⊆ then statement

1 is known as ascending chain condition and statement 2 is known as the maximal

condition.

1.3.3 Graded rings

Consider a commutative semigroup (w.r.t addition) U . A U -graded ring is such type

of a ring R alongside a decomposition

R =
⊕
u∈U

Ru (as a group),

such that RuRv ⊂ Ru+v ∀ u, v ∈ U .
Then for r ∈ R, we can write a unique expression

r =
∑
u∈U

ru,

where ru ∈ Ru and almost all ru = 0. The element ru is called the uth homogeneous

component and if r = ru, then r is homogeneous of degree u. R[x] and R[x, y] are

Z-graded rings as

• R[x] = R⊕Rx⊕Rx2 ⊕Rx3 ⊕Rx4 ⊕Rx5 ⊕ · · ·.

• R[x, y] = R⊕(Rx+Ry)⊕(Rx2+Rxy+Ry2)⊕(Rx3+Rx2y+Rxy2+Ry3)⊕···.

For a U -graded ring R and R-moduleM

M =
⊕
u∈U

Mu (as a group),

with RuMv ⊂Mu+v for all u, v ∈ U , thenM is said to be a U -graded module. A non

zero element ofMu is called a homogeneous element of degree u.
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For a polynomial ring S defined over the field K, suppose b ∈ Zn, then h ∈ S is

said to be homogeneous of degree b when h has the form βxb, where β ∈ K. Also S
is Zn-graded with graded components:

Sb =

{
Kxb, if b ∈ Zn+;
0 , otherwise.

An S-module M is Zn-graded if M =
⊕

b∈ZnMb and Sb1Mb2 ⊂ Mb1+b2 for all

b1,b2 ∈ Zn.

1.4 Simplicial complexes and squarefree monomial ide-
als

1.4.1 Simplicial complexes

Definition 1.4.1. Let ∇ be the collection of subsets of vertex set [n] = {1, . . . , n},
such that if Z ∈ ∇ called face of ∇ and Z ′ ⊂ Z, then Z ′ ∈ ∇ and ∇ is called simplicial

complex on vertex set [n].

Definition 1.4.2. The dimension of the face Z of ∇ is |Z|−1 and it is denoted and

defined by dim∇ = d− 1, where d = max{|Z|: Z ∈ ∇}. An edge of simplicial complex

is a face of dimension 1 and a vertex of simplicial complex is a 0 dimensional face.

Definition 1.4.3. With respect to inclusion, let us suppose Z be the maximal face of

∇, then Z is known as a facet. Let Z(∇) refers to the set of facets of ∇. Obvious Z(∇)

determines ∇. Whenever Z(∇) = {Z1, . . . , Zm}, then one can write ∇ = 〈Z1, . . . , Zm〉.
If all facets of ∇ have the same cardinality, then ∇ is called pure simplicial complex.

Definition 1.4.4. Let Z be a subset of [n]. Z is called a nonface of ∇ if Z /∈ ∇. Let
N(∇) represents the set of minimal nonfaces of ∇.

Example 1.4.5. An example of geometric realization of a simplicial complex is shown

in Figure 1.1, which typifies simplicial complex ∇ having dimension 1 and vertex set

[5] alongside

Z(∇) = {{2, 3}, {1, 3}, {3, 4}, {1, 2}, {4, 5}, {1, 5}}
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and

N(∇) = {{1, 4}, {2, 4}, {2, 5}, {3, 5}}.

3

4

5

1 2

Figure 1.1: Simplicial complex

1.4.2 Facet ideals and Stanley–Reisner ideals

Let R = K[y1, . . . , ym] be a ring of polynomials over the field K and ∇ is a simplicial

complex on [m] vertices. For every subset Z ⊂ [m], we establish

yZ =
∏
i∈Z

yi.

Definition 1.4.6. An ideal I(∇) of R is called facet ideal, if I(∇) is generated by

the monomials yZ with Z ∈ Z(∇). Thus, if Z(∇) = {Z1, . . . , Zp}, then I(∇) =

(yZ1 , . . . , yZp).

Definition 1.4.7. An ideal I∇ of R is called Stanley–Reisner ideal of ∇ if I∇ is gen-

erated by monomials yZ with Z /∈ Z(∇). i.e., I∇ = (yZ : Z ∈ N(∇)).

Example 1.4.8. Consider ∇ on the vertex set [6], as shown in figure 1.2 with

Z(∇) = {{1, 3}, {1, 6}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 6}}

and

N(∇) = {{1, 2}, {1, 4}, {1, 5}, {2, 3}, {2, 6}, {3, 6}, {4, 5}, {5, 6}}
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1 2

4 3

56

Figure 1.2: Simplicial complex ∇

Hence facet ideal and Stanley–Reisner ideal associated to the simplicial complex ∇
would be

I(∇) = (y1y3, y1y6, y2y4, y2y5, y3y4, y3y5, y4y6)

and

I∇ = (y1y2, y1y4, y1y5, y2y3, y2y6, y3y6, y4y5, y5y6)

respectively.
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Chapter 2

Preliminaries and basic concepts

2.1 Graph theory: A brief introduction

Finite graphs are the most simple structures in Mathematics. For this particular rea-

son, before any systematic study of graph theory itself, many graph-theoretic problems

remained unsolved. Leonhard Euler’s 1735 König’s bridges Problem [7] is the noto-

rious example of such a problem and the Four-Color Problem which Francis Guthrie

originally presented in 1852, as a coloring problem of the map of England’s coun-

ties. (Although Euler himself sought a simple but ingenious solution for the former,

in 1976 Appel and Haken [8] and in 1997 Robertson, Sanders, Seymour and Thomas

[9] needed more than 100 years and much advances in graph theory to be resolved in

2 phases.) Such important early experiments include research on polyhedra cycles by

Thomas Kirkman and William Hamilton [10], the circuit laws by Gustav Kirchhoff [11],

and research by Arthur Cayley and James Sylvester [12] that had ties to theoretical

chemistry to the structure of molecules in particular. In 1878, it was Sylvester who

suggested the name of "Graph" to the structure he was researching. Graph theory

has huge applications in engineering and science especially in chemical engineering,

mechanical engineering, architecture, operational research, technology, combinatorics,

and computer science.

Over the last ten years, commutative algebraists have been involved in study of

the properties of finite simple graphs by employing monomial ideals. Simis, Fróberg,
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Vasconcelos, and Villarreal are considered to be the pioneers in this field. The departure

point for these attempts is to create a monomial ideal by employing the edges of a

finite simple graph and it is usually called the edge ideal, and studying the properties

of monomial ideal employing the graph properties, and vice versa.

In this chapter basic definition and concept of graph theory are given. This chapter

gives a detailed overview of different types of graphs, different representation operations

of graph and results which we will use in our last two chapter.

2.2 Basic graph theory

Graph theory consists of the study of graphs, whereas the graphs are the mathematical

framework used to model the relation between the objects. The basic fundamental

principles of graph theory are presented in this section.

Definition 2.2.1. A graph is a set of points and lines that connects some subset of

them (possibly empty). The points are most frequently referred to as graph vertices.

Similarly, lines linking the vertexes of a graph are most commonly referred to as graph

edges.

Definition 2.2.2. An edge with same end points is known as a loop. The edges with

exactly the same set of endpoints are known as multiple edges. A simple graph is a

graph with no multiple edges and loops.

Given below is a graph with vertices {u1, u2, u3, u4, u5, u6} and edges {e1, e2, e3, e4, e5, e6, e7}.

u1 u2 u3

u4 u5 u6

e1 e2

e3

e4 e5

e6e7

Figure 2.1: Simple Graph
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Consider an edge with endpoints u1, u2. Then u1, u2 are said to be adjacent and

they are neighbors of each other. The focus is restricted to only simple graphs in

various important applications.

Definition 2.2.3. The total edges incident on vertex v of a graph G is known as

degree of v, which is usually represented by dG(v) or d(v). The set with all the vertices

adjacent to v forms the neighbourhood of v, represented by NG(v).

Definition 2.2.4. The total vertices in V (G) is known as the order of graph G, rep-

resented by n(G). While the total edges in E(G) determines the size of graph, written

as e(G).

Definition 2.2.5. A graph G is said to be a path if V (G) can be ordered in a way that

whenever two vertices are consecutive in the list, there is an edge between them. A

graph whose vertex and edge sets have the same cardinality and vertices can be placed

around the circle so that whenever two vertices appear consecutive along the circle,

an edge lies between them, such a graph is known as a cycle. Deleting one edge from

a cycle forms a path. A cycle and path on n vertices are represented by Cn and Pn,

respectively.

u1 u2 u3 u4 u5 u6

(a) P6

c1
c2

c3

c4

c5
c6

c7

(b) C7

Figure 2.2: Path and Cycle

Definition 2.2.6. A simple graph in which there is an edge between every two vertices

is known as a complete graph.
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Definition 2.2.7. A subgraph B of a graph A, written as B ⊆ A, is a type of graph

such that V (B) ⊆ V (A) and E(B) ⊆ E(A) and the endpoints of edges in B are exactly

the same as in A.

w

u

v

x y

(a) A

w

u

v

x y

(b) B

Figure 2.3: Graph and its Subgraph

Definition 2.2.8. Consider a graph B = (V (B), E(B)) is a subgraph of A so that

V (B) ⊆ V (A) and E(B) ⊆ E(A). Given a subset D ⊆ V (A), the induced subgraph of

A on D is the graph AD = (D,E(AD)) where E(AD) = {uv ∈ E(A)|{u, v} ⊆ D}.

Definition 2.2.9. Ac is called complement of a graphA, is a graph with (V (Ac), E(Ac))

where V (Ac) = V (A) and E(Ac) = {uv|uv /∈ E(A)}.

Definition 2.2.10. The neighbours of u ∈ V (A) are the setN(u) = {v ∈ V (A)|uv ∈
E(A)}. The closed neighbourhood of u is N [u] = N(u) ∪ {u}. The degree of u is

deg(u) = |N(u)|. If we need to highlight the associated graph, we write NA[u] or

NA(u).

Proposition 2.2.11. Any graph with k vertices and l edges has at least k− l compo-

nents.

Definition 2.2.12. If there is an edge between every two vertices of a simple graph

then graph is known as complete graph.

Definition 2.2.13. Consider a u, v-path in A. The distance from u to v is the mini-

mum length of u, v-path, written as d(u, v). The path with the maximum length in A
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determines the diameter i.e.,

diamA = max
u,v ∈V (A)

d(u, v).

Remark 2.2.14. The cycle Cn has diameter bn
2
c and the path has the diameter n−1.

The elimination of a vertex also removes the edges incident on it and the obtained

graph is again a graph.

2.3 Some products of graphs

2.3.1 Cartesian product

Definition 2.3.1. Consider two graphsH andK with vertex sets V (H) = {u1, u2, . . . , un1}
and V (K) = {v1, v2, . . . , vn2}, respectively. The Cartesian product of H and K is

a graph, with V (H�K) = V (H) × V (K) (the cartesian product of sets), and for

(ui, vj), (uk, vl) ∈ V (H�K), (ui, vj)(uk, vl) ∈ E(H�K), whenever

• vj = vl and uiuk ∈ E(H) or

• vjvl ∈ E(K) and ui = uk

Figure 2.4: Cartesian Product of P5 and P4 (P5�P4)
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2.3.2 Partial cartesian product of graphs

Definition 2.3.2. Consider two graphsH andK with vertex set V (H) = {u1, u2, . . . , un1}
and V (K) = {v1, v2, . . . , vn2} respectively. If W ⊂ V (K), then the partial carte-

sian product of H and K w.r.t W is the graph, with V (H�WK) = V (H) × V (K)

(the cartesian product of sets), and for (ui, vj), (uk, vl) ∈ V (H�WK), (ui, vj)(uk, vl) ∈
E(H�WK), whenever

• vjvl ∈ E(K) and ui = uk or

• vj = vl ∈ W and uiuk ∈ E(H).

The Partial Cartesian Product of P5 and P4 with respect to {v1, v3} is P5�{v1,v3}P4.

Figure 2.5: The Partial Cartesian Product graph P5�{v1,v3}P4

2.3.3 Standard strong product of graphs

Definition 2.3.3. Consider two graphsH and K with vertex set V (H) = {u1, u2, ..un1}
and V (K) = {v1, v2, ..vn2} respectively. The standard strong product of H and K is

a graph, with V (H � K) = V (H) × V (K) (the cartesian product of sets), and for

(ui, vj), (uk, vl) ∈ V (H�K), (ui, vj)(uk, vl) ∈ E(H�K), whenever

• vjvl ∈ E(K) and ui = uk or

• vj = vl and uiuk ∈ E(H) or
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• ui ∈ V (H), , vj ∈ V (K), vjvl ∈ E(K) and uiuk ∈ E(H) or

• uk ∈ V (H), vl ∈ V (K), vjvl ∈ E(K) and uiuk ∈ E(H).

Figure 2.6: Standard Strong Product of P5 and P4 (P5 � P4)

2.3.4 Partial strong product of graphs

Definition 2.3.4. Consider two graphsH andK with vertex set V (H) = {u1, u2, . . . , un1}
and V (K) = {v1, v2, . . . , vn2} respectively. Now, If P ⊂ V (H) and Q ⊂ V (K), then the

partial strong product of H and K w.r.t P and Q is the graph, with V (H �P,Q K) =

V (H)× V (K) (the cartesian product of sets), and for (ui, vj), (uk, vl) ∈ V (H �P,Q K),

(ui, vj)(uk, vl) ∈ E(H�P,Q K), whenever

• vjvl ∈ E(K) and ui = uk or

• vj = vl and uiuk ∈ E(H) or

• ui ∈ P, vj ∈ Q, vjvl ∈ E(K) and uiuk ∈ E(H) or

• uk ∈ P, vl ∈ Q, vjvl ∈ E(K) and uiuk ∈ E(H).
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Figure 2.7: The Partial Strong Product Graph P5 �P,Q P4.

2.3.5 Restricted partial strong product of graphs

Definition 2.3.5. Consider two graphsH andK with vertex set V (H) = {u1, u2, . . . , un1}
and V (K) = {v1, v2, . . . , vn2} respectively. If H ⊂ V (H) and K ⊂ V (K), then

the restricted partial strong product of H and K with respect to H and K is the

graph, with V (HH �K K) = V (H) × V (K) (the cartesian product of sets), and for

(ui, vj), (uk, vl) ∈ V (HH �K K), (ui, vj)(uk, vl) ∈ E(HH �K K), whenever

• vjvl ∈ E(K) and ui = uk or

• vj = vl and uiuk ∈ E(H) or

• ui ∈ H, uk /∈ H, vj ∈ K, vl /∈ K, vjvl ∈ E(K) and uiuk ∈ E(H) or

• ui /∈ H, uk ∈ H, vj /∈ K, vl ∈ K, vjvl ∈ E(K) and uiuk ∈ E(H).

Example 2.3.6. The Restricted Partial Strong Product of P5 and P4 with respect to

H = {u2, u4} and K = {v1, v3} is P5{u2,u4} �{v1,v3} P4.
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Figure 2.8: Restricted Partial Strong Product of P5 and P4 (P5{u2,u4} �{v1,v3} P4)

Example 2.3.7. The Restricted Partial Strong Product of Pn and P2 with respect to

H = {xi : i ∈ 2Z ∧ 1 ≤ i ≤ n} and K = {xj : j /∈ 2Z ∧ 1 ≤ j ≤ m} is PnH �K P2.

When n is odd

x1 x2 x3 x4 x5 xn−2 xn−1 xn

y1

y2

Figure 2.9: Restricted Partial Strong Product of Pn and P2 (Pn{x2,x4,...,xn−1} �{y1} P2)
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When n is even

x1 x2 x3 x4 x5 xn−2 xn−1 xn

y1

y2

Figure 2.10: Restricted Partial Strong Product of Pn and P2 (Pn{x2,x4,...,xn} �{y1} P2)

Example 2.3.8. The Restricted Partial Strong Product of Pn and P3 with respect to

H = {xi : i ∈ 2Z ∧ 1 ≤ i ≤ n} and K = {xj : j /∈ 2Z ∧ 1 ≤ j ≤ m} is PnH �K P3.

