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Abstract

Nearly all of the real world problems are non-linear in nature and they are coded in the

language of non-linear differential equations. To find the exact solutions of these problems

are usually impossible. So, we direct our attention towards finding the approximate solutions

of these equations. This thesis aims at finding the analytical solution of a classical Blasius flat

plate problem, non-linear problem, using spectral collocation method. This technique is based

on Chebyshev pseduspectral approach that reduced the solution to the solution of a system of

algebraic equations. The implementation of this method is carried out in Mathematica and its

validity is ensured by comparing it with a built in MATLAB numerical routine called bvp4c.

The graphical and tabular representation of the problem is also presented in order to get an

insight into the problem.
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CHAPTER 1

Introduction

In the seventeenth century, Gottfried Wilhelm Leibniz (1646− 1716) and Isaac Newton

(1647−1716) developed the differential equation that was initially performed in the theory of

calculus. Three types of differential equations were formulated by Newton in 1671. Newton

solved his first differential equation in 1676 and the same year Leibniz denoted a relationship

among the two variables X and Y [24]. The term differential equations (DEs) were first

introduced by Leibniz. In the field of applied sciences, most of the theoretical and physical

phenomena can be expressed as differential equations. By using basic analytical methods

for complex shapes, it is not always possible to solve these equations. A number of natural

phenomena are represented by equations which involve the rate of change of one variable

with respect to the other variable(s) known as "derivative".

An equation containing the derivatives is called as differential equation (DE). In a DE physical

quantities are generally represented by function while derivative express rates of change in

respective function. Following are some examples of DEs:

dy

dx
= cosx,

d2y

dx2 + x2 = x,

dy

dx
− lny = 0.
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The order of a DE is defined as the highest derivative that appears in the equation. e.g.

d4y

dx4 + dy

dx
= 0,

is a fourth order DE. The degree of differential equation defined as the power of the highest

derivative appearing in the equation. e.g.

(
d2y

dx2

)4

+ 4
(
dy

dx

)
− 4x = y,

has degree 4.

An ordinary differential equation (ODE) is defined as the equation in which dependent

variable contain only one independent variable while on the other hand if it consist of more

than one independent variables then it is called partial differential equation (PDE). DEs are

also categorized as linear, nonlinear, non-homogeneous and homogeneous.

There are two main types of problems that are categorized by DEs (i.e. boundary value

problems and initial value problem) which depend on the type of conditions. In initial value

problem conditions are specified at only one point of the domain while in boundary value

problem conditions are described at more than one points of the domain. The analytical

solutions for every kind of DEs do not exist so we need some numerical technique to solve

the problem. To find the solutions of DEs, generally following techniques are useful:

1. Finite Difference Method (FDM).

2. Finite Element Method (FEM).

3. Finite Volume Method (FVM).

4. Spectral Methods.
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1.1 Finite Difference Method

The finite difference approach is easiest to understand and applied to solve a broad

range of problems that include; time dependent and independent, non-linear and linear

problems. This method associates to so called grid-point methods. It was not broadly used

to solve engineering problems until the 1940′s. This method can be used to solve problem

which contain various kinds of boundary conditions and for a region containing a number

of materials.The following method is centered on the calculus of finite differences. It is a

straight forward technique in which a PDE is satisfied at a set of interconnected points within

the domain, called nodes. The boundary conditions are satisfied at a set of nodes placed

on the domain’s boundaries. The structure of all nodes is suggested as a mesh or grid. The

derivatives in the PDE is approximated using difference approximations derived using Taylor

series expansions. To solve the DE using FDM, we follow these steps:

• Formulate the whole domain into small intervals that are called mesh and then label

the grid according to created mesh.

• By using backward difference, forward difference quotient or second order central

difference quotient approximate the derivative appearing in the DE.

• Obtain an algebraic equation for the first grid points.

• Repeating the above process for all interior grid points leads to a system of algebraic

equations in which the values of nodal variables remain unknown. Hereafter, we get

number of unknowns equat to the number of equations by putting in the boundary

conditions.