When n is odd

x1 x2 x3 x4 xn−2 xn−1 xn

y1

y2

y3

Figure 2.11: Restricted Partial Strong Product of Pn and P3 (Pn{x2,x4,...,xn−1}�{y1,y3}P3)
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When n is even

x1 x2 x3 x4 xn−2 xn−1 xn

y1

y2

y3

Figure 2.12: Restricted Partial Strong Product of Pn and P3 (Pn{x2,x4,...,xn} �{y1,y3} P3)

Example 2.3.9. The Restricted Partial Strong Product of C8 and P2 with respect to

H = {c2, c4, . . . , c8} and K = {p1} is C8{c2,c4,...,c8} �{p1} P2.

Figure 2.13: C8{c2,c4,...,c8} �{p1} P2

Example 2.3.10. The Restricted Partial Strong Product of C8 and P3 with respect to

H = {c2, c4, . . . , c8} and K = {p1, p3} is C8{c2,c4,...,c8} �{p1,p3} P3.

27



Figure 2.14: C8{c2,c4,...,c8} �{p1,p3} P3

2.4 Circulant graphs

Analysis of asymmetries or symmetries of structures give potent outcomes in math-

ematics. Circulants give a class of symmetric mathematical structures. In the year

1846, Catalan, the renowned mathematician endeavored to introduce properties of cir-

culant graphs and circulant matrices which were investigated by plentiful authors. A

magnificent account can be searched in the works of Davis [13].

Circulant graphs are vertex-transitive and regular, and they are a subset of Cayley

graphs which is a more general family of graphs. Circulants take different form in a

array of graph applications comprising also the theory of designs and error correcting

codes and the modeling of data connection networks.

Definition 2.4.1. Suppose k ≥ 2 and take a subset P ⊂ {1, . . . ,
⌊
k

2

⌋
}. Then, the

circulant graph Ck(P ) with vertex set {α1, . . . , αk} is a graph such that {αi, αj} ∈
E(Ck(P ))⇐⇒ |i− j|∈ P or k − |i− j|∈ P . For instance, the graph C7(1, 3) is drawn

in Figure 2.15.
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x1

x2

x3

x4

x5

x6

x7

Figure 2.15: C7(1, 3)

We generally write Cn for Cn(1). We will usually suppose, without further remark,

that the vertices of circulant graph Cn(S) are observed to be the corners of a regular

n-gon, labeled anticlockwise.

Examples 2.4.2. 1. Cn(0) ∼= On, totally disconnected graphs on n vertices

2. C2(1) ∼= P2

3. Cn(1) ∼= Cn

4. Cn(1, . . . ,

⌊
n

2

⌋
) ∼= Kn

Theorem 2.4.3. Circulant graph Cn(R) for a set R = r1, r2, ..., rk is connected iff

gcd(n, r1, r2, ..., rk) = 1.

2.4.1 Cubic circulant graph

A circulant graph is cubic if each vertex has degree three. Consequently, the cubic

circulant graphs are of the form C2k(α, k) where 1 ≤ α ≤ k.

The structural result by Davis and Domke [14] for cubic circulant graphs is as follows.

Theorem 2.4.4. [14] Let 1 ≤ α ≤ k and d = gcd(2k, α).
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(i) If 2k
d

is odd, then C2k(α, k) is isomorphic to d
2

copies of C 4k
d

(2, 2k
d

).

(ii) If 2k
d

is even, then C2k(α, k) is isomorphic to d copies of C 2k
d

(1, k
d
).

So, the connected cubic circulant graphs are isomorphic to either C2k(2, k) with

odd k (>1) or C2k(1, k) for any k ≥ 2(for the first circulant, if k is not odd, then this

circulant is not connected by using Theorem 2.4.4).

xn
xn−1

xn−2

xn−3

xi
x3

x2

x1

x2n

x2n−1

x2n−2

x2n−3

xn+i

xn+3

xn+2

xn+1

x2n−1
x2n−3

x2n−5

x2n−7

xi
x5

x3

x1

xn−1

xn−3

xn−5

xn−7

xn+i

xn+5

xn+3

xn+1

Figure 2.16: From left to right C2n(1, n) and C2n(2, n).
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Chapter 3

Depth, Stanley depth and regularity

The present chapter concerns the Stanley depth and depth (named after Richard

Stanley [1] in 1982) of Zn-graded modules over a commutative ring, including the

Stanley’s conjecture. It summarises the known bounds and values of Stanley depth

and depth for monomial ideals of polynomial rings and their quotients. Throughout

this chapter, ring R has identity 1 6= 0.

3.1 Depth

Definition 3.1.1. Consider an S module N . A zero divisor of a module N is an

element 0 6= s ∈ S such that sn = 0, where 0 6= n ∈ N .

Definition 3.1.2. A ring R is called Noetherian if it satisfies the ascending chain

condition on its ideals that is given any chain:

Z1 ⊂ Z2 ⊂ . . . ⊂ Zk+1 ⊂ . . .

there exists a positive integer n such that

Zn = Zn+1 = . . . .

Example 3.1.3. A ring R = K[x1, . . . , xn] with n variables is a Noetherian ring.

Definition 3.1.4. Suppose W be an T -module. An element t of T which is non-zero

is W regular if for every w ∈ W , tw = 0 implies w = 0.
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Definition 3.1.5. A sequence α = α1, . . . , αn of elements of S is said to be N -regular

if it satisfies the given axioms:

1. αk is N/(α1, . . . , αk−1)N regular for any k;

2. N 6= (α)N .

Example 3.1.6. Consider R = K[x1, x2, x3] as a module over itself. As x1 is regular

in R/(0)R, x2 is regular in R/(x1)R, x3 is regular in R/(x1, x2)R. x1, x2, x3 is the

M-regular sequence in R.

Definition 3.1.7. Consider N , a finitely generated S-module, and let n be unique

maximal ideal of local Noetherian ring S. Then, depth of N is common length of all

maximal N -sequences in n, represented by depth(N).

Example 3.1.8. Let Z = (%21, %2%3) be an ideal of polynomial ring S = K[%1, %2, %3].

Then Ass(S/Z) = {(%1, %2), (%1, %3)}. Since the set of zero divisors, say Z is the union

of all associated primes, therefore clearly %2 − %3 /∈ Z and hence a regular element.

Thus, depth(S/Z) ≥ 1. Also, as depth(S/Z) ≤ dim(S/Z) = 1, hence depth(S/Z) = 1.

Definition 3.1.9. Consider a ring of polynomials S in n variables and let H be its

ideal, then S/H is Cohen-Macaulay [15] if

dim(S/H) = depth(S/H).

Lemma 3.1.10. (Depth Lemma)[15] Given a short exact sequence 0 → ξ1 → ξ2 →
ξ3 → 0 of S-modules where S is a local ring, then

1. depth(ξ2) ≥ min{depth(ξ3), depth(ξ1)}.

2. depth(ξ3) ≥ min{depth(ξ2), depth(ξ1) + 1}.

3. depth(ξ1) ≥ min{depth(ξ3)− 1, depth(ξ2)}.
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3.2 Stanley decomposition and Stanley depth

Definition 3.2.1. Let P = Z[α1, . . . , αn] be a ring of polynomials and consider Zn-
graded P -module U . Suppose u ∈ U and also consider V ⊂ {α1, . . . , αn}, then uZ[V ]

represents the Z-subspace of U , whose generating set comprises of elements (homo-

geneous in degree) of the form ur, where r is a monomial in Z[V ]. If uZ[V ] is a

free Z[V ]-module then it is known as a Stanley space of dimension |V |. A Stanley

decomposition of U is defined as:

D : U =
k⊕
j=1

rjZ[Vj],

and

sdepthD = min{ |Vj| , j = 1, . . . , k}.

Also,

sdepths(U) = max{ sdepthD : D is a Stanley decomposition of U}.

3.2.1 Stanley’s conjecture

In 1982, Stanley [1] gave a conjecture about an upper bound for the depth of a Zn-
graded S-modules.

depth(M) ≤ sdepth(M).

It has been immensely significant as it gave a comparison of two very different invariants

of modules. For a ring of polynomials S in n number of variables, Consider I ⊂ S be

the monomial ideal, then for n ≤ 3, n = 4 and n = 5 the conjecture for S/I is proved

by Apel [16], Anwar [17] and Popescu [18], respectively. Also, when I is an intersection

of three monomial prime ideals, or three monomial primary ideals or four monomial

prime ideals of S, the conjecture holds for I. But in 2016, Duval et al. [2] proved that

Stanley’s conjecture is generally false, by giving a counter example for the module of

type S/I for which the conjecture does not hold.

33



3.2.2 Method of computing Stanley depth for squarefree mono-
mial ideals

In 2009, Herzog et al. [19] gave a method of computing the lower bound for Stanley

depth of monomial ideals in finite number of steps by using posets. Assume E be a

squarefree monomial ideal with G(E) = (e1, . . . , em). The characteristic poset of E

w.r.t g = (1, . . . , 1), written as P(1,...,1)
E is defined as

P(1,...,1)
E = {γ ⊂ [n] | γ contains supp(ej) for some j},

where supp(ej) = {i : xi|ej} ⊆ [n] := {1, . . . , n}. For each ρ, σ ∈ P(1,...,1)
E where ρ ⊆ σ,

and

[ρ , σ] = {γ ∈ P(1,...,1)
E : ρ ⊆ γ ⊆ σ}.

Let P : P(1,...,1)
E = ∪kj=1[γj , ηj] be a partition of P(1,...,1)

E , and for every j, suppose

s(j) ∈ {0, 1}n is the tuple with supp(xs(j)) = γj, then the Stanley decomposition D(P)

of E is given by

D(P) : E =
r⊕
j=1

xs(j)K[{xk | k ∈ ηj}].

Clearly, sdepthD(P) = min{|η1|, . . . , |ηr|} and

sdepth(E) = max{sdepthD(P) | P is a partition of P(1,...,1)
E }.

Example 3.2.2. Consider I = (%1%4, %1%2, %2%4, %1%3) ⊂ K[%1, %2, %3, %4] be a square-

free monomial ideal and J = 0. Set σ1 = (1, 0, 0, 1), σ2 = (1, 1, 0, 0), σ3 = (0, 1, 0, 1)

and σ4 = (1, 0, 1, 0). Thus I is generated by %σ1 , %σ2 , %σ3 , %σ4 and choose g = (1, 1, 1, 1).

The poset P = P g
I/J is given by

P = {(1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1), (0, 1, 0, 1), (1, 1, 1, 0), (1, 1, 0, 1), (1, 0, 1, 1),

(0, 1, 1, 1), (1, 1, 1, 1)}.

Partitions of P are given by

P1 : [(1, 1, 0, 0), (1, 1, 0, 0)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 0)]
⋃

[(0, 1, 0, 1), (0, 1, 0, 1)]
⋃

[(1, 0, 0, 1), (1, 0, 0, 1)]
⋃

[(1, 1, 1, 0), (1, 1, 1, 0)]
⋃

[(1, 1, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 1), (1, 0, 1, 1)]
⋃

[(0, 1, 1, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].
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P2 : [(1, 1, 0, 0), (1, 1, 1, 0)]
⋃

[(1, 0, 0, 1), (1, 1, 0, 1)]
⋃

[(1, 0, 1, 0), (1, 0, 1, 1)]
⋃

[(0, 1, 0, 1), (0, 1, 1, 1)]
⋃

[(1, 1, 1, 1), (1, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := %1%2K[%1, %2]⊕ %1%3K[%1, %3]⊕ %1%4K[%1, %4]⊕ %2%4K[%2, %4]⊕

%2%3%4K[%2, %3, %4]⊕ %1%2%4K[%1, %2, %4]⊕ %1%3%4K[%1, %3, %4]⊕

%1%2%3K[%1, %2, %3]⊕ %1%2%3%4K[%1, %2, %3, %4].

D(P2) := %1%3K[%1, %3, %4]⊕ %1%4K[%1, %2, %4]⊕ %1%2K[%1, %2, %3]⊕ %2%4K[%2, %3, %4]⊕

%1%2%3%4K[%1, %2, %3, %4].

Then

sdepth(I) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

= max{2, 3}

= 3.

Since I is not principal, so sdepth(I) = 3.

Example 3.2.3. Consider I = (%1%4, %2%5, %3%4%5) ⊂ K[%1, %2, %3, %4, %5] and J = 0.

Set σ1 = (1, 0, 0, 1, 0), σ2 = (0, 1, 0, 0, 1) and σ3 = (0, 0, 1, 1, 1). Thus I is generated by

%σ1 , %σ2 , %σ3 and choose g = (1, 1, 1, 1, 1). The poset P = P g
I/J is given by

P = {(1, 0, 0, 1, 0), (0, 1, 0, 0, 1), (1, 1, 0, 1, 0), (1, 1, 0, 0, 1), (1, 0, 1, 1, 0), (1, 0, 0, 1, 1),

(0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1), (1, 1, 1, 1, 0), (1, 1, 1, 0, 1), (1, 1, 0, 1, 1),

(1, 0, 1, 1, 1), (0, 1, 1, 1, 1), (1, 1, 1, 1, 1)}.
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Partitions of P are given by

P1 : [(1, 0, 0, 1, 0), (1, 0, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(1, 1, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 0, 1, 1, 0)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (0, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 1, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(1, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(0, 1, 1, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

P2 : [(1, 0, 0, 1, 0), (1, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 0, 0, 1)]
⋃

[(1, 0, 1, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

P3 : [(1, 0, 0, 1, 0), (1, 1, 1, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (1, 1, 1, 0, 1)]
⋃

[(1, 0, 0, 1, 1), (1, 1, 0, 1, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1), (1, 0, 1, 1, 1)]
⋃

[(1, 1, 1, 1, 1), (1, 1, 1, 1, 1)].

and the corresponding Stanley decomposition is

D(P1) := %1%4K[%1, %4]⊕ %2%5K[%2, %5]⊕ %1%2%4K[%1, %2, %4]⊕ %1%2%5K[%1, %2, %5]⊕

%1%3%4K[%1, %3, %4]⊕ %1%4%5K[%1%4%5]⊕ %2%3%5K[%2, %3, %5]⊕

%2%4%5K[%2, %4, %5]⊕ %3%4%5K[%3, %4, %5]⊕ %1%2%3%4K[%1, %2, %3, %4]⊕

%1%2%3%5K[%1, %2, %3, %5]⊕ %1%2%4%5K[%1, %2, %4, %5]⊕ %1%3%4%5K[%1, %3, %4, %5]⊕

%2%3%4%5K[%2, %3, %4, %5]⊕ %1%2%3%4%5K[%1, %2, %3, %4, %5].

D(P2) := %1%4K[%1, %2, %4]⊕ %2%5K[%1, %2, %5]⊕ %1%3%4K[%1, %2, %3, %4]⊕

%1%4%5K[%1, %2, %4, %5]⊕ %2%3%5K[%1, %2, %3, %5]⊕ %2%4%5K[%2, %3, %4, %5]⊕

%3%4%5K[%1, %3, %4, %5]⊕ %1%2%3%4%5K[%1, %2, %3, %4, %5].

36



D(P3) := %1%4K[%1, %2, %3, %4]⊕ %2%5K[%1, %2, %3, %5]⊕ %1%4%5K[%1, %2, %4, %5]⊕

%2%4%5K[%2, %3, %4, %5]⊕ %3%4%5K[%1, %3, %4, %5]⊕ %1%2%3%4%5K[%1, %2, %3, %4, %5].

Then

sdepth(I) ≥ max{sdepth(D(P1)) , sdepth(D(P2)) , sdepth(D(P3))}

= max{2, 3, 4}

= 4.

The next example illustrates the method of finding the Stanley depth of S/I.