• Now to solve this system numerically, different iterative methods like Jacobi method,
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Gauss Seidal method etc can be applied.

1.2 Finite Element Method

Finite element method (FEM) is a mathematical technique that is used for finding the

approximate solution of differential and integral equation that occurs in various areas of

applied sciences. In the previous few eras, Finite Element Method (FEM) has expanded as

an essential technique in simulation and modeling of different system of engineering, for

instance, transportation, communication, housing and so on. In the advancement of such

complex engineering system, engineers deal with a very stringent procedure of simulation,

analysis, modeling, visualization, designing, testing, and finally, construction. Application of

the FEM has increased rapidly. First time, it was used for solving the stress analysis problems

and after that it has been enlarged to numerous other problems such as fluid flow, thermal

analysis, heat flow in continuum mechanics.

Basic approach behind FEM is to change the initial problem into simple form by dividing the

problem domain into numerous sections. Furthermore, we can get a better approximation

in FEM by increasing computational efforts. In each sub-domain by using piecewise linear

function, a continuous function of an unknown variable is approximated, that known as

element made by nodes. The discrete values of the field variable at the nodes are unknowns.

To set up equations for the elements, an approximate rule is followed in which elements

are connected to one another. To get the mandatory field variable for the whole system

this procedure tends to a set of linear equations that can be solved easily. The FEM is

preferred over FDM because FEM is comparatively more suitable for problems having

complex geometrical domains and writing the codes for FEM are not easy in general.
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1.3 Finite Volume Method

The Finite Volume Method (FVM) converts PDEs into a set of abstract algebraic equa-

tions over finite volume, which describe the conservation laws on differential volume. Related

to finite element method and finite difference method, the first step of the procedure is the

formulation of the domain, in which the finite volume method is integrated over each sub-

domain to transform these equations into algebraic equations. These equations are then

solved to calculate the values of the dependent variable for each sub-domain.

Some of terms in FVM in the system of equations are transformed into face fluxes and tested

on the finite volume faces. Since the flux input is equal with that of the neighboring range,

the FVM is purely conservative. Due to this property, this technique is more preferable

technique in computational fluid dynamics (CFD). Another essential feature is that can be

constructed on formless polygon meshes in the physical space. Lastly, implementation of

types of boundary conditions in FVM in a noninvasive manner is quite easy, as unknown

variables are not evaluated at their boundary faces but at their centroid of the volume sub

domains.

FVM is relatively appropriate for numerical simulation of various problems involving mass

and heat transfer and fluid flow and advancement in FVM have been relatively interlinked

with development in CFD. This method is now efficient for dealing with all types of complex

physics and their applications.

1.4 Spectral Methods

In the last few eras spectral methods have been expanded quickly because of their extreme

assurance. These methods have been used effectively to different numerical simulations in
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various areas, like engineering, heat conduction, fluid dynamics, mechanics etc. These days,

for numerical solution of DEs there are some of the most effective techniques including finite

difference method and finite element techniques.

The spectral approach belongs to the class of weighted residual methods (WRMs) in the

sense of numerical designs for DEs which are conventionally considered to be a basis of

numerical methods such as finite volume, finite element, spectral and boundary element (cf.

Finlayson (1972)). WRMs constitute a specific cluster of approximation techniques that

minimizes the error in a specific direction and thus leading to certain techniques involving

collocation Galerkin, tau formulations and Petrov-Galerkin.

Spectral method can be used to solve ODEs, PDEs and eigenvalues problem efficiently. In

spectral method, unknown solution is expended as a global interplant, that is why this method

is more advanced as compare to FEM or FDM. The convergence of spectral method is based

on regularity of solution. The analytic functions converge more rapidly at the rate of O(cN)

where 0 < c < 1 see reference [38]. If the functions are smooth then the convergence rate

is O(N−m), for every m. Even when the functions are not smooth spectral method often

works very well, see reference [8]. As compared to finite element methods; spectral methods

are computationally more affordable. The main aspect of this method is to hold numerous

orthogonal systems of infinitely differentiable global function as trial function.

One of the most important question in spectral method is choosing suitable basis or trial

functions having

1. Easy to compute

2. Fast Convergence rate

3. Completeness
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The choice of trial functions or basis functions is based on the problem under study. Various

trial functions lead to distinct spectral approximation. For example, for periodic problems

Fourier series and for non-periodic problem Legendre polynomials and Chebyshev polynomi-

als are used. On the half real line problem, Laguerre polynomial and for whole line problems

Hermite polynomials are used.

1.4.1 Various spectral methods

Three most important spectral methods are as follow:

1. Tau Method

2. Collocation Method

3. Galerkin Method

The selection of applying any of these methods depends upon the application.

1.4.2 Tau Method

Tau-spectral method was developed by C. Lanczos in 1938. It is suitable for non-periodic

problems with complicated boundary conditions. In this method test function is equal to

trial function but the basis functions do not satisfy the boundary conditions. This method

minimizes the residual function like the Galerkin method but it differs in that the boundary

condition which is also a constraint.

1.4.3 Collocation Method

In practical applications, this kind of spectral approach is used most frequently. Colloca-

tion method requires that the given equation satisfies at the nodes points and test function
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is equal to Dirac delta function at special points called collocation points. Roots of basis

functions and Gaussian quadrature points can also be used as collocation points. In this

method, if we set the residual function zero at the collocation points then we can find the

value of unknown coefficients of the interpolating series. Spectral collocation approach is

also known as pseudospectral technique. This method works best for the non-linear problems

or with complicated coefficients. For solving DEs, this method was first used by Frazer et al.

[17] in 1937. For more detail about this method see ([8], [9], [18] and [20]).

1.4.4 Galerkin Method

This approach is usually credited to Boris Galerkin, but Finlayson [14] and Collatz [37]

studied this method in more detailed. The benefits of Galerkin approach are more efficient

research and optimal error calculations. There are no specific collocation or mesh points

in Galerkin method. In the Galerkin method, test function is equal to trial function, basis

functions are smooth functions and they have derivative of all order and satisfy the boundary

conditions. The difficulties appear whenever complicated boundary conditions have to be

enforced into the trial functions. For more detail about this method see references ([16],[11],

[12], [13], [15], [20], [21]).

To see detailed comparison of the three methods mentioned above, see reference [8].

1.5 Difference between spectral method and finite element

method

• Spectral methods use basis functions that are defined globally, while in finite element

methods basis functions are defined locally.
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• Spectral methods are faster converging as compared to finite element method or finite

difference methods.

• Spectral methods are more accurate than finite element method.

1.6 Background of Blasius Problem

In applied mathematics, one of the most illustrative and calebrated a non-linear ODE

of third order subject to boundary conditions is Blasius problem. In most undergraduate

fluid mechanics books, Blasius problem is found that represents laminar viscous flow and

steady flow over a semi-infinite plate. A Blasius function denoted by f is a simple solution

of third order non-linear ODE i.e. Blasius problem, named after the German fluid dynamicist

Paul Richard Heinrich Blasius. He showed that by introducing a stream function and by

using similarity transformation with suitable boundary conditions two partial differential

equations, namely Navier-Stokes equations can be converted into a single third order ordinary

differential equation [28].

Due to absence of second order boundary condition, solution of the Blasius problem is

difficult to find analytically. To handle this problem, a wide class of numerical and analytical

solution methods was used. To get an approximation of the problem, in 1908, Blasius found

power series solution and combined this solution with asymptotic expansions at finite X [10].

In this way numerical solution of Blasius problem can also be adopted. Balsius problem is

now more than a century old and it is foundational to study the behavior of fluid. Blasius flow

have thin boundary layers similar as the flows past a solid body like ocean currents streaming

past an undersea mountain, air rushing past an airplane and even the breath and blood flowing

through our bodies.
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An adomian decomposition method (ADM) was applied by Wang [41] for approximate

solution of classical Blasius problem. Abussita [2] studied the Blasius solution for flow past

a flat plate.