Example 3.2.4. For S = K[ε1, ε2, ε3, ε4, ε5], consider I = (ε1ε5, ε2ε3ε4, ε1ε2, ε1ε4).

Then choose g = (1, 1, 1, 1, 1) and the poset P = P g
S/I is given by

P = {(0, 0, 0, 0, 0), (1, 0, 0, 0, 0), (0, 1, 0, 0, 0), (0, 0, 1, 0, 0), (0, 0, 0, 1, 0), (0, 0, 0, 0, 1),

(1, 0, 1, 0, 0), (0, 1, 1, 0, 0), (0, 1, 0, 1, 0), (0, 1, 0, 0, 1), (0, 0, 1, 1, 0), (0, 0, 1, 0, 1),

(0, 0, 0, 1, 1), (0, 1, 1, 0, 1), (0, 1, 0, 1, 1), (0, 0, 1, 1, 1)}.

Partitions of P are given by

P1 : [(0, 0, 0, 0, 0), (0, 0, 1, 1, 1)]
⋃

[(1, 0, 0, 0, 0), (1, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0), (0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 0, 0, 0, 1)]
⋃

[(1, 0, 1, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 1, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 1), (0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 1, 0, 1, 1), (0, 1, 0, 1, 1)].

P2 : [(0, 0, 0, 0, 0), (1, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 0, 0), (0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 0), (0, 1, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 1), (0, 1, 0, 0, 1)]
⋃

[(0, 0, 0, 1, 1), (0, 1, 0, 1, 1)]
⋃

[(0, 0, 1, 0, 1), (0, 1, 1, 0, 1)]
⋃

[(0, 0, 1, 1, 0), (0, 0, 1, 1, 1)].
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and the corresponding Stanley decomposition is

D(P1) := K[ε3, ε4, ε5]⊕ ε1K[ε1]⊕ ε2K[ε2]⊕ ε3K[ε3]⊕ ε4K[ε4]⊕ ε5K[ε5]⊕

ε1ε3K[ε1, ε3]⊕ ε2ε3K[ε2, ε3]⊕ ε2ε4K[ε2, ε4]⊕ ε2ε5K[ε2, ε5]⊕

ε3ε4K[ε3, ε4]⊕ ε3ε5K[ε3, ε5]⊕ ε4ε5K[ε4, ε5]⊕ ε2ε3ε5K[ε2, ε3, ε5]⊕

ε2ε4ε5K[ε2, ε4, ε5].

D(P2) := K[ε1, ε3]⊕ ε2K[ε2, ε3]⊕ ε4K[ε2, ε4]⊕ ε5K[ε2, ε5]⊕ ε4ε5K[ε2, ε4, ε5]⊕

ε3ε5K[ε2, ε3, ε5]⊕ ε3ε4K[ε3, ε4, ε5].

Then

sdepth(S/I) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

= max{1, 2}

= 2.

Example 3.2.5. Let S = M [%1, %2, %3, %4, %5, %6], consider U = (%1%3, %2%5, %4%6, %1%4%6).

Then select g = (1, 1, 1, 1, 1, 1) and the poset ρ = ρgS/U is given by

ρ = {(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0), (0, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 0),

(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 0, 1), (1, 1, 0, 0, 0, 0), (1, 0, 0, 1, 0, 0), (1, 0, 0, 0, 1, 0),

(1, 0, 0, 0, 0, 1), (0, 1, 1, 0, 0.0), (0, 1, 0, 1, 0.0), (0, 0, 1, 1, 0, 0), (0, 0, 0, 1, 1, 0),

(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 0.1).(0, 0, 0, 0, 1, 1), (1, 1, 0, 1, 0, 0),

(1, 0, 0, 1, 1, 0), (1, 0, 0, 0, 1, 1), (0, 1, 1, 1, 0, 0), (0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 0, 1),

(0, 0, 1, 0, 1, 1), (0, 0, 0, 1, 1, 1), (0, 0, 1, 1, 1, 1)}.
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The partitions of ρ can be written as

ρ1 : [(0, 0, 0, 0, 0, 0), (1, 0, 0, 0, 0, 0)]
⋃

[(0, 1, 0, 0, 0, 0), (0, 1, 0, 0, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 0, 1, 0, 0, 0)]
⋃

[(0, 0, 0, 1, 0, 0), (0, 0, 0, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (0, 0, 0, 0, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (0, 0, 0, 0, 0, 1)]
⋃

[(1, 1, 0, 0, 0, 0), (1, 1, 0, 0, 0, 0)]
⋃

[(1, 0, 0, 1, 0, 0), (1, 0, 0, 1, 0, 0)]
⋃

[(0, 1, 0, 1, 0, 0), (0, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0.0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 1, 1), (0, 0, 0, 0, 1, 1)]
⋃

[(1, 1, 0, 1, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(1, 0, 0, 1, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(1, 0, 0, 0, 1, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 1, 1, 1, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 1, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 1, 0, 1), (0, 0, 1, 1, 0, 1, )]
⋃

[(0, 0, 0, 1, 1, 1), (0, 0, 0, 1, 1, 1)]
⋃

[(0, 0, 1, 1, 1, 1), (0, 0, 1, 1, 1, 1, )].

ρ2 : [(0, 0, 0, 0, 0, 0), (1, 1, 0, 1, 0, 0)]
⋃

[(0, 0, 1, 0, 0, 0), (0, 1, 1, 1, 0, 0)]
⋃

[(0, 0, 0, 0, 1, 0), (1, 0, 0, 1, 1, 0)]
⋃

[(0, 0, 0, 0, 0, 1), (1, 0, 0, 0, 1, 1)]
⋃

[(0, 0, 0, 1, 1, 0), (0, 0, 1, 1, 1, 0)]
⋃

[(0, 0, 1, 0, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 1, 1)].

So the corresponding Stanley decomposition is of the partitions will be

D(ρ1) := M [%1]⊕ %2M [%2]⊕ %3M [%3]⊕ %4M [%4]⊕ %5M [%5]⊕ %6M [%6]⊕

%1%2M [%1, %2]⊕ %1%4M [%1, %4]⊕ %2%4M [%2, %4]⊕ %3%4M [%3, %4]⊕ %4%5M [%4, %5]⊕

%4%6M [%4, %6]⊕ %5%6M [%5, %6]⊕ %1%2%4M [%1, %2, %4]⊕ %1%4%5M [%1, %4, %5]⊕

%1%5%6M [%1, %5, %6]⊕ %4%5M [%4, %5]⊕ %4%5K[%4, %5]⊕ %5%6M [%5, %6]⊕

%1%2%4M [%1, %2, %4]⊕ %1%4%5M [%1, %4, %5]⊕ %1%5%6M [%1, %5, %6]⊕ %2%3%4M [%2, %3, %4]⊕

%3%4%5M [%3, %4, %5]⊕ %3%4%6M [%3, %4, %6]⊕ %4%5%6M [%4, %5, %6]⊕

%3%4%5%6M [%3, %4, %5, %6].

39



D(ρ2) := M [%1, %2, %4]⊕ %3M [%2, %3, %4]⊕ %5M [%1, %4, %5]⊕ %6M [%1, %5, %6]⊕

%4%5M [%3, %4, %5]⊕ %3%6M [%4, %6]⊕ %4%6M [%4, %5, %6].

Then

sdepth(S/U) ≥ max{sdepth(D(P1)) , sdepth(D(P2))}

= max{1, 3}

= 3.

Some fundamental results on Stanley depth and depth of S-modules are given below.

Theorem 3.2.6. [20, Theorem 1.3] Let k1, . . . , km be some positive integers, then

sdepth((uk11 , . . . , u
km
m )) = sdepth((u1, . . . , um)) = dm

2
e.

In particular, for any 1 ≤ n ≤ m

sdepth((uk11 , . . . , u
kn
n )) = m− n+ dn

2
e.

Proposition 3.2.7. [21, Proposition 2.7] For J ⊂M and ∀ v /∈ J ,

1. sdepthM(J : v) ≥ sdepthM(J), [22, Proposition 1.3]

2. depthM(M/(J : v)) ≥ depthM(M/J), [23]

3. sdepthM(M/(J : v)) ≥ sdepthM(M/J).

Lemma 3.2.8. [15, Lemma 3.6] Let I and J be two monomial ideals with J ⊂ I,

suppose M′ =M[xn+1], then

depth(IM′/JM′) = depth(IM/JM) + 1.

sdepth(IM′/JM′) = sdepth(IM/JM) + 1.

Lemma 3.2.9. [21, Proposition 1.1] Assume that I ⊂M′ = K[x1, . . . , xr], J ⊂M′′ =

K[xr+1, . . . , xn] be monomial ideals, with 1 ≤ r ≤ n, then

depthM(M/(IM+ JM)) = depthM′(M′/I) + depthM′′(M′′/J).
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Lemma 3.2.10. [23] Let a short exact sequence 0→ U1 → U2 → U3 → 0 of Zn-graded
M-modules. Then

sdepth(U2) ≥ min{sdepth(U1), sdepth(U3)}.

Lemma 3.2.11 ([24, Lemma 3.6]). Consider a monomial ideal I ⊂ M and M̄ =

M[xn+1, . . . , xn+r] be a ring of polynomials then

depth(M̄/IM̄) = depth(M/IM) + r and sdepth(M̄/IM̄) = sdepth(M/IM) + r.

Corollary 3.2.12 ([23]). Let I be a proper monomial ideal of M and u /∈ I. Then

depth(M/(I : u)) ≥ depth(M/I).

Proposition 3.2.13 ([25, Proposition 2.7]). Let I be a proper monomial ideal of M
and u /∈ I. Then sdepth(M/(I : u)) ≥ sdepth(M/I).

3.3 Castelnuovo Mumford regularity of an ideal

Let E be an ideal of homogeneous degree in S = K[x1, x2, ..., xn]. Then the minimal

graded free resolution of E is given by

0 −→
⊕
j

S(−j)βl,j(E(G)) −→
⊕
j

S(−j)βl−1,j(E(G)) −→ . . . −→⊕
j

S(−j)β0,j(E(G)) −→ E(G) −→ 0

Since, l ≤ n and βi,j(E) is the graded (i, j)th Betti number of E(G). We also let S(−j)
denote the shifted polynomial ring in degree j.

Definition 3.3.1. The Castelnuovo Mumford regularity (or regularity) of an ideal E

is

reg(E) = max{j − i|βi,j(E(G)) 6= 0}.

Example 3.3.2. Consider the edge ideal I(B2) = (x1x2, x2x3, x3x4, x4x1, x1x3, x2x4)

associated to the graph B2.
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x1 x2

x4 x3

Figure 3.1: (B2)

The minimal graded free resolution of I(B2) is then given by

0 −→ S3(−4) −→ S8(−3) −→ S6(−2) −→ I(B2) −→ 0

So, β0,2(I) = 6, β1,3(I) = 8, β2,4(I) = 3

Then

reg(I) = max{2− 0, 3− 1, 4− 2} = 2.

Example 3.3.3. Consider the edge ideal

I(A1) = (x1x2, x2x3, x3x4, x4x1, x1x3, x2x4, x2x5, x3x5)

associated to the graph A1.

x1 x2

x4 x3

x5

Figure 3.2: (A∗1)

The minimal graded free resolution of I(A1) is then given by

0 −→ S2(−5) −→ S9(−4) −→ S14(−3) −→ S8(−2) −→ I(A1) −→ 0
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So, β0,2(I) = 8, β1,3(I) = 14, β2,4(I) = 9, β3,5(I) = 2

Then

reg(I) = max{2− 0, 3− 1, 4− 2, 5− 3} = 2.

Example 3.3.4. Consider the edge ideal

I(A2) = (x1x2, x2x3, x3x4, x4x1, x1x3, x2x4, x2x5, x3x5, x1x6, x4x6)

associated to the graph A2.

x1 x2

x4 x3

x5x6

Figure 3.3: (A2)

The minimal graded free resolution of I(A2) is then given by

0 −→ S4(−5) −→ S15(−4) −→ S20(−3) −→ S10(−2) −→ I(A2) −→ 0

So, β0,2(I) = 10, β1,3(I) = 20, β2,4(I) = 15, β3,5(I) = 4

Then

reg(I) = max{2− 0, 3− 1, 4− 2, 5− 3} = 2.
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Chapter 4

Stanley depth and depth for the
monomial ideals of restricted partial
strong product of path and cycle
graphs

Let V (Pn) := {xi : 1 ≤ i ≤ n} and V (Pm) := {xj : 1 ≤ j ≤ m}.
Let A := {xi : i ∈ 2Z ∧ 1 ≤ i ≤ n} ⊂ V (Pn) and B := {xj : j /∈ 2Z ∧ 1 ≤ j ≤
m} ⊂ V (Pm). For defined A and B, let PnA �B Pm := Pn,m. Since the graphs Pn,m is

defined by mn vertices, just for the ease, we name the vertices of Pn,m by using m set

of variables {x1j, x2j, ......xnj} where 1 ≤ j ≤ m. For example of Pn,m see Fig 4.1.

x11 x21 x31 x41 x51

x12
x22 x32 x42

x52

x13
x23 x33 x43

x53

x14 x24 x34 x44 x45

Figure 4.1: P5,4
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Let V (Cn) := {xi : 1 ≤ i ≤ n ∈ 2Z+} and V (Pm) := {xj : 1 ≤ j ≤ m}.
Let A := {xi : i ∈ 2Z ∧ 1 ≤ i ≤ n} ⊂ V (Cn) and B := {xj : j /∈ 2Z ∧ 1 ≤ j ≤
m} ⊂ V (Pm). For defined A and B Let CnA �B Pm := Cn,m. Since the graphs Cn,m is

defined on mn vertices, just for the ease, we name the vertices of Cn,m by using m set

of variables {x1j, x2j, ......xnj} where 1 ≤ j ≤ m. For example of Cn,m see Fig 4.2.

x81
x71

x61

x51

x41
x31

x21

x11

x82

x72

x62

x52

x42

x32

x22

x12

x83

x73

x63

x53

x43

x33

x23

x13

Figure 4.2: C8,3

4.1 Bounds for depth of modules associated to Pn,m.

Let 1 ≤ i ≤ n, for convenience, we take xi := xi1, yi := xi2, zi := xi3 (see Figure 4.2).

We set Sn,1 := K[x1, x2, . . . , xn], Sn,2 := K[x1, x2, . . . , xn, y1, y2, . . . , yn] and

Sn,2 := K[x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn]. Clearly Pn,1 ∼= Pn,
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x1 x2 x3 x4 x5

y1
y2 y3 y4

y5

z1 z2 z3 z4 z5

x5x4x3x2x1

y5y4y3y2y1

x5x4x3x2x1

Figure 4.3: From left to right P5,1, P5,2 and P5,3

The minimal generating sets of monomials for the edge ideals of Pn,2 and Pn,3 are

given as:

If n is even

G(E(Pn,2)) = ∪n−1i=1 {xiyi, xixi+1, yiyi+1} ∪ {∪
n−2
2

i=1 {x2iy2i−1, x2iy2i+1}} ∪ {xnyn−1, xnyn}.

G(E(Pn,3)) = ∪n−1i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1} ∪ {∪
n−2
2

i=1 {x2iy2i−1, x2iy2i+1,

y2i−1z2i, y2i+1z2i}} ∪ {xnyn−1, xnyn, yn−1zn, ynzn}.

If n is odd

G(E(Pn,2)) = ∪n−1i=1 {xiyi, xixi+1, yiyi+1} ∪ {∪
n−1
2

i=1 {x2iy2i−1, x2iy2i+1}} ∪ {xnyn}.

G(E(Pn,3)) = ∪n−1i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1} ∪ {∪
n−1
2

i=1 {x2iy2i−1, x2iy2i+1, y2i−1z2i,

y2i+1z2i}} ∪ {xnyn, ynzn}.