For an approximate analytical solution of Blasius problem, Liao [25] applied homotopy

analysis method and to find the numerical solution. Abbasbandy [1] used an improved

form of ADM. In 1940, Crocco made a transformation which is later used by Wang [9] to

tackle Blasius problem from different point of view. In 2009, Parand et al. [29] used Sinc-

Collocation method and obtained comparatively accurate solution of the problem. In 2010,

an analytical solution of Blasius problem in terms of algorithm of geometric functions was

found by Beong in Yun [43]. In 2015, S Ghorbani et al. [19] merged the best approximation

theorem and Green’s function method for an analytical solution of the Blasius problem.

In fluid mechanics, this problem is recognized as the mother of all boundary layer

equations. For large of fluid mechanical situations various but interrelated equations have

been developed like Falkner-Skan equation [5]. By using finite diference method, the solution

of Falkner-Skan equation is presented by Asaithambi [4]. Lock [26] studied the distribution

of velocity for laminar boundary layer equation even during its motion, lower stream was

at rest. Later, the flow of two fluids of various densities and viscosities were investigated

by Potter [33]. Method of Weyl [42] in [2], was successfully addressed the solution for this

model.
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CHAPTER 2

Solution of Nonlinear Ordinary

Differential Equations

2.1 MATLAB

MATLAB is a software focused primarily upon numerical computing and has wide range

of packages and toolboxes in order to enhance its capabilities. Similar to other programming

languages, it also contains a huge bank of built in functions for user’s convenience. It has

a lot of functions for solving ordinary and partial differential equations. There are almost

seven differential solvers with each one having its own significance. Out of many, one such

solver is bvp4c. The details of the method and how to implement it is given in the subsequent

sections.

2.1.1 bvp4c

To solve BVPs in MATLAB, bvp4c is one of the most important built-in tool. It is based

on a finite difference method that is applied on the three-stage Lobatto IIIa formula, which

is a collocation formula. The polynomial collocation provides a C1- continuous solution

that is valid in fourth order. Mesh selection and error correction are based on the continuous

solution residual. BVPs for ODEs in MATLAB using by bvp4c is discussed by Shampine

[34].
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Let us consider an example to see how to apply MATLAB built-in function bvp4c on a BVP

for an ODE.

2.1.2 Example

Consider the following BVP,

y
′′ + 2y + 1 = 0,

y(0) = 0, y(π) = 1.

The exact solution of the problem is

y(x) = 1
2cos
√

2x+ 1
2

[
3− cos

√
2π

sin
√

2π

]
sin
√

2x− 1
2 .

To find numerical solution we use bvp4c. First we rewrite the problem as a system of two

first-order ODEs

y2 = y1
′
,

and

y2
′ = y1

′′ = −2y1 − 1,

where y = y1 and y′ = y2.

The function f , and the boundary conditions, bc, are coded in MATLAB as the function

twoode and twobc.

function dydx = twoode(x, y)

dydx = [y(2);−2y(1)− 1)];
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function res = twobc(ya, yb)

res = [ya(1); yb(1)− 1];

Taking the guess vector as

y1(x) = 1,

y2(x) = 0.

solinit = bvpinit(linspace(0, pi, 140), [1, 0]);

Solution of the problem using bvp4c is obtained as

sol = bvp4c(@twoode,@twobc, solinit);

After evaluating the numerical solution on given domain, we have plotted the result in Fig.

(2.1).

Figure 2.1: Numerical solution of y(x)
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The graph of the exact solution of the problem is shown in Fig. (2.2).