Remark 4.1.1. It is clear that for n ≥ 1,

Sn,1/(E(Pn,1)) ∼= S/E(Pn). Thus by [26, Lemma 2.8] depth(Sn,1/E(Pn,1)) =

⌈
n

3

⌉
.
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Theorem 4.1.2. Let n ≥ 1, then⌈
n

3

⌉
≤ depth(Sn,2/E(Pn,2)) ≤

⌈
n− 1

2

⌉
.

Proof. When n = 1 the result is contained by Remark 4.1.1. Let n ≥ 2,As diam(Pn,2) =

n− 1, Therefore, using [27]

depth(Sn,2/E(Pn,2)) ≥
⌈
n

3

⌉
. (4.1)

We prove the reverse of inequality. The required inequality is trivial for n = 2, 3 . Let

n ≥ 4, We hereby prove the result by the aid of mathematical induction on n. Since

y1 /∈ E(Pn,2) hence by [23]

depth(Sn,2)/E(Pn,2)) ≤ depth(Sn,2)/(E(Pn,2) : y1)). (4.2)

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

x1 x2 x3 x4 xn−2 xn−1 xn

y2 y3 y4 yn−2 yn−1 yn

Figure 4.4: From left to right E(Pn,2) and (E(Pn,2) : y1).

It follows that

Sn,2/(E(Pn,2) : y1)) ∼= Sn−2,2/E(Pn−2,2)[y1].

Therefore, by induction

depth(Sn,2/(E(Pn,2) : y1)) ≤
⌈
n− 2− 1

2

⌉
+ 1 =

⌈
n− 1

2

⌉
. (4.3)

Now by combining Eqs. (4.1), (4.2) and (4.3), we get⌈
n

3

⌉
≤ depth(Sn,2/E(Pn,2)) ≤

⌈
n− 1

2

⌉
.
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Theorem 4.1.3. If n ≥ 1, then⌈
n

3

⌉
≤ depth(Sn,3/E(Pn,3)) ≤

⌈
n− 1

2

⌉
.

Proof. For n = 1 the result holds by Remark 4.1.1. Let n ≥ 2, As diam(Pn,3) = n− 1,

Therefore, using [27]

depth(Sn,3/E(Pn,3)) ≥
⌈
n

3

⌉
. (4.4)

We prove the reverse of inequality. Above inequality is trivial for n = 2, 3. Let n ≥ 4,

We hereby prove the result by the aid of induction on n. Since y1 /∈ E(Pn,3), by [23]

depth(Sn,3)/E(Pn,3)) ≤ depth(Sn,3)/(E(Pn,3) : y1)). (4.5)

x1 x2 x3 x4 xn−2 xn−1 xn

y1
y2 y3 y4 yn−2 yn−1

yn

z1 z2 z3 z4 zn−2 zn−1 zn

x1 x2 x3 x4 xn−2 xn−1 xn

y2 y3 y4 yn−2 yn−1
yn

z1 z2 z3 z4 zn−2 zn−1 zn

Figure 4.5: From left to right E(Pn,3) and (E(Pn,3) : y1).

It follows that

Sn,3/(E(Pn,3) : y1)) ∼= Sn−2,3/E(Pn−2,3)[y1].

Therefore, by induction

depth(Sn,3/(E(Pn,3) : y1)) ≤
⌈
n− 2− 1

2

⌉
+ 1 =

⌈
n− 1

2

⌉
. (4.6)

Now by combining Eqs. (4.4), (4.5) and (4.6), we get⌈
n

3

⌉
≤ depth(Sn,3/E(Pn,3)) ≤

⌈
n− 1

2

⌉
.
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4.2 Bounds for depth of modules associated to some
special graphs

In the case of n ≥ 2, we thus construct a supergraph of Pn,2 represented by P ∗n,2 on

V (P ∗n,2) := V (Pn,2) ∪ {yn+1} and E(P ∗n,2) := E(Pn,2) ∪ {ynyn+1}. Also we construct

a supergraph of P ∗n,2 rrepresented by P ∗∗n,2 by the aid of the vertex set V (P ∗∗n,2) :=

V (P ∗n,2)∪ {yn+2} and edge set E(P ∗∗n,2) := E(P ∗n,2)∪ {y1yn+2} For examples of P ∗n,2 and

P ∗∗n,2 (see Fig 4.6 and Fig 4.7). Let S∗n,2 := Sn,2[yn+1] and S∗∗n,2 := S∗n,2[yn+2] then we

have the following lemmas:

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 4.6: (P ∗5,2)

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6y7

Figure 4.7: (P ∗∗5,2)

Lemma 4.2.1. Let n ≥ 2, then,⌈
n+ 1

3

⌉
≤ depth(S∗n,2/E(P ∗n,2)) ≤

⌈
n− 1

2

⌉
.

Proof. For n = 1, it follows from Remark 4.1.1. Let n ≥ 2, As diam(P ∗n,2) = n, Thus

by [27]

depth(S∗n,2/E(P ∗n,2)) ≥
⌈
n+ 1

3

⌉
. (4.7)
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For the reverse inequality. The cases n = 2, 3 are trivial. So, let n ≥ 4, As yn /∈ E(P ∗n,2),

by [23]

depth(S∗n,2)/E(P ∗n,2)) ≤ depth(S∗n,2)/(E(P ∗n,2) : yn)). (4.8)

It follows that

S∗n,2/(E(P ∗n,2) : yn)) ∼= Sn−2,2/E(Pn−2,2)[yn].

Therefore, by Theorem 4.1.2

depth(S∗n,2/(E(P ∗n,2) : yn)) ≤
⌈
n− 2− 1

2

⌉
+ 1 =

⌈
n− 1

2

⌉
. (4.9)

Now by combining Eqs. (4.7), (4.8) and (4.9), we get⌈
n+ 1

3

⌉
≤ depth(S∗n,2/E(P ∗n,2)) ≤

⌈
n− 1

2

⌉
.

Lemma 4.2.2. Let n ≥ 2, then,⌈
n+ 2

3

⌉
≤ depth(S∗∗n,2/E(P ∗∗n,2)) ≤

⌈
n− 1

2

⌉
.

Proof. For n = 1 it follows from Remark 4.1.1. Let n ≥ 2, Since diam(P ∗∗n,2) = n + 1,

By [27]

depth(S∗∗n,2/E(P ∗∗n,2)) ≥
⌈
n+ 2

3

⌉
. (4.10)

Now, we prove the reverse of 4.10. The cases n = 2, 3 are trivial. Let n ≥ 4,, Since

yn /∈ E(P ∗∗n,2), by [23]

depth(S∗∗n,2)/E(P ∗∗n,2)) ≤ depth(S∗n,2)/(E(P ∗∗n,2) : yn)). (4.11)

It follows that

S∗∗n,2/(E(P ∗∗n,2) : yn)) ∼= S∗n−2,2/E(P ∗n−2,2)[yn].

Therefore, by Lemma 4.2.5

depth(S∗∗n,2/(E(P ∗∗n,2) : yn)) ≤
⌈
n− 2− 1

2

⌉
+ 1 =

⌈
n− 1

2

⌉
. (4.12)

Now by combining Eqs. (4.10), (4.11) and (4.12), we get⌈
n+ 2

3

⌉
≤ depth(S∗∗n,2/E(P ∗∗n,2)) ≤

⌈
n− 1

2

⌉
.
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For n ≥ 2, One can construct P ∗n,3 with V (P ∗n,3) := V (Pn,3)∪{zn+1} and E(P ∗n,3) :=

E(Pn,3) ∪ {znzn+1}. Similarly, P ∗∗n,3 can be constructed with V (P ∗∗n,3) := V (P ∗n,3) ∪
{zn+2} and E(P ∗∗n,3) := E(P ∗n,3)∪{z1zn+2}. Figures 4.8 and 4.9 represent P ∗n,3 and P ∗∗n,3,

respectively. Assume S∗n,3 := Sn,3[zn+1] and S∗∗n,3 := S∗n,3[zn+2], we have the following

lemmas:

x1 x2 x3 x4 x5

y1
y2 y3 y4

y5

z1 z2 z3 z4 z5 z6

Figure 4.8: (P ∗5,3)

x1 x2 x3 x4 x5

y1
y2 y3 y4

y5

z1 z2 z3 z4 z5 z6z7

Figure 4.9: (P ∗∗5,3)

Lemma 4.2.3. Let n ≥ 2, then,⌈
n+ 1

3

⌉
≤ depth(S∗n,3/E(P ∗n,3)) ≤

⌈
n

2

⌉
.

Proof. For n = 1 it follows from Remark 4.1.1. Let n ≥ 2, Since diam(P ∗n,3) = n, By

[27]

depth(S∗n,3/E(P ∗n,3)) ≥
⌈
n+ 1

3

⌉
. (4.13)
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For the reverse of inequality. The cases n = 2, 3 are trivial. Let n ≥ 4,, Since yn−1 /∈
E(P ∗n,3), by [23]

depth(S∗n,3)/E(P ∗n,3)) ≤ depth(S∗n,3)/(E(P ∗n,3) : yn−1)). (4.14)

It follows that

S∗n,3/(E(P ∗n,3) : yn−1)) ∼= Sn−3,3/E(Pn−3,3)[yn−1, zn+1].

Therefore, by Theorem 4.1.2

depth(S∗n,3/(E(P ∗n,3) : yn−1)) ≤
⌈
n− 3− 1

2

⌉
+ 2 =

⌈
n

2

⌉
. (4.15)

Now by combining Eqs. (4.19), (4.20) and (4.21), we get⌈
n+ 1

3

⌉
≤ depth(S∗n,3/E(P ∗n,3)) ≤

⌈
n

2

⌉
.

Lemma 4.2.4. Let n ≥ 2, then,⌈
n+ 2

3

⌉
≤ depth(S∗∗n,3/E(P ∗∗n,3)) ≤

⌈
n+ 1

2

⌉
.

Proof. For n = 1 it follows from Remark 4.1.1. Let n ≥ 2, Since diam(P ∗∗n,3) = n + 1,

Thus by [27]

depth(S∗∗n,3/E(P ∗∗n,3)) ≥
⌈
n+ 2

3

⌉
. (4.16)

We prove the reverse of inequality. The cases n = 2, 3 are trivial. Let n ≥ 4,, Since

yn−1 /∈ E(P ∗∗n,3) , by [23]

depth(S∗∗n,3)/E(P ∗∗n,3)) ≤ depth(Sn,3)/(E(P ∗∗n,3) : yn−1)). (4.17)

It follows that

S∗∗n,3/(E(P ∗∗n,3) : yn−1)) ∼= S∗n−3,3/E(P ∗n−3,3)[yn−1, zn+1].

Therefore, by Lemma 4.2.5

depth(S∗∗n,3/(E(P ∗∗n,3) : yn−1)) ≤
⌈
n− 3

2

⌉
+ 2 =

⌈
n+ 1

2

⌉
. (4.18)
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Now by combining Eqs. (4.22), (4.23) and (4.24), we get⌈
n+ 2

3

⌉
≤ depth(S∗∗n,3/E(P ∗∗n,3)) ≤

⌈
n+ 1

2

⌉
.

For n ≥ 2, one can construct P •n,3 with V (P •n,3) := V (Pn,3) ∪ {xn+1, zn+1} and

E(P •n,3) := E(Pn,3)∪{xnxn+1, znzn+1}. Similarly, P ••n,3 can be constructed by V (P ••n,3) :=

V (P •n,3)∪{xn+2, zn+2} and E(P ••n,3) := E(P •n,3)∪{x1xn+2, z1zn+2} (see Fig 4.10 and Fig

4.11). Consider S•n,3 := Sn,3[xn+1, zn+1] and S••n,3 := S•n,3[xn+2, zn+2], then we have the

following lemmas:

x1 x2 x3 x4 x5

y1
y2 y3 y4

y5

z1 z2 z3 z4 z5 z6

x6

Figure 4.10: (P •5,3)

x1 x2 x3 x4 x5

y1
y2 y3 y4

y5

z1 z2 z3 z4 z5 z6

x6x7

z7

Figure 4.11: (P ••5,3)

Lemma 4.2.5. Let n ≥ 2, then,⌈
n+ 1

3

⌉
≤ depth(S•n,3/E(P •n,3)) ≤

⌈
n+ 2

2

⌉
.
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Proof. For n = 1 it follows from Remark 4.1.1. Let n ≥ 2, Since diam(P •n,3) = n, Thus

by [27]

depth(Sn,3/E(P •n,3)) ≥
⌈
n+ 1

3

⌉
. (4.19)

For the reverse inequality. The cases n = 2, 3 are trivial. Let n ≥ 4,, Since yn−1 /∈
E(P •n,3), by [23]

depth(S•n,3)/E(P •n,3)) ≤ depth(Sn,3)/(E(P •n,3) : yn−1)). (4.20)

It follows that

S•n,3/(E(P •n,3) : yn−1)) ∼= Sn−3,3/E(Pn−3,3)[yn−1, xn+1, zn+1].

Therefore, by Theorem 4.1.2

depth(S•n,3/(E(P •n,3) : yn−1)) ≤
⌈
n− 3− 1

2

⌉
+ 3 =

⌈
n+ 2

2

⌉
. (4.21)

Now by combining Eqs. (4.19), (4.20) and (4.21), we get⌈
n+ 1

3

⌉
≤ depth(S•n,3/E(P •n,3)) ≤

⌈
n+ 2

2

⌉
.

Lemma 4.2.6. Let n ≥ 2, then,⌈
n+ 2

3

⌉
≤ depth(S••n,3/E(P ••n,3)) ≤

⌈
n+ 5

2

⌉
.

Proof. For n = 1 it follows from Remark 4.1.1. Let n ≥ 2, Since diam(P ••n,3) = n + 1,

Thus by [27]

depth(S••n,3/E(P ••n,3)) ≥
⌈
n+ 2

3

⌉
. (4.22)

For reverse of inequality. The cases n = 2, 3 are trivial. Let n ≥ 4,, Since yn−1 /∈
E(P ••n,3), by [23]

depth(S••n,3)/E(P ••n,3)) ≤ depth(S••n,3)/(E(P ••n,3) : yn−1)). (4.23)

It follows that

S••n,3/(E(P ••n,3) : yn−1)) ∼= S•n−3,3/E(P •n−3,3)[yn−1, xn+1, zn+1].
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Therefore, by Lemma 4.2.5

depth(S••n,3/(E(P ••n,3) : yn−1)) ≤
⌈
n− 3 + 2

2

⌉
+ 3 =

⌈
n+ 5

2

⌉
. (4.24)

Combine Eqs. (4.22), (4.23) and (4.24), we have⌈
n+ 2

3

⌉
≤ depth(S••n,3/E(P ••n,3)) ≤

⌈
n+ 5

2

⌉
.

4.3 Bounds for depth of modules associated to Cn,m.

Let 1 ≤ i ≤ n, for convenience we take xi := xi1, yi := xi2, zi := xi3 (see Figure 4.3).

We set Sn,1 := K[x1, x2, . . . , xn], Sn,2 := K[x1, x2, . . . , xn, y1, y2, . . . , yn] and

Sn,2 := K[x1, x2, . . . , xn, y1, y2, . . . , yn, z1, z2, . . . , zn]. Clearly Pn,1 ∼= Pn and Cn,1 ∼= Cn,

x1
x2

x3

x4

x5
x6

x7

x8

x1
x2

x3
x4
x5

x6
x7

x8

y1

y2

y3

y4

y5
y6

y7

y8

x1
x2

x3
x4
x5

x6
x7

x8

y1

y2
y3

y4

y5

y6

y7

y8

z1

z2

z3

z4

z5

z6

z7

z8

Figure 4.12: From left to right C8,1, C8,2 and C8,3.

For Cn,2 and Cn,3 we define minimal generating set of edge ideals as follow:

G(E(Cn,2)) = G(E(Pn,2)) ∪ {x1xn, y1yn, xny1}.

G(E(Cn,3)) = G(E(Pn,3)) ∪ {x1xn, y1yn, xny1, y1zn, z1zn}.
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Remark 4.3.1. Note that for n ∈ 2Z+ and n > 2, Then Sn,1/(E(Cn,1)) ∼= S/E(Cn),

and depth(Sn,1/E(Cn,1)) =

⌈
n− 1

3

⌉
.