Figure 2.2: Exact solution of y(x)

Figure 2.3: Combined graph of exact and numerical solutions

In Fig. (2.3) solid line shows the numerical whereas dotted line shows the exact solution

and it is evident from the figure that the exact and numerical solutions are in close agreement.
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2.2 Spectral Method

Consider the following non-linear BVP,

y
′′ + 2yy′ = 0, y(0) = 0, y(1) = 1

2 . (2.1)

We find the approximate solution of this problem by using spectral method. For this, let

f(x) = yN(x) =
N∑

i=0
aiψi(x), (2.2)

be its approximate form, where ai are unknown coefficients and ψi(x) is a set of basis

functions. Consider the basis functions ψi(x) to be first kind Chebyshev polynomials. Since

Chebyshev polynomials are defined on the interval [−1, 1], and our problem is defined over

the interval [0, 1]. So we define a transformation, which transform our interval from [0, 1] to

[−1, 1]. For this purpose we are using the transformation

Ti(x) = Ti(2x− 1). (2.3)

Eq. (2.2) becomes

f(x) = yN(x) =
N∑

i=0
aiTi(x). (2.4)

Choose N = 3, to have

f(x) = y3(x) =
3∑

i=0
aiTi(x), (2.5)
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and the boundary conditions lead to

y3(0) = 0,

y3(1) = 1
2 .

Unknown coefficients can be found by using roots x′is of the Chebyshev polynomial as

x1 = 0, x2 = 0.188255, x3 = 0.61126, x4 = 0.950484.

By setting the residual to be zero at the points x2 and x3 two more equations are obtained. We

find the values of unknown co-efficient’s a0, a1, a2, a3 after solving the system of equations

as

a0 = 0.70921306, a1 = −0.24076791, a2 = 0.04078693, a3 = −0.00923208.

Putting these values in Eq. (2.5) and simplifying we obtain the following expression as an

approximate solution.

f(x) = 0.9999999999999999− (0.9740088157453604)x+ (0.7694354122570408)x2

−(0.295422659651168046)x3,

which is shown in Fig. (2.4).
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Figure 2.4: Approximation of f(x), for N = 3 using Chebyshev Spectral Method

By increasing N , we actually increase the number of terms of our series solution, which

in turn causes the error to decrease. So, we have the freedom to choose such a value for N ,

which satisfies our tolerance criterion as well as computational need.

2.3 Blasius Problem

Let us consider a uniform flow over a flat semi-infinite plate. In this situation, equations

of flow are

∂u

∂x
+ ∂v

∂y
= 0, (2.6)

u
∂u

∂x
+ v

∂u

∂y
= v

∂2u

∂y2 , (2.7)
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where u and v are the x and y components of the velocities. Boundary conditions are

u(x, 0) = 0, v(x, 0) = 0, (2.8)

y →∞ ⇒ u(x, y)→ U, (2.9)

where U is the constant speed of fluid outside the boundary layer. Let ψ(x, y) is some stream

function, then

u = ∂ψ

∂y
, (2.10)

and

v = −∂ψ
∂x

. (2.11)

Taking partial derivative of Eq. (2.10) w.r.t. "x" and Eq. (2.11) w.r.t. "y", we have

∂u

∂x
= ∂2ψ

∂x∂y
, (2.12)

∂v

∂y
= − ∂2ψ

∂x∂y
, (2.13)

using Eqs. (2.12) and (2.13) in Eqs. (2.6) and (2.7) respectively, we get

∂2ψ

∂x∂y
− ∂2ψ

∂x∂y
= 0,

∂ψ

∂y

∂2ψ

∂x∂y
− ∂ψ

∂x

∂2ψ

∂y2 = v
∂3ψ

∂y3 . (2.14)
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To transform Eq. (2.14) using the following similarity transformations,

η = a
y√
x
, (2.15)

ψ(x, y) = b
√
xf(η), (2.16)

where a and b are constants chosen, such that f(η) is dimensionless, as

a =
√
U

ν
, b =

√
νU, (2.17)

where ν is kinematic viscosity of the fluid and η is dimensionless similarity variable. After

differentiation of Eq. (2.16), we get

∂ψ

∂x
= 1

2
√
νU

f(η)√
x
− U

2
y

x
f

′(η), (2.18)

and now differentiate Eq. (2.16), to have

∂ψ

∂y
= Uf

′(η). (2.19)