Theorem 4.3.2. Let n is even, and n ≥ 4, then⌈
n− 1

3

⌉
≤ depth(Sn,2/E(Cn,2)) ≤

⌈
n− 2

2

⌉
.

Proof. Let n ≥ 4, consider following short exact sequence

0 −→ Sn,2/(E(Cn,2) : xn)
.xn−−→ Sn,2/E(Cn,2) −→ Sn,2/(E(Cn,2), xn) −→ 0

By depth lemma, we have

depth(Sn,2/E(Cn,2)) ≥ min{depth(Sn,2/(E(Cn,2) : xn)) , depth(Sn,2/(E(Cn,2), xn))}.

Since xn /∈ E(Cn,2), by [23].

depth(Sn,2/E(Cn,2)) ≤ depth(Sn,2)/(E(Cn,2) : xn)).

(E(Cn,2) : xn) = (∪n−3i=2 {xiyi, xixi+1, yiyi+1},∪
n−4
2

i=2 {x2iy2i−1, x2iy2i+1}

, xn−2yn−3, xn−2yn−2, xn−1, yn−1, yn, x1, y1).

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

x1
x2

x3

x4
xn−3

xn−2
xn−1

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

Figure 4.13: From left to right E(Cn,2) and (E(Cn,2) : xn).
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It follows that

Sn,2/(E(Cn,2) : xn) ∼= Sn−3,2/E(Pn−3,2)[xn].

Therefore, by Theorem 4.1.2

depth(Sn,2/(E(Cn,2) : xn)) ≤
⌈
n− 3− 1

2

⌉
+ 1 =

⌈
n− 2

2

⌉
.

and

depth(Sn,2/E(Cn,2)) ≤
⌈
n− 2

2

⌉
. (4.25)

For lower bound again consider

Sn,2/(E(Cn,2) : xn) ∼= Sn−3,2/E(Pn−3,2)[xn].

Therefore, by Theorem 4.1.2

depth(Sn,2/(E(Cn,2) : xn)) ≥
⌈
n− 3

3

⌉
+ 1 =

⌈
n

3

⌉
.

and

depth(Sn,2/E(Cn,2)) ≥
⌈
n

3

⌉
. (4.26)

Now let,

J = (E(Cn,2), xn) =(∪n−2i=1 {xiyi, xixi+1, yiyi+1},∪
n−2
2

i=1 {x2iy2i−1, x2iy2i+1}, xn−1yn−1,

yn−1yn, yny1, xn) = (E(Pn−1,2), xn, yn−1yn, y1yn).

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

Figure 4.14: From left to right E(Cn,2) and (E(Cn,2), xn).
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Consider

0 −→ Sn,2/(J : yn)
.yn−−→ Sn,2/J −→ Sn,2/(J, yn) −→ 0

by applying depth lemma, we get

depth(Sn,2/J) ≥ min{depth(Sn,2/(J : yn)) , depth(Sn,2/(J, yn))}.

Since (J, yn) = (E(Pn−1,2), xn, yn) and Sn,2/(J, yn)) ∼= Sn−1,2/E(Pn−1,2).

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

Figure 4.15: From left to right J and (J, yn).

Therefore, by Theorem 4.1.2

depth(Sn,2/(J, yn)) ≥
⌈
n− 1

3

⌉
.

and

(J : yn) =(∪n−3i=2 {xiyi, xixi+1, yiyi+1},∪
n−4
2

i=2 {x2iy2i−1, x2iy2i+1}

, xn−2yn−3, xn−2yn−2, xn−2xn−1, x2x1, yn−1, xn, y1).
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x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

x1
x2

x3

x4
xn−3

xn−2
xn−1

xn

y1

y2

y3

y4

yn−3

yn−2

yn−1

Figure 4.16: From left to right J and (J : yn).

After renumbering the variables, we can see that

Sn,2/(J : yn)) ∼= Sn−3,2/E(P ∗∗n−3,2)[yn].

Hence, by Lemma 4.2.2

depth(Sn,2/(J : yn)) ≥
⌈
n− 3 + 2

3

⌉
+ 1 =

⌈
n+ 2

3

⌉
.

By applying depth lemma, we have

depth(Sn,2/J) ≥
⌈
n− 1

3

⌉
.

and

0 −→ Sn,2/(E(Cn,2) : xn)
.xn−−→ Sn,2/E(Cn,2) −→ Sn,2/J −→ 0

and it follows

depth(Sn,2/E(Cn,2)) ≥
⌈
n− 1

3

⌉
. (4.27)

Combine Eqs. (4.26) and (4.27), we get⌈
n− 1

3

⌉
≤ depth(Sn,2/E(Cn,2)) ≤

⌈
n− 2

2

⌉
.
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Theorem 4.3.3. Let n is even, and n ≥ 4, then⌈
n− 3

2

⌉
≤ depth(Sn,3/E(Cn,3)) ≤

⌈
n− 2

2

⌉
.

Proof. Let n ≥ 4, Since yn−1 /∈ E(Cn,3), by [23].

depth(Sn,3)/E(Cn,3)) ≤ depth(Sn,3)/(E(Cn,3) : yn−1))

(E(Cn,3) : yn−1) = (∪n−4i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−4
2

i=1 {x2iy2i−1, x2iy2i+1, y2i−1z2i,

y2i+1z2i}, xn−3yn−3, yn−3zn−3, zn−2, zn−1, zn, yn−2, yn, xn−2, xn−1, xn).
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xn−2
xn−1
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(a) (E(Cn,3))
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yn−2

yn

z1

z2

z3

z4

zn−3

zn−2

zn−1

zn

(b) (E(Cn,3) : yn−1)

Figure 4.17

It follows that

Sn,3/(E(Cn,3) : yn−1)) ∼= Sn−3,3/E(Pn−3,3)[yn−1].

Therefore, by Theorem 4.1.2,

depth(Sn,3/(E(Cn,3) : yn−1)) ≤
⌈
n− 3− 1

2

⌉
+ 1 =

⌈
n− 2

2

⌉
.
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and

depth(Sn,3/E(Cn,3)) ≤
⌈
n− 2

2

⌉
. (4.28)

Let n ≥ 4, we have

0 −→ Sn,3/(E(Cn,3) : xn)
.xn−−→ Sn,3/E(Cn,3) −→ Sn,3/(E(Cn,3), xn) −→ 0

by Depth Lemma

depth(Sn,3/E(Cn,3)) ≥ min{depth(Sn,3/(E(Cn,3) : xn)) , depth(Sn,3/(E(Cn,3), xn))}.

Let

A = (E(Cn,3) : xn) =(∪n−3i=2 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−3
2

i=2 {x2iy2i−1, x2iy2i+1,

y2i−1z2i, y2i+1z2i}, xn−2yn−2, yn−2zn−2, zn−2zn−1, zn−1zn, znz1, z1z2,

yn−1, yn, y1, xn−1, x1).
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(a) (E(Cn,3))

x1
x2

x3

x4
xn−3

xn−2
xn−1

y1

y2

y3

y4

yn−3

yn−2

yn−1

yn

z1

z2

z3

z4

zn−3

zn−2

zn−1

zn

(b) (E(Cn,3) : xn)

Figure 4.18

Consider the following exact sequence

0 −→ S
′

n,3/(A : zn)
.zn−−→ S

′

n,3/A −→ S
′

n,3/(A, zn) −→ 0
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by Depth Lemma

depth(Sn,3/A)) ≥ min{depth(Sn,3/A : zn)) , depth(Sn,3/A, zn))}.

(A : zn) = (∪n−3i=2 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−3
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i, y2i+1z2i}

, xn−2yn−2, yn−2zn−2, zn−1, z1, yn−1, yn, y1, xn−1, x1).
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(b) (A : zn)

Figure 4.19: ((E(Cn,3) : xn) : zn).

It follows that

Sn,3/(A : zn)) ∼= Sn−3,3/E(Pn−3,3)[xn, zn].

Therefore, by Theorem 4.1.2

depth(Sn,3/(A : zn)) ≥
⌈
n− 3

3

⌉
+ 2 =

⌈
n

3

⌉
.

Now

(A, zn) = (∪n−3i=2 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−3
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i, y2i+1z2i}

, xn−2yn−2, yn−2zn−2, zn−2zn−1, z1z2, zn, yn−1, yn, y1, xn−1, x1).
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(b) (A, zn)

Figure 4.20: ((E(Cn,3) : xn), zn).

We can see that after renumbering the variables,

Sn,3/(A, zn)) ∼= Sn−3,3/E(P ∗∗n−3,3)[xn].

Therefore, by Lemma 4.2.2,

depth(Sn,3/(A, zn)) ≥
⌈
n− 3

3

⌉
+ 1 =

⌈
n

3

⌉
.

Therefore, by Depth Lemma

depth(Sn,2/A) ≥
⌈
n

3

⌉
.

Now let

B = (E(Cn,3), xn) = (∪n−2i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−2
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i,

y2i+1z2i}, xn−1yn−1, yn−1zn−1, zn−1zn, znz1, yn−1yn, yny1, xn).
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(b) (E(Cn,3), xn)

Figure 4.21

Consider the following exact sequence

0 −→ Sn,3/(B : yn)
.yn−−→ Sn,3/B −→ Sn,3/(B, yn) −→ 0

by Depth Lemma

depth(Sn,3/B)) ≥ min{depth(Sn,3/B : yn)) , depth(Sn,3/B, yn))}.

(B : yn) = (∪n−3i=2 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−3
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i,

y2i+1z2i, xn−2yn−2, yn−2zn−2, zn−2zn−1, zn, z1z2, yn−1, y1, xn−2xn−1, x1x2, xn).
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(b) (B : yn)

Figure 4.22: ((E(Cn,3), xn) : yn)

and

Sn,3/(B : yn)) ∼= S••n−3,3/E(P ••n−3,3)[yn].

Therefore, by Lemma 4.2.6

depth(Sn,3/(B : yn)) ≥
⌈
n− 3 + 2

3

⌉
+ 1 =

⌈
n+ 2

3

⌉
.

Now

C = (B, yn) = (∪n−2i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−2
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i,

y2i+1z2i}, xn−1yn−1, yn−1zn−1, zn−1zn, znz1, yn−1zn, zny1, xn, yn).
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(b) (B, yn)

Figure 4.23: ((E(Cn,3), xn), yn)

Consider the following exact sequence,

0 −→ Sn,3/(C : zn)
.zn−−→ Sn,3/C −→ Sn,3/(C, zn) −→ 0

and by Depth Lemma, we get

depth(Sn,3/C)) ≥ min{depth(Sn,3/C : zn)) , depth(Sn,3/C, zn))}.

and

(C : zn) = (∪n−3i=2 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−3
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i, y2i+1z2i}

, xn−2yn−2, yn−2zn−2, zn−1, z1, yn−1, yn, y1, xn, xn−1xn−2, x1x2).
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Figure 4.24: (((E(Cn,3), xn), yn) : zn).

It follows that

Sn,3/(C : zn)) ∼= S∗∗n−3,3/E(P ∗∗n−3,3)[zn].

Therefore, by Lemma 4.2.4,

depth(Sn,3/(C : zn)) ≥
⌈
n− 3 + 2

3

⌉
+ 1 =

⌈
n+ 2

3

⌉
.

Now,

(C, zn) = (∪n−2i=1 {xiyi, xixi+1, yiyi+1, yizi, zizi+1},∪
n−2
2

i=2 {x2iy2i−1, x2iy2i+1, y2i−1z2i, y2i+1z2i}

, xn−1yn−1, yn−1zn−1, zn, yn, xn).
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Figure 4.25: (((E(Cn,3), xn), yn), zn).

Sn,3/(C, zn)) ∼= Sn−1,3/E(Pn−1,3).

Therefore, by Therorem 4.1.3,

depth(Sn,3/(C, zn)) ≥
⌈
n− 1

3

⌉
.

Therefore, by Depth Lemma,

depth(Sn,3/C) ≥
⌈
n− 1

3

⌉
.

Now, we have

0 −→ Sn,3/(B : yn)
.yn−−→ Sn,3/B −→ Sn,3/(B, yn) −→ 0

depth(Sn,3/B) ≥
⌈
n− 1

3

⌉
,

and

0 −→ Sn,3/(A : zn)
.zn−−→ Sn,3/A −→ Sn,3/(A, zn) −→ 0
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depth(Sn,3/A) ≥
⌈
n− 3

3

⌉
.

Finally,

0 −→ Sn,3/A
.xn−−→ Sn,3/E(Cn,3) −→ Sn,3/B −→ 0

By Depth Lemma we get

depth(Sn,3/E(Cn,3)) ≥
⌈
n− 3

3

⌉
. (4.29)

So, combine 4.28 and 4.29, we will get⌈
n− 1

3

⌉
≤ depth(Sn,3/E(Cn,3)) ≤

⌈
n

3

⌉
.
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Chapter 5

Projective dimension and regularity of
some circulants

5.1 Regularity for edge ideals of C2n(1, n− 1, n).

This section deals with the regularity of edge ideal associated with the circulant graph

G = C2n(S) with S = {1, n − 1, n}. As an example of C2n(1, n − 1, n), the graph

C16(1, 7, 8) is drawn in Figure 5.1

x9

x10
x11

x12

x13
x14

x15

x16

x1

x2

x3

x4

x5

x6

x7

x8

Figure 5.1: C16(1, 7, 8)
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A convenient approach is use the labeling and representation of the graphs as given

in Figure 5.2

xn+1

xn+2

xn+3

xn+4

xi

x2n−2

x2n−1

x2n

x1

x2

x3

x4

xi+1

xn−2

xn−1

xn

Figure 5.2: C2n(1, n− 1, n)

One introduces the following families of graphs,

i) The family An:

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5.3: An

ii) The family Bn:
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x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5.4: Bn

Lemma 5.1.1. Following the above introduced notations, we have:

reg(I(An)) ≤

{
n+3
2

if n is odd
n+2
2

if n is even.

Proof. One carries the proof by using principle of mathematical induction on n. By

Example 3.3.4, we have reg(I(A2)) = 2. let n ≥ 3. Graph An can be decomposed into

An−2 and A2 , i.e.,

x3

y2

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5.5: A2 and An−2

Case I: If n is even, by the principle of mathematical induction and the well known

result that reg(R/I) = reg(I)− 1, we get:

reg(R/I(An)) ≤ reg(R/I(A2)) + reg(R/I(An−2))

≤ 1 +
(n− 2) + 2

2
− 1 =

n+ 2

2
− 1.

Case II: If n is odd, the proof is similar.
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Lemma 5.1.2. Following the above introduced notations, we have:

reg(I(Bn)) ≤

{
n+3
2

if n is odd
n+2
2

if n is even.

Proof. Suppose that n ≥ 2. The graph Bn can be decomposed into three subgraphs

A,B and C, i.e.,

x1 x2 x3 x4

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5.6: Subgraphs of Bn.(A,B and C)

Case I: If n is even, By Example 3.3.3 we have reg(I(A)) = reg(I(C)) = 2.

and by relabeling B we can see that B ∼= An−4. By Lemma 5.1.1 and the fact that

reg(R/I) = reg(I)− 1, we get:

reg(R/I(Bn)) ≤ reg(R/I(A)) + reg(R/I(B)) + reg(R/I(C))

≤ 1 +
(n− 4) + 2

2
− 1 + 1 =

n+ 2

2
− 1.

Case II: If n is odd, the proof is similar.

We now determine bounds on the regularity.

Lemma 5.1.3. Let n ≥ 4. If G = C2n(1, n− 1, n), then:

reg(I(G)) ≤

{
n+3
2

if n is odd
n+2
2

if n is even.