Differentiate Eq. (2.19) with respect to x and y, we get

∂2ψ

∂x∂y
= − U2xηf

′′(η), (2.20)

∂2ψ

∂y2 = Uf
′′(η) a√

x
. (2.21)
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By taking derivative of Eq. (2.21), we get

∂3ψ

∂y3 = U2

νx
f

′′′(η). (2.22)

Substituting above derivatives from Eqs. (2.18)-(2.22) in Eq. (2.14), we get

− U2x
ay√
x
f

′(η)f ′′(η) + ay√
x

U

2xf
′(η)f ′′(η)− a

√
νU

2x f(η)f ′′(η) = U

x
f ′′′(η),

or

f
′′′(η) + 1

2f(η)f ′′(η) = 0. (2.23)

Eq. (2.23) is called the Blasius equation. Also, transform boundary conditions Eqs. (2.8) and

(2.9) are

η(x, 0) = 0,

u(x, 0) = Uf
′(η(x, 0)),

0 = Uf
′(0)⇒ f

′(0) = 0. (2.24)

Now

v(x, 0) = −1
2
√
νU

f(η)√
x

+ U

2
y

x
f

′(η),

0 = −1
2
√
νU

f(0)√
x

+ U

2
y

x
f

′(0),

which implies

f(0) = 0. (2.25)
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Similarly y →∞⇒η →∞, which gives

f
′(∞) = 1, (2.26)

as η →∞. By using similarity transformation method and with the help of stream function,

PDE of required function are transformed into third order non-linear ODE.
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CHAPTER 3

Approximate Solution of the Blasius

Problem using Chebyshev Spectral

Method

3.1 Solution of Blasius problem

In 1912 Topfer was the first who provided a numerical solution to the Blasius problem

[40]. To solve this problem, he used similarity reduction and symmetry principles with

Range-Kutta (RK) method for integrating the ODE. R. Cortell [10] presented a Range-Kutta

algorithm for high order IVP to obtain numerical solution of the Blasius flat-plate problem.

In the solution of the Blasius problem α = f
′′(0), plays a crucial role. Howarth [23]

has developed a solution of the Blasius problem which is considered as a highly accurate

numerical solution and obtained α = f
′′(0) = 0.332057. Abbasbandy [1] used ADM method

to obtain α = f
′′(0) = 0.333729 with 0.383% error, also Tajvidi et al. [39] calculated

α = f
′′(0) = 0.333329 with 0.009% error.

The standard form of this problem is given in Eqs. (2.23)-(2.26). So here first we solve the

problem with the bvp4c function in MATLAB and is shown in Fig. (3.1).
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Figure 3.1: Solution of Blasius flat-plate problem using bvp4c

3.1.1 Solving problems in semi-infinite domain

Spectral methods have been successfully applied and problems were defined in unbounded

domain. There are different methods in which collocation method is based on the nodes

of Gauss formulas related to semi-infinite intervals [22]. In above approach computations

involve orthogonal polynomials, like as Laguerre polynomials. However, in semi-infinite and

finite domain there is a deficiency in numerical techniques for the solution of PDEs. To solve

problems in semi-infinite domain, numerous spectral methods are used.

1. First technique to solve the problem on unbounded domain is by using Laguerre

polynomials see [27], [35] and [36].

2. The second technique is to reformulate the original problem of semi-infinite domain to

singular in the limited domain by variable change, and then to estimate the resulting

unique problem using Jacobi polynomial.

3. Rational orthogonal functions are based on the third approach. By mapping Chebyshev
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polynomials as called rational Chebyshev functions in the semi-infinite interval, Boyd

[6] developed a new spectral basis.

4. Fourth technique is called domain truncation in which semi-infinite domain is replace

with [0, L] interval, by selecting L sufficiently large [6].

Writers [32], [30] and [31] applied a spectral method that based on a rational Tau method

for the solution of non-linear ODEs. They used the Tau method with the sum of operational

derivative matrices, Legendre and logical Chebyshev in order to reduce the non-linear ODEs

solution to the algebraic equations solution.