Proof. Suppose that n ≥ 4. The graph G can be decomposed into the subgraphs An−2
and A2, i.e.,
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(a) C2n(1, n− 1, n)

xn+1 x2n−2

xn

x2n x2n−1

xn+1 xn+2 xi+1 x2n−3x2n−2

xn xn−1

x1 x2 xi xn−3 xn−2
xn−1

(b) A2 and An−2

Figure 5.7: G and Subgraphs of G

Case I: If n is even, by Example 3.3.4, we have reg(I(A2)) = 2. By Lemma 5.1.1

and the fact that reg(R/I) = reg(I)− 1, we get:

reg(R/I(G)) ≤ reg(R/I(A2)) + reg(R/I(An−2))

≤ 1 +
(n− 2) + 2

2
− 1 =

n+ 2

2
− 1.

Case I: If n is odd, the proof is analogous.

Lemma 5.1.4. Following the above introduced notations, we have:

pdim(I(An)) ≤ 2n− 1.

Proof. The proof is carried out by principle of mathematical induction on n. One can

find pdim(I(A2)) = 3 and pdim(I(A3)) = 5 via a direct computation (Macaulay2 [28]).

These computations agrees with upper bounds given in problem statement, implies,

the basic case holds. Now, assume that n ≥ 4. The graph An can be decomposed An−2
and A2 , i.e.,
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x3

y2

x1 x2 x3 x4 xn−2 xn−1 xn

y1 y2 y3 y4 yn−2 yn−1 yn

Figure 5.8: A2 and An−2

By induction on n, we get:

pdim(I(An)) ≤ pdim(I(A2)) + pdim(I(An−2)) + 1

≤ 3 + (2(n− 2)− 1) + 1 = 2n− 1.

Lemma 5.1.5. Let n ≥ 4. If G = C2n(1, n− 1, n), then:

pdim(I(G)) ≤

{
4k − 1 if n = 2k

4k + 1 if n = 2k + 1.

Proof. Suppose that n ≥ 4. The graph G can be decomposed into An−2 and A2, i.e.,
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(a) C2n(1, n− 1, n)
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xn xn−1
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(b) A2 and An−2

Figure 5.9: G and subgraphs of G

Case I: If n is odd, i.e., n = 2k + 1. By lemma 5.1.4, we get:

pdim(I(G)) ≤ pdim(I(A2)) + pdim(I(An−2)) + 1

≤ 3 + (2(n− 2)− 1) + 1 = 4k − 1.

Case II: If in is even, i.e., n = 2k. By lemma 5.1.4, we get:

pdim(I(G)) ≤ pdim(I(A2)) + pdim(I(An−2)) + 1

≤ 3 + (2(n− 2)− 1) + 1 = 4k + 1.
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Chapter 6

Stanley depth and depth of cubic
circulant graph

6.1 Stanley depth and depth of module associated
with ladder graphs

If n ≥ 2, then Ln := P2�Pn is called ladder graph on 2n vertices. Examples of Ln
is shown in Figure 6.1. Clearly |E(Ln)|= 3n − 2. We label the vertices of the graphs

Ln by using two sets {x1, x2, . . . , xn} and {y1, y2, . . . , yn}; (see Figure 6.1). Let Sn :=

K[x1, x2, . . . , xn, y1, y2, . . . , yn] be the ring of polynomials in variables x1, x2, . . . , xn, y1, y2, . . . , yn
over the fieldK. Then I(Ln) is a monomial ideal of Sn with G(I(Ln)) = ∪n−1i=1 {xiyi, xixi+1, yiyi+1}∪
{xnyn}.

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5

Figure 6.1: L5

We compute the Stanley depth and depth of Sn/I(Ln) and Sn/I(CLn). We in-

troduce three super graphs L?n, L�n and L•n of Ln with vertex sets and edge sets

77



V (L?n) = V (Ln) ∪ {yn+1}, E(L?n) = E(Ln) ∪ {ynyn+1}, V (L�n) = V (Ln) ∪ {yn+1, yn+2},
E(L�n) = E(Ln) ∪ {ynyn+1, y1yn+2}, and V (L•n) = V (Ln) ∪ {xn+1, yn+1}, E(L•n) =

E(Ln) ∪ {ynyn+1, x1xn+1}, respectively. For examples of L?n, L�n and L•n; see Figures

6.2, 6.3 and 6.4. It is easy to see that G(I(L?n)) = G(I(Ln)) ∪ {ynyn+1}, G(I(L�n)) =

G(I(Ln))∪{y1yn+2, ynyn+1} and G(I(L•n)) = G(I(Ln))∪{x1xn+1, ynyn+1}. For S?n/I(L?n),

S�n/I(L�n) and S•n/I(L•n), We compute Stanley depth and depth, where S?n = Sn[yn+1],

S�n = Sn[yn+1, yn+2] S
•
n = Sn[xn+1, yn+1]. Then, by using these results, we find Stanley

depth and depth of Sn/I(Ln) and Sn/I(C2n(a, n)).

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 6.2: L?5

x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6y7

Figure 6.3: L�5

x6 x1 x2 x3 x4 x5

y1 y2 y3 y4 y5 y6

Figure 6.4: L•5
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As a first result of this section, we compute the precise values of Stanley depth and

depth of S?n/I(L?n) in the following proposition.

Proposition 6.1.1. For n ≥ 2, we have depth(S?n/I(L?n)) = sdepth(S?n/I(L?n)) =

dn+1
2
e.

Proof. To prove depth(S?n/I(L?n)) = dn+1
2
e using mathematical induction. If 2 ≤ n ≤ 3,

then result is obvious. For n ≥ 4, we have.

0 −→ S?n/(I(L?n) : yn)
·yn−→ S?n/I(L?n) −→ S?n/(I(L?n), yn) −→ 0. (6.1)

(I(L?n) : yn) = ( ∪n−3i=1 {xiyi, xixi+1, yiyi+1}, xn−2yn−2, xn−2xn−1, yn−1, xn, yn+1)

= (G(I(Ln−2)), xn−2xn−1, yn−1, xn, yn+1) = (G(I(L?n−2)), yn−1, xn, yn+1),

since S?n/(I(L?n) : yn) ∼= (S?n−2/(I(L?n−2))[yn], by mathematical induction and Lemma

3.2.11,

depth(S?n/(I(L?n) : yn) = dn− 2 + 1

2
e+ 1 = dn+ 1

2
e.

Since

(I(L?n), yn) = (∪n−2i=1 {xiyi, xixi+1, yiyi+1}, xn−1yn−1, xn−1xn, yn) = (G(I(L?n−1), yn)),

we get S?n/(I(L?n), yn) ∼= (S?n−1/I(L?n−1))[yn+1]. Again by Lemma 3.2.11, we have

depth(S?n/(I(L?n), yn) = dn− 1 + 1

2
e+ 1 = dn

2
e+ 1.

Also depth(S?n/(I(L?n), yn)) ≥ depth(S?n/(I(L?n) : yn)), so Depth Lemma yields

depth(S?n/I(L?n)) = dn+ 1

2
e.

If n = 2, then

S?2/I(L?2) = K[x1, y2]⊕ y1K[y1, x2]⊕ x2K[x2, y3]⊕ y3K[x1, y3]⊕ y1y3K[y1, x2, y3].
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If n = 3, then

S?3/I(L?3) = K[x1, y2]⊕ y1K[y1, x2]⊕ x2K[x2, y3]⊕ x3K[x1, x3]⊕ y3K[x1, y3]

⊕y4K[x1, y4]⊕ y1x3K[y1, x3, y4]⊕ y1y3K[y1, x2, y3]⊕ y1y4K[y1, x2, y4]

⊕x2y3K[x2, y3]⊕ x2y4K[x2, y4]⊕ y2x3K[x1, y2, x3]⊕ y2y4K[x1, y2, y4]

⊕x3y4K[x1, y2, x3, y4].

For n ≥ 4, by using induction on n, and by Lemma 3.2.10, we obtain

sdepth(S?n/I(L?n)) ≥ dn+ 1

2
e.

For the reverse inequality, we again use induction hypothesis on n. The result is obvious

for 2 ≤ n ≤ 3. If n ≥ 4, as yn /∈ I(L?n), therefore, by Proposition 3.2.13

sdepth(S?n/I(L?n)) ≤ sdepth(S?n/(I(L?n) : yn)).

Since S?n/(I(L?n) : yn) ∼= (S?n−2/I(L?n−2))[yn], by mathematical induction on n and

Lemma 3.2.11, we have

sdepth((S?n−2/I(L?n−2))[yn]) ≤ dn− 2 + 1

2
e+ 1 = dn+ 1

2
e.

Remark 6.1.2. For k ≥ 1 and n = 2k or n = 2k + 1 we have that

depth(S?n/I(L?n)) = sdepth(S?n/I(L?n)) = k + 1.

With the back-up of Proposition 6.1.1, we have the upcoming results for Stanley

depth and depth of Sn/I(Ln). This result says in particular Stanley’s inequality holds

for Sn/I(Ln).

Theorem 6.1.3. Let n ≥ 2. Then sdepth(Sn/I(Ln)) ≥ depth(Sn/I(Ln)) = dn
2
e.

Proof. We first show that depth(Sn/I(Ln)) = dn
2
e. If n = 2, then G(I(Ln)) =

{x1y1, y1y2, y2x2, x2x1}, which is a minimal generating set of the edge ideal of C4. By
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[29, Proposition 1.3] it follows depth(S2/I(L2)) = 1. If 3 ≤ n ≤ 4, then one can easily

verify the result. For n ≥ 5,

(I(Ln) : yn) = ( ∪n−3i=1 {xiyi, xixi+1, yiyi+1}, xn−2yn−2, xn−2xn−1, xn, yn−1)

= (G(I(Ln−2)), xn−2xn−1, xn, yn−1) = (G(I(L?n−2), xn, yn−1)),

so we obtain Sn/(I(Ln) : yn) ∼= (S?n−2/I(L?n−2))[yn]. By Proposition 6.1.1 and Lemma

3.2.11,

depth(Sn/(I(Ln) : yn) = dn−2+1
2
e + 1 = dn+1

2
e. Now consider the following Sn-module

isomorphism:

(I(Ln) : yn)/I(Ln) ∼= yn−1
K[x1, . . . , xn−2, y1, . . . , yn−3]

( ∪n−4i=1 {xiyi, xixi+1, yiyi+1}, xn−3yn−3, xn−3xn−2)
[yn−1]

⊕ xn
K[x1, . . . , xn−2, y1, . . . , yn−2]

( ∪n−3i=1 {xiyi, xixi+1, yiyi+1}, xn−2yn−2)
[xn].

If u ∈ (I(Ln) : yn) and u 6∈ I(Ln). It follows xn|u or yn−1|u. If xn|u then u =

xnv1 with v1 ∈ Sn, since u /∈ I(Ln), it follows v1 = xαnw1, with α ≥ 1 and w1 /∈
K[x1, . . . , xn−2, y1, . . . , yn−2]. Similarly, if xn - u, then yn−1|u and u = yn−1v2 with

v2 ∈ Sn, since u /∈ I(Ln), it follows that v2 = yβn−1w2 with β ≥ 1 and w2 /∈
K[x1, . . . , xn−2, y1, . . . , yn−3]. Then,

K[x1, . . . , xn−2, y1, . . . , yn−3]

( ∪n−4i=1 {xiyi, xixi+1, yiyi+1}, xn−3yn−3, xn−3xn−2)
∼= S?n−3/I(L?n−3)

and
K[x1, . . . , xn−2, y1, . . . , yn−2]

( ∪n−3i=1 {xiyi, xixi+1, yiyi+1}, xn−2yn−2)
∼= Sn−2/I(Ln−2).

By Proposition 6.1.1 and Lemma 3.2.11, we have

depth((I(Ln) : yn)/I(Ln)) = min{dn− 3 + 1

2
e+ 1, dn− 2

2
e+ 1} = dn

2
e.

Consider

0 −→ (I(Ln) : yn)/I(Ln)
·yn−→ Sn/I(Ln) −→ Sn/(I(Ln) : yn) −→ 0. (6.2)

Now we prove that sdepth(Sn/I(Ln)) ≥ dn
2
e. For 2 ≤ n ≤ 4, by [24], we have the

following Stanley decompositions. If n = 2, then

S2/I(L2) = K[x1, y2]⊕ x2K[y1, x2]⊕ y1K[y1].
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If n = 3, then

S3/I(L3) = K[x1, y2]⊕ y1K[y1, x2]⊕ x2K[x2, y3]⊕ x3K[x1, x3]⊕ y3K[x1, y3]

⊕y1x3K[y1, x3]⊕ y1y3K[y1, x2, y3]⊕ y2x3K[x1, y2, x3].

If n = 4, then

S4/I(L4) = K[x1, x3, y2]⊕ y1K[x2, y1, y3]⊕ x2K[x2, x4, y3]⊕ y3K[x1, x4, y3]

⊕x4K[x1, x4, y2]⊕ y4K[x2, y1, y4]⊕ x1y4K[x1, y2, y4]⊕ y1x3K[y1, x3, y4]

⊕y1x4K[x2, x4, y1]⊕ y2y4K[x3, y2, y4]⊕ x3y4K[x1, x3, y4].

For n ≥ 5, by Proposition 6.1.1, induction on n and Lemma 3.2.11 on the exact

sequence (6.2), we have the required lower bound.

Corollary 6.1.4. Let n ≥ 2. If n ≡ 0 (mod 2) then dn
2
e ≤ sdepth(Sn/I(Ln)) ≤ dn+1

2
e,

otherwise sdepth(Sn/I(Ln)) = dn
2
e.

Proof. One can easily verify the result for 2 ≤ n ≤ 3. If n ≥ 4, then by Theorem

6.1.3, we only need to show that sdepth(Sn/I(Ln)) ≤ dn+1
2
e. As yn /∈ I(Ln), from

Proposition 3.2.13, sdepth(Sn/I(Ln)) ≤ sdepth(Sn/(I(Ln) : yn)). Since

Sn/(I(Ln) : yn) ∼= (S?n−2/I(L?n−2))[yn],

by Lemma 3.2.11 and Proposition 6.1.1,

sdepth((S?n−2/I(L?n−2))[yn]) = dn− 2 + 1

2
e+ 1 = dn+ 1

2
e.

and the required result follows.

Example 6.1.5. If n = 4, then we make some calculations for Stanley depth by using

CoCoA, (SdepthLib:coc [30]). Calculations show that sdepth(S4/I(L4)) = 3 = d4+1
2
e.

Thus the upper bound in Corollary 6.1.4 is found.

By using Theorem 6.1.3 and Auslander-Buchsbaum formula [33, Theorem 3.7], we

have the exact value of projective dimension of cyclic module Sn/I(Ln) as follows:
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Corollary 6.1.6. For n ≥ 2, pdSn(Sn/I(Ln)) = n+ bn
2
c.

Theorem 6.1.7. Let n ≥ 2. Then sdepth(I(L?n)) ≥ dn+1
2
e+ 1.

Proof. The result is clear for 2 ≤ n ≤ 3. For n ≥ 4, as yn 6∈ I(L?n), so we have

I(L?n) = I(L?n) ∩ S ′ ⊕ yn(I(L?n) : yn)S?n,

where S ′ = K[x1, x2, . . . , xn, y1, y2, . . . , yn−1, yn+1],

(I(L?n) : yn) = (G(I(L?n−2)), yn−1, xn, yn+1)S
?
n, and I(L?n) ∩ S ′ = (G(I(L?n−1)))S ′. Thus

sdepth (I(L?n)) ≥ min
{

sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S
?
n), sdepth (G(I(L?n−1))S ′)

}
.

By Lemma 3.2.11, we have

sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S
?
n) = sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S

′) + 1,

and by [25, Theorem 1.3], it follows that

sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S
′) ≥ min

{
sdepth (I(L?n−2)S?n−2) + 3,

sdepth ((yn−1, xn, yn+1)S̄) + sdepth (S?n−2/I(L?n−2))S?n−2)
}
,

where S̄ = K[yn−1, xn, yn+1]. The induction hypothesis, [32, Theorem 2.2] and Theorem

6.1.1 yield

sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S
′) ≥ min {dn− 2 + 1

2
e+ 1 + 3, 2 + dn− 2 + 1

2
e}

= dn+ 1

2
e+ 1.