Boyd, et al. [7] used collocation techniques at an unbounded interval and contrasted the

rational Chebyshev, Laguerre and Fourier sine. Guo, et al. [22] define a new set of rational

Legendre functions for the Korteweg-de Vries equation.

To get unknown coefficients in spectral methods there are some properties which are very

helpful. Proofs are maybe found in [3].

Theorem: The ith degree polynomial ψi of an orthogonal set has i real distinct zeros, all of

which lie in the interval (a,b).

Theorem: The polynomial of an orthogonal set satisfy a recurrence relation of the form

xψi(x) = Aiψi(x) +Biψi(x) + Ciψi(x), i ≥ 1,

where Ai, Bi and Ci are constants that may depend on i.

3.1.2 Approximation of Blasius problem

As we studied in Chapter 1 that spectral methods are suitable for non-linear problems

with complicated coefficients. Since Blasius problem is a non-linear ODE on a semi-infinite
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interval and we cannot solve it exactly, so we use Spectral method on the Blasius flat-plate

problem to obtain its approximate solution. Here we are using its standard form

f
′′′(η) + 1

2f(η)f ′′(η) = 0, (3.1)

f(0) = 0, f
′(0) = 0, f

′(∞) = 1. (3.2)

First, we write f in its approximate form as

fN(η) =
N∑

j=0
ajφj(η). (3.3)

It is an approximate solution of the Blasius flat-plate problem, where aj are unknown co-

efficients and φj(η) is a set of trial functions. The residual function RN(η) of Eq. (3.1) can

be written as

RN(η) = f
′′′

N (η) + 1
2fN(η)f ′′

N(η). (3.4)

We need to solve system of (N+1) equations to find the value of (N+1) unknown coefficients

in Eq. (3.3). By applying boundary conditions on Eq. (3.3), we find the subsequent equations

N∑
j=0

aj
Nφj(0) = 0, (3.5)

N∑
j=0

aj
Nφj

′(0) = 0, (3.6)

N∑
j=0

aj
Nφj

′(∞) = 1. (3.7)
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Now we set residual to zero at N from (N + 1) nodes ηj, j = 1, 2, 3, ..., N + 1. By using the

Gauss-Radau formula, we can find these nodes. In this method, we use zeroes of polynomial

in Eq. (3.4) as nodes.

RN(ηj) = 0, j = 1, 2, 3, ..., N. (3.8)

3.1.3 Chebyshev Spectral Method

To find a solution of this problem by spectral method, we use trial function φj(η) as

Chebyshev polynomials in Eq. (3.3). First kind of Chebyshev polynomials Tn(x), are solution

of the Chebyshev differential equation

(1− x2)Tn
′′(x)− xTn

′′(x) + n2Tn(x) = 0, (3.9)

where

Tn(x) =
n
2∑

k=0

n!xn−2k(x2 − 1)k

(2k)!(n− 2k)! , n ≥ 0.

Since our problem is defined over the semi-infinite interval [0,∞) and Chebyshev polynomi-

als are defined on [−1, 1]. To solve this problem using Chebyshev spectral method first we

use the approach domain truncation which changes our interval from semi-infinite interval to

[0, a], and then we define a linear transformation which transforms our interval from [0, a] to

[−1, 1]. For this purpose, we use small transformation

Tn(η) = Tn

(
η − 10

10

)
. (3.10)
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In the next step we use this transformed Chebyshev polynomials Tj(η) in Eq. (3.3) as a basis

function. Thus we obtain

fN(η) =
N∑

j=0
ajTj(η). (3.11)

The residual function RN(η) given in Eq. (3.4) can be minimized easily if we increase the

number of terms N .

In the next step we find the unknown coefficients ai using the N zeros of transformed

Chebyshev polynomials Tj(η). We can also use zeros of Tj(η) + Tj+1(η), which are also

called Gauss-Radau nodes. To find these nodes we use Mathematica.