Thus, sdepth ((G(I(L?n−2)), yn−1, xn, yn+1)S
?
n) > dn+1

2
e + 1. By [31, Lemma 2.11], we

have

sdepth (G(I(L?n−1))S ′) ≥ sdepth (I(L?n−1)S?n−1[yn+1]),

by Lemma 3.2.11, we have

sdepth (I(L?n−1)S?n−1[yn+1]) ≥ d
n− 1 + 1

2
e+ 1 + 1.

Therefore,

sdepth(I(L?n)) ≥ dn+ 1

2
e+ 1.
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Corollary 6.1.8. Let n ≥ 2. Then sdepth(I(L?n)) ≥ sdepth(S?n/I(L?n)) + 1.

Theorem 6.1.9. Let n ≥ 2. Then sdepth(I(Ln)) ≥ dn
2
e+ 1.

Proof. It is easy to see that the result holds for 2 ≤ n ≤ 3. For n ≥ 4, since yn 6∈ I(Ln),

we have

I(Ln) = I(Ln) ∩ S ′′ ⊕ yn(I(Ln) : yn)Sn,

where S ′′ = K[x1, x2, . . . , xn, y1, y2, . . . , yn−1], (I(Ln) : yn) = (G(I(L?n−2), xn, yn−1))Sn,
and I(Ln) ∩ S ′′ = (G(I(L?n−1)))S ′′. Thus

sdepth (I(Ln)) ≥ min
{

sdepth ((G(I(L?n−2)), yn−1, xn)Sn), sdepth (G(I(L?n−1))S ′′)
}
.

By Lemma 3.2.11,

sdepth ((G(I(L?n−2)), yn−1, xn)Sn) = sdepth ((G(I(L?n−2)), yn−1, xn)S ′′) + 1,

and by [25, Theorem 1.3], it follows

sdepth ((G(I(L?n−2)), yn−1, xn)S ′′) ≥ min
{

sdepth (I(L?n−2)S?n−2) + 2,

sdepth ((yn−1, xn)S̃) + sdepth (S?n−2/I(L?n−2))S?n−2)
}
,

where S̃ = K[yn−1, xn]. By Theorem 6.1.7, [32, Theorem 2.2] and Theorem 6.1.1, we

have

sdepth ((G(I(L?n−2)), yn−1, xn)S ′′) ≥ min {dn− 2 + 1

2
e+1+2, 1+dn− 2 + 1

2
e} = dn+ 1

2
e.

Thus, sdepth ((G(I(L?n−2)), yn−1, xn)Sn) > dn+1
2
e. By [31, Lemma 2.11],

sdepth (G(I(L?n−1))S ′′) ≥ sdepth (I(L?n−1)S?n−1),

by Theorem 6.1.7, we have

sdepth (I(L?n−1)S?n−1) ≥ d
n− 1 + 1

2
e+ 1.

Thus,

sdepth(I(Ln)) ≥ dn
2
e+ 1.
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Corollary 6.1.10. Let n ≥ 2. Then sdepth(I(Ln)) ≥ sdepth(Sn/I(Ln)).

Now, we determine Stanley depth and depth of cyclic module S�n/I(L�n) by using

induction on n and Proposition 6.1.1.

Proposition 6.1.11. Let n ≥ 2. Then sdepth(S�n/I(L�n)), depth(S�n/I(L�n)) ≥ dn+1
2
e.

Proof. We first show that depth(S�n/I(L�n)) ≥ dn+1
2
e by using induction on n. The

result is obvious for 2 ≤ n ≤ 3. For n ≥ 4, consider,

0 −→ S�n/(I(L�n) : yn+1)
·yn+1−−−→ S�n/I(L�n) −→ S�n/(I(L�n), yn+1) −→ 0. (6.3)

Let I = (I(L�n) : yn+1) = ( ∪n−2i=1 {xiyi, xixi+1, yiyi+1}, xn−1yn−1, xn−1xn, y1yn+2, yn)

= (G(I(Ln−1)), xn−1xn, y1yn+2, yn),

and considering

0 −→ S�n/(I : xn)
·xn−→ S�n/I −→ S�n/(I, xn) −→ 0. (6.4)

Here (I, xn) = (G(I(Ln−1)), xn, y1yn+2, yn), after a suitable renumbering of the vari-

ables, we obtain (I, xn) = (G(I(L?n−1)), xn, yn), which further implies that

S�n/(I, xn) ∼= (S?n−1/I(L?n−1))[yn+1].

By Proposition 6.1.1 and Lemma 3.2.11, it follows that

depth(S�n/(I, xn)) ≥ dn− 1 + 1

2
e+ 1 = dn

2
e+ 1.

As

(I : xn) = ( ∪n−3i=1 {xiyi, xixi+1, yiyi+1}, xn−2yn−2, yn−2yn−1, y1yn+2, yn, xn−1)

= (G(I(Ln−2)), yn−2yn−1, y1yn+2, yn, xn−1),

(I : xn) = (G(I(L�n−2)), yn, xn−1)

S�n/(I : xn) ∼= S�n−2/I(L�n−2)[xn, yn+1].
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The induction hypothesis and Lemma 3.2.11 yield

depth(S�n/(I : xn)) = dn− 2 + 1

2
e+ 2 = dn+ 1

2
e+ 1.

Also

(I(L�n), yn+1) = ( ∪n−1i=1 {xiyi, xixi+1, yiyi+1}, xnyn, y1yn+2, yn+1)

= (G(I(Ln)), y1yn+2, yn+1),

after renumbering the variables, (I(L�n), yn+1) = (G(I(L?n)), yn+1), so we have

S�n/(I(L�n), yn+1) ∼= S?n/I(L?n).

By Proposition 6.1.1, we have depth(S�n/(I(L�n), yn+1) = dn+1
2
e. Finally, by applying

Depth Lemma on (6.5) and (6.4), we conclude that

depth(S�n/I(L�n)) ≥ dn+ 1

2
e.

Now, we show that sdepth(S�n/I(L�n)) ≥ dn+1
2
e. For 2 ≤ n ≤ 3, one can easily show

that the result holds. For n ≥ 4, result follows by using mathematical induction on n,

Proposition 6.1.1, and Lemma 3.2.10 on the exact sequences (6.5) and (6.4).

Corollary 6.1.12. Let n ≥ 2. If n ≡ 0 (mod 2) then

dn+ 1

2
e ≤ depth(S�n/I(L�n)), sdepth(S�n/I(L�n)) ≤ dn+ 1

2
e+ 1,

otherwise

dn+ 1

2
e ≤ depth(S�n/I(L�n)), sdepth(S�n/I(L�n)) ≤ dn+ 2

2
e.

Proof. First, we show the result for depth. It can be easily verified that the result is true

for 2 ≤ n ≤ 5. Now, if n ≥ 6, then by Proposition 6.1.11, it is enough to show that If

n ≡ 0 (mod 2) then depth(S�n/I(L�n)) ≤ dn+1
2
e+ 1 otherwise depth(S�n/I(L�n)) ≤ dn+2

2
e.

Case 1, If n ≡ 0 (mod 2), Since xn−2yn 6∈ I(L�n), from Corollary 3.2.12 we obtain that

depth(S�n/I(L�n)) ≤ depth(S�n/(I(L�n) : xn−2yn)). As

S�n/(I(L�n) : xn−2yn) ∼= (S�n−4/I(L�n−4))[xn−2, yn],
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by the principle of mathematical induction and Lemma 3.2.11 we have

depth((S�n−4/I(L�n−4))[xn−2, yn]) ≤ dn− 4 + 1

2
e+ 1 + 2 = dn+ 1

2
e+ 1.

Case 2, If n ≡ 1 (mod 2), Since xn−2yn 6∈ I(L�n), from Corollary 3.2.12 we attain that

depth(S�n/I(L�n)) ≤ depth(S�n/(I(L�n) : xn−2yn)). As

S�n/(I(L�n) : xn−2yn) ∼= (S�n−4/I(L�n−4))[xn−2, yn],

by the principle of mathematical induction and Lemma 3.2.11 we have

depth((S�n−4/I(L�n−4))[xn−2, yn]) ≤ dn− 4 + 2

2
e+ 2 = dn+ 2

2
e.

Proof for Stanley depth is similar by using Propositions 3.2.13 and 6.1.11.

Now, we determine the depth and Stanley depth of cyclic module S•n/I(L•n) by using

induction on n and Proposition 6.1.1.

Proposition 6.1.13. Let n ≥ 2. Then sdepth(S•n/I(L•n)), depth(S•n/I(L•n)) ≥ dn+1
2
e.

Proof. We first show that depth(S•n/I(L•n)) ≥ dn+1
2
e. The result is obvious for 2 ≤ n ≤

3. For n ≥ 4,

0 −→ S•n/(I(L•n) : xn+1)
·xn+1−−−→ S•n/I(L•n) −→ S•n/(I(L•n), xn+1) −→ 0. (6.5)

Let (I(L•n) : xn+1) = ( ∪n−1i=2 {xiyi, xixi+1, yiyi+1}, xnyn, ynyn+1, y1y2, x1).

(I(L•n) : xn+1) = (G(I(L�n−1)), x1),

which further implies that

S•n/(I(L•n) : xn+1) ∼= (S�n−1/I(L�n−1))[xn+1].

By Proposition 6.1.11 and Lemma 3.2.11, it follows that

depth(S•n/(I(L•n) : xn+1)) ≥ d
n− 1 + 1

2
e+ 1 = dn

2
e+ 1.
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Also

(I(L•n), xn+1) = ( ∪n−1i=1 {xiyi, xixi+1, yiyi+1}, xnyn, ynyn+1, xn+1)

= (G(I(Ln)), ynyn+1, xn+1),

after renumbering the variables, (I(L•n), xn+1) = (G(I(L?n)), xn+1), so we have

S•n/(I(L•n), xn+1) ∼= S?n/I(L?n).

Applying Proposition 6.1.1, we have depth(S•n/(I(L•n), xn+1) = dn+1
2
e. Finally, by using

Depth Lemma on (6.5) and (6.4), we conclude that

depth(S•n/I(L•n)) ≥ dn+ 1

2
e.

Now, we show that sdepth(S•n/I(L•n)) ≥ dn+1
2
e. For 2 ≤ n ≤ 3, one can easily show

that the result holds. For n ≥ 4, result follows by Proposition 6.1.1, and Lemma 3.2.10

on the exact sequence (6.5).

Corollary 6.1.14. Let n ≥ 2. If n ≡ 0 (mod 2) then

dn+ 1

2
e ≤ depth(S•n/I(L•n)), sdepth(S•n/I(L•n)) ≤ dn+ 1

2
e+ 1,

otherwise

dn+ 1

2
e ≤ depth(S•n/I(L•n)), sdepth(S•n/I(L•n)) ≤ dn+ 2

2
e.

Proof. First, we show the result for depth. It can be easily verified that the result is true

for 2 ≤ n ≤ 5. Now, if n ≥ 6, then by Proposition 6.1.11, it is enough to show that If

n ≡ 0 (mod 2) then depth(S•n/I(L•n)) ≤ dn+1
2
e+ 1 otherwise depth(S•n/I(L•n)) ≤ dn+2

2
e.

Case 1, If n ≡ 0 (mod 2), Since xn−2yn 6∈ I(L•n), from Corollary 3.2.12 we attain

that depth(S•n/I(L•n)) ≤ depth(S•n/(I(L•n) : xn−2yn)). As S•n/(I(L•n) : xn−2yn) ∼=
(S•n−4/I(L•n−4))[xn−2, yn], by the principle of mathematical induction and Lemma 3.2.11

we have

depth((S•n−4/I(L•n−4))[xn−2, yn]) ≤ dn− 4 + 1

2
e+ 1 + 2 = dn+ 1

2
e+ 1.
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Case 2, If n ≡ 1 (mod 2), Since xn−2yn 6∈ I(L•n), from Corollary 3.2.12 we attain

that depth(S•n/I(L•n)) ≤ depth(S•n/(I(L•n) : xn−2yn)). As S•n/(I(L•n) : xn−2yn) ∼=
(S•n−4/I(L•n−4))[xn−2, yn], by the principle of mathematical induction and Lemma 3.2.11

we have

depth((S•n−4/I(L•n−4))[xn−2, yn]) ≤ dn− 4 + 2

2
e+ 2 = dn+ 2

2
e.

Proof for Stanley depth is similar by using Propositions 3.2.13 and 6.1.11.

6.2 Cubic Circulant Graphs

By using Corollary 6.1.8, Theorem 6.1.3 and Proposition 6.1.11, we have the following

outcomes for S2n/I(C2n(1, n)) and S2n/I(C2n(2, n)).

Theorem 6.2.1. If G = C2n(1, n) or C2n(2, n), then for n ≥ 3 we have that

sdepth(S2n/I(G)), depth(S2n/I(G)) ≥ dn− 1

2
e.

Proof. Let G = C2n(1, n), If 3 ≤ n ≤ 4, one easily see that result holds. For n ≥ 5,

0 −→ S2n/(I(G) : xn)
·xn−→ S2n/I(G) −→ S2n/(I(G), xn) −→ 0. (6.6)

HHxn
xn−1

xn−2

xn−3

xi
x3

x2

x1

x2n

x2n−1

x2n−2

x2n−3

xn+i

xn+3

xn+2

xn+1

Figure 6.5: (I(C2n(1, n)) : xn)
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Since, (I(G) : xn) = (G(I(L•n−3)), xn−1, xn+1, x2n) implies that

S2n/I(G) ∼= S•n−3/I(L•n−3)[xn].

By Proposition 6.1.13 and Lemma 3.2.11, it follows that depth(S2n/(I(G)) ≥ dn−3+1
2
e+

1 = dn
2
e. Now assume that J = (I(G), xn)

xn
xn−1

xn−2

xn−3

xi
x3

x2

x1

x2n

x2n−1

x2n−2

x2n−3

xn+i

xn+3

xn+2

xn+1

Figure 6.6: (I(C2n(1, n)), xn)

and short exact sequence

0 −→ S2n/(J : x2n)
·x2n−−→ S2n/J −→ S2n/(J, x2n) −→ 0. (6.7)

Since (J, x2n) = (G(I(Ln−1)), xn, x2n), so we have S2n/(J, x2n) ∼= Sn−1/I(Ln−1). By

Theorem 6.1.3 and Lemma 3.2.11 we obtain depth(S2n/(J, x2n) = dn−1
2
e. Also af-

ter renumbering the variables, we have (J : x2n) = (G(I(L•n−3)), x2n−1, x1, xn), since

S2n/(J : x2n) ∼= S•n−3/I(L•n−3)[x2n]. By Proposition 6.1.13 and Lemma 3.2.11,

depth(S2n/(J : x2n)) ≥ dn− 3 + 1

2
e+ 1 = dn

2
e

Finally, by applying Depth Lemma on (6.6) and (6.7), we conclude that depth(S2n/I(G)) ≥
dn−1

2
e. Now, we show that sdepth(S2n/I(G)) ≥ dn−1

2
e. If 3 ≤ n ≤ 4, then result is ob-

vious. For n ≥ 5, one can prove the result by applying Lemma 3.2.10 on (6.6) and (6.7).
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Now let G = C2n(2, n), If 3 ≤ n ≤ 4, then result obviously holds. For n ≥ 5,

0 −→ S2n/(I(G) : x1)
·x1−→ S2n/I(G) −→ S2n/(I(G), x1) −→ 0. (6.8)

x2n−1
x2n−3

x2n−5

x2n−7

xi
x5

x3

ZZx1

xn−1

xn−3

xn−5

xn−7

xn+i

xn+5

xn+3

xn+1

Figure 6.7: (I(C2n(2, n)) : x1)

after renumbering the variables, we have (I(G) : x1) = (G(I(L�n−3)), x2n−1, xn+1, x3),

that follows that S2n/I(G) ∼= S�n−3/I(L�n−3)[x1]. By Proposition 6.1.11 and Lemma

3.2.11, it follows that depth(S2n/(I(G)) ≥ dn−3+1
2
e + 1 = dn

2
e. Now assume that J =

(I(G), x1) and

0 −→ S2n/(J : xn+1)
·xn+1−−−→ S2n/J −→ S2n/(J, xn+1) −→ 0. (6.9)
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Figure 6.8: (I(C2n(2, n)), x1)

Since (J, xn+1) = (G(I(Ln−1)), x1, xn+1), so we have S2n/(J, xn+1) ∼= Sn−1/I(Ln−1).
By Theorem 6.1.3 and Lemma 3.2.11, we obtain depth(S2n/(J, xn+1) = dn−1

2
e. Also, we

have (J : xn+1) = (G(I(L�n−3)), xn−1, xn+3, x1), so S2n/(J : xn+1) ∼= S�n−3/I(L�n−3)[xn+1].