For N = 5, we get the following expression as approximate solution of the Blasius problem

f5(η) = 0 + 1.110223024625156 ∗ 10−16η + 0.166025η2 − 0.01287136551922731η3

+0.000490128255821227η4 − 0.000007349331954008114η5,

that is shown in Fig. (3.2)

Figure 3.2: Approximate solution of the Blasius Problem

By using the following method, here are some approximate solutions of this problem for
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N = 10 and 15.

f10(η) = −3.5527136788005 ∗ 10−15 + 1.110223024625156 ∗ 10−16η

+0.16602499999999998η2 + 0.02248356428539726η3

−0.013755143474056852η4 + 0.0025394160109805408η5

−0.00025897875142205494η6 + 0.000016014108458038347η7

−5.976317766601015 ∗ 10−7η8 + 1.23977606557046 ∗ 10−8η9

−1.098852966268973 ∗ 10−10η10,

f15(η) = 1.458535678030333 ∗ 10−16 − 3.313815235807477 ∗ 10−17η

+0.1660249999999996η2 + 0.00021709678567897805η3

−0.0012053172264257644η4 + 0.001221553416182771η5

−0.0010785875037519796η6 + 0.00037617151908165956η7

−0.00007312200624057126η8 + 0.000009076612541672305η9

−7.612920082640843 ∗ 10−7η10 + 4.391259250999106 ∗ 10−8η11

−1.723625258282282 ∗ 10−9η12 + 4.409833684404594 ∗ 10−11η13

−6.6432559128151677 ∗ 10−13η14 + 4.475636356067715 ∗ 10−15η15.

fN(η) for different values of N are shown in Fig. (3.3).
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3.2 Graphs of fN(η) for different values of N

(a) For N = 10 (b) For N = 15

(c) For N = 20 (d) For N = 25

Figure 3.3: Graphs of fN(η) for different values of N
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Table 3.1: Approximate solution fN(η) evaluated at different points by adding more terms
N .

η N = 10 N = 15 N = 20 N = 25

0.5 0.043532 0.041482 0.041492 0.041492

1.0 0.177049 0.165491 0.165568 0.165568

2.0 0.690476 0.64999 0.650014 0.650011

3.0 1.44674 1.39657 1.39677 1.39678

4.0 2.33996 2.30494 2.30572 2.30572

5.0 3.29403 3.28052 3.28321 3.28322

6.0 4.26770 4.26931 4.27951 4.27955

7.0 5.24469 5.25482 5.27926 5.27915
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Table 3.2: Approximation of fN(η) for Chebyshev spectral method and bvp4c.

η Chebyshev Spectral Method bvp4c

0 0 0

1.0072 0.1679 0.1680

2.0144 0.6591 0.6591

3.0216 1.4150 1.4151

4.0288 2.3332 2.3333

5.0360 3.3189 3.3190

6.0432 4.3227 4.3227

7.0504 5.3295 5.3296

8.0576 6.3367 6.3368

9.0647 7.3438 7.3440

10.0719 8.3511 8.3512

11.0791 9.3582 9.3584

12.0863 10.3654 10.3655

13.0935 11.3725 11.3727

14.1007 12.3797 12.3799

15.1079 13.3869 13.3871

16.1151 14.3911 14.3943

17.1223 15.4013 15.4015

18.1295 16.4088 16.4089
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CHAPTER 4

Conclusion

In this thesis, spectral method has been employed to find an approximate solution of

the nonlinear classical Blasius flat plate problem. To achieve this goal, the pseudospectral

method with Chebyshev polynomials as a basis functions were used. As the Chebyshev

polynomials are defined on the interval [−1, 1], this interval can be transformed according to

our problem. To get unknown coefficients, roots of these polynomials are used. Also, we find

that spectral method solution can be made as accurate as desired by adding more terms.

On contrary, bvp4c was also used to find out the required problem’s numerical solution.

A comparison of the results is shown in Table (3.2), that indicates a close agreement between

the two results.
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