By Proposition 6.1.11 and Lemma 3.2.11,

depth(S2n/(J : xn+1)) ≥ d
n− 3 + 1

2
e+ 1 = dn

2
e.

Finally, by applying Depth Lemma on (6.6) and (6.7), we conclude that depth(S2n/I(G)) ≥
dn−1

2
e. Now, we show that sdepth(S2n/I(G)) ≥ dn−1

2
e. If 3 ≤ n ≤ 4, then one can

easily see that result holds. For n ≥ 5, the required result follows by using Lemma

3.2.10 on (6.8) and (6.9).

Corollary 6.2.2. If G = C2n(1, n) or C2n(2, n), and n ≥ 3, If n ≡ 0 (mod 2) then

dn− 1

2
e ≤ sdepth(S2n/I(G)), depth(S2n/I(G)) ≤ dn+ 1

2
e,

otherwise

dn− 1

2
e ≤ sdepth(S2n/I(G)), depth(S2n/I(G)) ≤ dn

2
e+ 1.

Proof. First, we prove result for depth; this can be easily verified if 3 ≤ n ≤ 4.

For n ≥ 5, by Theorem 6.2.1, we just need to show that If n ≡ 0 (mod 2) then
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depth(S2n/I(G)) ≤ dn
2
e+ 1 otherwise depth(S2n/I(G)) ≤ dn+1

2
e

Case 1, If n ≡ 0 (mod 2). LetG = C2n(1, n), Since xn 6∈ I(G), thus depth(S2n/I(G)) ≤
depth(S2n/(I(G) : xn)) by Corollary 3.2.12. As S2n/(I(G) : xn) ∼= S•n−3/I(L•n−3)[xn].

As n ≡ 0 (mod 2) then (n−3) ≡ 1 (mod 2). Therefore, by Corollary 6.1.14, and Lemma

3.2.11,

depth(S•n−3/I(L•n−3)[xn] ≤ dn− 3 + 2

2
e+ 1 = dn+ 1

2
e.

Now let G = C2n(2, n), Since x1 6∈ I(G), thus depth(S2n/I(G)) ≤ depth(S2n/(I(G) :

x1)) by Corollary 3.2.12. As S2n/(I(G) : x1) ∼= S�n−3/I(L�n−3)[x1].
As n ≡ 0 (mod 2) then (n−3) ≡ 1 (mod 2). Therefore, by Corollary 6.1.12, and Lemma

3.2.11,

depth(S�n−3/I(L�n−3)[x1]) ≤ d
n− 3 + 2

2
e+ 1 = dn+ 1

2
e.

Case 2, If n ≡ 1 (mod 2). LetG = C2n(1, n), Since xn 6∈ I(G), thus depth(S2n/I(G)) ≤
depth(S2n/(I(G) : xn)) by Corollary 3.2.12. As S2n/(I(G) : xn) ∼= S•n−3/I(L•n−3)[xn].

As n ≡ 1 (mod 2) then (n−3) ≡ 0 (mod 2). Therefore, by Corollary 6.1.14, and Lemma

3.2.11,

depth(S•n−3/I(L•n−3)[xn] ≤ dn− 3 + 1

2
e+ 2 = dn

2
e+ 1.

Now let G = C2n(2, n), Since x1 6∈ I(G), thus depth(S2n/I(G)) ≤ depth(S2n/(I(G) :

x1)) by Corollary 3.2.12. As S2n/(I(G) : x1) ∼= S�n−3/I(L�n−3)[x1].
As n ≡ 1 (mod 2) then (n−3) ≡ 0 (mod 2). Therefore, by Corollary 6.1.12, and Lemma

3.2.11,

depth(S�n−3/I(L�n−3)[x1]) ≤ d
n− 3 + 1

2
e+ 2 = dn

2
e+ 1.

It remains to show the result for Stanley depth, for this it is similar as in the case of

depth by using Proposition 3.2.13 instead of Corollary 3.2.12.

Label the graphs C2n(1, n) and C2n(2, n) by using two sets of variables {x1, x2, . . . , xn}
and {y1, y2, . . . , yn} (see Figure 6.9). Let Sn := K[x1, x2, . . . , xn, y1, y2, . . . , yn] be the
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ring of polynomials in variables x1, x2, . . . ,

xn, y1, y2, . . . , yn over the field K. Then I(I(C2n(1, n)) and I(I(C2n(2, n)) are mono-

mial ideals of Sn with G(I(C2n(1, n))) = G(I(Ln))∪{x1yn, y1xn} and G(I(C2n(2, n))) =

G(I(Ln)) ∪ {x1xn, y1yn}.

xn
xn−1

xn−2

xn−3

xi
x3

x2

x1

yn

yn−1

yn−2

yn−3

yi

y3

y2

y1

xn
xn−1

xn−2

xn−3

xi
x3

x2

x1

yn

yn−1

yn−2

yn−3

yi

y3

y2

y1

Figure 6.9: From left to right C2n(1, n) and C2n(2, n).

Proposition 6.2.3. Let n ≥ 3. Then sdepth(I(C2n(1, n))/I(Ln)) ≥ dn+1
2
e.

Proof. For 3 ≤ n ≤ 5, by using [24], there exist Stanley decompositions.

If n = 3, then The poset P is given by

P = {(1, 0, 0, 0, 0, 1), (0, 0, 1, 1, 0, 0)}.

Partitions of P are given by

P : [(1, 0, 0, 0, 0, 1), (1, 0, 0, 0, 0, 1)]
⋃

[(0, 0, 1, 1, 0, 0), (0, 0, 1, 1, 0, 0)].

and the corresponding Stanley decomposition is

I(C6(1, 3))/I(L3) = x1y3K[x1, y3]⊕ x3y1K[x3, y1].

If n = 4, then

I(C8(1, 4))/I(L4) = x1y4K[x1, x3, y2, y4]⊕ x4y1K[x2, x4, y1, y3].

94



If n = 5, then

I(C10(1, 5))/I(L5) = x1y5K[x1, x4, y3, y5]⊕ x1x3y5K[x1, x3, y2, y5]⊕ x1y2y5K[x1, x4, y2, y5]

⊕x5y1K[x3, x5, y1, y4]⊕ x5y1y3K[x2, x5, y1, y3]⊕ x2x5y1K[x2, x5, y1, y4].

For n ≥ 6, we have

I(C2n(1, n))/I(Ln)

∼= x1yn
K[x3, y3, . . . , xn−2, yn−2, xn−1, y2]

(x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, xn−2xn−1, y2y3)
[x1, yn]

⊕y1xn
K[x3, y3, . . . , xn−2, yn−2, yn−1, x2]

(x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, yn−2yn−1, x2x3)
[y1, xn]

= x1yn
K[x3, y3, . . . , xn−2, yn−2, xn−1, y2]

(I(Ln−4), y2y3, xn−2xn−1)
[x1, yn]

⊕ y1xn
K[x3, y3, . . . , xn−2, yn−2, yn−1, x2]

(I(Ln−4), x2x3, yn−2yn−1)
[y1, xn].
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xn−1
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xn−3

xi
x3

x2

x1

yn

yn−1

yn−2

yn−3

yi

y3

y2

ZZy1

Figure 6.10: I(C2n(1, n))/I(Ln).

If u ∈ I(C2n(1, n)) such that u 6∈ I(Ln). It follows that (x1yn)|u or (y1xn)|u. If

(x1yn)|u then u = xγ11 y
δ1
n v1, v1 ∈ K[x3, y3, . . . , xn−2, yn−2, xn−1, y2], since v1 /∈ I(Ln), it

follows that v1 /∈ (x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, xn−2xn−1, y2y3).

Now if (y1xn)|u then u = yγ21 x
δ2
n v2, v2 ∈ K[x3, y3, . . . , xn−2, yn−2, yn−1, x2], since v2 /∈

I(Ln), it follows that
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v2 /∈ (x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, yn−2yn−1, x2x3). Clearly

we can see that

K[x3, y3, . . . , xn−2, yn−2, xn−1, y2]

(I(Ln−4), y2y3, xn−2xn−1)
∼= S•n−4/I(L•n−4)

and
K[x3, y3, . . . , xn−2, yn−2, yn−1, x2]

(I(Ln−4), x2x3, yn−2yn−1)
∼= S•n−4/I(L•n−4).

By Proposition 6.1.13 and Lemma 3.2.11, we have

sdepth(I(C2n(1, n))/I(Ln)) ≥ min{dn− 4 + 1

2
e+ 2, dn− 4 + 1

2
e+ 2} = dn+ 1

2
e.

Proposition 6.2.4. For n ≥ 3, Then sdepth(I(C2n(2, n))/I(Ln)) ≥ dn+1
2
e.

Proof. For 3 ≤ n ≤ 5, by using [24] we have

If n = 3, then The poset P is given by

P = {(1, 0, 1, 0, 0, 0), (0, 0, 0, 1, 0, 1), (1, 0, 1, 0, 1, 0), (0, 1, 0, 1, 0, 1)}.

Partitions of P are given by

P : [(1, 0, 1, 0, 0, 0), (1, 0, 1, 0, 0, 0)]
⋃

[(0, 0, 0, 1, 0, 1), (0, 0, 0, 1, 0, 1)]
⋃

[(1, 0, 1, 0, 1, 0), (1, 0, 1, 0, 1, 0)]
⋃

[(0, 1, 0, 1, 0, 1), (0, 1, 0, 1, 0, 1)]

and the corresponding Stanley decomposition is

I(C6(2, 3))/I(L3) = x1x3K[x1, x3]⊕ y1y3K[y1, y3]⊕ x1x3y2K[x1, x3, y2]

⊕x2y1y3K[x2, y1, y3].

If n = 4, then

I(C8(2, 4))/I(L4) = x1x4K[x1, x4, y2]⊕ y1y4K[x2, y1, y4]⊕ x1y3x4K[x1, y3, x4]

⊕y1x3y4K[y1, x3, y4].
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If n = 5, then

I(C10(2, 5))/I(L5) = x1x5K[x1, x5, y2]⊕ y1y5K[x2, y1, y5]⊕ x1x3x5K[x1, x3, x5]

⊕x1y3x5K[x1, y3, x5]⊕ x1y4x5K[x1, y4, x5]⊕ y1x3y5K[y1, x3, y5]⊕ y1y3y5K[y1, y3, y5]

⊕x2y1x4y3y5K[x2, y1, x4, y3, y5]⊕ x1x3x5y2K[x1, x3, x5, y2]⊕ x1x5y2y4K[x1, x5, y2, y4]

⊕x2y1y3y5K[x2, y1, y3, y5]⊕ x1y2x3y4x5K[x1, y2, x3, y4, x5]⊕ x2y1x4y5K[x2, y1, x4, y5]

⊕y1y3x4y5K[y1, y3, x4, y5]⊕ y1x3x5y4K[y1, x3, x5, y4]⊕ y1x4y5K[y1, x4, y5].

For n ≥ 6, we have,

I(C2n(2, n))/I(Ln)

∼= x1xn
K[x3, y3, . . . , xn−2, yn−2, yn−1, y2]

(x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, yn−2yn−1, y2y3)
[x1, xn]

⊕y1yn
K[x3, y3, . . . , xn−2, yn−2, xn−1, x2]

(x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, xn−2xn−1, x2x3)
[y1, yn]

= x1xn
K[x3, y3, . . . , xn−2, yn−2, yn−1, y2]

(I(Ln−4), y2y3, yn−2yn−1)
[x1, xn]

⊕ y1yn
K[x3, y3, . . . , xn−2, yn−2, xn−1, x2]

(I(Ln−4), x2x3, xn−2xn−1)
[y1, yn].

If u ∈ I(C2n(2, n)) such that u 6∈ I(Ln). It follows that (x1xn)|u or (y1yn)|u. If (x1xn)|u
then u = xγ11 x

δ1
n v1, v1 ∈ K[x3, y3, . . . , xn−2, yn−2, yn−1, y2], since v1 /∈ I(Ln), it follows

that v1 /∈ (x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, yn−2yn−1, y2y3).

Now if (y1yn)|u then u = yγ21 y
δ2
n v2, v2 ∈ K[x3, y3, . . . , xn−2, yn−2, xn−1, x2], since v2 /∈

I(Ln), it follows that

v2 /∈ (x3y3, x3x4, y3y4, . . . , xn−3yn−3, xn−3xn−2, yn−3yn−2, xn−2yn−2, xn−2xn−1, x2x3). Clearly

we can see that

K[x3, y3, . . . , xn−2, yn−2, yn−1, y2]

(I(Ln−4), y2y3, yn−2yn−1)
∼= S�n−4/I(L�n−4)

and
K[x3, y3, . . . , xn−2, yn−2, xn−1, x2]

(I(Ln−4), x2x3, xn−2xn−1)
∼= S�n−4/I(L�n−4).

By Proposition 6.1.11 and Lemma 3.2.11, we have

sdepth(I(C2n(2, n))/I(Ln)) ≥ min{dn− 4 + 1

2
e+ 2, dn− 4 + 1

2
e+ 2} = dn+ 1

2
e.
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Theorem 6.2.5. If G = C2n(1, n) or C2n(2, n) and n ≥ 3. Then, sdepth(I(G)) ≥
dn+1

2
e.

Proof. Consider

0 −→ I(Ln) −→ I(G) −→ I(G)/I(Ln) −→ 0,

then by Lemma 3.2.10,

sdepth(I(G)) ≥ min{sdepth(I(Ln)), sdepth(I(G)/I(Ln))}.

By Theorem 6.1.9, it follows that

sdepth(I(Ln)) ≥ dn
2
e+ 1,

and by Proposition 6.2.3 and 6.2.4, we have

sdepth(I(G)/I(Ln)) ≥ dn+ 1

2
e = dn− 1

2
e+ 1.

Corollary 6.2.6. If G = C2n(1, n) or C2n(2, n) and n ≥ 3. Then

sdepth(I(G)) ≥ sdepth(Sn/I(G)).

Proof. Let n ≥ 3, by Theorem 6.2.5 and corollary 6.2.2 we have,

If n ≡ 0 (mod 2)

sdepth(I(G)) ≥ dn+ 1

2
e ≥ sdepth(Sn/I(G)).

By considering Theorem 6.2.1, Corollary 6.2.2 and Auslander-Buchsbaum formula

[33, Theorem 3.7], we have,

Corollary 6.2.7. If G = C2n(1, n) or C2n(2, n), For n ≥ 3,

n+ bn
2
c − 1 ≤ pdSn(Sn/I(G)) ≤ n+ 1 + bn− 1

2
c.
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Summary

• In this thesis, the existing lower bounds and values for the Stanley depth and

depth of modules are discussed.

• Our newly computed bounds are presented for Stanley depth and of edge ideals

associated with different families of graphs.

• The detailed procedure is given to compute the bounds and values for Stanley

depth and depth of the edge ideals corresponding to ladder graph and restricted

partial strong product of the graphs.

• The lower and upper bounds of depth, Stanley depth and projective dimension

are presented for the cubic circulant graphs.

• The upper bound of regularity and projective dimension for some families of

circulant graph are also given.
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